
Numerical Analysis

Benoit Dionne
University of Ottawa

ii

© Benoit Dionne, 2023 (University of Ottawa)

Adapted version from the notes for the courses MAT3380 and graduate courses in numerical
analysis given at the University of Ottawa.

This document is available on the following sites.
uO Research: http://hdl.handle.net/10393/45600
GitHub: https://github.com/BenoitDionne/Numerical Analysis

Unless otherwise stated, this book is made available under the terms of the license Creative
Commons Attribution - Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0)

Cover Page:
The Rio–Antirio bridge, Greece, photo by Jean Dionne.
The stormy Mediterranean sea, photo by Louise Oegema.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

iv

Contents

Preface 1

Chapter 1 Computer Arithmetic 5

1.1. Rounding . 5

1.2. Binary Number . 6

1.3. Computer Numbers . 8

1.4. Controlling Errors . 12

1.5. Stability . 15

1.6. Conditioning . 16

1.7. Exercises . 18

Chapter 2 Iterative Methods to Solve Nonlinear Equations 21

2.1. Real Analysis Background . 21

2.2. Bisection Method . 22

2.3. Interruption criteria . 25

2.4. Fixed Point Method . 27

2.5. Newton’s Method . 30

2.6. Secant Method . 32

2.7. Order of Convergence . 34

2.8. Aitken’s ∆2 Process and Steffensen’s Algorithm 36

2.9. Real Roots of Polynomials . 38

2.10. Appendix . 43

2.10.1. Elementary Concepts of Discrete Dynamical Systems 44

2.10.2. Qualitative Study . 47

2.10.3. Bifurcation . 48

v

vi CONTENTS

2.10.4. Logistic Map . 53

2.10.5. Chaos . 58

2.11. Exercises . 59

Chapter 3 Iterative Methods to Solve Systems of Linear Equations 65

3.1. Norm and Convergence of Matrices . 65

3.2. Iterative Methods . 70

3.2.1. Jacobi Iterative Method . 70

3.2.2. Gauss-Seidel Iterative Method . 72

3.2.3. Convergence of Iterative Methods . 74

3.3. Relaxation Methods . 79

3.4. Extrapolation . 84

3.5. Steepest Descent and Conjugate Gradient 85

3.5.1. Steepest Descent . 85

3.5.2. Conjugate Gradient . 88

3.5.3. Preconditioned Conjugate Gradient . 91

3.6. Exercises . 93

Chapter 4 Algebraic Methods to Solve Systems of Linear Equations 97

4.1. Gaussian Elimination with Backward Substitution 97

4.2. LU Factorization . 104

4.3. Cholesky Factorization . 109

4.4. Error estimates . 111

4.5. Exercises . 115

Chapter 5 Iterative Methods to Solve Systems of Nonlinear Equa-
tions 117

5.1. Fixed Point Method . 117

5.2. Newton’s Method . 120

5.3. Quasi-Newton Methods . 121

5.4. Steepest Descent for Nonlinear Systems . 124

5.5. Exercises . 124

CONTENTS vii

Chapter 6 Polynomial Interpolation 127

6.1. Lagrange Interpolation . 127

6.2. Newton Interpolation . 128

6.2.1. Linear Interpolation . 132

6.2.2. Quadratic Interpolation . 133

6.2.3. General Interpolation . 134

6.3. Proofs of Theorems 6.2.2, 6.2.5 and 6.2.7 142

6.4. Exercises . 151

Chapter 7 Splines 155

7.1. Cubic Spline Interpolation . 155

7.1.1. Natural Spline . 157

7.1.2. Clamped Spline . 160

7.1.3. Existence of Interpolants . 165

7.1.4. Another Approach . 167

7.2. Parametric Curves: Bézier Curves . 170

7.3. B-Spline Interpolation . 176

7.4. Other Spline Methods . 184

7.5. Exercises . 185

Chapter 8 Least Square Approximation (in L2) 187

8.1. L2 spaces . 187

8.2. Bases of Polynomial . 192

8.3. Orthogonal Polynomials and Least Square Approximation 199

8.4. Exercises . 200

Chapter 9 Uniform Approximation 201

9.1. Stone-Weierstrass Theorem . 201

9.2. Chebyshev Polynomials . 202

9.2.1. How to reduce the Degree of an Interpolating Polynomial with a Min-
imal Loss of Accuracy . 206

9.3. Exercises . 206

viii CONTENTS

Chapter 10 Least Square Approximation (in ℓ2) 207

10.1. Linear Modeling . 208

10.2. Nonlinear Modelling . 209

10.3. Trigonometric Polynomial Approximation (Real Case) 210

10.4. Trigonometric Polynomial Approximation (Complex Case) 214

10.5. Fast Fourier Transform . 221

Chapter 11 Iterative Methods to Approximate Eigenvalues 229

11.1. Background in Linear Algebra . 229

11.1.1. Orthogonality . 229

11.1.2. Self-adjoint and Unitary Operators . 232

11.1.3. Symmetric and Orthogonal Operators 233

11.1.4. Triangular and Diagonal Matrices . 234

11.1.5. Definite Positive Matrices . 235

11.1.6. Gerschgorin’s Theorem . 236

11.2. Power Method . 238

11.3. Rayleigh Quotient for Symmetric Matrices 240

11.4. Inverse Power Method . 241

11.5. Householder’s Matrices and Hessemberg Forms 242

11.5.1. Finding the vector wi . 247

11.5.2. Computing GiAi−1Gi . 249

11.6. QR Algorithm . 256

11.6.1. Gram-Schmidt Orthogonalization Process 257

11.6.2. Normalized QR Decomposition . 260

11.6.3. General QR Algorithm . 262

11.6.4. QR Factorization for Symmetric Tridiagonal Matrices 265

11.6.5. Shifting Technique . 268

Chapter 12 Numerical Differentiation and Integration 273

12.1. Numerical Differentiation . 273

12.2. Richardson Extrapolation . 276

12.3. Closed and Open Newton-Cotes Formulae 283

12.4. Composite Numerical Integration . 287

CONTENTS ix

12.4.1. Composite Trapezoidal Rule . 288

12.4.2. Composite Simpson’s Rule . 289

12.4.3. Composite Midpoint Rule . 292

12.5. Romberg Integration . 294

12.6. Adaptive Quadrature Methods . 296

12.7. Gaussian Quadrature . 300

12.7.1. Gauss-Legendre quadrature . 304

12.7.2. Gauss-Chebyshev quadrature . 305

12.7.3. Convergence and accuracy . 305

12.8. Bernoulli Polynomials . 307

12.9. Exercises . 313

Chapter 13 Initial Value Problems 321

13.1. Introduction to Ordinary Differential Equations 321

13.2. Euler’s Method . 324

13.3. Higher-Order Taylor Methods . 329

13.4. Runge-Kutta Methods . 331

13.4.1. Derivation of Runge-Kutta Methods – Collocation Method 338

13.4.2. Derivation of Runge-Kutta Methods – Rooted Trees 343

13.4.3. Variable Step-Size Methods . 357

13.5. Multistep Methods . 361

13.5.1. Classical Methods . 362

13.5.2. General Approach . 364

13.5.3. Another Approach to Multistep Methods 371

13.5.4. Backward Difference Formulae . 374

13.5.5. Predictor-Corrector Methods . 376

13.5.6. Variable Step-Size Multistep methods 379

13.6. Convergence, Consistency and Stability . 386

13.6.1. Consistency . 392

13.6.2. Finite Difference Equations . 394

13.6.3. Convergence . 399

13.6.4. Absolute Stability and A-Stability . 409

13.6.5. Conclusion . 430

x CONTENTS

13.7. Stiff Systems and Stability . 431

13.8. Exercises . 434

Chapter 14 Boundary Value Problems 441

14.1. Introduction . 441

14.2. Shooting Methods . 442

14.2.1. Shooting Method for Linear Boundary Value Problems 442

14.2.2. Numerical Aspect of the Shooting Method 448

14.2.3. Separated and Partially Separated Boundary Conditions 449

14.2.4. Parallel Shooting for Linear Boundary Value Problems 452

14.2.5. The Choice of Fi and yc,i . 454

14.2.6. Shooting Method for Non-Linear Boundary Value Problems 462

14.2.7. Error Analysis . 465

14.2.8. Parallel Shooting for Non-Linear Boundary Value Problems 468

14.2.9. Family of Solutions . 470

14.3. Finite Difference Methods . 472

14.3.1. Finite Difference Methods for Linear Boundary Value Problems 475

14.3.2. Numerical Aspect of the One-Step Finite Difference Method for Lin-
ear Boundary Value Problems . 482

14.3.3. Finite Difference Methods for Non-Linear Boundary Value Problems . 489

14.3.4. Collocation and Implicit Runge-Kutta 494

14.4. Analytic Eigenvalue Problems . 497

14.5. Exercises . 499

Chapter 15 Finite Difference Methods 501

15.1. Finite Difference Formulae . 502

15.1.1. First Order Derivatives . 502

15.1.2. Second Order Derivatives . 504

15.2. Explicit and Implicit Schemes . 505

15.2.1. Parabolic Equations . 505

15.2.2. Elliptic Equations . 513

15.2.3. Hyperbolic Equations . 519

15.3. Convergence, Consistency and Stability . 522

15.3.1. Uniform Theory . 523

CONTENTS xi

15.3.2. ℓ2 Theory . 531

15.3.3. von Neumann’s Method . 536

15.3.4. L2 Stability . 540

15.3.5. Matrix Method . 544

15.3.6. Conclusion . 548

15.4. Preliminaries of Linear Algebra . 548

15.5. Heat Equation . 551

15.5.1. Algorithm 15.2.1 . 551

15.5.2. Crank-Nicolson Scheme . 557

15.6. Dirichlet Equation . 563

15.6.1. Algorithm 15.2.6 . 564

15.7. Wave Equation . 568

15.7.1. The Role of the Domain of Dependence 569

15.7.2. Algorithm 15.2.11 . 578

15.8. Exercises . 582

Chapter 16 Solutions to Selected Exercises 585

Chapter 1 : Computer Arithmetic . 585

Chapter 2 : Iterative Methods for Nonlinear Equations of One Variable 589

Chapter 3 : Iterative Methods for Systems of Linear Equations 608

Chapter 4 : Algebraic Methods for Systems of Linear Equations 616

Chapter 5 : Iterative Methods for Systems of Nonlinear Equations 618

Chapter 6 : Polynomial Interpolation . 620

Chapter 7 : Splines . 628

Chapter 8 : Least Square Approximation (in L2) . 631

Chapter 9 : Uniform Approximation . 633

Chapter 12 : Numerical Differentiation and Integration 634

Chapter 13 : Initial Value Problems for Ordinary Differential Equations 662

Chapter 15 : Finite Difference Methods . 676

Bibliography 679

Index 683

xii CONTENTS

Preface

This book cover the material normally presented in a two-term course on numerical analysis.
It starts with the basic concept normally presented in a first course on numerical analysis.
It ends with topics that are more appropriated for a first course in numerical analysis for
differential equations.

This book can be used by two different groups of students. If the focus is on the algorithms
and the theory is ignored, then the book can be used for an introduction to numerical analysis
for engineering and applied science students. The book can also be used as an introduction
to numerical analysis for students in mathematics, or students who plan to study more
advanced topics in numerical analysis, if the theory is covered. We do not think that there is
a need to emphasize the importance of the theory in numerical analysis. No serious progress
in numerical analysis is possible without it. Most of the numerical methods presented in this
book is accompanied by a code in MATLAB.

The background for this book is a two-term course in linear algebra, a course in real
analysis (often called advanced calculus to make the subject less scary), and a course in
ordinary differential equation for the last part of the book.

This book is divided into several parts.

After a brief introduction to the arithmetic on computers, the first part on solving
equations is composed of Chapter 2 on iterative methods to solve nonlinear equations of
one unknown variable, Chapter 3 on iterative methods to solve systems of linear equations,
Chapter 4 on algebraic methods to solve systems of linear equations, and Chapter 5 on
iterative methods to solve system of nonlinear equations.

The second part of the book on polynomial interpolation is composed of Chapter 6
on polynomial interpolation of real valued functions and Chapter 7 on spline interpolation;
in particular, cubic splines and Bézier curves.

The third part on the approximation of functions is composed of three short chapters:
Chapter 8 on continuous least square approximation (i.e. in L2), Chapter 9 on uniform
approximation of real valued functions and Chapter 10 on discrete least square approximation
(i.e. in ℓ2).

The fourth part on finding eigenvalues of matrices is composed of only one chapter,
Chapter 11, on numerical methods to compute eigenvalues of n × n matrices.

The last part on differential equations is composed of Chapter 12 on the numerical
differentiation and integration of real valued functions, Chapter 13 on the numerical methods

1

2 Preface

to solve initial value problems for ordinary differential equations, Chapter 14 on the numerical
methods to solve boundary value problems for ordinary differential equations, and Chapter 15
on finite difference methods to solve partial differential equations.

There is no chapter on finite element methods to solve partial differential equations. This
topic requires some knowledge of functional analysis to be properly covered. To keep the
book accessible the undergraduate students (as much as possible), no knowledge of functional
analysis is assumed.

The second and third part of the book are related and even intertwine in some cases.
There are many ways to approximate a function f ∶ [a, b] → R by polynomials. The major
approaches are:

1. Given any small ϵ, we could find a polynomial pϵ such that

max
a≤x≤b

∣f(x) − pϵ(x)∣ < ϵ .

Stone-Weierstrass Theorem, Theorem 9.1.1, states that pϵ can always be found if f is
a continuous function on [a, b]. The function f is uniformly approximate by the
polynomial pϵ. This will be studied in Chapter 9. This very short chapter is more
theoretical. Nevertheless, it is important to understand the limitations of polynomial
interpolation and splines presented in Chapters 6 and 7.

2. Given any small ϵ, we could find a polynomial pϵ such that

∫
b

a
∣f(x) − pϵ(x)∣2 dx < ϵ .

The polynomial pϵ is a quadratic approximation of the function f . This will be stud-
ied in Chapter 9. Again, this chapter is more theoretical but essential to understand
discrete least square approximation in Chapter 10. This material is also fundamental
in the study of numerical analysis; in particular, to develop methods to solve partial
differential equations.

3. Given any small ϵ and a ≤ x0 < x1 < x2 < . . . < xn ≤ b, we could find a polynomial pϵ
such that

n

∑
i=0
∣f(xi) − pϵ(xi)∣2 < ϵ .

This is a discrete least square approximation of the data set

{(xi, f(xi)) ∶ i = 0,1,2, . . . , n}

by a polynomial. This will be the subject of Chapter 10.

4. We could also find a polynomial p of degree at most n such that p(xi) = f(xi) for
0 ≤ i ≤ n. This is the subject of Chapter 6.

Preface 3

5. Instead of looking for a polynomial of degree n, where n may be large, we could find
polynomials pi of small degrees (usually of degree 3) such that pi is an approximation of
f on the small interval [xi, xi+1]. The polynomials pi are determined from conditions at
the endpoints xi that provide some degree of smoothness for the piecewise polynomial
p defined by p(x) = pi(x) for x ∈ [xi, xi+1]. The polynomial p is called a spline. We
will present the cubic splines, Bézier curves and B-Splines in Sections 7.1, 7.2
and 7.3 of Chapter 7. These piecewise polynomial approximations are superior to the
simple polynomial interpolation mentioned in the previous item. Cubic splines, Bézier
curves, ... are used in some of the major software for drawing.

There is a strong emphasis in this book on differential equations. This is only a reflect of
the principal interest of the author. Contrary to must introductory textbooks in numerical
analysis, there is an extensive chapter, Chapter 13, on the numerical methods to solve initial
value problems for ordinary differential equations. There is also a full chapter, Chapter 14, on
the numerical methods to solve boundary value problems for ordinary differential equations,
and a full chapter, Chapter 15, on finite difference methods.

There are many solved exercises at the end of several chapters. Most of the exercises
are to reinforce the concepts presented in the text. We have kept the number of theoretical
questions to the minimum. This was mainly motivated by the groups of students who took
the numerical analysis courses. They were more interested in the applications of numerical
analysis than in the theory. Sadly, there are not real life applications of numerical analysis
in this book. It would be nice (in the future) to add some realistic projects to illustrate each
topics.

The examples should be treated as problems to be solved by the reader. The reader
should try to answer each problem before looking at its solution (if it is available).

In this book, we use the following notation for some standard sets of numbers.

Definition

The following well known sets are frequently used in this document.

• N = {0,1,2,3, . . .} is the set of natural numbers.

• N+ = {1,2,3, . . .} is the set of positive natural numbers.

• Z = {0,1,−1,2,−2,3,−3, . . .} is the set of integers.

• Q is the set of rational numbers.

• R is the set of real numbers.

• C is the set of complex numbers.

We will also often use the following definition when approximating functions.

4 Preface

Definition

Let f ∶ Rn → R and g ∶ Rn → R be two functions. We write f (x) = O (g (x)) near the
origin if there exists a positive constant K such that

∣f (x)∣ <K ∣g (x)∣

for x in a neighbourhood of the origin. We write f (x) = o (g (x)) near the origin if

lim
x→0

f (x)
g (x)

= 0 .

Chapter 1

Computer Arithmetic

Before studying algorithms to perform computations with computers, we need to understand
how computers perform basic arithmetic operations. It is the goal of this chapter.

1.1 Rounding

Definition 1.1.1

The normalized scientific notation for a real number is ±0.d1d2d3 . . . × 10m, where
m is an integer, di ∈ {0,1,2,3, . . . ,9} and d1 ≠ 0.

Before performing any arithmetic operation with real numbers, we will always assume
that they have been expressed in the normalized scientific notation.

When performing arithmetic operations by hand, we often have to consider only the first
few decimals (digits after the period) of the numbers used in the operations and ignore the
others. This is called rounding.

There are different ways to perform rounding. We will mention only two.

Definition 1.1.2

Let ±0.d1d2 ⋅ ⋅ ⋅ × 10N be the normalized scientific representation of a real number a,
thus d1 ≠ 0. For k a positive integer, we define the
k-digit chopping representation of a to be ±0.d1d2 . . . dk × 10N , and the
k-digit rounding representation of a to be ±0.d1d2 . . . dk×10N +ϵ 10−k×10N , where
ϵ = 1 for dk+1 ≥ 5 and ϵ = 0 for dk+1 < 5.

If ã is the k-digit chopping representation of a, then ∣a − ã∣ < 10−k × 10N . If ã is k-digit
rounding representation of a, then ∣a − ã∣ ≤ 0.5 × 10−k × 10N .
Example 1.1.3

5

6 1. Computer Arithmetic

Here are some examples of 3-digit rounding representations.

exact value 3-digit rounding
approximation

0.19234542 × 106 0.192 × 106
0.25952100 × 10−5 0.260 × 10−5
0.99950000 × 102 0.100 × 103

♣
Example 1.1.4
If 0.481× 10 is a 3-digit rounding approximation of x and 0.12752× 102 is a 5-digit rounding
approximation of y, find the interval that will contain the exact value of x − y.

Since 4.805 ≤ x < 4.815 and 12.7515 ≤ y < 12.7525, then 4.805 − 12.7525 < x − y < 4.815 −
12.7515. Thus −7.9475 < x − y < −7.9365. ♣

1.2 Binary Number

Computers only manipulate binary numbers (i.e. numbers in base 2),

Recall that a number in base 2 is a number of the form

(bkbk−1 . . . b1b0.b−1b−2 . . .)2 = bk2k + bk−12k−1 + . . . + b12 + b0 + b−12−1 + b−22−2 + . . .

where bi ∈ {0,1} for all i.

Definition 1.2.1

The normalized binary numbers are numbers of the form ±(0.b1b2b3 . . .)2 × 2m,
where bi ∈ {0,1}, b1 = 1 and m is an integer often represented in binary form. Binary
numbers in normalized binary form are also said to be in normalized floating point
form.

To find the binary representation of a positive number x in base 10, one begins by writing
x as x =m + d, where m is an integer and d < 1.

If

m =mj × 10j +mj−1 × 10j−1 + . . . +m1 × 10 +m0 ,

then

(m)2 = (mj)2 × (10)j2 + (mj−1)2 × (10)j−12 + . . . + (m1)2 × (10)2 + (m0)2 .

The easiest way to evaluate this expression is recursively.

α0 = (mj)2
α1 = α0 × (10)2 + (mj−1)2

1.2. Binary Number 7

α2 = α1 × (10)2 + (mj−2)2
⋮ ⋮

αj−2 = αj−3 × (10)2 + (m2)2
αj−1 = αj−2 × (10)2 + (m1)2
αj = αj−1 × (10)2 + (m0)2

and (m)2 = αj.

Let
d = d1 × 2−1 + d2 × 2−2 + d3 × 2−3 + . . . + dk × 2−k .

The first digit d1 is the integer part of

r1 = 2d = 2 × (d1 × 2−1 + d2 × 2−2 + . . . + d1−k × 21−k + dk × 2−k)
= d1 + d2 × 2−1 + . . . + dk−1 × 22−k + dk × 21−k .

The second digit d2 is the integer part of

r2 = 22(d − d1 × 2−1) = 22 × (d2 × 2−2 + d3 × 2−3 + . . . + dk−1 × 21−k + dk × 2−k)
= d2 + d3 × 2−1 + . . . + dk−1 × 23−k + dk × 22−k . (1.2.1)

The third digit d3 is the integer part of

r3 = 23(d − d1 × 2−1 − d2 × 2−2)
= 23 × (d3 × 2−3 + d4 × 2−4 + . . . + dk−1 × 21−k + dk × 2−k)
= d3 + d4 × 2−1 + . . . + dk−1 × 24−k + dk × 23−k . (1.2.2)

In general, we get that the ith digit di is the integer part of

ri = 2i (d − d1 × 2−1 − d2 × 2−2 − . . . − di−1 × 21−i) (1.2.3)

for i = 2, 3, 4, k.
We however need a more efficient way to find the digits di. We have from (1.2.1) that

r2 = 2(2d − d1) = 2(r1 − d1) . (1.2.4)

We have from (1.2.2) that

r3 = 2(2(2d − d1) − d2) = 2(r2 − d2) .

We prove by induction that
ri+1 = 2(ri − di) (1.2.5)

for i = 1, 2, . . . , k − 1. It follows from (1.2.4) that (1.2.5) is true for i = 1. Let’s suppose that
(1.2.5) is true for i = j < k − 1. We have from (1.2.3) with i = j + 2 that

rj+2 = 2j+2 (d − d12−1 − d22−2 − . . . − dj2−j − dj+12−j−1)

8 1. Computer Arithmetic

= 2(2j−1 (d − d12−1 − d22−2 − . . . dj2−j)
´¹¹¸¹¹¹¶

=rj+1 from (1.2.3) with i=j+1

+dj+1)

= 2 (rj+1 − dj+1) .

This is (1.2.5) with i = j + 1. This complete the proof by induction.

Example 1.2.2
The binary representation of 1/10 is (0.00011)2.

Let (1/10)2 = (0.d1d2d3 . . .)2. We summarize in the table below the computation using
r1 = 2d and ri+1 = 2(ri − di) for i = 1, 2, . . .

i ri di
(the integer part of ri)

1 2 × 1/10 = 1/5 0
2 2(r1 − 0) = 2/5 0
3 2(r2 − 0) = 4/5 0
4 2(r3 − 0) = 8/5 = 1.6 1
5 2(r4 − 1) = 6/5 = 1.2 1
6 2(r5 − 1) = 2/5 0
⋮ ⋮ ⋮

Since r6 = r2 and d6 = d2, we get that d7 = d3, d8 = d4, d9 = d5 and, in general, di = di−4 for
i = 6, 7, ♣

1.3 Computer Numbers

To illustrate the properties of computer arithmetic, we assume that each real number is
stored in a 32-bit word. The typical computer representation of a normalized binary number
x = ±(0.b1b2b3 . . .)2 × 2m is given by

s e8e7e6 . . . e1 b2b3 . . . b24 ,

where s indicates the sign of x, (e8e7 . . . e1)2 = (m)2 + (1111111)2, and b1, b2, b3, . . . b24 are
the first 24 binary digits of the normalized representation of x. The part (b1b3 . . . b24)2 is
called the normalized mantissa.

Remark 1.3.1

1. We did not store the value of b1 because we always assume that the binary numbers
are normalized and so b1 is always 1.

2. Let e be the decimal representation of the number (e8e7 . . . e1)2. Then 0 ≤ e < 28 = 256
but, in practice, only 1 ≤ e ≤ 254 is used because the values 0 and 255 are often
reserved to indicate really small or large numbers, and NaN (not a number). We get
NaN following an illegal operation like a division by zero.

To represent negative exponents, we assume that e = m + 127. Thus, −126 ≤ m ≤ 127.
In binary notation (m)2 = (e8e7 . . . e1)2 − (1111111)2.

1.3. Computer Numbers 9

3. 0 has its unique computer representation (associated to e = 0 or 255).

♠
The computer representation of a real number x is called the floating point represen-

tation of x and is denoted by fl(x). The difference between a real number and its computer
representation is called the rounding error.

There are major differences between the standard arithmetic and the computer arithmetic.
We mention some below.

• Not all real numbers can be represented as computer numbers. There are “holes” in
the computer representation of the real line. For instance, the binary representation
of 1/10 is (0.1100)2 × 2−(11)2 . Hence, the machine representation of this number is

0 1111100 10011001100110011001100 .

This machine number represents in fact the number

(2−1 + 2−2 + 2−5 + 2−6 + 2−9 + 2−10 + 2−13 + 2−14 + 2−17 + 2−18

+ 2−21 + 2−22)2−3 = 0.09999999403954 . . .

• Not all real numbers can be represented as computer numbers. There are upper and
lower bounds to the real numbers that can be represented on a computer. The largest
real number that can be represented as computer number is

RM = (0.1111 . . .1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
24 times

)2 × 2127 = (1 − 2−24) × 2127 ≈ 0.17014117 . . . × 1038

and the smallest positive number is

Rm = (0.1000 . . .0´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
23 times

)2 × 2−126 = 2−127 ≈ 0.587747 . . . × 10−38 .

If the result of a computation is a number bigger than RM , then we say that we have
overflow. If the result of a computation is a number smaller than Rm, than we have
underflow.

• The fundamental algebraic properties of the real number system (commutativity, as-
sociativity, . . .) are not preserved.

Suppose that the basic computer operations (+, −, ×, ÷) are defined as follows.

exact operation computer operation
x ± y fl(fl(x) ± fl(y))
x × y fl(fl(x) × fl(y))
x ÷ y fl(fl(x) ÷ fl(y))

We also define the computer operation fl(
√
fl(x)) to represent the exact operation

√
x.

This is not exactly how computers work with computer numbers but it is an acceptable

10 1. Computer Arithmetic

definition to understand why the fundamental algebraic properties of the real number
system are not preserved.

If we work in base 10 using 4-digit rounding representations, the computer evaluation
of π + (1/3) × π is given by

fl(fl(π) + fl(fl(1/3) × fl(π))) = fl((0.3142 × 10) + fl(0.3333 × (0.3142 × 10)))
= fl((0.3142 × 10) + fl(1.0472286000000))
= fl((0.3142 × 10) + (0.1047 × 10))
= fl(4.189) = 0.4189 × 10

The computer evaluation of π × (1 + (1/3)) = π + (1/3) × π is given by

fl(fl(π) × fl(fl(1) + fl(1/3))) = fl((0.3142 × 10) × fl((0.1 × 10) + (0.3333)))
= fl((0.3142 × 10) × fl(1.3333))
= fl((0.3142 × 10) × (0.1333 × 10))
= fl(4.188286) = 0.4188 × 10

Thus, we do not get the same 4-digit rounding representation for π + (1/3) × π and
π × (1 + (1/3)). The distributive law is not preserved.

Suppose that p is the exact result of a computation and p̃ is the computer result of
this computation. The number ϵ = ∣p − p̃∣ is the absolute error. If p ≠ 0, the number
ϵr = ∣p − p̃∣/∣p∣ = ϵ/∣p∣ is the relative error.

If the absolute error is 0.1, where the numbers p and p̃ are smaller than 1 in absolute
value, then the error is enormous. However, when the numbers p and p̃ are larger than 106

in absolute value, the same absolute error is very small. The absolute error by itself does
not say anything about the accuracy of the computation. The relative error is the useful
information about the size of the error.

Example 1.3.2
22/7 and 315/113 are two frequently used approximations of π. We find the absolute and
relative errors of these two approximations of π. The absolute and relative error of the
approximation 22/7 of π = 3.14159265358979 . . . are

∣3.14159265358979 . . . − 22/7∣ = 0.126442 . . . × 10−2

and
∣3.14159265358979 . . . − 22/7∣/3.14159265358979 . . . = 0.4024994 . . . × 10−3

respectively. A relative error of about 0.04 %. The absolute and relative error of the
approximation 355/113 of π are

∣3.14159265358979 . . . − 355/113∣ = 0.2668 . . . × 10−6

and
∣3.14159265358979 . . . − 355/113∣/3.14159265358979 . . . = 0.84914 . . . × 10−7

1.3. Computer Numbers 11

respectively. A relative error of about 0.0000085 %. ♣
Remark 1.3.3

For our 32-bit computer, if x = (0.b1b2b3 . . .)2 ×2m, we have that
∣x − fl(x)∣
∣x∣

≤ 2−24 if rounding

is used and
∣x − fl(x)∣
∣x∣

≤ 2−23 if chopping is used.

i) We prove that
∣x − fl(x)∣
∣x∣

≤ 2−24 if rounding is used. The number x is between the

computer numbers x1 = (0.b1b2b3 . . . b24)2 ×2m and x2 = ((0.b1b2b3 . . . b24)2 +2−24)×2m. Hence
fl(x) = x1 if b25 = 0 and fl(x) = x2 if b25 = 1.

If b25 = 0, then

∣x − fl(x)∣ = ∣x − x1∣ = (0.b26b27 . . .)2 × 2m−25 ≤ 2m−25

and
∣x − fl(x)∣
∣x∣

≤ 2m−25

(0.b1b2b3 . . .)2 × 2m
= 1

(0.b1b2b3 . . .)2
2−25 ≤ 2−24

because (0.b1b2b3 . . .)2 ≥ (0.b1)2 = (0.1)2 = 2−1.
If b25 = 1, then

∣x − fl(x)∣ = ∣x − x2∣ = ((1)2 − (0.b25b26 . . .)2) × 2m−24 ≤ 2m−25

because (1)2 − (0.b25b26 . . .)2 ≤ 2−1. Thus

∣x − fl(x)∣
∣x∣

≤ 2m−25

(0.b1b2b3 . . .)2 × 2m
= 1

(0.b1b2b3 . . .)2
2−25 < 2−24

because (0.b1b2b3 . . .)2 ≥ (0.b1)2 = (0.1)2 = 2−1.

ii) To prove that
∣x − fl(x)∣
∣x∣

≤ 2−23 if chopping is used. We note that

fl(x) = (0.b1b2b3 . . . b24)2 × 2m

and
∣x − fl(x)∣ = (0.b25b26b27 . . .)2 × 2m−24 < 2m−24 .

We do not exclude the possibility that some or all of b25, b26, . . . be zero. Thus

∣x − fl(x)∣
∣x∣

≤ 2m−24

(0.b1b2b3 . . .)2 × 2m
= 1

(0.b1b2b3 . . .)2
2−24 < 2−23

because (0.b1b2b3 . . .)2 ≥ (0.b1)1 = (0.1)2 = 2−1. ♠

12 1. Computer Arithmetic

Definition 1.3.4

Let r be a positive integer. We say that p̃ approximates p to r significant digits if

∣p − p̃∣ ≤ 1

2
βs−r+1 ,

where β is the basis used to represent the numbers and s is the largest integer such
that βs ≤ ∣p∣.

For instance, if the basis is β = 10, then p̃ approximate p to r significant digits if

∣p − p̃∣ ≤ 1

2
(10s−r+1) = 5 × 10s−r ,

where s is the largest integer such that 10s ≤ ∣p∣. Thus

∣p − p̃∣
∣p∣

≤ ∣p − p̃∣
10s

≤ 5 × 10−r .

The largest positive integer r such that the previous inequality is satisfied is the classical
definition of r significant digits.

Example 1.3.5
Both 10.001 and 9.999 approximate 10 to 4 significant digits because the relative error

ϵr =
∣10.001 − 10∣

10
= ∣10 − 9.999∣

10
= 10−4 < 5 × 10−4

and 4 is the largest integer r such that ϵr < 5 × 10−r. ♣

1.4 Controlling Errors

From now on and until the end of this chapter, our presentation will be more intuitive. We
will not always be mathematically rigorous. Our goal is to help the readers develop their
intuition on how to improve the accuracy of numerical computations. This is often referred
as the Art of numerical computation.

There are many causes for the loss of accuracy in computations.

1. Loss of accuracy often comes from the cancellation of significant digits due to subtrac-
tion of nearly equal numbers.

Let x = 5/7 = 0.714285 and y = 0.714251. Using 5-digit chopping arithmetic, we get

Exact 5-digit absolute relative number of
values chopping error error significant

arithmetic (approx.) (approx.) digits

x 0.714285 0.71428 0.6 × 10−5 0.8 × 10−5 5
y 0.714251 0.71425 0.1 × 10−5 0.14 × 10−5 6
x − y 0.34714285 × 10−4 0.3 × 10−4 0.47 × 10−5 0.136 1

1.4. Controlling Errors 13

We have lost a lot of significant digits in the subtraction x − y.

2. The rounding error of a computer number is amplified when this number is multiply
by a number of large absolute value or divide by a number of small absolute value.

3. A really small number should not be added to a very large number. Let x = 0.1234×105
and y = 0.4321. Using 4-digit rounding arithmetic to add this two numbers, we get
x + y = x because y = 0.000004321 and so x + y is 0.123404321 × 105. Rounding this
number to 4-digits gives x = 0.1234 × 105.

When possible, rearranging the order of the arithmetic operations may increase the ac-
curacy of the computation. The following three examples illustrate this technique.

Example 1.4.1
Use 6-digit rounding arithmetic to compute the roots of the polynomial x2 − 20x + 1 = 0.

The standard formulae to compute the roots of the polynomial of degree two ax2+bx+c = 0
are

x+ =
−b +
√
b2 − 4a c
2a

and x− =
−b −
√
b2 − 4a c
2a

. (1.4.1)

We get

x+ =
20 +
√
396

2
≈ 20 + 19.8997

2
≈ 19.9499 .

Since the exact value of this root is α = 19.9498743710661995 . . ., the relative error is

19.9499 − α
α

≈ 0.128 × 10−5 .

The second root is

x− =
20 −
√
396

2
≈ 20 − 19.8997

2
= 0.1003

2
= 0.05015 .

Since the exact value of this root is β = 0.050125628933800 . . ., the relative error is

0.05015 − β
β

=≈ 0.486 × 10−3 .

This is not really good for 6-digit rounding.

If c ≠ 0, the roots of the polynomial ax2 + bx + c = 0 are also given by the formulae

x+ =
−2c

b +
√
b2 − 4a c

and x− =
2c

−b +
√
b2 − 4a c

. (1.4.2)

Multiply the formula for x+ in (1.4.1) by
−b −
√
b2 − 4ac

−b −
√
b2 − 4ac

and the formula for x− in (1.4.1) by

−b +
√
b2 − 4ac

−b +
√
b2 − 4ac

to get the formulae in (1.4.2).

14 1. Computer Arithmetic

We get

x− =
2

20 +
√
396
≈ 2

20 + 19.8997
= 2

39.8997
≈ 0.0501257 .

The relative error is now
0.0501257 − β

β
= 0.142 × 10−5 .

This is good. This is a significant improvement on the previous computation of x−.

The idea is to avoid the subtraction of almost equal numbers. In the formula for x− in
(1.4.1), we had to compute 20 − 19.8997 which is the difference of two very close numbers.
In the formula for x− in (1.4.2), we did not have to subtract two very close numbers. This
is the reason why, for the polynomial x2 − 20x + 1 = 0, the second formula to compute x− is
better than the first one. ♣
Example 1.4.2
Compute

f(x) = x3 − 6x2 + 3x − 0.149 (1.4.3)

at x = 4.71 using 3-digit rounding arithmetic.

A direct computation using (1.4.3) and 3-digit rounding arithmetic gives f(x) = −0.140×
102. Using the fact that f(x) = −14.636489, we find that the absolute error is 0.636489, the
relative error is about 0.04, and the approximation is to 2 significant digits.

A better way to write f(x) is to use the nested form

f(x) = −0.149 + x(3 + x(x − 6)) . (1.4.4)

Using (1.4.4) and 3-digit rounding arithmetic, we get f(x) = −0.146 × 102. The absolute
error is 0.36489 × 10−1, the relative error is about 0.25 × 10−2, and the approximation is to 3
significant digits.

The nested form must always be used to evaluate a polynomial because less arithmetic
operations are generally involved. For instance, 5 multiplications and 3 additions / subtrac-
tions are involved in (1.4.3) while only 2 multiplications and 3 additions / subtractions are
involved in (1.4.4). ♣
Example 1.4.3
Using 4-digit chopping arithmetic, add the following numbers in increasing order (from the
smallest to the largest) and in decreasing order (from the largest to the smallest).

x1 = 0.1580 , x2 = 0.2653 , x3 = 0.2581 × 10 , x4 = 0.4288 × 10 , x5 = 0.6266 × 102 ,
x6 = 0.7555 × 102 , x7 = 0.7767 × 103 , x8 = 0.7889 × 103 and x9 = 0.8999 × 104 .

The exact value of the sum is 0.107101023 × 105.

4-digit absolute relative number of
chopping error error significant
arithmetic (approx.) (approx.) digits

increasing 0.1071 × 105 0.1023 0.96 × 10−5 5
decreasing 0.1069 × 105 20.1 0.19 × 10−2 3

1.5. Stability 15

The numbers x1, x2, x3 and x4 are ignored when the summation is performed in decreasing
order. This is another example where adding a really small number to a very large number
produces a loss of accuracy. ♣

1.5 Stability

The numerical solution of many problems is approximated by the solution of a difference
equation. For instance, the Euler’s method, that is taught in calculus and that we will study
again later, states that the solution of the difference equation

wj+1 = wj + hf(xj,wj) for j = 0,1,2, . . .
w0 = y0

provides an approximation to the solution of the differential equation y′ = f(x, y) with
y(0) = y0. Namely, y(xj) ≈ wi for j = 0, 1, 2, . . . The xj’s are the mesh points defined by
xj = x0 + jh for j ≥ 0, where h is the chosen step size.

Suppose that the solution of a problem is approximated by the solution of the difference
equation

xn+1 =
10

21
xn −

1

21
xn−1 (1.5.1)

with the initial conditions x0 = 1 and x1 = 1/3. Using (1.5.1) recursively, we find

n xn
x2 0.11111111111111 . . .
x3 0.03703703703703 . . .
⋮ ⋮
x10 0.000016935087808430 . . .
⋮ ⋮
x21 0.95599066359747 . . . × 10−10
⋮ ⋮

The exact solution of (1.5.1) is xj = (1/3)j for j = 0, 1, 2, . . . The previous values computed
recursively are exact to all written digits.

However, the solution of another problem may be approximated by the solution of the
difference equation

xn+1 =
16

3
xn −

5

3
xn−1 (1.5.2)

with the initial conditions x0 = 1 and x1 = 1/3. Using (1.5.2) recursively, we find

n xn
x2 0.11111111111111 . . .
x3 0.03703703703703 . . .
x4 0.01234567901234 . . .

16 1. Computer Arithmetic

x5 0.00411522633742 . . .
⋮ ⋮
x10 0.00001693501310 . . .
⋮ ⋮
x20 −0.00072952204841 . . .
⋮ ⋮
x40 −0.69572671433304 . . . × 1011
⋮ ⋮

The exact solution of (1.5.1) is xj = (1/3)j for j = 0, 1, 2, . . . For j = 2 and 3, the xj’s
are exact to all written digits. However, starting with j = 14, there is a growing difference
between the exact solution and the computed solution. In fact, the computed solution seems
to converge to −∞.

Why can we compute the solution for (1.5.1) but not the solution for (1.5.2)? The general
solution of (1.5.1) is of the form

xj = A(
1

3
)
j

+B (1
7
)
j

.

The particular solution with x0 = 1 and x1 = 1/3 is given by A = 1 and B = 0. Numerical
rounding has an effect similar to slightly changing (a little perturbation of) the values of
A and B. Since (1/7)j converge to 0 faster than (1/3)j as j → ∞, the second term of the
general solution has little or no significant effect on the compute value of xj.

However, the general solution of (1.5.1) is of the form

xj = A(
1

3
)
j

+B4j .

The particular solution for x0 = 1 and x1 = 1/3 is given by A = 1 and B = 0. Again, numerical
rounding has an effect similar to slightly changing (a little perturbation of) the values of A
and B. Since 4j converges to ∞ while (1/3)j converges to 0 as j →∞, the term B4j of the
general solution will dominate the computation of xj as j →∞ even if B is really small.

We say that a numerical method behaving like (1.5.1) is stable and a numerical method
behaving like (1.5.2) is unstable. We will come back on these concepts several times in the
next chapters; in particular in Chapters 13 and 14.

1.6 Conditioning

Will a small perturbation in the data of a numerical process produce a small change or a
large change in the result of this numerical process? This type of questions is part of what
is called conditioning.

We say that a numerical process is well conditioned if a small perturbation in the data
of this numerical process produces a small change in the result of this numerical process. We

1.6. Conditioning 17

say that a numerical process is ill conditioned if a small perturbation in the data of this
numerical process produces a large change in the result of this numerical process.

A simple example of conditioning is provided by the numerical evaluation of a function.
Due to rounding errors (in particular to the rounding error associated to the argument), the
numerical evaluation of a function f at x is equal to the exact value of f evaluated at x+h,
where the perturbation h is small. If, for h small, the exact value f(x + h) is close to the
exact value f(x), then we say that the numerical evaluation of f at x is well conditioned.
Otherwise, we say that the numerical evaluation of f at x is ill conditioned.

To give a mathematical meaning to well conditioned and ill conditioned in the context of
the evaluation of f at x, we use the Taylor expansion1 of f at x,

f(x + h) = f(x) + f ′(x)h + f
′′(ζ)
2

h2 ,

where x < ζ < x + h. Hence

f(x + h) − f(x)
f(x)

= f
′(x)
f(x)

h + f
′′(ζ)

2f(x)
h2 = (xf

′(x)
f(x)

) (h
x
) + f

′′(ζ)
2f(x)

h2 .

