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Error Propagation in GIS 

By M. Sawada 

Uncertainty in GIS 
 

In GIS, we often work with numerous data sources.  All data has some inherent error because of sampling 
limitations, limited measurement precision, instrumental errors, et cetera…   
 
An error may denote the difference between a measured value and the “true” value or the estimated uncertainty 
with respect to a given observation or set of observations.  For example, if we know that Ottawa is located at –76 
W 45 N, and we look at a map and observe that Ottawa is located at –76 W 44N then we can see that the map is 
in error of 1oN latitude as to the “true” position of Ottawa.   

 

Error vs. Uncertainty 

Errors lead to uncertainty about the value being measured.  It is always possible that the value we measure is the 
“true” value, however, we are usually only relatively certain that a particular value lies within some interval.  For 
example, suppose you measure the length of your desk using a meter stick, which has millimeter divisions.  The 
precision of the instrument is 1 mm, which means that you can only report the length of the desk to the nearest 
millimeter based on the precision of the measuring instrument.  If you measure the desk as being 93 mm, it is 
possible that the edge of the desk may fall between the 93 mm and 94 mm marks.  The ruler you are using 
presents no gradations finer than 1 mm.  This means that nothing can be measured at the sub 1 mm level.  Thus, 
the instrument has an error of  ½ x 1 mm or 0.5 mm.  So you can say with certainty that the desk’s length lies 
somewhere between  
 

Lower bound = measured value – error = 93 mm – 0.5 mm = 92.5 mm 
Upper bound = measured value + error = 93 mm + 0.5 mm = 93.5 mm 

 
So you would say that the desk’s length is 93 +/- 0.5 mm in length.  You don’t know whether 93 is correct, it might 
be but the measuring instrument cannot tell you this.  The ruler can only give you a value, which, with the error, 
provides you a range within which the true length of the desk will fall.  This is what is meant by uncertainty vs. 
error: if we knew the true error in the measurement we would not be uncertain of the true value of the observation, 
however, we really don’t know the true error of the desk’s length, only that its true length is within a given interval, 
and as such, the +/- .5 mm represents how uncertain we are of that true length. 

 

Types of Errors 

Errors can be of two main types, either random or systematic.  Random errors occur when repeated 
measurements, do not agree and the deviations are distributed normally, that is the majority of deviations 
unbiased.  For example, if you have a series of measured deviations, d1…dn, they will be distributed evenly about 
their mean value.  Systematic errors, on the other hand, would have a distribution about the mean value that is 
strongly positive or negative indicating that the individual deviations tend to be errors of similar sign and value.  
An example of a systematic error would be an instrumental calibration error, or in GIS the differences in measured 
coordinate values under NAD83 vs. NAD27.  The latter is actually a discrepancy rather than an error. 
 
According to Beers (1962), random and systematic errors can be either determinate or indeterminate.  
Determinate errors are ones that can be evaluated through numerical or logical means, whereas indeterminate 
errors cannot be evaluated except qualitatively. 
 

Determining the Error 
The first step in error analysis is to determine the errors that are present in your spatial and aspatial data.  We will not look 
in any detail at what you have already learnt in 1st year statistics courses, and it is assumed that you are familiar with 
those statistics and can review them on your own.  What will be new to you are the spatial statistics for determining error 
and statistics for determining error in nominal level data. 
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Numeric Data (Interval/Ratio) 

Errors in data collected on interval and ratio scales are most often determined via standard descriptive statistics, in 
particular the mean: 
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where xi are measured values ranging from i…n. and the Standard Deviation: 
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where sigma   is the standard deviation and x  is the mean of all observations.  The units of   are in the units of 

x , so that if we have x  meters then the associated uncertainty of x meters. 

 
This is important because when we look at the propagation of uncertainty (errors), the output uncertainty, is a function 
of the uncertainties associated with the individual uncertainties in the inputs, that is 
 

 )..( 1 nxxfp    (3) 

 

which says that p, the output uncertainty is a function of the uncertainty of the individual inputs.  The x is read delta-x 

and represents the small uncertainty in some variable x.  Most often, the input uncertainties are going to be given by 
the standard deviation or equivalent property, and as such, we can say that the standard deviation is approximately 

equal to the estimated uncertainty in a given quantity, or x  . 

