
		
			
	[image: Relational Databases and Microsoft Access 365]

		
	
		
			
			Relational Databases and Microsoft Access 365

		

					Ron McFadyen

								

		

	

		
	
		
			
	
					[image: Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License]
Relational Databases and Microsoft Access 365 by Ron McFadyn is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

							This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License. To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
This work can be distributed in unmodified form for non-commercial purposes. Modified versions can be made and distributed for non-commercial purposes provided they are distributed under the same license as the original. Other uses require permission of the author.

							

		
	
		
			
	Contents

	
						
	
		PREFACE
							
	

						
	
		Acknowledgements
							
	

						
	
					1. RELATIONAL DATABASES AND MS ACCESS
			

						
	
		1.1 Relational Databases
							
	

						
	
		1.2 Microsoft Access
							
	

						
	
		1.2.1 Modifying Rows
							
	

						
	
		1.2.2 Adding New Rows
							
	

						
	
		1.2.3 Deleting Rows
							
	

						
	
		1.2.4 Table Design View
							
	

						
	
					2. CREATING TABLES
			

						
	
		2.1 Using Design View To Create Tables
							
	

						
	
		2.1.1: Data Types
							
	

						
	
		2.1.2: Properties
							
	

						
	
		2.1.3: Primary Keys
							
	

						
	
					3. CREATING FORMS
			

						
	
		3.1: Using the Form Wizard
							
	

						
	
		3.2: Modifying the Form
							
	

						
	
		3.2.1: Adding a Button
							
	

						
	
		3.2.2: Adding a Label
							
	

						
	
		3.2.3: Adding a Calculated Field
							
	

						
	
					4. MICROSOFT ACCESS QUERIES
			

						
	
		4.1: Simple Query
							
	

						
	
		4.2: Projection Query
							
	

						
	
		4.3: Selection Query
							
	

						
	
		4.4: Sorting the Result
							
	

						
	
		4.5: And
							
	

						
	
		4.6: Or
							
	

						
	
		4.7: Joins
							
	

						
	
					5. RELATIONSHIPS AND THE RELATIONSHIPS TOOL
			

						
	
		5.1: Integrity
							
	

						
	
		5.2: Relationships
							
	

						
	
		5.2.1: One-To-Many
							
	

						
	
		5.2.2: One-To-One
							
	

						
	
		5.2.3: Many-To-Many
							
	

						
	
					6. MICROSOFT ACCESS QUERIES – ADVANCED
			

						
	
		6.1: Logical Expressions
							
	

						
	
		6.1.1: And
							
	

						
	
		6.1.2: Or
							
	

						
	
		6.1.3: Not
							
	

						
	
		6.2: Query Operators
							
	

						
	
		6.2.1: Like
							
	

						
	
		6.2.2: In
							
	

						
	
		6.3: Query Properties
							
	

						
	
		6.3.1: Top Values
							
	

						
	
		6.3.2: Unique Values
							
	

						
	
		6.4: Totals Query
							
	

						
	
		6.5: Parameter Query
							
	

						
	
		6.6: Crosstab Query
							
	

						
	
		6.7: Action Queries
							
	

						
	
		6.7.1: Make Table Query
							
	

						
	
		6.7.2: Append Query
							
	

						
	
		6.7.3: Delete Query
							
	

						
	
		6.7.4: Update Query
							
	

						
	
		6.8: Inner and Outer Joins
							
	

						
	
		6.8.1: Inner Join
							
	

						
	
		6.8.2: Outer Join
							
	

						
	
		6.8.3: Cartesian Product
							
	

						
	
		6.8.4: Self-Join
							
	

						
	
		6.8.5: Anti-Join
							
	

						
	
		6.8.6: Non-Equi Join
							
	

						
	
		6.9: SQL Select Statement
							
	

						
	
		6.10: SQL Union and Union All
							
	

						
	
					7. ENTITY RELATIONSHIP MODELLING
			

						
	
		7.1: Introduction
							
	

						
	
		7.2: Entities
							
	

						
	
		7.2.1: Weak Entities
							
	

						
	
		7.3: Attributes
							
	

						
	
		7.3.1: Atomic Attributes
							
	

						
	
		7.3.2: Composite Attributes
							
	

						
	
		7.3.3: Single-Valued Attributes
							
	

						
	
		7.3.4: Multi-Valued Attributes
							
	

						
	
		7.3.5: Derived Attributes
							
	

						
	
		7.3.6: Key Attributes
							
	

						
	
		7.3.7: Partial Key
							
	

						
	
		7.3.8: Surrogate Key
							
	

						
	
		7.3.9: Non-Key Attributes
							
	

						
	
		7.3.10: Nulls
							
	

						
	
		7.3.11: Domains
							
	

						
	
		7.4: Relationships
							
	

						
	
		7.4.1: Degree
							
	

						
	
		7.4.2: Participation
							
	

						
	
		7.4.3: Cardinality
							
	

						
	
		7.4.4: Recursive Relationships
							
	

						
	
		7.4.5: Identifying Relationships
							
	

						
	
					8. MAPPING AN ERD TO A RELATIONAL DATABASE
			

						
	
		8.1: Mapping Rules
							
	

						
	
		8.1.1: Entity Types
							
	

						
	
		8.1.2: Relationship Types
							
	

						
	
		8.1.3: Attributes
							
	

						
	
		8.2: Examples
							
	

						
	
					9. DATA DEFINITION LANGUAGE (DDL)
			

						
	
		9.1: Running DDL in MS Access
							
	

						
	
		9.2: Example
							
	

						
	
		9.2.1: DDL Commands
							
	

						
	
		9.2.2: Creating the Database
							
	

						
	
					10. NORMALIZATION
			

						
	
		10.1: Functional Dependencies
							
	

						
	
		10.1.1: Keys and Non-Keys
							
	

						
	
		10.1.2: Anomalies
							
	

						
	
		10.1.3: Partial Functional Dependencies
							
	

						
	
		10.1.4: Transitive Functional Dependencies
							
	

						
	
		10.2: Normal Forms
							
	

						
	
		10.2.1: First Normal Form(1NF)
							
	

						
	
		10.2.2: Boyce-Codd Normal Form (BCNF)
							
	

						
	
		10.3: Summary
							
	

						
	
					APPENDIX A
			

						
	
		Forms Involving Multiple Tables
							
	

						
	
					APPENDIX B
			

						
	
		B.1: Drawing Supertypes and Subtypes on the Red
							
	

						
	
		B.2: Supertypes, Subtypes and Relationships
							
	

						
	
		B.3: Supertypes, Subtypes and Attributes
							
	

						
	
		B.3.1: Discriminator Attributes
							
	

						
	
		B.4: Mapping Supertypes and Subtypes to a Relational Database
							
	

						
	
		B.4.1: Relations For All Entity Types
							
	

						
	
		B.4.2: Relations for Bottom-Most Entity Types
							
	

						
	
		B.4.3: One Relation Representing the Whole Hierarchy
							
	

			

		
	
		
			
	
		1

		PREFACE

								

	
				This text is a free introductory text that introduces MS Access and relational database design. The motivation is to support an introductory database system course which, to the student, is either a service course providing an introduction to database concepts, or, as a prerequisite for more advanced study in the field.
 Various texts have been used with some success but were felt lacking for various reasons such as: (1) being workbook style with extensive tutorial lessons, (2) being too focused on a technology, (3) having design material that did not fit well with more advanced courses, and (4) being so expensive that some students opted not to purchase.
 Our second-year course has no prerequisites and is taken by students from various disciplines. However, most students are registered in either a Computer Science major program or the Computer Science minor. Students who enroll in the course obtain: (1) a working knowledge of a personal database system (MS Access), (2) knowledge of SQL (primarily the Select statement), and (3) awareness of concepts and techniques necessary to database design.
 Following this course, students can take third- and fourth-year courses in the database subject area. The coverage of Entity Relationship Modelling in those courses is based on the Chen notation – as is usual for academic texts. To be consistent with those higher-level courses the same approach is used here.
 It is our opinion that many students find normalization theory a difficult topic. Many presentations on normal forms are more complicated than necessary (e.g., some texts will give more than one definition of some normal forms). Our approach has been largely motivated by writings of Chris Date. We have attempted to give a suitable introduction to normalization theory for the beginning database student and to relate that material to other topics such as entity relationship diagrams.
 This version includes two appendices that cover:
 			creating forms that display data in a parent/child format where two tables are related via a one-to-many relationship, and
 	entity-relationship modeling for supertypes and subtypes.

	

			
			

		
	
		
			
	
		2

		Acknowledgements

								

	
				This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.
 This work can be distributed in unmodified form for non-commercial purposes. Modified versions can be made and distributed for non-commercial purposes provided they are distributed under the same license as the original. Other uses require permission of the author.
 The website for this book is http://www.acs.uwinnipeg.ca/rmcfadyen/CreativeCommons/
 This project is made possible with funding by the Government of Ontario and through eCampusOntario’s support of the Virtual Learning Strategy. To learn more about the Virtual Learning Strategy visit: https://vls.ecampusontario.ca.
 [image: Government of Ontario Logo]

	

			
			

		
	
		
			
	
		

		1. RELATIONAL DATABASES AND MS ACCESS

	

	
		A database is an organized collection of data. A database may be on paper, or, held in computer files such as spreadsheets or more formally in a software system known as a computerized database management system (for example: DB2, db4o, IMS, MS Access, MS SQL Server, mySQL, Oracle, Sybase, Total, Versant). In this book we focus on Relational databases and one specific relational database system: Microsoft Access available with Microsoft 365.
 There are many different commercial relational database systems and what you learn here will assist you in using those others. Because MS Access is a workstation/personal system it is a convenient system for beginners.

	

		

		
	
		
			
	
		

		1.1 Relational Databases

								

	
				 Relational Databases were introduced by E. F. Codd in 19691; Codd’s 1970 paper2 is considered one of the great papers in Computer Science.
 We begin with a very small example: a database with one relation, the list of employees shown in figure 1.1. You should notice this looks just like a two-dimensional table of rows and columns. The name of the table is Employees, each column of the table has its own title, and each row has the same structure. Each row has a value for employee number, first name, last name, and gender. As tables of data appear in so many places (newspaper articles, textbooks, web pages, etc.) it is very likely you have seen and used this representation for data previously.
 	Employee ID
 	First Name
 	Last Name
 	Gender

 	123
 	Joe
 	Smith
 	Male

 	333
 	Jim
 	Jones
 	Male

 	456
 	April
 	Smith
 	Female

 	842
 	Jenny
 	Jones
 	Female

 	777
 	Tom
 	Lee
 	Male

 Figure 1.1: A list of employees

 Let us assume the Employees table in figure 1.1 has one row for each employee who works for some hypothetical company. Data kept for each employee comprises their employee identification number, their first and last names, and their gender. Information structured in tables is very concise; at a glance we can obtain useful information.
 According to the database design methodology in Information Modeling and Relational Databases3, a database designer must be able to express structured information as verbalizations. A verbalization that fits the information in one row of the Employees table is:
 			Employee with ID … has a first name …, a last name …, and is of … gender

 In verbalizations like this the ellipses are placeholders: we can use values from a single row to create complete statements that explain the meaning of a row. For example,
 			Employee with ID 123 has a first name Joe, a last name Smith, and is of Male gender
 	Employee with ID 333 has a first name Jim, a last name Jones, and is of Male gender

 A similar approach to organizing knowledge about data appears in the literature on literacy. In the Journal of Reading several articles by Kirsch and Mosenthal discuss the organization of information and its conceptualization as document sentences. In Building Documents by Combining Simple Lists4, Kirsch and Mosenthal present an example based on information from The World Almanac and Book of Facts: 1980 (Newspaper Enterprise Association, p. 427). That data is reproduced in figure 1.2.
 	Magazines
 	Circulation

 	TV Guide
 	19,547,763

 	Reader’s Digest
 	18,094,192

 	National Geographic
 	10, 249,748

 	Better Homes & Gardens
 	8,007,202

 	Family Circle
 	7,611,578

 	Woman ‘s Day
 	7,535,855

 	McCall’s
 	6,502,880

 Figure 1.2: Circulation of leading U.S. magazines
 A major point the authors make is that such information can be re-conceptualized as a series of simple document sentences formed from a basic document sentence. This document sentence expresses an understanding of the tabular data in natural language.
 The document sentence for figure 1.2 is:
 			Magazine X has a circulation of Y.

 Kirsch and Mosenthal use variables (X and Y) to stand for data that comes from a table. Taking values from a row, we plug values for X and Y into the document sentence to obtain sentence instantiations:
 			TV Guide has a circulation of 19,547,763.
 	Reader’s Digest has a circulation of 18,094,192.
 	National Geographic has a circulation of 10,249,748.
 	Better Homes & Gardens has a circulation of 8,007,202.
 	Family Circle has a circulation of 7,611,578.
 	Woman’s Day has a circulation of 7,535,855.
 	McCall’s has a circulation of 6,502,880.

 Document sentences and verbalization sentences are essentially the same. Both sentences use natural language to express in words the meaning of tabular data. Whether one is designing databases or reading structured information, it can be useful for understanding to re-formulate data as statements in natural language.
 Let us be a bit formal for a moment. Commercial relational database systems are systems where data is organized into relations. Figure 1.3 shows the general structure of a relation. We say a relation comprises a set of tuples where each tuple has the same number of attribute values, where each attribute value is taken from some corresponding domain, and where a domain represents a set of valid values for an attribute.
 [image: image] Figure 1.3: General structure of a relation The Employees table in figure 1.1 can be considered a relation of 5 tuples where each tuple has 4 values drawn from each of the employee identifier, first name, last name, and gender domains. Similarly, we can say the lists comprising the Circulation of leading U.S. Magazines in figure 1.2 can be considered a relation with 7 tuples each having 2 attribute values.
 Relations are typically implemented in commercial databases as tabular structures comprising rows and a fixed number of columns. Everybody is familiar with tables as they are commonplace in textbooks, papers, magazines, etc. This simplicity of representation is one reason why relational databases have been very successful as repositories for important data.

 Exercises
 To design a database, a database engineer needs to find good representations of how an organization uses data. Good sources include input forms, reports, web pages, etc. A challenge for database designers is to find these sources and interpret them.

 1) Consider the following table of product information sold by ABC Foods. Verbalize the information presented.
 	Product ID
 	Product Name
 	Unit Price
 	Units In–Stock

 	1
 	Black Tea
 	$2.00
 	44

 	2
 	Green Tea
 	$3.00
 	33

 	3
 	Vegetarian Lasagne
 	$10.00
 	20

 	4
 	Cajun Seasoning
 	$11.00
 	29

 	5
 	Cranberry Sauce
 	$21.00
 	0

 2) Suppose the following input form is used to enter contact information. Verbalize the information that is being collected:
 [image: image]

 3) Consider the following report that the Human Resources department of ABC Foods must produce. Verbalize the information in that report.
 	Employee ID
 	First Name
 	Last Name
 	Department

 	1
 	John
 	Smith
 	Receiving

 	2
 	Lee
 	Daniels
 	Sales

 	3
 	April
 	Turner
 	Sales

 	4
 	Thomas
 	Trump
 	Marketing

 	5
 	Lee
 	Smith
 	Marketing

 1 Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks; IBM Research Report, 1969.
 2 A Relational Model of Data for Large Shared Data Banks; CACM 13, No. 6, June 1970.
 3 Information modeling and relational databases, 2nd edition; Terry Halpin and Tony Morgan; Morgan Kaufmann Publishers; ISBN -13 978-0-12-373568-3.
 4 Building documents by combining simple lists; Irwin S. Kirsch and Peter B. Mosenthal; Journal of Reading, Vol. 33, No. 2, pp. 132-134.

	

			

			

		
	
		
			
	
		

		1.2 Microsoft Access

								

	
				 MS Access is a relational database system for workstations that run the Microsoft Windows operating system. MS Access is typically used by individuals for data they use personally, but in some situations a single MS Access database may be used by a group of people or small department.
 MS Access databases are stored in a single file that has a file suffix of “.accdb” or “.mdb”. Databases created using MS Access 2007 and later have a file suffix “.accdb”, and databases created using MS Access 2003 or earlier have a file suffix “.mdb”. We will be using databases where the files have names ending in “.accdb”. You need to use MS Access 2007 or later to open these databases. We have used Access available in Microsoft 365.
 Our first sample database is in a file named Library.accdb; this database is available from the website associated with this text.
 To use this database, you must first download the file containing the database, and then either:
 			Navigate to its location in File Explorer, and open the database by double-clicking the file name.

 [image: image]Figure 1.4: Double-click the database file to open the sample database 			Start Access and then browse to the folder holding the database, select it, and open it.

 Select Open in Access:
 [image: image]
 Then browse to the location of the database file and open the file:

 [image: image] Figure 1.5: With Access started, browse and open the database When you open this database, you see a list of objects (figure 1.6) in the database; you will see three tables: Book, Loan, Member:

 [image: image] Figure 1.6: The Home tab in MS Access shows you the table names Double-click a table name and MS Access opens the table in Datasheet View; you can see the contents of Book in figure 1.7. The datasheet view for a table is easily obtained, but it is not a particularly user-friendly way to view and manage data in a table. We will learn other ways of handling data with MS Access Forms. The Book table has three fields (i.e., attributes): callNo, title, author. When we view a table we see data organized into rows and columns. The data in one row corresponds to one book; if there are 11 books, then we have a table of 11 rows.

 [image: image] Figure 1.7: Datasheet View of a table The Book table contains one row for each book in the library. We can verbalize the content of a row as:
 			The book identified by call number … is titled … and is authored by …

 Substituting actual values from rows we can make explicit statements such as:
 			The book identified by call number PC 14 V48 1965 is titled Medieval miscellany and is authored by Frederick Whitehead
 	The book identified by call number QA 76.76 A65P76 2011 is titled Programming Android and is authored by Zigurd R Mednieks

 Knowing that books are identified by their call number and since the above statements use the conjunction ‘and’, the above verbalization can be expressed in an elementary form as:
 			The book identified by call number … is titled …
 	The book identified by call number … is authored by …

 Each of these expressions is considered elementary because each states one fact about a specific book. We cannot make these statements any simpler.
 Of course, we can now substitute values from the table and obtain:
 			The book identified by call number PC 14 V48 1965 is titled Medieval miscellany
 	The book identified by call number PC 14 V48 1965 is authored by Frederick Whitehead
 	The book identified by call number QA 76.76 A65P76 2011 is titled Programming Android
 	The book identified by call number QA 76.76 A65P76 2011 is authored by Zigurd R Mednieks

 At this point, expressing verbalizations this way may seem trivial and unnecessary, but they do serve a purpose – they make it clear that the title and the author’s name serve only to describe a book, and that the call number identifies the book. An aim of a database designer is to understand data requirements in terms of these elementary forms.
 We will have more to say about this in a later chapter.
 Up to this point we have seen how to:
 			open an MS Access database;
 	recognize the database comprises a number of tables;
 	open a table to see it displayed as a collection of rows and columns;
 	verbalize the information in a table.

 Next, we will examine the basic features of MS Access that allow us to change, insert, and delete data.

 Exercises
 Recall that an elementary verbalization is one where the verbalization cannot be simplified in any further way. Simpler statements would result in a loss of information.
 1) Rewrite the verbalization for the Employees table using elementary verbalizations.

 2) Is the verbalization given for Circulation of Leading U.S. Magazines in elementary form?

 3) What elementary verbalizations apply to the Loan table in the Library database?

 4) What verbalizations apply to the Member table in the Library database?

 5) View the data in the Loan table. Each row in the table corresponds to a member borrowing a book. Notice how the call number field contains values that appear in the Book table and how the id field contains values that appear in the Member table. All rows have a value for the date borrowed field. Why would some of the date returned fields appear to have no value at all?

 The web site for these notes has a number of databases. Download the University database and examine its contents. This database contains information about departments and courses in a fictional university. Typically, a university is organized into faculties which comprise departments and those departments offer courses. For instance, many universities have a Faculty of Science which itself may contain departments such as Mathematics, Statistics, and Physics. Each of these departments will offer courses for students to take: Introduction to Calculus, Introduction to Statistics, Discrete Mathematics, etc.

	

			

			

		
	
		
			
	
		

		1.2.1 Modifying Rows

								

	
				 With the Book table open in MS Access and with the cursor positioned in a row, try modifying the data recorded for that book. If you position the mouse cursor you can change the value recorded for the book’s call number, title or author. Try doing this – remember you can always download this database again if you wish to get back to what you started with. As you begin modifying a value (e.g., adding an ‘s’ to make the last name Matthews) an editing symbol appears to the left of the row:

 [image: image] Figure 1.8: Editing a row If you recognize that you are making a mistake you can undo your editing action by pressing the Escape key.
 To make your change permanent you must move the cursor to another row for the update to be completed – when you do this, you will note the editing symbol disappears.
 In some situations, you will find MS Access provides a formal Undo capability. Consider the following figure that shows an Undo icon in the upper left corner that appeared after Matthew was changed to Matthews and the cursor moved to the next row:

 [image: image]Figure 1.9: The Undo icon – click it and the last action is undone

	

			

			

		
	
		
			
	
		

		1.2.2 Adding New Rows

								

	
				 Try adding a new book to the Book table. You can add a new book by first clicking on the New Record button shown near the bottom of the window:
 [image: image]
 Figure 1.10: To add new record

 To complete the action of adding a new book you must type values for callNo, title, and author. As a first example use a call number that does not appear for any other book. As we will soon see the Book table is designed in such a way that each book must have a different call number. Your addition will be successful if your book is given a call number that no other book has. When you add a new row, you must move the cursor out of the row for the addition to be completed.
 As a second example try to add a new book, but this time, use a call number that already appears in the table. In this case MS Access will reject your new record. Try this and you will see a response similar to:
 [image: image]
 Figure 1.11: MS Access message for duplicate primary key value

 The important part of this message for us is the part that refers to duplicate values or duplicate data. When we try to add a row with the same call number as some other row MS Access refers to the duplicated call number value. Note that you can press the Escape key to remove the new row from the table display. Soon we discuss table design where you will see that the call number field is designed to be the primary key of the Book table.
 Adding a row to a table is also referred to as inserting or appending a row.

	

			

			

		
	
		
			
	
		

		1.2.3 Deleting Rows

								

	
				 You can remove a book from the table by highlighting a row (click in the cell just to the left of a call number) and then press the Delete key on the keyboard:
 [image: image]
 Figure 1.12: Delete a record: select, press delete

 When you press the Delete key MS Access will respond in one of two ways depending on whether or not there is an existing reference to the row you are trying to delete:
 A reference to the book does not appear in the Loan table:
 [image: image] Figure 1.13: Prompt message A reference to the book does appear in the Loan table:
 [image: image] Figure 1.14: Prompt message When you view the Loan table you can see the books that library members have taken out and whether a book has been returned. Rows in the Loan table have references to rows in the Book table and to rows in the Member table. The default action in MS Access is that a deletion is disallowed if there is some row in a table that has a reference to it. So, we cannot delete a book if there is a Loan row referencing it.
 We have briefly shown how to modify, add and delete data in tables. Next, we introduce the design perspective for tables.

	

			

			

		
	
		
			
	
		

		1.2.4 Table Design View

								

	
				 Up to this point we have been opening tables in Datasheet View where we can view and change data in rows of a table. When in Datasheet View we can switch from datasheet view to Design View by right-clicking on Book and choosing Design View (see figure 1.13). When the Design View icon is clicked, the display changes to reveal design information (see figure 1.14).

 [image: image]Figure 1.15: Click on the Design View Icon to Switch to Design View When you click the Design View icon you will see the display change as shown in figure 1.14 – you will see the field names listed along with their datatype, and according to the field where the cursor is located you see other properties for that field. Datatypes vary somewhat from one database system to another, but of course there are many similarities too. Properties are other characteristics that you can define for a field such as the maximum length of values stored for the field.
 Generally, we want data in a database to be reasonable and correct. We can use datatypes and properties to achieve certain types of correctness. Consider the following integrity rules as rules we would like to enforce:
 			Call numbers, titles, and authors are alphanumeric. Any text you can type on the keyboard is acceptable.
 	Each call number must be unique (there can be no duplicates)
 	Each book must have a title
 	A value for call number must be no more than 50 characters long
 	A value for title must be no more than 255 characters long
 	A value for author must be no more than 255 characters long
 	The author field can be left out (it can be null).

 Now we discuss how these integrity rules are obtained in Table Design View.

 [image: image] Figure 1.16: Table Design View In figure 1.14 the cursor is located on the callNo field; some properties of callNo are circled and discussed below:
 			Beside the callNo field you can see the key icon. This means the callNo field is the primary key. A primary key is a unique identifier – every row in the table must have a unique value in that field. Every table should have a PK specified and there can be only one PK for a table. When a field is defined as the PK then a value must be provided in each and every row.
 	The callNo field has a datatype of Short Text and a field size of 50. Any value you can type on the keyboard is acceptable but the overall length, number of characters, is restricted to at most 50.
 	The callNo field is indexed and in this case no duplicates are allowed. The index constructed by MS Access is similar in purpose to the index at the back of any book: the index allows MS Access to quickly locate a specified row. However, this index is different from that at the back of a book because it allows only one entry per indexed value (No Duplicates is specified for the Indexed property). Each call number is unique.

 As you move the cursor up and down you should note the following for this sample table: For title:
 			The title field has a datatype of Short Text with a field size of 255. A text field can comprise any combination of letters, digits, and punctuation. Any value entered by a user cannot exceed 255 characters in length.
 	A value is required. When entering data for some book, the user cannot omit the title.
 	There is no index on title. For author:
 	The author field has a datatype of Short Text with a field size of 255. A text field can comprise any combination of letters, digits, and punctuation. Any value entered by a user cannot exceed 255 characters in length.
 	A value is not required. When entering data for some book, the user can omit the author.
 	There is no index on author.

 Now, open the Member table and then the Loan table in design view. Examine the properties of each field. For reference see figure 1.15.

 Member Table
 [image: image] Figure 1.17: The fields of the Member and Loan tables. Later we will examine datatypes and properties in much more detail.

 Exercises
 1) Use Design View to add fields to the Member table as indicated:
 	gender: Short Text field of length 6 to accommodate the values male and female. Make this a required field that is not indexed.
 	birthDate: A Date/Time field; required; not indexed. 	Switch back to Datasheet View (You must reply yes to the system prompts to save your changes). You should notice there are no values for gender nor birthDate.

 2) Now enter values you deem appropriate in the gender and birthdate fields for each member. Close the table and reopen it. You will see the values you entered are still there.

 3) When new members join the library, information about them must be entered into the Member table. Each member is given an id value automatically. Add new members to the library and note how MS Access will not let you enter id values; instead, MS Access generates those values for you – id values are generated sequentially. Close the table and then reopen the table to confirm your additions worked.

 4) In exercise 3 you added a new member and in exercise 4 you added fields to the Loan table. Consider that the person you added now borrows a book and so a row must be entered into the Loan table. Enter such a row.

 5) Typically, a library assesses a fine the user must pay if they keep a book out past the due date. As well the library needs to track the amount, if any, the member has paid. In this exercise we add two fields to the Loan table so we can keep track of fines that are assessed and the amount the member has paid.
 	Open the Loan table in design view and add two new fields named fineAssessed and finePaid. These fields must have a data-type of Currency.

 	Save the Loan table and then view the rows of the table. There are no amounts for these fields.
 	Choose some row(s) in the Loan table and enter values for the fineAssessed and finePaid fields. Note the values you enter will appear as dollars and cents.

 6) After successfully entering data for exercises 3, 4, and 5 you are aware of a member and a book for which there are references in the Loan table.
 	View the Member table and try to delete that member, and then view the Book table and try to delete that book. These deletion attempts are unsuccessful because of the references to the Loan table.
 	Now open the Loan table and find the loan record you entered in exercise 5. If you delete this row in Loan, then you will find that you are able to delete the member that was referenced by that row (provided you did not enter more loans for this person). These actions mirror the way in which data would typically be deleted from a database: if you want to delete a row you must first delete (or modify appropriately) any rows that reference it.

	

			

			

		
	
		
			
	
		

		2. CREATING TABLES

	

	
		 The typical MS Access database comprises several kinds of database objects such as indexes and tables. Each table represents a kind of entity (persons, places, things, events, etc.), or relationship between entities. For instance, if we are keeping track of departments and courses at our University then we should have two tables:
 			Department: to keep information about departments
 	Course: to keep information about courses.

 For each department suppose we need to know things such as: department code, department name, location of the department (an office number), phone number for the department, and the name of the department’s chair. Suppose departments can be identified by their department code (e.g., ACS) and by their department name (e.g.
 Applied Computer Science); both of these fields are assigned by the University and each will be unique across departments. We will choose to use the department code as the primary key; that is, we choose to use department code as the primary identifier for departments. We show Department with some sample data:

 	 	deptName 	deptLocn 	deptPhone 	chairName
 	ENGL 	English 	3D05 	786-9999 	April Jones
 	MATH 	Mathematics 	2R33 	786-0033 	Peter Smith
 	ACS 	Applied Computer Science 	3D07 	786-0300 	Simon Lee
 	PHIL 	Philosophy 	3C11 	786-3322 	Judy Chan
 	BIOL 	Biology 	288 	786-9843 	James Dunn

 Figure 2.1: Department table

 Suppose the Course table keeps track of courses offered by the University and includes the fields: course number, title, short description and credit hours. At the University, what is a course number? The ways of identifying courses varies from one institution to another, but a common way is to give the department code followed by the course number, such as “ENGL-2221”; “ENGL-2221” comprises two parts: a department code and a course number (the dash is just there for formatting purposes). We will use this convention and so we must include department code as a field in the Course table, and the combination of department code and course number serve as a unique identifier (i.e., together they form a composite primary key). We show this structure with sample data:

 	deptCode 	courseNo 	title 	description 	creditHours
 	ACS 	1453 	Introduction to Computers 	This course will introduce students to the basic concepts of computers: types of computers, hardware, software, and types of application systems. 	3
 	ACS 	1803 	Introduction to Information Systems 	This course examines applications of information technology to businesses and other organizations. 	3
 	ENGL 	2221 	The Age of Chaucer 	This course examines a selection of medieval poetry and drama with emphasis upon Chaucer’s Canterbury Tales. 	6
 	PHIL 	2219 	Philosophy of Art 	Through reading key theorists in the history of esthetics, this course examines some of the fundamental problems in the philosophy of art, including those of the definition and purpose of art, the nature of beauty, the sources of genius and originality, the problem of forgery, and the possible connection between art and the moral good. 	3
 	BIOL 	4451 	Forest Ecosystems Field Course 	This is an intensive three-week field course designed to give students a comprehensive overview of forest ecology field skills. 	2
 	BIOL 	4931 	Immunology 	Immunology is the study of the defence system which the body has evolved to protect itself from external threats such as viruses and internal threats such as tumour cells. 	3

 Figure 2.2: Course table

	

		

		
	
		
			
	
		

		2.1 Using Design View To Create Tables

								

	
				 In this section we will step through the process of creating a table. From the web page for these notes download and open the MyUniversity Database.
 			Click on the Create tab – use the mouse and click it to see the options available (Table, Table Design, SharePoint Lists, etc.):

 [image: image] Figure 2.3: Create a table using Table Design 			Click the Table Design option to begin a process to create a new table, the Department table. You are presented with a form where you can enter field definitions for a table. A field definition comprises field name, data type, and description. You can also set the table’s primary key. The Table Design form is shown below:

 [image: image] Figure 2.4: Table Design View 			Begin by entering each field name and choosing Short Text as the data type. In the description column you may enter a longer description of the field’s contents – these are treated as comments that may be useful for someone who is learning about your tables. Once you have done this you should have a form that looks like:

 [image: image] Figure 2.5: Department Table 			Next, we set the primary key for the table to be the deptCode field. Right-Click the mouse in the spot just to the left of deptCode and then click the Primary Key. Access uses an icon to show the deptCode as the PK:

 [image: image] Figure 2.6: Setting the Primary Key 			At this point you should save your work by clicking the Save icon in the upper left- hand corner of the form – you will be prompted to give the table a name – name it Department.