If h is small enough, we may ignore the term (f ′′(ζ)h2)/(2f(x)) because h2 goes to 0 faster
than h. Hence,

f(x + h) − f(x)
f(x)

≈ (xf
′(x)

f(x)
) (h

x
)

for h small enough. The relative error of f(x+h) (i.e. the numerical evaluation of a function
f at x) is asymptotically proportional to the relative size of the perturbation h with the
constant of proportionality

xf ′(x)
f(x)

.

This constant is called the condition number for the evaluation of the function f at x.
This condition number will depend on the function f chosen and the argument x used. If
the condition number is large in absolute value, then we say that the evaluation of f at x
is ill conditioned. If the condition number is small in absolute value, then we say that the
evaluation of f at x is well conditioned.

Example 1.6.1
Is evaluating f(x) = tan(x) near x = π/2 well or ill conditioned?

The condition number is

xf ′(x)
f(x)

= x sec
2(x)

tan(x)
= x

sin(x) cos(x)
.

Since
lim

x→π/2

x

sin(x) cos(x)
= +∞ ,

1See Theorem 2.1.6 in the next chapter.

18 1. Computer Arithmetic

the conditional number is very large for x near π/2 and the evaluation of f at x near π/2 is
ill conditioned. ♣

There is also a condition number associated to the numerical process of solving linear
systems of equation. This condition number will be defined in the chapter on the algorithms
to numerically solve linear systems of equations.

1.7 Exercises

Question 1.1

Compute (1
3
− 3

11
) + 3

20
using 3-digit chopping arithmetic and 3-digit rounding arithmetic.

Compare the relative error of both computations.

Question 1.2

Using 3-digit chopping arithmetic, compute
10

∑
i=1

1

i2
in ascending and decreasing order. Com-

pute the relative error for each method. Which method is more accurate and why it is so?

Question 1.3

We know that e =
∞
∑
n=0

1

n!
. Using 4-digit rounding arithmetic, compute the approximation

5

∑
n=0

1

n!
of e using the best method to compute the sum. Compute the absolute error, the

relative error and the number of significant digits.

Question 1.4
Assuming that 10-digit rounding arithmetic is used, how many digits of accuracy are lost in
the subtraction 1 − cos(0.25)?
Question 1.5
If 0.2235 is a 4-digit rounding approximation of x and 0.32145 is a 5-digit rounding approx-
imation of y, find a small interval that will contain x/y.
Question 1.6
If x is an approximation of π with four significant digits, find a small interval that will
contain x.

Question 1.7
a) Give the best algebraic formula (the formula with the lowest risk to lose significant digits)
to approximate the smallest root x− of the polynomial p(x) = x2 − 235x + 3 . Justify your
choice of formula.
b) Using 4-digit rounding arithmetic and the formula that you have given in (a), compute
an approximation of x−. Show all the steps of your computation.
c) The exact value of x− is 0.012766651010 Compute the absolute error, the relative
error and the number of significant digits for your approximation in (b).

1.7. Exercises 19

Question 1.8
What can go wrong with the operation

√
x2 + y2 for very large values of x and y. How can

you avoid such problem?

Question 1.9
Why is there a loss of significant digits when computing ln(1 + x) − ln(x) for x large? How
can we rewrite ln(1 + x) − ln(x) to avoid this loss of significant digits?

Question 1.10
Transform the expression 1 − cos(x) to an equivalent expression which can be computed
“accurately” for small values of x.

Question 1.11
Find a way to compute f(x) =

√
x4 + 4−2 for x small that will minimize the loss of significant

digits.

Question 1.12
In 1994, a flaw was found on the Intel Pentium computer chip related to the division of large
integers. The following results were obtained.

division x̃ ∶ the value obtained with x ∶ the exact value
the Intel computer chip

5505001

294911
18.66600092909 18.6666519729681 . . .

4.999999

14.999999
0.333329 0.3333332888888 . . .

41.95835

31.45727
1.33382 1.33382044913624 . . .

Find the absolute error, relative error and number of significant digits for the values obtained
with the Intel computer chip.

Question 1.13
Show that the recurrence relation (i.e. the difference equation)

xn = 2xn−1 + xn−2 (1.7.1)

has a general solution of the form

xn = α1λ
n
1 + α2λ

n
2

for n = 0, 1, 2, . . . Can we safely use the recurrence relation to compute the values of xn
given initial values x0 and x1?

20 1. Computer Arithmetic

Chapter 2

Iterative Methods to Solve Nonlinear
Equations

The classical problem is to find the solutions of the equation

f(x) = 0 , (2.0.1)

where f ∶ R → R is a given function. Namely, the goal is to find the numbers p such that
f(p) = 0. The numbers p are called the roots or zeros of f .

2.1 Real Analysis Background

We present some of the well know results in real analysis that will be used to justify the
numerical methods presented in this book.

Theorem 2.1.1

If {xn}∞n=0 is a bounded and increasing sequence of R, then it converges toM = sup{xn ∶
n ≥ 0} ∈ R.

Theorem 2.1.2 (Intermediate Value Theorem)

Let a < b be two real numbers and f ∶ [a, b] → R be a continuous function. If α is
between f(a) and f(b) (α may be f(a) or f(b)), then there exists c between a and b
(c may be a or b) such that f(c) = α.

Corollary 2.1.3

Let a < b be two real numbers and f ∶ [a, b]→ R be a continuous function. If f(a) f(b) <
0, then there exists a zero of f in the interval]a, b[.

21

22 2. Iterative Methods to Solve Nonlinear Equations

Proof.
Since f(a) and f(b) are of opposite sign, 0 is between f(a) and f(b). By the previous
theorem with α = 0, there exists c between a and b such that f(c) = 0. We have c ≠ a and
c ≠ b because f(a) ≠ 0 and f(b) ≠ 0.

Theorem 2.1.4 (Extremum Theorem)

Let a < b be two real numbers and f ∶ [a, b]→ R be a continuous function. Then there
exist xs and xi in [a, b] such that

f(xi) ≤ f(x) ≤ f(xs)

for all x ∈ [a, b].

Theorem 2.1.5 (Mean Value Theorem)

Let a < b be two real numbers and f ∶ [a, b] → R be a continuous function. Suppose
that f is differentiable on]a, b[. Then there exists c between a and b such that

f ′(c) = f(b) − f(a)
b − a

.

Theorem 2.1.6 (Taylor’s Theorem)

Let a < b be two real numbers. Suppose that f ∶ [a, b] → R is a n-time continuously
differentiable function on [a, b], that f (n+1)(x) exists for all x ∈]a, b[, and that c ∈]a, b[.
Then, for every x ∈ [a, b], there exists ξ(x, c) between x and c such that

f(x) = pn(x) + rn(x) ,

where

pn(x) = f(c) + f ′(c)(x − c) +
f ′(c)
2!
(x − c)2 + . . . + f

(n)(c)
n!

(x − c)n

and

rn(x) =
f (n+1)(ξ(x, c))
(n + 1)!

(x − c)n+1 .

2.2 Bisection Method

The idea is to construct a sequence of nested intervals {[an, bn]}∞n=0 of decreasing length such
that the sign of a function f at an is different than its sign at bn. Thus, f must have a root

2.2. Bisection Method 23

at some point in the interval [an, bn] according to Corollary 2.1.3.

Algorithm 2.2.1 (Bisection)

Suppose that f is continue on [a, b] and f(a) f(b) < 0.

1. Choose a0 = a and b0 = b.

2. Stop if f(a0)f(b0) = 0 because one of a0 or b0 is a root of f .

3. Given an and bn such that f(an) f(bn) < 0, let xn+1 =
an + bn

2
.

4. Stop if f(xn+1) = 0 since p = xn+1 is a root of f .

5. If f(xn+1) f(an) < 0, set an+1 = an and bn+1 = xn+1. If f(xn+1) f(an) > 0, set
an+1 = xn+1 and bn+1 = bn.

6. Repeat (3), (4) and (5) until the interruption criteria are satisfied (more on the
interruption criteria later).

Proposition 2.2.2

In the algorithm for the bisection method, bn − an = (b − a)/2n.

Proof.
We prove by induction that the interval [an, bn] is of length (b − a)/2n.

We have b0 − a0 = b − a = (b − a)/20. Hence, the interval [a0, b0] is of length (b − a)/20.
Suppose that the interval [an, bn] is of length (b−a)/2n; namely, bn−an = (b−a)/2n. Since

[an+1, bn+1] is half the length of [an, bn], we have

bn+1 − an+1 = (bn − an)/2 = (b − a)/2n+1 ,

where we have used the hypothesis of induction for the second equality. Hence, the interval
[an+1, bn+1] is of length (b − a)/2n+1.

By induction, we then have that [an, bn] is of length (b − a)/2n for all n ≥ 0.

Corollary 2.2.3

In the algorithm for the bisection method,, the approximation xn is within (b − a)/2n
of a root r of f in the interval [a, b].

Proof.
Since f change sign in the interval [an−1, bn−1], there is a root r of f in the interval [an−1, bn−1].
Since the approximation xn of r is the middle point of the interval [an−1, bn−1], the absolute
error ∣xn − r∣ satisfies ∣xn − r∣ < (bn−1 − an−1)/2 = (b − a)/2n according to Proposition 2.2.2.

24 2. Iterative Methods to Solve Nonlinear Equations

Proposition 2.2.4

In the algorithm for the bisection method,

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

xn

and this limit is a root of f .

Proof.
Since a0 ≤ a1 ≤ a2 ≤ . . . ≤ b, the sequence {an}∞n=0 is an increasing and bounded sequence. It
follows from Theorem 2.1.1 that {an}∞n=0 converges. Let α be this limit.

Similarly, since b0 ≥ b1 ≥ b2 ≥ . . . ≥ a, the sequence {bn}∞n=0 is a decreasing and bounded
sequence. Thus {bn}∞n=0 converges. Let β be this limit.

Moreover,
α − β = lim

n→∞
an − lim

n→∞
bn = lim

n→∞
(an − bn) = 0

by Proposition 2.2.2.

Since an ≤ xn+1 ≤ bn for all n, we have by the sandwich theorem that {xn}∞n=0 also converge
to α = β.

Finally, since f(an)f(bn) ≤ 0 for all n, we have

(f(α))2 = f(α)f(α) = lim
n→∞

f(an)f(bn) ≤ 0 .

Hence f(α) = 0 and α is a root of f .

Example 2.2.5
Find an approximation of

√
2 using the bisection method. Stop when the length of the

interval is less than 10−2. Find a bound on the absolute error.

The question is to find the positive root of f(x) = x2 − 2 = 0. Let a0 = 1 and b0 = 2. Since
f(1) = −1 < 0 < 2 = f(2), there is a root of f in the interval [1,2]. If

xn+1 =
an + bn

2
,

we get
n xn an bn ∣bn − an∣ f(xn) f(an−1)
0 1 2 1.0
1 1.500000 1 1.500000 .500000 + −
2 1.250000 1.250000 1.500000 .250000 − −
3 1.375000 1.375000 1.500000 .125000 − −
4 1.437500 1.375000 1.437500 .062500 + −
5 1.406250 1.406250 1.437500 .031250 − −
6 1.421875 1.406250 1.421875 .015625 + −
7 1.4140625 1.4140625 1.421875 .0078125 − −
8 1.4179688

2.3. Interruption criteria 25

The answer is
√
2 ≈ 1.4179688. There is a root in the interval [1.4140625,1.421875]. So

(1.421875 − 1.4140625)/2 = 1/28 = 0.00390625 is an upper-bound on the absolute error. ♣
Example 2.2.6
Using the formula provided by the bisection method, determine the smallest number of
iterations in the previous example to get an absolute error lest than 10−4 ?

We choose n such that ∣bn − an∣ = (b − a)/2n < 10−4. This is 2−n < 10−4. Thus,

ln(2−n) < ln(10−4)⇒ −n ln(2) < −4 ln(10)⇒ n > 4 ln(10)/ ln(2) ≈ 13.2877

and 14 iterations will be sufficient. ♣

2.3 Interruption criteria

There are three interruption criteria that are usually used in the implementation of iteration
methods:

1. Stop after N iterations (N is given).

2. Stop when ∣xn+1 − xn∣ < ϵ (ϵ is given).

3. Stop when ∣f(xn)∣ < η (η is given).

We give below an implementation of the bisection method in Matlab, where we make use
of the criteria 1 and 3.

Code 2.3.1 (Bisection)

To approximate the zeros of a function f .
Input: The function f (funct in the code below).
The endpoints a and b of the interval on which f changes sign.
The error tolerance (tol in the code below).
Output: The approximation x to a root of f .

% x = bisection(funct,a,b,tol)

function x = bisection(funct,a,b,tol)

fa = feval(funct,a);

fb = feval(funct,b);

x = NaN;

if (a >= b)

disp([’a must be smaller than b.’])

return;

end

% We compute the theoritical number of iterations needed to reach

26 2. Iterative Methods to Solve Nonlinear Equations

% the accuracy requested. This also prevent any infinite loops.

%

% From (b-a)/2^n < tol we get

N = ceil(log2((b-a)/tol));

% We replace fa*fb > 0 by a simple comparison of the signs of these

% values. We avoid a multiplication.

if (sign(fa) == sign(fb))

disp(sprintf(’The bisection algorithm cannot be used because f(%f)

= %f and f(%f) = %f have the same sign.’,a,b,fa,fb));

return;

end

p = b - a;

% We stop at i = N-1 because x_N is computed at i = N-1.

for i=1:N-1

p = p/2;

% Instead of using the formula (a+b)/2 to compute the middle

% point, we simply add p to a.

x = a + p;

fx = feval(funct,x);

% The test fx == 0 is not reliable because it is extremely rare

% that the numerical evaluation of a function will give exactly 0.

% We replace this test by abs(fx) < 2*realmin , where realmin is the

% smallest number that the computer may handle.

if (abs(fx) <= 2*realmin)

return;

end

% We replace fa*fx < 0 by a simple comparison of the signs of these

% values. We avoid a multiplication.

% We also store the value fx of f at the midpoint x into fa if

% a takes the value x or into fb if b takes the value x.

% This eliminates the need to compute f again at x.

if (sign(fx) ~= sign(fa))

b = x;

fb = fx;

else

a = x;

fa = fx;

end

end

end

2.4. Fixed Point Method 27

2.4 Fixed Point Method

To find a root of f , we rewrite (2.0.1) as

x = g(x) , (2.4.1)

where g ∶ R→ R.
Given x0, we hope that the sequence x0, x1, . . . defined by

xn+1 = g(xn) for n = 0,1,2, . . . (2.4.2)

will converge to a fixed point p of g; namely, a point p such that g(p) = p.
We say that (2.0.1) and (2.4.1) are equivalent (on a given interval) if a root of f is a

fixed point of g and vice-versa. The problem is to choose g and x0 adequately.

Example 2.4.1

f(x) = x3 + 9x − 9 = 0

is equivalent to
g(x) = (9 − x3)/9 = x .

♣

Theorem 2.4.2 (Fixed Point Theorem)

Let g be a real valued function satisfying the following conditions.

1. g(x) ∈ [a, b] for all x ∈ [a, b].

2. There exists a number K such that 0 <K < 1 and ∣g(x) − g(y)∣ ≤K ∣x − y∣ for all
x, y ∈ [a, b].

Then g has a unique fixed point p ∈ [a, b] and, given x0 ∈ [a, b], the sequence defined
by (2.4.2) converges to p as n goes to ∞. Moreover,

∣xn − p∣ ≤Kn max{x0 − a, b − x0} (2.4.3)

and

∣xn − p∣ ≤
Kn

1 −K
∣x1 − x0∣ . (2.4.4)

Proof.
We begin by proving the existence and uniqueness of the fixed point. Note that the second
hypothesis of the theorem implies that g is a continuous function on [a, b].

28 2. Iterative Methods to Solve Nonlinear Equations

Since g(a) ≥ a and g(b) ≤ b, the function h(x) = g(x)−x is a continuous function on [a, b]
such that h(b) ≤ 0 ≤ h(a). By the Intermediate Value Theorem, there exists p ∈ [a, b] such
that h(p) = 0; namely, g(p) = p.

Suppose that p1 and p2 are two distinct fixed points of g in [a, b]. We have

∣p1 − p2∣ = ∣g(p1) − g(p2)∣ ≤K ∣p1 − p2∣ < ∣p1 − p2∣ .

This is a contradiction.

We now prove (2.4.3) and (2.4.4).

Let p be the unique fixed point of g in [a, b] and let x0 be a point in [a, b]. Since
g ∶ [a, b] → [a, b], the sequence {xn}∞n=0 defined by xn+1 = g(xn) for n ≥ 0 is a well defined
sequence in [a, b]. Hence,

∣xn − p∣ = ∣g(xn−1) − g(p)∣ ≤K ∣xn−1 − p∣ =K ∣g(xn−2) − g(p)∣ ≤K2∣xn−2 − p∣
= . . . ≤Kn∣x0 − p∣→ 0

as n →∞ because 0 < K < 1. Moreover, since ∣x0 − p∣ ≤ max{x0 − a, b − x0}, we get ∣xn − p∣ ≤
Knmax{x0 − a, b − x0}. This prove (2.4.3).

To prove (2.4.4), we write

∣xn+1 − xn∣ = ∣g(xn) − g(xn−1)∣ ≤K ∣xn − xn−1∣ =K ∣g(xn−1) − g(xn−2)∣ ≤K2∣xn−1 − xn−2∣
= . . . ≤Kn∣x1 − x0∣ .

Hence, for m > n,

∣xm − xn∣ = ∣xm − xm−1 + xm−1 − xm−2 + . . . − xn+1 + xn+1 − xn∣
≤ ∣xm − xm−1∣ + ∣xm−1 − xm−2∣ + . . . + ∣xn+1 − xn∣
≤ (Km−1 +Km−2 + . . . +Kn)∣x1 − x0∣
=Kn(Km−n−1 +Km−n−2 + . . . +K + 1)∣x1 − x0∣ .

If we let m goes to infinity, we get

∣p − xn∣ ≤Kn (
∞
∑
i=0

Ki) ∣x1 − x0∣ =
Kn

1 −K
∣x1 − x0∣ .

The series in the previous expression is the geometric series which converges because ∣K ∣ <
1.

Definition 2.4.3

A continuous function g ∶ [a, b] → R for which there exists 0 < K < 1 satisfying
∣g(x) − g(y)∣ ≤K ∣x − y∣ for all x, y, ∈ [a, b] is called a contraction on [a, b].

Remark 2.4.4
In Theorem 2.4.2, the second hypothesis is that g ∶ [a, b]→ [a, b] is a contraction.

2.4. Fixed Point Method 29

If g in Theorem 2.4.2 is differentiable and there exists 0 < K < 1 such that ∣g′(x)∣ ≤ K
for all x ∈ [a, b], then the second hypothesis is satisfied. This is a consequence of the Mean
Value Theorem. For every x, y ∈ [a, b], there exists η between x and y such that

∣g(x) − g(y)∣ = ∣g′(η)∣ ∣x − y∣ ≤K ∣x − y∣

because η ∈ [a, b]. ♠
Example 2.4.5
Find an approximation to a root of f(x) = x3 + 9x − 9.

Because f(0) f(1) = −9 < 0, the function f has a root between 0 and 1. In Example 2.4.1.
we saw that f(x) = x3 + 9x − 9 = 0 is equivalent to g(x) = (9 − x3)/9 = x. Thus, the problem
is to approximate a fixed point of g in [0,1].

We show that g on the interval [0,1] satisfies the hypotheses of the Fixed Point Theorem,
Because g′(x) = −x2/3 < 0 for all x > 0, the function g is decreasing on [0,1]. Hence,
8/9 = g(1) ≤ g(x) ≤ g(0) = 1 for all x ∈ [0,1]. We have shown that g ∶ [0,1] → [0,1] and thus
the first hypothesis of the Fixed Point Theorem is satisfied with [a, b] = [0,1]. As mentioned
in Remark 2.4.4, the second hypothesis of the Fixed Point Theorem is satisfied with K = 1/3
because ∣g′(x)∣ = ∣ − x2/3∣ ≤ 1/3 for all x in [0,1].

All conditions of the Fixed Point Theorem are satisfied. So, we may use it to approximate
a fixed point p of g. The following table gives the first five iterations of xn+1 = g(xn) with
x0 = 0.5. The absolute and relative errors have been computed using the exact value of the
fixed point p; namely, p = 0.91490784153366

n xn ∣xn − p∣ ∣xn − p∣/∣p∣ number of
significant digits

0 0.5000000000 0.4149078415 0.4534968690 1
1 0.9861111111 0.0712032696 0.0778256195 1
2 0.8934545158 0.0214533257 0.0234486194 2
3 0.9207544589 0.0058466174 0.0063903894 2
4 0.9132660785 0.0016417630 0.0017944573 3
5 0.9153651027 0.0004572612 0.0004997894 4

♣
Example 2.4.6
Suppose that we want to approximate a root of f(x) = x3 + 4x2 − 10. The function f has a
root in [1,2] (show it). The four functions

g1(x) = 10 + x − 4x2 − x3 , g2(x) =
√

10

x
− 4x , g3(x) =

1

2

√
10 − x3

and

g4(x) = x −
−10 + 4x2 + x3

8x + 3x2

30 2. Iterative Methods to Solve Nonlinear Equations

are equivalent to f(x) = 0 on the interval [1,2]. We apply the fixed point method (without
checking if the conditions of the Fixed Point Theorem are satisfied) to each function gi with
x0 = 1.5.

n xn = g1(xn−1) xn = g2(xn−1) xn = g3(xn−1) xn = g4(xn−1)
0 1.5 1.5 1.5 1.5
1 −0.875 0.81649658 1.2869538 1.373333333
2 6.7324219 2.9969088 1.4025408 1.365262015
3 −469.72001 1.3454584 1.365230014
4 1.0275456 × 108 1.3751703 1.365230013
5 −1.0849339 × 1024 1.3600942 1.365230013

g1 and g2 generate sequences that do not converge. g2 even ends up generating complex
numbers. This shows that not all functions equivalent to f give converging fixed point
iterations. We note the fast convergence of the fixed point iteration for the function g4. We
will show in the next section why it is so. ♣

2.5 Newton’s Method

The idea is to construct a sequence {xi}∞i=0 which converges to a root p of a function f .

Algorithm 2.5.1 (Newton)

1. Choose x0 closed to a root p of f (if possible).

2. Given xn , compute

xn+1 = xn −
f(xn)
f ′(xn)

(2.5.1)

if f ′(xn) ≠ 0. If f ′(xn) = 0, start over with a better choice of x0.

3. Repeat (2) until the interruption criteria are satisfied.

This method is also known as Newton-Raphson’s Algorithm.

There is a nice graphical representation of the Newton’s method that can be found in
Figure 2.1. Let xn be an approximation of a root p of f obtained from Newton’s method. xn+1
is the x coordinate of the intersection of the tangent line to the curve y = f(x) at (xn, f(xn))
with the x-axis. The equation of the tangent line to the curve y = f(x) at (xn, f(xn)) is
y = f(xn) + f ′(xn) (x − xn). Hence xn+1 is the solution of 0 = f(xn) + f ′(xn) (x − xn). If
f ′(xn) /= 0, this is

xn+1 = xn −
f(xn)
f ′(xn)

.

2.5. Newton’s Method 31

y = f(x)

xn p xn+1
x

y = f(xn) + f ′(xn)(x − xn)
y

Figure 2.1: Newton’s Method

Theorem 2.5.2

Let f be a twice continuously differentiable function on [a, b]. Suppose that p ∈ [a, b] is
a root of f such that f ′(p) ≠ 0. Then there exists δ > 0 such that, for any x0 ∈ [p−δ, p+δ],
the sequence defined by (2.5.1) converges to p as n goes to ∞.

This theorem will be proved as part of the more informative Theorem 2.7.3.

Remark 2.5.3

The Newton’s method is the fixed point method defined by xn+1 = g(xn) with g(x) = x−
f(x)
f ′(x)

.

If p is a fixed point of g, then p = p − f(p)
f ′(p)

and we get f(p) = 0. ♠

Example 2.5.4
Find an approximation of

√
2 using the Newton’s method. Stop when the difference between

two consecutive iterations is smaller than 10−4.

As in Example 2.2.5, we find an approximation of the positive root of f(x) = x2 − 2. We
have

xn+1 = xn −
f(xn)
f ′(xn)

= xn −
x2n − 2
2xn

= x
2
n + 2
2xn

.

and start with x0 = 2.

n xn ∣xn−1 − xn∣ < 10−4
(rounded to 6 decimals)

0 2
1 1.5 0.5 no
2 1.416667 0.083333 no
3 1.414216 0.002451 no
4 1.414214 0.000002 yes

The answer we are looking for is x4 ≈ 1.414214. ♣

32 2. Iterative Methods to Solve Nonlinear Equations

Example 2.5.5
Use Newton’s method to find an approximation of a root of f given in Example 2.4.6. Stop
when the difference between two consecutive iterations is smaller than 10−10.

We have

xn+1 = xn −
f(xn)
f ′(xn)

= xn −
x3n + 4x2n − 10
3x2n + 8xn

= 2 (x3n + 2x2n + 5)
3x2n + 8xn

,

and we take x0 = 1.5.

n xn ∣xn−1 − xn∣ < 10−10
(rounded to 13 decimals)

0 1.5
1 1.3733333333333 0.126667 no
2 1.3652620148746 0.00807132 no
3 1.3652300139162 0.000032001 no
4 1.3652300134141 5.0205 × 10−10 no
5 1.3652300134141 2.22045 × 10−16 yes

The required approximation for the root of f is x5 ≈ 1.3652300134141. ♣

2.6 Secant Method

As for Newton’s method, the idea is to construct a sequence {xi}∞i=0 that converges to a root
p of f . The convergence of the secant method is generally slower than the convergence of
the Newton’s method but this secant method does not use the derivative of f . Moreover,
only one evaluation of f is needed at each step of the secant method while one evaluation of
f and one evaluation of f ′ are needed at each step of the Newton’s method.

Algorithm 2.6.1 (Secant)

1. Choose two distinct values x0 and x1 near a root p of f (if possible)

2. Given two distinct values xn−1 and xn, compute

xn+1 = xn − f(xn) (
f(xn) − f(xn−1)

xn − xn−1
)
−1
= xn −

f(xn) (xn − xn−1)
f(xn) − f(xn−1)

(2.6.1)

if f(xn) − f(xn−1) /= 0. If f(xn) − f(xn+1) = 0, start over with a better choice of
x0 and x1.

3. Repeat (2) until the interruption criteria are satisfied.

There is a graphical interpretation of the secant method which is given in Figure 2.2. Let
xn−1 and xn be two approximations of a root p of f . the next approximation xn+1 of p is
the x-coordinate of the intersection of the x-axis with the secant line for the curve y = f(x)

2.6. Secant Method 33

through (xn, f(xn)) and (xn−1, f(xn−1)). The equation of the secant line is

y = f(xn) +
f(xn) − f(xn−1)

xn − xn−1
(x − xn) .

Thus xn+1 is the solution of

0 = f(xn) − f(xn−1)
xn − xn−1

(x − xn) + f(xn) .

If f(xn) − f(xn−1) ≠ 0, this is

xn+1 = xn − f(xn) (
f(xn) − f(xn−1)

xn − xn−1
)
−1

.

y = f(x)

x
xn

xn−1 xn+1

y

y = f(xn) +
f(xn − f(xn−1)
xn − xn−1

(x − xn)

p

Figure 2.2: Secant Method

Remark 2.6.2

It is preferable to use the formula xn+1 = xn −
f(xn) (xn − xn−1)
f(xn) − f(xn−1)

instead of xn+1 = xn −

f(xn) (
f(xn) − f(xn−1)

xn − xn−1
)
−1

to reduce the risk of divisions by numbers (i.e. xn − xn−1) almost

equal to 0. ♠
Remark 2.6.3

The secant method is the fixed point method defined by (xn
xn+1
) = g (xn−1

xn
) with

g ∶ R2 → R2

(x
y
)↦
⎛
⎜
⎝

y

y − f(y)
F (x, y)

⎞
⎟
⎠
,

where F is defined by

F (x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(x) − f(y)
x − y

if x ≠ y

f ′(x) if x = y

34 2. Iterative Methods to Solve Nonlinear Equations

The point p is a root of f if and only if (p
p
) is a fixed point of g, The sequence {xn}∞n=0

converges to a root p of f if and only if the sequence {(xn
xn+1
)}
∞

n=0
converges to a fixed point

(p
p
) of g.

We will study the fixed point method in Rn in Chapter 5. ♠

2.7 Order of Convergence

The following definition is used to determine the “quality” of an iterative method.

Definition 2.7.1

Suppose that the sequence {xn}∞n=0 converges to p. Let en = xn−p. We say that {xn}∞n=0
converges to p of order α if there exists a non-zero real number λ such that

lim
n→∞
∣en+1∣
∣en∣α

= λ

If α = 1, we talk of linear convergence. If α = 2, we talk of quadratic convergence.

Theorem 2.7.2

Let g ∶ [a, b]→ R be a sufficiently continuously differentiable function. Suppose that p
is a fixed point of g in [a, b] such that one of the following conditions is satisfied.

k = 1 :
0 < ∣g′(p)∣ < 1 .

k = 2,3, . . . :
g′(p) = g′′(p) = . . . = g(k−1)(p) = 0 and g(k)(p) /= 0 .

Then there exists δ > 0 such that, for x0 ∈ [p− δ, p+ δ], the sequence defined by (2.4.2)
converges to p of order k as n goes to ∞.

Proof.
Choose K such that ∣g′(p)∣ <K < 1. By continuity of g′, there exists δ such that ∣g′(x)∣ ≤K
for all x in [p−δ, p+δ]. Using the Mean Value Theorem, it is easy to see that g ∶ [p−δ, p+δ]→
[p− δ, p+ δ] (show it). Hence, when restricted to [p− δ, p+ δ], the function g satisfies all the
hypothesis of the Fixed Point Theorem.

From the Fixed Point Theorem, p is the unique fixed point of g in [p−δ, p+δ]. Moreover,
if x0 ∈ [p − δ, p + δ], the sequence {xn}∞n=0 defined by xn+1 = g(xn) for n ≥ 0 converges to p.

2.7. Order of Convergence 35

The Taylor series expansion of g at p yields

xn+1 − p = g(xn) − g(p) =
1

k!
g(k)(ξn) (xn − p)k

for some ξn between xn and p. If xn → p as n → ∞, then ξn → p as n → ∞ because ξn is
between xn and p. Hence,

lim
n→∞
∣en+1∣
∣en∣k

= lim
n→∞
∣xn+1 − p∣
∣xn − p∣k

= lim
n→∞
∣g(k)(ξn)∣

k!
= ∣g

(k)(p)∣
k!

≠ 0 .

From the proof above, we have that the order of a fixed point method to find a root p of
a function g is the order of the first non-null derivative of g at p.

Theorem 2.7.3

Let f ∶ [a, b] → R be a twice continuously differentiable function. Suppose that p is a
root of f in [a, b] and f ′(p) ≠ 0. Then there exists δ > 0 such that, for x0 ∈ [p−δ, p+δ],
the sequence {xn}∞n=0 produced by the Newton’s method defined by (2.5.1) converges
to p at least quadratically as n goes to ∞.

Proof.
By continuity of f ′, there exists δ′ such that f ′(x) ≠ 0 for all x in [p − δ′, p + δ′]. Consider
g ∶ [p − δ′, p + δ′]→ R defined by

g(x) = x − f(x)
f ′(x)

.

This function satisfies the hypotheses of Theorem 2.7.2 with k > 1 because

g′(x) = f(x)f
′′(x)

(f ′(x))2

on [p − δ′, p + δ′] and so g′(p) = 0 because f(p) = 0.

Remark 2.7.4
If f ′(p) = 0 in the previous theorem, the convergence (if there is convergence) of the sequence
produced by the Newton’s method may not be quadratic. If the Newton’s method does not
produce a sequence converging to a root of the function f , or if it produces a sequence
converging very slowly to a root of f , it is possible to slightly modify the Newton’s method
to obtain a method that will produce a sequence converging quadratically to a root of f .

Suppose that p is a zero of multiplicity k > 1 of f ; that is, f(p) = f ′(p) = . . . =
f (k−1)(p) = 0 and fk(p) ≠ 0. Instead of (2.5.1), one uses the fixed point method with the
function

g(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x − k f(x)
f ′(x)

if x ≠ p

p if x = p

36 2. Iterative Methods to Solve Nonlinear Equations

Because p is a zero of multiplicity k of f , it is shown in Question 2.29 that we can write f
as f(x) = (x − p)k q(x) for some function q such that q(p) ≠ 0. Hence, for x ≠ p,

g(x) = x − k (x − p)k q(x)
k (x − p)k−1 q(x) + (x − p)k q′(x)

= x − k (x − p) q(x)
k q(x) + (x − p) q′(x)

.

This expression of g is well defined at p because the denominator of the fraction is different
of 0 at p. In fact, the right-hand side evaluated at p gives p.

Moreover,

g′(x) = 1 − k q(x) + k (x − p) q
′(x)

k q(x) + (x − p) q′(x)
+ (k (x − p) q(x)) (k q

′(x) + q′(x) + (x − p) q′′(x))
(kq(x) + (x − p)q′(x))2

.

Hence

g′(p) = 1 − kq(p)
kq(p)

= 0

and the convergence is at least quadratic. ♠

Theorem 2.7.5

Let f ∶ [a, b] → R be a twice continuously differentiable function. Suppose that p is a
root of f in [a, b], f ′(p) ≠ 0 and f ′′(p) ≠ 0. Then there exists δ > 0 such that, for x0
and x1 in [p − δ, p + δ], the sequence {xn}∞n=0 produced by the secant method defined

by (2.6.1) converges to p of order (1 +
√
5)/2 ≈ 1.618 . . . as n goes to ∞.

The proof of the convergence of the secant method is based on proving that the function
g defined in Remark 2.6.3 satisfies the hypothesis of the Fixed Point Theorem. This proof
will not be given here.

We will also not prove that there exist α > 0 and λ ≠ 0 such that

lim
n→∞
∣en+1∣
∣en∣α

= λ . (2.7.1)

This proof is tricky. We prove in Remark 6.2.17 of Section 6.2 that if there exist α > 0 and
λ ≠ 0 such that (2.7.1) is satisfied, then α must be the golden ratio (1 +

√
5)/2. To prove

this, we use divide difference formulae that are presented in Chapter 6.

2.8 Aitken’s ∆2 Process and Steffensen’s Algorithm

Suppose that p0 is an initial approximation for a fixed point p of a function g. Moreover,
suppose that the sequence {pn}∞n=0 defined by pn+1 = g(pn) for n ≥ 0 converges linearly to
p. We give a procedure to build a new sequence {p̂n}∞n=0 that converges “faster” to p than
{pn}∞n=0.

Let

∆pn = pn+1 − pn

2.8. Aitken’s ∆2 Process and Steffensen’s Algorithm 37

∆2pn =∆(∆pn) =∆pn+1 −∆pn = pn+2 − 2pn+1 + pn
.

∆kpn =∆(∆k−1pn)

for n ≥ 0.
The sequence {p̂n}∞n=0 defined by

p̂n = pn −
(∆pn)2
∆2pn

= pn −
(pn+1 − pn)2

pn+2 − 2pn+1 + pn
(2.8.1)

converges to p and the order of convergence of {p̂n}∞n=0 to p is greater than 1. The procedure
used to construct {p̂n}∞n=0 is called the Aitken’s ∆2 process.

p0 , p1 , p2 give p̂0
p1 , p2 , p3 give p̂1
p2 , p3 , p4 give p̂2

. . .

Since p̂n is generally a better approximation of p than pn+1, it is better to replace pn, pn+1
and pn+2 in (2.8.1) by p̂n−1, g(p̂n−1) and g(g(p̂n−1)). Using this idea, we get the following
algorithm.

Algorithm 2.8.1 (Steffensen’s)

1. Choose p0 closed to a fixed point p of g (if possible).

2. Let p̂−1 = p0.

3. For n ≥ −1, compute

p̂n+1 = p̂n −
(g(p̂n) − p̂n)2

g(g(p̂n)) − 2g(p̂n) + p̂n
. (2.8.2)

4. Repeat (3) until the interruption criteria are satisfied.

p0 , g(p0) , g(g(p0)) give p̂0 .
p̂0 , g(p̂0) , g(g(p̂0)) give p̂1 .
p̂1 , g(p̂1) , g(g(p̂1)) give p̂2 .

. . .

Theorem 2.8.2

Let g ∶ [a, b] → R be a 3-time continuously differentiable function. Suppose that p
is a fixed point of g in [a, b] and g′(p) /= 0. Then there exists δ > 0 such that, for

38 2. Iterative Methods to Solve Nonlinear Equations

p0 ∈ [p − δ, p + δ], the sequence {p̂n}∞n=0 defined by (2.8.2) converges to p of order two
as n goes to ∞.

Proof (Idea).
The idea of the proof is to apply Theorem 2.7.2 with k = 2 to the function

G(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x − (g(x) − x)2
g(g(x)) − 2g(x) + x

if x ≠ p

p if x = p

Remark 2.8.3
Though the order of the Steffensen’s Algorithm is greater than the order of the secant
method, the Steffensen’s Algorithm is not always faster on computer than the secant method
because there are two function evaluations, four additions/subtractions and three multipli-
cations/divisions at each step for the Steffensen’s Algorithm while there are one function
evaluation, three additions/subtractions and two multiplications/divisions at each step for
the secant method. A function evaluation may be time consuming. ♠

2.9 Real Roots of Polynomials

In this section, we do not introduce any new iterative algorithms but show how to efficiently
use Newton’s method to approximate the real roots of a polynomial.

Let p be a polynomial of degree m. If we apply Newton’s method to this polynomial, we
get the formula

xn+1 = xn −
p(xn)
p′(xn)

for n ≥ 0. The following theorem gives an algorithm to compute p(xn) and p′(xn) with a lot
less arithmetic operations than the direct computation of p(xn) and p′(xn).

Theorem 2.9.1 (Horner)

Let p(x) = am xm + am−1 xm−1 + . . . + a1 x + a0 and

bm = am
bm−1 = am−1 + bm α
bm−2 = am−2 + bm−1 α
.

bk = ak + bk+1 α
.

b0 = a0 + b1 α

Then b0 = f(α) and p(x) = (x−α) q(x)+b0 where q(x) = bm xm−1+bm−1 xm−2+. . .+b2 x+b1.

2.9. Real Roots of Polynomials 39

Moreover p′(α) = q(α).

Proof.
We have

(x − α) q(x) + b0 = (x − α)(bm xm−1 + bm−1 xm−2 + . . . + b2 x + b1) + b0
= bm xm + bm−1 xm−1 + bm−2 xm−2 + . . . + b2 x2 + b1 x
− bm αxm−1 − bm−1 αxm−2 − . . . − b3 αx2 − b2 αx − b1 α + b0
= bm xm + (bm−1 − bm α)xm−1 + (bm−2 − bm−1 α)xm−2 + . . .
+ (b2 − b3 α)x2 + (b1 − b2 α)x + (b0 − b1 α)
= am xm + am−1 xm−1 + am−2 xm−2 + . . . + a2 x2 + a1 x + a0 = f(x)

because bm = am and bk − bk+1 α = ak for k = 0,1,2, . . . ,m− 1. Moreover, f(α) = (α−α)q(α)+
b0 = b0.

Since p′(x) = (x − α)q′(x) + q(x), we get p′(α) = q(α).

At the same time that p(α) is computed with Horner’s Algorithm, a second used of
Horner’s Algorithm with p replaced by q may compute p′(α) = q(α), More precisely, if

dm = bm
dm−1 = bm−1 + dm α
dm−2 = bm−2 + dm−1 α
.

dk = bk + dk+1 α
.

d1 = b1 + d2 α

then p′(α) = q(α) = d1. This may be expanded to higher order derivatives.

Hence, Horner’s theorem gives an efficient way to compute p(xn) and p′(xn) in the New-
ton’s method. If α = xn in Horner’s theorem, then p(xn) = b0 and p′(xn) = d1.

The computation of p(xn) and p′(xn) are combined in the following algorithm.

Code 2.9.2 (Horner’s Algorithm)

To evaluate a polynomial p(x) =
n

∑
i=0
aix

i and its derivative at a point α.

Input: The coefficients ai (the vector a in the code below). The coefficient an must
be given even if it is zero.
The value of α (x in the code below.)
Output: y = p(α) and z = p′(α).

% [y,z] = horner(a,x)

40 2. Iterative Methods to Solve Nonlinear Equations

function [y,z] = horner(a,x)

m = length(a);

y = a(m);

z = a(m);

for i = m-1:-1:2

y = a(i) + x*y;

z = y + x*z;

end

y = a(1) + x*y;

end

If we combine Newton’s method and Horner’s Algorithm, we get

Code 2.9.3 (Newton’s Method with Horner’s Algorithm)

To approximate a real root of a polynomial p(x) =
n

∑
i=0
aix

i

Input: The coefficients ai (The vector a in the code below) The coefficient an must
be given even if it is zero.
The initial approximation x0 (x in the code below) of a root c of p.
The maximal tolerance T .
The maximal number N of iterations.
Output: An approximation (xf in the code below) of the real root c
or
an error message if the real root cannot be approximate with the desired tolerance in
less than N iterations.

% xf = realroot(a,x,N,tol)

function xf = realroot(a,x,N,tol)

xf = NaN;

m = length(a);

for k=1:N

y = a(m);

z = a(m);

for i=m-1:-1:2

y = a(i) + x*y;

z = y + x*z;

end

y = a(1) + x*y;

if (abs(z) < tol)

disp ’The derivative is almost null. Cannot proceed.’

break;

end

2.9. Real Roots of Polynomials 41

% y = p(x) and z = p’(x) .

ratio = y/z;

x = x - ratio;

if (abs(ratio) < tol)

xf = x;

return;

end

end

disp ’The program fails to give an approximation to a root of’

disp ’the polynomial in less than the N iterations.’

xf = NaN;

end

Remark 2.9.4

1. Newton’s method may not be so good if we try to approximate a root of multiplicity
greater than one of a polynomial. See Remark 2.7.4.

2. A good initial approximation x0 of a root c of a polynomial p must be given if we want
the Newton’s method to generate a sequence {xn}∞n=0 that converges to c. A bad choice
for x0 and the sequence may converge toward another root of p or may not converge
at all.

3. Small changes in the coefficients of a polynomial of high degree may produce very large
changes in the roots of this polynomial.