 

Propagation of Uncertainty in GIS 

 
Propagation is the process of additive uncertainty, that is to say, that equation (3) says that the output uncertainty, 

p , is a function of the input uncertainties, or )..( 1 nxxfp  .  In other words, if we have more than one 

measured quantity in a GIS operation such as additive, subtractive, multiplicative or divisive relations, then there 
will be error in the output that is a function of the input errors.  Assuming that errors are independent and 
random in one or more variables the following equation can be used to derive general formulae for error 
propagation: 
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where, p  is the propagated uncertainty and x  is some variable in the equation )..( 1 nxxfu  , and the term 

ixu  is the partial derivative of the function )..( 1 nxxf  or )..( 1 n

i

xxf
x
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.  Consider the following examples to 

see how error propagation formulae are derived.  First we will consider a single mapped variable, )(xfu  , 

whose output error will be p .  In other words, the function u is a function of one map variable layer called x.  So 

this is not a multivariable function but we can use (4) to show that this formula still holds: 
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Consequently, we can see that for a map, the error at any point will be equal to itself, that is, if the function is of 
one variable the above equation reduces to the input error.  This is only of interest to show that the equation (3) is 
consistent for a single variable.  Now we will derive a formula for error propagation when we have an equation of 

the form )(Cxfu  , where C  is a constant rather than a variable:  
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Thus, we can see that if a map with a known uncertainty x is multiplied by a constant, the error propagates as 

the root of the squared products of the constant, C multiplied the uncertainty x .   

 

Rule 1 

If your mapped values, x, are multiplied by some constant then the uncertainty in the output is given by: 

 
22 xCp   (7) 

 

The power of equation (4) is really useful when we have a GIS process that is a function of more than one 
variable.  Next, we can derive some general formulae for cases where our mapping function involves more than 
one variable, for example, if we add a series of maps together to get some output map, like is often done for 
calculations of total annual precipitation from monthly total precipitations in a region.  Thus, we may have a 

function of the form babafu  ),( , and in such a case: 
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Thus, we can see that for addition of a number of variables, their associated error is the square root of the 
squared sum of the individual errors.  This can be easily shown to generalize to any number of additions, such as 
x + y + z + u + k … + n, so our next error propagation formula is: 

Rule 2 

If you are adding/subtracting a number of mapped variables together, the uncertainty propagates in the following 
way for independent random errors: 
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Which is simply to say that the root of the sum of the squared errors of a number of maps is the total error, or
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1 ... nzcbap   , where a, b, c and z are the errors at a point in maps a, b, c, z.. 

Suffice it to say, that the same can be derived from (4) for difference functions because of the squared partial 

derivatives in (4).  Thus, for functions of the form babafu  ),( you may also use equation (9). 

Next, we can derive some error propagation rules for cases when we have exponentiation of a single mapped 

variable.  For example, you may have the case where 
tCxxfu  )( and C is a constant and t is a positive 

exponent, eg., x2, x3, x4 etc.. 
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Here it is obvious that if our function was 
tCxxfu  )(  and 1C and 1t  that the result of (10) would work 

out to 
22202)0(22)11(22 1111)1( xxxxxxxxp   

which is equivalent to equation (5), that 

is, if the constant and exponent are equal to the number one, then the input error is equal to the output error.   

Thus, (10) is only useful if 1t , and if 1t  and 1C then (10) reduces to (7).  Thus, we can say that the 

following rule can be used for calculation of uncertainty in the exponentiation of a mapped variable: 

Rule 3 

If a mapped variable with uncertainty, x , is raised to the power of 1t then we can use the following equation 

to determine the propagation of uncertainty: 
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If a constant is involved in the calculation and that constant is 1C then we can use the following modification of 

(10), from (9). 
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Our next example, we can derive an error propagation rule for cases when we have multiplication of a number of 

independently derived mapped variables such as a map of a variable a and a map of variable b  being multiplied. 