 You should still be in Design View for the Department table. Note that you can press the F1 function key to get help pertinent to the location of the mouse cursor. If your cursor is positioned on a Field Name and you press F1 you will see a window pop open that displays suggestions from MS Access regarding how you should name fields. Try this. Before going any further, try pressing F1 in other locations too, such as Data Type and Description. We recommend that you read some of the information available to become more familiar with MS Access.

	

			

			

		
	
		
			
	
		

		2.1.1: Data Types

								

	
				 MS Access provides several data types – we will discuss Short Text, Long Text, Number, Large Number, Date/Time, Currency, AutoNumber, Yes/No, Calculated, and Lookup Wizard.

 [image: image]Figure 2.7: MS Access Data Types
 Short Text
 If you specify that a field has the Short Text data type, then Access will permit any characters to be placed in that field in a row of the table. This is a common choice when the data will not be used in calculations. The Text data type provides for values that have fewer than 256 characters. If you know that a maximum length less than 255 would be appropriate, then you could use the Field Size property (discussed in the next section) to limit the maximum length of a text string.

 Long Text
 A designer selects Long Text if the field will have character data, but the length might be longer than 255. Long text allows for a maximum length of 63,999 characters. Consider the description field of the Course table: could these be longer than 255 characters?

 Number
 If a field is used for storing values that are used in numerical calculations and if the values will small enough, then Number is appropriate. Number values occupy 4 bytes of memory and have a range of -231 to 231-1.

 Large Number
 If a field is used for storing values that are used in numerical calculations and if the values can be huge, then Large Number is appropriate. Large number values occupy 8 bytes of memory and have a range of -263 to 263-1.

 Date/Time
 If a field contains date and or time values, then the Date/Time data type should be chosen. The Format property (discussed later) allows you to control how these values will appear to the user.

 Currency
 If a field will contain monetary values, then the Currency data type should be chosen. This data type provides for numeric calculations that are accurate to 15 digits to the left of the decimal and 4 digits to the right of the decimal.

 AutoNumber
 If you choose AutoNumber, then MS Access will generate a value for you when a row is inserted into the table. You can, via the New Values property, arrange the numbers to be generated sequentially or randomly. Often control numbers for things like orders, invoices, registrations, etc. are numeric and we can leave it to the system to generate a next value for us.

 Yes/No
 This data type restricts possible values to yes or no.

 Calculated
 A calculated field is one that has a derived value determined by some function.

 Lookup Wizard
 Sometimes you need to restrict values to a list of known values (e.g., a list of genders: Male, Female), or to values appearing as primary key values elsewhere in the database. Consider the creditHours field – a suitable list could be (1, 2, 3, 6). The Lookup Wizard is a suitable data type for these situations; when selected the system steps you through a series of windows where you can make the appropriate choices.

 Exercises
 These exercises refer to the Library database.
 1) Consider the Book table. Add a field, paperback, that can be used to indicate if a book is a paperback. Choose the YES/NO datatype. Save the design and switch to datasheet view. Now you will see how to enter such values – MS Access provides a box that is to be checked, or not. You can select (a ‘Yes’) using the mouse or by using the space bar. You should experiment with this.

 2) Consider the Member table. The id field was defined with the AutoNumber datatype. Experiment by adding new members and you will note that id values increase by 1. Now try deleting the last two members that you added. If you add those members back in, what id values do they get? Are id values reused?

 3) Consider the Member table. Previously you added a gender field. Open the Member table in design view and change the datatype for gender to be Lookup Wizard. The wizard will automatically present 3 successive popup windows where you will:
 	specify that you are providing the lookup values;
 	enter the values (Male and Female);
 	specify that values are to be limited to your list. 	Save the table and enter datasheet view so you can test out the datatype you have just created. You will notice the user sees a drop-down list containing Male and Female, and so the user cannot enter/select an inappropriate value.

	

			

			

		
	
		
			
	
		

		2.1.2: Properties

								

	
				 Each field must have a data type as discussed above. According to the data type, MS Access will present to you a set of field properties that you can tailor for your table. We will discuss the following: Field Size, Format, Input Mask, Caption, Default Value, Validation Rule & Validation Text, Required, Indexed, Show Date Picker, and New Values.

 Field Size
 Consider a field like deptCode. Suppose the University uses 3-character and 4-character values for department codes. Because of this it is reasonable to set the Field Size to 4, in order to limit the possibility that an end-user accidentally types a longer string of characters and thereby enters incorrect data. In this way we can limit the kinds of errors users make when they enter data and thus improve the overall quality of our database.
 Data integrity is a serious issue for databases. Setting Field Size for Text data and Number data is a common thing to do. Often organizations will limit the data they collect for fields such as last name and first name (for example, 30 characters). If the data type is Number, then values selected for Field Size are values such as Byte, Integer, Long Integer, etc.
 These kinds of values are associated with increasing number of memory locations used per value. A selection of Byte restricts storage to 1 byte of memory (8 bits), and since the largest positive integer that can be stored in a byte is 255, the values stored in the field are forced to be in the range from 0 to 255. Further information is readily available if you use the F1 function key on Field Size for a Number data type.

 Format
 The Format property is used to customize the way text, number, dates, and times are displayed to the end user. For instance, selecting Medium Date causes values like January 14, 2013 to be displayed as 14-Jan-13; selecting Long Date results in the display January- 14-13. See figure 2.8 for examples. If you have Text data such as department code, then you could force the display to be in capital letters by specifying > as the format code. An interesting Format specification is @;None. If this is used and if there is no value at all to display, then the word None will be displayed to the user. Another example: suppose the field is for the Canadian SIN. You may have seen these displayed to users with hyphens between the 3rd and 4th digits and the 6th and 7th digits. If the SIN is a Text field of length 9 it can be displayed this way by using a Format specification of @@@-@@@-@@@.
 	Value in field
 	Format Property
 	Displayed as

 	barack obama
 	>
 	BARACK OBAMA

 	January 14,
 2013
 	Medium Date
 	14-Jan-13

 	January 14,
 2013
 	Long Date
 	January-14-13

 	
 	@;None
 	None

 	786456789
 	@@@-@@@-@@@
 	786-456-789

 	
 	@@@-@@@-
 @@@;None
 	None

 	 	 	

 Figure 2.8: Format Examples

 Input Mask
 The Input Mask property is used to force the user to add data according to some pattern. This is another nice feature to help improve the overall quality of data added to a database. When the cursor is in the Input Mask area a ‘builder button’ appears. When you click this button you will see a list of popular controls. If you were to choose the mask for phone number you will see the control !(999) 000-0000 appear. As a result of this choice, the user must enter a 7-digit phone number with an optional 3-digit area code).

 Caption
 If there is no caption, then the heading used in displays of data is the field name. Sometimes the field name is not what you want your users to see. For example, instead of the heading deptCode above a list of department codes, you may prefer to use the words Department Code. To accomplish this just enter such a heading in the caption property for the field.

 Default Value
 If some value for a field is very common, then you should consider setting a default value. For example, if most courses are 3-credit hour courses, then the value 3 can be set as the default for all new courses.

 Validation Rule & Validation Text
 If a field has a validation rule, then the rule is tested whenever the user enters data. If the test fails the user is prompted with a message containing the validation text. A simple use of this could enforce the credit hours to be less than 10 by entering the rule <10 and the validation text Please enter a value between 0 and 9. Again, this is a nice feature to improve overall data quality.

 Required
 Consider the deptName field of the Department table. If a user enters data for a new department then it is unreasonable for the deptName field to not have a value. To ensure there will be a value we make the field required – i.e., we choose Yes for the Required property.

 Indexed
 MS Access automatically creates an index (unique – no duplicates) on a field that is the primary key. A unique index is a special internal data structure that Access builds to facilitate two things:
 			to ensure fast access to rows of data when the user specifies a value for such a field in a query, and
 	to ensure in the case of no duplicates that no two rows of the indexed table could have the same value for that field.

 The index data structure is very similar to the index you see at the back of books. An index comprises several entries where each entry has a value (a term used in the book) and a reference (a page number in a book) – in the case of duplicates allowed there can be several references (several pages where the term appears).
 You may choose to have an index on any field. If a field could have duplicate values, then you must choose an index that allows duplicates.

 Show Date Picker
 If the data type is Date/Time, then this selection enables the user to select a date using a picker – a convenient tool for data entry.

 New Values
 If the data type is AutoNumber, you can use New Values to specify whether the next value for the field will be the next highest integer, or if it will be a random integer.

 Exercises
 In the next two exercises you are working with your University database:
 1) Consider the Department table. In design view, set the deptCode field to have a length of 4 and use > as the display format. Set the length of the deptPhone field to be 10 and choose the Phone Number input mask. Save the table and switch to datasheet view. Use figure 2.1 as a guide and enter data into the Department table.

 2) Create a Course table with attributes for department code, course number, title, short description, and credit hours. The credit hours field should be numeric with no decimal places, and the other fields are Text fields. Set the deptCode field to be Short Text with a length of 4 so that it matches the properties of deptCode in Department. Later it will be important that the deptCode field in both Department and Course are defined the same. Use figure 2.2 as a guide and enter data into the Course table.

 The following exercises relate to the Library database:
 3) Consider the firstName and lastName fields in the Member table of the Library database. Modify the caption for these fields to be First Name and Last Name respectively. Save the table and reopen in datasheet view. You will see these captions at the top of their respective columns.

 4) The Loan table has fields that are defined with the Date/Time datatype. Experiment with different formats for these dates.

 5) Consider the id field in the Member table of the Library database. In design view change the increment property of the id field to be random instead of increment. This is a non-reversible action (but you can download the database later to get a fresh copy). Now add some new members. What can you say about the id values that are assigned?

 6) Validation rules and validation text are important features to assist database users.
 	Consider the Loan table and its date fields. MS Access has many built in functions one of which is Date(), which always returns today’s date. So, to ensure that someone always enters a due date later than today, in the properties section for the date due field enter the following:

 		Validation rule:>= Date()
 	Validation text:Enter a future date.

 	In this situation we are entering a field-level validation rule. These rules are useful when we can state a requirement independent of other fields. Test the effect of this validation rule by switching to datasheet view and entering valid and invalid values for the due date.
 	To ensure the date borrowed value is less than or equal to the date returned value we construct a validation rule that involves two fields. MS Access will not let you enter this rule at the field level; instead, such a rule must be specified at the table level. To enter a table level rule, you can click Design and then Property Sheet as indicated in figure 2.9a.

 [image: image]
 Figure 2.9a: Table level properties

 [image: image]
 Figure 2.9b: Enter a validation rule
 	And, as shown in figure 2.9b enter the properties:

 		Validation rule:[dateBorrowed]<=[dateReturned]
 	Validation text:Date returned cannot be prior to date borrowed.

 	The square braces, [], that appear in the expression are required. These inform MS Access of references to fields in the table.
 	Enter this rule and verify that it prevents a user from entering improper dates.

	

			

			

		
	
		
			
	
		

		2.1.3: Primary Keys

								

	
				 This section assumes you have created the Department and Course tables in the MyUniversity database. Every table should have a primary key, but this is just a rule-of- thumb that most database designers follow. In our database:
 			The Department table has deptCode as its primary key.
 	The Course table has a composite primary key – a key formed using two attributes: deptCode and courseNo.

 To set a primary key the table must be open in Design View. You must first select the field (or combination of fields) and then click the Primary Key icon. This is straightforward for the Department table, but not for the Course table because its’ primary key comprises two fields. Because the PK involves more than one field we say this primary key is composite.

 Exercises
 1) Set the primary key for the Department table. With the Department table in Design View, select the deptCode field and then right-click and choose Primary Key. When done successfully you will see the deptCode field with a key icon beside it:
 [image: image] Figure 2.10: Setting the PK for Department 	If MS Access rejects your primary key, then you must examine the values you previously entered for deptCode – there must be some duplicated value. If this happens you must view the table in Datasheet View and find the duplicated value and make necessary changes.
 	Once MS Access has accepted your primary key you should open the table in datasheet view and experiment: How does MS Access respond if you try to create a new row with an existing primary key value?

 2) Set the composite primary key for the Course table. To do this you first select one field, and then while holding the Control key down select the other field. With both fields selected and the Control key down, right-click and select Primary Key:
 	Select the deptCode (click to the left of the deptCode field).
 	To select the next field to be part of the PK: while holding the Control key down, click the courseNo field
 	Now, still with the Control key down, right-click and you will see options
 	Choose Primary Key. You will now see the key image beside both fields as in:

 [image: image]
 	If MS Access rejects your primary key, then you must examine the values you previously entered for deptCode and courseNo – there must be some duplicated value (two or more rows have the same pair of values for deptCode and courseNo). If this happens open the table in Datasheet View and examine the rows to find duplicate values of the combination {deptCode, courseNo}.
 	Once MS Access has accepted your primary key you should open the table in datasheet view and experiment: How does MS Access respond if you try to create a new row with an existing primary key value?

 3) (Advanced) Later on we discuss relationships between tables. Perhaps you are willing to try this now. The Department and Course tables are related to one another through the deptCode field. It is reasonable for us to expect that a deptCode value in a row of the Course table also appears in a row of the Department table. That is, if we are recording a course for the mathematics department then we expect the database to have a corresponding row in the Department table. To ensure this is the case we create a formal relationship between these two tables using the Relationships Tool:
 	First, click Database Tools. Then click Relationships:

 [image: image]

 	The Relationships Tool opens and you see a blank relationships diagram:

 [image: image]

 	Drag the Department and Course tables from the Tables List to the diagram:

 [image: image]

 	With both tables showing on the diagram, you must select the PK of Department, drag it to the Course table, and release the mouse button above the deptCode field of Course. If you follow the directions on the screen you will be able to select enforce referential integrity (RI) and then you end up with the following:

 [image: image]
 	If RI is enforced, then it becomes impossible to have a row in Course without a matching row in Department.

 You can compare your MyUniversity database to the University database provided on the web page for these notes.

	

			

			

		
	
		
			
	
		

		3. CREATING FORMS

	

	
		For each table you should create a basic form that can be used to manage data for the table. Once forms have been created your users will have a more user-friendly way of entering and managing data in your database (datasheet view is not considered user-friendly).

	

		

		
	
		
			
	
		

		3.1: Using the Form Wizard

								

	
				 There are many ways to create forms. We discuss the simplest approach here. Click the Create tab and then select the Form Wizard:

 [image: image] Figure 3.1: Use Form Wizard The Form Wizard steps you through a sequence of choices where you choose the table for the form, the fields to appear on the form, the layout for the form, the style, and the title to appear at the top of the form. At this point you should create two forms in your University database, one for the Department table and one for the Course table. As the wizard steps you through each case, you should select/enter:
 			All fields of the table to appear on the form (try clicking the [image: button with 2 right arrows] button when it shows)
 	A Columnar layout
 	A style of your choice
 	A title of your choice

 The last thing you do with the wizard is choose one of: Open the form and view data, or, to Modify the form’s design – choose to open the form to view data. Note that data appears according to information you provided for data types and properties.
 A major difference now is that the user will see just one row at a time. Notice the navigation buttons at the bottom of the form where the user can click to navigate through the rows of the table or to add a new row:

 [image: image] Figure 3.2: Navigation buttons on a form

	

			

			

		
	
		
			
	
		

		3.2: Modifying the Form

								

	
				 You can make forms easier to use by adding buttons for common operations of, say,
 			adding a new row
 	deleting the currently displayed row
 	closing the form

	

			

			

		
	
		
			
	
		

		3.2.1: Adding a Button

								

	
				 To add buttons to an existing form you must open the form in Design View. At this point make sure that wizard capabilities are available:
 			if necessary, select Use Control Wizards: (figure 3.3a) to turn wizard capabilities on
 	you may need to click a more button to get a complete display as shown.

 To add a button you click the Button button (figure 3.3b):
 [image: image] Figure 3.3a: Select Control Wizards
 [image: image] Figure 3.3b: Add a button control Next, you click a location on the form where you would like the button to be placed. Click in the area labeled Form Footer and space will be added to the form’s design to accommodate the button.
 Because Use Control Wizards is on, the system will take you through a series of prompts where you specify the nature of the button. You need to add three buttons to each form. To improve your productivity, you may want the tool bar always visible. In the Tool Bar to the far right (figure 3.3b) you will see a pin … click that and the Tool Bar will stay pinned to your display. Consider selecting/entering the following at the pertinent prompts:
 	Close button
 	Form operations
 	Close form
 	Close

 	Button
 	Category
 	Action
 	Text/Picture

 	Add button
 	Record operations
 	Add new record
 	New Row

 	Delete button
 	Record operations
 	Delete a record
 	Delete Row

 Figure 3.4: Button categories

 A Course form in Design View with three buttons in the Form Footer section:

 [image: image] Figure 3.5: Course form with three buttons in form footer At any time after creating a button you can switch to Form View to test your design. If some button is not working as you like then just switch back to Design View, delete the button and try again.

	

			

			

		
	
		
			
	
		

		3.2.2: Adding a Label

								

	
				 A label is a control that holds text for display purposes only. By default, MS Access adds a label containing the table name in the Form Header area of the form.[image: image]To add a label you must click the Label control, then click (and drag for sizing) where you want the label placed. You can then type the content for the label and adjust its properties for formatting (e.g., font size, colour, etc.).

	

			

			

		
	
		
			
	
		

		3.2.3: Adding a Calculated Field

								

	
				 A calculated field is one that involves a calculation using existing fields; for instance, to multiply a quantity and a unit price to get an extended price.
 To add a control where a calculated value will be displayed you must click the Text Box control, then click (and drag for sizing) where you wish the control placed. You will see two controls placed in the form: a label and a text box. For the label one could enter Extended price, and in the text box you would enter a formula (e.g., for an extended price a formula would be: =[quantity]*[unitprice]).
 [image: image] Figure 3.6: A TextBox control on a form Adjust the size and location of the controls as necessary. To do this can be a little tricky. To move a control, you must select the control, and then click (and drag) the large dot in the control’s upper left corner:
 [image: image] Figure 3.7: Move a control To resize a control you must position the mouse so you can see a resizing indicator, and then click (and drag) to get the size you need:
 [image: image] Figure 3.8: Resize a control Exercises
 1) Open the Orders database (see databases for these notes) and create a form for OrderDetails. You will be able to incorporate the calculated field discussed above. Open your form in Form View and view the data to verify your calculated field displays properly.
 	Note that you can modify the properties of fields on a form. When you are in Design View for this form you can right-click a field and select properties – the first property on the Format tab is Format and, for this calculated field, you could choose Currency.

 2) Open the Library database and create forms for each of Book, Loan and Member.

	

			

			

		
	
		
			
	
		

		4. MICROSOFT ACCESS QUERIES

	

	
		Queries are used for multiple purposes in a database environment. They can be used directly to
 			restrict the information a user can see,
 	as the basis of a MS Access form,
 	as the basis of a MS Access report.

 In this chapter we use the Library database for examples. With MS Access you can create a query in multiple ways; we will examine the use of the Query Designer. To create a query, click the Create tab and then click the Query Design icon:

 [image:] Figure 4.1: Create a query As a result, MS Access opens a Query By Example (QBE) window:

 [image:] Figure 4.2: QBE window This window comprises two areas: Relationships and Grid. The Relationships area will show each table that needs to be accessed and the relationships to be used with those tables.
 The Grid area is used to specify:
 			fields and tables,
 	sort fields,
 	fields to be included in the results display,
 	criteria fields must meet for a row to be included in the query result,
 	calculations,
 	grouping of rows for displaying summary information

 We use the Library database; we start with simple examples and work our way to more complex situations.

	

		

		
	
		
			
	
		

		4.1: Simple Query

								

	
				 The simplest query is one that displays a complete table – all rows and columns. Suppose we want to list all books in the library. The process of creating the query is as follows:
 			Click on the Create tab if necessary and then click on the Query Design icon; then:
 	drag the Book table from the Tables panel into the Relationships area, or,
 	right-click in the Relationships area and choose the Show Table. Double-click Book.

 [image: image] Figure 4.3: Select a table for the query MS Access displays the Book table and its fields in the Relationships area. The first in this list is an * which stands for all attributes – double-click the *. Note the contents of the Grid area:

 [image: image] Figure 4.4: Choosing all fields of the table You can run a query when using Query Design view. If the Run button is not visible, click the “Design” tab. Now, to run the query, click the “Run” button in the “Results” button group:

 [image: image] Figure 4.5: Run a query There are other views of a query. If you click the drop-down just below View:
 [image: image] Figure 4.6: Several views for a query You can see all the ways of viewing a query, including:
 			Datasheet View
 	Design View
 	SQL View.

 You can run a query by choosing Datasheet View. When developing a query, one often alternates between Datasheet View and Design View to get the query working as required. When you run a query, MS Access will retrieve the information requested. Our results of running the query are:

 [image: image] Figure 4.7: Query results You can save the query: right-click the name and then give the query a new name:
 [image: image] Figure 4.8a: Save a query and give it a name “List all books”
 Now, provided you have selected ‘All Access Objects’ you will see the query as a database object. See figure 4.8b.

 [image:]Figure 4.8b: The drop-down determines what objects you see The query can be run any time by an end user. The results of the query are not stored or saved – only the definition of the query. Whenever a user runs the query the current contents of the Book table are accessed.

	

			

			

		
	
		
			
	
		

		4.2: Projection Query

								

	
				 Next, we build a query that displays a subset of the columns of a table. Suppose we need to produce a listing of call numbers and titles. Proceed as in the previous example so that the Book table is shown in the Relationships area. Now, double-click the callNo and title fields:

 [image: image]Figure 4.9: Projection query with specific fields The definition of the query is now complete. The grid area indicates the fields involved, and both fields will be displayed because each has a check mark on the Show line. Only fields checked on the Show line are displayed in the results. Running this query produces 2 columns:

 [image: image]

 Save the query. A projection query, because it displays a subset of the fields in the table, is said to produce a vertical slice of the table.

	

			

			

		
	
		
			
	
		

		4.3: Selection Query

								

	
				 Suppose we want a list of paperbacks. That is, we want to list information about books where the paperback field has a value Yes. Requirements like this are placed on the criteria line of the pertinent field(s).
 To develop this query we need to select the Book table and then add its’ fields to the grid.
 For the paperback field we also enter the value Yes on the criteria line:

 [image: image] Figure 4.10: Query with selection criteria When we run the query we get results listing paperbacks:

 [image: image] Figure 4.11: Query results When a query runs, the query processor accesses the underlying table(s) and displays results where the data meets the criteria specified. For a query accessing a single table consider that the query processor is performing these actions:
 For each row in the table:
 				retrieve the row from the database
 	test the row to see if it meets the criteria specified 	if the row meets the criteria then display the fields marked for show

 Save your query as paperbacksQuery. This is a selection query that selects, according to criteria, specific rows for display; this type of query produces a horizontal subset of a table.
 Most queries are a combination of selection and projection. It is typically the case that queries will select a subset of fields for display and criteria will be needed to constrain the rows retrieved.

	

			

			

		
	
		
			
	
		

		4.4: Sorting the Result

								

	
				 Sometimes an end user wants to see data in a particular order. Let us extend the previous example so books are listed in alphabetic order by title and, since they are all paperbacks, we will not display the paperback field.
 Create another query similar to the last one. Now, place the cursor in the Sort line beneath the title field: click and select ascending from the choices. Then click the Show check box for paperback to turn Show off.

 [image: image] Figure 4.12: Query results can be sorted Save this query and run it. Notice how the results are sequenced by title.

 Exercises
 1) List the titles of books in descending order.

 2) List the titles of books written by Joe Celko.

 3) List all members of the library.

 4) List the members in sequence by last name.

 5) List the members sequenced by last name and then by first name. (If members have the same last name they appear on consecutive lines, and those lines are in sequence by first name.)

 6) Which of the above are a) simple queries, b) selection queries, c) projection queries, d) both selection and projection queries?

	

			

			

		
	
		
			
	
		

		4.5: And

								

	
				 Suppose we want to list Celko’s books on SQL. In this case there are two criteria a book must meet:
 			Criteria 1: the author’s name must end with “Celko”
 	Criteria 2: “SQL” must appear in the title.

 Criteria 1 must be true and Criteria 2 must be true – we say the two criteria are anded. When using QBE we must place these two criteria on the same criteria line in order that MS Access finds rows that match both criteria.
 In this example we are looking for titles that have the text SQL anywhere within the title. MS Access provides a way for us to define such a pattern. The character * when used in a text string is a wildcard character that matches any number (zero or more) of characters. For Criteria 1 we use the Like operator, and we need two wildcards so we specify the pattern that title must match: Like “*SQL*”.
 For Criteria 2 we specify the pattern that author must match: Like “*Celko”.

 [image: image]Figure 4.13: Criteria on one criteria line are ANDed

	

			

			

		
	
		
			
	
		

		4.6: Or

								

	
				 Instead of books with titles containing “SQL” and authored by Celko, suppose the end user wants a list of books with “SQL” in the title or where Celko is the author. In this situation we place the criteria on separate lines. MS Access ORs the criteria; a row is selected for the result set if either, or both, of the criteria are true for a row.

 [image: image]Figure 4.14: Criteria on different criteria lines are ORed Exercises
 1) List the titles of books where the authour name ends with “Celko”.

 2) List the titles of books where the authour name ends with “Celko” and the text “data” appears in the title.

 3) List the titles of books where the authour name ends with “Celko” or the text “data” appears in the title.

 4) List titles of books where the title contains the word “medieval”.

 5) List the titles of books where the title contains the words “medicine” and “medieval”.

 6) List the titles of books where the title contains the words “medicine” or “medieval”.

	

			

			

		
	
		
			
	
		

		4.7: Joins

								

	
				 If a query must be answered using data that appears in more than one table then the query requires a database join.
 Suppose we wish to produce a list of member names and the call numbers of books they have borrowed. Important points about this query:
 			The Loan table has the loan information we need.
 	The Member table has the member names we need.

 Before we compose the query consider how you would produce the results if you were to do this manually. If you had two listings showing the rows of each table in front of you on your desk you could proceed as follows going through the Loan table listing row by row starting with the first row:
 1) For the current row in Loan:
 			Write down the call number of this loan.
 	Let N stand for the value of the member`s id for this loan.
 	Now look at the Member listing row by row starting with the first row: Examine the row to determine if the row is for member N, and if it is, write down the member`s name beside the call number.

 2) If there are more rows in Loan, advance to the next row and go back to step 1
 In the above algorithm we have determined a member id at step 1.b) and we next look for a matching member id in step 1.c). For a human the process is simple but tedious. We could say we are trying to go from a row in Loan to a row in Member based on rows having the same value for member id. In database terminology we say we are joining Loan to Member based on a common value of member id. A tedious but well-defined task is something a computer can excel at, and fortunately we can get the database system to do the job of joining rows, based on values of a common attribute, for us. Construct the query in the following way:
 			Create a new query
 	Drag the Member and Loan tables into the Relationships Area:

 [image: image]
 			Note the line connecting the two tables. This is called a relationships line which causes MS Access to join pairs of rows – a row in Member is joined to a row in Loan where the two rows have the same value for id.
 	Select the call number, first name, and last name fields by double-clicking them to obtain:

 [image: image]
 			Run the query and you see the results:

 [image: image]
 Exercises
 In each of the following exercises the necessary data is in more than one table and so it is necessary to specify a join.

 1) For each loan show the title of the book and the date it was borrowed. Note that the title is in the Book table and the date borrowed is in the Loan table.

 2) Modify the previous query to produce a listing that is in order by title and then by date.

 3) Produce a list that shows for each loan the book title, the name of the member who borrowed the book, and the dates the book was borrowed and then returned. Note that 3 tables are needed for this query:
 		Book joins to Loan
 	Loan joins to Member

 4) Produce a list of members and the books they have taken out on loan. Include the member’s last name, first name, and titles of the books. The information to be displayed is in 2 tables, but it is necessary to specify 3 tables for this query:
 		Member joins to Loan
 	Book joins to loan

 5) Modify the previous query to produce a listing that is in order by last name and then by first name.

 6) For member id 2, list the person`s name and the titles borrowed.

 7) Produce a list of book titles and member names for those books that are due back May 18, 2014.

 8) Produce a list of book titles and member names for those books that have not been returned. In this case you must give the criteria for dateReturned as null. Null is a special keyword that represents no value.

	

			

			

		
	
		
			
	
		

		5. RELATIONSHIPS AND THE RELATIONSHIPS TOOL

	

	
		The Relationships Tool is used to define relationships between tables based on common fields. Relationships defined using the Relationships Tool are important as they help ensure integrity of data, and they provide us with default join criteria for queries involving more than one table. In this section we will use the University and the Library databases in our examples.
 Consider the University database we have been using that contains a Department table and a Course table. These two tables have the deptCode field in common:
 			In the Department table, deptCode is the primary key and is used to identify a specific department.
 	In the Course table, the deptCode field is a part of the primary key and indicates the department to which the course belongs.

 To ensure that a row in Course is related to an existing row in Department we can use the Relationships Tool to define a relationship between these two tables based on this common field. Using a diagram, we can illustrate this connection between these two tables:
 [image:] Figure 5.1: Showing a relationship between two tables In this situation we say that deptCode in Course is a foreign key referencing the deptCode field in Department.

 Now, consider the Library database:
 			The Loan table has a callNo field and so does the Book table; the callNo field identifies a specific book.
 	The Loan table has an id field and so does the Member table; the id field identifies an individual member.

 In the Library database we can establish a relationship between Loan and Book based on the callNo field, and a second relationship between Loan and Member based on the id field. Using a diagram, we can illustrate these two relationships:
 [image:] Figure 5.2: Showing relationships involving three tables The Loan table has two foreign keys, callNo and id:
 			The callNo field in Loan is a foreign key referencing the primary key (callNo) in Book.
 	The id field in Loan is a foreign key referencing the primary key (id) in Member.

	

		

		
	
		
			
	
		

		5.1: Integrity

								

	
				 Primary Key
 Recall that a table’s PK is a field (possibly composite) that has unique values – each row has a PK value different from any other row in the table. Such a field is a unique identifier
 			if a query were designed to retrieve a row of that table based on a value of the PK, then at most one row of the table will be retrieved.

 Foreign Key
 A foreign key is a field (or combination of fields) in a table B that is associated with a PK in a table A through a relationship (A and B can be the same table).
 Entity Integrity
 When we define a PK for a table, we are enforcing entity integrity. Entity integrity means that each row in the table is identifiable through its primary key. MS Access requires a value for a PK in a newly added row, and MS Access enforces uniqueness of those values.
 Referential Integrity
 Suppose we have two tables, A and B, where a relationship is defined between the primary key of table A and a foreign key in table B. We say referential integrity (RI) exists for this relationship if for each row in B either:
 			the FK has no value at all (i.e., it is null), or
 	the FK has a value that exists as a PK value in some row of A.