For instance, the polynomial

p(x) = x7 − 28x6 + 322x5 − 1960x4 + 6769x3 − 13132x2 + 13068x − 5040

has the roots 1, 2, 3, 4, 5, 6 and 7. However, the polynomial

p̃(x) = x7 − 28x6 + 322x5 − 1960x4 + 6769x3 − 13133x2 + 13068x − 5040 ,

where only the coefficient of x2 has be changed from 13132 to 13133, has the roots
(rounded to seven decimals) 1.0013976, 1.9689208, 3.3183233, 3.5050604, 5.5731849 ±
0.2641298 i and 7.0599281 which are quite different from those of the initial polynomial.

4. In theory, if we have a real root c of p, we can use Horner’s theorem with α = c to
express p as p(x) = (x − c)q(x) because b0 = p(c) = 0. To find a second root of p, we
only have to find a root of q. the polynomial q is called the reduced or deflated
polynomial associate to p. In reality, we only have an approximation of the root c
and Horner’s theorem gives only approximations of the coefficients bj of q. In light
of item 3 above, the approximation of a real root of q may have little relation with a
real root of p. However, we may use this approximation as x0 in the Newton’s method
applied to p to get an approximation of a new root (we hope) of p.

42 2. Iterative Methods to Solve Nonlinear Equations

♠
Example 2.9.5
Let p(x) = x7 − 28x6 + 322x5 − 1960x4 + 6769x3 − 13132x2 + 13068x − 5040. Approximate all
the roots of p within 10−10.

In the following table

1. q0 = p

2. c0 is an approximation of a root of q0 obtained with the Newton’s method and the
initial value x0 = 2.5 (any other initial value could have been used).

3. r0 = c0

4. For i = 1, 2, . . . , 6.

(i) The polynomial qi is the deflated polynomial obtained from the previous deflated
polynomial qi−1 with the help of Horner’s Algorithm. In theory, we have qi−1 =
(x − ri−1)qi.

(ii) The number ri is an approximation of a root of the deflated polynomial qi obtained
with the Newton’s method the initial value x0 = 2.5.

(iii) The number ci is an approximation of a root of the polynomial p obtained with
the Newton’s method and the initial value x0 = ri.

i qi ri ci
0 −5040 + 13068x − 13132x2 + 6769x3 − 1960x4 + 322x5 − 28x6 + x7 1 1
1 5040 − 8028x + 5104x2 − 1665x3 + 295x4 − 27x5 + x6 2 2
2 −2520 + 2754x − 1175x2 + 245x3 − 25x4 + x5 3 3
3 840 − 638x + 179x2 − 22x3 + x4 4 4
4 −210 + 107x − 18x2 + x3 5 5
5 42 − 13x + x2 6 6
6 −7 + x 7 7

We get the exact roots after rounding. ♣
Example 2.9.6
Let p(x) = 5 − 3x − 4x2 + x4. Approximate all the roots of p within 10−10.

In the following table

1. q0 = p

2. c0 is an approximation of a root of p obtained with the Newton’s method and the initial
value x0 = 2 (any other initial value could have been used).

3. r0 = c0

2.10. Appendix 43

4. For i = 1 and 2.

(i) The polynomial qi is the deflated polynomial obtained from the previous deflated
polynomial qi−1 with the help of Horner’s Algorithm. In theory, we have qi−1 =
(x − ri−1)qi.

(ii) If i = 1, the number ri is an approximation of a root of the deflated polynomial qi
obtained with the Newton’s method and the initial value x0 = 2.

(iii) If i = 1, the number ci is an approximation of a root of the polynomial p obtained
with the Newton’s method and the initial value x0 = r1.

i qi ri ci
coefficients rounded to 10 decimals

0 5 − 3x − 4x2 + x4 2.0693229488 2.0693229488
1 −2.4162492389 + 0.2820974665x + 2.0693229488x2 + x3 0.8611735320 0.8611735320
2 2.8057634715 + 2.9304964809x + x2 NaN NaN

The method using the deflated polynomials combined with Newton’s method fails to give
all the roots of the polynomial p. The deflated polynomial, where the coefficients have been
rounded to 14 decimals,

q2(x) = 2.80576347152215 + 2.93049648085253x + x2

does not have real roots. Since q2 is a polynomial of degree two, we can use the quadratic
formula to find the roots of q2. We find −1.46524824042627 ± 0.81167177199277i, where the
real and imaginary parts have been rounded to 14 decimals.

The Newton’s method works for the complex roots of polynomials with complex coeffi-
cients. So, we may use the Newton’s method with p and the initial value x0 given by one of
the complex roots of q2. Since p has real coefficients, we know that complex roots come in
pair. ♣

2.10 Appendix

This section is to illustrate how complex a simple discrete dynamical system of the form

xi+1 = f(xi) ,
where f ∶ R → R is a continuous function, can be. The complexity is even greater if
f ∶ Rk → Rk with k > 1. Discrete dynamical systems show up in many numerical algorithms.
For instance, the Newton’s Method to find zeros of functions yields discrete dynamical sys-
tems, some numerical methods to solve ordinary differential equations or partial differential
equations are discrete dynamical systems, etc. It is therefore important to understand the
behaviour of discrete dynamical systems, or at least to be aware of the complex behaviour
of these systems.

A good introduction to the subject of this appendix is [12]. It is also a good reference for
the proofs of most of results stated in this appendix.

44 2. Iterative Methods to Solve Nonlinear Equations

2.10.1 Elementary Concepts of Discrete Dynamical Systems

Definition 2.10.1

Consider a continuous function f ∶ R → R and x ∈ R. The forward orbit of x is the
set

O+x = {x, f(x), f 2(x) = f(f(x)), f 3(x) = f(f(f(x))), . . .} .

If f has an inverse f−1 ∶ R→ R, the backward orbit of x is the set

O−x = {x, f−1(x), f−2(x) = f−1(f−1(x)), f−3(x) = f−1(f−1(f−1(x))), . . .}

and the orbit of x is Ox = O+x ∪O−x .

Definition 2.10.2

Consider a continuous function f ∶ R→ R. The point p ∈ R is a periodic point of f if
there exists a positive integer n such that fn(p) = p. If n is the smallest positive integer
such that fn(p) = p, we say that p is of period n. When n = 1, p is a fixed point.
We denote by Pern(f) the set of all periodic point of f of period n. In particular,
Fix(f) = Per1(f) is the set of fixed points of f . If p is a periodic point of f , Op is a
periodic orbit.

Example 2.10.3
Consider the logistic map

fµ(x) = µx(1 − x)
for 0 ≤ x ≤ 1. For 0 ≤ µ ≤ 4, we have fµ ∶ [0,1] → [0,1]. Moreover, fµ has two fixed points:

p0 = 0 and pµ =
µ − 1
µ

for µ > 0.

For µ = 3.4, p3.4 = 0.45195878844045 . . . is a periodic point of fµ of period 2. The orbit of
period two is

{0.45195878844045,0.84215476876273,0.45195878844045,0.84215476876273, . . .} ,

where the values have been chopped to 14 digits after the decimal point. This can be easily
seen from the staircase diagram or cobweb of fµ shown in Figure 2.3.

Another way to illustrate the behaviour of fµ is with the phase portrait of fµ shown in
Figure 2.4.

Finally, one can plot the histogram of fµ. Namely, we divide the interval [0,1] into a
large number of subintervals of equal lengths and we compute the percentage of iterations
that enter each subinterval. For µ = 3.4, the histogram with 200 subintervals of [0,1] and
10,000 iterations is given in Figure 2.5.

For µ = 3.5, p3.5 = 0.87499726360246 . . . is a periodic point of fµ of period 4. The orbit of
period four is

{0.87499726360246,0.38281968301732,0.82694070659144,0.50088421030722, . . .} ,

2.10. Appendix 45

Figure 2.3: Cobweb

0.45195878844045... 0.84215476876273...

1
x

0

Figure 2.4: Phase Portrait

where the values have been chopped to 14 digits after the decimal point (see Figure 2.6).

♣

Definition 2.10.4

Consider a continuous function f ∶ R → R. The points p and q in R are forward
asymptotic if

lim
j→∞
∣f j(p) − f j(q)∣ = 0 .

In particular, if p ∈ R is a periodic point of period n, then a point q is forward
asymptotic to p if

p = lim
j→∞

f jn(q) .

The set of all points forward asymptotic to p is denoted by W s(p). There are similar
definitions for backward asymptotic.

46 2. Iterative Methods to Solve Nonlinear Equations

Figure 2.5: Histogram for f3.4

Figure 2.6: Period Four

Definition 2.10.5

Consider a continuous function f ∶ R → R. A fixed point p of f is stable if, for any
open neighbourhood U of p, there exists an open neighbourhood V of p such that
f i(V) ⊂ U for all i > 0. Fixed points that are not stable are called unstable. A
fixed point p of f is asymptotically stable if it is stable and there exists an open
neighbourhood W of p such lim

i→∞
f i(x) = p for all x ∈W .

If p is a period point of period n for f , we say that the periodic orbit Op is stable
if p is a stable fixed point of fn. We say that the periodic orbit is asymptotically
stable if p is an asymptotically stable fixed point of fn.

Remark 2.10.6
The previous definition of stability and asymptotic stability for a period orbit is independent
of the point p of the orbit used to determine the stability or the asymptotic stability.

2.10. Appendix 47

Suppose that p is a periodic point of period n > 1 for a continuously invertible function
f ∶ R → R. Suppose that p is stable for fn and let q = fk(p) be another point on the orbit
Op. If Uq is an open neighbourhood of q, then f−k(Uq) is an open neighbourhood of p.
Since p is a stable fixed point for fn, there exists an open neighbourhood Vp of p such that
fni(Vq) ⊂ f−k(Uq) for all i > 0. Hence fni(fk(Vp)) = fni+k(Vq) ⊂ Uq for all i > 0, where fk(Vp)
is an open neighbourhood of q. This proves that q is a stable fixed point of fn.

Suppose furthermore that p is an asymptotically stable fixed point of fn. Then there
exists an open neighbourhood Wp of p such that lim

i→∞
fni(x) = p for all x ∈ Wp. Thus

lim
i→∞

fni(fk(x)) = fk(p) = q for all x ∈ Wp; namely, lim
i→∞

fni(y) = q for all y in the open

neighbourhood fk(Wp) of q. This proves that q is an asymptotically stable fixed point of
fn. ♠

2.10.2 Qualitative Study

Consider the discrete dynamical system

xi+1 = f(xi) . (2.10.1)

For a qualitative study of this system, we would like to find all the fixed points, periodic
orbits, We would also like to find the sets of points forward asymptotic to these objects.

We first study the fixed points of (2.10.1).

Definition 2.10.7

A fixed point p of f is hyperbolic if ∣f ′(p)∣ ≠ 1.

A proof similar to the proof of the Fixed Point Theorem yields the next theorem.

Proposition 2.10.8

Let p be an hyperbolic fixed point of f . If ∣f ′(p)∣ < 1, then p is asymptotically stable
However, if ∣f ′(p)∣ > 1, then there exists an open interval I containing p such that for
each x in I, x ≠ p, one can find j ∈ N such that f j(x) /∈ I. This implies that f j(x) /∈ I
for infinitely many values of j.

Definition 2.10.9

If p is an hyperbolic fixed point of f such that ∣f ′(p)∣ < 1, then p is called an attracting
fixed point or a sink. If p is an hyperbolic fixed point of f such that ∣f ′(p)∣ > 1, then
p is called a repelling fixed point or a source.

Example 2.10.10

For the logistic map fµ(x) = µx(1−x), the origin is a source if µ > 1, and pµ =
µ − 1
µ

is a sink

if 1 < µ < 3. This follows from ∂

∂x
fµ(x)∣

x=0
= µ and

∂

∂x
fµ(x)∣

x=pµ
= 2 − µ. ♣

48 2. Iterative Methods to Solve Nonlinear Equations

We can expand the notion of hyperbolicity to periodic points.

Definition 2.10.11

A periodic point p of period n for f is hyperbolic if ∣df
n

dx
(p)∣ ≠ 1.

A periodic point p of f of period n is a fixed point of fn. The stability of the periodic
point p of f is determined by the stability of the fixed point p of fn. Proposition 2.10.8
holds for a periodic point p of period n if f is replaced by fn.

Example 2.10.12
To study the stability of the periodic points of period 2 for the logistic map fµ with µ = 3.4,
we consider the iterative system xi+1 = f 2

µ(xi) = fµ(fµ(xi)) for i = 0, 1, 2, . . .

Figure 2.7: Period Two

From the graph of f 2
µ given in Figure 2.7, we see that the periodic point

0.45195878844045 . . . of period 2 is a sink. ♣

2.10.3 Bifurcation

Consider a nice function f ∶ R2 → R. It defines a one-parameter family of functions fµ(x) =
f(x,µ).

We say that µ = µ0 is a bifurcation point of the discrete dynamical system

xi+1 = fµ(xi)

if the qualitative behaviour of the phase portrait changes as µ goes through µ0. For instance,
the number of fixed points change, new periodic solutions appear, etc.

There are three major results related to bifurcation. The first result is a simple conse-
quence of the Implicit Function Theorem applied to the function g(x,µ) = f(x,µ) − x.

2.10. Appendix 49

Theorem 2.10.13

Let f ∶ R2 → R be a smooth function and let fµ(x) = f(x,µ). Suppose that fµ0(x0) = x0
and

∂

∂x
fµ(x)∣

µ=µ0,x=x0

= ∂f
∂x
(x,µ)∣

µ=µ0,x=x0

≠ 1 ,

then there exist an open interval I about x0, an open interval J about µ0, and a
mapping p ∶ J → I such that p(µ0) = x0 and fµ(p(µ)) = p(µ) for all µ ∈ U . Moreover,
fµ has no other fixed point in I (Figure 2.8).

x = p(µ)
x0

I =]a, b[

α µ0
µ

x

β

J =]α,β[

a

b

Figure 2.8: The Implicit Function Theorem

The next theorems describe two “generic” types of bifurcation. We have bifurcation only

when ∣ ∂
∂x
fµ(x)∣ = 1. We use the word generic because the other conditions to classify these

types of bifurcation require only that some derivatives be non-null.

Theorem 2.10.14 (Saddle-node, tangent or fold bifurcation)

Let f ∶ R2 → R be a smooth function and let fµ(x) = f(x,µ). Suppose that

1. fµ0(0) = 0 ,

2.
∂

∂x
fµ(x)∣

µ=µ0,x=0
= 1 ,

3.
∂2

∂x2
fµ(x)∣

µ=µ0,x=0
≠ 0 and

4.
∂

∂µ
fµ(x)∣

µ=µ0,x=0
≠ 0 .

Then, there exist an interval I about 0 and a mapping q ∶ I → R such that q(0) = µ0

and fq(x)(x) = x. Moreover, q′(0) = 0 and q′′(0) ≠ 0.

50 2. Iterative Methods to Solve Nonlinear Equations

Figure 2.9 illustrates a typical fold bifurcation. The fixed points represented by a dashed
curve are sources while those represented by a continuous curve are sinks. The conditions in
the statement of the theorem above do not determine which branch of the curve is associated
to sources and which branch is associated to sinks. Moreover,

q′′(0) =
− ∂

2

∂x2
fµ(x)∣

µ=µ0,x=0

∂

∂µ
fµ(x)∣

µ=µ0,x=0

can be used to determine if the curve µ = p(x) is supercritical (namely, q′′(x) > 0 as in
Figure 2.9) or subcritical (namely, q′′(x) < 0).

x

µµ0

µ = q(x)

Figure 2.9: A typical fold bifurcation diagram for a discrete map

Theorem 2.10.15 (Period doubling or flip bifurcation)

Let f ∶ R2 → R be a smooth function and let fµ(x) = f(x,µ). Suppose that

1. fµ(0) = 0 for all µ near µ0,

2.
∂

∂x
fµ(x)∣

µ=µ0,x=0
= −1,

3.
1

2

⎛
⎝
∂2

∂x2
fµ(x)∣

µ=µ0,x=0

⎞
⎠

2

+ 1

3

∂3

∂x3
fµ(x)∣

µ=µ0,x=0
≠ 0 and

4.
∂2

∂µ∂x
f 2
µ(x)∣

µ=µ0,x=0
/= 0,

where f 2
µ(x) ≡ f(f(x,µ), µ). Then, there exist an interval I about 0 and a mapping

q ∶ I → R such that q(0) = µ0 and fq(x)(x) ≠ x but f 2
q(x)(x) = x.

Figure 2.10 illustrates a typical period doubling bifurcation. The fixed points are repre-
sented by the straight line x = 0 and the periodic points of period two are represented by the

2.10. Appendix 51

curve. For µ fixed, a periodic orbit of period two alternates between the lower and the upper
curve. The fixed points represented by a dashed curve are sources while those represented
by a continuous curve are sinks. The periodic points of period two represented by a dashed
curve are unstable while those represented by a continuous curve are asymptotically stable.
Moreover,

q′′(0) =

⎛
⎝
∂2

∂x2
fµ(x)∣

µ=µ0,x=0

⎞
⎠

2

+ 2

3

∂3

∂x3
fµ(x)∣

µ=µ0,x=0

∂2

∂x∂µ
f 2
µ(x)∣

µ=µ0,x=0

can be used to determine if the curve µ = q(x) is supercritical (namely, q′′(x) > 0 as in
Figure 2.10) or subcritical (namely, q′′(x) < 0).

µ
µ0

x

µ = q(x)

Figure 2.10: A typical period doubling bifurcation diagram for a discrete map

Remark 2.10.16
In the previous theorem, the condition fµ(0) = 0 for all µ near µ0 is not necessary. Suppose
that

1. fµ0(x0) = x0 ,

2.
∂

∂x
fµ(x)∣

µ=µ0,x=x0

= −1 ,

3.
1

2

⎛
⎝
∂2

∂x2
fµ(x)∣

µ=µ0,x=x0

⎞
⎠

2

+ 1

3

∂3

∂x3
fµ(x)∣

µ=µ0,x=x0

≠ 0 and

4.
∂2

∂µ∂x
f 2
µ(x)∣

µ=µ0,x=x0

≠ 0 .

From Theorem 2.10.13, there exists a function p defined in an open interval J of ν0 such that
p(µ0) = x0 and p(µ) is a fixed point of fµ for all µ ∈ J . Let f̂(x,µ) ≡ f(x + p(µ), µ) − p(µ).
We show that f̂ satisfies the hypotheses of Theorem 2.10.15.

52 2. Iterative Methods to Solve Nonlinear Equations

We have f̂µ(0) = 0 for all µ near µ0. Since

∂nf̂

∂xn
(x,µ) = ∂

nf

∂xn
(x + p(µ), µ)

for n = 1, 2, . . . , we have

∂

∂x
f̂µ(x)∣

µ=µ0,x=0
= ∂f̂
∂x
(0, µ0) =

∂f

∂x
(0 + p(µ0), µ0) =

∂f

∂x
(x0, µ0) =

∂

∂x
fµ(x)∣

µ=µ0,x=x0

= −1 .

Moreover,

1

2

⎛
⎝
∂2

∂x2
f̂µ(x)∣

µ=µ0,x=0

⎞
⎠

2

+ 1

3

∂3

∂x3
f̂µ(x)∣

µ=µ0,x=0
= 1

2
(∂

2f̂

∂x2
(0, µ0))

2

+ 1

3

∂3f̂

∂x3
(0, µ0)

= 1

2
(∂

2f

∂x2
(0 + p(µ0), µ0))

2

+ 1

3

∂3f

∂x3
(0 + p(µ0), µ0) =

1

2
(∂

2f

∂x2
(x0, µ0))

2

+ 1

3

∂3f

∂x3
(x0, µ0)

= 1

2

⎛
⎝
∂2

∂x2
fµ(x)∣

µ=µ0,x=x0

⎞
⎠

2

+ 1

3

∂3

∂x3
fµ(x)∣

µ=µ0,x=x0

≠ 0 .

Finally,
∂2

∂µ∂x
f̂ 2
µ(x)∣

µ=µ0,x=0
= ∂2

∂µ∂x
f 2
µ(x)∣

µ=µ0,x=x0

≠ 1 . (2.10.2)

To prove the first equality requires a little bit of work. From

f̂ 2
µ(x) = f(f(x + p(µ), µ), µ) − p(µ) ,

we get

∂

∂x
f̂ 2
µ(x) =

∂

∂x
f(f(x + p(µ), µ), µ) = ∂f

∂x
(f(x + p(µ), µ), µ)∂f

∂x
(x + p(µ), µ)

and

∂2

∂µ∂x
f̂ 2
µ(x) =

∂2

∂µ∂x
f(f(x + p(µ), µ), µ) − p(µ)

= ∂

∂µ
(∂f
∂x
(f(x + p(µ), µ), µ)∂f

∂x
(x + p(µ), µ))

= ∂
2f

∂x2
(f(x + p(µ), µ), µ) (∂f

∂x
(x + p(µ), µ)dp

dµ
(µ)

+∂f
∂µ
(x + p(µ), µ)) ∂f

∂x
(x + p(µ), µ) + ∂2f

∂x∂µ
(f(x + p(µ), µ), µ)∂f

∂x
(x + p(µ), µ)

+ ∂f
∂x
(f(x + p(µ), µ), µ) (∂

2f

∂x2
(x + p(µ), µ)dp

dµ
(µ) + ∂2f

∂x∂µ
(x + p(µ), µ)) .

2.10. Appendix 53

Hence, using p(µ0) = x0, f(x0, µ0) = x0 and
∂f

∂x
(x0, µ0) =

∂

∂x
fµ(x)∣

µ=µ0,x=x0

= −1, we get

∂2

∂µ∂x
f̂ 2
µ(x)∣

µ=µ0,x=0
= ∂

2f

∂x2
(f(x0, µ0), µ0) (

∂f

∂x
(x0, µ0)

dp

dµ
(µ0) +

∂f

∂µ
(x0, µ0))

∂f

∂x
(x0, µ0)

+ ∂2f

∂x∂µ
(f(x0, µ0), µ0)

∂f

∂x
(x0, µ0)

+ ∂f
∂x
(f(x0, µ0), µ0) (

∂2f

∂x2
(x0, µ0)

dp

dµ
(µ0) +

∂2f

∂x∂µ
(x0, µ0))

= −∂
2f

∂x2
(x0, µ0) (−

dp

dµ
(µ0) +

∂f

∂µ
(x0, µ0)) −

∂2f

∂x∂µ
(x0, µ0)

− (∂
2f

∂x2
(x0, µ0)

dp

dµ
(µ0) +

∂2f

∂x∂µ
(x0, µ0)) = −2

∂2f

∂x∂µ
(x0, µ0) −

∂2f

∂x2
(x0, µ0)

∂f

∂µ
(x0, µ0) .

Moreover,

∂2

∂µ∂x
f 2
µ(x) =

∂

∂µ
(∂f
∂x
(f(x,µ), µ)∂f

∂x
(x,µ))

= ∂
2f

∂x2
(f(x,µ), µ)∂f

∂µ
(x,µ)∂f

∂x
(x,µ) + ∂2f

∂x∂µ
(f(x,µ), µ)∂f

∂x
(x,µ)

+ ∂f
∂x
(f(x,µ), µ) ∂

2f

∂x∂µ
(x,µ) .

Hence, using f(x0, µ0) = x0 and
∂f

∂x
(x0, µ0) =

∂

∂x
fµ(x)∣

µ=µ0,x=x0

= −1, we get

∂2

∂µ∂x
f 2
µ(x)∣

µ=µ0,x=x0

= ∂
2f

∂x2
(f(x0, µ0), µ0)

∂f

∂µ
(x0, µ0)

∂f

∂x
(x0, µ0)

+ ∂2f

∂x∂µ
(f(x0, µ0), µ0)

∂f

∂x
(x0, µ0) +

∂f

∂x
(f(x0, µ0), µ0)

∂2f

∂x∂µ
(x0, µ0)

= −∂
2f

∂x2
(x0, µ0)

∂f

∂µ
(x0, µ0) − 2

∂2f

∂x∂µ
(x0, µ0)

and this proves the first equality of (2.10.2). ♠

2.10.4 Logistic Map

This section is mainly about the logistic equation

xi+1 = fµ(xi) = µxi(1 − xi) .

We have already found the fixed points of fµ with their stability in Examples 2.10.3 and
2.10.10. We have also looked at period points of period 2 for fµ in Example 2.10.12. To

54 2. Iterative Methods to Solve Nonlinear Equations

illustrate the complex behaviour that discrete dynamical systems may have, we now present
some results about the logistic map fµ without giving the proofs. A good reference is [12].
Most of the results about the logistic map fµ that we present in this section are true for
mappings having a graph “similar” to the graph of fµ on I = [0,1].

Figure 2.11 is the bifurcation diagram of fµ. Namely, for “each” value of µ we plot the
fixed points, periodic points, . . . of fµ.

Figure 2.11: Bifurcation diagram for the logistic map

To produce this figure, we have chosen a large number of equally spaced values of µ. For
each of these values of µ, we have computed the first 200 iterations of the orbit of 0.5 under
fµ and plotted only the last 80 or so iterations. By increasing the number of iterations to
compute and plot, we could have generated a more precise bifurcation diagram.

For µ < 3, all iterations converge to pµ. When µ crosses above 3, the fixed point pµ
becomes a source and there appears an attracting periodic orbit of period 2; all orbits
eventually “bounce back and for” between the two points of the orbit. We have period
doubling at µ = 3. This claim can be rigorously prove by showing that all hypothesis of
Theorem 2.10.15 are satisfied. Effectively, we have

1. fµ(pµ) = pµ for all µ near µ = 3.

2.
∂

∂x
fµ(x)∣

µ=3,x=p3
= −1.

3.
1

2

⎛
⎝
∂2

∂x2
fµ(x)∣

µ=3,x=p3

⎞
⎠

2

+ 1

3

∂3

∂x3
fµ(x)∣

µ=3,x=p3
= 2µ2∣

µ=3
= 18 ≠ 0

4.
∂2

∂µ∂x
f 2
µ(x)∣µ=3,x=p3 = (2µ − 6µ

2x + 18µ2x2 − 4µx − 12µ2x3) ∣
µ=3,x=p3

= 2 /= 0.

2.10. Appendix 55

When µ crosses above 3.236 . . ., the periodic orbit of period 2 becomes unstable and there
appears an attracting periodic orbit of period 4. For µ slightly larger, the periodic orbit
of period 4 becomes unstable and there is a bifurcation from the attracting periodic orbit
of period 4 to an attracting periodic orbit of period 8, And so on. This is the best known
example of a period doubling cascade.

For a constant value of µ, if the attracting periodic orbit O ⊂ [0,1] of fµ is of period
n with n very large, it is reasonable to expect that O will “almost cover” some segments
of the interval [0,1]. This explains the shaded area. Figure 2.12 illustrates the attracting
periodic orbit for µ = 3.6. The corresponding histogram with 300 subintervals and 10 millions
iterations is given in Figure 2.13.

Figure 2.12: Cobweb of a periodic orbit of the logistic map for µ = 3.6. The period
of this stable periodic orbit is very large.

Figure 2.13: Histogram of a periodic orbit of the logistic map for µ = 3.6. The
period of this stable periodic orbit is very large.

Period doubling accumulates to µ = 3.5699456 This number is known as the Feigen-
baum point. Moreover, let µ0 = 3, µ1 = 3.236 . . ., µ2, µ3, . . . be the values of µ for which

56 2. Iterative Methods to Solve Nonlinear Equations

the logistic mapping undergoes period doubling and let dj = µj+1 − µj. It has been showed

that lim
j→∞

dj
dj+1

= 4.6692016091029 This number is called the Feigenbaum constant.

Feigenbaum discovered this number in 1975. This constant is universal in the sense that it is
the same for a whole class of dynamical systems of the form xn+1 = gµ(xn) where the graph
of gµ(x) looks like the graph of fµ(x).

Period doubling is far from being the must complex type of bifurcation. To understand
the complex behaviour of the orbits of fµ, we need the following theorem.

Theorem 2.10.17 (Sarkovskii)

Consider the order on the positive integers defined by

3≫ 5≫ 7≫ . . .≫ 3 × 2≫ 5 × 2≫ . . .

≫ 3 × 22 ≫ 5 × 22 ≫ . . .≫ 3 × 23 ≫ 5 × 23 ≫ . . .24 ≫ 23 ≫ 22 ≫ 2≫ 1 .

Let f ∶ R→ R be a continuous function and k be a prime number. If f has a periodic
point of period k, then f has a periodic point of period m for all m≪ k.

Example 2.10.18
For µ = 3.839 . . ., {0.14988539433432,0.48917380192271,0.95930024021836} is an attracting
periodic orbit of period 3 of fµ, where all value have been chopped to 14 digits after the
decimal point (Figure 2.14).

Figure 2.14: Period Three

Hence, f3.839... has periodic orbits of all possible periods. All the periodic orbits, except
the one of period 3, are unstable (in fact repelling). So, unless the iteration starts with a
point on a repelling periodic orbit, the iterations will converge toward the periodic orbit of
period 3. ♣

This is not the end of the story. We now consider fµ for µ > 4.

2.10. Appendix 57

Let

An = {x ∈ [0,1] ∶ f j
µ(x) ∈ [0,1] for 0 ≤ j ≤ n and f j

µ(x) /∈ [0,1] for j > n} .

It can be shown that An consists of 2n distinct open subintervals of [0,1]. We have that
any iteration that starts with x0 ∈ A0 (i.e. such that fµ(x0) > 1) eventually converges to
−∞ (Figure 2.15). We also have that any iteration that starts with x0 ∈ A1 (i.e. such that
fµ(x0) ∈ A0) eventually converges to −∞ (Figure 2.16). And so on.

Figure 2.15: 0.5 ∈ A0 for f4.3

Figure 2.16: 0.1 ∈ A1 for f4.3

Consider

∆µ = [0,1] ∖
∞
⋃
n=0

An .

∆µ contains all the points x such that f j
µ(x) stay in [0,1] for all j ≥ 0. In particular, ∆µ

contains all the periodic points.

58 2. Iterative Methods to Solve Nonlinear Equations

Recall that a Cantor set is a set that is closed (contains all its limit points), totally
disconnected (does not contain any open interval), and perfect (every point of the set is the
limit of other points of the set).

Example 2.10.19
The best known example of a Cantor set is the Cantor Middle-Thirds set. It is also an
example of a Fractal set because of its self-similarity under zooming. ♣

Theorem 2.10.20

For µ > 4, ∆µ is a cantor set.

2.10.5 Chaos

The next two definitions are the bases for the definition of chaos.

Definition 2.10.21

Let I be an interval of R and f ∶ I → I be a continuous function. f is topologically
transitive if for any open sets V andW in I there exist k > 0 such that fk(V)∩W ≠ ∅.

Definition 2.10.22

Let I be an interval of R and f ∶ I → I be a continuous function. f has sensitive
dependence on initial conditions if there exists δ > 0 such that, for any x ∈ I and
neighbourhood N ⊂ I of x, there exist y ∈ N and k > 0 satisfying ∣fk(x) − fk(y)∣ > δ.

Definition 2.10.23 (Chaos)

Let I be an interval of R and f ∶ I → I be a continuous function. f is said to be
chaotic on I if

1. f has sensitive dependence on initial conditions.

2. f is topologically transitive.

3. The set of all periodic points of f is dense in I (every non-periodic point of I is
the limit of some periodic points).

Remark 2.10.24
It has been proved in [4] that 2 and 3 implies 1. Nevertheless, we keep the tradition of using
Definition 2.10.23 as the definition of chaos because it lists three of the must important
properties of a chaotic function. Moreover, it has been proved in [3] that 1 and 3 do not
imply 2, and 1 and 2 do not imply 3. ♠
Example 2.10.25
The logistic map f4 ∶ I → I, where I = [0,1], is chaotic. ♣

2.11. Exercises 59

We may expand our definition of attracting and repelling periodic orbits to more general
sets.

Definition 2.10.26

Let V be a subset of R and f ∶ R → R be a continuous function. V is an attracting
(respectively repelling) hyperbolic set if

1. V is closed and bounded.

2. V is invariant under f (i.e. f(V) ⊂ V).

3. There exists N > 0 such that ∣df
n

dx
(x)∣ < 1 (respectively > 1) for all n ≥ N and

x ∈ V .

Example 2.10.27
It can be proved that for µ > 2+

√
5, ∆µ is a repelling hyperbolic set for the logistic map fµ.

The behaviour of fµ ∶∆µ →∆µ is a lot more complex than we may imagine. fµ has a dense
orbit in ∆µ. Moreover, fµ ∶∆µ →∆µ is choatic1. ♣

2.11 Exercises

Question 2.1
Find small intervals containing the solutions (one solution per interval) of 4x2 − ex = 0. Do
not forget to justify your answer.

Question 2.2
Use the bisection method to find an approximation of 3

√
25 correct to within 10−4.

Question 2.3
In the algorithm for the bisection method, Algorithm 2.2.1, if a0 > 0 and

n ≥ ln(b0 − a0) − ln(ϵ) − ln(a0)
ln(2)

(2.11.1)

Show that the nth iteration xn of the bisection method is an approximation of a root r with
a relative error smaller than ϵ.

Question 2.4
In the algorithm for the bisection method, Algorithm 2.2.1, show that ∣xn−xn+1∣ = 2−n−1(b0−
a0).
Question 2.5
In the algorithm for the bisection method, Algorithm 2.2.1, is it possible to have an < an+1
(strict inequalities) for all n? If it is possible, give the conditions under which it is possible.
If it is not possible, prove it.

1The definition of choatic map can be extended to any topological space I, not just intervals.

60 2. Iterative Methods to Solve Nonlinear Equations

Question 2.6
Find a solution accurate to within 10−4 for x = tan(x) on π/2 < x < 3π/2.
a) Use the bisection method.
b) Use the fixed point method.
c) Use Newton’s method.

Question 2.7
Find the solutions accurate to within 10−5 for x2 + 11 cos(x) = 0.
a) Use the bisection method.
b) Use the fixed point method.
c) Use Newton’s method.

Question 2.8
Find the smallest value x0 > 0 such that the Newton’s method for f(x) = arctan(x) does not
converge.

Question 2.9
For which functions f is the iterative equation

xn+1 = 2xn −Cx2n

the result of the formula for the Newton’s method? C is a constant.

Question 2.10
If x0 = 0 and

xn+1 = xn −
tan(xn) − 1
sec2(xn)

for n = 0, 1, 2, . . . Without doing any computation, find the limit of this sequence.

Question 2.11
Use Newton’s method to find an approximation of a root of f(x) = tan(x) in the interval
[4.8,7.7] with an accuracy of 10−8.

Question 2.12
Use the secant method to find an approximation of the first positive root of f(x) = ex−tan(x)
with an accuracy of 10−8.
Hint: To choose x0 and x1, draw the graph of ex and tan(x).
Question 2.13
a) Suppose that the Newton’s method is used to generate a sequence {xn}∞n=0 converging to
a root r of a function f . Let en = xn − r. Show that

en+1 =
f ′′(ξn)
2f ′(xn)

e2n

for some ξn between r and xn.
b) Let f(x) = x− e−x and assume that the Newton’s method is used to generate a sequence
{xn}∞n=0 converging to the root r of f in the interval [0,1]. If en = xn − r, show that

∣en∣ ≤ 2(
e0
2
)
2n

(2.11.2)

2.11. Exercises 61

for n ≥ 0 whenever x0 ≥ 0.
c) If x0 = 1 in (b), how many iterations of the Newton’s method will be sufficient to get an
approximation of the root r of f with an accuracy of 10−5; namely, such that ∣en∣ < 10−5.
Question 2.14
Use Newton’s method with Horner’s Algorithm to approximate the three roots of f(x) =
x3 −x; namely, to approximate p1 = −1, p2 = 0 and p3 = 1. For each value of i, can you find a
subinterval Ii of [−0.451,−0.446] such that the Newton’s method with Horner’s Algorithm
converges to the root pi of f(x)? For each i, the subsets of the real line containing the points
x0 such that the Newton’s method converges to pi form a Cantor type of set.

Question 2.15
Suppose that g ∶ [a, b]→ [a, b] satisfies the Fixed Point Theorem and g′(x) < 0 for all x ∈ [a, b].
Describe the behaviour of the sequence {xn}∞n=0 given by xn+1 = g(xn) for x0 ∈ [a, b] as it
converges to the fixed point. You may want to sketch a typical graph.

Question 2.16

Let g(x) = 1

x2 + 1
.

a) Show that g has a unique fixed point in the interval [0,1].
b) Show that we can use the Fixed Point Theorem to find the fixed point of g in the interval
[0,1].
c) Determine the order of convergence of this fixed point method.

Question 2.17
Consider the function g(x) = 2−x.
a) Show that you can use the Fixed Point Theorem to approximate the fixed point of g in
the interval [1/3,1].
b) Find a small value of n ensuring to the approximation xn of the fixed point of g has an
accuracy of 10−4. You may assume that x0 = 0.5 .
c) Use the Fixed Point Theorem to find an approximation xn+1 to the fixed point of g in
the interval [1/3,1] such that ∣xn+1 − xn∣ < 10−4. As in (b), you may assume that x0 = 0.5.
Question 2.18
Consider the function

g(x) = 12 − 20

x
.

a) Explain why this function has two fixed points.
b) Using the Fixed Point Theorem, show that g has a unique fixed point p in the interval
[9.5,11.5], and that the sequence {xn}∞n=0 generated by xn+1 = g(xn) converge to p whatever
the choice x0 ∈ [9.5,11.5].
c) How many iterations are needed to get an approximation of the fixed point of g in the
interval [9.5,11.5] with an accuracy of 10−7? You may assume that x0 = 9.5.
d) What is the order of convergence of the sequence {xn}∞n=0 that is generated by xn+1 = g(xn)
with x0 in [9.5,11.5].
e) Use Steffensen’s Algorithm to find an approximation of the fixed point of g in the interval
[9.5,11.5] with an accuracy of 10−7. Use x0 = 9.5. Why does this method converge faster
than the fixed point method?

62 2. Iterative Methods to Solve Nonlinear Equations

Question 2.19
Let f(x) = ex − 2x − 1.
a) Show that f has a unique root in the interval [1,2].
b) Show that a root of f is a fixed point of g(x) = ln(1 + 2x) and vice-versa.
c) Show that for any x0 ∈ [1,2], the sequence {xn}∞n=0 generated by xn+1 = g(xn) for n = 0,
1, 2, . . . converges to the fixed point of g in the interval [1,2].
d) Determine the order of convergence of this fixed point method.

Question 2.20
Our goal is to approximate the value of 3

√
25 using the Fixed Point Theorem.

a) Show that 3
√
25 is the unique root of f(x) = x3 − 25.

b) Show that p > 0 is a root of f if and only if p is a fixed point of g(x) = 5/
√
x, and

conclude that this fixed point p is 3
√
25.

c) Using the graph of g, give an interval [a, b] with a > 0 such that g satisfies the Fixed Point
Theorem on [a, b]. Verify that g satisfies all the hypotheses of the Fixed Point Theorem.
d) Choose x0 in the interval [a, b] that you have found in (c). Without doing any iteration,
find a small value of n such that xn, the (n + 1)th term in the sequence {xn}∞n=0 produced
by the Fixed Point Theorem applied to the function g, is an approximation of p with an
accuracy of 10−5.
e) Use the Fixed Point Theorem to find an approximation xn to the fixed point of g in the
interval [a, b] such that ∣xn − xn−1∣ < 10−5. Use the x0 that you have chosen in (d).

Question 2.21
Let f(x) = e2−x − x2.
a) Show that f has a unique root p in the interval [1,2].
b) Find a function g satisfying all the hypotheses of the Fixed Point Theorem such that
a root of f in the interval [1,2] is a fixed point of g in [1,2]. Verify that your function g
satisfies the hypotheses of the Fixed Point Theorem.
c) Let x0 = 1. Without doing any iteration, find a small value of n such that xn, the (n+1)th
term in the sequence {xn}∞n=0 produced by the Fixed Point Theorem applied to the function
g, is an approximation of p with an accuracy of 10−5.
d) Determine the order of convergence of this fixed point method.

Question 2.22
The first positive value p such that p = tan(p) is between π and 3π/2. Let

g(x) = π + arctan(x) .

a) Show graphically that g has a unique fixed point in [π,3π/2] and that it is the point p
above.
b) Show that g satisfies the hypotheses of the Fixed Point Theorem on the interval [π,3π/2].
c) Without doing any iteration, find a small value of n such that xn, the (n + 1)th term in
the sequence {xn}∞n=0 produced by the Fixed Point Theorem applied to the function g, is an
approximation of p with an accuracy of 10−5.

Question 2.23

2.11. Exercises 63

Let a be a positive number and

g(x) = x
2
+ a

2x
. (2.11.3)

Given x0 > 0, let {xn}∞n=0 be the sequence generated by xn+1 = g(xn) for n = 0, 1, 2, . . .
a) Show that the positive fixed point of g is

√
a.

b) Use the Fixed Point Theorem to prove that for any x0 > 0 the sequence {xn}∞n=0 converges
to the unique positive fixed point of f .
Hint: Show first that if 0 < x0 <

√
a, then x1 ≥

√
a. Then show that g satisfies the Fixed

Point Theorem on any interval of the form [
√
a,m].

Question 2.24
a) If f ′ is continuous and positive on [a, b], and f(a)f(b) < 0, prove that f has a unique
zero in the open interval]a, b[.
b) Find λ such that the sequence {xn}∞n=0 generated by the iteration xn+1 = xn + λf(n) for
n = 0, 1, 2, . . . converges to a zero of f .

Question 2.25
Suppose that g is a continuously differentiable function on an interval [a, b]. Letm = (a+b)/2
be the middle point of the interval [a, b]. If ∣g′(x)∣ < 1 for all x ∈ [a, b] and g(m) =m, prove
or disprove that the sequence {xn}∞n=0 defined by xn+1 = g(xn) converges to the fixed point
m of g in [a, b] whatever the choice of x0 ∈ [a, b].
Question 2.26
Suppose that g ∶ R → R is a continuously differentiable function and that p is a fixed point
of g such that ∣g′(p)∣ > 1. Prove or disprove that for all x0 ∈ R the sequence {xn}∞n=0 does not
converge to p. If there are sequences {xn}∞n=0 that converge to p, describe all of them.

Question 2.27

Suppose that ∣g′(x)∣ ≤ λ < 1 for all x ∈ [x0 − ρ, x0 + ρ], where ρ =
∣g(x0) − x0∣

1 − λ
. Prove that

the sequence {xn}∞n=0 defined by xn+1 = g(xn) for n ≥ 0 converges to a fixed point of g in the
interval [x0 − ρ, x0 + ρ].
Question 2.28
Prove or disprove that if f is a contraction on [a, b], then f has a unique fixed point and the
iterative system xn+1 = f(xn) for n ≥ 0 yields a sequence {xn}∞n=0 that converges toward this
root whatever the choice of x0 ∈ [a, b].
Question 2.29
Suppose that f is m times continuously differentiable. Show that f(x) = (x − p)mq(x) with
q(p) ≠ 0 if and only if f(p) = f ′(p) = ... = f (m−1)(p) = 0 and f (m)(p) ≠ 0; namely, if and only
if f has a zero of multiplicity m at p.