For example, you may have the case where abbafu  ),( and you need to calculate how errors propagate 

through this process. 
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Now, look at an example of three variables, where abccbafu  ),,(  
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You can now see the general pattern when we are dealing with a function that is a product.  This may be unwieldy 
and tedious to figure out each time we need to determine the error propagation in a product if one is unfamiliar 
with differential calculus.  However, using a basic algebraic rule that any square root of a squared number divided 
by the square root of another squared number equals the square root of the two squared number divided by one 
another, e.g.,  
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we can show that a more simple rule for error propagation can be derived using (4), that will be easier to apply in 
most situations.  For example, 



Uncertainty and error propagation in GIS 

M.Sawada   Page 7 of 13 

 

2

2

2

2

2

2

2

222

222

222

222

222

222

222

222

222

222

222

222

2

22

2

22

2

22

2

222222

2

222222

2

222222

2

2

2

2

2

2

2

2

2

1

2

2

2

)(

)(

)(

)(

)(

)(

)(

)()()(

)()()(

,

)()()(

c

c

b

b

a

a

u

p

cba

cba

cba

bca

cba

acb

cba

cba

cba

bca

cba

acb

abc

cab

abc

bac

abc

abc

abc

cabbacabc

abc

cabbacabc

abcuwhere

u

cabbacabc

u

c
c

u
b

b

u
a

a

u

u

p

u

x
x

u

u

p

n

i

i

i














































































































 (16) 

Which shows that by dividing 
2u , strictly here defined as the absolute value of u or || u , we have shown that 

we can derive a general rule for error propagation when a series of mapped values are multiplied together, 

however, because we have divided 
2up we must still solve for p  in the following manner, given some 

number k ,  
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Consequently, in a moment we will have a general rule, and this rule can be applied in cases of division and 
multiplication, however, only the product case is derived here since the division case is very similar, and 
consequently it would only be a waste of space to do it as well.  Therefore, as a general rule: 

Rule 4 

If we multiply or divide two or more mapped variables, say variables cba ,, , that are a product of the function 

abccbafu  ),,( , the error propagates in the following manner: 
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or in general, for a function 
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We will not look at any derivations for the case of possible correlation between errors in multivariate equations as 
this is slightly more complicated and even general forms become unwieldy after more than two variables.  
References, however, for this can be found in Taylor (1982, p.177) and Beers (1962, p.31).  From these 

references, it can be shown that for a function of the form ),( bafu  , where there is correlation between the 

errors a and b is bar  , where r  is the coefficient of correlation that the propagated error p , can be larger or 

equal to the errors that are obtained from equation (4) but never larger than the sum of the individual errors. 

 

Rule 5 

If you have a function of two variables, ),( bafu   where the correlation between the errors of a and b is 

bar  , then we can determine the propagation of error using the following modification to equation (4): 
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Note: This equation can be extended for more than two variables as shown in Taylor (1982) and Beers (1962) as well as in Gerard et al. (1989). 

 

Taylor (1982) states that the role of covariance “in the discussion of error propagation is purely theoretical; and, in 
fact, the concept of the covariance does not usually play a practical role in error propagation”.  Thus, for most 
purposes, we are dealing with non-correlated error terms and can avoid using Rule 5, however, if you have 
evidence that errors are correlated you should use this rule.  I will provide an example calculation in the examples 
section to facilitate your learning. 
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Examples 

 

 

We have now covered the four main rules for error propagation that you are likely going to encounter in using data 
from various sources in GIS.  Now we can look at a number of example applications in GIS. 

Spatial Database Errors 

You have a series of maps, one from a 1:30,000 map ( 1map ), one from a 1:50,000 map ( 2map ), and one from a 1:250,000 

map ( 2map ).  Assuming that the smallest discernable feature on each is .5 mm, determine the total positional error if these 

maps are used in a single project. 

This is a common problem in GIS, spatial data are often combined from different source scales and therefore different 
positional uncertainties are mixed together in a final map or analysis.  We will assume that these maps were digitized with 
complete accuracy for their reference scales within the inherent map resolution.  We can determine the individual 
contributions to the total output map uncertainty by pretending that combining the maps is equivalent to undertaking an 
additive process.  As such, our mapping function u , can be looked at as: 

 321321 ),,( mapmapmapmapmapmapfu   (21) 

where the (+) signs represent more of a logical union than an arithmetic one.  Consequently, our first step is to determine 
the errors on these maps,  
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even though we have not been explicitly given error terms.  First we assume that the person who digitized these maps 
was able to exactly follow the lines on each map with the digitizing puck.  By following the lines, I mean that the digitizer 
cross-hair did not accidentally go outside of any of the lines that s/he was following with the puck.  Consequently, we only 
need to concern ourselves with the error’s inherent in the maps themselves based on their scale and the effective 
resolution at this scale.  Because the smallest feature or thinnest line on the maps is .5 mm then, depending on the scale 
of the map, this 0.5 mm (e.g., a small circle of 0.5 mm) will on the ground surface actually represent a circle of a different 
size.  Remember that map scale is given by: 

 
mapon  distance

groundon  distance
  scale map   (23) 

for example, if the distance from your house to the school is 20 km and on a map this measures 10 cm then the map 
scale would be from (23): 