	

			

			

		
	
		
			
	
		

		5.2: Relationships

								

	
				 Two tables can be related through one-to-one, one-to-many, or many-to-many relationships. If you open the Relationships Tool for the University database, you will see the following diagram showing two tables and one relationship:

 [image: image]Figure 5.3: Relationship: department offers courses There are two labels on the line which inform us the relationship is one-to-many for which there are two rules that are in place:
 			for each department there will be zero or more courses for that department, and,
 	each course is for exactly one department.

 To create a relationship in MS Access you must:
 			open the Relationships Tool
 	add the pertinent tables to the diagram if they are not there already
 	click, hold, and drag a field (normally this is the PK) of one table to the related field (to become an FK) in the other table.

 You will be asked whether or not Referential Integrity is to be enforced. As a general rule- of-thumb, you should select Yes – there must be some exceptional circumstance that makes you select No.
 Once relationships are established using the Relationships Tool they are used by MS Access when you create queries – the relationships are used as the default for table joins.

	

			

			

		
	
		
			
	
		

		5.2.1: One-To-Many

								

	
				 If you drag the PK field of one table to the other table, and if the FK does not have unique values, then you are creating a one-to-many relationship. MS Access will know and will display that fact for you. For each row in the referenced table there can be several related rows in the other table; that is, for a PK value there can be many rows in the other table with that value stored in the FK.

 Example
 Department and Course are related through the deptCode field. You can go through the exercise of creating the relationship between these two tables, but first you must remove the current relationship:
 			delete the existing relationships line (click the line, press delete, and follow through with the dialog to delete the relationship).

 Now, click and drag the deptCode field in Department and drop it on top of the deptCode field in Course. On releasing the mouse MS Access will present the following dialogue box:

 [image: image]Figure 5.4: Defining a one-to-many relationship At this point MS Access is requesting the user to confirm the proper fields are being related, and for the user to make a choice regarding Referential Integrity and on some ‘Cascade’ options – we do not discuss cascading in these notes. You should choose Enforce Referential Integrity in almost all cases as this helps reduce the chance of corrupting data.
 For the above, when the user clicks Create, MS Access shows the relationships line with 1 on the one side and an infinity symbol on the many side of the relationship:

 [image: image]Figure 5.5: One-to-many relationship: department offers courses

	

			

			

		
	
		
			
	
		

		5.2.2: One-To-One

								

	
				 If you drag a PK field of one table to another table, and if the FK has unique values (a unique index exists for it) then you are creating a one-to-one relationship. For each row in the first table there can be at most one related row in the other table; a row in the referenced table has a PK value that equals the FK value in at most one row of the referencing table.

	

			

			

		
	
		
			
	
		

		5.2.3: Many-To-Many

								

	
				 If you create a relationship in MS access where both fields you associated (via the click, hold, and drag sequence) do not have unique values (i.e., neither have unique indexes) then MS Access creates an ‘indeterminant’ relationship. In this situation a row in one table, A, may be related to multiple rows in the other table, B, and where a row in table B may be related to multiple rows in the table A.
 This is not done very often and corresponds to a many-to-many relationship. Most database designers would avoid this in their database designs. If a database designer is faced with two tables, A and B, that are related via a many-to-many relationship, the designer would likely introduce a third table, say C, where A and C will be related via a one-to-many relationship and similarly, B and C will be related via a one-to-many relationship.
 Later in these notes we discuss database design. We will see how many-to-many relationships can be decomposed into two one-to-many relationships.
 Exercises
 For these exercises use the Company database which does not have any relationships defined. The first few rows of Employee and Department are:
 	empId
 	firstName
 	lastName
 	supervisor
 	dept

 	1
 	Tanya
 	Dickson
 	
 	

 	2
 	Heidi
 	Herring
 	1
 	1

 	3
 	Hiroko
 	Hawkins
 	1
 	2

 	4
 	Emmanuel
 	Watkins
 	1
 	3

 	5
 	Oliver
 	Holt
 	2
 	1

 	6
 	Raphael
 	Delaney
 	3
 	2

 	7
 	Basia
 	Franks
 	2
 	1

 	8
 	Bruno
 	Pena
 	2
 	1

 	 	 	 	 	

 	deptId
 	department
 	manager
 	phone

 	1
 	Marketing
 	2
 	(204) 999-4444

 	2
 	Human Resources
 	3
 	(204) 999-3333

 	3
 	Sales
 	4
 	(204) 999-2222

 	 	 	 	

 1) Consider the Employee and Department tables. Note the Employee table has a field dept which indicates the department where the employee works. The relationship can be stated:
 	Each department has zero or more employees, and,
 	Each employee works in at most one department.

 Create a one-to-many “works in” relationship between Employee and Department.

 2) The Department table has a field manager which indicates the employee who is the head of the department. The relationship is stated:
 	each department has one employee who manages that department, and,
 	an employee may manage at most one department.

 There is a unique index defined for the manager field and so you can create a one-to- one relationship “has manager” between Department and Employee.
 If you do this exercise after exercise 1 has been completed, then you need to read the dialog boxes carefully when you create this second relationship between these tables. You must respond No to the following dialogue window.
 [image: image]
 Note how MS Access represents two relationships between two tables.
 3) Consider the empId and the supervisor fields of Employee. Most employees report to someone – someone who is their supervisor. Only employee 1 does not report to anyone else. The supervises relationship can be stated:
 	an employee may supervise many other employees, and,
 	an employee reports to at most one other employee. 	Create the supervises relationship.

 If you are doing this exercise after exercise 2 then your relationship diagram has 2 copies of the Employee table. If you are not doing this after exercise 2, then you must add Employee to the diagram twice so there are 2 copies of Employee on the diagram. Drag the PK, empId, from one copy of Employee to the supervisor field of the other copy. Note how MS Access draws this diagram.
 	The supervisor field is an implementation of a hierarchical reporting structure for our company. Use a piece of paper and draw the reporting structure for the company (for the data given at the start of these exercises). We have started this exercise showing the reporting structure for the first 4 employees:

 [image:]
 Exercises 4-6 depend on the relationships diagram from the above exercises. When developing a query, you will see that MS Access will include relationships when you include tables in the relationships area of a query. Do consider them closely to ensure they are the relationships and joins you need.

 4) Create a query to list for each department, the name of the department and the name of its manager.

 5) Create a query to list for each department, the name of the department and the names of its employees (the people who work in the department). Sequence your results by department name.

 6) Create a query to list for each department, the name of the department head and the names of the department’s employees. Your query must list on each row of the result set the department name, the head’s last name, and the last name of each employee. Sequence your results by department name, and within department by employee last name.

 7) Create a query that lists each supervisor and the employees he/she is supervising. Your query must list, on each row of the result set, the last name of the supervisor and the last name of the supervised employee. Sequence the results by supervisor and within supervisor by employee. Hint: begin the query by dragging the Employee table onto the relationships diagram twice, and then drag empId to supervisor.

	

			

			

		
	
		
			
	
		

		6. MICROSOFT ACCESS QUERIES – ADVANCED

	

	
		Previously in Chapter 4 we saw how to construct queries using simple logical expressions where either all the criteria were ANDed, or where the criteria were all ORed. Now we’ll examine more complex situations.

	

		

		
	
		
			
	
		

		6.1: Logical Expressions

								

	
				 Sometimes we need to retrieve data based on multiple criteria which are expressed as logical expressions involving the logical operators and, or, and not. For example, a student using the University database might want to know which courses offered by the Chemistry and Physics departments are not full courses (that is, they are not 6 credit hour courses). The criteria can be restated with emphasis on logical operators:
 			a course is a Chemistry course or a course is a Physics course,

 and
 			the course has any value for credit hours but not 6.

 Such criteria involves and, or, and not. Stating the requirements in natural language may seem easy, but stating these properly in the forms-based Query By Example design window requires specialized knowledge.
 MS Access provides a way for us to specify the above using the Criteria and Or lines in the Grid. We will consider each of the operators And, Or, and Not.

	

			

			

		
	
		
			
	
		

		6.1.1: And

								

	
				 If one specifies multiple criteria on one line in the Grid area, these criteria are ANDed. For a row to contribute to the result of the query the row must satisfy all the criteria.

 Example
 Suppose we want a list of all ACS 3 credit hour courses. We need to obtain the rows in Course where the logical expression
 (deptCode=”ACS”) AND (creditHours=3)
 is true. We code this in QBE as:

 [image: image] Figure 6.1: Two expressions that are ANDed

	

			

			

		
	
		
			
	
		

		6.1.2: Or

								

	
				 If one specifies multiple criteria on both the Criteria and Or lines the criteria on each line is ANDed, and those evaluations are then ORed. If for some row either one or both of the sub-expressions evaluate to true, then the row will be selected for display.

 Example
 Suppose we need a list of all ACS courses that are 3 or 6 credit hour courses. Logically we can express this as:
 (deptCode=”ACS” AND creditHours=3)
 OR
 (deptCode=”ACS” AND creditHours=6)
 We code this in QBE as:
 [image: image] Figure 6.2: Two expressions that are ORed

	

			

			

		
	
		
			
	
		

		6.1.3: Not

								

	
				 The NOT logical operator negates a logical expression.

 Example
 To get a list of 3-credit hour courses we would use a criteria of 3, but to list courses that are not 3 credit hours one could use the criteria: NOT 3, which, written in long form is:
 NOT (creditHours = 3)
 Coding this in QBE we have:
 [image: image] Figure 6.3: Using NOT Exercises
 Write queries to:
 1) List all courses in Mathematics and Statistics.

 2) List all courses in Mathematics and Statistics where the credit hours are greater than 1.

 3) Lists the titles of courses offered by the Chemistry and Physics departments that are not full courses (that is, they are not 6 credit hour courses).
 	Once this query is coded, close and reopen your query. You may see that MS Access converts your “Not 6” expression to another alternate form, “< > 6”, where the combination < > stands for not equal to.

 4) List all 3 and 6 credit hour courses that are not ACS courses.

	

			

			

		
	
		
			
	
		

		6.2: Query Operators

								

	
				 We present two more operators: LIKE, which is used for pattern matching of text values, and IN, which is used to test for inclusion in a set.

	

			

			

		
	
		
			
	
		

		6.2.1: Like

								

	
				 Sometimes we need to get information based on partial information. Consider someone using the University database and wanting to find courses where the course description contains the word “computer”. To find courses matching this criterion we can use the Like operator where we specify an appropriate pattern. These patterns are defined using one or more wildcard characters. By default, our MS Access databases use the ANSI-89 standard for special wildcard characters.
 Note: At some point you may want to investigate the more recent ANSI-92 standard for wildcards. You can change the standard your database is using by examining and changing the MS Access Options for Object Designers/Query Design.
 The ANSI-89 wildcard characters are:
 	Wildcard
 Character
 	Matching criteria
 	Example

 	*
 	Matches any number of
 characters
 	Like “1*” matches all text strings that start with “1”

 	?
 	Matches any single character
 	Like “a?c” matches “aac”, “abc”, “acc”, etc. but does not match longer strings such as “aacc” or
 “xabc”

 	#
 	Matches any single numeric
 character
 	Like “b#b” would match “b2b” and “b7b” but not
 “bam”

 	[]
 	Matches any single character
 within the brackets
 	Like “j[ai]m” matches “jim” and “jam” but not
 “jaim”

 	!
 	Used with [] when you do
 not want to match any of the enclosed characters
 	Like “b[!ao]b” matches “bim” and “bub” but not “bam” or “bob”

 	–
 	Used with [] to specify a range of matching characters (given in ascending
 sequence)
 	Like “b[0-9]b” would match to “b2b” but not to “bam”
 Like “b[a-c]b” would match “bab”, “bbb”, and
 “bcb”

 	 	 	

 Figure 6.4: ANSI-89 wildcard characters

 Example
 To list courses where the description begins with “This course” you need a pattern where you specify that a text value begins with “This course” which can be followed by anything else: “This course*”.
 And so, in QBE you enter the criteria for title: Like “This course*”:

 [image: image] Figure 6.5: Using LIKE

	

			

			

		
	
		
			
	
		

		6.2.2: In

								

	
				 The IN operator can be used if you need to determine if a field value is in a specific list of values. The list of values is a comma-separated list enclosed in parentheses; for example (1, 3, 6)

 Example
 To list those courses offered by the Physics, Statistics and Mathematics departments you need a list of values: (“PHYS”, “STAT”, “MATH”)
 Using QBE we code IN (“PHYS”, “STAT”, “MATH”) in the criteria line:

 [image: image] Figure 6.6: Using IN Note: using IN is equivalent to using three simple logical expressions that are ORed, and is a convenient way of expression if there are several values in the list:

 [image: image] Figure 6.7: IN vs OR Exercises
 Develop queries to:
 1) List courses offered by Physics or Applied Computer Science where the course description contains the word computer.

 2) List courses where the course description contains the word computer but where the course is not offered by the Applied Computer Science department.

 3) List courses where the credit hours are 1, 3, 6 or 9.

 4) List courses where the credit hours are not 1, not 3, not 6, and not 9.

	

			

			

		
	
		
			
	
		

		6.3: Query Properties

								

	
				 In the upper-right area of a query in Query Design View you will see a button labeled Property Sheet. Click this and you will see properties for a field in the Grid, or, for the query itself, depending on where the cursor is located. Click the mouse in an open area in the Relationships Diagram and you will see properties for the query. Two query properties we discuss are Top Values and Unique Values.
 [image: image] Figure 6.8: Query properties

	

			

			

		
	
		
			
	
		

		6.3.1: Top Values

								

	
				 You can change the selection for Top Values. The default is ALL which results in all rows displayed when the query is run, but you can use this property to limit the rows displayed. As indicated below you can type an explicit number of rows such as 5, or a specific percentage of rows to be displayed.

 [image: image] Figure 6.9: Setting the Top Values property Example
 Consider the Library database where the Member table has one row per member. Sample are shown below:

 [image: image] Figure 6.10: Sample library members Suppose we wanted to know who is the youngest member. One way to find out is to sort the members by birthdate and then pick either the first or last row according to how you ordered them (descending or ascending). Consider the following where the members are sorted in descending order by birthdate and then we list the first row by specifying Top Values = 1:

 [image:]Figure 6.11: The youngest member using Top Values=1 For the sample rows the query produces the result:

 [image: image]Figure 6.12: Query returns one result row

	

			

			

		
	
		
			
	
		

		6.3.2: Unique Values

								

	
				 If the Unique Values property is set to Yes, then MS Access will eliminate duplicates rows from the result.

 Example
 Suppose a librarian wants a list of authors from the Library database. If we use a query to list the authors but we do not set Unique Values to Yes, then the result could show an author several times, once for each of his/her books. The following result set shows Jeo Celko listed 3 times:

 [image: image]Figure 6.13: Query with duplicates We can eliminate such duplicates by specifying Unique Values = Yes as in:

 [image: image] Figure 6.14: Setting Unique Value to yes Instead of 11 names this query would only list the 9 different author names.

 Exercises
 1) Consider the Library database.
 	Which member is the oldest?
 	Which book was the first one to be taken out on loan?
 	Which books have been taken out on loan? Any book listed should be listed only once – no duplicates

 2) Consider the University database.
 	Create a query to list the department codes (with no duplicates) of departments that offer 6 credit hour courses.
 	Modify your query to list the department names too.

 3) Consider the Company database and its Employee table.
 	The empId field is assigned values sequentially starting at 1. What is the last empId value that was used? (What is the empId for the last employee added to the table?)
 	Write a query to determine the name of the oldest employee.
 	Write a query to list all of the employee last names. If at least two employees have the same last name then this list will be shorter that a list of employees.

	

			

			

		
	
		
			
	
		

		6.4: Totals Query

								

	
				 A Totals query allows you to summarize information in the database. When you summarize data from one or more tables then either:
 			you are producing summary data for the whole table, or
 	you are producing summary data for specific groups.

 For instance, you may want to know
 			how many courses there are
 	the average of the credit hours
 	the number of courses in each department

 To create a Totals query you begin by creating a simple query that retrieves all the attributes that will be needed in the summarization, and then click the Totals icon found in the upper-right hand corner of the MS Access window:

 [image: image] Figure 6.15: Totals icon When you click the Totals icon the Grid changes to include a Total line. For each field in the grid you must choose from the drop-down:
 [image: image]Figure 6.16: Choices for the Total line For each field in the grid you choose one of:
 			“Group By”: if the field is used for grouping
 	An aggregate function: if the field is to be summarized using that function. We will consider the standard set including sum, average, minimum, maximum, count.
 	“Where”: if the field has criteria to be used for selecting rows. Only rows satisfying the criteria contribute to the grouping and display of results.

 Example
 The simplest type of totalling query displays an aggregate over an entire set of rows. For example, to sum the credit hours over all courses in the University database one can use:

 [image: image]Figure 6.17: Determining the total for one field over all rows This query summarizes the entire table. The result of this query is one line displaying a sum.
 Example
 Typically, the use of the Totalling feature is more complicated. Consider the University database and that we need to obtain a count of the number of courses offered by each department. We begin with a query that lists the department code and any other field of the Course table (courseNo is a good choice because it can never be null – nulls are passed over when the counting of field values is performed). The query below lists the fields we need:

 [image: image]Figure 6.18: Step 1: the fields needed In the upper right-hand corner of Design View for queries you must click the Totals icon. When you click the Totals icon a new line (Total line) is added to the grid:

 [image: image]Figure 6.19: Step 2: Total line is added to the grid By default, MS Access sets each field up for grouping. To count the number of courses in each department you must click in the Total area for courseNo and change from Group By to Count:

 [image: image]Figure 6.20: Step 3: Choose the appropriate aggregate for the group Now you have a query that will show the value of each department code along with a count of the number of courses for the department. This query produces one row per department.
 Note the choices for aggregate functions – the first 5 are part of the SQL standard: SUM, AVG, MIN, MAX, COUNT and perform a sum, average, minimum, maximum or count over the values found within a group. When a Totalling query is executed, the following actions are performed by MS Access:
 		Rows are retrieved from the underlying table(s): Recall that when Where is specified in the Total line, then there is a criteria that must evaluate to true for a row to be part of this result.
 	The retrieved rows are organized into groups where the rows forming a group have the same value for the grouping field(s).
 	For each group aggregates are evaluated.
 	A group can be eliminated from the results: If in the same column of the grid where Group by or an aggregate function is specified, there is some criteria given in the criteria line, then if the criteria evaluates to false, the pertinent group is excluded.

 Exercises
 Write queries for:
 1) Consider the last example where the number of courses per department is listed. The sample database is small and so many departments have just 1 course. Modify the query to list results only for departments where there is more than 1 course. For this you must include a criteria >1 for the field where COUNT is specified:
 [image: image]
 2) Consider the University database:
 	For each department list the department code and the largest value for credit hours.
 	For each department list the department code, department name, and the number of courses.

 3) Consider the Library database.
 	List the number of books that have SQL in the title.
 	List the number of members by gender.
 	What is the total for fines?

 4) Consider the Company database
 	List the number of employees in each department.
 	List departments that have more than 25 employees.
 	For each employee who is a supervisor, list the supervisor name and the number of employees they supervise.
 	Suppose the Employee table has a salary field holding an employee’s salary. What is the average salary?

	

			

			

		
	
		
			
	
		

		6.5: Parameter Query

								

	
				 If you need a query but the criteria will not be known until runtime you use a Parameter Query. A parameter query is one where, on the Criteria line for some field, one types square braces [] and inside the [] one types a prompt for the user who runs the query. When a user runs a parameterized query, MS Access will show the user the prompt and waits for the user to respond with a value for the parameter – MS Access replaces parameters with the user-supplied values just before it executes the query.

 Example
 Suppose a user in the University database needs a list of courses having a specific value for credit hours. The query below has a parameter in the criteria line for creditHours:
 [image:] Figure 6.21: Parameter query When the query is run, the query is temporarily suspended while the user is prompted with the message as given in the square braces []. Once the user responds to the prompt, the running of the query continues with the value the user entered as the criteria value.

 Exercises
 1) Consider the University database:
 		Create a query to list all courses in a department (for which the user supplies the department code).
 	Create a query to list all course titles where the user supplies both the department code and the credit hours. Note that two separate criteria, each with their own parameter, must be specified.

 2) Consider the Company database:
 		Write a query to list the employees who manage a department where the department code is provided by the person running the query.
 	Write a query to list all employees in some department where the department code is provided by the person running the query.
 	Modify the employee data in the Company database so at least two employees have the same first and last names. Develop a query that lists all employees having a specific first name and last name that will be specified by the end user.

 3) Consider the Genealogy database:
 	Create a query with two parameters: a start date and an end date. The query will list all persons whose birth dates fall in the range from start date to end date.

 4) Consider the Library database:
 	Write a query to list books due on a specific date (a parameter).
 	Write a query to list books written by a specific author (a parameter).

	

			

			

		
	
		
			
	
		

		6.6: Crosstab Query

								

	
				 Standard MS Access queries produce results with column headings. Crosstab queries are queries where results are displayed with both row and column headings.
 We limit our discussion to the use of the Crosstab Query Wizard for creating crosstab queries.

 Example
 As an example, suppose we wish to display for each department a count of the number of 3 and 6 credit hour courses. The counts are to appear in matrix format where rows are labeled with department names and are columns appear with labels 3 and 6. Below is an outline of how the results should appear:
 	Course
 	3-credit hours
 	6-credit hours

 	Chemistry
 	16
 	7

 	Mathematic
 	22
 	11

 	…
 	…
 	…

 Figure 6.22: Query results to appear with row and column headings
 Crosstab queries have at least three fields; one field (department) is used for row labels, another field (credit hours) is used for column labels, and one field (course number) is used with an aggregate function (Count).
 We can begin by creating a Simple query that retrieves all the necessary values:
 [image: image] Figure 6.23: Query with required fields Next, we save the query (say Q1) and create a new query – click on the Query Wizard:
 [image: image]
 The wizard prompts for
 			type of query – choose Crosstab Query Wizard
 	the table/query to use as the basis for the new crosstab query (Select Queries and then Q1 – the query previously saved)
 	the field to use for row labels  deptName
 	the field to use for column labels  creditHours
 	the field (courseNo) and the aggregate function (Count) to use for summarizing data.

 Running the query shows several columns: the department name (values in this column are the row labels), total over the remaining columns for the row, columns for credit hour values 3 and 6 (the column labels). A sample run:
 	Dept Name
 	Total Of courseNo
 	3
 	6

 	Applied Computer Science
 	5
 	4
 	1

 	English
 	3
 	2
 	1

 	Mathematics
 	1
 	1
 	

 	Figure 6.24: 	Standard crosstab results 	 	

 Exercises
 1) Create and run the query to display for each department a count of the number of 3 and 6 credit hour courses.

 2) Modify the query so that credit hour values appear as row labels and department names appear as column labels.

	

			

			

		
	
		
			
	
		

		6.7: Action Queries

								

	
				 Action Query is a category that MS Access uses to distinguish queries that can modify the data in the database. We discuss the query types: Make-Table, Append, Delete, and Update. To create such a query, one typically starts with a Simple Query that is subsequently changed (by clicking the pertinent button) to an Action Query type. You will notice as you experiment running action queries that MS Access gives a warning message asking you to confirm the changes the query will make to the database. The reason for this is that you cannot click some Undo button to undo such changes as you can in other Office applications. To undo a database action query, you need to design and execute a compensating action query.
 When you are in Design View for some query you will see the buttons for changing the query type:

 [image: image] Figure 6.25: Types of queries

	

			

			

		
	
		
			
	
		

		6.7.1: Make Table Query

								

	
				 Make-table queries are useful if you want to use existing data when you create a new table.
 Consider the University database and suppose we need to create a table of ACS courses. We would start with a query that retrieves all ACS courses:

 [image: image] Figure 6.26 Begin with a select query Next, we change the query to a Make-Table Query by clicking the Make Table button. When you do this, MS Access will prompt you for the name for your new table:

 [image: image] Figure 6.27: Prompt for table name for Make-Table query The query does not run yet; you must either click the Run button or save the query and run it later. Each time you run the query MS Access will empty the table and insert rows into it.

	

			

			

		
	
		
			
	
		

		6.7.2: Append Query

								

	
				 Suppose you wish to add rows to an existing table. To do that you must use an Append query. To create an Append query begin by creating a Simple query that lists the information you wish to see inserted to the table. Once you know the query retrieves the proper information click the Append button and MS Access will prompt you for the table name that should receive the new rows. After this you can run the query from the Run button, or you can save the query and run it later.

	

			

			

		
	
		
			
	
		

		6.7.3: Delete Query

								

	
				 To remove entire rows from a table you use a Delete query. As with previous query types discussed, you can begin with a Simple query that retrieves the rows you wish to delete. Once the Simple query is working you can change its type to Delete and run the query (or save it and run it later). Be careful with delete queries, as they can delete many rows in a single run.

	

			

			

		
	
		
			
	
		

		6.7.4: Update Query

								

	
				 The type of query used to modify existing rows in a table is the Update query. In order to create such a query, you should begin with a Simple query that retrieves the rows that are to be updated and then change the type to Update. When you change the type to Update MS Access will add a new row to the Grid area where you specify the new values for each field to be updated. The new value can be the result from a calculation.

 Example
 Suppose we wish to update the course Table so the credit hours are doubled for each ACS course. We begin with a Simple query to retrieve the PK field, the fields to be updated, and the fields needed for selection criteria purposes. In this case we will need a Simple query to retrieve the department code, course number, and credit hours fields:

 [image: image] Figure 6.28: Simple select query Next, we change the query type to Update and MS Access modifies the Grid to include an UpdateTo line. On that line we enter an expression that generates the new values. To double the credit hours, we need the expression [creditHours]*2, as in:

 [image: image]Figure 6.29: Update query with Update To line Exercises
 1) Create a table of ACS courses, but name the new table ScienceCourses.

 2) Does the table ScienceCourses have a primary key? If not, create one.

 3) Run a delete query on ScienceCourses to delete all non-3-credit hour courses.

 4) Append all 3-credit hour MATH courses to ScienceCourses.

 5) Run an update query on ScienceCourses to double the credit hours of all 3-credit hour courses.

	

			

			

		
	
		
			
	
		

		6.8: Inner and Outer Joins

								

	
				 Whenever we use a query to retrieve data from two or more tables, the database query processor performs an operation called a join. In this section, we discuss inner joins, outer joins, and Cartesian products. Following that we discuss some interesting special cases: self-join, anti-join, non-equi joins.
 If we have previously established relationships between tables, and if we have more than one table in a query, then MS Access will create joins based on those relationships. If necessary, we can alter, delete, or include new relationships.
 MS Access creates joins where rows join if the join fields are equal in value; such joins are called equi-joins. If we create a query for the University database and add the Department and Course tables to the relationships area of the query we have:

 [image: image] Figure 6.30: Standard equi-join If you edit the relationship line (double-click it), you see the join properties:

 [image: image] Figure 6.31: Join properties Here, we can see the join is based on the common attribute deptCode. If you click on the Join Type button, you will get information on the type of join used. You will see (as the following diagram shows) that Access has selected the first of three options:

 [image: image]Figure 6.32 Choosing inner join or outer join Joins can be further characterized as inner or outer joins. Option 1 is an inner join.
 Options 2 and 3 are outer joins. One of these would also be called a Left Outer Join and the other a Right Outer Join. If you examine the SQL statement generated you will see which is used; Left and Right choices are related to the textual expression of the SQL statement – which table name is leftmost/rightmost in the From clause.

	

			

			

		
	
		
			
	
		

		6.8.1: Inner Join

								

	
				 All of the joins we have seen up to this point have been inner joins. For a row of one table to be included in the result of an inner join, the row must match a row in the other table. Because all joins so far have also been equi-joins the matching is based on the values of the join fields of one table being equal to the values of the join fields of the other table.
 Consider the inner join between Department and Course based on deptCode:

 [image: image] Figure 6.33: Inner join If the tables have the contents shown below:
 Course
 	Dept Code
 	Course Number
 	Title
 	Description
 	Credit Hours

 	ACS
 	1453
 	Introduction to Computers
 	This course will introduce students to the basic concepts of computers: types of computers,
 hardware, software, and types of application systems.
 	3

 	ACS
 	1803
 	Introduction to Information Systems
 	This course examines applications of information technology to businesses and other organizations.
 	3

 	 	 	 	 	

 	Dept Code
 	Dept Name
 	Location
 	Phone
 	Chair

 	ACS
 	Applied Computer Science
 	3D07
 	(204) 786-
 0300
 	Simon Lee

 	ENG
 	English
 	3D05
 	(204) 786-
 9999
 	April Jones

 	MATH
 	Mathematics
 	2R33
 	(204) 786-
 	Peter

 	
 	
 	
 	0033
 	Smith

 	 	 	 	 	

 Figure 6.34: Table contents

 then the result of running the query is:
 	Dept Name
 	Course Number
 	Title

 	Applied Computer Science
 	1453
 	Introduction to Computers

 	Applied Computer Science
 	1803
 	Introduction to Information Systems

 	 	 	

 Figure 6.35: Query result

 In the above result, notice there is no result line for English or Mathematics; this is because for the sample data there were no rows in Course that joined to the English or Mathematics rows in Department. Both rows in Course have a value of “ACS” in the deptCode field and so they joined to the ACS row in Department.
 This query demonstrates a distinguishing characteristic of the inner join: only rows that match other rows are included in the results.

 Exercises
 1) Consider the Library database:
 	Write a query that joins Loan and Member. List the member name and date due.
 	Write a query that joins Loan and Book. List the book title and date due.
 	Write a query that joins all three tables and lists the member name, book title, and date due.

 2) Consider the two tables A and B below.
 Table A
 	X
 	Y
 	Z

 	1
 	3
 	5

 	2
 	4
 	6

 	4
 	9
 	9

 Table B
 	X
 	Y
 	Q

 	1
 	3
 	5

 	1
 	4
 	6

 	2
 	4
 	7

 	3
 	4
 	5

 	How many rows are in the result if A and B are joined based on the attribute X?
 	How many rows are in the result if A and B are joined based on both attributes X and Y?

	

			

			

		
	
		
			
	
		

		6.8.2: Outer Join

								

	
				 Consider the Company database. Suppose we wanted to produce a report that lists each department and its employees, and that we must include every department. The two tables would be joined based on equal values of the dept id field. We want all departments and we know that an inner join will not include a department if there are no employees for the department to join to. To get all departments included when we are joining two tables, we must use an outer join.
 Consider the query that is started below:

 [image: image] Figure 6.36: Initial query By default the join is an inner join, but with MS Access you can get an outer join if you edit the relationship and specify either option 2 or option 3, as shown in the dialogue below:

 [image: image] Figure 6.37: Default property is option 1 By choosing option 2 your query will include all departments, whether or not the department can join to an employee. If there is no employee for a department to join to, then the row is joined to a row of nulls. When you do this notice the change in the relationship line – it is now a directed line; this is how MS Access illustrates outer joins:

 [image: image] Figure 6.38: Outer join – all rows of Department For our purposes here, we added the Special Operations department to Department. And now the first few rows of the result are:

 [image: image] Figure 6.39: Query result Notice that the Special Operations department joined to a null row.