Question 2.30
Let F (x) = x − f(x)f ′(x), where f is a three times continuously differentiable function
satisfying f(r) = 0 and f ′(r) ≠ 0. Find the conditions on f to obtain an iterative method
xn+1 = F (xn) for n ≥ 0 that generates sequences converging toward r and such that the
convergence is of order exactly three.

Question 2.31

64 2. Iterative Methods to Solve Nonlinear Equations

Let F (x) = x+f(x)g(x), where f and g are sufficiently continuously differentiable functions.
Moreover, assume that f satisfies f(r) = 0 and f ′(r) ≠ 0. Find the conditions on g to obtain
an iterative method xn+1 = F (xn) for n ≥ 0 that generates sequences converging toward r
and such that the order of convergence is exactly three.

Question 2.32
Which of the following sequences converge quadratically?

a) { 1

n2
}
∞

n=1
b) { 1

22n
}
∞

n=0
c) { 1√

n
}
∞

n=1

d) { 1
en
}
∞

n=0
e) { 1

nn
}
∞

n=1

Question 2.33
a) Show that the convergence of the sequence pn = 10−k

n
to 0 is of order k.

b) Show that the sequence pn = 10−n
k
does not converge to 0 quadratically regardless of the

size of the exponent k > 1.
Question 2.34
Solve x − 2−x = 0 for x ∈ [0,1] with an accuracy of 10−4 using Steffensen’s Algorithm.

Question 2.35
Use the method of deflation to approximate all the roots of

p(x) = x3 − 5.974925987x2 + 9.734512519x − 2.617993878

with an accuracy of 10−10. Do not used any formula to computer the roots of a polynomial
of degree two.

Question 2.36
Use the method of deflation to approximate all the roots of p(x) = x4 − 2x3 − 12x2 + 16x− 40
with an accuracy of 10−9. You must use Newton’s method with Horner’s Algorithm.

Question 2.37
Use the method of deflation to approximate all the roots of x3 − 53x2 + 151x − 3 with an
accuracy of 10−3. You must use Newton’s method with Horner’s Algorithm.

Question 2.38
Use the method of deflation to approximate all the roots of

x4 − 10.07251864x3 + 34.83068793x2 − 44.63745043x + 11.36978427

with an acuracy of 10−5. You must use Newton’s method with Horner’s Algorithm.

Chapter 3

Iterative Methods to Solve Systems of
Linear Equations

Our goal is to numerically solve the system of linear equations

Ax = b , (3.0.1)

where

A =
⎛
⎜⎜⎜
⎝

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
⋮ ⋮ ⋱ ⋮

an,1 an,2 . . . an,n

⎞
⎟⎟⎟
⎠

, x =
⎛
⎜⎜⎜
⎝

x1
x2
⋮
xn

⎞
⎟⎟⎟
⎠

and b =
⎛
⎜⎜⎜
⎝

b1
b2
⋮
bn

⎞
⎟⎟⎟
⎠
. (3.0.2)

We assume that A is an invertible matrix. Hence (3.0.1) has a unique solution.

In this section, we do not attempt to solve (3.0.1) using Gauss elimination and related
direct methods. This is the subject of the next chapter. Instead, we develop iterative
methods as we have done to numerically find the roots of real-valued functions. We therefore
have to define properly the convergence of vectors and matrices. This is done in the next
section.

3.1 Norm and Convergence of Matrices

Definition 3.1.1

A norm on a vector space V over the real numbers is a function N ∶ V → R satisfying

1. N(x) ≥ 0 for all x ∈ V .

2. N(x) = 0 if and only if x = 0.

3. N(αx) = ∣α∣N(x) for all x ∈ V and α ∈ R.

4. N(x + y) ≤ N(x) +N(y) for all x and y in V .

65

66 3. Iterative Methods to Solve Systems of Linear Equations

Remark 3.1.2
Three important norms on V = Rn are the Euclidean or ℓ2 norm

N(x) ≡ ∥x∥2 =

¿
ÁÁÀ

n

∑
i=1
x2i ,

the maximum or ℓ∞ norm
N(x) ≡ ∥x∥∞ =max

1≤i≤n
∣xi∣

and the ℓ1 norm

N(x) ≡ ∥x∥1 =
n

∑
1

∣xi∣ .

♠

Definition 3.1.3

Let ∥ ⋅∥ be any norm on Rn. The distance between two vectors x and y in Rn, denoted
d(x,y), is defined by d(x,y) = ∥x − y∥.

Definition 3.1.4

A sequence of vectors {xk}∞k=1 in Rn converges to a vector p in Rn if lim
k→∞
∥xk −p∥ = 0.

Remark 3.1.5

1. The definition of convergence in a finite dimensional vector space V does not depend
on the chosen norm. It is shown in [17] that for any two norms N1 and N2 on V there
exist constants c1 and c2 such that

c1N1(x) ≤ N2(x) ≤ c2N1(x)

for all vector x ∈ Rn. For instance, we have

∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞ .

2. One can also show that {xk}∞k=0 converges to x if and only if {xk,j}∞k=0 converges to
xj for 1 ≤ j ≤ n, where xj is the jth component of the vector x and xk,j is the jth

component of the vector xk.

♠

Definition 3.1.6

Let ∥ ⋅ ∥ be any norm on Rn and A be an n × n matrix. The natural or induced
matrix norm of A is defined by

∥A∥ = sup
∥x∥=1
∥Ax∥ .

Remark 3.1.7

3.1. Norm and Convergence of Matrices 67

1. The reader is invited to verify that the induced matrix norm satisfies the properties of
a norm on the space V of n × n matrices. We note that the space V of n × n matrices
is linearly isomorphic to Rn2

and so is of finite dimension.

2. It is easy to see that ∥Ax∥ ≤ ∥A∥∥x∥ for all x ∈ Rn. This shows that the mapping
ϕ ∶ Rn → Rn defined by ϕ(x) = Ax for all x is a continuous mapping.

3. Since S = {x ∶ ∥x∥ = 1} is a compact subset of Rn, the continuous mapping ϕ defined
in the previous item reaches its maximum on S at a point in S. For this reason, we
may replace sup by max in the definition of the induced norm.

4. If A and B are two n × n matrices, then ∥AB∥ ≤ ∥A∥∥B∥.
♠

Theorem 3.1.8

Let A be an n × n matrix as defined in (3.0.2). The norm of A induced by ∥ ⋅ ∥∞ is
given by

∥A∥∞ =max
1≤i≤n

n

∑
j=1
∣ai,j ∣ ,

Proof.
For x ∈ Rn satisfying ∥x∥∞ = max

1≤s≤n
∣xs∣ = 1, we have

∥Ax∥∞ =max
1≤i≤n
∣

n

∑
j=1

ai,jxj ∣ ≤max
1≤i≤n

n

∑
j=1
∣ai,j ∣∣xj ∣ ≤max

1≤i≤n

n

∑
j=1
∣ai,j ∣ ,

where the last inequality is a consequence of ∣xj ∣ ≤ max
1≤s≤n

∣xs∣ = 1 for all j. Thus

∥A∥∞ = max
∥x∥∞=1

∥Ax∥∞ ≤max
1≤i≤n

n

∑
j=1
∣ai,j ∣ .

To prove equality, suppose that k is the index such that

n

∑
j=1
∣ak,j ∣ =max

1≤i≤n

n

∑
j=1
∣ai,j ∣ .

Define x ∈ Rn by

xj =
⎧⎪⎪⎨⎪⎪⎩

1 if ak,j ≥ 0
−1 if ak,j < 0

Then ∥x∥∞ = 1 and

∥Ax∥∞ =max
1≤i≤n
∣

n

∑
j=1

ai,jxj ∣ ≥ ∣
n

∑
j=1

ak,jxj ∣ =
n

∑
j=1
∣ak,j ∣ =max

1≤i≤n

n

∑
j=1
∣ai,j ∣ .

Thus

∥A∥∞ = max
∥x∥∞=1

∥Ax∥∞ ≥max
1≤i≤n

n

∑
j=1
∣ai,j ∣ .

68 3. Iterative Methods to Solve Systems of Linear Equations

Remark 3.1.9
If A is an n×n matrix, let A∗ be the transpose complex conjugate of A. It is usually proved
in applied linear algebra that

∥A∥2 =max{
√
∣λ∣ ∶ λ is an eigenvalue of A∗A} .

♠

Definition 3.1.10

The spectral radius of a n × n matrix A, denoted ρ(A), is defined by

ρ(A) =max{∣λ∣ ∶ λ is an eigenvalue of A} .

Theorem 3.1.11

Let A be a n × n matrix, then ρ(A) = inf{∥A∥ ∶ ∥ ⋅ ∥ is an induced norm}.

Remark 3.1.12
A consequence of Theorem 3.1.11 is that ρ(A) ≤ ∥A∥ for any induced norm ∥ ⋅ ∥ on the n × n
matrices. ♠

To prove Theorem 3.1.11, we need the following lemma.

Lemma 3.1.13

Every n×nmatrix A is conjugate to an upper-triangular matrix (possibly with complex
elements) whose off-diagonal elements can be arbitrary small.

Proof (of the lemma).
From Schur’s Theorem, there exists an invertible matrix Q such that

QAQ−1 = T ≡
⎛
⎜⎜⎜
⎝

t1,1 t1,2 . . . t1,n
0 t2,2 . . . t2,n
⋮ ⋮ ⋱ ⋮
0 0 . . . tn,n

⎞
⎟⎟⎟
⎠
.

Choose ϵ > 0 and let

D =
⎛
⎜⎜⎜
⎝

ϵ 0 . . . 0
0 ϵ2 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . ϵn

⎞
⎟⎟⎟
⎠
.

Then
(DQ)A(DQ)−1 =DQAQ−1D−1 =DTD−1 = U ,

where

ui,j =
⎧⎪⎪⎨⎪⎪⎩

ϵi−jti,j for j ≥ i
0 for j < i

3.1. Norm and Convergence of Matrices 69

Since ui,j = ϵi−jti,j → 0 as ϵ → 0 for all j > i, the off-diagonal elements can be arbitrary
small.

Proof (of Theorem 3.1.11).
A) We prove first that ρ(A) ≤ ∥A∥ for any induced norm ∥ ⋅ ∥ on the n × n matrices.

Let λ be an eigenvalue of A and x be an eigenvector associated to λ. We may assume
that x is of norm 1. Then

∣λ∣ = ∣λ∣∥x∥ = ∥λx∥ = ∥Ax∥ ≤ ∥A∥∥x∥ = ∥A∥ .

Hence, ρ(A) ≤ ∥A∥.
Thus

ρA ≤ inf ∥∥A∥ ∶ ∥ ⋅ ∥ is an induced norm} . (3.1.1)

B) We construct induced norms ∥ ⋅ ∥ϵ such that ∥A∥ϵ ≤ ρ(A)+ ϵ, where the parameter ϵ can
be arbitrary small.

Choose ϵ > 0. From the previous lemma, there exists an invertible matrix Qϵ such that
QϵAQ−1ϵ = D + Sϵ, where D is a diagonal matrix whose elements on the diagonal are the
eigenvalues of A and where Sϵ is a strictly upper-triangular matrix whose elements are
assumed to be small enough to get ∥S∥∞ < ϵ. Hence

∥QϵAQ
−1
ϵ ∥∞ = ∥D + Sϵ∥∞ ≤ ∥D∥∞ + ∥Sϵ∥∞ < ρ(A) + ϵ

because
∥D∥∞ =max{∣dj,j ∣ ∶ 1 ≤ j ≤ n∥ = ρ(A) .

Since Qϵ is invertible, ∥x∥ϵ = ∥Qϵx∥∞ for x ∈ Rn defines a norm on Rn. The induced norm
of A with respect to the norm ∥ ⋅ ∥ϵ is

∥A∥ϵ = max
∥x∥ϵ=1

∥Ax∥ϵ = max
∥Qϵx∥∞=1

∥QϵAx∥∞ = max
∥Qϵx∥∞=1

∥QϵAQ
−1
ϵ (Qϵx)∥∞

= max
∥y∥∞=1

∥QϵAQ
−1
ϵ y∥∞ = ∥QϵAQ

−1
ϵ ∥∞ < ρ(A) + ϵ .

C) From ∥A∥ϵ < ρ(A) + ϵ, we get that

inf{∥A∥ ∶ ∥ ⋅ ∥ is an induced norm} < ρ(A) + ϵ .

Since ϵ is arbitrary small,

inf{∥A∥ ∶ ∥ ⋅ ∥ is an induced norm} ≤ ρ(A) .

Combined with (3.1.1), this proves the theorem.

70 3. Iterative Methods to Solve Systems of Linear Equations

Theorem 3.1.14

Let A be a n × n matrix and ∥ ⋅ ∥ be an induced norm on the n × n matrices. The
following statements are equivalent.

(i) ∥Ak∥ = ∥AA. . .A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

∥ converges to zero as k goes to ∞.

(ii) ρ(A) < 1.

(iii) Given any x ∈ Rn, the sequence {Akx}∞
k=0 converges to 0 ∈ Rn.

Proof.
(i) ⇒ (iii)) Using item 2 of Remark 3.1.7, we have that

∥Akx∥ ≤ ∥Ak∥ ∥x∥→ 0

as k →∞ for all x ∈ Rn.

(iii) ⇒ (ii)) Suppose that ρ(A) ≥ 1. There exists an eigenvalue λ such that ∣λ∣ ≥ 1. Let x
be an eigenvector associated to λ. We have

∥Akx∥ = ∥λkx∥ = ∣λ∣k∥x∥ /→ 0

as k →∞. This is a contradiction of (iii).

(ii) ⇒ (i)) From Theorem 3.1.11, there exists an induced norm ∥ ⋅ ∥ϵ such that ∥A∥ϵ < 1
because ρ(A) < 1. From item 4 in Remark 3.1.7, we have ∥Ak∥ϵ ≤ ∥A∥kϵ . From Remark 3.1.5,
there exists a positive constant c such that ∥B∥ ≤ c∥B∥ϵ for all n × n matrices B since the
linear space of n × n matrices is linearly isomorphic to the finite linear space Rn2

. Hence,

∥Ak∥ ≤ c∥Ak∥ι ≤ c∥A∥kι → 0

as k →∞ because ∥A∥ϵ < 1.

3.2 Iterative Methods

3.2.1 Jacobi Iterative Method

Given a vector x0 ∈ Rn, the goal is to generate a sequence {xk}∞k=1 that converges to the
solution of (3.0.1).

Suppose that ai,i ≠ 0 for all i, then we can rewrite (3.0.1) as

xi =
1

ai,i
(bi −

n

∑
j=1
j≠i

ai,jxj)

for i = 1, 2, . . . , n. This formula motivates the following algorithm.

3.2. Iterative Methods 71

Algorithm 3.2.1 (Jacobi Iterative Method)

1. Choose a vector x0 closed to the solution of Ax = b (if possible).

2. Given the vector xk, compute the vector xk+1 as follows:

xk+1,i =
1

ai,i
(bi −

n

∑
j=1
j≠i

ai.jxk,j) (3.2.1)

for i = 1, 2, . . . , n.

3. Repeat (2) until ∥xk+1 − xk∥ < ϵ, where ϵ is given.

However, we need conditions on the matrix A to ensure that the sequence {xk}∞k=1 con-
verges to a solution of Ax = b. Sufficient conditions will be given shortly.

Code 3.2.2 (Jacobi Iterative Method)

To approximate the solution of the linear system Ax = b.
Input: The matrix A.
The column vector b.
The column vector x0 (denoted x in the code below).
The tolerance tol.
The maximal number of iterations allowed limit
Output: The approximation of the solution.

% xx = jacobi(A,b,x,tol,limit)

function xx = jacobi(A,b,x,tol,limit)

xx = NaN;

dim = size(A,1);

for k = 1:dim

if (A(k,k) == 0)

disp ’The Jacobi iterative method fails because some of the elements’

disp ’on the diagonal are zero.’

return;

end

end

for k = 1:limit

xx(1,1) = (b(1,1) - A(1,2:dim)*x(2:dim,1))/A(1,1);

if dim > 2

for m = 2:dim-1

xx(m,1) = (b(m,1) - A(m,1:m-1)*x(1:m-1,1) - ...

A(m,m+1:dim)*x(m+1:dim,1))/A(m,m);

end

72 3. Iterative Methods to Solve Systems of Linear Equations

end

xx(dim,1) = (b(dim,1) - A(dim,1:dim-1)*x(1:dim-1,1))/A(dim,dim);

if (norm(xx - x) < tol)

disp(sprintf(’Number of iterations = %d’,k))

return;

end

x=xx;

end

disp ’The Jacobi iterative method failed to give an approximation to a’

disp ’solution of A x = b within the required accuracy and maximum’

disp ’number of iterations allowed.’

xx = NaN;

end

3.2.2 Gauss-Seidel Iterative Method

As for Jacobi iterative method, given a vector x0 ∈ Rn, the goal is to generate a sequence
{xk}∞k=1 that converges to the solution of (3.0.1).

If we use xk+1,1, xk+1,2, . . . , xk+1,i−1 instead of xk,1, xk,2, . . . , xk,i−1 in the formula (3.2.1) to
compute xk+1,i, hoping that xk+1,1, xk+1,2, . . . , xk+1,i−1 are better approximations of the first
(i−1) coordinates of the solution of (3.0.1) than xk,1, xk,2, . . . , xk,i−1, then perhaps that will
get a new sequence {xk}∞k=0 that converges faster to the solution of (3.0.1). This motivates
the following algorithm.

Algorithm 3.2.3 (Gauss-Seidel Iterative Method)

1. Choose a vector x0 closed to the solution of Ax = b (if possible).

2. Given the vector xk, compute the vector xk+1 as follows:

xk+1,i =
1

ai,i
(bi −

i−1
∑
j=1

ai.jxk+1,j −
n

∑
j=i+1

ai.jxk,j) (3.2.2)

for i = 1, 2, . . . , n.

3. Repeat (2) until ∥xk+1 − xk∥ < ϵ, where ϵ is given.

As for the Jacobi iterative method, we need conditions on the matrix A to ensure that
the sequence {xk}∞k=1 converges to a solution of Ax = b. Sufficient conditions will be given
shortly.

3.2. Iterative Methods 73

Code 3.2.4 (Gauss-Seidel Iterative Method)

To approximate the solution of the linear system Ax = b.
Input: The matrix A.
The column vector b.
The column vector x0 (denoted x in the code below).
The tolerance tol.
The maximal number of iterations allowed limit
Output: The approximation of the solution.

% xx = gausssiedel(A,b,x,tol,limit)

function xx = gausssiedel(A,b,x,tol,limit)

xx = NaN;

dim = size(A,1);

for k = 1:dim

if (A(k,k) == 0)

disp ’The Gauss-Seidel iterative method fails because some of the’

disp ’elements on the diagonal are zero.’

return;

end

end

for k = 1:limit

xx(1,1) = (b(1,1) - A(1,2:dim)*x(2:dim,1))/A(1,1);

if dim > 2

for m = 2:dim-1

xx(m,1) = (b(m,1) - A(m,1:m-1)*xx(1:m-1,1) - ...

A(m,m+1:dim)*x(m+1:dim,1))/A(m,m);

end

end

xx(dim,1) = (b(dim,1) - A(dim,1:dim-1)*xx(1:dim-1,1))/A(dim,dim);

if (norm(xx - x) < tol)

disp(sprintf(’Number of iterations = %d’,k))

return;

end

x=xx;

end

disp ’The Gauss-Seidel iterative method failed to give an approximation’

disp ’to a solution of A x = b within the required accuracy and’

disp ’maximum number of iterations allowed.’

xx = NaN;

end

74 3. Iterative Methods to Solve Systems of Linear Equations

3.2.3 Convergence of Iterative Methods

Let

D =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1,1 0 . . . 0 0
0 a2,2 . . . 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . an−1,n−1 0
0 0 . . . 0 an,n

⎞
⎟⎟⎟⎟⎟⎟
⎠

, U = −

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 a1,2 a1,3 . . . a1,n
0 0 a2,3 . . . a2,n
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . an−1,n
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

and L = −

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 . . . 0 0
a2,1 0 0 . . . 0 0
a3,1 a3,2 0 . . . 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

an,1 an,2 an,3 . . . an,n−1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

(3.2.3)

The equation Ax = b is equivalent to (D −U −L)x = b.
Hence, the formula (3.2.1) for the Jacobi iterative method can be rewritten as xk+1 =

D−1(L + U)xk +D−1b. We have that x is a solution of x = D−1(L + U)x +D−1b if and only
if x is a solution of Ax = b.

As well, the formula (3.2.2) for the Gauss-Seidel iterative method can be rewritten as
xk+1 = (D − L)−1Uxk + (D − L)−1b. Again, x is a solution of x = (D − L)−1Ux + (D − L)−1b
if and only if x is a solution of Ax = b.

Both the Jacobi iterative method and the Gauss-Seidel iterative method are of the form

xk+1 = Txk + c (3.2.4)

for k = 0, 1, 2,. . .
For the Jacobi iterative method, T = D−1(L + U) and c = D−1b. For the Gauss-Seidel

iterative method, T = (D −L)−1U and c = (D −L)−1b.
We now find necessary and sufficient conditions for the convergence of methods of the

form (3.2.4).

The following proposition will be used to justify the necessary and sufficient conditions
for the convergence of (3.2.4) that will be given in Theorem 3.2.12.

Proposition 3.2.5

Let T be an n × n matrix. If ρ(T) < 1, then Idn −T is invertible and

(Idn −T)−1 = lim
k→∞
(Idn +T + T 2 + . . . + T k) = lim

k→∞

k

∑
j=0
T j .

Proof.
Let Sk = Idn +T + T 2 + . . . + T k. We have

Sk(Idn −T) = (Idn −T)Sk = Idn −T k+1 . (3.2.5)

3.2. Iterative Methods 75

Since ρ(T) < 1, we get from Theorem 3.1.14 that lim
k→∞

T k+1 = 0. Hence,

lim
k→∞
(Idn −T k+1) = Idn .

Since all eigenvalues λ of T satisfy ∣λ∣ ≤ ρ(T) < 1, all eigenvalues of Idn −T (which are of
the form 1 − λ for λ an eigenvalue of T) are non-null. Thus Idn −T is invertible.

From (3.2.5), we get

lim
k→∞

Sk = lim
k→∞
((Idn −T)−1(In − T k+1)) = (Idn −T)−1 lim

k→∞
(Idn −T k+1) = (Idn −T)−1 .

We could pull (Idn −T)−1 out of the limit above because, if {Ak}∞k=1 is a sequence of n × n
matrices converging to a matrix A and B is a n × n matrix, then {BAk}∞k=1 is a sequence of
n × n matrices converging to BA since ∥BAk −BA∥ ≤ ∣∣B∥ ∥Ak −A∥→ 0 as k →∞.

Corollary 3.2.6

In Proposition 3.2.5, we have

1

1 + ∥T ∥
≤ ∥(Idn −T)−1∥ ≤

1

1 − ∥T ∥
. (3.2.6)

Proof.
From Idn = (Idn −T)(Idn −T)−1, we get

1 = ∥ Idn ∥ = ∥(Idn −T)(Idn −T)−1∥ ≤ ∥ Idn −T ∥ ∥(Idn −T)−1∥
≤ (∥ Idn ∥ + ∥T ∥) ∥(Idn −T)−1∥ = (1 + ∥T ∥) ∥(Idn −T)−1∥ .

This proves the first inequality in (3.2.6).

From (Idn −T)−1 = Idn +T (Idn −T)−1, we get

∥(Idn −T)−1∥ = ∥ Idn +T (Idn −T)−1∥ ≤ ∥ Idn ∥ + ∥T ∥ ∥(Idn −T)−1∥ = 1 + ∥T ∥ ∥(Idn −T)−1∥ .

Thus
(1 − ∥T ∥) ∥(Idn −T)−1∥ ≤ 1

and this proves the second inequality in (3.2.6).

Proposition 3.2.5 and Corollary 3.2.6 are often referenced as the Banach Lemma. It
will be useful to have the following generalization of the previous corollary.

Corollary 3.2.7

Suppose that P and Q are two n×n matrices, and P is invertible. If ∥P −Q∥ < 1/∥P −1∥,

76 3. Iterative Methods to Solve Systems of Linear Equations

then Q is invertible and

∥P ∥−1
1 + ∥P −Q∥ ∥P −1∥

≤ ∥Q−1∥ ≤ ∥P −1∥
1 − ∥P −Q∥ ∥P −1∥

.

Proof.
Since

∥(P −Q)P −1∥ ≤ ∥P −Q∥ ∥P −1∥ < 1 ,

we have that σ ((P −Q)P −1) < 1. It follows from Proposition 3.2.5, that QP −1 = Idn −(P −
Q)P −1 is invertible. Since P −1 is invertible, we get the Q is invertible.

Moreover, we get from Corollary 3.2.6 with T = (P −Q)P −1 that

1

1 + ∥(P −Q)P −1∥
≤ ∥PQ−1∥ ≤ 1

1 − ∥(P −Q)P −1∥
.

Hence

∥Q−1∥ = ∥P −1PQ−1∥ ≤ ∥P −1∥ ∥PQ−1∥ ≤ ∥P −1∥
1 − ∥(P −Q)P −1∥

≤ ∥P −1∥
1 − ∥P −Q∥ ∥P −1∥

and

∥Q−1∥ ≥ ∥PQ
−1∥

∥P ∥
≥ ∥P ∥−1
1 + ∥(P −Q)P −1∥

≥ ∥P ∥−1
1 + ∥P −Q∥ ∥P −1∥

.

Theorem 3.2.8

Let T be an n × n matrix. The sequence {xk}∞k=0 defined by (3.2.4) converges for all
x0 ∈ Rn to the unique solution p of x = Tx + c if and only if ρ(T) < 1.

Proof.
⇐) Since ρ(T) < 1, we have from the Proposition 3.2.5 that Idn −T is invertible. Thus
x = Tx + c, namely (Idn −T)x = c, has a unique solution given by p = (Idn −T)−1c.

We show by induction that

xk = T kx0 +
k−1
∑
j=0
T jc .

This is certainly true if k = 1. If we assume that xk−1 = T k−1x0 +
k−2
∑
j=0
T jc, then

xk = Txk−1 + c = T (T k−1x0 +
k−2
∑
j=0
T jc) + c = T kx0 +

k−2
∑
j=0
T j+1c + c = T kx0 +

k−1
∑
j=0
T jc .

3.2. Iterative Methods 77

Using Proposition 3.2.5 and Theorem 3.1.14, we get

lim
k→∞

xk = lim
k→∞

T kx0 + lim
k→∞

k−1
∑
j=0
T jc = 0 + (Idn −T)−1c = p .

⇒) Let x0 be any vector in Rn. We show by induction that

p − xk = T k (p − x0) .

This is certainly true for k = 0. If we assume that p − xk−1 = T k−1 (p − x0), then

p − xk = (Tp + c) − (Txk−1 + c) = T (p − xk−1) = T (T k−1 (p − x0)) = T k (p − x0) .

Hence
lim
k→∞

T k (p − x0) = lim
k→∞
(p − xk) = 0

because {xk}∞k=0 converges to p by hypothesis. Since p − x0 can be any vector in Rn by the
arbitrary status of x0, we get that ρ(T) < 1 from Theorem 3.1.14.

Corollary 3.2.9

Let T be an n × n matrix. Suppose that ∥T ∥ < 1. Then

∥p − xk∥ ≤
∥T ∥k

1 − ∥T ∥
∥x1 − x0∥ .

Proof.
We prove by induction that

∥xj+1 − xj∥ ≤ ∥T ∥j∥x1 − x0∥ .

This is true for j = 0. If we assume that ∥xj − xj−1∥ ≤ ∥T ∥j−1∥x1 − x0∥, then

∥xj+1 − xj∥ = ∥ (Txj + c) − (Txj−1 + c) ∥ = ∥T (xj − xj−1) ∥
≤ ∥T ∥∥xj − xj−1∥ ≤ ∥T ∥∥T ∥j−1∥x1 − x0∥ = ∥T ∥j∥x1 − x0∥ .

Hence, for m > k,

∥xm − xk∥ = ∥xm − xm−1 + xm−1 − xm−2 + . . . − xk+1 + xk+1 − xk∥
≤ ∥xm − xm−1∥ + ∥xm−1 − xm−2∥ + . . . + ∥xk+1 − xk∥
≤ (∥T ∥m−1 + ∥T ∥m−2 + . . . ∥T ∥k) ∥x1 − x0∥
= ∥T ∥k (∥T ∥m−k−1 + ∥T ∥m−k−2 + . . . + ∥T ∥ + 1) ∥x1 − x0∥ .

If we let m goes to infinity, we get

∥p − xk∥ ≤ ∥T ∥k (
∞
∑
j=0
∥T ∥j)∥x1 − x0∥ =

∥T ∥k
1 − ∥T ∥

∥x1 − x0∥

because {xm}∞m=0 converges to p by the previous theorem since ρ(T) ≤ ∥T ∥ < 1. The series
in the previous expression is the geometric series.

78 3. Iterative Methods to Solve Systems of Linear Equations

Remark 3.2.10
Still in the context of Theorem 3.2.8, since

∥xj − p∥ = ∥ (Txj−1 + c) − (Tp + c) ∥ = ∥T (xj−1 − p) ∥ ≤ ∥T ∥∥xj−1 − p∥
≤ ∥T ∥ (∥xj−1 − xj∥ + ∥xj − p∥) ,

we get

∥xj − p∥ ≤
∥T ∥

1 − ∥T ∥
∥xj−1 − xj∥ ,

where ∥T ∥ ≠ 1. This motivate the principle of stopping iterating when ∥xj − xj−1∥ is small
enough. ♠

Definition 3.2.11

An n × n matrix A is strictly row diagonally dominant if

1

∣ai,i∣

n

∑
j=1
j≠i

∣ai,j ∣ < 1

for i = 1, 2, 3, . . . , n.

Theorem 3.2.12

If A is strictly row diagonally dominant, then for any choice of x0, both the Jacobi
and the Gauss-Seidel iterative methods generate sequences {xk}∞k=0 which converge to
the unique solution of Ax = b.

Proof.
For Jacobi) Using the notation at the beginning of the section, we have seen that the
Jacobi iterative method is of the form (3.2.4), where T =D−1(L +U) and c =D−1b.

Since A is strictly row diagonally dominant

∥T ∥∞ =max
1≤i≤n

⎛
⎜⎜
⎝

1

∣ai,i∣

n

∑
j=1
j≠i

∣ai,j ∣
⎞
⎟⎟
⎠
< 1 .

Thus ρ(T) ≤ ∥T ∥∞ < 1 by Theorem 3.1.14. The conclusion of the theorem follows from
Theorem 3.2.8.

For Gauss-Seidel) The Gauss-Seidel iterative method defined by (3.2.2) is of the form
(3.2.4), where T = (D −L)−1U and c = (D −L)−1b.

Let λ be an eigenvalue of T and x be an eigenvector associated to λ. We assume that
∥x∥∞ = 1. From Tx = λx, we get Ux = λ(D − L)x. Since U is a strictly upper-triangular
matrix with ui,j = −ai,j for j > i and D − L is a lower-triangular matrix with di,j − li,j = ai,j
for i ≥ j, we get

−
n

∑
j=i+1

ai,jxj = λ
i

∑
j=0
ai,jxj

3.3. Relaxation Methods 79

for i = 1, 2, . . . , n. This is equivalent to

λai,ixi = −
n

∑
j=i+1

ai,jxj − λ
i−1
∑
j=0
ai,jxj

for i = 1, 2, . . . , n.
If i is the index of x such that ∣xi∣ = ∥x∥∞ = 1, then

∣λ∣∣ai,i∣ = ∣λ∣∣ai,i∣∣xi∣ ≤
n

∑
j=i+1
∣ai,j ∣∣xj ∣ + ∣λ∣

i−1
∑
j=0
∣ai,j ∣∣xj ∣ ≤

n

∑
j=i+1
∣ai,j ∣ + ∣λ∣

i−1
∑
j=0
∣ai,j ∣

because ∣xj ∣ ≤ ∥x∥∞ = 1 for all j. Hence,

∣λ∣ ≤
n

∑
j=i+1
∣ai,j ∣ (∣ai,i∣ −

i−1
∑
j=0
∣ai,j ∣)

−1

< 1

because A is strictly row diagonally dominant; namely,
i−1
∑
j=0
∣ai,j ∣ +

n

∑
j=i+1
∣ai,j ∣ < ∣ai,i∣.

Since λ was an arbitrary eigenvalue of A, we get ρ(A) < 1. The conclusion of the theorem
follows from Theorem 3.2.8.

3.3 Relaxation Methods

As for Jacobi and Gauss-Seidel iterative methods, given a vector x0 ∈ Rn, the goal is to gen-
erate a sequence {xk}∞k=1 that converges to the solution of (3.0.1). The classical relaxation
methods are given in the following algorithm.

Algorithm 3.3.1 (Relaxation Methods)

1. Choose a real number ω between 0 and 2. The choice of ω will be justified later.

2. Choose a vector x0 closed to the solution of Ax = b (if possible).

3. Given the vector xk, compute the vector xk+1 as follows:

xk+1,i = xk,i +
ω

ai,i
(bi −

i−1
∑
j=1

ai.jxk+1,j −
n

∑
j=i

ai.jxk,j) (3.3.1)

for i = 1, 2, . . . , n.

4. Repeat (3) until ∥xk+1 − xk∥ < ϵ, where ϵ is given.

The previous algorithm is called an under-relaxation method for 0 < ω < 1, and an
over-relaxation method or a successive over-relaxation (SOR) method for 1 < ω < 2.

80 3. Iterative Methods to Solve Systems of Linear Equations

We now give the motivation behind (3.3.1). Using (3.2.3), we can write Ax = b as

−Lx = −Dx +Ux + b .

Multiplying both sides by a non-zero factor ω and adding Dx on both sides yield

(D − ωL)x = (1 − ω)Dx + ωUx + ωb .

Finally, multiplying by (D − ωL)−1 from the left on both sides of the equality above gives

x = (D − ωL)−1 ((1 − ω)D + ωU)x + ω(D − ωL)−1b . (3.3.2)

This equation equivalent to Ax = b.
With T = (D−ωL)−1((1−ω)D+ωU) and c = ω(D−ωL)−1b, the equation (3.3.2) becomes

x = Tx + c. If the matrix T satisfies Theorem 3.2.8, the sequence {xk}∞k=1 defined by xk+1 =
Txk + c converges to a solution p of x = Tx + c; namely, a solution of Ax = b.

The equation xk+1 = Txk + c is the one given in (3.3.1).

Code 3.3.2 (Relaxation Methods)

To approximate the solution of the linear system Ax = b.
Input: The matrix A.
The column vector b.
The column vector x0 (denoted x in the code below).
The value of omega (denoted w in the code below).
The tolerance tol.
The maximal number of iterations allowed limit
Output: The approximation of the solution.

% xx = relaxation(A,b,x,w,tol,limit)

function xx = relaxation(A,b,x,w,tol,limit)

xx = NaN;

dim = size(A,1);

for k = 1:dim

if (A(k,k) == 0)

disp ’The Relaxation Method fails because some of the’

disp ’elements on the diagonal are zero.’

return;

end

end

for k = 1:limit

xx(1,1) = x(1,1) + w*(b(1,1) - A(1,:)*x(:,1))/A(1,1);

if dim > 2

for m = 2:dim

xx(m,1) = x(m,1) + w*(b(m,1) - A(m,1:m-1)*xx(1:m-1) - ...

3.3. Relaxation Methods 81

A(m,m:dim)*x(m:dim))/A(m,m);

end

end

if (norm(xx - x) < tol)

disp(sprintf(’Number of iterations = %d’,k))

return;

end

x=xx;

end

disp ’The Relaxation Method failed to give an approximation to a’

disp ’solution of A x = b within the required accuracy and maximum’

disp ’number of iterations allowed.’

xx = NaN;

end

A theorem due to Kahan states that ρ(T) > ∣ω − 1∣. Hence, from ∣ρ(T)∣ < 1 in Theo-
rem 3.2.8, a necessary condition for the convergence of relaxation methods is that 0 < ω < 2.
Theorem 3.3.4 below gives a sufficient condition for the convergence of a restricted form of
the relaxation methods.

To prove Theorem 3.3.4 below, we consider complex matrices. Recall that the standard
scalar product on Cn is defined by

⟨x,y⟩ =
n

∑
j=1
xjyj

for any x and y in Cn. We therefore have that ⟨x, λy⟩ = λ ⟨x,y⟩ for λ ∈ C. Moreover,

⟨x,y⟩ = ⟨y,x⟩.
The dual A∗ of a n × n complex matrix A is a n × n matrix such that ⟨A∗x,y⟩ = ⟨x,Ay⟩

for all x and y in Cn. Let {e1,e2, . . . ,en} be the canonical basis of Cn, then

⟨A∗ei,ej⟩ = ⟨ei,Aej⟩⇒ a∗j,i = ai,j (3.3.3)

for 1 ≤ i, j ≤ n. Thus A∗ is the complex conjugate transpose of A.

A n × n complex matrix A is Hermitian if A∗ = A; namely, ⟨Ax,y⟩ = ⟨x,Ay⟩ for all x
and y in Cn. It follows from (3.3.3) that aj,i = ai,j for 1 ≤ i, j ≤ n. In particular, for i = j, we
get aj,j = aj,j for 1 ≤ j ≤ n. The elements on the diagonal of A are real numbers.

The eigenvalues of an Hermitian matrix A are real numbers. Suppose that λ is an eigen-
value of A and v is an eigenvector associated to λ. Then

⟨Av,v⟩ = ⟨v,Av⟩⇒ ⟨λv,v⟩ = ⟨v, λv⟩⇒ λ ⟨v,v⟩ = λ ⟨v,v⟩⇒ λ = λ . (3.3.4)

A n × n complex matrix A is strictly positive definite if A is Hermitian and

⟨x,Ax⟩ = x∗Ax > 0

82 3. Iterative Methods to Solve Systems of Linear Equations

for all non-zero vector x ∈ Cn, where x∗ = (x1 x2 . . . xn). Since aj,j = ⟨Aej,ej⟩ > 0 for
1 ≤ j ≤ n, the elements on the diagonal of a strictly positive definite matrix A are positive
real numbers. Moreover, the eigenvalues of a strictly positive definite matrix A are positive
numbers. Suppose that λ is an eigenvalue of A and v is an eigenvector associated to λ, then

⟨Av,v⟩ > 0⇒ ⟨λv,v⟩ > 0⇒ λ ⟨v,v⟩
²
=∥v∥2>0

> 0⇒ λ > 0 .

Remark 3.3.3
Suppose that A is a n×n complex matrix which is strictly positive definite. Let A =D−U−L,
where D, U and L are defined in (3.2.3). Then, D is strictly positive definite because it is
obviously Hermitian and

x∗Dx = (
n

∑
j=1
xje

∗
j)D (

n

∑
i=1
xiei) =

n

∑
j=1

n

∑
i=1
xjxi e∗jDei

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=0 for i≠j
=aj,j for i=j

=
n

∑
j=1
xjxjaj,j =

n

∑
j=1
∣xj ∣2aj,j > 0

for all x ≠ 0. ♠

Theorem 3.3.4

Suppose that the n×n matrix A is strictly positive definite. If 0 < ω < 2 and x0 is any
vector in Rn, then the relaxation method given by (3.3.1) generates a sequence which
converges to the only solution of Ax = b.

Proof.
The conclusion of the theorem is a consequence of Theorem 3.2.8 if we prove that ρ(T) < 1,
where T = (D − ωL)−1((1 − ω)D + ωU).

Let λ ∈ C be an eigenvalue of T and x ∈ Cn be an eigenvector associated to λ. We first
note that λ ≠ 1. If λ = 1, we get from Tx = x that

(D − ωL)x = (1 − ω)Dx + ωUx⇒Dx − ωLx =Dx − ωDx + ωUx
⇒ ω(D −U −L)x = ωAx = 0 .

Since A is invertible, we get x = 0 which cannot be because x is an eigenvector associated
to λ.

We now construct a relation between ω and λ that will be used to show that ∣λ∣ < 1. Since

(1 − ω)D + ωU =D − ω(D −U) =D − ωL − ω(D −U −L) = (D − ωL) − ωA ,

we get that T = Id−Q−1A, where Q = 1

ω
(D−ωL). Hence, Id−T = Q−1A and (D−ωL)Q−1y =

ωy for all y. We get

(1 − λ)(D − ωL)x = (D − ωL) ((1 − λ)x) = (D − ωL)(Id−T)x = (D − ωL)Q−1Ax = ωAx .

3.3. Relaxation Methods 83

Thus
(D − ωL)x = ω

1 − λ
Ax . (3.3.5)

Moreover, from T = Id−Q−1A, we also have that Q(Id−T) = A. Hence

(1 − λ)QTx = QT ((1 − λ)x) = QT (Id−T)x = Q(Id−T)Tx = ATx = λAx .

We get

QTx = λ

1 − λ
Ax . (3.3.6)

It follows from the definitions of T and Q, and (3.3.6) that

(1 − ω)Dx + ωUx = (D − ωL)Tx = ωQTx = λω

1 − λ
Ax . (3.3.7)

From (3.3.5) and (3.3.7), we respectively get

⟨Dx,x⟩ − ω ⟨Lx,x⟩ = ω

1 − λ
⟨Ax,x⟩ (3.3.8)

and

⟨x,Dx⟩ − ω ⟨x,Dx⟩ + ω ⟨x, Ux⟩ = ωλ

1 − λ
⟨x,Ax⟩ . (3.3.9)

Since A = A∗, we have that ⟨x, Ux⟩ = ⟨Lx,x⟩ and ⟨x,Dx⟩ = ⟨Dx,x⟩ because the transposed
conjugate of U is L and the elements on the diagonal of A are real. Adding (3.3.8) and
(3.3.9), we get

(2 − ω) ⟨Dx,x⟩ = ω (1

1 − λ
+ λ

1 − λ
) ⟨Ax,x⟩ = ω(1 − ∣λ∣

2)
∣1 − λ∣2

⟨Ax,x⟩ .

Since 2 − ω > 0, ∣1 − λ∣2 > 0, ⟨Dx,x⟩ > 0 (Remark 3.3.3) and ⟨Ax,x⟩ > 0 because A is strictly
positive definite , we must have ∣λ∣ < 1. Since this is true for any eigenvalue λ of T , we get
ρ(T) < 1 as desired.