 000,200
.1m

20000m
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groundon  distance
  scale map   (24) 

On such a map the map scale would be expressed as 1:200,000, meaning that 1 mm on the map represents 200,000 mm 
on the actual earth.  If on such a 1:200,000 scale map, the smallest map feature we can see with the naked eye is 0.5 mm 
in size1, then that feature of 0.5 mm in size is actually covering a ‘real-world’ length of 0.5 x 200,000 mm or 100,000 mm, 
or 100 meters.  Thus, any feature taken from the 1:200,000 scale map is really within +/- 50 meters of it’s actual location 
(remember the example with the ruler?).  In other words, the gradation of this map, or its resolution, can only measure to 
the nearest 100 meters.  In this sense you can think of the map as an instrument with an inherent positional error for any 
feature on the map.  From this idea, we can attain an idea of the positional error in our example above, namely, 

 

kmmmmmmap

kmmmmmmap

kmmmmmmap

5.62625002/1250005.0250000

5.12125002/250005.050000

5.775002/150005.30000

3

2

1













 (25) 

                                                      
1 Note that an alternative definition for map resolution is the minimum distance at which two map features can be distinguished as being separate entities. 
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In this step we divide by two since a given location or point can be + n km from the center of the line being digitized or – n 

km from the same centerline.  Now, we can apply our Rule 2 to determine the error in our output map based on the input 
maps,  

 

km

mapmapmapp

2.6475.4118

25.390625.15625.56

5.625.125.7 222

22

2

2

1 3







 

 (26) 

Therefore, our output project will have an error of at least 128 km.  Also notice here that the largest contribution to the 
output error is due to the third map, which had the largest error.  Without this map the error would be much smaller, 

km6.145.21225.15625.56  .  This makes it clear that the project could be quickly improved by utilizing a map 

at a larger scale than that of map 3. 

This assumes that by following the lines perfectly there was random variation within the line boundaries by the digitizer 
and that this variation is normally distributed.  The actual error would probably be somewhat larger than this, as shown in 
the next example.  

Suppose you are given a digital data file from a mapping agency with the following information provided in 
the metadata:  

Map 1: 
Current 
Data File 

Tested 10.4 meters horizontal accuracy at 95% confidence level.  
Scale: 1:50,000 
 

Map 2: 
Control 
dataset 

1:5000 planimetric map  
Accuracy of Control dataset: 2.5 m 

Determine the likely error in Map 1. 

First the NSSDA statistic is computed by multiplying the RMS error by 1.7308, therefore, we first need to determine the 
RMS error by dividing the NSSDA reported accuracy by the NSSDA conversion factor, e.g.,  

 m
mNSSDA

RMS 6
7308.1

4.10

7308.1
  (27) 

Therefore, our RMS error for the digital map which we will call map 1 is mmap 61  .  However, we need to take into 

account that the map that it was tested against had an accuracy of mmap 5.22  .  Our digital map is going to have an 

accuracy less than that reported since the control points used to determine the map accuracy clearly have uncertainties 
themselves.  Again, this can be seen as an additive problem, and as such we can use Rule 2: 

 

m

mapmapp

4.6415365.26 22

2

2

2

1



 
 (28) 

Therefore, a better estimate of the uncertainty in our current map is mmap 4.61   

Attribute Errors: Uncorrelated Errors 

For example, for a function of two variables we can look at how correlated errors can be equal to or greater than those 
estimated by application of (4).  Consider, two attributes measured within a given drainage basin, namely rainfall, 

3200mE  , and runoff, 
3140mI  . For sake of argument, we may say that rainfall and runoff1 are related in some way 

and that the error in the rainfall estimate,
310mE  , and the error in the runoff estimate which is

314mI  . We wish to 

estimate the proportion of rainfall that has runoff, that is to say, the amount of rainfall that contributed to the runoff within the 

basin.  Therefore we have a function of the form EIEIfu  ),( .   

                                                      
1 You can easily imagine other variables, say of a socioeconomic importance like unemployment and income or the like and substitute these for rainfall and runoff. 
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We can see that the function EIEIfu  ),(  is a quotient of two numbers and therefore we can apply Rule 4 and 

Equation 18.  