 Exercises
 1) Consider the Company database and list each department and the number of employees in the department.

 2) Consider the Orders database:
 	Create a query to list each customer and their orders (order id and order date). Are there any customers who have not placed an order?
 	Modify the above query to list each customer and the number of orders they have placed (include all customers).

 3) Consider the library database:
 	Create a query that will list every book and the date it was borrowed. Include all books in your result.
 	Create a query to list every library member and the dates they borrowed books. Include all members

	

			

			

		
	
		
			
	
		

		6.8.3: Cartesian Product

								

	
				 Suppose you create a query, but without join criteria. This is easily done by clicking on the relationship line and deleting it. When criteria for matching rows is not present, then each row of one table will join to each row of the other table.
 This type of join is called a Cartesian Product, and these can easily have very large result sets. If Department has 4 rows and Employee has 100 rows, then the Cartesian Product has (4×100=) 400 rows. Databases used in practice have hundreds, thousands, even millions of rows; a Cartesian Product may take a long, long time to run.

 Exercises
 1) Consider the Sales database and its Store and Product tables. Construct a query to list the storeID and the productID. When you add Store and Product to the relationships area there is no line joining the two tables. Run the query. Notice how many rows there are; the number of rows in the result set is the number of stores times the number of products.

 2) Consider the Sales database and its Store, Product, and Sales tables. Suppose we want to obtain a list that shows for each store and product the total quantity sold. Note that the end user wants to see every store and product combination.
 Hint: An approach you can use with MS Access is to create two queries. The first of these performs a cross product of store and product (call this CP).

 The second query is developed as a join between the query CP and the table Sales. CP is outer-joined to Sales in order that every combination of Store and Product is in the final result.

	

			

			

		
	
		
			
	
		

		6.8.4: Self-Join

								

	
				 A self-join, also called a recursive join, is a case where a table is joined to itself.
 Consider the Company database and suppose we must obtain a list of employees who report to another employee named Raphael Delaney (i.e., List the employees Raphael Delaney supervises). To do this we need to find the row in Employee for Raphael Delaney and then join that row to other rows of Employee where the supervisor field is equal to the empId field for Raphael. When we build the query in MS Access we simply add the Employee table to the relationships area twice. One copy of Employee will be named Employee_1. Consider the following query:

 [image: image] Figure 6.40: Self-join Note the following:
 			the criteria specifies the row in Employee will be that of Raphael Delaney
 	the join line connects supervisor to empId and so rows of Employee_1 will be employees who report to Raphael.

 Exercises
 1) Consider the Genealogy database and develop queries to obtain:
 	the father of Peter Chan.
 	the mother of Peter Chan.
 	the father and mother of Peter Chan.

 2) Consider the Orders database and the Employee table:
 	Write a query to list the employee who does not report to anyone.
 	Write a query to list each employee and the number of employees they supervise.

	

			

			

		
	
		
			
	
		

		6.8.5: Anti-Join

								

	
				 Suppose we need to list persons in our Company database that are not supervising anyone. One way of looking at this problem is to say we need to find those people that do not join to someone else based on the supervises relationship. That is, we need to find those employees whose employee id does not appear in the supervisor field of any employee.
 To do this with MS Access, we can construct a query that uses an outer join to connect an employee to another employee based on employeeID equaling supervisor, but where the supervisor value is null. That is, we are looking for an employee who, in an outer join, does not join to another employee. See the query below:

 [image: image] Figure 6.41: Anti-join This query involves a join, specifically an outer join, and because it retrieves that rows that do not join, it is sometimes referred to as a special case – an anti-join.

 Exercises
 1) Consider the Company database and develop a query to count the number of employees who do not supervise anyone.

 2) Consider the Library database. Create a query to list books that no one borrowed.

 3) Consider the Library database. Create a query to list members that have not borrowed a book.

	

			

			

		
	
		
			
	
		

		6.8.6: Non-Equi Join

								

	
				 A non-equi join is any join where the join criteria does not specify equals, “=”.
 Suppose we wish to list all persons in the Genealogy database who are younger than, say, Peter Chan. One approach to getting the results is to join the row for Peter Chan to another row in Person where the birthdate of Peter Chan is greater than the birthdate of the other person. This type of join would be a “greater than” join as opposed to an equi- join. Proceed in the following way:
 			Add Person to the relationships area twice so there is a Person table and a Person_1 table. If there are any relationship lines delete them.
 	In the criteria line for Person fields: for firstName type “Peter” and for LastName type “Chan”.
 	In the criteria line for birthDate in Person_1 type “> [Person].[birthDate]”

 [image: image]Figure 6.42: Non-equi join In this way you are creating a “greater than” join.
 			Include attributes from Person_1 to display these younger people.
 	Run your query.

 Exercises
 1) Consider the Company database and create a query to list anyone younger than Tanya Dickson.

 2) Modify the example in this section to list those people who are older than Peter Chan.

	

			

			

		
	
		
			
	
		

		6.9: SQL Select Statement

								

	
				 SQL is the standard language for relational database systems. There are variations of SQL that appear in Object-oriented database systems, and elsewhere. The study of SQL is very important, and the knowledge gained here is useful in other database environments.
 We will examine one SQL statement, the Select statement, used to retrieve data from a relational database. Other common data manipulation statements are the Insert, Update, and Delete used to modify or add data. Select, Insert, Update, and Delete all belong to the Data Manipulation Language (DML) subset of SQL. Another group of statements belong to the Data Definition Language (DDL) subset of SQL – these statements are used to create tables, indexes, and other structures and are discussed in a later section.
 The general SQL Select statement syntax:
 			Select list of attributes or calculated results(1)
 	From list of tables with/without join condition(2)
 	Where criteria rows must meet beyond the join specifications(3)
 	Group by list of attributes for creating groups(4)
 	Order by list of attributes for ordering the results(5)
 	Having criteria groups must meet(6)

 Each clause of the SQL statement has its counterpart in the Design View used by Access:
 		Attribute/calculated values are those for which Show is specified. If grouping is used, these must evaluate to a single value (group functions; grouping attribute) per group.
 	Tables that appear in the From clause are shown in the Relationships Area.
 	Specifications for the Where clause are found in the Criteria and Or rows.
 	Specifications for the Group By clause are made in the Totals row.
 	Specifications for sorting are made in the Sort row.
 	A Having clause specifies criteria that a group must meet to be included in the result. This clause is generated when you use an aggregate function with a criteria.

 	

 	

 When you design a query you can switch between various views including SQL view. You can easily confirm through examples how the SQL statement is generated from Design View. For example, consider the following query and its SQL expression below. Note how MS Access has used names with dot-notation to fully specify fields and how MS Access has placed one criteria rows must meet in a Having clause.

 [image: image] Figure 6.43: QBE and SQL Select 			SELECT Department.deptName, Course.title, Count(Course.creditHours) AS CountOfcreditHours
 	FROM Department INNER JOIN Course ON Department.deptCode = Course.deptCode
 	WHERE (((Course.creditHours)=3))
 	GROUP BY Department.deptName, Course.title
 	HAVING (((Department.deptName)=”ACS”));

 		

 Exercises
 Consider the following SQL statements for the Sales database and show how each statement would appear in Design View. You can confirm your result if you create a query, switch to SQL View, type the query statement and then switch to Design View.

 1) SELECT Product.ProductID, Product.ProductName
 	FROM Product;

 2) SELECT Category.CategoryName, Product.ProductName
 	FROM Category INNER JOIN Product
 	ON Category.CategoryID = Product.CategoryID;

 3) For the Sales database: List products in Condiments with a unit price over $4.
 	SELECT Product.ProductID, Product.ProductName
 	FROM Category INNER JOIN Product
 	ON Category.CategoryID = Product.CategoryID
 	WHERE (((Category.CategoryName)=”Condiments”) AND ((Product.UnitPrice)>4));

 4) For the Sales database: List the number of products in each category.
 	SELECT Category.CategoryID, Category.CategoryName, Count(Product.ProductID)
 	FROM Category INNER JOIN Product
 	ON Category.CategoryID = Product.CategoryID
 	GROUP BY Category.CategoryID, Category.CategoryName;

 5) For the Sales database: List products for which the total quantity sold is more than 10.
 	SELECT Product.ProductID, Product.ProductName
 	FROM Product INNER JOIN Sales
 	ON Product.ProductID = Sales.productId
 	GROUP BY Product.ProductID, Product.ProductName
 	HAVING (((Sum(Sales.quantitySold))>10));

	

			

			

		
	
		
			
	
		

		6.10: SQL Union and Union All

								

	
				 The Union and Union All operators merge the results of two or more queries that are given as SQL Select statements. With MS Access you must switch to SQL View to use Union/Union All
 			UNION removes duplicates and sorts the results
 	UNION ALL returns all values (includes duplicates) without sorting
 	The output fields must be identical (number and type) for each SELECT.

 The syntax for UNION of two Select’s:
 	Union
 	Union all

 	SQL Select Statement1
 	SQL Select Statement1

 	UNION
 	UNION ALL

 	SQL Select Statement2 ;
 	SQL Select Statement2 ;

 	Figure 6.44: Union 	and Union All syntax

 Any number of Select statements can be UNIONed. A requirement for using UNION is that the queries are union-compatible – the queries must retrieve the same number of fields, and fields in the same position across the multiple Select clauses must be of matching types.

 Example
 Consider the Employee table in the Company database. To list all names (first and last) in a single column construct two queries: one to list the first names of employees and one to list the last names of employees.
 These two queries can be combined to produce a single list of names. Now, in SQL view type and run:
 	Union
 (sorted with no duplicates)

 	Select firstname from Employee
 UNION
 Select lastname from Employee ;

 	Figure 6.45: Union

 Exercises
 1) Create a query to produce a list of cities in the Orders database. The Employees table and the Customers tables have a city field.

 2) Modify the example in Figure 6.45 so that duplicates are eliminated.

	

			

			

		
	
		
			
	
		

		7. ENTITY RELATIONSHIP MODELLING

	

	
		When designing a database, it is common practice for a database designer to develop an Entity Relationship model and to represent that model in a drawing, the entity relationship diagram (ERD). In this chapter we discuss the concepts required to develop an ERD and the Peter Chen notation.
 Peter Chen introduced entity relationship modeling in his paper The Entity-Relationship Model–Toward a Unified View of Data (ACM Transactions on Database Systems, Vol. 1, No. 1, 1976). This paper can be found at http://csc.lsu.edu/news/erd.pdf. It is one of the most cited papers in the computer field and has been considered one of the most influential papers in computer science. Another later paper published in Software Pioneers: Contributions to Software Engineering (2002) is Entity-Relationship Modeling: Historical Events, Future Trends, and Lessons Learned and can be found at http://bit.csc.lsu.edu/~chen/pdf/Chen_Pioneers.pdf.
 Entity Relationship modeling is a process used to help us understand and document the informational requirements of a system as a logical or conceptual data model. When the model is complete, we then create a physical model in some database management system (DBMS), typically a relational DBMS, or RDBMS.

	

		

		
	
		
			
	
		

		7.1: Introduction

								

	
				 In the entity relationship approach to modeling, we analyze system requirements and classify our knowledge in terms of entities, relationships, and attributes.

 Entities
 Entities are the things we decide to keep track of. For example, if one considers a system to support an educational environment, one is likely to decide that we need to keep track of students, instructors, courses, etc. Typically, entities are the people, places, things, and events that we need to remember something about.
 Suppose we know of four student entities and two course entities. For example, consider four students (say John, Amelia, Lee, and April) and two courses (Introduction to Art and Introduction to History). We can illustrate these in a number of ways:
 As tables of information:

 [image: image] Figure 7.1: Entities shown as rows in table As sets of entities:

 [image:] Figure 7.2: Entities shown as sets
 Relationships
 Entities can be related to one another and so we use relationships to describe how entities relate. Continuing with our educational example we know that students enroll in courses, and so this is one of the relationships we should know about. Suppose we have the two courses and four students listed previously. Suppose also that
 			John and Amelia are enrolled in Introduction to Art
 	John and Lee are enrolled in Introduction to History
 	April is not enrolled in any course.

 Below, we depict four instances of the enroll-in relationship by drawing a line from a student to a course. Each relationship pairs one student with one course.
 [image:] Figure 7.3: Relationships shown as lines connecting entities
 Attributes
 Entities and relationships have characteristics that describe them. For instance, the students in our example are described by the values for their name, id number, and phone number. As we look back at previous figures, we can see there is a student named John whose id number is 184 and his phone number is 283-4984.
 Courses are shown with a course title, a course number, and to belong to a department. There is a course numbered 661 that is offered by the Art department and it is titled Introduction to Art.
 If we consider the enroll-in relationship we know there is a date when the student enrolled in the course and a final grade that was awarded to the student when the course was completed. For instance, we could have that John enrolled in Introduction to Art on July 1, 2010 and was awarded an A+ on completion of that course.
 These characteristics that serve to describe entities and relationships are called attributes. We will be examining attributes in some detail. As we will see some attributes, such as student number, serve to distinguish one instance from another – each student has a student number distinct from any other student. Other attributes we consider to be purely descriptive, such as the name of a student – many students could have the same name.

 Notation
 There are many notations in use today that illustrate database designs. In this text, as is done in many database textbooks, the Peter Chen notation is used; other popular notations include IDEF1X, IE and UML. There are many similarities, and so once you master the Peter Chen notation it is not difficult to adapt to a different notation.
 The following is an example of an ERD drawn using the Peter Chen notation. Note the following:
 			Entity types are represented using rectangular shapes.
 	Relationship types are shown with a diamond shape. Lines connect the relationship type to its related entity types with cardinality symbols (m and n).
 	Attributes are shown as ovals with a line connecting it to the pertinent entity type or relationship type.

 [image: image] Figure 7.4: An ERD in Chen notation
 The various symbols we use with the Peter Chen notation:

 [image: image] Figure 7.5: Symbols used in the Chen notation

	

			

			

		
	
		
			
	
		

		7.2: Entities

								

	
				 Entities are the people, places, things, or events that are of interest for a system that we are planning to build. In the previous section we considered there were several entities: four students and two courses.
 In general, we find examples of entities when we think of people, places, things, or events in our area of interest:
 			People: student, customer, employee
 	Places: resort, city, country
 	Things: restaurant, product, invoice, movie, painting, book, building, contract
 	Events: registration, election, presentation, earthquake, hurricane

 Entity sets are named collections of related entities. From our example we have two entity sets:
 			The Student entity set comprises at least the 4 student entities: John, Amelia, Lee, and April.
 	The Course entity set comprises at least the 2 course entities: Introduction to Art and Introduction to History.

 Entity sets are the collections of entities of one type. We consider an Entity Type to be the definition of the entities in such a set. A common convention is to name entity types as singular nouns and that, at least, the first letter is capitalized.
 In an ERD entity types are shown as named rectangular shapes. For example:
 [image:]The Student and Department entity types shown above are drawn with a simple single-line border. This means that they are regular (or strong) entity types that are not existence- dependent on other entity types (see the next section).

 Exercises
 1) Consider your educational institution. Your educational institution needs to keep track of its students. How many student entities does the institution have? You have provided the institution with information about you. In your opinion, what attributes describe these entities?

 2) Consider your place of work. The Human Resources department in your company needs to manage information about its employees. How many employee entities are there? What attributes describe these entities?

 3) Consider your educational institution or place of work.
 	What are some of the entity types that would be useful?
 	What relationships exist that relate entity types to one another?
 	What attributes would be useful to describe entities and relationships?
 	Draw an ERD.

	

			

			

		
	
		
			
	
		

		7.2.1: Weak Entities

								

	
				 Sometimes we know certain entities only exist in relationship to others. For example, a typical educational institution comprises a number of departments that offer courses. So, we could have a History department, an Art department and so on. These departments would design and deliver courses that students would register for. In this framework the courses exist in the context of a department, and the identifier for a course is typically a department code and course number combination. So, the history course, Introduction to History, belongs to the History department and it could be known by the identifier HIST- 765. HIST is a code representing the History department and 765 is a number assigned to the course; other departments could have a course with that same number, 765.
 In these situations where the existence of an entity depends on the existence of another entity, we say the entity is a weak entity, and the corresponding entity type is a weak entity type. Weak entities often have identifiers that comprise multiple parts (such as department code and course number). Later we will see other aspects of an ERD that relate to weak entity types. At this time, we should be aware that weak entity types are illustrated in an ERD with a double-lined rectangle:
 [image: image] Figure 7.6: Course as a weak entity type Often when we purchase things the vendor provides an invoice giving details of each item that is purchased (see the sample invoice below). Appearing on the invoice are detail lines specifying the product, the quantity and price. Invoice lines are things that exist only in
 the context of an invoice and so each invoice line is a weak entity; the invoice lines are existence-dependent on an invoice:

 [image: image] Figure 7.7: Sample Invoice The following includes a few attributes to show how Invoice and Invoice Line could appear in an ERD:
 [image: image] Figure 7.8: Invoices (regular entity type) and Invoice Lines (weak entity type) Exercises
 1) Consider a requirement having to do with benefits that may be given to employees of a company. Suppose employees work in a department and that each employee may have several dependents (spouse, child). Draw an ERD that includes Department, Employee, and Dependent in your design. Include attributes for your entity types.

 2) When you buy items in a store you often get a cash register receipt that details the items you have purchased. Develop an ERD that includes Store, Customer, Receipt, and Detail Lines.

	

			

			

		
	
		
			
	
		

		7.3: Attributes

								

	
				 Attributes are the characteristics that describe entities and relationships. For example, a Student entity may be described by attributes including:
 		student number
 	name
 	first name
 	last name
 	address
 	date of birth
 	gender

 An Invoice entity may be described by attributes including:
 		invoice number
 	invoice date
 	invoice total

 A common convention for naming attributes is to use singular nouns. Further, a naming convention may require one of:
 		All characters are in upper case.
 	All characters are in lower case.
 	Only the first character is in upper case.
 	All characters are lower case, but each subsequent part of a multipart name has the first character capitalized

 Using the last convention mentioned, some examples of attribute names:
 		lastName for last name
 	empLastName for employee last name
 	deptCode for department code
 	prodCode for product code
 	invNum for invoice number

 In practice a naming convention is important, and you should expect the organization you are working for to have a standard approach for naming things appearing in a model. A substantial data model will have tens, if not into the hundreds, of entity types, many more attributes and relationships. It becomes important to easily understand the concept underlying a specific name; a naming convention can be helpful.
 There are many ways we can look at attributes including whether they are atomic, composite, single-valued, etc. We consider these next.

	

			

			

		
	
		
			
	
		

		7.3.1: Atomic Attributes

								

	
				 A simple, or atomic, attribute is one that cannot be decomposed into meaningful components. For example, consider an attribute for gender – such an attribute will assume values such as Male or Female. Gender cannot be meaningfully decomposed into other smaller components.
 As another example consider an attribute for product price. A sample value for product price is $21.03. Of course, one could decompose this into two attributes where one attribute represents the dollar component (21), and the other attribute represents the cents component (03), but our assumption here is that such decompositions are not meaningful to the intended application or system. So, we would consider product price to be atomic because it cannot be usefully decomposed into meaningful components.
 Similarly, an attribute for the employee’s last name cannot be decomposed, because you cannot subdivide last name into a finer set of meaningful attributes.

 Exercises
 1) Consider that a Human Resources system must keep track of employees. If we are only including atomic attributes, what attributes would you include for the employee’s name? Some possibilities are first name, last name, middle name, full name.

 2) What simple attributes are used to describe courses at your institution?

 3) In some large organizations where there are several buildings and floors we see room numbers that encode information about the building, floor, and room number. For example, in case the room 3C13 stands for room 13 on the third floor of the Centennial building. Suppose we need to include Room in an ERD. How would you represent the room number given that you must include atomic attributes only?

	

			

			

		
	
		
			
	
		

		7.3.2: Composite Attributes

								

	
				 Consider an attribute such as full name which is to represent an employee’s complete name. For example, suppose an employee’s name is John McKenzie; the first name is John and the last name is McKenzie. It is easy to appreciate that one user may only need employee last names, and another user may need to display the first name followed by the last name, and yet another user may display the last name, a comma, and then the first name. If it’s reasonable for one to refer to the complete concept of employee name and to its component parts, first name and last name, then we can use a composite attribute. An attribute is composite if it comprises other attributes. To show that an attribute is composite and contains other attributes we show the components as attribute ovals connected to the composite as in:
 [image: image] Figure 7.9: Composite attribute Attributes can be composite and some of its component attributes may be composite as well (see exercise 3).

 Exercises
 1) How would you use a composite attribute to model a phone number.

 2) Consider the previous exercise set. Show how we can include room number as a composite attribute that has multiple components.

 3) Consider an address attribute. Show that this can be modeled as a multi-level composite attribute where the component attributes include street, city, province, country and where street includes apartment number, street number, street name.

	

			

			

		
	
		
			
	
		

		7.3.3: Single-Valued Attributes

								

	
				 We characterize an attribute as being single-valued if there is only one value at a given time for the attribute.
 Consider the Employee entity type for a typical business application where we need to include a gender attribute. Each employee is either male or female, and so there is only one value to store per employee. In this case, we have an attribute that is single-valued for each employee. Single-valued attributes are shown with a simple oval as in all diagrams up to this point. In all of our examples so far, we have assumed that each attribute was single-valued.

 Exercises
 1) Consider a marriage entity type and attributes marriage date, marriage location, husband, wife. Each marriage will only have one value for each of these attributes. Illustrate the marriage entity and its single-valued attributes in an ERD.

 2) A college or university will keep track of several addresses for a student, but each of these can be named differently: for example, consider that a student has a mailing address and a home address. Create an ERD for a student entity type with two composite attributes for student addresses where each comprises several single-valued attributes.

	

			

			

		
	
		
			
	
		

		7.3.4: Multi-Valued Attributes

								

	
				 Now, suppose someone proposes to track each employee’s university degrees with an attribute named empDegree. Certainly, many employees could have several degrees and so there are multiple values to be stored at one time. Consider the following sample data for three employees: each employee has a single employee number and phone number, but they have varying numbers of degrees.
 	empNum

 	empPhone

 	empDegree

 	123

 	233-9876
 	

 	333

 	233-1231
 	BA, BSc, PhD

 	679

 	233-1231

 	BSc, MSc

 	 	 	

 Figure 7.10: Employees – number, phone, degrees
 For a given employee and point in time, empDegree could have multiple values as is the case for the last two employees listed above. In this case we say the attribute is multi- valued.
 Multi-valued attributes are illustrated in an ERD with a double-lined oval.
 [image: image] Figure 7.11: Employee degrees shown as multi-valued We can use multi-valued attributes to (at least) document a requirement, and at a later time, refine the model replacing the multi-valued attribute with a more detailed representation. The presence of a multi-valued attribute indicates an area that may require more analysis; multi-valued attributes are discussed again in Chapter 10.

 Exercises
 1) Consider the employee entity type.

 2) Suppose the company needs to track the names of dependents for each employee. Show the dependent name as a multi-valued attribute.

 3) Modify your ERD to show empDependentName as a composite multi-valued attribute comprising first and last names and middle initials.

 4) Create an ERD that avoids the multi-valued attribute empDegrees in the previous example. Hint: Consider including another entity type and a relationship for keeping track of degrees.

	

			

			

		
	
		
			
	
		

		7.3.5: Derived Attributes

								

	
				 If an attribute’s value can be derived from the values of other attributes, then the attribute is derivable, and is said to be a derived attribute. For example, if we have an attribute for birth date then age is derivable. Derived attributes are shown with a dotted lined oval.
 [image: image] Figure 7.12: Age as a derived attribute Sometimes an attribute of one entity type is derived from attributes from other entity types. Consider the attribute for the total of an Invoice. A value of InvTotal is derivable; it can be computed from invoice lines. Someone who implements a database and applications that access the database would need to decide whether the value of a derivable attribute should be computed when the entity is stored or updated versus computing the value (on-the-fly) when it is needed.

 Exercises
 1) Consider an educational environment where the institution tracks the performance of each student. Often this is called the students overall average, or overall grade point average. Is such an attribute a derived attribute? How is its value determined?

 2) Consider a library application that needs to keep track of books that have been borrowed. Suppose there is an entity type Loan that has attributes bookID, memberID, dateBorrowed and dateDue. Suppose the due date is always 2 weeks after the borrowed date. Show Loan and its attributes in an ERD.

	

			

			

		
	
		
			
	
		

		7.3.6: Key Attributes

								

	
				 Some attributes, or combinations of attributes, serve to identify individual entities. For instance, suppose an educational institution assigns each student a student number that is different from all other student numbers. We say the student number attribute is a key attribute; student numbers are unique and distinguish students.
 In an ERD, keys are shown underlined:
 [image: image] Figure 7.13: Key attribute is underlined We define a key to be a minimal set of attributes that uniquely identify entities in an entity type. By minimal we mean that all of the attributes are required – none can be omitted.
 For instance, a typical key for an invoice line entity type would be the combination of invoice number and invoice line number. Both attributes are required to identify a particular invoice line.
 It is not unusual for an entity type to have several keys. For instance, suppose an educational institution has many departments such as Mathematics, Physics, and Computer Science. Each department is given a unique name and as well the institution assigns each one a unique code: MATH, PHYS, and CS. Both attributes would be underlined to show this in the ERD:
 [image: image] Figure 7.14: Multiple key attributes Exercises
 1) Suppose a company that sells products has a product entity type with the following attributes: prodNum, prodDesc, prodPrice. Suppose all three attributes are single- valued and that prodNum is a key attribute – each product has a different product number. Illustrate this information in an ERD.

 2) Suppose a company assigns each employee a staff number and each employee has a government assigned identification number. For each employee the company records their first name, last name, and birth date. Illustrate this information in an ERD.

 3) Consider a banking application where each account is identified first by an account number and then by its type (Savings, Chequing, and Loan). This scheme allows the customer to remember just one number instead of three, and then to pick a specific account by its type. Other attributes to be considered are the date the account was opened and the account’s current balance. Draw an ERD for the entity type Account with the attributes account number, account type, date opened, current balance. What is the key for the entity type? Is there an attribute that is likely a derived attribute? Show these attributes appropriately in the ERD.

	

			

			

		
	
		
			
	
		

		7.3.7: Partial Key

								

	
				 Sometimes we have attributes that distinguish entities of an entity type from other entities of the same type, but only relative to some other related entity. This situation arises naturally when we model things like invoices and invoice lines. If invoice lines are assigned line numbers (1, 2, 3, etc.), these line numbers distinguish lines on a single invoice from other lines of the same invoice. However, for any given line number value, there could be many invoice lines (from separate invoices) with that same line number.
 A partial key (also called a discriminator) is an attribute that distinguishes instances of a weak entity type relative to a strong entity. Invoice line number is a partial key for invoice lines; each line on one invoice will have different line numbers. Using the Peter Chen notation, the discriminator attribute is underlined with a dashed line:
 [image: image] Figure 7.15: Line number distinguishes lines on the same invoice Later when relationships are covered it will be clearer that attributes for relationships can be discriminators too. Consider that a library has books that members will borrow. Any book could be borrowed many times and even by the same member. However, when a member borrows the same book more than once the date/time will distinguish those events. Consider the following ERD for this case:
 [image: image] Figure 7.16: Relationship attribute as a discriminator Exercises
 1) Consider an educational institution that has departments and where each department offers courses. Suppose departments are assigned unique identifiers and so deptCode is a key for the department entity type. Courses are identified within a department by a course number; course numbers are unique within a department but not across departments. So, History may have a course numbered 215, and English could have a course numbered 215 too. In order to identify a particular course, we need to know the department and we need to know the course number. Illustrate an ERD including department and course entity types. Include attributes for Department (department code and department name), and for Course (course number, title, and description).

 2) Consider a company that owns and operates parking lots. Develop an ERD with two entity types Parking Lot and Space and where:
 	The address of a parking lot serves to identify the lot.
 	Each space within a lot is rented at the same monthly rental charge.
 	Each parking space is known by its number within the lot (within a lot these always start at 1).
 	Each parking space is rented out to at most one vehicle. The vehicle’s identifier must be recorded. The identifier comprises a province code and license plate number.

	

			

			

		
	
		
			
	
		

		7.3.8: Surrogate Key

								

	
				 When a key specified for an entity is meaningless to the entity and to end-users (it doesn’t describe any characteristic of an entity), the key is referred to as a surrogate key. A key that is not a surrogate key is often referred to as a natural key. Often a surrogate key is just a simple integer value assigned by the database system.
 When database designs are implemented, surrogate keys can be useful to simplify references from one table to another (referential integrity) and the associated joins when tables are referenced in queries.

 Exercises
 1) Assuming you have experience with some database system, what data type would you use for surrogate keys?

	

			

			

		
	
		
			
	
		

		7.3.9: Non-Key Attributes

								

	
				 Non-key attributes are attributes that are not part of any key. Generally, most attributes are simply descriptive, and fall into this category. Determining key and non-key attributes is an important modeling exercise, one that requires careful consideration. Consider an Employee entity type that has attributes for first name, last name, birth date; these attributes would serve to describe an employee but would not serve to uniquely identify employees.
 People may join an organization and their name is not likely unique for the organization; we expect many people in a large organization to have the same first name, same last name, and even the same combination of first and last name. Names cannot usually be used as a key.
 However, names chosen for entities such as departments in an organization could be keys because of the way the company would choose department names – they wouldn’t give two different departments the same name.

 Exercises
 1) Consider a library and the fact that books are loaned out to library members. Dates could be used several times: for the date a book was borrowed, the date the book was returned, and the due date for a book. Consider an entity type Loan that has attributes book identifier, member identifier, date borrowed, date due, date returned. What combination of attributes would be a key? Which attributes are key attributes? Which attributes are non-key attributes

 2) A birthdate attribute would appear for many entity types – for example students, employees, children. What is a birthdate likely to be: key or non-key?

	

			

			

		
	
		
			
	
		

		7.3.10: Nulls

								

	
				 When a database design is implemented, one of the important things to know for each attribute of an entity type is whether or not that attribute must have a value. For example, when a book is borrowed from a library the date the book is borrowed is known, but the returned date is not known. Sometimes you will not know the value of an attribute until a certain event occurs.
 Consider an educational environment and when a student registers for a course. The date the student registers would be known, but the grade is yet to be determined.
 When an entity is created but some attribute does not have a value, we say it is null. Null represents the absence of a value; null is different from zero or from blank.

	

			

			

		
	
		
			
	
		

		7.3.11: Domains

								

	
				 To complete the analysis for a database design it is necessary to determine what constitutes a valid value for an attribute. A domain for an attribute is its set of valid values which includes a choice of datatype, but a full specification of domain is typically more than that.
 For instance, analysis for student identifiers may lead one to state that a student identifier is a positive whole number of exactly 7 digits with no leading zeros. The analysis of requirements for person names may lead one to state that the values stored in a database for a first name, last name, or middle name will not be more than 50 characters in length, and that names will not have any spaces at the beginning or end.
 For each attribute one must determine its domain. More than one attribute can share the same domain. Knowing the underlying domains in your model is important. They help to complete your analysis, they are indispensable for coding programs, and they are useful for defining meaningful error messages.
 Attribute domains are not usually shown in an ERD. Rather, domains are included in accompanying documentation which can be referred to when the database is being implemented.