We state without proving.

Theorem 3.3.5

Let A be a tridiagonal, strictly positive definite matrix. Let Tj = D−1(L + U) (Jacobi
iterative method) and Tgs = (D−L)−1U (Gauss-Seidel iterative method). Then ρ(Tgs) =
(ρ(Tj))2 < 1 and ω = 2/(1+

√
1 − ρ(Tgs)) = 2/(1+

√
1 − ρ2(Tj)) is the optimal choice of

ω for the relaxation method.

Remark 3.3.6
The proof of Theorem 3.3.4 is true if we replace A =D −U −L by A =D −C −C∗, where D
is strictly positive definite. By modifying the decomposition of A as stated in the previous
statement, we can generate other relaxation methods than the classical one. ♠

84 3. Iterative Methods to Solve Systems of Linear Equations

3.4 Extrapolation

There are two steps to the method of extrapolation of the solutions.

1. The first step of extrapolation consists in embedding the equation x = Tx + c into a
family of equations of the form x = Tsx + cs for s ∈ R such that:

(a) x = Tsx + cs and x = Tx + c have the same solutions.

(b) ρ(Ts) < 1 for some s ∈ R.

2. The second step of extrapolation is to choose s0 such that ρ(Ts0) < 1 and solve x =
Ts0x + cs0 using the iterative procedure xk+1 = Ts0xk + cs0 for k = 1, 2, 3, . . . Since
ρ(Ts0) < 1, this iterative procedure converges toward a solution of x = Tx + c.

If ρ(Ts) has an absolute minimum at s = s0, we may expect that, among all converging
iterative procedures of the form xk+1 = Tsxk +cs for s ∈ R, the iterative procedure with s = s0
will converge the fastest.

In this section, we consider the special case Ts = sT + (1 − s) Id and cs = sc. Simple
algebraic manipulations show that x = Tsx + cs can be reduced to x = Tx + c is s ≠ 0.

The eigenvalues of Ts = sT +(1−s) Id are of the form sλ+(1−s), where λ is an eigenvalue
of T . Hence,

ρ(Ts) =max{∣sλ + (1 − s)∣ ∶ λ is an eigenvalue of T} .

The following theorem gives a formula to compute the value s0 where ρ(Ts) has an absolute
minimum.

Theorem 3.4.1

Consider the family of iterative procedures xk+1 = Tsxk + cs, where Ts = sT + (1 − s) Id
and cs = sc. Suppose that a ≤ λ ≤ b for all eigenvalues λ of T and 1 /∈ [a, b]. Then,
ρ(Ts0) < 1 − ∣s0∣d < 1 for s0 = 2/(2 − a − b) and the distance d between 1 and [a, b].
Moreover, if [a, b] is the smallest interval containing the eigenvalues of T , then the
absolute minimum of ρ(Ts) is reached at s0.

Proof.
We consider the case where 1 < a < b. The case a < b < 1 is similar.

The eigenvalues of Ts = sT + (1 − s) Id are of the form sλ + (1 − s) = s(λ − 1) + 1, where
λ is an eigenvalue of T . Since λ ≥ a > 1 for all eigenvalues of T , we have s(λ − 1) + 1 ≥ 1 for
s ≥ 0. We must therefore assume that s < 0.

We have d = a − 1 and 2 − a − b = (1 − a) + (1 − b) < 0. Hence, s0 < 0 and

0 < ∣s0∣d = ∣
2

2 − a − b
∣ (a − 1) = 2(a − 1)

a + b − 2
= 2(a − 1)
(a − 1) + (b − 1)

< 1

3.5. Steepest Descent and Conjugate Gradient 85

because b − 1 > a − 1 > 0.
From s < 0 and a ≤ λ ≤ b for all eigenvalues λ of T , we get that

sa + (1 − s) ≥ µ ≥ sb + (1 − s) (3.4.1)

for all eigenvalues µ of Ts. Thus,

µ ≥ s0b + (1 − s0) = s0(b + a − 2) − s0(a − 1) + 1 = −s0(a − 1) − 1 = −s0d − 1

and

µ ≤ s0a + (1 − s0) = s0(a − 1) + 1 = s0d + 1

for all eigenvalues µ of Ts0 . Hence ρ(Ts0) < ∣1 + s0d∣ = 1 − ∣s0∣d < 1 because s0d < 0 < ∣s0∣d < 1.
If [a, b] is the smallest interval such that a ≤ λ ≤ b for all eigenvalue λ of T , then s(a−1)+1

and s(b−1)+1 are eigenvalues of Ts with 1 > s(a−1)+1 > s(b−1)+1. If ∣s(a−1)+1∣ > ∣s(b−1)+1∣,
then ρ(Ts) = s(a − 1) + 1 and it increases as s < 0 increases. If ∣s(b − 1) + 1∣ > ∣s(a − 1) + 1∣,
then ρ(Ts) = ∣s(b− 1)+ 1∣ = −s(b− 1)− 1 and it increases as s < 0 decreases. The minimum is
therefore when s(a − 1) + 1 = −s(b − 1) − 1. Solving for s gives s = s0 as desired.

3.5 Steepest Descent and Conjugate Gradient

We consider systems of the form Ax = b, where A is a strictly positive definite matrix (this
also means that A is symmetric).

3.5.1 Steepest Descent

The basis for the method of steepest descent is the result of the following proposition.

Proposition 3.5.1

Let A be a strictly positive definite matrix and b ∈ Rn. The solution p of the linear
system Ax = b is the point where the quadratic function

g ∶ Rn → R
x↦ ⟨x,Ax⟩ − 2 ⟨x,b⟩

reaches its strict absolute minimum.

Proof.
Let p and u be any two vectors and let q(t) = g(p + tu).

For the standard scalar product on Rn,

⟨u,Ap⟩ = ⟨Au,p⟩ = ⟨p,Au⟩

86 3. Iterative Methods to Solve Systems of Linear Equations

because A is symmetric, Hence,

q(t) = ⟨p + tu,A(p + tu)⟩ − 2 ⟨p + tu,b⟩
= g(p) + t ⟨u,Ap⟩ + t ⟨p,Au⟩ + t2 ⟨u,Au⟩ − 2t ⟨u,b⟩
= g(p) + 2t ⟨u,Ap − b⟩ + t2 ⟨u,Au⟩ .

We note that ⟨u,Au⟩ > 0 for u ≠ 0 because A is strictly positive definite. Since the
coefficient of t2 in q(t) is positive, we have a quadratic polynomial which is concave upward.
Its minimum is reached at

t = tm =
⟨u,b −Ap⟩
⟨u,Au⟩

and the minimum value is

q(tm) = g(p) + 2tm ⟨u,Ap − b⟩ + t2m ⟨u,Au⟩ = g(p) −
(⟨u,b −Ap⟩)2

⟨u,Au⟩
. (3.5.1)

If p is a solution of Ax = b, then Ap − b = 0. Therefore, for all directions u, we have
⟨u,Ap − b⟩ = 0. Thus, q(t) reaches its strict absolute minimum of g(p) at t = 0 whatever
the direction u. Hence, p is the point where g(x) reaches its strict absolute minimum.

Conversely, if p is the strict absolute minimum for g(x), we get from (3.5.1) that
⟨u,Ap − b⟩ = 0 for all u ∈ Rn. The only vector orthogonal to all vectors in Rn, in particular
to itself, is 0. Thus Ap − b = 0 and p is the solution of Ax = b.

The previous proposition suggests the following algorithm.

Algorithm 3.5.2 (Steepest Descent)

1. Choose a vector x0 closed to the solution of Ax = b (if possible).

2. Given the vector xk, choose a direction uk such that ⟨uk,b −Axk⟩ ≠ 0. If no
such vector exists, then Axk = b and the solution has been found.

3. Compute

tk =
⟨uk,b −Axk⟩
⟨uk,Auk⟩

and let xk+1 = xk + tkuk.

4. Repeat (2) to (3) until ∥xk+1 − xk∥ < ϵ, where ϵ is given.

The steepest descent algorithm is illustrated in Figure 3.1.

The third step of the steepest descent algorithm is deduced as in the proof of Proposi-
tion 3.5.1 by considering q(t) = g(xk + tuk) instead of q(t) = g(p + tu). In this algorithm,
we have not been specific about the choice of the vectors uk. We present a slight variation
of this algorithm in Question 3.15. We now try to choose the vectors uk to speed up the

3.5. Steepest Descent and Conjugate Gradient 87

p

xk

xk+2
tk+1uk+1

tkuk

xk+1

Figure 3.1: A graphical representation of steepest descent algorithm. We have
drawn some level curves of the function g defined in Proposition 3.5.1

convergence of the algorithm. In particular, we need to control the size of tk if we do not
want to “overshoot” the solution.

The next proposition shows that, in theory, the steepest descent algorithm ends after
a finite number of iterations. However, this does not generally happen for the computer
implementation of this algorithm because of round off errors, ill-conditioning, . . .

Proposition 3.5.3

Let A be a strictly positive definite matrix and b ∈ Rn. Suppose that the vectors u1,
u2, . . . , un are A-orthogonal vectors in Rn; namely, ⟨ui,Auj⟩ = 0 for i ≠ j. Then the
steepest descent algorithm produces the solution of Ax = b after n steps.

Proof.
Let

tj =
⟨uj,b −Axj⟩
⟨uj,Auj⟩

(3.5.2)

and
xj+1 = xj + tjuj (3.5.3)

for j = 1, 2, . . . , n.
We first show by induction that

Axk+1 = Ax1 + t1Au1 + t2Au2 + . . . + tkAuk (3.5.4)

for k = 1, 2, . . . , n. Multiplying both sides of (3.5.3) with j = 1 by A from the left proves
that the previous statement is true for k = 1. If we assume that (3.5.4) is true for k < n,
multiplying both sides of (3.5.3) with j = k + 1 by A from the left and using the induction
hypothesis yield

Axk+2 = Axk+1 + tk+1Auk+1 = (Ax1 + t1Au1 + t2Au2 + . . . + tkAuk) + tk+1Auk+1

= Ax1 + t1Au1 + t2Au2 + . . . + tk+1Auk+1 .

88 3. Iterative Methods to Solve Systems of Linear Equations

This is (3.5.4) with k replaced by k + 1.
Using (3.5.2), (3.5.4) and the A-orthogonality of the vectors uj, we find that

⟨b −Axn+1,uk⟩ = ⟨b −Ax1 − t1Au1 − t2Au2 − . . . − tkAuk,uk⟩
= ⟨b −Ax1,uk⟩ − ⟨b −Axk,uk⟩
= ⟨b −Ax1,uk⟩ − ⟨b −Ax1 − t1Au1 − t2Au2 − . . . − tk−1Auk−1,uk⟩
= ⟨b −Ax1,uk⟩ − ⟨b −Ax1,uk⟩ = 0

for k = 1, 2, . . .n. Since {u1,u2, . . . ,un} is a basis of Rn, the previous equations shows that
Axn+1 = b.

3.5.2 Conjugate Gradient

The conjugate gradient algorithm is a special case of the steepest descent algorithm, where
the vectors uj are chosen such that the vectors rj = b −Axj are mutually orthogonal.

Algorithm 3.5.4 (Conjugate Gradient)

1. Choose a vector x0 closed to the solution of Ax = b (if possible).

2. Let r0 = b −Ax0 and u0 = r0.

3. Given the vectors uk ≠ 0 and rk, compute

tk =
⟨rk, rk⟩
⟨uk,Auk⟩

.

4. Given the vectors xk and rk, let xk+1 = xk + tkuk and rk+1 = rk − tkAuk.

5. Stop if ∥rk+1∥22 < ϵ, where ϵ is given.

6. Compute

sk =
⟨rk+1, rk+1⟩
⟨rk, rk⟩

.

7. Let uk+1 = rk+1 + skuk.

8. Repeat (3) to (7) until the condition in (5) is satisfied.

The next theorem1 shows that the tk’s used in the conjugate gradient algorithm are of
the form

tk =
⟨b −Axk,uk⟩
⟨uk,Auk⟩

1In fact, the items (I) to (IV) in the proof of this theorem are as important as the results in the statement
of the theorem.

3.5. Steepest Descent and Conjugate Gradient 89

as required for the steepest descent method.

Theorem 3.5.5

The vectors xk and rk of the conjugate gradient algorithm satisfy rk = b − Axk and
⟨ri, rj⟩ = 0 for i ≠ j as long as uk ≠ 0.

Proof.
The proof is by induction. The hypothesis of induction is

I) ⟨ri,uj⟩ = 0 II) ⟨ui,Auj⟩ = 0 III) ⟨ri, rj⟩ = 0
IV) ⟨ri, ri⟩ = ⟨ri,ui⟩ V) ri = b −Axi V I) ri ≠ 0

for 0 ≤ j < i.
i = 1)

We prove that the hypothesis of induction is true for i = 1. Recall that u0 = r0 in the
conjugate gradient algorithm. Hence.

⟨r1,u0⟩ = ⟨r0 − t0Au0,u0⟩ = ⟨r0,u0⟩ − t0 ⟨Au0,u0⟩
= ⟨r0, r0⟩ − t0 ⟨u0,Au0⟩ = ⟨r0, r0⟩ − ⟨r0, r0⟩ = 0 .

Thus I and III are true for i = 1.
From I with i = 1, we get

⟨r1,u1⟩ = ⟨r1, r1 + s0u0⟩ = ⟨r1, r1⟩ + s0 ⟨r1,u0⟩ = ⟨r1, r1⟩

and this proves IV for i = 1.
Since Au0 = t−10 (r0 − r1), we get from I with i = 1 that ⟨u0,Au0⟩ = t−10 ⟨r0, r0⟩. Combined

with s0 ⟨r0, r0⟩ = ⟨r1, r1⟩, we get from III with i = 1 that

⟨u1,Au0⟩ = ⟨r1 + s0u0,Au0⟩ = ⟨r1,Au0⟩ + s0 ⟨u0,Au0⟩
= t−10 ⟨r1, r0 − r1⟩ + t−10 ⟨r1, r1⟩ = t−10 ⟨r1, r0⟩ = 0

and this proves II for i = 1.
V for i = 1 is a consequence of

b −Ax1 = b −A (x0 + t0u0) = b −Ax0 − t0Au0 = r0 − t0Au0 = r1 .

Since we assume that A is strictly positive definite, it follows that from II with i = 1 that

0 < ⟨u1,Au1⟩ = ⟨r1 + s0u0,Au1⟩ = ⟨r1,Au1⟩ + s0 ⟨u0,Au1⟩
= ⟨r1,Au1⟩ + s0 ⟨Au0,u1⟩ = ⟨r1,Au1⟩

as long as u1 ≠ 0. We have used the fact that A is a symmetric matrix for the second to last
equality. Hence, V I is true for i = 1.

90 3. Iterative Methods to Solve Systems of Linear Equations

i = k implies i = k + 1)
We now assume that the hypothesis of induction is true for i = k and shows that this

implies that the hypothesis is also true for i = k + 1. Let u−1 = 0 and s−1 = 0.
From IV with i = k, we get

⟨rk+1,uk⟩ = ⟨rk − tkAuk,uk⟩ = ⟨rk,uk⟩ − tk ⟨Auk,uk⟩ = ⟨rk,uk⟩ − ⟨rk, rk⟩ = 0 .

From I and II with i = k, we also get

⟨rk+1,uj⟩ = ⟨rk − tkAuk,uj⟩ = ⟨rk,uj⟩ − tk ⟨Auk,uj⟩ = ⟨rk,uj⟩ − tk ⟨uk,Auj⟩ = 0

for j < k. The previous two equations show that I is true for i = k + 1.
From I with i = k + 1, we get

⟨rk+1,uk+1⟩ = ⟨rk+1, rk+1 + skuk⟩ = ⟨rk+1, rk+1⟩ + sk ⟨rk+1,uk⟩ = ⟨rk+1, rk+1⟩

and this proves IV for i = k + 1.
Using the definition of ui in step 7 with i = k + 1, i = j + 1 and i = j, and the definition of

rj+1 in step 4, we get for j < k that

⟨uk+1,Auj⟩ = ⟨rk+1 + skuk,Auj⟩ = ⟨rk+1,Auj⟩ + sk ⟨uk,Auj⟩
= t−1j ⟨rk+1, rj − rj+1⟩ + sk ⟨uk,Auj⟩
= t−1j ⟨rk+1,uj − sj−1uj−1 − uj+1 + sjuj⟩ + sk ⟨uk,Auj⟩
= t−1j (⟨rk+1,uj⟩ − sj−1 ⟨rk+1,uj−1⟩ − ⟨rk+1,uj+1⟩ + sj ⟨rk+1,uj⟩) + sk ⟨uk,Auj⟩ = 0

because the first four scalar products are null according to I with i = k+1 and the last scalar
product is null according to II with i = k. Moreover, as above, we have

⟨uk+1,Auk⟩ = t−1k (⟨rk+1,uk⟩ − sk−1 ⟨rk+1,uk−1⟩ − ⟨rk+1,uk+1⟩ + sk ⟨rk+1,uk⟩)
+ sk ⟨uk,Auk⟩ .

The first, second and fourth scalar products are null according to I with i = k + 1. We
therefore have that

⟨uk+1,Auk⟩ = −t−1k ⟨rk+1,uk+1⟩ + sk ⟨uk,Auk⟩

= −⟨uk,Auk⟩
⟨rk, rk⟩

⟨rk+1,uk+1⟩ +
⟨rk+1, rk+1⟩
⟨rk, rk⟩

⟨uk,Auk⟩ = 0

due to IV with i = k + 1. We have thus proved that II is true for i = k + 1.
V for i = k + 1 is a consequence of

b −Axk+1 = b −A (xk + tkuk) = b −Axk − tkAuk = rk − (rk − rk+1) = rk+1 ,

where we have used V with i = k and the definition of rk+1.

3.5. Steepest Descent and Conjugate Gradient 91

III for i = k + 1 is a consequence of I with i = k + 1 since it implies that

⟨rk+1, rj⟩ = ⟨rk+1,uj − sj−1uj−1⟩ = ⟨rk+1,uj⟩ − sj−1 ⟨rk+1,uj−1⟩ = 0

for j < k + 1.
Finally, since we assume that A is strictly positive definite, it follows from II with i = k+1

that

0 < ⟨uk+1,Auk+1⟩ = ⟨rk+1 + skuk,Auk+1⟩ = ⟨uk+1, rk+1⟩ + sk ⟨uk,Auk+1⟩
= ⟨uk+1, rk+1⟩ + sk ⟨Auk,uk+1⟩ = ⟨rk+1,uk+1⟩

as long as uk+1 ≠ 0. We have used the fact that A is a symmetric matrix for the second to
last equality. Hence, V I is true for i = k + 1.

3.5.3 Preconditioned Conjugate Gradient

The conjugate gradient method is often used to approximate the solutions of linear systems
Ax = b, where A is not well conditioned – Namely, the condition number κ(A) of the matrix
A is large (Section 4.4). Instead of working with the original system Ax = b, one often
transforms this system into an equivalent system Ãx̃ = b̃, where Ã = T ⊺AT , x̃ = T −1x and
b̃ = T ⊺b for an invertible matrix T .

Instead of computing Ã and b̃, and using the conjugate gradient algorithm directly to
approximate the solution of Ãx̃ = b̃, we derive an algorithm from the conjugate gradient
algorithm that gives us an approximation of the solution of Ax = b without having to
compute Ã = T ⊺AT and b̃ = T ⊺b.

To compare the conjugate gradient algorithm applied to both systems Ax = b and Ãx̃ = b̃,
we let x̃k = T −1xk and ũk = T −1uk.

We have that

r̃k = b̃ − Ãx̃k = T ⊺b − (T ⊺AT)(T −1xk) = T ⊺ (b −Axk) = T ⊺rk .

For the preconditioned conjugate gradient method, we assume that T T ⊺ is an invertible
matrix. If Q−1 = T T ⊺, then Q−1 is a strictly positive definite matrix.

In the conjugate gradient algorithm applied to Ãx̃ = b̃, we have

t̃k =
⟨r̃k, r̃k⟩
⟨ũk, Ãũk⟩

= ⟨T ⊺rk, T ⊺rk⟩
⟨T −1uk, (T ⊺AT)T −1uk⟩

= ⟨Q
−1rk, rk⟩
⟨uk,Auk⟩

. (3.5.5)

From x̃k+1 = x̃k + t̃kũk, we get T −1xk+1 = T −1xk + t̃kT −1uk. Multiplying both sides of this
equality by T from the left, we get

xk+1 = xk + t̃kuk . (3.5.6)

92 3. Iterative Methods to Solve Systems of Linear Equations

From r̃k+1 = r̃k − t̃kÃ ũk, we get T ⊺rk+1 = T ⊺rk + t̃k(T ⊺AT)(T −1uk). Multiplying both sides of
this equality by (T −1)⊺ from the left, we get

rk+1 = rk + t̃kAuk . (3.5.7)

We also have

s̃k =
⟨r̃k+1, r̃k+1⟩
⟨r̃k, r̃k⟩

= ⟨T
⊺rk+1, T ⊺rk+1⟩
⟨T ⊺rk, T ⊺rk⟩

= ⟨Q
−1rk+1, rk+1⟩
⟨Q−1rk, rk⟩

, (3.5.8)

Finally, from ũk+1 = r̃k+1 + s̃k ũk, we get T −1uk+1 = T ⊺rk+1 + s̃kT −1uk. Multiplying both sides
of this equality by T from the left, we get

uk+1 = Q−1rk+1 + s̃kuk . (3.5.9)

From (3.5.5) to (3.5.9), we deduce the following algorithm.

Algorithm 3.5.6 (Preconditioned Conjugate Gradient)

1. Choose a vector x0 closed to the solution of Ax = b (if possible).

2. Let r0 = b −Ax0 and u0 = r0.

3. Solve Qṽ0 = r0.

4. Given the vectors uk ≠ 0, rk and ṽk, compute

t̃k =
⟨ṽk, rk⟩
⟨uk,Auk⟩

.

5. Given the vectors xk and rk, let xk+1 = xk + t̃kuk and rk+1 = rk − t̃kAuk.

6. Solve Qṽk+1 = rk+1.

7. If ⟨ṽk+1, rk+1⟩ < ϵ, where ϵ > 0 is given, compute ∥rk+1∥22. Stop if this last expres-
sion is smaller than ϵ.

8. Compute

s̃k =
⟨ṽk+1, rk+1⟩
⟨ṽk, rk⟩

.

9. Let uk+1 = ṽk+1 + s̃kuk.

10. Repeat (4) to (9) until the condition in (7) is satisfied.

A few comments are necessary. From the point of view of the number and complexity
of operations, the only difference between the regular conjugate gradient algorithm and the
preconditioned conjugate gradient method is the need to solve the systems Qṽk = rk. A good
choice of Q (and so of T) may reduce the condition number of Q significantly and so possibly

3.6. Exercises 93

accelerate the convergence toward the solution of Ax = b. However, the systems Qṽk = rk
may be as difficult to solve as our original system Ax = b. To develop a good preconditioned
conjugate gradient algorithm, we need to find the right balance between speeding up the
convergence and keeping the systems Qṽk = rk easy to solve.

In (7) of the preconditioning conjugate gradient algorithm, we compute ∥rk+1∥22 only if
⟨ṽk+1, rk+1⟩ < ϵ because ∥rk+1∥22 is not used to compute s̃k and t̃k+1, and eventually xk+2 as
it is the case in the original conjugate gradient algorithm. So, to avoid extra computations,
we compute ∥rk+1∥22 only when we feel that there is a good chance that it is smaller than ϵ.
Note that, since Q−1 = TT ⊺,

⟨ṽk+1, rk+1⟩ = ⟨Q−1rk+1, rk+1⟩ = ⟨T ⊺rk+1, T ⊺rk+1⟩ = ∥T ⊺rk+1∥ > 0

for all rk+1 ≠ 0.

3.6 Exercises

Question 3.1

Prove that ∥x∥ =
n

∑
i=1

2−i∣xi∣ defines a norm on Rn.

Question 3.2
If ∥ ⋅ ∥ is a norm on Rn, show that

∥x − y∥ ≥ ∣∥x∥ − ∥y∥∣ (3.6.1)

for any vector x and y.

Question 3.3
Let ∥ ⋅ ∥ be a norm on Rn. Show that the induced norm on the n × n matrices satisfies

∥A∥ = sup
x≠0

∥Ax∥
∥x∥

for any n × n matrix A.

Question 3.4
If A is an n × n matrix, show that the induce norm ∥A∥1 is given by

∥A∥1 = max
0≤j≤n

{
n

∑
i=0
∣ai,j ∣} .

Question 3.5
Let

A =
⎛
⎜
⎝

4 −3 2
−1 0 5
2 6 −2

⎞
⎟
⎠
.

94 3. Iterative Methods to Solve Systems of Linear Equations

Among all vectors x such that ∥x∥∞ = 1, find a vector where ∥Ax∥∞ reaches its maximum
value. What is this maximum value?

Question 3.6
If ∥ ⋅ ∥ is an induced norm on the space of n×n matrices, is it true that ∥AB∥ = ∥BA∥ for all
matrix A and B? Justify your answer.

Question 3.7
Let ∥ ⋅∥ be a norm on Rn and A be an n×n matrix. Prove that ∥Ax∥ ≤ ∥A∥ ∥x∥ for all x ∈ Rn.
Moreover, prove that ∥A∥ is the smallest number C such that ∥Ax∥ ≤ C ∥x∥ for all x ∈ Rn.

Question 3.8
Consider the system of linear equations

3x1 − x2 + x3 = 1
2x1 + x2 − 4x3 = 0
x1 + 3x2 − x3 = 1

a) Rewrite this system in the form Ax = b for which the Gauss-Seidel iterative method
converges. You must proof the convergence.
b) Use the Gauss-Seidel iterative method to approximate the solution of Ax = b with an
accuracy of 10−5 if the infinite norm is used. Start with x0 = 0 ∈ R3.

Question 3.9
The following figure illustrates a simple bridge truss.

f3
f1

F1

A

C

π/4

f5f5f2f2

F3F2
10,000N

B

f1
f3

f4

f4
D

π/6

A load of 10,000 Newtons is at the joint C. At each joint, the horizontal and vertical com-
ponents of the resultant internal forces must be zero. Verify that the horizontal components
of the resultant internal forces are

F1 +
√
2

2
f1 + f2 = 0 , −

√
2

2
f1 +
√
3

2
f4 = 0 , −f2 + f5 = 0 and −

√
3

2
f4 − f5 = 0

at A, B, C and D respectively. Verify that the vertical components of the resultant internal
forces are

F2 +
√
2

2
f1 = 0 , −

√
2

2
f1 − f3 +

1

2
f4 = 0 , f3 − 10,000 = 0 and F3 −

1

2
f4 = 0

3.6. Exercises 95

at A, B, C and D respectively. To be complete, the problem should also consider the
horizontal and vertical components of the resultant external forces, and the sum of the
moments must be zero. We will not consider these equations.

a) Use Jacobi iterative method to approximate the solution of this system of forces to within
10−3.
b) Use Gauss-Seidel iterative method to approximate the solution of this system of forces
to within 10−3.
c) Use a relaxation method to approximate the solution of this system of forces to within
10−3.

Start the iteration with fi = Fj = 1 for all i and j. Note that you may have to reorder the
equations to ensure that the methods are applicable.

Question 3.10
Consider the linear system Ax = b, where

A =
⎛
⎜⎜⎜
⎝

4 1 −1 1
1 5 1 −1
2 −1 6 2
−1 1 −2 5

⎞
⎟⎟⎟
⎠

and b =
⎛
⎜⎜⎜
⎝

5
2
−14
25

⎞
⎟⎟⎟
⎠
.

a) Show that both Jacobi and Gauss-Seidel iteration methods converge.
b) Use Jacobi iteration method to approximate the solution of Ax = b with an accuracy of
10−5.
c) Use Gauss-Seidel iteration method to approximate the solution of Ax = b with an
accuracy of 10−5.
d) Use a relaxation method to approximate the solution of Ax = b with an accuracy of 10−5.
You must first show that the method converges with your choice of ω. Experiment with
different values of ω. For your choice of x0, determine roughly the value(s) of ω for which
the relaxation method converges the fastest (i.e. with the smallest number of iterations to
satisfy the accuracy.)

Question 3.11
Consider the iterative system xk+1 = Txk + c, where T is an n × n matrix whose spectral
radius ρ(T) is bigger or equal to 1. Give a vector x0 such that the sequence {xk}∞k=0 does
not converge to a solution of x = Tx + c is there is a solution.

Question 3.12
a) Let A be an n×n upper-triangular matrix. Show that Jacobi iterative method converges
to the solution of Ax = b for any initial vector x0.
b) Suppose that

A =
⎛
⎜
⎝

1 3 5
0 1 5
0 0 1

⎞
⎟
⎠

and b =
⎛
⎜
⎝

1
1
1

⎞
⎟
⎠
.

Choose any initial vector x0 and show that only a finite number of iterations of Jacobi
iterative method is necessary to get the solution of Ax = b.
c) If A is a general n × n upper-triangular matrix and b ∈ Rn, show that a finite number of
iterations of the Jacobi iterative method is sufficient to get the solution of Ax = b.

96 3. Iterative Methods to Solve Systems of Linear Equations

Question 3.13
Let A be an n × n upper-triangular matrix and b ∈ Rn, show that the Gauss-Seidel iterative
method converges to the solution of Ax = b for any initial vector x0, and that it does so in
a finite number of iterations

Question 3.14

Suppose that A = (1 0
2 3
) and x0 is any vector in R2.

a) Show that the sequence {xk}∞k=0 generated by the relaxation method converges to the
solution of Ax = b whatever the choice of x0 if and only if ω ∈]0,2[
b) What is the optimal value of ω; namely, what is the value of ω for which we expect the
fastest convergence?
c) If ω /∈]0,2[, show that there exists x0 for which the sequence {xk}∞k=0 generated by the
relaxation method does not converge. So, it certainly does not converge to a solution of
Ax = b. Give such a vector x0.

Question 3.15
A variant of the steepest descent method presented in in Algorithm 3.5.2 is to replace the
second step by

2’. If b ≠ Axk, let uk = b −Axk

Obviously, if b = Axk, then we have the solution xk and we stop the iteration.

a) Prove that uk is parallel to the gradient of g(x) = ⟨x,Ax⟩− 2 ⟨x,b⟩ at x = xk. Therefore,
perpendicular to the level curve of g at x = xk.
b) Prove that uk+1 is perpendicular to uk.
c) Draw a figure similar to Figure 3.1 to illustrate this version of the steepest descent
method.

Question 3.16
Prove that if uk = 0 in Algorithm 3.5.4, then Axk = b.
Question 3.17
If A is a strictly positive definite matrix and b is a given vector. Show that the scalar product
of the residual error r = b −Ax and the error vector e = A−1b − x is positive unless Ax = b.

Chapter 4

Algebraic Methods to Solve Systems
of Linear Equations

As in the previous chapter, our goal is to numerically solve the system of linear equations
Ax = b, where A is an invertible n × n matrix and b ∈ Rn is given. However, we will only
consider classical direct methods in this chapter.

4.1 Gaussian Elimination with Backward Substitution

Gaussian elimination is a well known method to solve systems of linear equations of the form

Ax = b , (4.1.1)

where

A =
⎛
⎜⎜⎜
⎝

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
⋮ ⋮ ⋱ ⋮

an,1 an,2 . . . an,n

⎞
⎟⎟⎟
⎠

, x =
⎛
⎜⎜⎜
⎝

x1
x2
⋮
xn

⎞
⎟⎟⎟
⎠

and b =
⎛
⎜⎜⎜
⎝

b1
b2
⋮
bn

⎞
⎟⎟⎟
⎠
.

We assume that A is an invertible matrix. Hence, the solution exists and is unique.

We first review the Gaussian elimination method before implementing it. The aug-
mented matrix associated to the system (4.1.1) is the matrix

[A b] =
⎛
⎜⎜⎜
⎝

a1,1 a1,2 . . . a1,n b1
a2,1 a2,2 . . . a2,n b2
⋮ ⋮ ⋱ ⋮ ⋮

an,1 an,2 . . . an,n bn

⎞
⎟⎟⎟
⎠
.

Let M(1) = [A b]. Suppose that, after several row operations, we have the matrix

97

98 4. Algebraic Methods to Solve Systems of Linear Equations

M(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a
[1]
1,1 a

[1]
1,2 . . . a

[1]
1,k−1 a

[1]
1,k . . . a

[1]
1,n ∣ b

[1]
1

0 a
[2]
2,2 . . . a

[2]
1,k−1 a

[2]
1,k . . . a

[2]
2,n ∣ b

[2]
2

⋮ ⋱ ⋱ ⋮ ⋮ . . . ⋮ ∣ ⋮
⋮ ⋮ ⋱ a

[k−1]
k−1,k−1 a

[k−1]
k−1,k . . . a

[k−1]
k−1,n ∣ b

[k−1]
k−1

⋮ ⋮ ⋮ 0 a
[k]
k,k . . . a

[k]
k,n ∣ b

[k]
k

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ∣ ⋮
0 0 a

[k]
n,k . . . a

[k]
n,n ∣ b

[k]
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We may assume that a
[k]
k,k /= 0. If a

[k]
k,k = 0, there exists i > k such that a

[k]
i,k /= 0 because A is

invertible. We interchange the kth and ith rows.

To get M(k + 1) from M(k), we subtract a[k]i,k /a
[k]
k,k times the kth row from the ith row and

write the result back in the ith row for each i > k. Namely,

a
[k+1]
i,j = a[k]i,j −

a
[k]
i,k

a
[k]
k,k

a
[k]
k,j and b

[k+1]
i = b[k]i −

a
[k]
i,k

a
[k]
k,k

b
[k]
k (4.1.2)

for i = k + 1, k + 2, . . . , n and j = k + 1, k + 2, . . . , n. We have a
[k+1]
i,k = 0 for i > k. Repeating

these operations from k = 1 to k = n − 1, we get

M(n) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

a
[1]
1,1 a

[1]
1,2 . . . a

[1]
1,n−1 a

[1]
1,n ∣ b

[1]
1

0 a
[2]
2,2 . . . a

[2]
2,n−1 a

[2]
2,n ∣ b

[2]
2

⋮ ⋱ ⋱ ⋮ ⋮ ∣ ⋮
⋮ ⋮ ⋱ a

[n−1]
n−1,n−1 a

[n−1]
n−1,n ∣ b

[n−1]
n

0 0 a
[n]
n,n ∣ b

[n]
n

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

To compute xi for 1 ≤ i ≤ n, we use backward substitution; namely,

xn =
b
[n]
n

a
[n]
n,n

and

xk =
b
[k]
k − a

[k]
k,k+1xk+1 − a

[k]
k,k+2xk+2 − . . . − a

[k]
k,nxn

a
[k]
k,k

(4.1.3)

for k = n − 1, n − 2, . . . , 1.
The following code implements Gaussian elimination with backward substitution.

Code 4.1.1 (Gaussian Elimination with Backward Substitution)

To compute the solution of the linear system of equations Ax = b, where A is invertible.
Input: The matrix A and the column vector b.
Output: The solution x of the system (in theory).

% function x = gauss(A,b)

4.1. Gaussian Elimination with Backward Substitution 99

function x = gauss(A,b)

dim = size(A,1);

x = NaN;

% To avoid expensive row interchanges, we only interchange the

% indices of the rows. We create the vector N = (1 2 3 ... dim)

% to keep track of the permutations of the rows. N(i) will contain the

% index of the row in the original matrix A which is now located

% in row i .

N=linspace(1,dim,dim);

for k = 1:dim-1

% We find the smallest index j such that A^k_{j,k} is non null.

j = k;

while (A(N(j),k) == 0)

j = j+1;

if (j > dim)

% A is not invertible.

return;

end

end

% We interchange the k’th and j’th rows.

temp = N(j);

N(j) = N(k);

N(k) = temp;

% We eliminate the entries in the k’th column which are in the

% rows below the k’th row.

for i = k+1:dim

m = A(N(i),k)/A(N(k),k);

A(N(i),k+1:dim) = A(N(i),k+1:dim) - m*A(N(k),k+1:dim);

b(N(i),1) = b(N(i),1)-m*b(N(k),1);

end

end

% We use backward substitution,

x(dim,1) = b(N(dim),1)/A(N(dim),dim);

for k = dim-1:-1:1

x(k)= (b(N(k),1) - A(N(k),k+1:dim)*x(k+1:dim,1))/A(N(k),k);

end

end

Remark 4.1.2
If ∣a[k]i,k ∣≫ ∣a

[k]
k,k∣, then a

[k]
i,k /a

[k]
k,k is very large. Hence, when performing (4.1.2), we may magnify

the rounding error. Moreover, when performing the backward substitution (4.1.3), we may

100 4. Algebraic Methods to Solve Systems of Linear Equations

also magnify the rounding error if we divide by a small number a
[k]
k,k.

A strategy to minimize the problem with rounding error is to use maximal column
pivoting also called partial pivoting. Before performing (4.1.2), we choose the index i
such that

∣a[k]i,k ∣ = max
k≤j≤n

∣a[k]j,k ∣

and interchange the ith and kth rows.

Another strategy to minimize the problem with rounding error is to use scaled column
pivoting. This time, before performing (4.1.2), we choose the index i such that

∣a[k]i,k ∣

max
k≤j≤n

∣a[k]i,j ∣
≥
∣a[k]s,k ∣

max
k≤j≤n

∣a[k]s,j ∣

for k ≤ s ≤ n, and interchange the ith and kth rows.

There is another strategy which is better than the previous two but is not often used
because of the number of operations needed to perform it. In total pivoting, before per-
forming (4.1.2), we choose the indices i and j such that

∣a[k]i,j ∣ = max
k≤s≤n
k≤r≤n

∣a[k]s,r ∣

and interchange the ith and kth rows and the jth and kth columns. With this strategy, the
indices of x also have to be permuted. ♠
Example 4.1.3
Consider the system

3x1 + 15660x2 = 15690
0.3454x1 − 2.436x2 = 1.018

The exact solution is x1 = 10 and x2 = 1.
We first solve this system using Gaussian elimination with backward substitution, without

row interchange and with 5-digit rounding arithmetic.

M(1) = (0.3 × 10 0.1566 × 105 0.1569 × 105
0.3454 −0.2436 × 10 0.1018 × 10) .

Let

m = 0.3454

0.3 × 10
≈ 0.11513

To get M(2), we subtract m times the first row from the second row and write the result in
the second row.

M(2) = (0.3 × 10 0.1566 × 105 0.1569 × 105
10−5 −0.18053 × 104 −0.18054 × 104) .

4.1. Gaussian Elimination with Backward Substitution 101

Using backward substitution, we get

x2 ≈
−0.18054 × 104
−0.18053 × 104

≈ 0.10001 × 10

and

x1 ≈
0.1569 × 105 − 0.1566 × 105 × 0.10001 × 10

0.3 × 10
≈ 0.93333 × 10 .

We have a good approximation of x2 but a bad approximation of x1.

If we use maximal column pivoting, we get the same answer because the method does not
require to interchange the rows.

If we use scaled column pivoting, we have to interchange the rows because

∣a[1]2,1∣

max
1≤j≤2
∣a[1]2,j ∣

= 1727

12180
> 1

5220
=
∣a[1]1,1∣

max
1≤j≤2
∣a[1]1,j ∣

.

Hence

M(1) = (0.3454 −0.2436 × 10 0.1018 × 10
0.3 × 10 0.1566 × 105 0.1569 × 105) .

Let

m = 0.3 × 10
0.3454

≈ 0.86856 × 10 .

To get M(2), we subtract m times the first row from the second row and write the result in
the second row.

M(2) = (0.3454 −0.2436 × 10 0.1018 × 10
0 0.15681 × 105 0.15681 × 105) .

Using backward substitution, we get

x2 ≈
0.15681 × 105
0.15681 × 105

≈ 1

and

x1 ≈
0.1018 × 10 + 0.2436 × 10 × 11

0.3454
≈ 10 .

We get the exact values of x1 and x2. ♣
We now give the code that implements Gaussian elimination with backward substitution,

and maximum column pivoting or scaled column pivoting.

102 4. Algebraic Methods to Solve Systems of Linear Equations

Code 4.1.4 (Gaussian Elimination with Backward Substitution and Pivoting
Strategy)

To compute the solution of the linear system of equations Ax = b, where A is invertible.
Maximal column or scaled column pivoting can be used.
Input: The matrix A and the column vector b.
The option selected: maximal column or scaled column pivoting.
Output: The solution x of the system (in theory).

% x = gauss(A,b,option)

%

% We use gaussian elimination with maximal column pivoting

% (obtion = 1) or scaled column pivoting (obtion = 2) to solve

% a system of linear equations of the form

%

% A(1,1)*x(1) + ... + A(1,dim)*x(dim) = b(1,:)

%

% A(dim,1)*x(x(1) + ... + A(dim,dim)*x(dim) = b(dim,:)

%

% The following must be given:

% The matrix A

% The matrix (b(:,i)) for i = 1, 2, ..., M ; the M linear

% systems A x = b(:,i) are solved simultaneously.

% The option option chosen: option = 1 for partial column

% pivoting and option = 2 for scaled column pivoting.

%

% The program gives an approximation x(:,i) of the solution of

% the linear system associated to b(:,i) for i=1, 2, ..., M.

function x = gauss(A,b,option)

dim = size(A,1);

x = NaN;

if ((option ~= 1) & (option ~= 2))

disp ’There is no such algorithm.’;

return;

end

% To avoid expensive row interchanges, we only interchange the

% indices of the rows. We create the vector N = (1 2 3 ... dim)

% to keep track of the permutations of the rows. N(i) will contain the

% index of the row in the original matrix A which is now located

% in row i .

N = linspace(1,dim,dim);

% We use gaussian elimination to write the system in echelon form.

4.1. Gaussian Elimination with Backward Substitution 103

for k=1:(dim-1)

% If option = 1, then we use the maximal colum pivoting algorithm.