 

2222

2 ...)( 




































n

n

c

c

b

b

a

a
abcp


 (29) 

Which becomes in our case: 

 

   

0785.01112.7.0

0125.49.0

0025.001.49.0

05.1.)7.0(

200

10

140

14
)200/140(

)/(

222

22

2

22

2















































E

E

I

I
EIp



 (30) 

 

Consequently, if the errors 
310mE   and 

314mI   are uncorrelated the propagated error 07.0p , therefore our 

estimate is 0785.07.0),(  EIEIfu .  Here the units’ m3 cancelled out and we have a proportion, which if 

multiplied by 100 would be 70% +/- 7.85%. 

In a certain part of Africa, there is an empirical relation between elevation Em and temperature Cto
that is based on physical 

laws called the dry adiabatic lapse rate. This takes the form of  EmEfCt m
Co o

0098.0)(  .  In topoclimatic modeling, 

a person takes a digital elevation model (DEM), which shows the elevation at every point on a portion of the earth’s surface, 
and multiplies this value by 0.001 to get an estimate of temperature.  This can be very useful when there are no physical 
temperature observations in an area and temperature must be estimated for some research purposes.  Consider a particular 

point in space where the elevation of a given polygon is 600 m with an elevation uncertainty mE 12 . Determine the level 

of error associated with the temperature estimate from this equation. 

First, we can see that only one variable is involved, namely, elevation, E .  This variable is multiplied by a constant, when 
a variable is multiplied by a constant we can use Rule 1 and equation (7): 

    

Cp

C

m

mp

thusmE

andC

wherexCp

o

o

m
C

m
C

m
C

o

o

o

1176.0

01383.0

14400009604.0

120098.0

,12

,0098.0

,

2

2

22

22

2

2





















 (31) 

Consequently, we can see that the error in the temperature estimate for this area will be 

CEfCt oo 12.088.5)600(0098.0)(  . 
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As a brief example of correlated errors, for sake of argument, consider that we have a mapped function of two 

variables IEEIfu  ),(  such that their coefficient of correlation is 3.0EIr   and the error terms 

are given as unitsE 10  and unitsI 14 .  In this case  unitsIandunitsE 400,,700  .  Determine the error in 

the output for both the case when these variables are correlated and uncorrelated. 

First, in the case of uncorrelated errors we can see that this function is a sum of two variables and therefore can apply 
Rule 2 and equation (9): 

 

unitsp

EIp

E

Iwhere

zcbap n

2.17

296

1014

10

14,

...

22

22

22

2

2

2

2

1























 (32) 

However, if we have a case where the errors are correlated, with 3.0EIr  , then we need to use Rule 5 and equation 

20,  

 

      

         

           

unitsp

p

p

p

p

ErIEIp

E

u

and
I

u

andrEIuwhere

ErI
E

u

I

u
E

E

u
I

I

u
p

EI

EI

EI

49.19

380

84100196

3.0101411210011961

3.01014112101141

11211

1

,1

,3.0,,

2

2222

2222

2

2

2

2

















































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










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






















 (33) 

 

Thus, we can see that when the errors are correlated with 3.0EIr  , that the error is slightly larger, 19.49 units, than in 

the uncorrelated case which gave 17.2 units.  It can be shown from this that if the correlation 1EIr  , that the estimated 

error is equal to the sum of the input errors. 
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Practice Exercises 

 

1. You have a polygon map whose values are being exponentiated, that is to say your map function is 
3)( aafu  . Determine the output error in u of this function if the input error is 2a . 

2. You are adding a bunch of maps together, such that the function being used is 

edcbaedcbafu  ),,,,( .  The errors involved for each variable are  

3

6

2

4

3











e

d

c

b

a











. 

Determine the value and output error of u . 

3. For the same errors in question 1, suppose the function is edcbaedcbafu  ),,,,( .  Determine the 

value and output of the error associated with u . 

4. For the same errors in question 1, suppose the function is edcbaedcbafu  ),,,,( .  Determine 

the value and output of the error associated with u . 

5. From data used in Exercise 2a. Create a chloropleth map of population density in Ottawa-Carleton.  You are 
told that the error in population is proportional to the population estimate, such that the relative error is 
2%.  The uncertainty in the polygon areas is also proportional to the area estimate and is 1%. 

6. From exercise 2b, you calculated the RMS error for a set of control points and test points.  If you are told that 
the control points had an error of +/- 2 m, then what is the propagated error for your test dataset? 
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