	

			

			

		
	
		
			
	
		

		7.4: Relationships

								

	
				 Up to this point we have made several references to the concept of relationship. Now, we will make our understanding of this concept more complete. A relationship is an association amongst entities. Relationships will have justification in business rules, in the way an enterprise manages its business.
 There are several ways of classifying relationships, according to degree, participation, cardinality, whether recursion is involved, and whether a relationship is identifying or not.

	

			

			

		
	
		
			
	
		

		7.4.1: Degree

								

	
				 [image: image] Figure 7.17: Binary relationship involves two entity types We consider the degree as the number of entities that participate in the relationship. When we speak of a student enrolling in a course, we are considering a relationship (say, the enroll in relationship) where two entity types (Student and Course) are involved. This relationship is of degree 2 because each instance of the relationship will always involve one student entity and one course entity.
 With binary relationships there must be two defining statements we can express, one from the perspective of each entity type. In this case our statements are:
 			A student may enroll in any number of courses.
 	A course may have any number of students enrolled.

 Many database modeling tools only support binary relationships. However, there are situations where relationships of higher degree are useful. A relationship involving 3 entity types is called ternary; more generally we refer to relationships with n entity types as n-ary. Our primary focus in this text is on binary relationships.

	

			

			

		
	
		
			
	
		

		7.4.2: Participation

								

	
				 Suppose we are designing a database for a company that has several departments and employees. Suppose further that each employee must be assigned to work in one department. We can define a works in relationship involving Department and Employee. Employees must participate in the relationship, and we show this using a double line joining the diamond symbol to the Employee entity type.
 [image: image] Figure 7.18: Employee must work in a department The double line stands for total or mandatory participation which means that instances of the adjacent entity type must participate in the relationship – in the case above, all instances of Employee must be assigned to some department. Any time we show a single line we are stating participation is optional; for the above we are saying that a department will have zero or more employees who work there.

	

			

			

		
	
		
			
	
		

		7.4.3: Cardinality

								

	
				 Cardinality is a constraint on a relationship specifying the number of entity instances that a specific entity may be related to via the relationship. Suppose we have the following rules for departments and employees:
 			A department can have several employees that work in the department
 	An employee is assigned to work in one department.

 From these rules we know the cardinalities for the works in relationship and we express them with the cardinality symbols 1 and n below.
 [image: image] Figure 7.19: One-to-many relationships are most common The n represents an arbitrary number of instances, and the 1 represents at most one instance. For the above works in relationship we have
 			a specific employee works in at most only one department, and
 	a specific department may have many (zero or more) employees who work there.

 n, m, N, and M are common symbols used in ER diagrams for representing an arbitrary number of occurrences; however, any alphabetic character will suffice.
 Based on cardinality there are three types of binary relationships: one-to-one, one-to- many, and many-to-many.
 One-to-One
 One-to-one relationships have 1 specified for both cardinalities. Suppose we have two entity types Driver and Vehicle. Assume that we are only concerned with the current driver of a vehicle, and that we are only concerned with the current vehicle that a driver is operating. Our two rules associate an instance of one entity type with at most one instance of the other entity type:
 	a driver operates at most one vehicle, and
 	a vehicle is operated by at most one driver.

 And so, the relationship is one-to-one.
 [image: image] Figure 7.20: One-to-one relationship One-to-Many
 One-to-many relationships are the most common ones in database designs. Suppose we have customer entities and invoice entities and:
 			an invoice is for exactly one customer, and
 	a customer could have any number (zero or more) of invoices at any point in time.

 [image: image] Figure 7.21: One-to-many relationship Because one instance of an Invoice can only be associated with a single instance of Customer, and because one instance of Customer can be associated with any number of Invoice instances, this is a one-to-many relationship:
 Many-to-Many
 Suppose we are interested in courses and students and the fact that students register for courses. Our two rule statements are:
 	any student may enroll in several courses,
 	a course may be taken by several students.

 This situation is represented as a many-to-many relationship between Course and Student:
 [image: image] Figure 7.22: Many-to-many relationship As will be discussed again later, a many-to-many relationship is implemented in a relational database in a separate relation. In a relational database for the above, there would be three relations: one for Student, one for Course, and one for the many-to-many. (Sometimes this 3rd relation is called an intersection table, a composite table, a bridge table.)
 [image: image]Figure 7.23: Many-to-many becomes two one-to-many relationships Partly because of the need for a separate structure when the database is implemented, many modellers will ‘resolve’ a many-to-many relationship into two one-to-many relationships as they are modelling. We can restructure the above many-to-many as two one-to-many relationships where we have ‘invented’ a new entity type called Enrollment:
 A student can have many enrollments, and each course may have many enrollments.
 An enrollment entity is related to one student entity and to one course entity.

	

			

			

		
	
		
			
	
		

		7.4.4: Recursive Relationships

								

	
				 A relationship is recursive if the same entity type appears more than once. A typical business example is a rule such as “an employee supervises other employees”. The supervises relationship is recursive; each instance of supervises will specify two employees, one of which is considered a supervisor and the other the supervised. In the following diagram the relationship symbol joins to the Employee entity type twice by two separate lines. Note the relationship is one-to-many: an employee may supervise many employees, and an employee may be supervised by at most one other employee.
 [image: image]Figure 7.24: Recursive relationship involving Employee twice With recursive relationships it is appropriate to name the roles each entity type plays. Suppose we have an instance of the relationship:
 John supervises Terry
 Then with respect to this instance, John is the supervisor employee and Terry is the supervised employee. We can show these two roles that entity types play in a relationship by placing labels on the relationship line:
 [image: image]Figure 7.25: Recursive relationship with role names This one-to-many supervises relationship can be visualized as a hierarchy. In the following we show five instances of the relationship: John supervises Lee, John supervises Peter, Peter supervises Don, Peter supervises Mary, and John supervises Noel.
 [image: image] Figure 7.26: The supervising hierarchy In the above example note the participation constraint at both ends of supervises is optional. This must be the case because some employee will not be supervised, and, for some employees there are no employees they supervise.
 Generally recursive relationships are difficult to master. Some other situations where recursive relationships can be used:
 			A person marries another person
 	A person is the parent of a person
 	A team plays against another team
 	An organizational unit reports to another organizational unit
 	A part is composed of other parts.

	

			

			

		
	
		
			
	
		

		7.4.5: Identifying Relationships

								

	
				 When entity types were first introduced, we discussed an example where a department offers courses and that a course must exist in the context of a department. In that case the Course entity type is considered a weak entity type as it is existence-dependent on Department. It is typical in such situations that the key of the strong entity type is used in the identification scheme for the weak entity type. For example, courses could be identified as MATH-123 or PHYS-329, or as Mathematics-123 or Physics-329. In order to convey the composite identification scheme for a weak entity type we specify the relationship as an identifying relationship which is visualized using a double-lined diamond symbol:

 [image:]
 Additionally, in situations where we have an identifying relationship we usually have:
 			a weak entity type with a partial key
 	a weak entity type that must participate in the relationship (total participation) and so the ERD for our hypothetical educational institution could be:

 [image: image]Figure 7.27: An identifying relationship Note the keys for the strong entity type appear only at the strong entity type. The identifying relationship tells one that a department key will be needed to complete the identification of a course.

 Exercises
 1) Consider a company that owns and operates parking lots. Draw an ERD to include the following specifications. Each parking lot has a unique address (use the typical fields for addresses) and each parking lot has a certain number, say n, of parking spaces. Each space in a lot has a number between 1 and n. The cost of renting a parking space is the same for all spaces in a lot. The company rents individual spaces out to its customers. Each customer is identified by a driver’s license id, has a first and last name. Each customer will identify possibly several cars that they will park in the space rented to them. For each car the company needs to know the year, make, model, colour and its license plate number.

 2) Modify your model from the previous question to allow for scrambled parking. By this we mean that a customer is rented a space in a lot, but the customer may park in any available space.

 3) Draw an ERD involving employees and their dependents where each employee has a unique id number and where dependents of the same employee are numbered starting at 1. It may be rare, but we will allow for dependents of the same employee to have the same name and birthdates. Include typical attributes for an employee, and for a dependent include the birthdate, first and last names.

 4)Draw an ERD for marriages between two people. For persons include birthdate, first name, last name, and a unique person id. Consider marriage to be a relationship between two people and suppose we want our model to allow for people to have more than one marriage. Use the date of the marriage as a discriminator.

 5) Consider marriages again but now let marriage be an entity type. Suppose when people marry there is a marriage certificate that is granted by a government authority. Include attributes applicable to a marriage.

 6) Suppose we are modeling marriage as a relationship between two people. When, or under what circumstances, can we model this as a one-to-one relationship?

 7) Draw an ERD that allows for marriages between possibly more than two people.

 8) Consider the one-to-one operates relationship in this chapter. Modify the example so that drivers have attributes: driver license, name (which comprises first name and last name), and vehicles have attributes: license plate number, VIN, year, colour, make and model. Note that VIN stands for vehicle identification number and this is unique for each vehicle. Assume that each driver must be assigned to a vehicle.

 9) Consider the enroll in relationship used in this chapter. Suppose we must allow for a student to repeat a course to improve their grade. Develop an ERD and include typical attributes for student, course, etc. We need to keep a complete history of all course attempts by students.

 10) What problems arise if one makes the supervises relationship mandatory for either the supervising employee or the employee who is supervised?

 11) Consider requirements for teams, players and games, and develop a suitable ERD. Each team would have a unique name, have a non-player who is the coach, and have several players. Each player has a first and last name and is identified by a number (1, 2, 3, etc.). One player is designated the captain of the team. Assume a game occurs on some date and time and is played by two teams where one team is called the home team and the other team is called the visiting team. At the end of the game the score must be recorded.

 12) Modify your ERD for the above to accommodate a specific sport such as curling, baseball, etc.

 13) Consider an ERD for modelling customers, phones, and phone calls. Each customer owns one phone and so the phone number identifies the customer. Include other attributes such as credit card number, first name, and last name for a customer. We must record information for each phone call that is made: for each call there is a start time, end time, and of course the phone number/customers involved.

 14) Create an ERD suitable for a database that will keep genealogy data. Suppose there is one entity type Person and you must model the two relationships: marries and child of.

 15) Develop an ERD to support home real estate sales. Consider there are several sales employees who list and sell properties. For each employee we need to know their name (first and last), the date they started working for this company, and the number of years they have been with the company. Each property has owners (one or more people) and may have certain features such as number of baths, number of levels, number of bedrooms. For each owner we must keep track of their names (first and last). Each property has an address; each address has the usual attributes: street (comprising apartment number, street number, street name), city, province, and postal code. A home is listed at a certain price and sold at possibly a different price. Of course, we need to track the names of the buyers, the date of a listing and the date of a sale.

 16) Develop an ERD to keep track of information for an educational institution. Assume each course is taught by one instructor, and an instructor could teach several courses. For each instructor suppose we have a unique identifier, a first name, a last name, and a gender. Each course belongs to exactly one department. Within a department courses are identified by a course number. Departments are identified by a department code.

 17) Develop an ERD to allow us to keep information on a survey. Suppose a survey will have several questions that can be answered true or false. Over a period of time the survey is conducted and there will be several responses.

 18) Modify the ERD above to allow for surveys that have multiple choice answers.

 19) Develop an ERD to support the management of credit cards. Each credit card has a unique number and has a customer associated with it. A customer may have several credit cards. The customer has a first name, last name, and an address. Each time a customer uses a credit card we must record the time, the date, the vendor, and the amount of money involved.

 20) Modify the ERD for the above to accommodate the monthly billing of customers. Each month a customer receives a statement detailing the activity that month.

 21) Develop an ERD to be used by a company to manage the orders it receives from its customers. Each customer is identified uniquely by a customer id; include the first name, last name, and address for each customer. The company has several products that it stocks and for which customers place orders. Each product has a unique id, unique name, unit price, and a quantity on hand. At any time, a customer may place an order which will involve possibly many products. For each product ordered the database must know the quantity ordered and the unit price at that point in time. If the customer does this through a phone call, then an employee is involved in the call and will be responsible for the order from the company side. Some orders are placed via the internet. For each order an order number is generated. For each order the database must keep track of the order number, the date the order was placed and the date by which the customer needs to receive the goods.

	

			

			

		
	
		
			
	
		

		8. MAPPING AN ERD TO A RELATIONAL DATABASE

	

	
		We use an Entity Relationship Diagram to represent the informational needs of a system. When we are convinced it is satisfactory, we map the ERD to a relational database and implement as a physical database.
 In general, relations are used to hold entity sets and to hold relationship sets. The considerations to be made are listed below. After we present the mapping rules, we illustrate their application in a few examples.

	

		

		
	
		
			
	
		

		8.1: Mapping Rules

								

	
				 To complete the mapping from an ERD to relations we must consider the entity types, relationship types, and attributes that are specified for the model.

	

			

			

		
	
		
			
	
		

		8.1.1: Entity Types

								

	
				 Each entity type is implemented with a separate relation. Entity types are either strong entity types or weak entity types.
 	Strong Entities 	Strong, or regular, entity types are mapped to their own relation. The PK is chosen from the set of keys available.

 	Weak Entities 	Weak entity types are mapped to their own relation, but the primary key of the relation is formed as follows. If there are any identifying relationships, then the PK of the weak entity is the combination of the PKs of entities related through identifying relationships and the discriminator of the weak entity type; otherwise, the PK of the relation is the PK of the weak entity.

	

			

			

		
	
		
			
	
		

		8.1.2: Relationship Types

								

	
				 The implementation of relationships involves foreign keys. Recall, as discussed under Weak Entities (previous page), that if the relationship is identifying, then the primary key of an entity type must be propagated to the relation for a weak entity type. We must consider both the degree and the cardinality of the relationship. The first three bullet-points deal with binary relationships and the last bullet-point concerns n-ary relationships.
 	Binary One-To-One 		In general, with a one-to-one relationship, a designer has a choice regarding where to implement the relationship. One may choose to place a foreign key in one of the two relations, or in both. Consider placing the foreign key such that nulls are minimized. If there are attributes on the relationship those can be placed in either relation.

 	Binary One-To-Many 		With a one-to-many relationship the designer must place a foreign key in the relation corresponding to the ‘many’ side of the relationship. Any other attributes defined for the relationship are also included on the ‘many’ side.

 	Binary Many-To-Many 		A many-to-many relationship must be implemented with a separate relation for the relationship. This new relation will have a composite primary key comprising the primary keys of the participating entity types and any discriminator attribute, plus other attributes of the relationship if any.

 	n-ary, n>2 		A new relation is generated for an n-ary relationship. This new relation has a composite primary key comprising the n primary keys of the participating entity types and any discriminator attribute, plus any other attributes. There is one exception to the formation of the PK: if the cardinality related for any entity type is 1, then the primary key of that entity type is only included as a foreign key and not as part of the primary key of the new relation.

	

			

			

		
	
		
			
	
		

		8.1.3: Attributes

								

	
				 All attributes, with the exception of derived and composite attributes, must appear in relations. In the following we consider attributes according to whether they are simple, atomic, multi-valued, derived, or composite.
 	Simple, atomic 		These are included in the relation created for the pertinent entity type, many-to- many relationship, or n-ary relationship.

 	 Multi-valued 		Each multi-valued attribute is implemented using a new relation. This relation will include the primary key of the entity type. The primary key of the new relation will be the primary key of the entity type plus the multi-valued attribute. Note that in this new relation, the attribute is no longer multi-valued.

 	 Derived 		Derived attributes are not included. However, a database designer could choose to include derived attributes if their presence would improve performance.

 	Composite attributes: only attributes at the lowest levels of a composite hierarchy will appear in relations, according to whether they are simple/atomic, derived, or multivalued. Attributes above the lowest levels are not included in a relation.

 The above constitutes the standard rules for mapping an ERD to relations. A designer may make other choices, but one expects there would be good reasons for doing so.

	

			

			

		
	
		
			
	
		

		8.2: Examples

								

	
				 Example 1
 Consider the ERD:
 [image: image]

 The mapping rules lead to the relations:
 [image: image]
 Notes:
 	The Member relation does not have a composite attribute name.
 	Since Borrows is a many-to-many relationship the Borrow relation is defined with a composite primary key {memberId, bookId, dateTimeBorrowed}.
 	memberId in the Borrow relation is a foreign key referencing Member.
 	bookId in the Borrow relation is a foreign key referencing Book.

 Example 2
 Consider the ERD:
 [image: image]
 The mapping rules lead to the relation:
 [image: image]
 Notes:
 	The attribute supervisor is a foreign key referencing Employee.
 	A foreign key is placed on the ‘many’ side of a relationship and so in this case the foreign key references the employee who is the supervisor (the role name on the ‘one’ side); hence the name supervisor was chosen as the attribute name.

 Example 3
 Consider the ERD:
 [image: image]
 The mapping rules lead to the relations.
 [image: image]
 Notes:
 			deptCode was chosen as the primary key of Department.
 	deptName is a key and so a unique index can be defined to ensure uniqueness.
 	Since Course is a weak entity type and is involved in an identifying relationship, the primary key of Course is composite comprising {deptCode, courseNo}.
 	deptCode in Course is a foreign key referencing Department.

 Exercises
 1) Map the ERD to relations.
 [image: image]

 2) Map the ERD to relations.
 [image: image]

 3) Map the ERD to relations.
 [image: image]

	

			

			

		
	
		
			
	
		

		9. DATA DEFINITION LANGUAGE (DDL)

	

	
		Many of the tools available for constructing ERDs are capable of generating data definition language commands that are used for creating tables, indexes, and relationships. You can find many references easily to DDL. For instance, if you are interested try http://en.wikipedia.org/wiki/Data_Definition_Language, or enter the phrase Data Definition Language in your favourite search engine.

	

		

		
	
		
			
	
		

		9.1: Running DDL in MS Access

								

	
				 Most database systems provide a way for you to run data definition language commands. When such facility exists, it can be relatively easy to create and re-create databases from a file of DDL commands. One way to run DDL commands in MS Access is through a query that is in SQL View. To run a DDL command we follow these two steps:
 			Open a database and choose to create a query, but do not add any tables to the query
 	Then, choose SQL View and you will be able to type a DDL command or paste one in:

 [image: image] Figure 9.1: Choose SQL view for the query

	

			

			

		
	
		
			
	
		

		9.2: Example

								

	
				 In this chapter we will create the tables for a Library database using DDL. Suppose we require the three tables: Book, Patron, Borrow:
 [image: image] Figure 9.2: Sample database to create The above diagram (produced from the Relationships Tool) represents the database we wish to create but where we will do so using DDL commands.

	

			

			

		
	
		
			
	
		

		9.2.1: DDL Commands

								

	
				 We will illustrate three DDL commands (create table, alter table, create index) as we create the library database.

 [image: image] Figure 9.3: Data Definition Commands In some database environments we can run more than one command at a time; the commands would be in a file and would be submitted as a batch to be executed. In the following we will demonstrate and run one command at a time.

	

			

			

		
	
		
			
	
		

		9.2.2: Creating the Database

								

	
				 Example 1
 Consider the following create table command which is used to create a table named Book. The table has two fields: callNo and title.
 			CREATE TABLE Book
 	(
 	callNo Text(50), titleText(100)
);

 The command begins with the keywords CREATE TABLE. It’s usual for keywords in DDL to be written in upper case, but it’s not required to do so. The command is just text that is parsed and executed by a command processor. If humans are expected to read the DDL then the command is typically written on several lines as shown, one part per line.

 Example 2
 Now consider the following Create Table command which creates a table and establishes an attribute as the primary key:
 			CREATE TABLE Patron
 	(
 	patronIdCounterPRIMARY KEY, lastNameText(50),
 	firstNameText(50)
);

 The primary key of Patron is the patronId field. Notice the data type is shown as Counter. After running this command, you will be able to see that the Counter data type is transformed to AutoNumber.

 Example 3
 Our last example of the create table command is one that creates a table, sets its primary key, and creates a foreign key reference to another table:
 			CREATE TABLE Borrow
 	(
 	patronIdInteger,
 	callNoText(50),
 	dateDueDATETIME,
 	returnedYESNO,
 	PRIMARY KEY (patronId, callNo, dateDue),
 	FOREIGN KEY (patronId) REFERENCES Patron
);

 There are several things to notice in the above command:
 			The primary key is composite and so it is defined in a separate PRIMARY KEY clause.
 	The data type of patron id must match the data type used in the Patron table and so the data type is defined as Integer.
 	The dateDue field will hold a due date and so its data type is defined as DATETIME.
 	The returned field will hold a value to indicate whether a book has been returned or not, and so its data type is defined as YESNO.
 	A row in the Borrow table must refer to an existing row in Patron and so we establish a relationship between Borrow and Patron using the FOREIGN KEY clause. After running this create table command you can see the relationship in Access by opening the Relationships Tool.

 Example 4
 The Book table was created previously but there is no specification for a primary key. To add a primary key, we use the alter table command as shown below.
 			ALTER TABLE Book
 	ADD PRIMARY KEY (callNo);

 Example 5
 Now that Book has a primary key, we can define the relationship that should exist between Borrow and Book. To do so we use the alter table command again:
 			ALTER TABLE Borrow
 	ADD FOREIGN KEY (callNo)
 	REFERENCES Book (callNo) ;

 Example 6
 Notice that the Patron table does not have a gender attribute. To add this, we can use the alter table command:
 			ALTER TABLE Patron ADD
 	COLUMN gender Text(6) ;

 Example 7
 For performance reasons we can add indexes to a table. DDL provides create index and drop index commands for managing these structures. To create an index for Patron on the combination last name and first name, we can execute:
 			CREATE INDEX PatronNameIndex ON Patron (LastName, FirstName);

 Example 8
 To remove the above index we need to identify the index by name:
 			DROP INDEX PatronNameIndex;

 Example 9
 To remove a table we use the drop table command.
 			DROP TABLE Person;

 Exercises
 1) The effect of executing the commands in the first 6 examples can be accomplished by 3 create table commands. Example 9 shows a drop table command; use similar drop commands to delete all the tables you created in exercises 1 and 2. Now, write 3 create table commands that have the same effect as examples 1 through 6. After running the DDL statements open the relationships tool to verify your commands created the 3 tables and the 2 relationships.

 2) Example 7 creates an index. Run this command in your database and then verify the index has been created. You can view index information: put the table in Design View and then click the Indexes icon:
 [image: image]Notice that the (primary) index has a name that was generated by MS Access.
 3) Consider an ERD from the previous chapter. Write the DDL that could create the required relations.

	

			

			

		
	
		
			
	
		

		10. NORMALIZATION

	

	
		The theory of normal forms is concerned with the structure of relations in a relational database. There are several normal forms of which 1NF, 2NF, 3NF and BCNF are the most important for practical OLTP database design. OLTP stands for online transaction processing – OLTP systems are used to run the day-to-day events of a business.
 Normalization theory gives us a theoretical basis to judge the quality of a database and helps one understand the impact of some design decisions. In practice Entity Relationship Modelling is the primary technique used for designing databases, and experienced practitioners will typically develop BCNF relations as a result. Normalization can be applied by the practitioner to understand better the semantics behind some relations and possibly make some design modifications.
 1NF, 2NF, 3NF and BCNF are acronyms for first, second, third, and Boyce-Codd normal forms. There is a sequence to normal forms: 1NF is considered the weakest, 2NF is stronger than 1NF, 3NF is stronger than 2NF, and BCNF is considered the strongest of these four normal forms. Also, any relation that is in BCNF, is in 3NF; any relation in 3NF is in 2NF; and any relation in 2NF is in 1NF. This correspondence can be shown as:
 [image:]
 BCNF relations are in 3NF
 3NF relations are in 2NF
 2NF relations are in 1NF

 Transactions are units of work designed to meet the goals of users. For instance, in a banking environment we would expect to find a deposit transaction, a withdrawal transaction, a transfer transaction, and a balance lookup transaction. A unit of work is a collection of database operations that are executed in their entirety or not at all. For example, if you are transferring money from one account to another it’s important for the integrity of accounts that the transfer be completely done, and never partly done. If a transfer transaction is partly done (say, because of a system failure) then accounts would be out of balance. A database environment has capabilities to back out partly executed transactions so the system can be back where it was prior to a failed transfer transaction.
 A banking system could have thousands of users and we expect transactions such as these to be correctly and efficiently executed. A normalized database is such that every relation is in at least 1NF, and preferably BCNF. Normalized databases lead to the most efficient designs for these types of transactions.
 Normalization is a process that replaces a relation with other relations of a higher normal form. The process involves decomposing a relation into other relations in such a way as to preserve the original information and reduce redundancy of data. Reducing redundant data increases the number of relations but makes the data easier to maintain. Later we give examples of decomposition. We say normalization is a process that improves a database design. The objective of normalization is sometimes stated: to create relations where every dependency is on the key, the whole key, and nothing but the key[1]. A relation that is fully normalized is about a single concept such as a student entity type, a course entity type, and so on.
 De-normalization is a process that changes relations from higher to lower normal forms, and hence generates redundant data in the tuples (rows/records) of a relation (table). If deemed necessary, this would be done to improve the performance (reduce the cost) of retrieving information from the database. The cost of querying de-normalized relations is generally less because fewer joins are required.
 We consider higher normal forms to be better because the update semantics for data are simplified. By this we mean that applications required to maintain the database are simpler to code and so they are easier to maintain. In the following we discuss:
 			Functional Dependencies
 	Update Anomalies
 	Partial Dependencies
 	Transitive Dependencies
 	Normal Forms

 [1] Kent, William. “A Simple Guide to Five Normal Forms in Relational Database Theory”, Communications of the ACM 26 (2), Feb. 1983, pp. 120–125.

	

		

		
	
		
			
	
		

		10.1: Functional Dependencies

								

	
				 To understand normalization theory (first, second, third and Boyce-Codd normal forms), we must understand what is meant by the term functional dependency. There is another type of dependency called a multi-valued dependency but that is important to the understanding of higher normal forms not covered in this text.
 A functional dependency is an association between two attributes. We say there is a functional dependency from attribute A to an attribute B if and only if for each value of A there can be at most one value for B. We can illustrate this by writing:
 			A functional determines B, or
 	B is functionally determined by A, or
 	by a drawing such as: [image:]

 When we have a functional dependency from A to B, we refer to attribute A as the determinant.

 EXAMPLE 1.
 Consider a company collects information about each employee such as the employee’s identification number (ID), their first name, last name, salary and gender. As is typical, each employee is given a unique ID which serves to identify the employee. Hence for each value of ID there is at most one value for first name, last name, salary and gender.
 Therefore, we have four functional dependencies where ID is the determinant; we can show this as a list or graphically:

 [image: image]
 If you think about this case, there cannot be any other FDs. For example, consider the gender attribute – we need to allow for more than one employee for a given gender, and so we cannot have a situation where gender functionally determines ID. So, gender  ID cannot exist. Now consider the first name attribute. Again, we need to allow for more than one employee to have the same first name and so first name cannot determine anything. Similarly, for other attributes.

 EXAMPLE 2.
 Recall the Department and Course tables introduced in Chapter 2 – sample data is shown below:
 	deptCode
 	deptName
 	deptLocn
 	deptPhone
 	chairName

 	MATH
 	Mathematics
 	2R33
 	786-0033
 	Peter Smith

 	HIST
 	History
 	3D07
 	786-0300
 	Simon Lee

 	IS
 	Indigenous Studies
 	3C11
 	786-3322
 	Leslie Roman

 	MENN
 	Mennonite Studies
 	3C11
 	786-3322
 	Leslie Roman

 	BIOL
 	Biology
 	2L88
 	786-9843
 	James Dunn

 	 	 	 	 	

 	deptCo de
 	courseN o
 	title
 	description
 	creditHou rs

 	HIST
 	1010
 	Introduction to History
 	Within a relatively small lecture/seminar setting, this course introduces you to the ways in which people try to understand their present by studying their past.
 	6

 	IS
 	1010
 	Indigenous Ways of Knowing
 	This course offers an introduction to Indigenous ways of knowing through active participation in strategies that facilitate the production of Aboriginal knowledge and through comparisons with Euro-American ways of knowing.
 	3

 	MENN
 	1010
 	Mennonites and the Modern World
 	This course is a history of the ethnic identity and religious faith of the Mennonites from the sixteenth century to the present.
 	6

 	IS
 	1201
 	Introductory Ojibwe
 	This course is intended for students who are not fluent in Ojibwe and have never taken a course in the language
 	6

 	BIOL
 	2401
 	Forest Field Skills Camp
 	This intensive two-week field course is mandatory for students in the Forest Ecology program and is designed to give students field survival and basic forestry skills.
 	1

 Recall the primary keys (underlined above) of these two tables:
 	Table
 	PK

 	Department
 	deptCode

 	Course
 	deptCode, courseNo

 Consider the Department table where deptCode is the primary key. For each value of deptCode there is at most one value for deptName, deptLocn, deptPhone, and chairName. You should agree the following FDs exist:
 			deptCode –> deptName
 	deptCode –> deptLocn
 	deptCode –> deptPhone
 	deptCode –> chairName

 Each row of the Course table has one value for title, one value for description, and one value for credit hours. The primary key of Course consists of two attributes, deptCode and courseNo. The following FDs exist for the Course table:
 			deptCode, courseNo –> title
 	deptCode, courseNo –> description
 	deptCode, courseNo –> credit hours

 In this case we have a determinant comprising two attributes; the determinant is composite.

 We can draw the functional dependencies as:
 [image: image]
 Could there be other functional dependencies in this situation?
 These examples demonstrate that there is a FD from the primary key to each of the other attributes in a table.

 EXAMPLE 3.
 The following ERD is shown in the Chen notation. There is one entity type named Employee that has 4 attributes. In this design there are two keys (id and sin) and two descriptive attributes (firstName and lastName):

 [image: image]
 Each symbol in an ERD contains information about a model. From the above we know there are two keys, id and sin. An id value, or a sin value, will uniquely identify an employee and so we have the six FDs:

 [image: image]
 This example shows that an ERD carries information that can be expressed in terms of FDs.

 Exercises
 1) Consider the Product table below where productID is the PK. What FDs must exist in this table:
 	productID
 	description
 	unit price
 	quantity on
 hand

 	33
 	16 oz. can tomato soup
 	1.00
 	50

 	41
 	454 grams box corn
 flakes
 	4.50
 	39

 	45
 	Package red licorice
 	1.00
 	39

 	46
 	Package black licorice
 	1.00
 	50

 	47
 	1 litre 1% milk
 	1.99
 	25

 2) Consider the ERD where the entity type Employee has one key attribute, id, and the entity type Position has one key attribute, title. As well the ERD shows a one-to-many relationship assigned to which can be expressed as:
 	An employee is assigned to at most one position. A position can be assigned to many employees.

 [image: image]
 	List the FDs that must be present.

 3) Consider the ERD below which is similar to the above, but where the assigned to relationship is many-to-many, and where assigned to has an attribute startDate. List the FDs that are present.
 [image: image]

 4) Consider the ERD below where Department has two keys deptCode and deptName – each department has a unique department code and has a unique department name. Course is a weak entity type with a partial key courseNo, and where offers is an identifying relationship.
 [image: image]
 	List the FDs that must exist.