% If option = 2, then we use the scaled column pivoting algorithm.

if (option == 1)

j = k;

max = abs(A(N(k),k));

for i=(k+1):dim

if (abs(A(N(i),k)) > max)

max = abs(A(N(i),k));

j = i;

end

end

if (max == 0)

disp ’The matrix A is not invertible.’;

return;

end

else

% We find the index j such that

% |a^k_{j,k}|/max_{k\leq i \leq n}|a^k_{j,i}| >=

% |a^k_{s,k}|/max_{k\leq i \leq n}|a^k_{s,i}|

% for k <= s <= dim.

j = k;

rowmax = norm(A(N(k),k:dim), inf);

if (rowmax == 0)

disp ’The matrix A is not invertible.’;

return;

end

max = abs(A(N(k),k))/rowmax;

for i=(k+1):dim

rowmax = norm(A(N(i),k:dim), inf);

if (rowmax == 0)

disp ’The matrix A is not invertible.’;

return;

end

test = abs(A(N(i),k))/rowmax;

if (test > max)

max = test;

j = i;

end

end

end

% We interchange the k^{th} and j^{th} rows.

if (k ~= j)

ncopy = N(k);

104 4. Algebraic Methods to Solve Systems of Linear Equations

N(k) = N(j);

N(j) = ncopy;

end

for i=(k+1):dim

m = A(N(i),k)/A(N(k),k);

A(N(i),(k+1):dim) = A(N(i),(k+1):dim) - m*A(N(k),(k+1):dim);

b(N(i),:)=b(N(i),:) - m*b(N(k),:);

end

end

% We now use backward substitution to get an approximation of the

% solution of the system.

x(dim,:) = b(N(dim),:)/A(N(dim),dim);

for i=(dim-1):-1:1

x(i,:) = b(N(i),:);

for j=(i+1):dim

x(i,:) = x(i,:) - A(N(i),j)*x(j,:);

end

x(i,:) = x(i,:)/A(N(i),i);

end

end

4.2 LU Factorization

We consider a system of linear equation of the form (4.1.1) where A is an n × n invertible
matrix and b is an n × 1 column vector.

Suppose that we can write A as the product PLU where P is a permutation matrix, L
is an invertible lower-triangular matrix and U is an invertible upper-triangular matrix. It is
then easy to solve (4.1.1). We first solve Ly = c = P −1b. Note that c is obtained from b by
permuting the indices of b. The solution of Ax = b is then the solution of Ux = y.

To solve Ly = c, we use forward substitution as implemented in the next code.

Code 4.2.1 (Forward Substitution)

To solve Ly = c where L is an invertible lower-triangular matrix.
Input: The matrix L and the column vector c.
Output: The solution y of the system.

% y = forward(L,c)

function y = forward(L,c)

dim = size(L,1);

y(1,1) = c(1,1)/L(1,1);

4.2. LU Factorization 105

for i = 2:dim

y(i,1) = (c(i,1) - L(i,1:i-1)*c(1:i-1))/L(i,i);

end

end

To solve Ux = y, we use backward substitution as implemented in the next code.

Code 4.2.2 (Backward Substitution)

To solve Ux = y where U is an invertible upper-triangular matrix.
Input: The matrix U and the column vector y.
Output: The solution x of the system.

% x = backward(U,y)

function x = backward(U,y)

dim = size(U,1);

x(dim,1) = y(dim,1)/U(dim,dim);

for i = dim-1:-1:1

x(i,1) = (y(i,1) - U(i,i+1:dim)*y(1:i+1:dim,1))/U(i,i);

end

end

The matrices P , L and U are obtained from the Gaussian elimination procedure described
in the previous section. Using the same notation than in the previous section, the matrices
U and L are respectively given by ui,j = a[i]i,j and ℓi,j = a

[j]
i,j /a

[j]
j,j . Recall that a

[i]
i,j = 0 and ℓi,j = 0

if j < i.
We prove that A = LU . To simplify the discussion, we assume for now that no row-

interchange has been used. From (4.1.2), we get

a
[k+1]
i,j = a[k]i,j −

a
[k]
i,k

a
[k]
k,k

a
[k]
k,j = a

[k]
i,j − ℓi,ka

[k]
k,j

for i = k + 1, k + 2, . . . , n and j = 1, 2, . . . , n. Note that we only have null values for
1 ≤ j < k + 1. If we substitute k for k − 1 in this formula, we get

a
[k]
i,j = a

[k−1]
i,j − ℓi,k−1a[k−1]k−1,j

for i = k, k + 1, . . . , n and j = 1, 2, . . . , n. Hence,

a
[k+1]
i,j = a[k−1]i,j − ℓi,k−1a[k−1]k−1,j − ℓi,ka

[k]
k,j

for i = k + 1, k + 2, . . . , n and j = 1, 2, . . . , n. By induction,

a
[k+1]
i,j = a[1]i,j − ℓi,1a

[1]
1,j − ℓi,2a

[2]
2,j − . . . − ℓi,ka

[k]
k,j

106 4. Algebraic Methods to Solve Systems of Linear Equations

for i = k + 1, k + 2, . . . , n and j = 1, 2, . . . , n. In particular, if i = k + 1, we get

a
[k+1]
k+1,j = a

[1]
k+1,j − ℓk+1,1a

[1]
1,j − ℓk+1,2a

[2]
2,j − . . . − ℓk+1,ka

[k]
k,j

for j = 1, 2, . . . , n. Thus

a
[1]
k+1,j = ℓk+1,1a

[1]
1,j + ℓk+1,2a

[2]
2,j + . . . + ℓk+1,ka

[k]
k,j + a

[k+1]
k+1,j

for j = 1, 2, . . . , n. Because ℓk+1,k+1 = 1 and ℓk+1,s = 0 for s > k + 1, we get

a
[1]
k+1,j =

n

∑
s=1

ℓk+1,sa
[s]
s,j =

n

∑
s=1

ℓk+1,sus,j (4.2.1)

for j = 1, 2, . . . , n. Since (4.2.1) is true for k = 0, 1, . . . , n − 1, we get A = LU .
If row interchanges are needed in Gaussian elimination, these row interchanges can be

performed on A and b before starting Gaussian elimination. Let P −1 be the permutation
matrix that performs all the needed row interchanges. Note that P = P −1. From our previous
discussion, we can write P −1A as P −1A = LU for a lower-triangular matrix L and an upper-
triangular matrix U . No row interchange is needed to reduce P −1A to an upper-triangular
matrix using Gaussian elimination. Hence A = PLU .

To solve Ax = b, we only have to solve LUx = P −1Ax = P −1b. From a computational
point of view, the row interchanges do not cause any problem. The formulae for U and L
given above are still valid if we performed the same row interchanges on the vector b than
the ones performed during Gaussian elimination.

Code 4.2.3 (LU Decomposition)

To approximate the solution of the linear system of equations Ax = b, where A is
invertible. Maximal column or scaled column pivoting can be used.
Input: The matrix A and the column vector b.
Output: The solution x of the system (in theory).

% x = LUfactor(A,b,option)

%

% We use PLU factorization with maximal column pivoting

% (option 1) or scaled column pivoting (option 2) to solve

% a system of linear equations of the form

%

% A(1,1)*x(1) + ... + A(1,dim)*x(dim) = b(1,:)

% . . .

% A(dim,1)*x(x(1) + ... + A(dim,dim)*x(dim) = b(dim,:)

%

% The following must be given:

% The square matrix A

% The matrix (b(:,i)) for i=1, 2, ..., M ; the M linear

% systems A x = b(:,i) are solved simultaneously.

% The option option chosen: option = 1 for maximal column

% pivoting and option = 2 for scaled column pivoting.

4.2. LU Factorization 107

%

% The program gives an approximation x(:,i) of the solution of

% the linear system A x = b(:,i) for i=1, 2, ..., M.

function x = LUfactor(A,b,option)

dim = size(A,1);

x = NaN;

if ((option ~= 1) & (option ~= 2))

disp ’There is no such algorithm.’;

return;

end

% To avoid expensive row interchanges, we only interchange the

% indices of the rows. We create the vector N = (1 2 3 ... dim)

% to keep track of the permutations of the rows. N(i) will contain the

% index of the row in the original matrix A which is now located

% in row i .

N=linspace(1,dim,dim);

% We compute the entries of U and L .

for k=1:(dim-1)

% If option = 1, then we use the maximal colum pivoting algorithm.

% If option = 2, then we use the scaled column pivoting algorithm.

if (option==1)

j = k;

max = abs(A(N(k),k));

for i=(k+1):dim

if (abs(A(N(i),k)) > max)

max = abs(A(N(i),k));

j = i;

end

end

if (max == 0)

disp ’The matrix A is not invertible.’;

return;

end

else

% We find the index k such that

% |a^k_{k,k}|/\max_{k\leq i \leq n}|a^k_{k,i}| >=

% |a^k_{s,k}|/\max_{k\leq i \leq n}|a^k_{s,i}|

% for k <= s <= dim.

j = k;

rowmax = norm(A(N(k),k:dim),inf);

if (rowmax == 0)

108 4. Algebraic Methods to Solve Systems of Linear Equations

disp ’The matrix A is not invertible.’;

return;

end

max = abs(A(N(k),k))/rowmax;

for i=(k+1):dim

rowmax = norm(A(N(i),k:dim),inf);

if (rowmax == 0)

disp ’The matrix A is not invertible.’;

return;

end

test = abs(A(N(i),k))/rowmax;

if (test > max)

max = test;

j = i;

end

end

end

% We interchange the k’th and j’th rows.

if (k ~= j)

ncopy = N(k);

N(k) = N(j);

N(j) = ncopy;

end

% We perform the Gaussian elimination.

% We store the factors l_{i,k} = A(N(i),k)/A(N(k),k) used in

% gaussian elimination for row N(i) in A(N(i),k) which

% is zero after elimination.

for i=(k+1):dim

A(N(i),k) = A(N(i),k)/A(N(k),k);

A(N(i),(k+1):dim) = A(N(i),(k+1):dim) ...

- A(N(i),k)*A(N(k),(k+1):dim);

end

end

% Only at this point do we need the value of b .

% We now use forward substitution to sole Ly = c.

y(1,:) = b(N(1),:);

for i=2:dim

y(i,:) = b(N(i),:);

for j=1:(i-1)

y(i,:) = y(i,:) - A(N(i),j)*y(j,:);

end

end

4.3. Cholesky Factorization 109

% We now use backward substitution to get an approximation of the

% solution of the system.

x(dim,:) = y(dim,:)/A(N(dim),dim);

for i=(dim-1):-1:1

x(i,:) = y(i,:);

for j=(i+1):dim

x(i,:) = x(i,:) - A(N(i),j)*x(j,:);

end

x(i,:) = x(i,:)/A(N(i),i);

end

end

We did not call the functions defined in Codes 4.2.1 and 4.2.2 in the previous code to
save storage space for the matrices and to take advantage of the special form of the lower-
triangular matrix L that has 1 everywhere on the diagonal.

Moreover, b in the previous code can be a matrix. Thus, the previous code can be used
to find the inverse of a matrix A by posing b = Id.

4.3 Cholesky Factorization

This is a special case of the LU factorization. We assume that the matrix A in (4.1.1)
is real, symmetric and strictly positive definite. It can then be proved that A has a LU
factorization that does not need pivoting. The proof is based on the fact that all the sub-

matrices
⎛
⎜
⎝

a1,1 . . . a1,k
⋮ ⋱ ⋮

ak,1 . . . ak,k

⎞
⎟
⎠
for k = 1, 2, . . . , n have positive determinants.

Suppose that A = LU as in the previous section. Let

D =

⎛
⎜⎜⎜⎜⎜⎜
⎝

√
a
[1]
1,1 0 . . . 0

0
√
a
[2]
2,2 . . . 0

.

0 0 . . .
√
a
[n]
n,n

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

M = LD and N = D−1U . Recall that the elements on the diagonal of a strictly positive
definite matrix are all positive numbers. Then A = MN , where M is lower-triangular and
N =M⊺.

To prove that M = N⊺, we use the relation A =MN to get

mk,k = nk,k =

¿
ÁÁÀak,k −

k−1
∑
i=1
mk,ini,k , (4.3.1)

nk,j =
1

mk,k

{ak,j −
k−1
∑
i=1
mk,ini,j} , (4.3.2)

110 4. Algebraic Methods to Solve Systems of Linear Equations

mj,k =
1

nk,k

{aj,k −
k−1
∑
i=1
mj,ini,k} (4.3.3)

and

mk,j = nj,k = 0

for j > k ≥ 1. The summations in the formulae above are ignored when k = 1. It remains to
show that mj,k = nk,j for j > k ≥ 1. We use induction on k. For k = 1, we have

n1,j =
a1,j
m1,1

=
aj,1
n1,1

=mj,1

for j > 1 because A is symmetric and m1,1 = n1,1 from (4.3.1). We assume that mj,i = ni,j for
j > i ≥ 1 and i ≤ k and show that mj,k+1 = nk+1,j for j > k + 1. We rewrite (4.3.2) and (4.3.3)
with k replaced by k + 1 to get

nk+1,j =
1

mk+1,k+1
{ak+1,j −

k

∑
i=1
mk+1,ini,j} , (4.3.4)

and

mj,k+1 =
1

nk+1,k+1
{aj,k+1 −

k

∑
i=1
mj,ini,k+1} . (4.3.5)

Since ak+1,j = aj,k+1 because A is symmetric, mk+1,i = ni,k+1 for 1 ≤ i ≤ k and mj,i = ni,j for
1 ≤ i ≤ k < j by induction, we get that the summations in (4.3.4) and (4.3.5) are equal for
j > k + 1.

From (4.3.1), (4.3.2) and (4.3.3), we can get the following implementation of the Cholesky
factorization. This algorithm is faster than the previous algorithms to solve Ax = b with
pivoting because it requires less computation. However, A has to be real symmetric and
positive definite.

Code 4.3.1 (Cholesky Factorization)

To compute the solution of the linear system of equations Ax = b, where A is real,
symmetric and strictly positive definite.
Input: The matrix A and the column vector b.
Output: The solution x of the system and the matrix M in A =MN .

% function x = cholesky(A,b)

function [x,M] = cholesky(A,b)

dim = size(A,1);

% In theory, we do not have to use pivoting. Moreover, we only need

% to compute M because N is the trampose of M.

M = zeros(dim,dim);

4.4. Error estimates 111

M(1,1) = sqrt(A(1,1));

M(2:dim,1) = A(2:dim,1)/M(1,1);

for k = 2:dim-1

M(k,k) = sqrt(A(k,k) - sum(M(k,1:k-1).^2));

for j = k+1:dim

M(j,k) = (A(j,k) - sum(M(j,1:k-1).*M(k,1:k-1)))/M(k,k);

end

end

M(dim,dim) = sqrt(A(dim,dim) - sum(M(dim,1:dim-1).^2));

% Only at this point do we need the value of b .

% We use forward substitution to sole My = b.

y(1,1) = b(1,1)/M(1,1);

for i = 2:dim

y(i,1) = (b(i,1) - M(i,1:i-1)*y(1:i-1,1))/M(i,i);

end

% We now use backward substitution to get an approximation of the

% solution of the system.

x(dim,1) = y(dim,1)/M(dim,dim);

for i = dim-1:-1:1

x(i,1) = (y(i,1)-M(i+1:dim,i)’*x(i+1:dim,1))/M(i,i);

end

end

4.4 Error estimates

Let xa be an approximation of the solution p of (3.0.1) such that ∥b − Axa∥ is small. Is
∥p − xa∥ small?

Example 4.4.1

Consider the system Ax = b where A = (3 6
2.9999 6

) and b = (9
8.9999

). The unique solution

is p = (1
1
).

If xa = (
3
0
), let r = b −Axa = (

0
0.0002

). We have that ∥r∥∞ = 0.0002 is a small number

but ∥p − xa∥∞ = 2 is a large number. ♣

112 4. Algebraic Methods to Solve Systems of Linear Equations

Definition 4.4.2

Let A be an invertible n × n matrix.

1. If xa is an approximation of the unique solution of Ax = b, then the vector
r = b −Axa is called the residual vector for xa.

2. The condition number of A is the number K(A) = ∥A∥ ∥A−1∥.

Theorem 4.4.3

Let A be an invertible matrix and xa be an approximation of the unique solution p of
Ax = b. The residual vector r = b −Axa for A satisfies

∥xa − p∥ ≤K(A)
∥r∥
∥A∥

and
∥xa − p∥
∥p∥

≤K(A) ∥r∥
∥b∥

if p ≠ 0.

Proof.
From r = b −Axa = A(p − xa), we get p − xa = A−1r. Thus

∥p − xa∥ ≤ ∥A−1∥∥r∥ =K(A)
∥r∥
∥A∥

. (4.4.1)

Since ∥b∥ = ∥Ap∥ ≤ ∥A∥ ∥p∥, we get
1

∥A∥
≤ ∥p∥
∥b∥

.

If we combine this last inequality with (4.4.1), we get

∥p − xa∥ ≤K(A)
∥r∥∥p∥
∥b∥

and so
∥p − xa∥
∥p∥

≤K(A) ∥r∥
∥b∥

.

Definition 4.4.4

An invertible matrix A is well-conditioned when K(A) is small (near 1) and ill-
conditioned otherwise.

Remark 4.4.5
Suppose that the matrix A in the statement of the previous theorem is a well-conditioned
matrix, then the absolute error ∥xa−p∥ is small when the residual vector r is small. Moreover,

4.4. Error estimates 113

the relative error ∥xa − p∥/∥p∥ is small when the relative size of the residual vector r with
respect to the vector b is small. ♠
Example 4.4.6

In the previous example A = (3 6
2.9999 6

). Hence ∥A∥∞ = 9.

Since A−1 = (104 −104
−4999.83 5000

), we have ∥A−1∥∞ = 2× 104. Thus K(A) = 1.8× 105 is really

large. A is ill-conditioned.

We have inequalities in Theorem 4.4.3 but we “may” in practice treat them as equalities
because they suggest the potential for large errors as we have seen in the previous example.

♣
Due to rounding errors in representing on computers the entries of A and b, solving

numerically the system
Ax = b (4.4.2)

is equivalent to solving exactly the perturbed system

(A +∆A)x = (b +∆b) , (4.4.3)

where ∆A is an n×n matrix near the n×n null matrix and ∆b is a vector of Rn near 0 ∈ Rn.
The next theorem gives an estimate of the difference between the exact solution of (4.4.2)
and the exact solution of (4.4.3).

Theorem 4.4.7

If ∥∆A∥ < ∥A−1∥−1, we have that the exact solution p of (4.4.2) and the exact solution
q of (4.4.3) satisfy

∥q − p∥
∥p∥

≤ K(A)
1 −K(A)∥∆A∥/∥A∥

(∥∆b∥
∥b∥

+ ∥∆A∥
∥A∥

) .

Proof.
From Proposition 3.2.5, Idn +A−1∆A is invertible because

∥A−1∆A∥ ≤ ∥∆A∥ ∥A−1∥ < 1

by hypothesis. Moreover, Corollary 3.2.6 gives

∥(Idn +A−1∆A)
−1∥ ≤ 1

1 − ∥A−1∆A∥
≤ 1

1 − ∥A−1∥ ∥∆A∥
. (4.4.4)

Multiplying both sides of

(A +∆A) (p + (q − p)) = (b +∆b)

114 4. Algebraic Methods to Solve Systems of Linear Equations

from the left by A−1, we get

(Idn +A−1∆A) (q − p) + p +A−1∆Ap = p +A−1∆b

because Ap = b. Thus

q − p = (Idn +A−1∆A)
−1 (A−1∆b −A−1∆Ap) .

Taking the norm on both sides, we get from (4.4.4) that

∥q − p∥ ≤ ∥ (Idn +A−1∆A)
−1 ∥ (∥A−1∥ ∥∆b∥ + ∥A−1∥ ∥∆A∥ ∥p∥)

≤ 1

1 − ∥A−1∥ ∥∆A∥
∥A−1∥ (∥∆b∥ + ∥∆A∥ ∥p∥) .

Thus

∥q − p∥
∥p∥

≤ ∥A−1∥
1 − ∥A−1∥ ∥∆A∥

(∥∆b∥
∥p∥

+ ∥∆A∥) ≤ ∥A−1∥ ∥A∥
1 − ∥A−1∥ ∥∆A∥

(∥∆b∥
∥p∥ ∥A∥

+ ∥∆A∥
∥A∥

)

≤ K(A)
1 −K(A)∥∆A∥/∥A∥

(∥∆b∥
∥b∥

+ ∥∆A∥
∥A∥

) ,

where we have used K(A) = ∥A∣∣ ∥A−1∥ and ∥b∥ ≤ ∥A∥ ∥p∥ from b = Ap.

Remark 4.4.8

1. Let A be an invertible n×n matrix and p be the unique solution of a system Ax = b. It
has been proved1 that the residual vector r of xa obtained from Gaussian elimination
with backward substitution and t-digit rounding arithmetic satisfies

∥r∥ ≈ 10−t ∥A∥∥xa∥ ,

where r has been computed using 2t-digit rounding arithmetic.

Moreover, if y is (an approximation of) the solution of the equation Ax = r, then

∥y∥ ≈ ∥A−1r∥ ≤ ∥A−1∥ ∥r∥ ≈ ∥A−1∥ (10−t ∥A∥ ∥xa∥) = 10−tK(A)∥xa∥ .

Thus 10t
∥y∥
∥xa∥

may be used as an rough approximation of K(A).

2. Let A be an invertible matrix. The method of iterative refinement, to numerically
solve a system of the form Ax = b with accuracy ϵ, can be summarized as follows.

(a) Using Gauss elimination with maximal column pivoting and single precision, find
xa such that Axa ≈ b.

(b) Compute the residual vector r = b−Axa in double precision. More precision most
be used because the computations involve many almost identical numbers.

1Forsythe, G.E. and Moler, E.B., Computer Solution of Linear Algebraic Systems, Prentice-Hall,
1967

4.5. Exercises 115

(c) Using Gauss elimination with maximal column pivoting and single precision, find
xc such that Axc ≈ r. The steps for this Gauss elimination are already known
from (a).

(d) Let xb = xa + xc.

(e) If 10t∥xc∥/∥xb∥ < ϵ, the requested accuracy, then the vector xb should be the
desired approximation of the solution p of Ax = b and hopefully a better approx-
imation of p than xa. If 10t∥xc∥/∥xb∥ /< ϵ. replace xa by xb, and repeat from step
(b).

♠

4.5 Exercises

Question 4.1
The following questions could have come from a basic Linear algebra course.

a) Prove that if A and B are two n × n matrices such that AB is invertible, then A and B
are invertible.
b) Prove that the product of two lower-triangular (resp. upper-triangular) matrices is a
lower-triangular (resp. upper-triangular) matrix.
c) Suppose that A is a n × n invertible matrix. Prove that A−1 is lower-triangular (resp.
upper-triangular) if A is lower-triangular (resp. upper-triangular).
d) Prove that the triangular factorization of a n × n matrix is unique; namely, prove
that if an invertible matrix A can be expressed as A = L1U1 = L2U2, where L1 and L2 are
two lower-triangular matrices with 1 as elements on the diagonal, and U1 and U2 are two
upper-triangular matrices, then L1 = L2 and U1 = U2.
e) If A is n×n symmetric matrix and A = LU , where L is lower-triangular with 1 as elements
on its diagonal and U is upper-triangular, prove that U =DL⊺, where D is a diagonal matrix
whose diagonal is the diagonal of the matrix U .
f) A matrix A is tridiagonal if ai,j = 0 for ∣i − j∣ ≥ 2. If A is n × n tridiagonal matrix and
A = LU , where L is lower-triangular and U is upper-triangular, prove that L and U are also
tridiagonal.

Question 4.2
Suppose that A is a n × n symmetric matrix.

a) If Gauss elimination without pivoting is used on the first column of A to reduce it to the
n × n matrix B. Prove that the (n − 1) × (n − 1) matrix obtained from B by removing the
first column and the first row is also symmetric.
b) Use the result in (a) to write an algorithm to solve the system Ax = b that reduce the
number of operations by about half.

Question 4.3
Consider the matrix

A =
⎛
⎜
⎝

2 4 3
2.001 4 3
0 2 1

⎞
⎟
⎠
.

116 4. Algebraic Methods to Solve Systems of Linear Equations

Use Gaussian elimination with backward substitution and scaled column pivoting to compute
the inverse of A. Use 5-digit rounding arithmetic. Compute the condition number of A. Is
A ill-conditioned?
Hint: the ith column of A−1 is the solution of Ax = ei.
Question 4.4
If A is an invertible matrix, prove that the condition number K(A) satisfies K(A) ≥ 1.
Question 4.5
Consider the system of linear equations Ax = b, where

A = (1 2
1.00001 2

) and b = (3
3.00001

) .

Use row operations and 7-digit rounding arithmetic to compute the solution xp of the per-

turbed system Ax = bp, where bp = (3.00001 3.00003)⊺. Compare xp with the solution

xs = (1 1)⊺ of the unperturbed system. Compute the condition number using the ℓ∞-norm.
Is the system ill-conditioned or well-conditioned?

Question 4.6
Let A be the n × n lower-triangular matrix defined by

ai,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if j > i
1 if j = i
−1 if j < i

Compute the condition number K(A) = ∥A∥∞ ∥A−1∥∞. Is A well conditioned?

Question 4.7
Consider the system of linear equations Ax = b, where

A =
⎛
⎜
⎝

0.04 0.01 −0.01
0.2 0.5 −0.2
1 2 4

⎞
⎟
⎠

and b =
⎛
⎜
⎝

0.0601
0.302
11.03

⎞
⎟
⎠
.

Suppose that q =
⎛
⎜
⎝

1.8
0.64
1.9

⎞
⎟
⎠
is an approximation of the solution p =

⎛
⎜
⎝

1.83
0.66
1.97

⎞
⎟
⎠
. Without computing

A−1, can you determine if the system is ill-conditioned or well-conditioned?

Chapter 5

Iterative Methods to Solve Systems of
Nonlinear Equations

The problem is to find the solutions of the equation

f(x) = 0 , (5.0.1)

where f ∶ Rn → Rn is a given function. Namely, we have to find the vectors p ∈ Rn such that
f(p) = 0. As for real-valued functions, the vectors p are called the roots or zeros of f .

5.1 Fixed Point Method

To find a root of f , we rewrite (5.0.1) as

x = g(x) , (5.1.1)

where g ∶ Rn → Rn, and a fixed point of g is a root of f and vice-versa. Recall that a vector
p ∈ Rn is a fixed point of g if g(p) = p. We say that (5.0.1) and (5.1.1) are equivalent (on
a given set) if a root of f is a fixed point of g and vice-versa.

Given x0, we hope that the sequence {xk}∞k=0 defined by

xk+1 = g(xk) , k = 0,1,2, . . . (5.1.2)

will converge to a fixed point p of g and therefore a root of f . The problem is to choose g
and x0 adequately.

The following theorem gives conditions that guarantee the convergence of the sequence
{xk}∞k=0 defined by (5.1.2) to a fixed point of g.

117

118 5. Iterative Methods to Solve Systems of Nonlinear Equations

Theorem 5.1.1 (Fixed Point Theorem for Mappings)

Let S be a closed and bounded subset of Rn and suppose that g ∶ S → Rn satisfies:

1. g(x) ∈ S for all x ∈ S.

2. There exists 0 <K < 1 such that ∥g(x) − g(y)∥ ≤K∥x − y∥ for all x and y in S.

Then g has a unique fixed point p ∈ S and, given x0 ∈ S, the sequence {xk}∞k=0 defined
by (5.1.2) converges to p. Moreover,

∥xk − p∥ ≤
Kk

1 −K
∥x1 − x0∥ .

Remark 5.1.2

1. The proof of Theorem 5.1.1 is identical to the proof of the Fixed Point Theorem,
Theorem 2.4.2, for g ∶ R→ R if the absolute value is replaced by the norm.

2. Suppose that g ∶ S → Rn is continuously differentiable; namely, that all the partial

derivatives
∂gi
∂xj
(x) of g exist and are continuous in S. Therefore the derivative Dg(x)

of g at x exists and is given by

Dg(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂g1
∂x1
(x) ∂g1

∂x2
(x) . . .

∂g1
∂xn
(x)

∂g2
∂x1
(x) ∂g2

∂x2
(x) . . .

∂g2
∂xn
(x)

⋮ ⋮ ⋱ ⋮
∂gn
∂x1
(x) ∂gn

∂x2
(x) . . .

∂gn
∂xn
(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

If S is convex and
max
x∈S
∥Dg(x)∥∞ < 1 , (5.1.3)

then K ≡ max
x∈S
∥Dg(x)∥∞ can be used to satisfy the second hypothesis of the Fixed

Point Theorem because we have that ∥g(x) − g(y)∥∞ ≤ K∥x − y∥∞ for all x and y in
S. This is a consequence of the mean value theorem for real valued functions on Rn.
The previous inequality is also true for the norm ∥ ⋅ ∥2 but the norm ∥Dg(x)∥2 is a lot
harder to compute in general.

Thus, to find S and g that satisfy (5.1.3), one needs to find S and g such that

n

∑
j

∣ ∂gi
∂xj
(x)∣ ≤K < 1

for all i and all x ∈ S.

5.1. Fixed Point Method 119

♠
Example 5.1.3
Find a solution of

x21 − 10x1 + x22 + 8 = 0
x1x

2
2 + x1 − 10x2 + 8 = 0

with an accuracy of 3 × 10−5 using the norm ∥ ⋅ ∥∞.
We consider the function

g(x) = (g1(x)
g2(x)

) =
⎛
⎜⎜⎜
⎝

x21 + x22 + 8
10

x1x22 + x1 + 8
10

⎞
⎟⎟⎟
⎠

and

S = {x = (x1
x2
) ∶ 0 ≤ xi ≤

3

2
for i = 1,2} .

We show that the conditions of the Fixed Point Theorem for Mappings are satisfied. Since

0 ≤ x
2
1 + x22 + 8

10
≤ 5

4
< 3

2
and 0 ≤ x1x

2
2 + x1 + 8
10

≤ 103

80
< 3

2

for x ∈ S, we have that g(x) ∈ S if x ∈ S.
Since g is continuously differentiable on S, we may use the second item of Remark 5.1.2

to find a K satisfying the Fixed Point Theorem for Mappings. We have

∣∂g1
∂x1
(x)∣ = ∣x1

5
∣ ≤ 3

10
, ∣∂g1

∂x2
(x)∣ = ∣x2

5
∣ ≤ 3

10
,

∣∂g2
∂x1
(x)∣ = ∣x

2
2 + 1
10
∣ ≤ 13

40
and ∣∂g2

∂x2
(x)∣ = ∣x1x2

5
∣ ≤ 9

20
.

Hence K =max
x∈S
∥Dg(x)∥∞ ≤max{3/10 + 3/10,13/40 + 9/20} = 31/40 < 1.

With x0 = (
0
0
), we get x1 = (

0.8
0.8
), x2 = (

0.928
0.9312

), . . . , x10 = (
0.9999570565
0.9999570577

), x11 =

(0.9999828232
0.9999828234

), x12 = (
0.9999931294
0.9999931294

). We get ∥xk − xk−1∥∞ < 3 × 10−5 only for k ≥ 12. So

x12 is the desired approximation. All the previous computations were done with as much
precision as possible but the written values were rounded to 10 decimals.

With K = 31/40, we get

∥x11 − p∥∞ ≤
K11

1 −K
∥x1 − x0∥∞ =

(31/40)11
1 − 31/40

∥(0.8
0.8
)∥
∞
= 0.2154 . . .

This is a very large upper bound for the error. This motivates the use of the condition
∥xk − xk−1∥∞ < 3 × 10−5 to stop the iteration. ♣

120 5. Iterative Methods to Solve Systems of Nonlinear Equations

5.2 Newton’s Method

Let f ∶ Rn → Rn be a continuously differentiable function; namely, all partial derivatives
∂fi
∂xj
(x) exist and are continuous. Then the derivative Df(x) of f at x is

Df(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂f1
∂x1
(x) ∂f1

∂x2
(x) . . .

∂f1
∂xn
(x)

∂f2
∂x1
(x) ∂f2

∂x2
(x) . . .

∂f2
∂xn
(x)

⋮ ⋮ ⋱ ⋮
∂fn
∂x1
(x) ∂fn

∂x2
(x) . . .

∂fn
∂xn
(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The Newton’s Method for mappings is as follows:

Algorithm 5.2.1 (Newton’s Method for Mappings)

1. Choose x0 closed to a solution p of f(x) = 0 if possible.

2. Given xk, compute
xk+1 = xk − (Df(xk))−1f(xk) (5.2.1)

if Df(xk) is invertible. If Df(xk) is not invertible, start over with a better choice
for x0.

3. Repeat (2) until ∥xk+1 − xk∥ < ϵ, where ϵ is given.

Theorem 5.2.2

Suppose that p is a solution of f(x) = 0. Let S = {x ∈ Rn ∶ ∥x − p∥ ≤ η}. Suppose
that Df(x) is invertible for all x ∈ S and let g(x) = x −Df(x)−1f(x). If the partial

derivatives of order two
∂2gi

∂xj∂xk
exist and are continuous on S for 1 ≤ i, j, k ≤ n, then

there exists a positive number δ ≤ η such that the sequence defined by (5.2.1) converges
at least quadratically to p if ∥x0 − p∥ < δ.

The proof of this theorem is similar to the proof of the order of convergence for the
Newton’s Method for functions f ∶ R→ R.
Remark 5.2.3
Any norm on Rn can be used. However, the norm ∥ ⋅ ∥∞ is often used because it is usually
easy to compute. ♠
Example 5.2.4
Use Newton’s Method for Mappings to approximate a solution of

3x21 − x22 = 0

5.3. Quasi-Newton Methods 121

3x1x
2
2 + x31 − 1 = 0

near (1
1
) with an accuracy of 10−6 using ∥ ⋅ ∥∞.

We have

f(x) = (f1(x)
f2(x)

) = (3x21 − x22
3x1x22 − x31 − 1

)

and

Df(x) = (6x1 −2x2
3(x22 − x21) 6x1x2

) .

Let x0 = (
1
1
).

1. f(x0) = (
2
1
) and Df(x0) = (

6 −2
0 6

). The solution of Df(x0)y = f(x0) is y = (0.38
0.16
).

Hence x1 = x0 − y = (
0.61
0.83
).

2. f(x1) = (
0.4259

0.044924554
) and Df(x1) = (

3.6 −1.6
0.962 3.05

). The solution of Df(x1)y = f(x1)

is y = (0.10745204
−0.019161089). Hence, x2 = x1 − y = (

0.50365909
0.85249442

).

3. And so on.

We get ∥xk − xk−1∥∞ < 10−6 for k ≥ 5. So x5 = (
0.50000000
0.86602540

) is the desired approximation.

All the previous computations were done with as much precision as possible but the written
values were rounded to 8 decimals. ♣

5.3 Quasi-Newton Methods

We consider the problem of finding a solution of the equation

f(x) = 0 , (5.3.1)

where f ∶ Rn → Rn is continuously differentiable.

To use Newton’s Method, we need to compute Df(x). It is not always possible to compute
Df(x) at each step or it may be costly to compute it at each step. It would be nice to have
a method like the secant method to solve systems of non-linear equations.

The method proposed by Broyden produces a sequence {x}∞k=0 from an iterative formula
of the form

xk+1 = xk −A−1k f(xk) , k = 0,1,2, . . . (5.3.2)

122 5. Iterative Methods to Solve Systems of Nonlinear Equations

where x0 is the given initial value and the matrix Ak is an approximation of Df(xk).
The method developed by Broyden gives an approximation Ak of Df(xk) such that the

approximation Ak+1 of Df(xk+1) can be easily obtained from Ak. Only Df(x0) is needed to
start the iteration. The method reduces the number of functions evaluation at each steps.
However, it also produces an iterative method with a rate of convergence inferior to the
quadratic rate of convergence of the Newton’s Method. The iterative method proposed by
Broyden has a superlinear rate of convergence; namely,

lim
k→∞

∥xk+1 − p∥
∥xk − p∥

= 0 ,

where p is the limit of the sequence {x}∞k=0 and thus a solution of f(x) = 0. Unlike New-
ton’s Method, the iterative method developed by Broyden is not “self correcting” Newton’s
Method will correct round-off errors as one keeps iterating. This is not so for the method
presented in this section.

The sequence {x}∞k=0 produced by the iterative formula (5.3.2) will generally converges to
a solution p of f(x) = 0 if x0 is closed enough to p.

The approximation Ak of Df(xk) is given recursively as follows.

1. A0 = Jf(x0). This is the only time that Jf(x) needs to be computed.

2. Given Ak, xk and xk+1, the approximation Ak+1 is a matrix which satisfies

Ak+1 (xk+1 − xk) = f(xk+1) − f(xk)

and

N (Ak+1 −Ak) ⊃ E ≡ {λ(xk+1 − xk) ∶ λ ∈ R}� ,

where N (Ak+1 −Ak) denotes the kernel of the linear mapping associated to the matrix
Ak+1 −Ak.

The second condition in item (2) can be expressed as follows. Ak+1x = Akx for all x such
that ⟨x, (xk+1 − xk)⟩ = 0. In other words, Ak+1 = Ak on the orthogonal complement of E. It
is easy to check that the matrix Ak+1 satisfying the item (2) above is

Ak+1 = Ak +
1

∥xk+1 − xk∥2
(f(xk+1) − f(xk) −Ak(xk+1 − xk))(xk+1 − xk)⊺ . (5.3.3)

There is an additional benefit in using the iterative method above. There is no need to
solve a linear system of the form Aky = xk at each iterative step. It is easy to compute
recursively A−1k . To explain how to do this, we need the following proposition.

5.3. Quasi-Newton Methods 123

Proposition 5.3.1 (Sherman and Morrison)

If A is an n×n nonsingular matrix and x, y are two vectors such that y⊺A−1x+ 1 ≠ 0,
then A + xy⊺ is nonsingular and

(A + xy⊺)−1 = A−1 − 1

1 + y⊺A−1x
A−1xy⊺A−1 . (5.3.4)

Proof.
Since

A + xy⊺ = A (Id+A−1xy⊺)
and A is nonsingular, it is enough to prove that Id+A−1xy⊺ is nonsingular to prove that
A + xy⊺ is nonsingular.

If z ∈ N (Id+A−1xy⊺), we get that

(1 + y⊺A−1x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≠0

y⊺z = y⊺ (Id+A−1xy⊺)z = y⊺0 = 0 .

Thus y⊺z = 0 and
0 = (Id+A−1xy⊺)z = z +A−1x (y⊺z) = z .

We conclude that N (Id+A−1xy⊺) = {0} and Id+A−1xy⊺ is nonsingular.
To prove that the right hand side of (5.3.4) is the inverse of A+xy⊺, it suffices to multiply

the right hand side of (5.3.4) by A+xy⊺. This is a simple computation left to the reader.

Let

uk+1 = xk+1 − xk

and

vk+1 = f(xk+1) − f(xk) , k = 0,1,2, . . .

If we substitute

y = uk+1 , A = Ak and x = 1

∥uk+1∥2
(vk+1 −Akuk+1)

in (5.3.4), we get from (5.3.3) that

A−1k+1 = (Ak +
1

∥uk+1∥2
(vk+1 −Akuk+1)u⊺k+1)

−1

= A−1k − (1 + u⊺k+1A−1k (
1

∥uk+1∥2
(vk+1 −Akuk+1)))

−1

(A−1k (
1

∥uk+1∥2
(vk+1 −Akuk+1))u⊺k+1A−1k)

124 5. Iterative Methods to Solve Systems of Nonlinear Equations

= A−1k + (u⊺k+1A−1k vk+1)
−1 (uk+1 −A−1k vk+1)u⊺k+1A−1k , k = 0,1,2, . . .

Once A−10 has been computed, it becomes “relatively easy” to compute the A−1k with the
iterative formula above.

5.4 Steepest Descent for Nonlinear Systems

The problem of finding a solution of the equation

f(x) = 0 , (5.4.1)

where f ∶ Rn → R is continuously differentiable, can be solved using a method similar to the
steepest descent method that has been introduced earlier to solve linear systems of the form
Ax = b.

The steepest descent algorithm that we present below is based on the following ob-
servations. At a point xk, the direction in which the function f(x) decreases the fastest
is the direction of the vector −∇f(xk). The descent method is based on minimizing q(t) =
f(xk−t∇f(xk)) for t near the origin. If tk is the value of t nearest 0 where a minimum of q is
reached, the next approximation of the solution of f(x) = 0 is given by xk+1 = xk− tk∇f(xk).
Repeating this procedure, we hope to get a sequence of vectors {xk}∞k=0 converging toward
the solution of f(x).

Algorithm 5.4.1 (Steepest descent)

1. Choose x0 closed to a solution p of f(x) = 0 if possible.

2. Given xk, compute ∇f(xk).

3. Find the value of tk nearest 0 for which q(t) = f(xk − t∇f(xk)) reaches a mini-
mum.

4. Let xk+1 = xk − tk∇f(xk).

5. Repeat (2) to (4) until ∥xk+1 − xk∥ < ϵ, where ϵ is given.

To minimize q in (3), one may look for the roots of q′; namely, the critical points of q. We
will not elaborate on the techniques to minimize q. This is part of the important subject of
optimization that we unfortunately do not cover in this book.

5.5 Exercises

Question 5.1
Consider the function

g(x) = (cos2(x1 + x2)/6
sin(x1) cos(x2)/5

) .

5.5. Exercises 125

a) Show that g satisfies the hypothesis of the Fixed Point Theorem for mapping on S = {x ∈
R2 ∶ −1 ≤ x1, x2 ≤ 1}.
b) Use the fixed point method to approximate the fixed point of g in S with an accuracy
of 10−5.
c) Let p be the fixed point of g in S, find a small value of n for which ∥xn − p∥∞ < 10−5,
where {xn}∞n=1 is the sequence generated by xn+1 = g(xn) with x0 = 0.
Question 5.2
a) Show that a solution of

f(x) = (f1(x)
f2(x)

) = (x
3
1 + 12x1 − x2 − 3

2x1 + x32 − 12x2 + 2
) = (0

0
)

is a fixed point of

g(x) = (g1(x)
g2(x)

) = ((x2 − x
3
1 + 3)/12

(2x1 + x32 + 2)/12
)

and vice-versa.
b) Use a sketch of the two level curves defined by f1(x) = 0 and f2(x) = 0 to show that
there is at least one solution to f(x) = 0.
c) Check that the function g satisfies all the hypotheses of the Fixed Point Theorem for
mappings on S = {x ∶ 0 ≤ x1, x2 ≤ 1}.
d) Use the fixed point method to approximate a solution of f(x) = 0 with an accuracy of
10−5. Start with x0 = 0.
e) Determine a small value of n for which ∥xn − p∥∞ < 10−5, where p is the unique fixed
point of g in S and the vectors xn are generated by the fixed point method from x0 = 0.
Question 5.3
Use the fixed point method to approximate a solution of f(x) = 0 to within 10−5, where

f(x) = (4x1 − x2 − 5
1 +√x1 − (x2 + 1)3

) .

Don’t forget to verify the hypothesis of the Fixed-Point Theorem first.