 5) Consider the table T with attributes A, B and C.
 	A
 	B
 	C

 	1
 	33
 	100

 	2
 	33
 	200

 	3
 	22
 	200

 	1
 	33
 	101

 	2
 	33
 	350

 	4
 	67
 	350

 	5
 	67
 	101

 6) Suppose there are many more rows that are not shown:
 	Is there a functional dependency from B to A? Explain your answer.
 	The rows that are shown suggest there could be a functional dependency A –> B. Compose a database query that would indicate counter examples, if they exist, for the functional dependency A –> B. Such a query would list values of A in the table where two or more rows have the same value for A but different values for B.

	

			

			

		
	
		
			
	
		

		10.1.1: Keys and Non-Keys

								

	
				 Before going further, we need to be clear regarding the concept of key. We define the key of a relation to be any minimal set of attributes that uniquely identify tuples in the relation. We say minimal to eliminate trivial cases. Consider: if attribute k is a key and uniquely identifies a tuple then any combination of attributes that include k must also uniquely identify tuples. So, we restrict keys to be minimal sets of attributes that retain
 the property of unique identification. Further, we define candidate keys to be the collection of keys for a relation; a database designer must choose one of the candidate keys to be the primary key.
 Additionally, we define key attributes to be those attributes that are part of a key, and
 non-key attributes are those attributes that are not part of any key.

	

			

			

		
	
		
			
	
		

		10.1.2: Anomalies

								

	
				 An anomaly is a variation that differs in some way from what is considered normal. With
 regards to maintaining a database, we consider the actions that must occur when data is updated, inserted, or deleted. In database applications where these update, insert, and/or delete operations are common (e.g. OLTP databases), it is desirable for these operations to be as simple and efficient as possible.
 When relations are not fully normalized, they exhibit update anomalies because basic operations are not as simple as possible. When relations are not fully normalized, some aspect of the relation will be awkward to maintain.
 Consider the relation structure and sample data:
 	deptNum
 	courseNum
 	studNum
 	grade
 	studName

 	92
 	101
 	3344
 	A
 	Joe

 	92
 	115
 	7654
 	A
 	Brenda

 	81
 	101
 	7654
 	C
 	Brenda

 	92
 	226
 	3344
 	B
 	Joe

 This relation is used for keeping track of student enrollments, the grade assigned, and (oddly) the student’s name.
 What must happen if a student’s name were to change? We should want our databases to have correct information, and so the name may need to be changed in several records, not just one. This is an example of an update anomaly – the simple change of a student’s name affects, not just one record, but potentially several in the database. The update operation is more complex than necessary, and this means it is more expensive to do, resulting in slower performance. When operations become more complex than necessary, there is also a chance the operation is programmed incorrectly resulting in corrupted data — another unfortunate consequence.
 Consider the Course and Department tables again, but now consider that they are combined into a single table. Obviously, this is a table with a considerable redundancy – for each course in the same department, the department location, phone, and chair must be repeated.
 [image: image]

 The primary key of such a table must be {deptCode, courseNo}. Consider for the following, however unlikely the situation seems, that the Deparment_Course table is the only table where department information is kept. Note that our point here is only to show, for a simple example, how redundancy leads to difficult semantics for database operations.
 Insert anomaly
 Suppose the university added a new department but there are no courses for that department yet. How can a row be added to the above table? Since no part of a primary key can be null, we cannot insert a row for a new department because we do not have a value for courseNo. This is an example of an insertion anomaly.
 Delete anomaly
 Suppose some department is undergoing a major reorganization. All courses are to be removed and later some new courses will be added. If we delete all courses, then we lose all the information in the database for that department.
 The previous discussion concerning anomalies highlights some of the data management issues that arise when a relation is not fully normalized. Another way of describing the general problem here, as far as updating a database is concerned, is that redundant data makes it more complicated for us to keep the data consistent.

	

			

			

		
	
		
			
	
		

		10.1.3: Partial Functional Dependencies

								

	
				 Consider a relation with department number, department chair name, course number and course title attributes. The combination {department number, course number} must be a key. The directed lines depict the FDs that are present:
 [image: image]
 Note the functional dependency of chair name on department number. If two or more rows in the relation have the same value for department number, they must have the same value for chair name. We say this redundancy is due to the FD of chair name on department number. Because chair name is a non-key attribute and is dependent on department number, a subset of a key, we call this dependency a partial dependency.
 In general, if we have a composite key {A, B} and the dependencies below:
 [image: image]we say that C is partially dependent on {A, B}.

 Exercises
 1) Suppose each delivery of a course is called a section. In any one term suppose a course may have multiple sections and each section is assigned an instructor. Each course has a course title. Consider a Section relation where the PK is {dept number, course number, section number}. What FDs exist? Is there a partial dependency?
 	deptNo
 	courseNo
 	sectionNo
 	instructor
 	title

 	91
 	1906
 	001
 	J. Smith
 	Java I

 	91
 	1906
 	002
 	D. Grand
 	Java I

 	91
 	1910
 	001
 	J. Smith
 	Java II

 	91
 	1910
 	002
 	J. Daniels
 	Java II

 	53
 	1906
 	001
 	S. Farrell
 	History of the World

 	…
 	…
 	…
 	…
 	…

 2) Consider a relation with attributes X, Y, Z, W where the only CK is {X,Y}, and where the FDs are {X,Y} –> Z, {X,Y} –> W, and Y –> W. Is there a partial dependency?

	

			

			

		
	
		
			
	
		

		10.1.4: Transitive Functional Dependencies

								

	
				 Consider a relation that describes a couple of concepts, say instructor and department, and where the building shown is the building where the department is located, and the attribute instructor number is the only key:
 	instructor
 number
 	instructor
 name
 	office
 	department
 code
 	building

 	33
 	Joe
 	3D15
 	B&A
 	Buhler

 	44
 	Joe
 	3D16
 	ACS
 	Duckworth

 	45
 	April
 	3D17
 	ACS
 	Duckworth

 	50
 	Susan
 	3D17
 	ACS
 	Duckworth

 	21
 	Peter
 	3D18
 	B&A
 	Buhler

 	22
 	Peter
 	3D18
 	MATH
 	Duckworth

 As instructor number is the only key, we have the following FDs:
 [image: image]

 Suppose we also have the FD: department code determines building. Now our FD diagram becomes:
 [image: image]
 and we say the FD from instructor number to building is transitive via department code.

 In general, if we have a relation with key A and functional dependencies:
 A –> B and B –> C, then we say attribute A transitively determines attribute C.
 [image: image]Figure 10.9: Non-key attributes and a transitive dependency Note: B and C above are non-key attributes. If we also had the functional dependency B –> A (and so A and B are candidate keys) then A does not transitively determine C.

 Exercises
 1) Consider a relation that describes an employee including the province where the employee was born. Suppose the only key is employeeId and we have the attributes: name, birthDate, birthProvince, currentPopulation.
 	employeeId
 	name
 	birthDate
 	birthProvince
 	currentPopulation

 	123
 	Joe
 	Jan 1, 1990
 	MB
 	1,200,000

 	222
 	Jennifer
 	Jan 5, 1988
 	SK
 	1,450,000

 	345
 	Jimmy
 	Feb 5,
 1987
 	MB
 	1,200,000

 	…
 	…
 	…
 	…
 	…

 	What FDs would exist? Is there a transitive dependency?

 2) Consider a relation with attributes X, Y, Z, W where the only CK is X, and the FDs are X –> Y, X –> Z, X –> W and Y –> Z. Is there a transitive dependency?

	

			

			

		
	
		
			
	
		

		10.2: Normal Forms

								

	
				 The normal forms usually of interest to the database designer are 1NF, 2NF, 3NF and BCNF. There are more (higher) normal forms that we leave to follow-up courses. We discuss 1NF and BCNF; 2NF and 3NF are mentioned in our summary. 1NF is so important, it is actually a property of a relation; that is, to say something is a relation means that it is at least in 1NF. BCNF has a simple definition (compared to 2NF and 3NF) and is the usual objective of the designer.
 If you understand 1NF and BCNF then you have good insight into the nature of relations that are easy to understand and maintain. If you understand why a relation is not BCNF then you will know the source of its redundant data, which is necessary to know how to properly maintain the data contained in the relation. In most practical cases when a relation is not BCNF the reason will be related to partial or transitive dependencies. 2NF relations do not have partial dependencies, and 3NF relations do not have partial nor transitive dependencies.

	

			

			

		
	
		
			
	
		

		10.2.1: First Normal Form(1NF)

								

	
				 We say a relation is in 1NF if all values stored in the relation are single-valued and atomic. With this rule, we are simplifying the structure of a relation and the kinds of values that are stored in the relation.
 EXAMPLE 1.
 Consider the following EmployeeDegrees relation:
 			empNo is the PK
 	each employee has one first name and one salary
 	each employee has zero or more university degrees … stored as a single attribute

 	empNo
 	first name
 	salary
 	degrees

 	111
 	Joe
 	29,000
 	BSc, MSc

 	200
 	April
 	41,000
 	BA, MA

 	205
 	Peter
 	33,000
 	BEng

 	210
 	Joe
 	20,000
 	

 This relation is not in 1NF because the degrees attribute can have multiple values. Below are two relations formed by splitting EmployeeDegrees into two relations – one relation has attributes empNo, first name, and salary and the other has empNo and degree. We say we have decomposed EmployeeDegrees into two relations and we have populated each with data from EmployeeDegrees. Each of these is in 1NF, and if we join them on empNo, we can get back the information shown in the relation above.
 [image: image]
 EXAMPLE 2.
 Consider the Student relation below. The name attribute comprises both first and last names, and so it’s not atomic. Student is not in 1NF:
 	studentNo
 	name
 	gender

 	444
 	Jim Smith
 	m

 	254
 	Donna Jones
 	f

 	333
 	Peter
 Thomas
 	m

 	765
 	Jim Smith
 	m

 If we modify Student so there are two attributes (say, first and last) then Student would be in 1NF:
 	studentNo
 	first
 	last
 	gender

 	444
 	Jim
 	Smith
 	m

 	254
 	Donna
 	Jones
 	f

 	333
 	Peter
 	Thomas
 	m

 	765
 	Jim
 	Smith
 	m

 If we can say that a relation (or table) is in 1NF then we are saying that every attribute is atomic, and every value is single-valued. This simplifies the form of a relation.
 It is very common for names to be separated out into two or more attributes. However, attributes such as birth dates, hire dates, etc. are usually left as a single attribute. Dates could be separated out into day, month, and year attributes, but that is usually beyond the needs of the intended system. Some would take the view that separating a date into 3 separate attributes is carrying the concept of normalization a little too far. Database systems have convenient functions that can be used to obtain a day, month, or year values from a date.

 Exercises
 1) Consider the relation below that holds information about courses and sections. Suppose departments have courses and offer these courses during the terms of an academic year. A section has a section number, is offered in a specific term (e.g. Fall 2016, Winter 2017) and is assigned a slot (e.g. 1, 2, 3, …15) for the term. Each time a course is delivered there is a section for that purpose. Each section of a course has a different number. As you can see a course may be delivered many times in one term. The delivery attribute is multi-valued and is composite.
 	deptNo
 	courseNo
 	delivery

 	ACS
 	1903
 	001, Fall 2016, 05;
 002, Fall 2016, 06;
 003, Winter 2017,
 06

 	ACS
 	1904
 	001, Fall 2016, 12;
 002, Winter 2017,
 12

 	Math
 	2201
 	001, Fall 2016, 11;
 050, Fall 2016, 15

 	Math
 	2202
 	050, Fall 2016, 15

 	Modify CourseDelivery to be in 1NF. Show the contents of the rows for the above data.

 2) Chapter 8 covered mapping an ERD to a relational database. Consider the examples from Chapter 8; are the relations in 1NF?

	

			

			

		
	
		
			
	
		

		10.2.2: Boyce-Codd Normal Form (BCNF)

								

	
				 Initial research into normal forms led to 1NF, 2NF, and 3NF, but later1 it was realized that these were not strong enough. This realization led to BCNF which is defined very simply:
 A relation R is in BCNF if R is in 1NF and every determinant of a non-trivial functional dependency in R is a candidate key.
 BCNF is the usual objective of the database designer; BCNF is based on the notions of candidate key (CK) and functional dependency (FD). When we investigate a relation to determine whether it is in BCNF or not, we must know what attributes or attribute combinations are CKs for the relation, and we must know the FDs that exist in the relation. Our knowledge of the semantics of a relation guides us in determining CKs and FDs.
 Recall that a CK is an attribute, or attribute combination, that uniquely identifies a row. Also, recall a CK is minimal – no attribute can be removed without losing the property of being a key.
 Recall that a FD X –> Y in a relation R means that for each row in the relation R that has the same value for X the value of Y must also be the same. Recall that when we consider a FD X –> Y we refer to the left-hand side, attribute X, as the determinant. We are concerned with minimal FDs – all attributes comprising the determinant are required for the FD property to hold. If X –> Y is a FD, then the determinant augmented with any other attribute is also a FD, but it would not be a minimal FD.
 We consider several examples. We keep the examples simple and to the point, each relation involves very few attributes. This is of course unrealistic – in practice relations usually have many attributes. However, the examples illustrate one point each, and more attributes in the relations may cloud the issues. Each example begins with a relation that is in 1NF.
 In general, when we determine the relation under consideration is not in BCNF we obtain BCNF relations by decomposing the relation into two or more relations that are in BCNF. In this process we say we take a projection of the original relation on a subset of its attributes and at the same time we eliminate any duplicate rows. An important property of the decomposition is that it must be lossless – the new relations will have attributes in common that can be used to join the new relations whereby we can realize the original relation. All rows of the original relation are obtained in the join, and no new or spurious rows are generated – we get back the original relation exactly.
 In Example 1 we have a ‘good’ relation, one that is in BCNF. Hence, no decomposition is required. We discuss the CDs and FDs for the relation thereby knowing it is in BCNF.
 Example 2 presents a relation that is not in BCNF. There is a type of redundancy present in its data. We illustrate how to decompose the relation into two relations that are each in BCNF. This example illustrates a type of dependency known as a partial functional dependency.
 Example 3 presents another relation that is not in BCNF. There is a type of redundancy present in its data. We illustrate how to decompose the relation into two relations that are each in BCNF. This example illustrates a type of dependency known as a transitive functional dependency.
 Our last example is a case where FDs involve overlapping candidate keys, and where FDs exist amongst attributes that make up CKs. There is a type of redundancy present which is not related to 2NF and 3NF. BCNF gives us a theoretical basis for recognizing the source of the redundant data.

 EXAMPLE 1.
 Consider the Employee relation below that depicts sample data for 5 employees. The semantics are quite simple: for each employee identified by a unique employee number we store the employee’s first name and last name.
 	id
 	first
 	last

 	1
 	Joe
 	Jones

 	2
 	Joe
 	Smith

 	3
 	Susan
 	Smith

 	4
 	Abigail
 	McDonald

 	5
 	Abigail
 	McDonald

 Candidate Keys.
 The hypothetical company that uses this relation identifies employees by an identification number that is assigned by the Human Resources Department, and they ensure each employee has a different id from every other employee. Clearly id is a candidate key.
 When an employee is hired they have a first and last name, and the company has no control over these names. As the sample data shows, more than one employee can have the same first name (id 1 and 2), can have the same last name (id 2 and 3), and can even have the same first and last names (id 4 and 5). So, id is the only candidate key for this relation.
 Functional Dependencies.
 Since each row/employee has a unique identifier, it is easy to see there are two FDs for this relation:
 			id –> first
 	id –> last

 There are no other FDs. For example, we cannot have first –> last. The sample data shows there can be many last names associated with any one first name.
 These two FDs are minimal as the determinant, id, cannot be reduced at all.
 BCNF?
 In this example we have one candidate key, id, and this attribute is the determinant in all FDs. Therefore, Employee relation is in BCNF; it is a ‘good’ relation.
 This relation has a ‘nice’ simple structure; there is one candidate key which is the determinant for every FD.

 EXAMPLE 2.
 Consider the following relation named Enrollment:
 	stuNum
 	courseId
 	birthdate

 	111
 	2914
 	Jan 1,
 1995

 	113
 	2914
 	Jan 1,
 1998

 	113
 	3902
 	Jan 1,
 1998

 	118
 	2222
 	Jan 1,
 1990

 	118
 	3902
 	Jan 1,
 1990

 	202
 	1805
 	Jan 1,
 2000

 The semantics of this relation are:
 			Each row represents an enrollment of a student in a course.
 	A student is identified by their student number.
 	A course is identified by a course identifier.
 	A student can only enroll in a course once. Hence the combinations {stuNum,courseId} are unique.
 	The birthdate column holds the date of birth for the student of that row. When the same student number appears in more than one row then the birthdate appears redundantly.
 	A course can have many students registered in it

 Candidate Keys.
 It should be clear that several rows may exist for any given student number, and several rows may exist for any given course number. Also, since we cannot control when someone is born there can be many rows for a value of birthdate. All this just means that no single attribute uniquely identifies a row and so no single attribute can be a CK. Any CKs for this relation must be composite – comprising more than one attribute. It should be fairly clear, given the semantics of the relation, the only attribute combination that is a CK is {stuNum, courseId}. For any given value of {stuNum, courseId} there can be at most one row.
 Functional Dependencies.
 This relation is quite simple in that there is just one FD: stuNum –> birthdate. If a specific student number appears in more than one row, the value stored for birthdate must be the same in all such rows.
 BCNF?
 Enrollment has one CK: {stuNum, courseId}, and has one FD (stuNum –> birthdate) where the determinant is not a candidate key. Therefore, Enrollment is not in BCNF.
 In this relation we have an attribute that does not describe the whole key – it describes a part of the key. In normalization theory the FD stuNum –> birthdate is called a partial functional dependency as its determinant is a subset of a candidate key.
 When you think of the Enrollment relation now, you should consider that it is about two very different things:
 			Enrollment presents enrollment information.
 	Enrollment presents information about students (their birthdates).

 Decomposition.
 We now consider how Enrollment can be replaced by two relations where the new relations are each in BCNF. Above we mentioned that Enrollment is about two very different things – what we need to do is arrange for two relations, one for each of these concerns.
 Consider the following two relations as a decomposition of the above, where we have placed information about enrollments in one relation and information about students in another relation. Note that these two relations have the stuNum attribute in common.
 [image: image]
 Enrollments and Students can be joined on stuNum to reproduce the exact information in Enrollment. Because we have not lost any information, and noting that the FD has been preserved, these two relations are equivalent to the one we started with.
 			Enrollments has one candidate key: {stuNum, courseId}, and no FDs. Therefore, Enrollments is in BCNF.
 	Students has one CK: stuNum, and has one FD: stuNum –> birthdate. Therefore, Students is in BCNF.

 EXAMPLE 3.
 Consider the following relation named Course.
 	courseId
 	teacherId
 	lastName

 	2914
 	11
 	Smith

 	3902
 	22
 	Jones

 	3913
 	11
 	Smith

 	4902
 	33
 	Jones

 	4906
 	11
 	Smith

 	4994
 	22
 	Jones

 The purpose of this relation is to record who is teaching courses. Note that a teacher’s id and last name may appear in several rows – this information is repeated for each course the teacher is teaching. For example, teacher 11 (Smith) is teaching 3 courses (2914, 3913, 4906) and so we see the same id and last name in three rows.
 The semantics of this relation are:
 			Each course is identified by a course identifier.
 	For each course there is one row.
 	Each teacher is identified by a teacher identifier.
 	Each course has one teacher, and so for each course one teacher Id is recorded.
 	A teacher may teach several courses.
 	A teacher’s last name must be the same in every row where the teacher’s Id appears. This point leads to redundant data in the relation.

 Candidate Keys.
 The semantics of the relation are that there is one row per course, and so a course id uniquely identifies a row; so, courseId is a candidate key. No other attribute or combination can be a candidate key for this relation.
 Functional Dependencies.
 It is stated there is one teacher per course and so for each courseId there is at most one teacherId, and so we have courseIdteacherId. The opposite, teacherIdcourseId, does not hold for this relation since a teacher can teach more than one course.
 Another FD that is present is teacherIdlastName. This is because for each teacher there is a single last name. Note the opposite, lastNameteacherId does not hold in this relation. The sample data shows multiple teachers who have the same last name.
 Note that since courseIdteacherId and teacherIdlastName, it must be true we have the FD courseIdlastName. For each course we have one teacher and so one last name. For any value of course id there will only be one value for teacher last name. In relational database theory the FD courseIdlastName is called a transitive functional dependency – lastName is dependent on courseId but this dependency is via teacherId.
 BCNF?
 Hopefully you agree the only FDs are these:
 			courseId –> teacherId
 	teacherId –> lastName
 	courseId –> lastName

 The only candidate key is courseId, and there is a FD, teacherId –> lastName, where the determinant is not a candidate key. Therefore, Course is not BCNF.
 When you think of the Course relation now, you should see that it is about two very different things:
 			Course presents teacher information (teacherId) for courses
 	Course presents information about teachers (their last names)

 Decomposition.
 Course can be replaced by two relations where the new relations are each in BCNF. Above we mentioned that Course is about two very different things – what we need to do is arrange for two relations, one for each of these concerns.
 Consider the following two relations as a decomposition of the above where we have placed information about courses in one table and information about teachers in another table. These relations have a common attribute, teacherId.
 [image: image]
 Courses and Teachers can be joined on teacherId to reproduce exactly the information in Course. Because we have not lost any information and noting that the FD has been preserved as well, these two relations are equivalent to the one we started with.
 			Courses has one candidate key: courseId. The only FD is courseId –> teacherId. Therefore, Courses is in BCNF.
 	Teachers has one candidate key: teacherId. There is one FD: teacherId –> lastName. Therefore, Teachers is in BCNF.

 EXAMPLE 4.
 This example uses a relation that contains data obtained from a 2011 Statistics Canada survey. Each row gives us information about the percentage of people in a Canadian province who speak a language considered their mother tongue2. The ellipsis “…” indicate there are more rows.
 	provCode
 	provName
 	language
 	percentMotherTongue

 	MB
 	Manitoba
 	English
 	72.9

 	MB
 	Manitoba
 	French
 	3.5

 	MB
 	Manitoba
 	non-official
 	21.5

 	SK
 	Saskatchewan
 	English
 	84.5

 	SK
 	Saskatchewan
 	French
 	1.6

 	SK
 	Saskatchewan
 	non-official
 	12.7

 	NU
 	Nunavut
 	English
 	28.1

 	…
 	…
 	…
 	…

 The ProvinceLanguageStatistics relation has redundant data. In the rows listed above we see that each province name and each province code appear multiple times.
 Candidate Keys.
 There can be more than one row for any province, but for the combination of province and language there can be only one row and so there are two composite candidate keys:
 			{provCode, language}
 	{provName, language}

 Functional Dependencies.
 Since province codes and province names are unique, we have the FDs:
 			provCode –> provName
 	provName –> provCode

 For each combination of province and language there is one value for percent mother tongue, and so we have FDs:
 			provCode,language –> percentMotherTongue
 	provName,language –> percentMotherTongue

 BCNF?
 The first two FDs listed above have determinants that are subsets of candidate keys. Therefore, ProvinceLanguageStatistics is not BCNF.
 The ProvinceLanguageStatistics relation has information about two different things:
 			It has information about provinces (names/codes).
 	It has information about mother tongues in the provinces.

 Decomposition.
 To obtain BCNF relations we must decompose ProvinceLanguageStatistics into two relations; for example, consider Province and ProvinceLanguages below:
 [image: image]

 These relations can be joined on provCode to produce exactly the information shown in ProvinceLanguageStatistics.
 	Province has two CKs: provCode and provName, and has two FDs: 		provCode –>provName
 	provName –> provCode.

 Therefore, Province is in BCNF.
 	ProvinceLanguages has one CK: {provCode,language}, and one FD: 		{provCode,language} –> percentMotherTongue.

 Therefore, ProvinceLanguages is in BCNF.

 1 Codd, E.F. (1974) ― Recent Investigations in Relational Database Systems, Proceedings of the IFIP Congress, pp. 1017–1021.
 2 Mother tongue refers to the first language learned at home in childhood and still understood by the person at the time the data was collected. The person has two mother tongues only if the two languages were used equally often and are still understood by the person.

	

			

			

		
	
		
			
	
		

		10.3: Summary

								

	
				 We have discussed functional dependencies, candidate keys, 1NF and BCNF. BCNF is the usual objective of the database designer.
 When a relation is not BCNF then one or more of the following will be the source of redundancy in a relation:
 			partial dependencies
 	transitive dependencies
 	functional dependencies amongst key attributes.

 2NF involves the concepts of candidate key and non-key attributes. A relation is considered to be in 2NF if it is in 1NF, and every non-key attribute is fully dependent on each candidate key. In Example 2 we mentioned that stuNum –> birthdate was considered a partial functional dependency as stuNum is a subset of a candidate key. A 2NF relation does not contain partial dependencies.
 3NF involves the concepts of candidate key and non-key attributes. We say a relation is in 3NF if the relation is in 1NF and all determinants of non-key attributes are candidate keys. In Example 3 we mentioned that courseId –> lastName was considered a transitive dependency; lastName is dependent on teacherId which is not a candidate key. A 3NF relation does not have partial dependencies nor transitive dependencies.
 The definition of BCNF concerns FDs and CKs – there is no mention of non-key attributes. Hence, BCNF is a stronger form than 2NF or 3NF (a BCNF relation will be in 2NF and 3NF).
 A database designer may decide to not normalize completely to BCNF. This is sometimes done to ensure that certain data can be retrieved without having to join relations in a query – when a join is avoided the data is typically retrieved more quickly from the database. This is often done in a data warehouse environment (outside the scope of these notes).
 Exercises
 In each of these exercises, consider the relation, CKs, and FDs. Determine if the relation is in BCNF, and if not in BCNF give a non-loss decomposition into BCNF relations. The last 5 questions are abstract and give no context for the relation nor attributes.
 1) Consider a relation Player which has information about players for some sports league. Player has attributes id, first, last, gender – id is the only CK and the FDs are:
 	id –> first
 	id –> last
 	id –> gender

 Player – sample data:
 	id
 	first
 	last
 	gender

 	1
 	Jim
 	Jones
 	Male

 	2
 	Betty
 	Smith
 	Female

 	3
 	Jim
 	Smith
 	Male

 	4
 	Lee
 	Mann
 	Male

 	5
 	Sarah
 	McDonald
 	Female

 2) Consider a relation Employee which has information about employees in some company. Employee has attributes id, first, last, sin (social insurance number) where id and sin are the only CKs, and the FDs are:
 	id –> first
 	id –> last
 	sin –> first
 	sin –> last
 	id –> sin
 	sin –> id

 Employee – sample data:
 	id
 	first
 	last
 	sin

 	1
 	Jim
 	Jones
 	111222333

 	2
 	Betty
 	Smith
 	333333333

 	3
 	Jim
 	Smith
 	456789012

 	4
 	Lee
 	Mann
 	123456789

 	5
 	Samantha
 	McDonald
 	987654321

 3) Consider a relation Player which contains information about players and their teams. Player has attributes playerId, first, last, gender, teamId, teamName, teamCity where playerId is the only CK and the FDs are:
 	playerId –>first
 	playerId –> last
 	playerId –> gender
 	playerId –> teamId
 	playerId –> teamName
 	playerId –> teamCity
 	teamId –> teamName
 	teamId –> teamCity

 Player – sample data:
 	playerId
 	first
 	last
 	gender
 	teamId
 	teamName
 	team City

 	1
 	Jim
 	Jones
 	M
 	1
 	Flyers
 	Wpg

 	2
 	Betty
 	Smith
 	F
 	5
 	OilKings
 	Cgy

 	3
 	Jim
 	Smith
 	M
 	10
 	Oilers
 	Edm

 	4
 	Lee
 	Mann
 	M
 	1
 	Flyers
 	Wpg

 	5
 	Samantha
 	McDonald
 	F
 	5
 	OilKings
 	Cgy

 	6
 	Jimmy
 	Jasper
 	M
 	99
 	OilKings
 	Wpg

 4) Consider a relation Building which has information about buildings and floors. Building has attributes buildingCode, floor, numRooms, campus where {buildingCode,floor} is the only CK and the FDs are:
 	{buildingCode,floor} –> numRooms
 	buildingCode –> campus

 Building – sample data:
 	buildingCode
 	floor
 	numRooms
 	campus

 	D
 	3
 	15
 	Downtown

 	C
 	2
 	5
 	Downtown

 	RP
 	1
 	20
 	Selkirk

 	D
 	2
 	5
 	Downtown

 	D
 	1
 	20
 	Downtown

 5) Consider a relation Course which contains information about courses. Course has attributes deptCode, deptName, courseNum, creditHours where {deptCode,courseNum} and {deptName,courseNum} are the only CKs, and the FDs are:
 	{deptCode,courseNum} –> creditHours
 	{deptName,courseNum} –> creditHours deptCode  deptName
 	deptName –> deptCode

 Course – sample data:
 	deptCode
 	deptName
 	courseNum
 	creditHours

 	Math
 	Mathematics
 	2101
 	3

 	Stat
 	Statistics
 	2102
 	3

 	Math
 	Mathematics
 	2102
 	1

 	Stat
 	Statistics
 	4001
 	6

 	Math
 	Mathematics
 	4001
 	6

 6) Consider the relation Student Performance below which describes student performance in courses. The value stored in the gradePoint column is the grade point that corresponds to the grade received in a course. Assume that students are identified by their student number, and that courses are identified by their course id. Assume each student can take a course only once and so each row is uniquely identified by {stuNum, courseId}. Each student’s overall gpa is stored – gpa is the average of gradePoint for all courses taken by a student.

 Student Performance – sample data:
 	stuNum
 	courseId
 	grade
 	gradePoint
 	gpa

 	111
 	3030
 	C
 	2.0
 	2.0

 	113
 	3030
 	C
 	2.0
 	2.5

 	113
 	4040
 	B
 	3.0
 	2.5

 	118
 	2222
 	C
 	2.0
 	2.25

 	118
 	4040
 	C+
 	2.5
 	2.25

 	202
 	1188
 	B
 	3.0
 	3.0

 7) Consider Example 4. Is there another decomposition of ProvinceLanguageStatistics that leads to BCNF relations?

 8) Consider a relation R with attributes X, Y, W, Z where X is the only CK, and where there are FDs:
 	X –> Y X –> W X –> Z

 9) Consider a relation R with attributes X, Y, W, V where X and V are the only CKs, and where there are FDs:
 	X –> Y X –>W V –>Y V –> W X –> V V –> X

 10) Consider a relation R with attributes X, Y, W, V, Z where X is the only CK, and where there are FDs:
 	X –> Y X –> W W –> Z W –> V

 11) Consider a relation R with attributes A, B, C, D, E, F where {A,B} is the only CK, and where there are FDs:
 	{A,B} –> C
 	{A,B} –> D
 	A –> E A –> F

 12) Consider a relation R with attributes A, B, C, D, E where {A,C} and {B,C} are the only CKs, and where there are FDs:
 	{A,C} –> D
 	{B,C} –> D
 	{A,C} –> E
 	{B,C} –> E
 	A –> B B –> A

	

			

			

		
	
		
			
	
		

		APPENDIX A

	

	
		In chapter 3 we created simple forms for single tables. A very useful form is one where the user can interact with data that comes from more than one table. We will consider how this can be done in cases where two tables are related by a one-to-many relationship.
 We will illustrate creating such a form using the form wizard. As you will see the form wizard will create a form and a subform. These two forms will have a connection established based on related fields: a primary key and a foreign key.

	

		

		
	
		
			
	
		

		Forms Involving Multiple Tables

								

	
				 Consider the Company database:
 	If the one-to-many relationship between Department and Employee does not exist, then create this now. Note that this is Exercise 1 in Chapter 5. After doing this you should have the relationship as shown:

 [image: image]
 	Use the Create tab and create a form using the Form Wizard. Select all fields from the Department table:

 [image: image]
 	Do not click Next or Finish, instead choose the Employee table and select all of its fields and now the Selected Fields component shows fields from both tables:

 [image: image]
 	Now, click Next and MS Access asks you how the data should be viewed:

 [image: image]
 	We want the data displayed “by Department” and we want MS Access to use “Form with subform(s)” so you can select Next and MS Access will let you choose a layout. Choose Datasheet Layout. Click Next and MS Access will ask you to name the form – name the form EmployeesByDepartment and name the subform EmployeesSubform:

 [image: image]
 	Click Finish. MS Access will display the finished form called EmployeesByDepartment – see below. Experiment with the form: notice the two sets of navigation buttons – one that controls the department being viewed, and the other that controls the view of the department’s employees.

 [image: image]
 Exercises
 1) Consider the University database. Create a form to allow a user to view courses by department.

 2) Consider the Library database. There are two one-to-many relationships. Create a form to list the loan records for a book. Create another form to list the loan records for a member.

 3) Consider the Orders database. This database has several one-to-many relationships. Create appropriate forms to list:
 	a customer and the customer’s orders;
 	an order and its detail lines;
 	a product and the order detail lines where the product is referenced;
 	a category and the products belonging to the category.

	

			

			

		
	
		
			
	
		

		APPENDIX B

	

	
		We have covered the basics of entity-relationship modeling and now we will extend our design capabilities to include supertypes and subtypes. It is often the case that an entity type has subgroupings that are useful to include in a data model. For instance, in a university environment, persons could be grouped into employees and students; courses could be grouped into graduate courses and undergraduate courses. Previously we considered a library database where one entity type was book; instances of book are loaned out to library members. A library could have many other kinds of things that it loans out such as videos and magazines. A more general thing the library loans out can be referred to as an item; videos, magazines, and books can be considered subtypes of item.
 We will consider only supertype and subtype hierarchies. Hierarchies arise when an entity type appears as a subtype of only one supertype. So, we are disallowing cases where an entity type has two or more supertypes.

	

		

		
	
		
			
	
		

		B.1: Drawing Supertypes and Subtypes on the Red

								

	
				 There are different ways that supertypes and subtypes can be shown on an ERD. We will continue with the Peter Chen notation in this appendix. Between a supertype and its subtypes we show a connection symbol (a circle) where one line is drawn from the supertype to the connection symbol and then lines are drawn from the connection symbol to each subtype.
 A collection of related subtypes can be regarded as overlapping or disjoint. Subtypes are considered as disjoint if it is impossible for an instance of a supertype to be regarded as being an instance of more than one subtype. For example, a library item will be one and only one of its subtypes (magazine, video, book). Subtypes are considered as overlapping if it is possible for an instance of a supertype to be regarded as being an instance of more than one subtype. An example of overlapping can exist with people in a university environment: it is possible that some person could be both an employee and a student at the same time. In our Peter Chen notation, we will use a “d” in the connection symbol to represent disjoint subtyping, and we will use “o” to represent overlapping.
 In our notation we also include an arc on each of the lines joining the connection symbol to the subtypes that implies “containment”.
 To illustrate the drawing technique, consider a library where items are loaned to members and where an item can be either a video, a magazine, or a book, and suppose also that an item belongs to exactly one (i.e., disjoint subtypes) of these subtypes. We can show this as:

 [image: image]
 We extend our notation once more. To indicate that a supertype must exist as one of its subtypes we show total participation in subtyping by using a double line. For example, if we want to show that each item must be one of the subtypes:

 [image: image]
 The double line from Item to the connection symbol shows total participation of Item in the subtyping: whenever there is an instance of an Item, then that item must also be one of the subtypes shown – a video, a magazine, or a book. If we did not specify total participation then we would be allowing an item to exist where that item is not a video, nor is it a magazine, nor is it a book. So, participation of a supertype in the subtyping is either total or optional. The converse is always true: if we have an instance of a subtype then that instance is an instance of the supertype. In the library model then, if we have an instance of book then that instance is of course an item.

	

			

			

		
	
		
			
	
		

		B.2: Supertypes, Subtypes and Relationships

								

	
				 If a supertype participates in a relationship, then all of its subtypes also participate in that relationship. We say that a supertype’s relationships are inherited by its subtypes. The converse is not true: if the model specifies specifically that a subtype participates in a relationship, then its siblings (other entity types that are subtypes of the same supertype) do not participate in that relationship.
 As an example, consider that members can borrow items (i.e., any item of any type) from the library but only books have authors. Our model can be extended as follows:

 [image: image]
 This model excludes the database from storing an author of a magazine or that a video has an author, but the model allows videos, magazines, and books to be borrowed by members.

	

			

			

		
	
		
			
	
		

		B.3: Supertypes, Subtypes and Attributes

								

	
				 All entity types including supertypes and subtypes can have attributes. Continuing with our library example suppose:
 			all items have a call number and a title, and call number is a key (each item has a unique call number),
 	videos have a duration (time required to play),
 	books have a length (number of pages).

 Just as subtypes inherit relationships, they also inherit any attributes of their supertype, and we also have that supertypes do not inherit the attributes of their subtypes. Attributes that are common to a supertype and its subtypes are only shown at the supertype.
 Consider our model now:

 [image: image]
 Our examples have been two-level hierarchies. In general, a hierarchy can be as many levels as the designer requires. For instance, books could be categorized as fiction and non-fiction and so book can be a subtype of item and at the same time a supertype of fiction and non-fiction.

	

			

			

		
	
		
			
	
		

		B.3.1: Discriminator Attributes

								

	
				 It is common for designers to introduce or discover an attribute such that its value can be used to explicitly determine the subtype an entity belongs to. For example, the item entity type can have an attribute, say itemType, which can have a value from the domain
 {“video”, “magazine”, “book”}. When this is done the diagram must include the attribute of course, but additionally the attribute is shown as a discriminator attribute for subtyping purposes and the pertinent value for discriminating shown as well.
 Below you will see how these are laid out above and below the connection symbol:

 [image: image]
 This works well for disjoint subtyping but not necessarily for overlapping subtypes. When overlap is possible a designer may include a discriminator for each subtype, and so there are as many discriminator attributes as there are subtypes. Typically, this is a boolean-valued attribute.

	

			

			

		
	
		
			
	
		

		B.4: Mapping Supertypes and Subtypes to a Relational Database

								

	
				 In chapter 8 we covered rules to be used when an ERD is mapped to a relational database. In this section we add rules for mapping supertypes and subtypes to relations. There are three basic options a designer considers when mapping these structures to a database:
 			Create a relation for each entity type in the hierarchy.
 	Create relations for only the bottom-most entity types.
 	Create one relation to represent the whole hierarchy.

 We use two examples to exhibit the mapping options; one where total participation is specified for the supertype and the other where participation is optional.
 The previous library model is modified to show that an item can be out on loan to a member, and that one of the subtypes, video, is produced by a producer:

 [image: image]
 A university model where a person may be a student and/or an employee, and where students declare a major subject area:

 [image: image]
 Regardless of the option selected for hierarchies, the rules for mapping an ERD to a relational database discussed previously (Chapter 8) still apply. We must apply rules regarding relationships and attributes consistently. For example, if any entity type in a hierarchy is involved in a one-to-many relationship, we must ensure the proper use of foreign keys.

	

			

			

		
	
		
			
	
		

		B.4.1: Relations For All Entity Types

								

	
				 With this option each entity type in a hierarchy is represented by its own relation. Important points here are that
 			All relations representing entity types in the same hierarchy have the same primary key.
 	The primary key of a subtype relation will also be a foreign key that references its supertype relation.
 	Attributes of a supertype (except for the primary key) appear only in the relation that represents the supertype.

 Example:
 The library model maps to the following relational design:
 [image: image]
 Note the foreign keys:
 			Item has a foreign key referencing Member
 	Video has a foreign key referencing Producer
 	Each of Video, Book, and Magazine has a foreign key referencing Item. If a row exists in Video, Book, or Magazine then there must be a corresponding row in Item.

 A sample database is presented on the next page.
 The tables are shown here with sample data. Note that:
 			each row of Video, Book, and Magazine has a related row in Item
 	some items are out on loan to a member
 	each video has a producer

 [image: image]
 In the relationships diagram note the one-to-one relationships between the supertype relation and each of its subtype relations:

 [image: image]
 [image: image]Example: Now consider the university model. The relational design for this mapping option:
 			Since subtyping is optional in the university model there can be a row in Person with no corresponding row in Employee or Student. A person does not have to exist as one of the subtypes.

 Note the foreign keys:
 			Student has a foreign key referencing SubjectArea
 	Employee and Student have foreign keys referencing Person. If a row exists in Employee or Student, then a corresponding row must exist in Person.

 On the following page we show tables with some sample data and the relationships diagram.
 A sample database is presented below. Note that person 2 is both a student and an employee, and that person 4 is neither a student nor an employee.

 [image: image]
 In the relationships diagram note the relationships are one-to-one between the supertype relation and each of its subtype relations:

 [image: image]

	

			

			

		
	
		
			
	
		

		B.4.2: Relations for Bottom-Most Entity Types

								

	
				 In this case relations are created for only entity types that are at the “bottom” of the hierarchy. There are no relations created for a supertype. Important points here are that:
 			All relations derived from entity types in the same hierarchy will have the same primary key.
 	No primary key value can be repeated (We have not seen how to handle this in MS Access. Further study of relational systems can include techniques that automate the checking for this kind of integrity constraint.)
 	Attributes of a supertype must be included in each of its subtype relations.

 Example:
 For the library model, since there is total participation in subtyping this option works well. Every item will be stored in a relation, and each item is stored exactly once. The resulting design:
 [image: image]Note the foreign keys:
 			Because there is no Item relation, each of Video, Book, and Magazine have foreign keys referencing Member.
 	Video is the only relation with a foreign key referencing Producer.

 An issue the designer should be aware of is that callNumbers across the three relations must be unique (call number is the primary key of Item). Further study of database systems is needed to know how this rule can be enforced.
 It is left as an exercise for the student to create a database with sample data.

 Example:
 Consider the university model. This approach (creating relations for bottom- most entity types) is not suitable for the university model because of the overlapping subtypes and because the participation in subtyping is not total. Applying the option, we have:
 [image: image]
 If an entity exists in more than one subtype, then such an entity will have data stored redundantly in the database. In the design above if a person is both an employee and a student then that person’s first and last names would be stored twice (in two different relations).
 The Employee and Student relations are not sufficient to store Person data. The participation is optional and so a person may exist who is neither an employee nor a student; in such a case the data for the person cannot be stored!
 It is left as an exercise for the student to create a database with sample data.

	

			

			

		
	
		
			
	
		

		B.4.3: One Relation Representing the Whole Hierarchy

								

	
				 When this option is applied one relation is created for a complete hierarchy. All attributes appearing in the hierarchy are placed in one relation. Note that the value of a discriminator attribute will enable the user to know easily the subtype of a particular entity. For our example models, when we map a hierarchy to a single relation we obtain very simple relational designs.
 It is left as an exercise for the student to create databases with sample data.

 Example:
 The library model maps to the following design:
 [image: image]
 In the Item relation the itemType attribute indicates if the row represents a video, a magazine, or a book. The memberId may have a value if the item is out on loan. producerId can only have a value if itemType is “video”.

 Example:
 When mapping a hierarchy to a single relation for the university model the designer should include discriminator attributes that are boolean-valued with one discriminator attribute per subtype. Applying this option to the university model we have:
 [image: image]
 With this database each person is stored at most once in the database; there is no duplicated data as with the previous mapping option.
 If a person is neither an employee nor a student then the only attributes that can have values are: personId, employeeFlag, studentFlag, first and last – the others must be null. The values of employeeFlag and studentFlag would be false.

 Exercises
 Exercises
 1) Consider the database designs illustrated in this appendix. Implement one or more of these and populate with data.

 2) Consider the two designs used in the examples of this appendix. Combine these two designs by replacing Member with the Person hierarchy. Illustrate the relational structures when the model is mapped to a database. Choose mapping options for the hierarchies.

 3) Consider the design you created in exercise 2 but modify the one-to-many borrows relationship to be a many-to-many with attributes dateBorrowed and dateReturned where dateBorrowed is a discriminator for the relationship. Recall this discriminator is not the same as the discriminators suggested for mapping supertypes and subtypes.
 	Note that this modification to the library example will allow history to be recorded for the borrowing of items.

 4) For exercise 3 create the database and populate the database with sample data.

 5) Create an ERD for a service station business that provides goods and services to its customers. Typically, a customer comes in with their vehicle and requests certain work to be performed. For example, a customer may request an oil change and for a new set of four tires to be provided and installed.
 	The work items that can be performed or supplied can be of two types: a service (such as the oil change) and actual physical items (such as litres of oil). There will be several services that can be performed such as tire installation, changing oil, or fixing a flat tire.
 	Each of these will have some cost to be charged to a customer. There are many concrete items that are supplied and charged to a customer such as fan belts, litres of oil, or tires – these are things that are kept in inventory. Consider creating a hierarchy for products (goods / services); make up reasonable attributes.
 	This service station has customers that fall into two groups: some are private individuals and others are businesses. Individuals will have a first name, last name, address and phone number. A business will have a business name, address, phone number and a contact person who has a first name and last name. Consider creating a hierarchy for customers.
 	The service station needs to keep track of all the goods and services it provides to its customers so that it has a historical record and knows what it has charged to each customer. Each visit to the service station by a customer will generate a work order that keeps track of the work that was done for the customer’s vehicle. Vehicles have license plate numbers, and other attributes to describe them (make, model, colour, …). For each visit of a customer to the station the system needs to know the date the visit occurred, the details of the work performed and goods provided, and the total charge to the customer.

	

			

			

		
	EPUB/assets/image1-70.png
Course Department
¥ deptcode =——2| T aeptcode
1 coursetio deptiiame.
title deption
description deptehone
areditiours chainiame
Fild: | depthame coursetio title
Table: |Department Course Course
Sort:
Show: o =]]
Criteria:

EPUB/assets/image1-71.png
Department Employee
B deptid = B empid
department fishame
mensger Iasthame
shone supenisor
= dept
Fieis: [geptia depariment aept osthame
Tabi: |Depariment Department Empioyee empioyee
Sort: |pescending
show: = = = =
crteria:

EPUB/assets/image1-72.png
Employee Employee_1
B empid ¥ empid
firsthame firsthame
lastName Iasthiame
supenvisor supenvisor
dept aept
Field: |lastilame firsthiame lasthame frsthiame
Table: |Employee Employee Employee 1 Employee_1
Sort:
Show: = = = =

Criteria: | Delaney “Raphael”

EPUB/assets/image2-40.png
deptName

dspilocan
dspiPhone.
shaitNams
title
sousssle description

credit hours

EPUB/assets/image1-73.png
Employee Employee_1
B empia B empia

firsthame firsthame

lastName lastName

supenvisor supenvisor
dept aept

Field: |lastilame frsthiame supenisor

Table: |Employee Employee Employee_1

Sort:

Show: = = =

Crteria: | “Defaney” “Raphael” [

EPUB/assets/image2-41.png

EPUB/assets/image1-74.png
birthDate.

Person_1

>[Person) birthDate]

EPUB/assets/image2-42.png
o department code
Pd
-4

EPUB/assets/image1-75.png
Course Department
¥ deptcode =———— 1| ' deptCode
1 coursetio deptitame.
title deption
description deptrnone
areditiours haiiame
Fild: | depthame title aeditiours aeditiiours
Table: | Department Course Course Course
Total: | Group By Group By Count Where
Sort:
Show: =} =} =} u}
Critera: |“ACS™ 3

EPUB/assets/image2-43.png
Courses

Teachers

courseld [teacherld teacherld lastName
2914 11 11 Smith
3902 22 22 Jones
3913 11 33 Jones
4902 33
4906 11
4994 22

EPUB/assets/image1-76.png
Students Courses
Name | 1d Number | Phone Title Course Department
Number

John | 184 283-4984 Tntroduction to Art__| 661 At

Amelia | 337 838-3737 Tntroduction to 765 History.
History.

Lee 876 9332211

April 901 644-3838

EPUB/assets/image2-44.png
Form Wizard

Which ieds do you want on your form?

You can choose from more than one table or query.

Tables/Queries.

[Table: Department =

Avalable Felds: c)
deptid
department
manager

<<

%
E

EPUB/assets/image1-77.png
= = =

1 N
Department offers Cousse

(Courseis avweak entty type— instances of Course nly existifthere s a Department entty thatit
seates toin some way

EPUB/assets/image2-45.png
Ttem

Magazine

Book

EPUB/assets/image1-78.png
Employee

EPUB/assets/image2-46.png
Person

o —)

D e

Student

enpoyest

1

Studentumber
_StudentNumber

= @

7
)
\/

Subject Area

EPUB/assets/image1-79.png

EPUB/assets/image2-47.png
 mac1
anz3
_amn
aQuz3
av2

= aviz3
B a2

title itemType | memberld
The Java Developer magazine 2

Programming with Java_ book 1
G+ Programming book
Fun with Java video 1
“The Bluel 1DE video

120 p111
45p999.

5 MAG11

EPUB/assets/image2-48.png
Employee

Student

first | last

position

salary

first | last

subject

description

EPUB/assets/image2-49.png
Person | personld

first

last

position

salary

Subject Area

yearstarted | subject

description

EPUB/assets/image6-1.png
Fle Home Create ExternalData O

= | B3
S ke A U i

- Query Ty

EPUB/assets/image6-3.png
deptCode courseNo
Course Course
Group By Group By

EPUB/assets/image6-4.png
Department

Course

deptCode

depthame

chair

courseNo | title

EPUB/assets/image4-3.png
QueryTools Library

Fle Home Create ExtemalData DatabaseTools Help Design £

i‘; | 5@ :il ‘ E @ Union ¢ Insert
Select| Make Append Update Crosstab Delete & P25 Thoush
Table [N Data Definition | Tables | Builde

3 Delet

Results Query Type.

Tahlec @ « | Queyt X D

EPUB/assets/image6-5.png
ssigned 15

Position.

EPUB/assets/image6-6.png
deptid
department

manager

phone

Employees

Marketing

~ empid -~ Name lastName ~ | super’
2
5 Olliver Holt
7 Basia Franks
8 Bruno Pena
9 Whoopi Christian
10Len Harmon
11 Raya Cooke
30 Amena Decker
31 Kameko Freeman
32 Amir Stephens
33 Rogan Clements.
34 Maggy Salazar
Record: 14« 10138 | » W > | SZuorier |searcn | |4] |

Record: W_A[1of3 |» ¥ v] SghoFilter [[Search |

EPUB/assets/image6-7.png
personld

1
2
3
4

first
Joe
Janet
Pat
Jack

last
Smith
Lee
Jones.
Lee

EPUB/assets/image1-60.png

EPUB/assets/image1-61.png
Donald Matthews
Eileen Power
Frederick Whitehead
Joe Celko

Joe Celko

Zigurd R Mednieks

T A Halpin

David Hay.

Joe Celko

Lynne Elliott

Charles H Talbot

EPUB/assets/image1-62.png
Property Sheet

Selection type: Query Properties

o S s
Source Database_ 100
Source Connect Str. 5%
Record Locks 25%

EPUB/assets/image2-30.png
Edit Relationships 70X

Table/Query: Related Table/Query: 1

Department [Course v
Cancel
deptCode || deptCode ~
JoinType..
Enforce Referenti Integrity (Geate New..
[Cascade Update Related Fields
[Cascade Delete Related Records

Relatonship Type: One-To-Many

EPUB/assets/image1-63.png
s 5 (D

(&5 Table Names

Totals Parameters

Show/Hide

EPUB/assets/image2-31.png
Join Properties 70X

LeftTable Name Right Table Name
Department] || [Employee v
LeftColam Name Right Colamn Name

Geptis] [dent >

@1 Only indude rows where the joined fieds from both tables are equal.

O3 Inciude ALL records from Department and only those records from
‘Enployee’ where the joined ieds re equal.

O3: Inciude ALL records from Employee and only those records from
"Department where the joned filds are equa.

T][ot | [er

EPUB/assets/image2-32.png
=T

Student

enoltin

= T

Course

The m and non the relationship fines are cardinality symbols meantto indicate thatone course
‘may havemany students enrolled in it and thatone student may enroll in many courses.

EPUB/assets/image1-65.png
Department Course

¥ deptCode L =) f deptCode
depthiame # courseio
deptiocn title
deptphone desaription
chairName. credittiours

I

Fild: | depthame coursetio aedittiours
Table: | Department Course Course
Total: | Group By Group 8y Group 8y
Sort:

Show: @ = =}

Crtera: G

EPUB/assets/image2-33.png
Winnipeg Retail Co

124 Any Street, Winnipeg

Manitoba, R3E 29
soLnTo.
John Smith INVOICE NUMBER |192837
124 AnySreet INVOICE DATE [February 20,2013
Winnipeg, MB, R38 2E9 OUR ORDER NO. (2314
YOUR ORDER NO. |7654
TERMS |Net 30
SHIPPED TO: SALESREP |Jim Jones
same as above
QuaNTITY. DESCRIPTION UNIT PRICE AMOUNT
10 |pens 50| $15.00
15 |pencis 250 37.50
Totalless tares. 5250
lPsT 368
lesT 263

$58.80

EPUB/assets/image1-66.png
Create External Data Database Tools Help

File Home

= @ trion

3 BEEBB B
View Run | [Sdlct| Make Append Update Crosstab Delete

. Table M ata Defriton

Results

Query Type

EPUB/assets/image2-34.png
P

Department ke atibutes.

o >

buildingis aregulr trbute.

EPUB/assets/image1-67.png
Field:
Table:
Sort:
Show:
Criteria:

Course

deptCode
¥ courselio

ttle
desaription
creditHours

deptCode
Course.

]

Course.

]

ttle
Course.

]

desaription

Course.

]

creditHours

Course.

]

EPUB/assets/image2-35.png
Member @ Relationships can have afrbutes

\@ too. In this case the detetme
borowedacts s & discrmnstor and
propeyallows fora bray mernber
1o brmow the same book more than

=

!
!

Book 7

EPUB/assets/image1-68.png
deptCode

¥ courselio
ttle
desaription
creditHours

1

Field: | deptCode courseNo. areditHours
Table: |Course Course. Course.
Sort:

Show: = = =

Crteria: |“ACS”

EPUB/assets/image1-69.png
Course Department
¥ deptCode 2 27 geptcose
¥ courselio depthiame
ttle deptiocn
desaription deptphone
creditHours chairName.

EPUB/assets/image2-37.png
Driver operates Vehicte

EPUB/assets/pic-14.png

EPUB/assets/image2-38.png
Employee

supervise

EPUB/assets/pic-11.png

EPUB/assets/image2-39.png
Book

title

Member

Borrow

memberld

firsName

lastName

memberld

bookld

dateTimeBorrowed

dateTimeRetumed

EPUB/assets/pic-12.png
BONF

EPUB/assets/pic-10.png
Student

Department

EPUB/assets/image1-90.png
Fle Home Create ExenalData DatabaseTools Help

H | |[@EE B [F v TEQ

fun | skt M Append Update rosta Date 70 Trovsh
Table [5goata Definiion | T

QuenTpe

TF e <]

e
el

I

EPUB/assets/image1-91.png
Patron
@ patronta
lastName
firsthame
gender

Borrow
@ patronta
? cliNo
¥ dateDue

returned

EPUB/assets/image1-92.png
CREATE TABLE

Create the Book table

Create the Patron table with a primarykey

Create the Borrow table with a primarykey

and a foreign key referencing
Patron

ALTER TABLE

Alter the Book table o it has a primarykey

Alter the Borrow table with a foreignkey’
referencing Book

Add an attribute named gender toPatron

CREATE INDEX

Create an index

DROP TABLE and DROP
INDEX

Remove a table or index from the
database

EPUB/assets/image1-93.png
[T —— Dein P Teme whtyouanttodo

Bt
e &8
Frostonus e

[EERAE X o

frsome
Feldname | owatype

patons utonumber

ssthame ShonTen [

frsome shorText

EPUB/assets/image1-94.png
1D > first name
ID > last name
1D > salary

1D 3 gender

_— first name

— > lastname

— sy

gender

EPUB/assets/image1-95.png
Department Course

dept | dept dept dept chair [course | T ooy | Gredt
Code |Name | Location | Phone | Name No Hours

EPUB/assets/image3-32.png
CB 351 M293 1983
HQ1143 P68 1975
PC14V48 1965

QA 76.73 S67C435 2004
QA 76.73 S67C46 1997
QA 76.76 AG5P76 2011
QA 76.9 D26H355 2008
QA 76.9 D26H39 1996
QA 76.9 D35C45 1999
R141E45 2006
R487T35 1967

Atlas of medieval Europe

Medieval women

Medieval miscellany

Joe Celko's Trees and hierarchies in SQL for smartie
Joe Celko's SQL puzzles & answers

Programming Android

Information modeling and relational databases
Data model patterns : conventions of thought

Joe Celko's data & databases : concepts in practice
Medieval medicine and the plague

Medicine in medieval England.

EPUB/assets/image1-96.png
departmat
smber

smber

it

EPUB/assets/image3-31.png

EPUB/assets/image1-97.png
e

instructor mumber S nstructor name

> departmentcode
building

EPUB/assets/image3-34.png
callNo ~ firstName - lastName -

HQ1143P681575 John smith
QA76.73567C461987 David Martin
R 141 E45 2006 David Martin

R 141 E45 2006 Bet Freeman

EPUB/assets/image1-98.png
empNo | first name salary

111 Joe 29,000
200 April 41,000
205 Peter 33,000
210 Joe 20,000
emoNg degree

111 3

111 (=3

200 BA

200 NA

205 BEng

‘smpNo is the PK.

cach employee has one name
and one salary

{empNg, degree} is the PK.

degree is single-valued

EPUB/assets/image3-33.png
CB351M2931983 Atlas of medieval Europe Donald Matthews
PC14 V481965 Medieval miscellany Frederick Whitehead
QA 76.73567C461997 Joe Celko's SQL puzzles & answers Joe Celko

QA 76.76 AGSP76 2011 Programming Android Zigurd R Mednieks

QA 76.9D26H355 2008 Information modeling and relational databases T A Halpin
QA 76.9D26H391996 Data model patterns : conventions of thought David Hay

EPUB/assets/image1-99.png
Enroliments Students

stuNum courseld stuNum birthdate
111 2914 111 Jan 1, 1995
113 2914 113 Jan 1, 1998
113 3902 118 Jan 1, 1990
118 2222 202 Jan 1, 2000
118 3902
202 1805

EPUB/assets/image3-35.png
< Relationships X

Course Department
¥ deptCode ¥ deptCode
¥ courselio depthiame
ttle deptiocn
desaription deptphone
creditHours chairName.

EPUB/assets/image3-38.png
Help Design P Tell me what you want to do
= YU et

n AT | 3¢ Insert Rows | U Insert Columns Z
Through by S Delete Rows | "I Delete Column:

3 Add 7 ows | % - Totals [Pa
Defintion | Tables | % Builder o Return: A1

Query Setup
& Queyz X

Course
deptCode
¥ courselio

ttle
desaription

creditHours

Field:
Table:
Total:
Sort:
Show:
Criteria:

creditHours
Course.
Sum

] [m]

EPUB/assets/image3-37.png
id - firstName - lastName - birthDate - gender -

1 John smith 5/15/1999 male
2 David Martin 6/8/2000 male
3 Betty Freeman 9/18/1997 female

4 John Martin 9/11/2000 male

EPUB/assets/image3-39.png
Join Properties

(O}
Oz
Oz

X

Only nclude rows where the joned filds from both tables are:
equal.

Include ALL records from ‘Department and only those records
from Course' where the joned fields are equal.

Inciude ALL records from ‘Course’ and only those records from
‘Department where the joned filds are equal.

o] [conal

EPUB/assets/image7-1.png
courseNo
Course
Count

EPUB/assets/image7-2.png

EPUB/assets/image7-3.png
‘deptCod;

offers

Department

_—

Course

EPUB/assets/image1-80.png
Employee - Thesgs ofthe smployssis 3

dervad stbute

EPUB/assets/image1-81.png
Student

R
e

e
C&=>

EPUB/assets/image1-82.png
Invoice

An atribute that distinguishes instances
relativeto a strong entity is a partial key
discriminator. Partial keys are shown with
a dashed underline

EPUB/assets/image1-84.png
Student

enrolls in

Course

EPUB/assets/image3-21.png
Microsoft Access X

The changes you requested to the table were not successful because they would create duplicate values in the index, primary key, of relationship. Change the data in the feld or felds that contain duplicate data,
remove the index, o redefine the index to permit duplicate entries and try again.

Help

EPUB/assets/image1-85.png
Employee

works in

Department

EPUB/assets/image3-20.png
Table Tools

File Home Create ExternalData Database Tools Help Fields Table £ Tell me what you war
Tables ® « |E Book X
el callNo - title - author -
 CB 351 M293 1983 Atlas of medieval Europe Donald Matthews

EPUB/assets/image1-86.png
Employee

works in

Department

EPUB/assets/image3-23.png
Microsoft Access X

You are about to delete 1 record(s).

/\ o

EPUB/assets/image1-87.png
Employee

EPUB/assets/image1-88.png
= =P =

Deparment | © g Caurse

EPUB/assets/image3-25.png
Table Tools

File Home Create ExternalData DatabaseTools Help Design £ Tell me what you want to do

»

Data Type. Description (Optional)

Field Properties

General Lookup.

Navigation Pane

EPUB/assets/image1-89.png
Member

-

Book

EPUB/assets/image3-24.png
Library : Database- C:\Users\ron\Documents_MS AC.

File ~ Home Create ExternalData Database Tools Help D
Tables ® « |H m:x B o X
-
Short Text

B ook Short Text
B Loan Short Text
B Member

o

o

Cten

Nebammomren

o e i Dtz

e e e

e

EPUB/assets/image3-27.png

EPUB/assets/image3-26.png
Table Tools Ron McFadyen

File ~ Home Create ExternalData Database Tools Help Design O Tell me what you want to do
Tables ® « | toan X =
£ Data Type. Description (Optional) Property Sheet
1 Short Text Selection type: Table Fropertes
P Number General
dateBorrowed Date/Time.
dateReturned Date/Time. Eb::::':'\‘!:':‘ DIS:!:"!!‘\ xu
ubdstasheet Expanded__|No
dateDue Date/Time Subdatasheet Height o~
finessessed Currency Orientation Letto-Right
findpaid Currency [~] Desciption
Frela Poperies Detault Dstashest
Valudstion Ruie
General Lookup. Valudation Text Dste etumed camnot be prior to dst borrowed.
Fieia sze 255 Fier
Fomat Oraersy
Input sk Subdstssheet Name]
Caption Uk Chig Feics
Defaut Value Uk Master Feic:
Validation Rule Afield name can be up to 64 characters long, Filter On Load. No.
Validation Text including spaces. Press F1 for help on field Order By On Load Yes

EPUB/assets/icon-video.png
M

EPUB/assets/icon-interactive.png
E

EPUB/assets/pic-8-300x145.png

EPUB/assets/image8-1.png
CB351M2931983 Atlas of medieval Europe Donald Matthews
HQ1143P681975 Medieval women Eileen Power

PC14 V481965 Medieval miscellany Frederick Whitehead
QA 76.73567C435 2004 Joe Celko's Trees and hierarchies in SQL for smartie Joe Celko.