Question 5.4
a) Show that a root of

f(x) = (2(x1 − 1)
2 − 2x2 − 1

x21 + 4x22 − 4
) (5.5.1)

is a fixed point of

g(x) = ((2x21 − 2x2 + 1)/4
(−x21 − 4x22 + 8x2 + 4)/8

)

and vice-versa.
b) Use a sketch of the two level curves defined by f1(x) = 0 and f2(x) = 0 to show that
there is at least one solution to f(x) = 0.
c) Verify that the function g satisfies all the hypotheses of the Fixed Point Theorem for
mappings on S = {x ∶ −1/4 ≤ x1 ≤ 1/4 , 3/4 ≤ x2 ≤ 1}.

126 5. Iterative Methods to Solve Systems of Nonlinear Equations

d) Use the fixed point method to approximate a solution of (5.5.1) with an accuracy of 10−5.

Start with x0 = (0 1)⊺.
e) Find a small value of n for which ∥xn − p∥∞ < 10−5, where p is the unique fixed point of
g in S and the vectors xn are generated by the fixed point method from x0 given in (d).

Question 5.5
a) Show that a root of

f(x) =
⎛
⎜
⎝

3 − 15x1 + x22 + 4x3
5 + x21 − 10x2 + x3
22 + x32 − 25x3

⎞
⎟
⎠

(5.5.2)

is a fixed point of

g(x) =
⎛
⎜
⎝

(x22 + 4x3 + 3)/15
(5 + x21 + x3)/10
(x32 + 22)/25

⎞
⎟
⎠

and vice-versa.
b) Verify that the function g satisfies all the hypotheses of the Fixed Point Theorem for
mappings on S = {x ∶ 0 ≤ xi ≤ 3/2}.
c) Use the fixed point method to approximate a solution of (5.5.2) with an accuracy of 10−5.

Start with x0 = (1 1 1)⊺.
d) Find a small value of n for which ∥xn − p∥∞ < 10−5, where p is the unique fixed point of
g in S and the vectors xn are generated by the fixed point method from x0 given in (c).

Question 5.6
Use Newton’s Method to approximate a solution of f(x) = 0 with an accuracy 10−6, where

f(x) =
⎛
⎜
⎝

x31 + x21x2 − x1x3 + 6
ex1 + ex2 − x3
x22 − 2x1x3 − 4

⎞
⎟
⎠

for −2 ≤ x1, x2 ≤ −1 and 0 ≤ x3 ≤ 1.

Chapter 6

Polynomial Interpolation

Suppose that an unknown function f governs some physical phenomenon and that the results
of an experiment gives the data (xi, f(xi)) for i = 0, 1, 2, . . . , n. Could we use these data
to approximate f(x) at x ≠ xi for i = 0, 1, . . . , n? In this chapter, we present some methods
that answer this question using (piecewise) polynomial approximations of f .

Definition 6.0.1

Suppose that p is a (piecewise) polynomial approximations of f , if x is inside the
smallest interval containing the xi’s, we say that p(x) is a polynomial interpolation
of f(x). Otherwise, we say that p(x) is a polynomial extrapolation of f(x).

6.1 Lagrange Interpolation

Definition 6.1.1

If f ∶ [a, b] → R is a function and a ≤ x0 < x1 < x2 < . . . < xn ≤ b, then the polynomial p
of degree n defined by

p(x) =
n

∑
i=0

f(xi)
n

∏
j=0
j≠i

(
x − xj
xi − xj

) (6.1.1)

is such that p(xi) = f(xi) for 0 ≤ i ≤ n. The polynomial p is called the Lagrange
Interpolating Polynomial of f at x0, x1, . . . , xn.

The polynomial p is often used as an approximation of f on the interval [x0, xn].
Since polynomials of degree n have exactly n complex roots counted with multiplicity,

the Lagrange Interpolating Polynomial in (6.1.1) is the unique polynomial of degree at most
n satisfying p(xi) = f(xi) for 0 ≤ i ≤ n. To prove this statement, suppose that q is another
polynomial of degree less than or equal to n such that q(xi) = f(xi) for 0 ≤ i ≤ n, then p − q

127

128 6. Polynomial Interpolation

is a polynomial of degree at most n such that (p−q)(xi) = 0 at n+1 distinct values. Namely,
p − q is a polynomial of degree at most n with n + 1 roots. The only possibility is p − q = 0.

(6.1.1) is not the best form of the interpolating polynomial of a function but it is an
important tool to develop formulas for derivation and integration later on. We will present
another form of the interpolating polynomial below.

6.2 Newton Interpolation

We now extend the definition of interpolating polynomial of a function at (n + 1) distinct
points x0, x1, . . . , xn to the case where the xi’s are not all distinct.

Definition 6.2.1

Let f ∶]a, b[→ R and g ∶]a, b[→ R be two functions sufficiently differentiable. Suppose
that x0, x1, . . . , xn are (n + 1) points in]a, b[(not necessarily distinct). We say that
f and g agree at the points x0, x1, . . . , xn if

djf

dxj
(z) = djg

dxj
(z)

for j = 0, 1, . . . , m−1 whenever z appearsm times in the list x0, x1, . . . , xn. Obviously,
we set

djf

dxj
(z) = f(z)

for j = 0.

Theorem 6.2.2

Let f ∶]a, b[→ R be a function sufficiently differentiable. Suppose that x0, x1, . . . , xn
are (n+ 1) points in]a, b[not necessarily distinct. Then there is a unique polynomial
p of degree at most n such that f and p agree at x0, x1, . . . , xn.

Proof.
See Section 6.3 below.

Definition 6.2.3

The polynomial p in Theorem 6.2.2 is called the interpolating polynomial of f at
the interpolatory points x0, x1, . . . , xn.

Definition 6.2.4

Let f ∶]a, b[→ R be a function sufficiently differentiable. The kth divided differ-
ence of f at k + 1 not necessarily distinct points x0, x1, . . . , xk in]a, b[, denoted
f[x0, x1, . . . , xk], is the coefficient of xk in the unique polynomial of degree at most k

6.2. Newton Interpolation 129

that agrees with f at x0, x1, . . . , xk.

Theorem 6.2.5

Let f ∶]a, b[→ R be a function sufficiently differentiable. Suppose that x0, x1, . . . , xn
are n + 1 not necessarily distinct points in]a, b[. Then the unique polynomial p of
degree at most n that agrees with f at x0, x1, . . . , xn is given by

p(x) = f[x0] + f[x0, x1] (x − x0) + f[x0, x1, x2] (x − x0)(x − x1) + . . .
+ f[x0, x1, . . . , xn] (x − x0)(x − x1) . . . (x − xn−1) .

(6.2.1)

Moreover, for xj ≠ xj+k,

f[xj, xj+1, . . . , xj+k] =
f[xj+1, xj+2, . . . , xj+k] − f[xj, xj+1, . . . , xj+k−1]

xj+k − xj
(6.2.2)

and, for xj = xj+1 = xj+2 = . . . = xj+k,

f[xj, xj+1, . . . , xj+k] =
1

k!

dkf

dxk
(xj) . (6.2.3)

Finally,

f(x) = p(x) + f[x0, x1, . . . , xn, x] (x − x0)(x − x1) . . . (x − xn−1)(x − xn) . (6.2.4)

Proof.
See Section 6.3 below.

It is easy to deduce the first divided difference of f

a) The interpolating polynomial p of f of degree 0 at x0 is given by the constant function
p(x) = f(x0) for all x. Hence, the coefficient f[x0] of x0 is

f[x0] = f(x0) .

b) The interpolating polynomial p of f of degree at most 1 at x0, x1 is given by

p(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(x0) +
f(x1) − f(x0)

x1 − x0
(x − x0) if x0 ≠ x1

f(x0) + f ′(x0) (x − x0) if x0 = x1
In the first case, it is the equation of the secant line through (x0, f(x0)) and (x1, f(x1)). In
the second case, it is the equation of the tangent line at x0 because we must have p(x0) =
f(x0) and p′(x0) = f ′(x0). Hence, the coefficient f[x0, x1] of x1 is

f[x0, x1] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(x1) − f(x0)
x1 − x0

if x0 ≠ x1
f ′(x0) if x0 = x1

130 6. Polynomial Interpolation

c) The interpolating polynomial p of f of degree at most 2 at x0, x1, x2 is of the form

p(x) = A +B (x − x0) +C (x − x0)(x − x1) .

If the xi’s are distinct, the polynomial p must satisfy

f(x0) = p(x0) = A ,

f(x1) = p(x1) = A +B (x1 − x0)

and

f(x2) = p(x2) = A +B (x2 − x0) +C (x2 − x0)(x2 − x1) .

Hence,

A = f(x0) = f[x0] , B = f(x1) − f(x0)
x1 − x0

= f[x0, x1]

and

C = 1

(x2 − x0)(x2 − x1)
(f(x2) − f(x0) −

f(x1) − f(x0)
x1 − x0

(x2 − x0))

= 1

(x2 − x0)(x2 − x1)
(f(x2) − f(x0) −

f(x1) − f(x0)
x1 − x0

((x2 − x1) + (x1 − x0)))

= 1

(x2 − x0)(x2 − x1)
(f(x2) − f(x0) −

f(x1) − f(x0)
x1 − x0

(x2 − x1) − f(x1) + f(x0))

= 1

(x2 − x0)(x2 − x1)
(f(x2) − f(x1) −

f(x1) − f(x0)
x1 − x0

(x2 − x1))

= 1

(x2 − x0)
(f(x2) − f(x1)

x2 − x1
− f(x1) − f(x0)

x1 − x0
)

= f[x1, x2] − f[x0, x1]
x2 − x0

.

Hence, the coefficient f[x0, x1, x2] of x2 is

f[x0, x1, x2] =
f[x1, x2] − f[x0, x1]

x2 − x0
if the xi’s are distinct. We get a similar formula if x0 = x1 ≠ x2 or x1 ≠ x2 = x3. Recall that
we assume that if a value z appears more than once in {x0, x1, x3}, then all occurrences of z
are contiguous.

If x0 = x1 = x2, the interpolating polynomial p of f of degree at most 2 is given by the
Taylor polynomial of degree 2 at x0; namely,

p(x) = f(x0) + f ′(x0) (x − x0) +
1

2!
f ′′(x0) (x − x0)2 .

It is easy to check that p(x0) = f(x0), f ′(x0) = p′(x0) and f ′′(x0) = p′′(x0). Hence, the
coefficient f[x0, x1, x2] of x2 is

f[x0, x1, x2] =
1

2!
f ′′(x0)

6.2. Newton Interpolation 131

if x0 = x1 = x2.
Remark 6.2.6

1. Because of Theorem 6.2.2, (6.1.1) and (6.2.1) are two ways to represent the polynomial
of degree at most n that agrees with f at the n + 1 distinct points x0, x1, . . . , xn,

2. Because the interpolating polynomial of degree at most n of f at x0, x1, x2, . . . , xn is
independent of the order in which the xi’s are listed, in particular the coefficient of xn

is not going to change if the order of the xi’s is changed, we have that

f[x0, x1, . . . , xk] = f[xσ(0), xσ(1), . . . , xσ(k)]

for any permutation σ of {0,1,2,3, . . . , k}.

3. To be able to use (6.2.3) and thus get simple divided difference formulae, we assume
that if a value z appears more than once in {x0, x1, x2, . . . , xn}, then all occurrences of
z are contiguous.

4. From a computational point of view, (6.2.1) is better than (6.1.1) because there are lest
operations needed to evaluate p(x) if we use the nested form to evaluate polynomials.

5. The form (6.2.1) of the interpolating polynomial of f at x0, x1, . . . , xn can be easily
extended to the form (6.2.1) of the interpolating polynomial of f at the n + 1 points
x0, x1, . . . , xn and xn+1, where xn+1 is a new point. Only the divided difference
f[x0, x1, . . . , xn, xn+1] needs to be computed because we already have the divided dif-
ferences f[x0], f[x0, x1], . . . , f[x0, x1, . . . , xn] from the interpolating polynomial of f
at x0, x1, . . . , xn.

♠
The divided differences have the following properties.

Theorem 6.2.7

Let x0, x1, . . . , xk be k+1 points in]a, b[and f ∶]a, b[→ R be a sufficiently continuously
differentiable function. Then

f[x0, x1, . . . , xk] =
1

k!

dkf

dxk
(ξ)

for some ξ in the smallest interval containing x0, x1, . . . , xk.
Moreover,

dj

dxj
f[x0, x1, . . . , xk, x] = j! f[x0, x1, . . . , xk, x, x, . . . , x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j+1 times

] (6.2.5)

for j ≥ 0.

Proof.
See Section 6.3 below.

132 6. Polynomial Interpolation

To motivate (6.2.5), we prove that

d

dx
f[x0, x] = f[x0, x, x] and

d2

dx2
f[x0, x] = 2f[x0, x, x, x] .

We have

d

dx
f[x0, x] =

d

dx
(f(x) − f(x0)

x − x0
) = f

′(x)(x − x0) − (f(x) − f(x0))
(x − x0)2

=
f ′(x) − f(x) − f(x0)

x − x0
x − x0

= f[x,x] − f[x0, x]
x − x0

= f[x0, x, x]

at x ≠ x0 and

d2

dx2
f[x0, x] =

d

dx
(f
′(x)(x − x0) − (f(x) − f(x0))

(x − x0)2
)

= f
′′(x)(x − x0)3 − 2f ′(x)(x − x0)2 + 2(f(x) − f(x0))(x − x0)

(x − x0)4

= 2

f ′′(x)
2
− 1

x − x0
(f ′(x) − f(x) − f(x0)

x − x0
)

x − x0

= 2
f[x,x, x] − 1

x − x0
(f[x,x] − f[x,x0])

x − x0

= 2 f[x,x, x] − f[x0, x, x]
x − x0

= 2f[x0, x, x, x]

at x ≠ x0.
Before proving Theorems 6.2.2, 6.2.5 and 6.2.7, we illustrate how these theorems are used.

6.2.1 Linear Interpolation

Suppose that we only have two points (x0, f(x0)) and (x1, f(x1)) with x0 ≠ x1. Then

p(x) = f[x0] + f[x0, x1] (x − x0) ,

where

f[x0] = f(x0) and f[x0, x1] =
f(x1) − f(x0)

x1 − x0
.

Example 6.2.8
If (x0, f(x0)) = (2.2,6.2) and (x1, f(x1)) = (2.5,6.7), find an approximation of f(x) at
x = 2.35.

We have f[2.2] = f(2.2) = 6.2 and

f[2.2,2.5] = f(2.5) − f(2.2)
2.5 − 2.2

= 6.7 − 6.2
2.5 − 2.2

= 1.6 .

6.2. Newton Interpolation 133

Thus p(x) = 6.2 + 1.6(x − 2.2) and f(2.35) ≈ p(2.35) = 6.45. ♣
Example 6.2.9
Suppose that only the values of f(x) = cos(x) at x = 0 and x = π/6 are known, find an
approximation of cos(0.2).

We compute the interpolating polynomial at the points

(0, cos(0)) = (0,1) and (π/6, cos (π/6)) = (π/6,
√
3/2) .

We have f[0] = f(0) = 1 and

f[0, π/6] = f(pi/6) − f(0)
π/6 − 0

=
√
3/2 − 1
π/6 − 0

= 3
√
3 − 6
π

.

Thus

p(x) = 1 + (3
√
3 − 6
π

)x

and cos(0.2) ≈ p(0.2) ≈ 0.948825. Rounded after six digits, cos(0.2) = 0.980067. Thus, the
absolute error is about 0.031242. ♣
Remark 6.2.10
MATLAB can be used to plot the graph of a function f associated to the data set

{(x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn))} ,

where x0 < x1 < . . . < xn. MATLAB plots the graph of the piecewise linear function p
that passes through each point of the data set. Namely, f is approximated by the piecewise
polynomial p (each piece is a polynomial of degree one) defined by

p(x) = f[xi] + f[xi, xi+1] (x − xi) , xi ≤ x ≤ xi+1 ,

for i = 0, 1, 2, . . . , n − 1. ♠

6.2.2 Quadratic Interpolation

Suppose that we have the points (x0, f(x0)), (x1, f(x1)) and (x2, f(x2)) with xi ≠ xj for
i ≠ j. Then

p(x) = f[x0] + f[x0, x1] (x − x0) + f[x0, x1, x2] (x − x0)(x − x1) ,

where

f[x0] = f(x0) , f[x0, x1] =
f(x1) − f(x0)

x1 − x0
and f[x0, x1, x2] =

f[x1, x2] − f[x0, x1]
x2 − x0

.

Moreover, we need to compute f[x1, x2] =
f(x2) − f(x1)

x2 − x1
in the formula of f[x0, x1, x2].

134 6. Polynomial Interpolation

Example 6.2.11
Given the data (x0, f(x0)) = (2.2,6.2), (x1, f(x1)) = (2.5,6.7) and (x2, f(x2)) = (2.7,6.5).
Find the approximation of f(x) at x = 2.35.

We have f[2.2] = f(2.2) = 6.2,

f[2.2,2.5] = f(2.5) − f(2.2)
2.5 − 2.2

= 6.7 − 6.2
2.5 − 2.2

= 1.6 ,

f[2.5,2.7] = f(2.7) − f(2.5)
2.7 − 2.5

= 6.5 − 6.7
2.7 − 2.5

= −1

and

f[2.2,2.5,2.7] = f[2.5,2.7] − f[2.2,2.5]
2.7 − 2.2

= −1 − 1.6
2.7 − 2.2

= −5.3 .

Thus

p(x) = 6.2 + 1.6(x − 2.2) − 5.3(x − 2.2)(x − 2.5)
= 6.2 + (x − 2.2)(1.6 − 5.3(x − 2.5))

and f(2.35) ≈ p(2.35) = 6.57. ♣

6.2.3 General Interpolation

We now consider the general interpolating polynomial at the points x0, x1, . . . , xn.

If the xi’s are distinct (i.e. xi ≠ xj for all i and j), then Table 6.1(a) gives the formulas
to compute the first Newton divided differences of f and thus the first coefficients of the
interpolating polynomial (6.2.1) of f of degree at most n at x0, x1, . . . , xn. The coefficients
are on the top line of the table.

When x0, x1, . . . , xn are not all distinct, we use (6.2.3) to evaluate the entries in the table
of Newton divided differences as show in Table 6.1(b). We assume that if a value z appears
more than once in {x0, x1, x2, . . . , xn}, then all occurrences of z are contiguous. For instance,

x1 = x0⇒ f[x1, x0] = f ′(x0) , x0 = x1 = x2⇒ f[x2, x1, x0] =
1

2
f ′′(x0)

and

x3 = x4 = x5 = x6⇒ f[x6, x5, x4, x3] =
1

3!
f ′′′(x3) .

Definition 6.2.12

1. (6.2.1) is the Newton form or Newton-Cotes form of the interpolating poly-
nomial of f at x0, x1 , . . . , xn.

6.2. Newton Interpolation 135

a)
x
0
<
x
1
<
x
2
<
x
3

x
i

f
[⋅]

f
[⋅,
⋅]

f
[⋅,
⋅,⋅
]

f
[⋅,
⋅,⋅
,⋅]

x
0

f
(x

0
)

f
[x

1
, x

0
]=

f
(x

1
)−

f
(x

0
)

x
1
−
x
0

f
[x

2
, x

1
,x

0
]=

f
[x

2
,x

1
]−

f
[x

1
,x

0
]

x
2
−
x
0

f
[x

3
, x

2
,x

1
,x

0
]=

f
[x

3
,x

2
,x

1
]−

f
[x

2
,x

1
,x

0
]

x
3
−
x
0

x
1

f
(x

1
)

f
[x

2
,x

1
]=

f
(x

2
)−

f
(x

1
)

x
2
−
x
1

f
[x

3
,x

2
,x

1
]=

f
[x

3
,x

2
]−

f
[x

2
,x

1
]

x
3
−
x
1

x
2

f
(x

2
)

f
[x

3
, x

2
]=

f
(x

3
)−

f
(x

2
)

x
3
−
x
2

x
3

f
(x

3
)

b
)
x
0
<
x
1
=
x
2
=
x
3

x
i

f
[⋅]

f
[⋅,
⋅]

f
[⋅,
⋅,⋅
]

f
[⋅,
⋅,⋅
,⋅]

x
0

f
(x

0
)

f
[x

1
,x

0
]=

f
(x

1
)−

f
(x

0
)

x
1
−
x
0

f
[x

2
,x

1
,x

0
]=

f
[x

2
,x

1
]−

f
[x

1
,x

0
]

x
2
−
x
0

f
[x

3
,x

2
,x

1
,x

0
]=

f
[x

3
,x

2
,x

1
]−

f
[x

2
,x

1
,x

0
]

x
3
−
x
0

x
1

f
(x

1
)

f
[x

2
,x

1
]=

f
′ (
x
1
)

f
[x

3
,x

2
,x

1
]=

1 2
f
′′ (
x
1
)

x
2

f
(x

2
)

f
[x

3
,x

2
]=

f
′ (
x
2
)

x
3

f
(x

3
)

Table 6.1: Some tables of Newton divided differences

136 6. Polynomial Interpolation

2. If n is odd and x0 = x1 < x2 = x3 < . . . < x2k = x2k+1 < . . . < xn−1 = xn, then (6.2.1)
is also called the Hermite’s interpolating polynomial for f at x0, x1, . . . ,
xn.

Example 6.2.13
If (x0, f(x0)) = (1.0,2.4), (x1, f(x1)) = (1.3,2.2), (x2, f(x2)) = (1.5,2.3) and (x3, f(x3)) =
(1.7,2.4), find an approximation for f(1.4).

The following table gives the divided differences needed for the Newton form of the
interpolating polynomial of f at x0, x1, x2 and x3.

xi f[⋅] f[⋅, ⋅] f[⋅, ⋅, ⋅] f[⋅, ⋅, ⋅, ⋅]
1.0 2.4 −0.6 2.3 −3.3
1.3 2.2 0.5 0.0
1.5 2.3 0.5
1.7 2.4

Hence,

p(x) = 2.4 − 0.6 (x − 1.0) + 2.3 (x − 1.0)(x − 1.3) − 3.3(x − 1.0)(x − 1.3)(x − 1.5)
= 2.4 + (x − 1.0)(−0.6 + (x − 1.3)(2.3 − 3.3 (x − 1.5)))

and f(1.4) ≈ p(1.4) = 2.24. ♣

Code 6.2.14 (Newton Divided Differences)

To produce the table of divided differences to generate the coefficients ai and the
interpolating polynomial

p(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + . . . + an−1(x − x0)(x − x1) . . . (x − xn−2)

at the points xi for 0 ≤ i < n.
Input: The matrix

⎛
⎜⎜⎜
⎝

x0 f0
x1 f1
⋮ ⋮

xn−1 fn−1

⎞
⎟⎟⎟
⎠

(d in the code below), where x0 ≤ x1 ≤ . . . ≤ xn−1 an fk = f (j)(xk) if xk−j−1 < xk−j =
xx−j+1 = . . . = xk; namely, the point xk appears j times before.
Output: The table of divided difference and the coefficients ai for 0 ≤ i < n (a in the
code below) of the interpolating polynomial.

% [a, table] = divideddiff(d)

function [a, table] = divideddiff(d)

n = size(d,1);

md = 0;

6.2. Newton Interpolation 137

% generate the table of divided differences

table = repmat(NaN,n,n+1);

table(:,1) = d(:,1);

table(1,2) = d(1,2);

for i=2:n

if (table(i,1) == table(i-1,1))

table(i,2) = table(i-1,2);

else

table(i,2) = d(i,2);

end

end

for k=3:n+1

for i=1:n-k+2

m = i+k-2;

if (table(m,1) == table(i,1))

if (md == 0)

md = m;

end

table(i,k) = d(md,2)/factorial(k-2);

else

table(i,k)=(table(i+1,k-1)-table(i,k-1))/(table(m,1)-table(i,1));

md = 0;

end

end

md = 0;

end

a = table(1,2:n+1);

end

Code 6.2.15 (Nested Form)

To evaluate a polynomial

p(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + . . . + an−1(x − x0)(x − x1) . . . (x − xn−2)

using its nested form.
Input: The coefficients ai for 0 ≤ i < n (a in the code below).
The points xi for 0 ≤ i < n − 1 (X in the code below).
The value x where to evaluate the polynomial (x in the code below).
Output: The value of p(x).

% v = polynomial(X,a,x)

function v = polynomial(X,a,x)

n=length(a);

138 6. Polynomial Interpolation

v = a(n);

for i=(n-1):-1:1

v=a(i)+(x-X(i)).*v;

end

end

Remark 6.2.16

1. Let f ∶ [a, b]→ R be a continuous function and p be the interpolating polynomial of f
at the interpolatory points x0 < x1 < . . . xn. Suppose that c ∈ [a, b] and c ≠ xi for all i.
Will p(c) approach f(c) as the number of interpolatory points n increases? Namely,
will p(c) give a better approximation of f(c) as n increases? In general, the answer is
no.

When equally spaced points are used in the interpolating polynomial, the approxima-
tion of f(x) given by p(x) is generally getting worse as n increases if x is near the
endpoints of the interval [a, b]. The approximation of f(x) given by p(x) is slowly
getting better as n increases if x is near the centre of the interval [a, b].
Consider the function f(x) = ∣x∣ on [−1,1]. We list in the next table the result of pn(x)
for some values of x and n, where pn is the interpolating polynomial of f at the n + 1
equally spaced points xi = −1 + (2i)/n for i = 0, 1, . . . , n.

pn(x) x
0 0.8 0.9

3 0.25 0.73 0.8575
n 7 0.097656250 0.775586650 0.857468784

15 0.043878794 0.852540445 0.748920770

The approximation of f(0) improves really slowly when n increases. However, the
approximations of f(0.8) and f(0.9) are getting worse when n increases. The results
in the table above were rounded to 9 decimals. The graphs of f , p3, p7 and p15 are
given in Figure 6.1.

2. Consider the function f(x) = 1/(1+x2) on [−5,5]. Suppose that pn is the interpolating
polynomial of f at the equally spaced points xi = −5 + (10i)/n for i = 0, 1, . . . , n. The
uniform distance

max
x∈[−5,5]

∣pn(x) − f(x)∣

increases as n increases. See Figure 6.2.

The approximation of f(x) given by pn(x) is generally getting worse as n increases if
x is near −5 or 5. the approximation of f(x) given by pn(x) is generally getting slowly
better as n increases if x is near the origin.

3. Let f ∶ [a, b] → R be a continuous function and pn be the interpolating polynomial
of f at the interpolatory points x0 < x1 < . . . xn. One way to improve the uniform
approximation of f by the polynomial p is to use more interpolatory points near the
ends of the interval [a, b] than near the middle of the interval [a, b].

6.2. Newton Interpolation 139

Figure 6.1: The solid blue line is the graph of f(x) = ∣x∣ for −1 ≤ x ≤ 1. The
dotted grey line is the graph of the interpolating polynomial p3 of degree at most
3 at xi = −1 + 2i/3 for i = 0, 1, 2 and 3. The dashed red line is the graph of the
interpolating polynomial p7 of degree at most 7 at xi = −1 + 2i/7 for i = 0, 1, . . . ,
7. The dashed-dotted green line is the graph of the interpolating polynomial p15 of
degree at most 15 at xi = −1 + 2i/15 for i = 0, 1, . . . , 15.

Good interpolatory points are the Chebyshev points xi adjusted to the interval [a, b]
which are defined by

xi =
a + b
2
− b − a

2
cos(2i + 1

2n + 2
π)

for i = 0, 1, . . . , n.
Among all polynomials of order at most n interpolating f at (n + 1) points of [a, b],
we will show in Section 9.2 that the interpolating polynomial pn of f at the Cheby-
shev points above is the “best uniform approximation” of f on [a, b]. Moreover, the
approximation pn(x) of f(x) is as good for x near the endpoints of the interval [a, b]
as it is for x near the middle of the interval [a, b].
For instance, let f(x) = 1/(1+x2) on [−5,5] as before. From Theorems 6.2.5 and 6.2.7,
we have

f(x) − pn(x) =
1

(n + 1)!
dn+1f

dxn+1
(ξ)

n

∏
i=0
(x − xi)

for some ξ in the smallest interval containing the xi and x.

We may assume that
1

(n + 1)!
dn+1f

dxn+1
(ξ)

is almost constant on [−5,5]. Hence, the behaviour of ∣f(x)−pn(x)∣ is roughly described

by ∣
n

∏
i=0
(x − xi)∣. We have in Figure 6.3 the graph of ∣

n

∏
i=0
(x − xi)∣ for −5 ≤ x ≤ 5, where

140 6. Polynomial Interpolation

Figure 6.2: The black line is the graph of f(x) = 1/(1 + x2) and the blue line is
the graph of the interpolating polynomial p10 of f at the 11 equally spaced points
xi = −5 + i for i = 0, 1, . . . , 10.

(i) xi = −5 cos(
2i + 1
16

π) for i = 0, 1, . . . , 7 are the Chebyshev points adjusted to the

interval [−5,5] and
(ii) xi = −5 + (10i)/7 with i = 0, 1, . . . , 7 are equally spaced points.

♠
Remark 6.2.17
As we promised in Section 2.7, we now show that if there exist α > 0 and λ ≠ 0 such that

lim
n→∞
∣en+1∣
∣en∣α

= λ , (6.2.6)

then α must be the golden ratio (1 +
√
5)/2. Namely, the order of convergence of the

sequence method must be (1 +
√
5)/2. Obviously, we assume that the secant method yields

a sequence {xn}∞n=0 that converges to a root p of a function f so that (6.2.6) can be stated.

For any distinct real numbers a, b and x, we have

f(x) = f(a) + f[a, b](x − a) + f[a, b, x](x − a)(x − b) ,

where

f[a, b] = f(b) − f(a)
b − a

, f[b, x] = f(x) − f(b)
x − b

and f[a, b, x] = f[b, x] − f[a, b]
x − a

.

From,
0 = f(p) = f(a) + f[a, b](p − a) + f[a, b, p](p − a)(p − b) ,

we get

p = a − f(a)
f[a, b]

− f[a, b, p]
f[a, b]

(p − a)(p − b) .

6.2. Newton Interpolation 141

Figure 6.3: The blue line represents the qualitative behavior of the error for in-
terpolating polynomials using equally spaced points and the black line represents
the qualitative behavior of the error for interpolating polynomial using Chebyshev
points adjusted to the interval [−5,5].

If a = xn and b = xn−1, we get

p = xn −
f(xn)

f[xn, xn−1]
´¹¹¹¸¹¹¹¶

secant method

−f[xn, xn−1, p]
f[xn, xn−1]

(p − xn)(p − xn−1)

= xn+1 −
f[xn, xn−1, p]
f[xn, xn−1]

(p − xn)(p − xn−1)

and thus

en+1 =
f[xn, xn−1, p]
f[xn, xn−1]

enen−1 . (6.2.7)

We can rewrite (6.2.7) as en+1 = cnenen−1, where cn = ∣
f[xn, xn−1, p]
f[xn, xn−1]

∣. Hence,

∣en+1∣
∣en∣α

= ∣cnenen−1∣
∣en∣α

= cn∣en∣1−α∣en−1∣ = cn (
∣en∣
∣en−1∣α

)
β

,

where β satisfies β = 1 −α and αβ = −1. Thus, −α2 +α + 1 = 0. The roots of this polynomial
are (1 ±

√
5)/2. We are only interested in the positive root α = (1 +

√
5)/2. We then have

that β = −1/α = (1 −
√
5)/2 and −1 < β < 0.

142 6. Polynomial Interpolation

If yn =
∣en∣
∣en−1∣α

, we get yn+1 = cnyβn. Taking the limit n→∞ on both sides, we get λ = c∞λβ,

where

c∞ = lim
n→∞

cn =
f ′′(p)
2f ′(p)

≠ 0 .

Thus,
λ = c1/(1−β)∞ = c1/α∞ ≠ 0

as expected.

We have shown that, with α = 1 +
√
5

2
, we have lim

n→∞
∣en+1∣
∣en∣α

= λ = (f
′′(p)

2f ′(p)
)
1/α

≠ 0. ♠

6.3 Proofs of Theorems 6.2.2, 6.2.5 and 6.2.7

Definition 6.3.1

Suppose that f ∶ [a, b]→ R is sufficiently differentiable and z ∈]a, b[. Then z is a zero
of f of order k if

djf

dxj
(z) = 0 for 0 ≤ j < k and

dkf

dxk
(z) ≠ 0 .

If k = 0, the previous condition is reduced to f(z) ≠ 0. As usual,

djf

dxj
(z) = f(z)

for j = 0.

Lemma 6.3.2

If z is a zero of order k of a polynomial p of degree n ≥ k, then one can write p(x) =
(x − z)k q(x), where q is a polynomial of degree n − k such that q(z) ≠ 0.

This factorization can be obtained with the help of the Horner Algorithm.

If z is a root of p, then Horner’s Theorem, Theorem 2.9.1, yields p(x) = (x−z) q1(x), where
q1 is a polynomial of degree n − 1. Since p′(x) = q1(x) + (x − z) q′1(x), we get p′(z) = q1(z).

If k > 1, then q1(z) = p′(z) = 0. Since z is a root of q1, Horner’s Theorem yields q1(x) =
(x − z) q2(x), where q2 is a polynomial of degree n − 2. Hence p(x) = (x − z)2 q2(x). Since
p′′(x) = 2 q2(x) + 4(x − z) q′2(x) + (x − z)2 q′′2 (x), we get p′′(z) = 2 q2(z).

If k > 2, then q2(z) = p′′(z)/2 = 0 and we can again use Horner’s Theorem. Since z is a
root of q2, Horner’s Theorem yields q2(x) = (x − z)q3(x), where q3 is a polynomial of degree
n − 3. Hence p(x) = (x − z)3q3(x).

6.3. Proofs of Theorems 6.2.2, 6.2.5 and 6.2.7 143

It becomes clear that the claim of the first paragraph of the remark can be proved by
induction. A shorter proof is given by the Taylor polynomial of p at z.

Proof of Lemma 6.3.2.

The Taylor polynomial of degree n of p at z is p itself because
djp

dxj
= 0 for j > n. Hence,

p(x) = p(z) + dp

dx
(z) (x − z) + 1

2!

d2p

dx2
(z) (x − z)2 + . . . + 1

k!

dkp

dxk
(z) (x − z)k

+ 1

(k + 1)!
dk+1p

dxk+1
(z) (x − z)k+1 + . . . + 1

n!

dnp

dxn
(z) (x − z)n

= 1

k!

dkp

dxk
(z) (x − z)k + 1

(k + 1)!
dk+1p

dxk+1
(z) (x − z)k+1 + . . . + 1

n!

dnp

dxn
(z) (x − z)n

= (x − z)k (1
k!

dkp

dxk
(z) + 1

(k + 1)!
dk+1p

dxk+1
(z) (x − z) + . . . + 1

n!

dnp

dxn
(z) (x − z)n−m)

´¹¹¸¹¹¶
=q(x)

= (x − z)kq(x) ,

where we have used
djp

dxj
(z) = 0 for j = 0, 1, . . . , k − 1. Moreover, q(z) = 1

k!

dkp

dxk
(z) ≠ 0.

Proof (of Theorem 6.2.2).
Since polynomials of degree n have exactly n (complex) roots (counted with multiplicity),
there could be only one polynomial of degree at most n which agrees with f at x0, x1, . . . ,
xn. Suppose that p1 and p2 are two polynomials of degree at most n such that p1(xi) = p2(xi)
for i = 0, 1, 2, . . . , n. Then p(x) = p1(x) − p2(x) is a polynomial of degree at most n with
n + 1 roots (counted with multiplicity). Thus, p is the zero polynomial.

The proof of the existence of the polynomial p satisfying the conclusion of the theorem
is by induction on n. Without lost of generality, we may assume that x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn

If n = 1, then
p(x) = x − x0

x1 − x0
f(x1) +

x − x1
x0 − x1

f(x0)

satisfies the conclusion of the theorem if x0 < x1 and

p(x) = f(x0) + f ′(x0)(x − x0)

satisfies the conclusion of the theorem if x0 = x1.
We assume that the conclusion of the theorem is true for n = k and show that it is then

true for n = k + 1.
x0 = xk+1) Since x0 ≤ x1 ≤ . . . ≤ xk+1, we get x0 = x1 = . . . = xk+1. Let p be the Taylor
polynomial of degree k + 1 of f at x0; namely,

p(x) = f(x0) +
df

dx
(x0) (x − x0) +

1

2!

d2f

dx2
(x0) (x − x0)2 + . . .

+ 1

(k + 1)!
dk+1f

dxk+1
(x0) (x − x0)k+1 .

(6.3.1)

144 6. Polynomial Interpolation

We obviously have that f and p agree at x0, x1, . . . , xk+1.

x0 < xk+1) By induction, there exist polynomials q1 and q2 of degree k such that q1 agrees
with f at x0, x1, . . .xk and q2 agrees with f at x1, x2, . . . , xk+1. Let

p(x) = x − x0
xk+1 − x0

q2(x) +
xk+1 − x
xk+1 − x0

q1(x) . (6.3.2)

We show that f agree with p at x0, x1, . . . , xk+1.

We have that

p(xi) =
xi − x0
xk+1 − x0

q2(xi) +
xk+1 − xi
xk+1 − x0

q1(xi) =
xi − x0
xk+1 − x0

f(xi) +
xk+1 − xi
xk+1 − x0

f(xi) = f(xi)

for all 0 < i < k + 1,

p(x0) =
x0 − x0
xk+1 − x0

q2(x0) +
xk+1 − x0
xk+1 − x0

q1(x0) = q1(x0) = f(x0)

and
p(xk+1) =

xk+1 − x0
xk+1 − x0

q2(xk+1) +
xk+1 − xk+1
xk+1 − x0

q1(xk+1) = q2(xk+1) = f(xk+1) .

Suppose now that xi = xi+1 = . . . = xi+r ≠ xm for m /∈ {i, i + 1, . . . , i + r} with r > 0.
The polynomial p has degree at most k + 1 and

djp

dxj
(x) = (x − x0

xk+1 − x0
) d

jq2
dxj
(x) + (xk+1 − x

xk+1 − x0
) d

jq1
dxj
(x)

+ j

xk+1 − x0
(d

j−1q2
dxj−1

(x) − dj−1q1
dxj−1

(x))
(6.3.3)

for all j ≥ 1 by induction.

If i = 0, then
djq1
dxj
(xi) =

djq2
dxj
(xi) =

djf

dxj
(xi)

for j = 0, 1, . . . , r − 1 and
drq1
dxr
(xi) =

drf

dxr
(xi)

by definition of q1 and q2. Hence, we get from (6.3.3) that

djp

dxj
(xi) = (

xi − x0
xk+1 − x0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

djq2
dxj
(xi) + (

xk+1 − xi
xk+1 − x0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

djq1
dxj
(xi)

+ j

xk+1 − x0
(d

j−1q2
dxj−1

(xi) −
dj−1q1
dxj−1

(xi))

= djf

dxj
(xi) +

j

xk+1 − x0
(d

j−1f

dxj−1
(xi) −

dj−1f

dxj−1
(xi)) =

djf

dxj
(xi)

6.3. Proofs of Theorems 6.2.2, 6.2.5 and 6.2.7 145

for j = 1, 2, . . . , r. If i + r = k + 1, a similar argument yields

djp

dxj
(xi+r) =

djf

dxj
(xi+r)

for j = 1, 2, . . . , r.
If i ≠ 0 and i + r ≠ k + 1, then

djq1
dxj
(xi) =

djq2
dxj
(xi) =

djf

dxj
(xi)

for j = 0, 1, . . . , r by definition of q1 and q2. From (6.3.3), we get

djp

dxj
(xi) = (

xi − x0
xk+1 − x0

) d
jq2
dxj
(xi) + (

xk+1 − xi
xk+1 − x0

) d
jq1
dxj
(xi) +

j

xk+1 − x0
(d

j−1q2
dxj−1

(xi) −
dj−1q1
dxj−1

(xi))

= (xi − x0
xk+1 − x0

) d
jf

dxj
(xi) + (

xk+1 − xi
xk+1 − x0

) d
jf

dxj
(xi) +

j

xk+1 − x0
(d

j−1f

dxj−1
(xi) −

dj−1f

dxj−1
(xi))

= (xi − x0
xk+1 − x0

+ xk+1 − xi
xk+1 − x0

) djf

dxj
(xi) =

djf

dxj
(xi)

for j = 1, 2, . . . , r. This proves that, for x0 < xk+1, f and p agree at x0, x1, . . . , xk+1.

This complete the proof by induction.

Remark 6.3.3
We have from (6.3.1) (after replacing k by n−1) that the coefficient of xn in the interpolating
polynomial of f at x0, x1, . . . , xn is

f[x0, x1, . . . , xn] =
1

n!

dnf

dxn
(x0) (6.3.4)

when x0 = x1 = . . . = xn.
We have from (6.3.2) (after replacing k by n− 1) that the coefficient of xn in the interpo-

lating polynomial of f at x0, x1, . . . , xn is

f[x0, x1, . . . , xn] =
1

xn − x0
f[x1, x2, . . . , xn] −

1

xn − x0
f[x0, x1, . . . , xn−1]

= f[x1, x2, . . . , xn] − f[x0, x1, . . . , xn−1]
xn − x0

,

when x0 ≠ xn, because f[x0, x1, . . . , xn−1] (resp. f[x1, x2, . . . , xn]) is the coefficient of xn−1 in
the interpolating polynomial of f at x0, x1, . . . , xn−1 (resp. x1, x2, . . . , xn.) ♠

Before proving Theorems 6.2.5 and 6.2.7, we need the following results.

Proposition 6.3.4

Suppose that f ∶]a, b[→ R is a n times continuously differentiable fonctions and that
x0, x1, x2, . . . , xn are n+ 1 distinct points in]a, b[, then there exists ξ in the smallest

146 6. Polynomial Interpolation

closed interval containing the xi’s such that

f[x0, x1, x2, . . . , xn] =
1

n!

dnf

dxn
(ξ) . (6.3.5)

Proof.
Without lost of generality, we may assume that x0 < x1 < x2 < . . . < xn.

For n = 1, (6.3.5) is the statement of the Mean Value Theorem. There exists ξ between
x0 and x1 such that

f[x0, x1] =
f(x1) − f(x0)

x1 − x0
= f ′(ξ) .

Let p be the interpolating polynomial of degree at most n of f at x0, x1, . . . , xn. Let
g = f − p. The fonction g has n + 1 distinct roots at x0, x1, . . . , xn.

We prove by induction that
djg

dxj
has n − j + 1 distinct roots between x0 and xn for j = 1,

2, . . . , n.