QA 76.73567C461997 Joe Celko's SQL puzzles & answers Joe Celko

QA 76.76 AGSP76 2011 Programming Android Zigurd R Mednieks
QA 76.9D26H355 2008 Information modeling and relational databases T A Halpin
0A76.9D26H391996 Datamodel patters : conventions of thought David Hay
QA76.9D35C451999 Joe Celko's data & databases : concepts in practice Joe Celko

R141E45 2006 Medieval medicine and the plague Lynne Elliott

R487T35 1967 Medicine in medieval England. Charles H Talbot

EPUB/assets/image8-2.png
TaRsgimel > (@

Student

> T

Course

EPUB/assets/pic-2-300x220.png
Hy

EPUB/assets/image3-41.png
Entity

Weak entity
Relationship
Identifying relationship

Attribute

Keyattribute

Patial key, discriminator
Composite attribute

Multivalued attribute

Derived attribute

002000000

Relationship line

Relationship line with
total participation

L2NMP o m Cardinality expressions

EPUB/assets/image3-40.png
Department Employee
B deptid = B empid
department fishame
mensger Iasthame
shone supenisor
=3 dept
Fieis: [geptia depariment aept osthame
Tabi: |Depariment Department Empioyee empioyee
Sort: |pescending
show: = = = =

Criteria:

EPUB/assets/image3-43.png
Lee Peter Noel

Don Mary

EPUB/assets/image3-42.png
Customer

Invoice

EPUB/assets/image4-10.png
Form Wizard

How do you want to view your
data?

by Employee

@Formuithgibforn) O binked forms

Cancel <Back Next > Erish

EPUB/assets/image3-45.png
Employee

EPUB/assets/image3-44.png
Employee

supervise

EPUB/assets/image3-47.png
Province Provincelanguages
provCode provName provCode [Tanguage | percentMotherTongue
MB Manitoba MB English 72.9
5K Saskatchewan MB French 35
NU Nunavut MB non- 215

official
5K English 845
5K French 16
5K non- 127
official
NU English PENY
NU French 14
NU non- 69.6
official

EPUB/assets/image3-46.png
N \C/B

EPUB/assets/image3-49.png
Ttem

name
memberld

Member ¥ caliNumber
it
¥ memberld ©
itemType

Book
caliNumber
length

Producer
? producerid
producerName

Magazine
¥ caliNumber

Video

duration
producerid

EPUB/assets/image3-48.png
Form Wizard

Tables/Queries
[Table: Employes.

Avalable Felds:

Vibich fieds do you want on your form?

You can choose from more than one table or query.

<< | |supervisor

EPUB/assets/image5-10.png
Person personld | first | last
)
Employee | | personld | emploveeld | position | salary
Student personld | studentNumber | vearStarted | subject
Subject subject | description
Area

EPUB/assets/image5-19.jpeg
< Library: Database- CAUsers\ron\Documents\ MS ACCESS 2021\Libraryaccd.. Ron McFadyen RM

Fle Home Create ExtenalData DatabaseTools Help O Tell me what you wantto do

Tables ® «
[Search. s}
3 Book

B toan

BB Member

EPUB/assets/image9-1.png
Fle Home Create ExtemalData Databa:

e foa S asendiog
% FD Mcom Z I

e

search.. el
T sook pC1aV £ Closean =
& ton QA76.% [Design View Tke

EPUB/assets/image9-2.png
Phone

alime

Phone
Call

EPUB/assets/icon-audio.png

EPUB/assets/Gregory-Figure-6.11-with-caption-300x160.gif

EPUB/assets/image2-1.jpeg
Sum
avg

Min

Max
Count
stDev

Var

First

Last
Expression
s

EPUB/assets/pic-5-300x85.png

EPUB/assets/image11.png
=3 Relationships X

Course

¥ deptCode

¥ courselio
ttle
desaription
creditHours

Department
¥ deptCode
depthiame
deptiocn

deptphone
chairName.

EPUB/assets/bookcover-Data-3.jpg
RELATIONAL DATABASES
AND
MICROSOFT ACCESS 365

Version 4.0

EPUB/assets/pic-4-300x113.png
T esicose
¥ e

sesapton

Oeprment

Tamicon |

e

EPUB/assets/image10-16.png
All Access Objects
Searcn.

Tables

B2 course

ER Department

Queries

Forms

« «

Department
¥ deptCode ¥ deptCode
¥ courselio depthiame
ttle deptiocn
desaription deptphone
creditHours chairName.

EPUB/toc.xhtml

		
			Table of Contents

			
														
				
									
													Cover

																				
				
									
													Title Page

																				
				
									
													Copyright

																				
				
									
													Table Of Contents

																				
				
									
													PREFACE

																				
				
									
													Acknowledgements

																				
				
									
																											1. RELATIONAL DATABASES AND MS ACCESS
																										
				
									
													1.1 Relational Databases

																				
				
									
													1.2 Microsoft Access

																				
				
									
													1.2.1 Modifying Rows

																				
				
									
													1.2.2 Adding New Rows

																				
				
									
													1.2.3 Deleting Rows

																				
				
									
													1.2.4 Table Design View

																				
														

				
									
																											2. CREATING TABLES
																										
				
									
													2.1 Using Design View To Create Tables

																				
				
									
													2.1.1: Data Types

																				
				
									
													2.1.2: Properties

																				
				
									
													2.1.3: Primary Keys

																				
														

				
									
																											3. CREATING FORMS
																										
				
									
													3.1: Using the Form Wizard

																				
				
									
													3.2: Modifying the Form

																				
				
									
													3.2.1: Adding a Button

																				
				
									
													3.2.2: Adding a Label

																				
				
									
													3.2.3: Adding a Calculated Field

																				
														

				
									
																											4. MICROSOFT ACCESS QUERIES
																										
				
									
													4.1: Simple Query

																				
				
									
													4.2: Projection Query

																				
				
									
													4.3: Selection Query

																				
				
									
													4.4: Sorting the Result

																				
				
									
													4.5: And

																				
				
									
													4.6: Or

																				
				
									
													4.7: Joins

																				
														

				
									
																											5. RELATIONSHIPS AND THE RELATIONSHIPS TOOL
																										
				
									
													5.1: Integrity

																				
				
									
													5.2: Relationships

																				
				
									
													5.2.1: One-To-Many

																				
				
									
													5.2.2: One-To-One

																				
				
									
													5.2.3: Many-To-Many

																				
														

				
									
																											6. MICROSOFT ACCESS QUERIES – ADVANCED
																										
				
									
													6.1: Logical Expressions

																				
				
									
													6.1.1: And

																				
				
									
													6.1.2: Or

																				
				
									
													6.1.3: Not

																				
				
									
													6.2: Query Operators

																				
				
									
													6.2.1: Like

																				
				
									
													6.2.2: In

																				
				
									
													6.3: Query Properties

																				
				
									
													6.3.1: Top Values

																				
				
									
													6.3.2: Unique Values

																				
				
									
													6.4: Totals Query

																				
				
									
													6.5: Parameter Query

																				
				
									
													6.6: Crosstab Query

																				
				
									
													6.7: Action Queries

																				
				
									
													6.7.1: Make Table Query

																				
				
									
													6.7.2: Append Query

																				
				
									
													6.7.3: Delete Query

																				
				
									
													6.7.4: Update Query

																				
				
									
													6.8: Inner and Outer Joins

																				
				
									
													6.8.1: Inner Join

																				
				
									
													6.8.2: Outer Join

																				
				
									
													6.8.3: Cartesian Product

																				
				
									
													6.8.4: Self-Join

																				
				
									
													6.8.5: Anti-Join

																				
				
									
													6.8.6: Non-Equi Join

																				
				
									
													6.9: SQL Select Statement

																				
				
									
													6.10: SQL Union and Union All

																				
														

				
									
																											7. ENTITY RELATIONSHIP MODELLING
																										
				
									
													7.1: Introduction

																				
				
									
													7.2: Entities

																				
				
									
													7.2.1: Weak Entities

																				
				
									
													7.3: Attributes

																				
				
									
													7.3.1: Atomic Attributes

																				
				
									
													7.3.2: Composite Attributes

																				
				
									
													7.3.3: Single-Valued Attributes

																				
				
									
													7.3.4: Multi-Valued Attributes

																				
				
									
													7.3.5: Derived Attributes

																				
				
									
													7.3.6: Key Attributes

																				
				
									
													7.3.7: Partial Key

																				
				
									
													7.3.8: Surrogate Key

																				
				
									
													7.3.9: Non-Key Attributes

																				
				
									
													7.3.10: Nulls

																				
				
									
													7.3.11: Domains

																				
				
									
													7.4: Relationships

																				
				
									
													7.4.1: Degree

																				
				
									
													7.4.2: Participation

																				
				
									
													7.4.3: Cardinality

																				
				
									
													7.4.4: Recursive Relationships

																				
				
									
													7.4.5: Identifying Relationships

																				
														

				
									
																											8. MAPPING AN ERD TO A RELATIONAL DATABASE
																										
				
									
													8.1: Mapping Rules

																				
				
									
													8.1.1: Entity Types

																				
				
									
													8.1.2: Relationship Types

																				
				
									
													8.1.3: Attributes

																				
				
									
													8.2: Examples

																				
														

				
									
																											9. DATA DEFINITION LANGUAGE (DDL)
																										
				
									
													9.1: Running DDL in MS Access

																				
				
									
													9.2: Example

																				
				
									
													9.2.1: DDL Commands

																				
				
									
													9.2.2: Creating the Database

																				
														

				
									
																											10. NORMALIZATION
																										
				
									
													10.1: Functional Dependencies

																				
				
									
													10.1.1: Keys and Non-Keys

																				
				
									
													10.1.2: Anomalies

																				
				
									
													10.1.3: Partial Functional Dependencies

																				
				
									
													10.1.4: Transitive Functional Dependencies

																				
				
									
													10.2: Normal Forms

																				
				
									
													10.2.1: First Normal Form(1NF)

																				
				
									
													10.2.2: Boyce-Codd Normal Form (BCNF)

																				
				
									
													10.3: Summary

																				
														

				
									
																											APPENDIX A
																										
				
									
													Forms Involving Multiple Tables

																				
														

				
									
																											APPENDIX B
																										
				
									
													B.1: Drawing Supertypes and Subtypes on the Red

																				
				
									
													B.2: Supertypes, Subtypes and Relationships

																				
				
									
													B.3: Supertypes, Subtypes and Attributes

																				
				
									
													B.3.1: Discriminator Attributes

																				
				
									
													B.4: Mapping Supertypes and Subtypes to a Relational Database

																				
				
									
													B.4.1: Relations For All Entity Types

																				
				
									
													B.4.2: Relations for Bottom-Most Entity Types

																				
				
									
													B.4.3: One Relation Representing the Whole Hierarchy

																			

						

		
	

EPUB/assets/image3-3.jpeg
Aceess

formcrasyer~Q)

‘ P search

Files Folders

Personal

OneDrive - Personal
ronmcfadyen@gmai.com

Other lacations

Library.accdb
Downloads

ACS-4904_ASd.accdb
Downloads

ACS-4904_ASd.accdb
Downloads

ACS-4904_AS3.accdb
Downloads

ACS-4904_AS3.accdb
R

EPUB/assets/pic-6.png
1Tanya

!—.—\

QHeidi 3Hioko 4 Emmanuel

EPUB/assets/image1-104.png
‘calNumber)

Ttem Member
Coey—"" N

Video [nyigeqr "book"

"magazine”

Book Author

Magazine

EPUB/assets/image6.png
Library : Database- CAUsers\ror\Documents\ MSAC.. Table Tools

File Home Create ExternalData DatabaseTools Help Design £ Tell me what you want to do

»

Short Text department code
Short Text department name

Short Text department location

Short Text department phone

Short Text person’s name who is chair of the department

Field Properties

EPUB/assets/image1-103.png
‘calNumber)

/ Ttem -

Member

Magazine

Book

Author

EPUB/assets/image7.png
Table Tools

Fle Home Create ExternalData DatabaseTools Help Design O Tell me what you want
& 5| T ==
i = g
| S Dvalyze Peformance | 80 &
Compactand | Viusl Run | Reltorships Obect | Access SharcPoint | Add-
Repair Database | Basic Macro Dependencies | £5]Analyze Table Database ins v

Tools Macro Relationships Analyze Move Data Add-ins

EPUB/assets/pic-1-300x154.png
5 amnar
i

D

(=)

|

i
it

e @D o ot ey

B EE M| &

A Access Obje_ © «

i
m,

EPUB/assets/image1-102.png
Member

Magazine

Book

Author

EPUB/assets/image8.png
(58 Course X

. . 0

€ Form Header

Coliree

Detail

lpepticods
[Nefe

deptCode
courseNo

title

lpesrintia]

description

feraditHGU:

e
e
e
i

i

 Form Footer

creditHou

[Newow]

| Delete Row |

| Close |

EPUB/assets/cc-by-nc-sa.png

EPUB/assets/image1-101.png
Ttem

Magazine

Book

EPUB/assets/image9.png

EPUB/assets/image1-100.png
Department

T deptia

department
manager

phone

Employee

T empia

firsthame
lastName
supenvisor
dept

EPUB/assets/image2.jpeg
Fle Home Cree EtaralOata Dstabase Too

Wep Dsign Amnge fomat £ atyounant o do

B || =

Oje8MENEEOMN) @ Eros

EPUB/assets/image4.png
Microsoft Access X

A\ merecors comnot e e o hangeabecuse e oan s e rcorcs

EPUB/assets/image5.png
S Libray: Databsse- Field Datatype

Fle Home Create ExtemalData DatabaseTools Help

id Autonumbes: MS Access
T ook X[1o x il generate a i

Tables ® number for each row. The.
s 10 g T e ot ever 4
& sook firstName. ‘Short Text o
B ton lastName Short Text frtame Short Text
3 wemeer

lasthiame. ‘Short Text.

Loan Table

= Library: Database- CA\Users\ror\Documents\ MS A Field Datatype.

Fle Home Creste EemalData DatabaseTools Help

T calltia ‘ShortText

Tables © « |2 ook X [E tom X wemer X
oD T i Number: numeric values

T callNo Short Text must be entered by the
ECTI Number user. This datatype is a

roper mach o the
= o dateBorrowed Date/Time Autonumbes datatype.
1 member dateReturned Date/Time
dateDue Date/Time ‘The calltio.and id fields both have the key

= ‘symbol beside them. This means that both

together form the primary key, and so
combinations of these two fild values
must be unique: there can be several
fows with the same call number and
Several rows with the same user d, but
any par o call number and id values can
only appear n a single row. This type of
primary key s caled a composite primary
ker.

dateBoaned Date/Time: the user
must enter 2 date

dateRefumed Date/Time
dateue DatefTime

EPUB/assets/image1-30.png
attributes

al a2 a3..
dy
dy

tuples ds

EPUB/assets/image1-108.png
Item

Member

Producer

title | it

duration

EPUB/assets/image1-31.png
Tables ® « | = Book X
Sechs 0 callNo - title - author
- B 351 M293 1983 Atlas of medieval Europe Donald Matthews
Book

T e ars 2142 DER 1QIC. I e D

EPUB/assets/image1-107.png
Video | callNumbe title itemtyp | duration

Book callNumbe. title itemtyp | length member!

Producer | producerld | produceriNam.

EPUB/assets/image1-32.png
< Library: Database- CAUsers\ron\Documents\ MSAC.. Table Tools Ron McFadyen R

File ~ Home Create ExternalData Database Tools Help Design O Tell me what you want to do
B2 | & = \;‘&% [‘EFOVMW\IAM m‘ -’—m 1 ‘kaw‘m Q & Module
Application | Table Table SharePoint | Query Query | Form Form Blank e o Report Report Blank [, ,peis Macro [98C1ass Module
Parts Design Lists~ | Wizard Design Design Form [E5] More Forms + Design Report] Visual Basic
Tempiates Tables Queries Forms Reports Macros & Code
B2 Member Table Design
Create new blanktable in Design
view. You can add fields, set Field Properties

indexing options, and perform other
advanced table design tasks.

EPUB/assets/image1-106.png
Video

Book

Magazine

Producer

Member

callNumber | title

duration

length

memberld | name

EPUB/assets/image1-33.png
Short Text
Long Text
Number

Large Number
Date/Time
Date/Time Extended
currency
AutoNumber
Yes/No

OLE Object
Hyperlink
Attachment
Calculated
Lookup Wizard,

EPUB/assets/image1-105.png
ooy (ame)

N

Member

Producer
1

N

producerName.

Video

“ ftemType
d
video”
"magazine”
Magazine

"book”

Book

EPUB/assets/image1-34.png
Table Tools Library: Database- C:AUsers\ron\Documents\

File Home Create ExtenalData DatabaseTools Help Design £ Tell me what you want to do

= 3 3¢nsertRows = u] = |
E 5 B oamerons AN %5 b
View | [primary] Test Validation Propety|indeces | CreateData Rename/ | Relationships Object

- Key Rules EQModify Lookups | | Sheet Macros ~ Delete Macro Dependencies

Views Tools Show/Mide | Field, Record & Table Events Relationships

EPUB/assets/image1-35.png
Table Tools University: Database-

File Home Create ExternalData DatabaseTools Help Design P Tell me what you want

All Access Obje... @ «
_ Z Field Name Data Type Tescription (OptmnaE
T deptCode Short Text

Tables deptName Short Text
& counse deptLocn Short Text
=3 Department deptphone Short Text

[Department X

EPUB/assets/image1-36.png
Relationship Tools

University: Database- C:AUsers\ror\Documents_ MS A

e

Fle Home Create EdernalData DatabaseTools Help Design
e = 5 Form Wiard
Application | Table Table SharePoint | Query Query Em Ot R
Parts Design Lists~ | Wizard Design Design Form (8 More Forms
Templates Tables Queries Forms

£ Tell me what you want to do

7 Report Wiard

Report Blank
Design Report

Reports

0

Macro

£ Modul

2 clss
Elvisual

Macros & Cox

EPUB/assets/image7-19.jpeg
Table Tools Ron McFadyen

File Home

el
S

B3 toan
BB Member

| Datasheet View

Tables ® «

Create

External Data

3 Book X

DatsbaseTools Help Fields ~ Table © Tell me what you want to do

title - author - [Click to Add ~

HQ1143P681975 Medieval women Eileen Power
PC14 V48 1965 Medieval miscellany Frederick Whitehead
QA 76.73 567C435 2004 Joe Celko's Trees and hierarchies in SQL for smartie Joe Celko
QA 76.73567C46 1997 Joe Celko's SQL puzzles & answers Joe Celko
QA76.76A65P762011 Programming Android Zigurd R Mednieks
QA 76.9D26H355 2008 Information modeling and relational databases T A Halpin
QA76.9D26H391996 Data model patterns : conventions of thought David Hay
QA76.9D350451999 Joe Celko's data & databases : concepts in practice Joe Celko
R141E45 2006 Medieval medicine and the plague Lynne Elliott
RA87T35 1967 Medicine in medieval England. Charles H Talbot

*

Records A [1or 1 |v 01 v [Sgiia Fiter [[seareh

Num Lock

B N

EPUB/assets/image1-38.png
5

0 s

\NBEODR) oERE:S;

- ERcoleHrRE\REOUG) oEame (@ {
e -

EPUB/assets/image4-1.png
Dept Code
Course Number

Title

Description

Credit Hours

Introduction to Computers

This course will introduce students to the basic concepts of computers:
ftypes of computers, hardware, software, and types of application systems.

=

Record: _4[1o79 |+ ¥ v# [SZNo Filier [[Search |

EPUB/assets/image4-2.png

EPUB/assets/image4-3.jpeg
@ open

X

« ~ 4 [%> ThisPC > Documents > _MSACCESS 2021 v |® | Search_MS ACCESS 2021 p

Organize v

New folder

13 Microsoft Access

@ Crestive Cloud ils

@ OneDiive

File name:

Name

) Companyaccd
) eneology.accdd

- O 0

Date modified Type Size

5/24/2021 11:12AM Microsoft Access Database 2
Microsoft Access Database s

A 242021 T218PM icost AccesDatstase ’
) Orersmdt 242021 T112AM MicostAccesDatsbace e
) Salesaccdb $/24/2021 11:12AM Microsoft Access Database s
) University.accdb Microsoft Access Database 45
< 5
[E— 7] (et Acees Paecime |

- - I

EPUB/assets/image4-4.png
firstName - lastName
John Marti

EPUB/assets/image4-5.png
Course
deptCode
¥ courselio

ttle
desaription
creditHours

Field:
Table:
Sort:
Show:
Criteria:

deptCode
Course.

courseNo.
Course.

]]

EPUB/assets/image4-6.png
=

Invoice

Contsing

=

o v

Line

EPUB/assets/image4-7.png
stodent "< qarolls i Course

EPUB/assets/image4-8.png
Employee

firsName.

supervisor

EPUB/assets/image4-9.png
id > firstName

id > lastName g — & fstName
i

sin > firstName T

sin > firstName l/ N

id > sin “in

sin > id

EPUB/assets/pic-3-300x128.png
All Access Objects] &% *=*™
= B

EPUB/assets/pic-9-300x158.png

EPUB/assets/image1-26.png
_ # CB 351 M293 1983 Atlas of medieval Europe Donald Matthews|

EPUB/assets/image1-27.png
I Record: 10 <[1or11 | v o 0e [SZ0 Fiier | [Search

Datasheet View

EPUB/assets/image1-29.png
Organize v Includein library v Sharewith v Bu

» [} Desktop ~ Name
~lbvownoas g
D) Librry accd
) _Macosx z

&) AppinventorForAndrod
b) 1805 1ab 8 etc @e::.,m

EPUB/assets/ON_POS_LOGO_RGB-300x120.png
Ontario @

EPUB/assets/image1-50.png
=3 Relationships

Course

¥ deptCode

¥ courselio
ttle
desaription
creditHours

Department

¥ deptCode
depttiame
deptiocn
deptphone
chairName.

EPUB/assets/image1-51.png
Relationships X

Course Department
¥ geptCode ¥ deptCode
T coursetlo deptilame
title deptloan
description deptPhone
aredithours chairtiame
Edit Relationships 70X
Table/Query: Related Table/Query:
Depertment Course
Cancel
deptCode |v| deptCode ~
JoinType..
Enforce Referenti Integrity (Geate New..
[Cascade Update Related Fields
[Cascade Delete Related Records
Relationship Type: OneToMany.

EPUB/assets/image1-52.png
Microsoft Access X

A relationship already exists.
A Do you want to edit the existing relationship? To create a new relationship, dick No.

e [v] [Gne

EPUB/assets/image1-53.png
Course
deptCode
T courselio
title
desaription
aredithiours
|
Field: | deptCode courseNo. title desaription aeditiiours
Table: |Course Course. Course. Course Course.
Sort
Show:]]]]]
Crteria: |“ACS” 3

EPUB/assets/image2-21.png
New Contact Information

First Name. E-mail
Last Name Web Page

Company -

Notes
Job Title -
Phone Numbers

Business Phone
Home Phone Submit

EPUB/assets/image1-54.png
Course
deptCode
¥ courselio
ttle
desaription
creditHours
I
Field: | deptCode courseNo. title desaription creditHours
Table: |Course Course. Course. Course. Course.
Sort:
Show:]]]]]
Crteria: |“ACS” 3
or: ["acs” 6

EPUB/assets/image2-22.png
textbox control

Eicoos- I -
2 dk f@codear=E\~
All Access Obje... © « | oweroeas X
- e
e !
B Categories.
@ employees
= o [Joens
e . .
3 Order Detas N uniterice.
. =
.
Nl {Unbound |
:
— —

EPUB/assets/image1-55.png
Course
deptCode
¥ courselio
ttle
desaription
creditHours
[
Field: | deptCode courseNo. title desaription creditHours
Table: |Course Course. Course. Course. Course.
Sort:
Show:]]]]]
Crteriz: Not3

EPUB/assets/image2-23.png
Create External Data Database Tools

File Home

Application | Table Table SharcPoint

Parts
Templates
Tables © «
Sacn. 1O
3 Book

B3 toan

B2 Member

Design Lists >
Tables

= Queyt X

Query Query
Wizard Design Desi

Queries.

EPUB/assets/image1-56.png
Course
¥ geptcode
¥ coursetio
e
description
creditiours
el e description
Table: | course Course
Sort
Shov: @ @ u}
Cters

or Like “This course®”

EPUB/assets/image2-24.png
Member

Loan
i T reme
fisthame v
fasthlame. dateBorrowed
pithDate. dateReturned
sender teove [-)
e [atio ttane sshame
Tabie: | Loan Vember Member
S
show: = = =
citera

EPUB/assets/image1-57.png
Course

deptCode

¥ courselio
ttle
desaription
creditHours

1

e [qeptcode courstte e
Tabie: | Course Course Course
S

show: =] = =

Criteria: |1 (PHYS,"STAT", MATHY)

EPUB/assets/image2-25.png
Course

deptCode

¥ courselio
ttle
desaription
creditHours

1

Field:
Table:
Sort:
Show:
Criteria:

deptCode courseNo. ttle
Course. Course. Course.

]]]
“pris”
“STaT

MATH

EPUB/assets/image2-26.png
= Queny3 X

K1

Field: |author

Table:
Sort:
Show:
Criteria:

E Property Sheet

Selection type: Query Properties.

General

Descrption
Default View Datasheet
. Output Al Fields No

¥ Top Values A

Unique Values ves

author Unique Records No

paperback Source Database (current]

Source Connect Str
Record Locks o Lodks
[Recoraset ype Dynaset
‘ODBC Timeout £
Fitter

ttle

Order By
‘Max Records.

Orientation
@ o o Subdatasheet Name

Book

EPUB/assets/image2-27.png
File Home

Application
Parts v

Templates

Create

External Data

Database Tools

Help

Table

Table SharePoint

Design
Tables

Lists v

Queries

1
E* Hiy
Query Query
Wizard Design

P Tell me what you want to do

il il

7 Report Wiard

B & O Fem v

e
Design Form (8 More Forms

Forms

Report Report Blank

Design Report (= 20<t

Reports

0

Macro

A Module
20 Class Module
] Visual Basic
CEEEET

EPUB/assets/image2-28.png
Make Table

Make Nen Table:

Table Name:

® Current Database:
O Another Database:

Bromse...

EPUB/assets/image2-29.png
Course
® geptCode
T courselio
title
desaription
aredithiours
] I
Field: | deptCode courseNo. aeditiiours
Table: |Course Course. Course
Update To: {areditHours 2
Crteria: |“ACS”

EPUB/assets/image5-1.png
< Library: Database- CAUsers\ron\Documents\ MSAC.. Table Tools

Fle Home Create EdernalData DatabaseTools Help Design £ Tell me what you want to do
»
DataType Description (Optional)
Short Text department code
Short Text department name.
Short Text department location
|| deptPhone Short Text department phone

chairName Short Text person’s name who is chair of the department

EPUB/assets/image5-2.png
Table Tools

File ~ Home Create ExternalData Database Tools Help Design £ Tell me what you w:
All Access Obje... © « | =2 oepsinent x [T couse <

< I8 Field Name Data Type Tescription (Optiona
[—

T deptCode Short Text

Tables - courseNo Short Text
= couse title. Short Text
B oepartment description LongText
Forms EY creditHours. Number

EPUB/assets/image5-4.png
Field:
Table:
Total:
Sort:
Show:
Critria:

courseNo.
Course.
Group 8y

]

deptCode
Course.

Group 8y

]

EPUB/assets/image5-5.png
" deptid | department -| dept | lastName

4 Special Operations

3 sales 3 Floyd
3 sales 3 Mckay
3 sales 3 Compton

P P P P—y

EPUB/assets/image5-6.png
Enrollment

Student

Course

EPUB/assets/image5-7.png
=P

1 u
Department otters Course

EPUB/assets/image5-8.png
e

assigned 15

EPUB/assets/image5-9.png
What ttles do you want for your forms?
B [EmployeessyDepartment
Subform: [EmployeesSubform

Forr

That's all the information the wizard needs to create your form.
Do you want to open the form or modfy the form's design?

£ Open the form to view or enter information.
£ Modify the form's design.

EPUB/assets/pic-7-300x170.png

EPUB/assets/image1-40.png
label

/
Fevcolean=B\es0re) cEdEe

EPUB/assets/image1-43.png
Query Tools Jsers\ron\Documents\ ESS 2021\Library.accdb (Access 2007

Fle Home Create ExtenalData DatabaseTools Help Design O Tell me what you want to do
===l === Form Wrd Modle
FRE =Em8P% 1] @) Preportwima | [&
B i i Noigaion~ 50 Clss Miodule
Aoplcation | Table Toble ShorPoint | Query Query | Form Form Bank Reprt Report Bk (2] s fz=o
P Desgn Linse | Wid Deign Degn Form BB More Forms - Deam Report Ve s
Tempates bis . — e e
© « |F auenyt X
Tables Add Tables
E]
e Tables Unks Queis Al
B Loan s
B vemer =
£ Show Table...
Gy Parameters...

o QueyType >
SQLSpecific >

EPUB/assets/image1-44.png

EPUB/assets/image1-45.png
F Queyt X

Book
¥ o
ttle
author
paperback,

KT I

et [cato e autnor paperback
Tabl: [Book Sock Sook Sook

S

show: = = = =

Crteriz: Yes

EPUB/assets/image1-46.png
¥ o

title
author
paperback,
K] I
Field: | calito title author | paperback
Table: [Baok Book Book Book
Sort: Ascending

show | = o
citera Yes

EPUB/assets/image1-47.png
¥ o
ttle
author
paperback,

Show:
Criteria:

“

Like “*sQL™ Like “*Celko™

EPUB/assets/image1-48.png
Book
¥ o
ttle

author
paperback.

]

Like “*Celko™

Show:
Criteria:

Like “*sQL*

EPUB/assets/image1-49.png
firsthame
lastName
birthDate
gender

Loan

¥ o

Tia
dateBorrowed
dateReturned
dateDue

=

EPUB/assets/image14-16.png
Employee
F personid
employeeld
position
salary

Subjectrea

¥ subject
7 persotd Sescision
studentNumber "
yearstarted

subject

EPUB/assets/image1.jpeg
Fle Home Cede Giemalbsa Oabueluds fep feds Tbe O Telmeatyouvan
Tables ® « [tom | tow

| i3
T Wedievslvomen Eleenpover
= Mediewlmicelny rederickwhitenesd
T saemse B BigVien 1004 ioe Celko's Trees and hierarchies In S for smartie Joe Celko
tngon 587 Joe el QL puaes Banswers Joecelto
1 progamming Aniroid Zgurd s ecnis
ot %08 information modeling and relational dstabases T A Halpin
o feve % Dota model pttems: comentionsof thovght Daviday
5 ioe el dea & dtabases - concepts npracce ioeColo
Hhsnteom Medieus medicineand he lagoe. tynne ot
Deee Medicne inmecieval nglan. ChariesnTaibor

X o