By the Mean Value Theorem, for each pair of points {xi, xi+1} with i ∈ {0,1,2, . . . , n− 1},
there exists µi between xi and xi+1 such that

0 = g(xx+1) − g(xi) = g′(µi)(xi+1 − xi) .

Hence g′(µi) = 0 for i = 0, 1, . . . , n − 1. The function g′ has therefore n = n − 1 + 1 distinct
roots between x0 and xn. The hypothesis of induction is true if j = 1.

Suppose that the hypothesis of induction is true for j = k; namely,
dkg

dxk
has n − k + 1

distinct roots at ζ0, ζ1, . . . , ζn−k between x0 and xn. By the Mean Value Theorem, for each
pair of points {ζi, ζi+1}, where i ∈ {0,1,2, . . . , n − k − 1}, there exists νi between ζi and ζi+1
such that

0 = dkg

dxk
(ζx+1) −

dkg

dxk
(ζi) =

dk+1g

dxk+1
(νi)(ζi+1 − ζi) .

Hence
dk+1g

dxk+1
(νi) = 0 for i = 0, 1, . . . , n − k − 1. The function

dk+1g

dxk+1
has therefore n − k =

n − (k + 1) + 1 distinct roots at ν0, ν1, . . . , νn−k−1 between x0 and xn. This proves the
hypothesis of induction.

We have that
dng

dxn
has n − n + 1 = 1 root between x0 and xn. Let ξ be this root, Since p

is a polynomial of degree at most n whose coefficient for xn is f[x0, x1, . . . , xn], we have

dng

dxn
(x) = dnf

dxn
(x) − n! f[x0, x1, . . . , xn] .

Hence,

0 = dnf

dxn
(ξ) − n! f[x0, x1, . . . , xn] .

This proves the proposition.

6.3. Proofs of Theorems 6.2.2, 6.2.5 and 6.2.7 147

Proposition 6.3.5

Suppose that f ∶]a, b[→ R is a n times continuously differentiable fonctions, then

f[x0, x1, . . . , xn] =
1

n!

dnf

dxn
(ξ) (6.3.6)

for some ξ in the smallest closed interval containing x0, x1, . . . , xn.
Moreover, if {xi,j}∞j=0 are sequences such that

lim
j→∞

xi,j = xi

for i = 0, 1, . . . , n, then

lim
j→∞

f[x0,j, x1.j, x2,j, . . . , xn,j] = f[x0, x1, x2, . . . , xn] . (6.3.7)

Proof.
Without lost of generality, we may assume that x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn.

For n = 0, we have f[x0] = f(x0) and the conclusion of the proposition are obviously true.
Note that the case k = 1 is also obvious. (6.3.6) is the Mean Value Theorem when x0 ≠ x1
and f[x0, x1] = f ′(x0) when x0 = x1. As for (6.3.7), it follows from the continuity of f when
x0 ≠ x1, the definition of f ′ when x0 = x1, of the continuity of f ′ when x1,j = x2,j for all j
(large enough).

We suppose that the conclusion of the theorem is true for n = k and show that it is true
for n = k + 1.
I) First, we prove (6.3.7) with n = k + 1 and x0 < xk+1. Since xi,j → xi as j → ∞ and
x0 ≠ xk+1, there exists J > 0 such that x0,j ≠ xk+1,j for j ≥ J . Hence, for j ≥ J , we have

f[x0,j, x1,j, . . . , xk+1,j] =
f[x1,j, x2,j, . . . , xk+1,j] − f[x0,j, x1,j, . . . , xk,j]

xk+1,j − x0,j

→ f[x1, x2, . . . , xk+1] − f[x0, x1, . . . , xk]
xk+1 − x0

= f[x0, x1, x2, . . . , xk+1]

because f[x1,j, x2,j, . . . , xk+1,j]→ f[x1, x2, . . . , xk+1] and
f[x0,j, x1,j, . . . , xk,j]→ f[x0, x1, . . . , xk] as j →∞ by hypothesis of induction for n = k.
II) Second, we prove (6.3.6) with n = k+1. If x0 = x1 = . . . = xk+1, then (6.3.6) with n = k+1
is just (6.3.4) with n = k + 1. If x0 < xk+1, we choose sequences {xi,j}∞j=0 in]a, b[such that

lim
j→∞

xi,j = xi

for i = 0, 1, 2, . . . , k + 1 and

x0 ≤ x0,j < x1,j < x2,j < . . . < xk+1,j ≤ xk+1

148 6. Polynomial Interpolation

for all j. From Proposition 6.3.4, there exist ξj ∈ [x0,j, xk+1,j] such that

f[x0,j, x1,j, x2,j, . . . , xk+1,j] =
1

(k + 1)!
dk+1f

dxk+1
(ξj)

for all j. From (I), we have that

lim
j→∞
(1

(k + 1)!
dk+1f

dxk+1
(ξj)) = lim

j→∞
f[x0,j, x1,j, x2,j, . . . , xk+1,j] = f[x0, x1, . . . , xk+1] .

Consider

g ∶]a, b[→ R

x↦ 1

(k + 1)!
dk+1f

dxk+1
(x)

We have lim
j→∞

g(ξj) = f[x0, x1, . . . , xk+1]. Since ξj ∈ [x0,j, xk+1,j] ⊂ [x0, xk+1] for all j, we

have that g(ξj) ∈ g([x0, xk+1]) for all j. Since g is a continuous function by assumption
and since the image of a closed and bounded interval (a compact and connected set) by a
continuous function like g is a closed and bounded interval (another compact and connected
set), it follows that g([x0, xk+1]) is closed and lim

j→∞
g(ξj) ∈ g([x0, xk+1]). Thus, there exists

ξ ∈ [x0, xk+1] such that

f[x0, x1, . . . , xk+1] = lim
j→∞

1

(k + 1)!
dk+1f

dxk+1
(ξj) = lim

j→∞
g(ξj) = g(ξ) =

1

(k + 1)!
dk+1f

dxk+1
(ξ) .

This proves (6.3.6) for n = k + 1.
III) Finally, we prove (6.3.7) with n = k + 1 and x0 = x1 = . . . = xk+1. Let {xi,j}∞j=0 be any
sequences such that lim

j→∞
xi,j = xi for i = 0, 1, . . . , k+1. From (II), there exist ξj ∈ [x0,j, xk+1,j]

such that

f[x0,j, x1,j, x2,j, . . . , xk+1,j] =
1

(k + 1)!
dk+1f

dxk+1
(ξj)

for all j. Moreover, since
lim
j→∞

x0,j = lim
j→∞

xk+1,j = x0

and x0,j ≤ ξj ≤ xk+1,j for all j, we have that

lim
j→∞

ξj = x0 .

Hence, by continuity of
dk+1f

dxk+1
,

lim
j→∞

f[x0,j, x1,j, x2,j, . . . , xk+1,j] = lim
j→∞
(1

(k + 1)!
dk+1f

dxk+1
(ξj))

= 1

(k + 1)!
dk+1f

dxk+1
(x0) = f[x0, x1, . . . , xk+1] ,

where we have used (6.3.4) with n = k + 1.
This completes the proof by induction.

6.3. Proofs of Theorems 6.2.2, 6.2.5 and 6.2.7 149

Proof (of Theorem 6.2.5).
We first prove (6.2.1) by induction on n.

If n = 0, then p(x) = f(x0) for all x is the interpolating polynomial of degree 0 of f at x0.
In addition, we can even note that for n = 1, the interpolating polynomial of degree at most 1
of f at x0 and x1 is p(x) = f(x0)+f[x0, x1](x−x0), where f[x0, x1] = (f(x1)−f(x0))/(x1−x0)
for x0 ≠ x1 and f[x0, x1] = f ′(x0) for x0 = x1.

We assume that (6.2.1) is true for n = k and show that it is also true for n = k + 1.
Let p be the interpolating polynomial of degree at most k+1 of f at x0, x2, . . . , xk+1. By

definition, the coefficient of xk+1 is f[x0, x1, x2, . . . , xk+1]. Let

q(x) = p(x) − f[x0, x1, x2, . . . , xk+1](x − x0)(x − x1) . . . (x − xk) .

q is a polynomial of degree at most k that agree with f at x0, x2, . . . , xk. By the hypothesis
of induction, we have

q(x) = f[x0] + f[x0, x1] (x − x0) + f[x0, x1, x2] (x − x0)(x − x1) + . . .
+ f[x0, x1, . . . , xk] (x − x0)(x − x1) . . . (x − xk−1) .

Hence,

p(x) = q(x) + f[x0, x1, x2, . . . , xk+1](x − x0)(x − x1) . . . (x − xk)
= f[x0] + f[x0, x1] (x − x0) + f[x0, x1, x2] (x − x0)(x − x1) + . . .
+ f[x0, x1, . . . , xk+1] (x − x0)(x − x1) . . . (x − xk) .

Thus (6.2.1) is true for k + 1 and this completes the proof of (6.2.1).

(6.2.2) and (6.2.3) follow from Remark 6.3.3 if the interpolating polynomial of f is at xj,
xj+1, . . . , xj+k only.

Finally, to prove (6.2.4), let p be the interpolating polynomial of degree at most n + 1 of
f at x0, x1, x2, . . . , xn given by (6.2.1). Let p̃ be the interpolating polynomial of degree at
most n + 2 of f at x0, x1, x2, . . . , xn and x̃. We have

p̃(x) =
n

∑
j=0
f[x0, x1, . . . , xj](x − x0)(x − x1) . . . (x − xj−1)

+ f[x0, x1, . . . , xn, x̃] (x − x0)(x − x1) . . . (x − xn)
= p(x) + f[x0, x1, . . . , xn, x̃] (x − x0)(x − x1) . . . (x − xn) .

Hence, since p̃(x̃) = f(x̃) by construction,

f(x̃) = p(x̃) + f[x0, x1, . . . , xn, x̃] (x̃ − x0)(x̃ − x1) . . . (x̃ − xn) .

This is (6.2.4) if we substitute x̃ by x.

Proof (of Theorem 6.2.7).
The first part of Theorem 6.2.7 is the first par of Proposition 6.3.5.

150 6. Polynomial Interpolation

To prove (6.2.5) in Theorem 6.2.7, we proceed by induction on j. For j = 1, let

g(x) = f[x0, x1, x2, . . . , xk, x] .

Since

lim
h→0

g(x + h) − g(x)
h

= lim
h→0

f[x0, x1, x2, . . . , xk, x + h] − f[x0, x1, x2, . . . , xk, x]
h

= lim
h→0

f[x0, x1, x2, . . . , xk, x, x + h] = f[x0, x1, x2, . . . , xk, x, x]

because of (6.3.7), we get

d

dx
f[x0, x1, x2, . . . , xk, x] = g′(x) = f[x0, x1, x2, . . . , xk, x, x] .

Suppose that (6.2.5) is true for j =m. We have by induction that

dm+1

dxm+1
f[x0, x1, . . . , xk, x] =

d

dx
(dm

dxm
f[x0, x1, . . . , xk, x])

= d

dx

⎛
⎜
⎝
m! f[x0, x1, . . . , xk, x, x, . . . , x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m+1 times

]
⎞
⎟
⎠
=m!

d

dx
f[x0, x1, . . . , xk, x, x, . . . , x] .

(6.3.8)

Moreover,

d

dx
f[x0, x1, . . . , xk, x, x, . . . , x]

= lim
h→0

f[x0, x1, . . . , xk, x + h,x + h, . . . , x + h] − f[x0, x1, . . . , xk, x, x, . . . , x]
h

.

Hence,

d

dx
f[x0, x1, . . . , xk, x, x, . . . , x]

= lim
h→0
((f[x0, x1, . . . , xk, x + h,x + h, . . . , x + h] − f[x0, x1, . . . , xk, x, x + h, . . . , x + h])

+ (f[x0, x1, . . . , xk, x, x + h, . . . , x + h] − f[x0, x1, . . . , xk, x, x, x + h, . . . , x + h])

+ . . . + (f[x0, x1, . . . , xk, x, x, . . . , x, x + h] − f[x0, x1, . . . , xk, x, x, . . . , x]))
1

h

= lim
h→0
(1
h
(f[x0, x1, . . . , xk, x + h,x + h, . . . , x + h] − f[x0, x1, . . . , xk, x, x + h, . . . , x + h])

+ 1

h
(f[x0, x1, . . . , xk, x, x + h, . . . , x + h] − f[x0, x1, . . . , xk, x, x, x + h, . . . , x + h])

+ . . . + 1

h
(f[x0, x1, . . . , xk, x, x, . . . , x, x + h] − f[x0, x1, . . . , xk, x, x, . . . , x]))

= lim
h→0
(f[x0, x1, . . . , xk, x, x + h, . . . , x + h

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m+1 times

] + f[x0, x1, . . . , xk, x, x, x + h, . . . , x + h
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m times

]

6.4. Exercises 151

+ . . . + f[x0, x1, . . . , xk, x, x, . . . , x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m+1 times

, x + h]) .

There are m + 1 divided differences in the previous equality, all converging to

f[x0, x1, . . . , xk, x, x, . . . , x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m+2 times

]

according to (6.3.7) of Proposition 6.3.5. Hence,

d

dx
f[x0, x1, . . . , xk, x, x, . . . , x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m=1 times

] = (m + 1)f[x0, x1, . . . , xk, x, x, . . . , x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m+2 times

] .

If we combine with (6.3.8), we get

dm+1

dxm+1
f[x0, x1, . . . , xk, x] = (m + 1)!f[x0, x1, . . . , xk, x, x, . . . , x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m+2 times

] .

This completes the proof by induction.

6.4 Exercises

Question 6.1
Let x0, x1, . . . , xn be n + 1 distinct points and let

ℓj(x) =
n

∏
i=0
i≠j

(
x − xj
xi − xj

)

for j = 0, 1, 2, . . . , n. Suppose that p is the Lagrange interpolating polynomial of a function
f at x0, x1, . . . , xn. Show that

f(x) − p(x) =
n

∑
j=0
(f(x) − p(xj)) ℓj(x) .

Question 6.2
We would like to find a polynomial p of degree at most two such that p(0) = α, p(1) = β and
p′(ξ) = γ, where the constants α, β and γ are given. Describe analytically and graphically
the variation in the answers as ξ varies. Does your observations contradict the existence and
uniqueness of the interpolating polynomial of f?

Question 6.3
Suppose that x0, x1, x2, . . . , xn are n+1 distinct points. If p is the interpolating polynomial
of f of degree at most n− 1 at x0, x1, . . . , xn−1 and q is the interpolating polynomial of f of
degree at most n − 1 at x1, x2, . . . , xn, show that

r(x) = x − xn
x0 − xn

p(x) + x − x0
xn − x0

q(x)

152 6. Polynomial Interpolation

is the interpolating polynomial of degree at most n at x0, x1, . . . , xn.

Question 6.4
If p is the interpolating polynomial of f of degree at most n at the n+1 distinct points x0, x1,

. . . , xn, show that the coefficient of xn in p is
n

∑
i=0
f(xi)ℓi, where ℓi =

n

∏
j=0
i≠j

(1

xi − xj
). Conclude

that
n

∑
i=0
f(xi)ℓi = 0 if f is a polynomial of degree less than n.

Question 6.5
We have seen in Question 6.4 that the coefficient of xn in the interpolating polynomial of f
of degree at most n at the n + 1 distinct points x0, x1, x2, . . . , xn is

f[x0, x1, x2, . . . , xn] =
n

∑
i=0
f(xi)ℓi , (6.4.1)

where

ℓi =
n

∏
i=0
i≠j

(1

xi − xj
) .

a) If x0 < x1 < x2 < . . . < xn, show that the ℓj alternate sign.
b) Show that

n

∑
j=0
xni ℓj = 1 (6.4.2)

and

n

∑
j=0
ℓj =
⎧⎪⎪⎨⎪⎪⎩

1 if n = 0
0 if n > 0

(6.4.3)

Question 6.6
Prove that

f[0,1,2, . . . ,m] = 1

m!

m

∑
j=0
(−1)m−j(m

j
)f(j) . (6.4.4)

Hint: (m

j − 1
) + (m

j
) = (m + 1

j
), where (p

q
) = 0 for q > p by convention.

Question 6.7
Some values of a function f are given in the following table.

x f(x)
1 1
1.1 0.904837418
1.3 0.740818221
1.4 0.670320046
1.6 0.548811636
1.8 0.449328964

6.4. Exercises 153

Use Newton divided difference formula to construct an interpolating polynomial p of degree
at most 5 for f at the points 1, 1,1, 1,3, 1.4, 1.6 and 1.8.

Approximate f(1.35) using the nested form of the polynomial.

Question 6.8
a) Find the interpolating polynomial p of degree at most 3 of f(x) = ex/2 such that p(0) =
f(0), p(2) = f(2), p′(2) = f ′(2) and p′′(2) = f ′′(2).
b) Use the nested form of the interpolating polynomial that you have found in (a) to
approximate f(1).
c) Find an upper bound on the truncation error of the interpolating polynomial p of f on
[0,2].
Question 6.9
a) Find the interpolating polynomial p of degree at most 4 of a function f using all the
following information on f .

x f(x) f ′(x) f ′′(x)
0 e
1 1 −1 1
2 e−1

b) Use the nested form of the interpolating polynomial that you have found in (a) to
approximate f(1.1).
c) Knowing that ∣f (5)(x)∣ ≤ e for 0 ≤ x ≤ 2, find an upper bound on the truncation error of
the interpolating polynomial of f on [0,2].
Question 6.10
Some values of a function f and its derivatives are given in the following table.

x f(x) f ′(x) f ′′(x)
1 1.7165256995 −1.4444065708 0.28798342609
1.8 0.79675974510
2.4 0.4783590320 −0.32311391318

Use Newton divided difference formula to construct an interpolating polynomial of degree
at most 5 for f at 1, 1, 1, 1.8, 2.4 and 2.4 .

Approximate f(1.75) using the nested form of the polynomial. The exact value is
f(1.75) = 0.83673651441075 . . . Compute the absolute error, the relative error and the
number of significant digits.

Question 6.11
Let f(x) = 3xex − e2x. Approximate f(1.03) using the Hermite interpolating polynomial of
degree at most five at the points x0 = x1 = 1, x2 = x3 = 1.05 and x4 = x5 = 1.07.
Question 6.12
The following data are given by a polynomial p of unknown degree.

x 0 1 2
p(x) 2 1 4

If all third order forward divided differences are 1, find the polynomial p.

154 6. Polynomial Interpolation

Question 6.13
a) Find the interpolating polynomial p of degree at most 4 of

f(x) = cos(π
2
− x)

that satisfies the following requirements.

x f(x) f ′(x) f ′′(x)
0 0

π/4
√
2/2

√
2/2 −

√
2/2

π/2 1

Use at lest 10-digit rounding arithmetic for all your computations.
b) Use the nested form of the interpolating polynomial that you have found in (a) to
approximate f(π/8).
c) Find an upper bound on the truncation error of the interpolating polynomial p of f on
[0, π/4].
d) Sketch the graphs of f and p on the same coordinate system to assess the quality of the
interpolating polynomial.

Chapter 7

Splines

In the previous chapter, we showed how to generate a polynomial whose graph traverses
a set of points (xi, f(xi)) for i = 0, 1, 2, . . . , n. This polynomial could be of high degree
and not be a very good fit for the function f that produced the points. In the present
chapter, we describe several methods to generate a piecewise polynomial function p that
may provide a good fit for the function f . For some methods, the piecewise polynomial
function p may traverse all the points (xi, f(xi)) but this is not a necessity. Because p is a
piecewise functions, it is possible to impose some conditions on p at the points (xi, f(xi))
(using what is called “control points”) to provide a good fit for the function f .

Some of the methods presented in this chapter could be use to generate a piecewise
parametric curve that traverses some points (xi, yi) for 0 ≤ i ≤ n, and satisfies some conditions
at these points by adding some “control points”.

7.1 Cubic Spline Interpolation

Let f ∶ [a, b] → R be a continuously differentiable function and a = x0 < x1 < . . . < xn = b.
We have seen in Remark 6.2.10 that MATLAB uses a piecewise linear function through the
points (xi, f(xi)) for 0 ≤ i ≤ n to sketch the graph of f ; to be precise, we should say that
MATLAB plot a piecewise linear curve that looks like the graph of f . Instead of using linear
interpolation to join the points (xi−1, f(xi−1)) and (xi, f(xi)), we now propose to use cubic
polynomial interpolation on the intervals [xi−1, xi]. The function p that we get is called a
piecewise cubic polynomial. Using cubic polynomials, we can impose a better fit between
f and p than with linear polynomials. Cubic spline interpolation is ideal to approximate
function with discontinuous derivatives.

Definition 7.1.1

Let f ∶ [a, b]→ R be a continuously differentiable function and a = x0 < x1 < . . . < xn = b.
A free or natural spline interpolant for the function f on the nodes x0, x1,. . . ,

155

156 7. Splines

xn is a piecewise cubic polynomial p defined as follows.

p(x) = pi(x) if xi ≤ x ≤ xi+1 ,

where the pi are polynomials of degree three that satisfy

1. pi(xi) = f(xi) for i = 0, 1, . . . , n − 1,

2. pi(xi+1) = f(xi+1) for i = 0, 1, . . . , n − 1,

3. p′i(xi+1) = p′i+1(xi+1) for i = 0, 1, . . . , n − 2,

4. p′′i (xi+1) = p′′i+1(xi+1) for i = 0, 1, . . . , n − 2,

5. p′′0(x0) = p′′n−1(xn) = 0.

Definition 7.1.2

If the fifth condition in Definition 7.1.1 is replaced by

5. p′0(x0) = f ′(x0) and p′n−1(xn) = f ′(xn),

then p is called a clamped spline interpolant for the function f on the nodes x0,
x1, . . . , xn.
If the third, fourth and fifth conditions in Definition 7.1.1 are replaced by

1. p′i(xi) = f ′(xi) for i = 0, 1, . . . , n − 1,

2. p′i(xi+1) = f ′(xi+1) for i = 0, 1, . . . , n − 1,

Then p is called a piecewise cubic Hermite interpolant for the function f on the
nodes x0, x1,. . . , xn.

We now describe how to find the cubic polynomials pi needed for the spline interpolant.
Let zi = p′′(xi) for i = 0, 1, . . . , n. We need to find the values of the zi’s to satisfy the natural
or clamped cubic splines.

Since we assume that the pi’s are cubic polynomials, p′′i is a linear function through the
points (xi, zi) and (xi+1, zi+1). Recall that ∆xi = xi+1 − xi. Hence,

p′′i (x) =
zi+1 − zi
∆xi

x + xi+1zi − xizi+1
∆xi

= (zi
∆xi
) (xi+1 − x) + (

zi+1
∆xi
) (x − xi) .

Integrating twice gives

pi(x) = (
zi

6∆xi
) (xi+1 − x)3 + (

zi+1
6∆xi

) (x − xi)3 +Aix +Bi

= (zi
6∆xi

) (xi+1 − x)3 + (
zi+1
6∆xi

) (x − xi)3 +Ci(x − xi) +Di(xi+1 − x) , (7.1.1)

7.1. Cubic Spline Interpolation 157

where Ci −Di = Ai and Dixi+1 −Cixi = Bi.

From pi(xi) = f(xi) and pi(xi+1) = f(xi+1), we get

f(xi) = (
zi
6
) (∆xi)2 +Di∆xi and f(xi+1) = (

zi+1
6
) (∆xi)2 +Ci∆xi .

Solving for Ci and Di, we get

Ci =
f(xi+1)
∆xi

− zi+1∆xi
6

and Di =
f(xi)
∆xi

− zi∆xi
6

.

If we substitute these values of Ci and Di in (7.1.1), we get

pi(x) = (
zi

6∆xi
) (xi+1 − x)3 + (

zi+1
6∆xi

) (x − xi)3

+ (f(xi+1)
∆xi

− zi+1∆xi
6
) (x − xi) + (

f(xi)
∆xi

− zi∆xi
6
) (xi+1 − x) .

(7.1.2)

To determine the values of the zi’s, we will used the property that p′i(xi) = p′i−1(xi) for
1 ≤ i ≤ n− 1. This gives n− 1 equations to determine the n+ 1 variables zi for i = 0, 1, . . . , n.

7.1.1 Natural Spline

For the natural spline interpolant, we set z0 = zn = 0 and determine the values of the other
zi’s using p′i(xi) = p′i−1(xi) for 1 ≤ i ≤ n − 1.

From (7.1.2), we get

p′i(x) = −(
zi

2∆xi
) (xi+1 − x)2 + (

zi+1
2∆xi

) (x − xi)2

+ (f(xi+1)
∆xi

− zi+1∆xi
6
) − (f(xi)

∆xi
− zi∆xi

6
)

(7.1.3)

for i = 0, 1, . . . , n − 1. Hence,

p′i(xi) = −(
zi
2
)∆xi + (

f(xi+1)
∆xi

− zi+1∆xi
6
) − (f(xi)

∆xi
− zi∆xi

6
)

= −zi+1∆xi
6

− zi∆xi
3
+ f(xi+1) − f(xi)

∆xi
.

Similarly,

p′i−1(x) = −(
zi−1

2∆xi−1
) (xi − x)2 + (

zi
2∆xi−1

) (x − xi−1)2

+ (f(xi)
∆xi−1

− zi∆xi−1
6
) − (f(xi−1)

∆xi−1
− zi−1∆xi−1

6
)

158 7. Splines

for i = 1, 2, . . . , n. Hence,

p′i−1(xi) = (
zi∆xi−1

2
) + (f(xi)

∆xi−1
− zi∆xi−1

6
) − (f(xi−1)

∆xi−1
− zi−1∆xi−1

6
)

= zi∆xi−1
3

+ zi−1∆xi−1
6

+ f(xi) − f(xi−1)
∆xi−1

.

The relation p′i(xi) = p′i−1(xi) yields

zi+1∆xi + 2zi (∆xi +∆xi−1) + zi−1∆xi−1

= 6

∆xi
(f(xi+1) − f(xi)) −

6

∆xi−1
(f(xi) − f(xi−1))

(7.1.4)

for i = 1, 2, . . . , n− 1. We conclude that the zi’s for 1 ≤ i ≤ n− 1 are given by the solution of
the n − 1 dimensional linear system Az = b, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d1 u1 0
l2 d2 u2 0
0 l3 d3 u3
⋮ 0 l4 d4
⋮ ⋮ 0 l5
⋮ ⋮ ⋮ ⋮ ⋱
⋮ ⋮ ⋮ ⋮ ⋮ un−5 0
⋮ ⋮ ⋮ ⋮ ⋮ dn−4 un−4 0 . . .
⋮ ⋮ ⋮ ⋮ ⋮ ln−3 dn−3 ud−3 0
⋮ ⋮ ⋮ ⋮ ⋮ 0 ln−2 dn−2 un−2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 ln−1 dn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(7.1.5)

and

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−z0∆x0 +
6

∆x1
(f(x2) − f(x1)) −

6

∆x0
(f(x1) − f(x0))

6

∆x2
(f(x3) − f(x2)) −

6

∆x1
(f(x2) − f(x1))

⋮
6

∆xn−2
(f(xn−1) − f(xn−2)) −

6

∆xn−3
(f(xn−2) − f(xn−3))

−zn∆xn−1 +
6

∆xn−1
(f(xn) − f(xn−1)) −

6

∆xn−2
(f(xn−1) − f(xn−2))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

with di = 2(∆xi−1 +∆xi), ui =∆xi and li =∆xi−1.
To evaluate the polynomial pi defined in (7.1.2), we rewrite it in nested form. If we

expand pi around x = xi, we get

pi(x) =
zi+1 − zi
6∆xi

(x − xi)3 +
zi
2
(x − xi)2

+ (−zi∆xi
3
− zi+1∆xi

6
+ f(xi+1) − f(xi)

∆xi
) (x − xi) + f(xi) .

7.1. Cubic Spline Interpolation 159

Thus,
pi(x) = ((αi(x − xi) + βi) (x − xi) + γi) (x − xi) + δi , (7.1.6)

where

δi = f(xi) ,

γi = −
zi∆xi
3
− zi+1∆xi

6
+ f(xi+1) − f(xi)

∆xi
,

βi =
zi
2
,

αi =
zi+1 − zi
6∆xi

.

(7.1.7)

Example 7.1.3
Using the information in the table below, construct the natural spline interpolant for f on
the nodes 0, 1, 2, 3 and 5.

x f(x)
0 1
1 0.540302305868140
2 −0.416146836547142
3 −0.989992496600445
5 0.283662185463226

All the numerical results displayed below will be rounded to 10 digits. The computations
are done with more precision.

We have
pi(x) = ((αi(x − xi) + βi) (x − xi) + γi) (x − xi) + δi

on [xi, xi+1] for 0 ≤ i ≤ 3, where x0 = 0, x1 = 1, x2 = 2, x3 = 3 and x4 = 5.
Let w ∈ R3 be the solution of Aw = b, where

A =
⎛
⎜
⎝

2(x2 − x0) x2 − x1 0
x2 − x1 2(x3 − x1) x3 − x2

0 x3 − x2 2(x4 − x2)

⎞
⎟
⎠
=
⎛
⎜
⎝

4 1 0
1 4 1
0 1 6

⎞
⎟
⎠

and

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

6
f(x2) − f(x1)

x2 − x1
− 6 f(x1) − f(x0)

x1 − x0

6
f(x3) − f(x2)

x3 − x2
− 6 f(x2) − f(x1)

x2 − x1

6
f(x4) − f(x3)

x4 − x3
− 6 f(x3) − f(x2)

x3 − x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜
⎝

−2.9805086897
2.29562089
7.26403801

⎞
⎟
⎠
.

We find

w =
⎛
⎜
⎝

−0.8728068282
0.5107186229
1.125553231

⎞
⎟
⎠
.

160 7. Splines

Let

z =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
−0.8728068282
0.5107186229
1.125553231

0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The coefficients of pi are given by

δi = f(xi) ,

γi = −
zi(xi+1 − xi)

3
− zi+1(xi+1 − xi)

6
+ f(xi+1) − f(xi)

xi+1 − xi
,

βi =
zi
2

and

αi =
zi+1 − zi

6(xi+1 − xi)

for i = 0, 1, 2 and 3.

The following table gives the values of the coefficients of pi.

i αi βi γi δi
0 −0.1454678047 0 −0.3142298894 1
1 0.2305875752 −0.4364034141 −0.7506333035 0.5403023059
2 0.1024724346 0.2553593115 −0.9316774061 −0.4161468365
3 −0.09379610255 0.5627766153 −0.1135414794 −0.9899924966

♣

7.1.2 Clamped Spline

For the clamped spline interpolant, z0 and zn are free but we have the additional constraints
p′(x0) = p′0(x0) = f ′(x0) and p′(xn) = p′n−1(xn) = f ′(xn). Using (7.1.3), we get

f ′(x0) = p′0(x0) = −
z0∆x0

3
− z1∆x0

6
+ f(x1) − f(x0)

∆x0

and

f ′(xn) = p′n−1(xn) =
zn∆xn−1

3
+ zn−1∆xn−1

6
+ f(xn) − f(xn−1)

∆xn−1
.

Hence

2z0∆x0 + z1∆x0 = −6f ′(x0) +
6

∆x0
(f(x1) − f(x0))

7.1. Cubic Spline Interpolation 161

and

zn−1∆xn−1 + 2zn∆xn−1 = 6f ′(xn) −
6

∆xn−1
(f(xn) − f(xn−1)) .

These two equations give two linear equations that we may add to the (n−1) linear equations
given in (7.1.4).

If we define ∆x−1 = 0 and ∆xn = 0, the zi’s for 0 ≤ i ≤ n are given by the solution of the
n + 1 dimensional linear system Az = b, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d0 u0 0
l1 d1 u1 0
0 l2 d2 u2
⋮ 0 l3 d3
⋮ ⋮ 0 l4
⋮ ⋮ ⋮ ⋮ ⋱
⋮ ⋮ ⋮ ⋮ ⋮ un−4 0
⋮ ⋮ ⋮ ⋮ ⋮ dn−3 un−3 0 . . .
⋮ ⋮ ⋮ ⋮ ⋮ ln−2 dn−2 ud−2 0
⋮ ⋮ ⋮ ⋮ ⋮ 0 ln−1 dn−1 un−1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 ln dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(7.1.8)

and

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−6f ′(x0) +
6

∆x0
(f(x1) − f(x0))

6

∆x1
(f(x2) − f(x1)) −

6

∆x0
(f(x1) − f(x0))

6

∆x2
(f(x3) − f(x2)) −

6

∆x1
(f(x2) − f(x1))

⋮
6

∆xn−2
(f(xn−1) − f(xn−2)) −

6

∆xn−3
(f(xn−2) − f(xn−3))

6

∆xn−1
(f(xn) − f(xn−1)) −

6

∆xn−2
(f(xn−1) − f(xn−2))

6f ′(xn) −
6

∆xn−1
(f(xn) − f(xn−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

with di, ui and li for 0 ≤ i ≤ n defined as for the natural spline before.

The expression for pi given in (7.1.6) and (7.1.7) is still valid for the clamped cubic spline
interpolant.

Example 7.1.4
Using the information in the table below, construct the clamped spline interpolant for f on
the nodes 0, 0.3 and 1.

x 0 0.3 1
f(x) 1 0.548811636094027 0.135335283236613
f ′(x) −2 −0.270670566473225

162 7. Splines

All the numerical results displayed will be rounded to 10 digits. The computations are done
with more precision.

We have
pi(x) = ((αi(x − xi) + βi) (x − xi) + γi) (x − xi) + δi

on [xi, xi+1] for i = 0 and 1, where x0 = 0, x1 = 0.3 and x2 = 1.
Let z ∈ R3 be the solution of Az = b, where

A =
⎛
⎜
⎝

2(x1 − x0) x1 − x0 0
x1 − x0 2(x2 − x0) x2 − x1

0 x2 − x1 2(x2 − x1)

⎞
⎟
⎠
=
⎛
⎜
⎝

0.6 0.3 0
0.3 2 0.7
0 0.7 1.4

⎞
⎟
⎠

and

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−6f ′(x0) + 6
f(x1) − f(x0)

x1 − x0

6
f(x2) − f(x1)

x2 − x1
− 6 f(x1) − f(x0)

x1 − x0

6f ′(x2) − 6
f(x2) − f(x1)

x2 − x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜
⎝

2.976232722
5.479684254
1.920059626

⎞
⎟
⎠
.

We find

z =
⎛
⎜
⎝

3.949875177
2.021025387
0.3609584679

⎞
⎟
⎠
.

The coefficients of pi are given by

δi = f(xi) ,

γi = −
zi∆xi
3
− zi+1∆xi

6
+ f(xi+1) − f(xi)

∆xi
,

βi =
zi
2

and

αi =
zi+1 − zi
6∆xi

for i = 0 and 1.

The following table gives the values of the coefficients of pi.

i αi βi γi δi
0 −1.071583217 1.974937588 −2 1
1 −0.3952540283 1.010512693 −1.104364916 0.5488116361

♣
We give below a code to find the clamped cubic spline interpolant. We leave the task of

writing a code to find the natural cubic spline interpolant to the reader.

7.1. Cubic Spline Interpolation 163

Code 7.1.5 (Clamped Cubic Spline Interpolant - System)

This program computes the tridiagonal matrix A and the right hand side b associated
to the clamped cubic spline interpolant.
Input: The nodes xi for 0 ≤ i ≤ n (x(i+1) in the code below).
The values f(xi) for 0 ≤ i ≤ n (f(i+1) in the code below).
The values f ′(x0) and f ′(xn) (fx(1) and fx(2) respectively in the code below).
Output: The lower diagonal L, the diagonal D and the upper diagonal U of the
tridiagonal matrix A.
The right hand side b of Ax = b.

% [L,D,U,b] = clampedsplinematrix(f,fx,x)

function [L,D,U,b] = campledsplinematrix(f,fx,x)

N = length(x);

L = repmat(NaN,1,N-1);

U = repmat(NaN,1,N-1);

D = repmat(NaN,1,N);

b = repmat(NaN,1,N);

dx = x(2)-x(1);

if (dx == 0)

return;

end

ratio = (f(2)-f(1))/dx;

D(1) = 2*dx;

U(1) = dx;

b(1) = 6*(ratio - fx(1));

for n=2:N-1

prevdx = dx;

dx = x(n+1)-x(n);

if (dx == 0)

return;

end

prevratio = ratio;

ratio = (f(n+1)-f(n))/dx;

L(n-1) = prevdx;

D(n) = 2*(dx+prevdx);

U(n) = dx;

b(n) = 6*(ratio - prevratio);

end

L(N-1) = dx;

D(N) = 2*dx;

b(N) = 6*(fx(2) - ratio);

end

164 7. Splines

Code 7.1.6 (Tridiagonal Matrix)

To solve a system of the form Ax = b, where A is a tridiagonal matrix.
Input: The lower diagonal L, the diagonal D and the upper diagonal U of the
tridiagonal matrix A. None of the components of the diagonal D can be null.
The right hand side b.
Output: The solution if the system can be solved.

% z = tridmatrix(L,D,U,b)

function z = tridmatrix(L,D,U,b)

m = length(D);

z = repmat(NaN,1,m);

for n=2:m

if (D(n-1) == 0)

return;

end

q = L(n-1)/D(n-1);

D(n) = D(n)-q*U(n-1);

b(n) = b(n)-q*b(n-1);

end

if (D(m) == 0)

return;

end

% Backward substitution

z(m) = b(m)/D(m);

for n=(m-1):-1:1

z(n)=(b(n)-U(n)*z(n+1))/D(n);

end

end

Code 7.1.7 (Cubic Spline Interpolant - Polynomial)

To evaluate a cubic spline interpolant defined by

p(x) = (αi(x − xi) + βi) ∗ (x − xi) + γi) ∗ (x − xi) + δi

for xi < x ≤ xi+1.
Input: The points xi for 0 ≤ i ≤ n (x(i+1) in the code below).
The values f(xi) for 0 ≤ i ≤ n (f(i+1) in the code below).
The solution z of the system Az = b associated to the cubic spline used.
The values of x where the cubic spline interpolant must be evaluated (X in the code
below).
Output: The value of the cubic spline interpolant at all the given values of x.

7.1. Cubic Spline Interpolation 165

The coefficients for each polynomials

pi(x) = ((ci,1(x − xi) + ci,2)(x − xi) + ci,3)(x − xi) + ci,4

for i = 1 ,2, . . . , n − 1 (the matrix coeffs in the code below).

function [y, coeffs] = splinepoly(z,f,x,X)

npoints = length(x);

N = length(X);

y = repmat(NaN,1,N);

for m=1:1:npoints-1

coeffs(m,4) = f(m);

dx = x(m+1)-x(m);

df = f(m+1)-f(m);

coeffs(m,3) = -(2*z(m)+z(m+1))*dx/6 + df/dx;

coeffs(m,2) = z(m)/2;

coeffs(m,1) = (z(m+1)-z(m))/(6*dx);

end

for n=1:1:N

J = 0;

if (X(n) >= x(1) && X(n) <= x(npoints))

for m = 2:1:npoints

if (X(n) <= x(m))

J = m-1;

break;

end

end

dx = X(n) - x(J);

y(n) = ((coeffs(J,1)*dx + coeffs(J,2))*dx + coeffs(J,3))*dx ...

+ coeffs(J,4);

end

end

end

7.1.3 Existence of Interpolants

The are a few questions that come naturally after the presentation of the natural and clamped
spline interpolants. First, do the linear systems of the form Az = b used to find the natural
and clamped spline interpolants have always a solution? If so, it is unique? How good are
the natural and clamped spline interpolant? We answer these questions below.

Proposition 7.1.8

If B is a strictly diagonally dominant n × n matrix, then B is invertible.

166 7. Splines

Proof.
Suppose that x ≠ 0 satisfies Bx = 0. Let k be an index such that

∣xk∣ = ∥x∥∞ =max
1≤i≤n
∣xi∣ .

We have ∣xk∣ > 0 because x ≠ 0.

From
n

∑
j=1
bk,jxj = 0, we get

bk,k =
n

∑
j=0
j≠k

bk,j (
xj
xk
) .

Hence

∣bk,k∣ ≤
n

∑
j=0
j≠k

∣bk,j ∣ ∣
xj
xk
∣ ≤

n

∑
j=0
j≠k

∣bk,j ∣ .

This contradict that B is strictly diagonally dominant.

Theorem 7.1.9

Let f ∶ [a, b]→ R be a continuously differentiable function and a = x0 < x1 < . . . < xn = b.
There exists a unique natural cubic spline interpolant for f on the nodes x0, x1, . . . ,
xn. Similarly, There exists a unique clamped cubic spline interpolant for f on the
nodes x0, x1, . . . , xn.

Proof.
Any natural cubic spline on the nodes x0, x2, . . . , xn has to satisfy the system Az = b for
A given in (7.1.5). Since A is strictly diagonally dominant, it follows from the previous
proposition that A is invertible. Thus, the solution of Az = b is unique. The same reasoning
is true for clamped cubic splines with A given in (7.1.8).

Theorem 7.1.10

If p is the natural cubic spline interpolant for a function f of class C2 on the nodes
a = x0 < x1 < . . . < xn = b, then

∫
b

a
(p′′(x))2 dx ≤ ∫

b

a
(f ′′(x))2 dx .

Proof.
Let g = f − p. We have

∫
b

a
(f ′′(x))2 dx = ∫

b

a
(g′′(x) + p′′(x))2 dx

= ∫
b

a
(g′′(x))2 dx + ∫

b

a
(p′′(x))2 dx + 2∫

b

a
g′′(x)p′′(x)dx .

7.1. Cubic Spline Interpolation 167

To prove the theorem, we show that ∫
b

a
g′′(x)p′′(x)dx = 0.

Using integration by parts and p′′n−1(xn) = p′′0(x0) = 0 for the natural cubic spline, we get

∫
b

a
g′′(x)p′′(x)dx =

n−1
∑
j=0
∫

xj+1

xj

g′′(x)p′′j (x)dx

=
n−1
∑
j=0
(g′(xj+1)p′′j (xj+1) − g′(xj)p′′j (xj)) −

n−1
∑
j=0
∫

xj+1

xj

g′(x)p′′′j (x)dx

= g′(xn)p′′n−1(xn) − g′(x0)p′′0(x0) −
n−1
∑
j=0
∫

xj+1

xj

g′(x) (zi+1 − zi
∆xi

) dx

= −
n−1
∑
j=0
(zi+1 − zi

∆xi
) (g(xj+1) − g(xj)) = 0 .

The last equality comes from g(xj) = 0 for all j because p(xj) = f(xj) for all j.

Using the approach presented in the next section, it is possible to prove the following
theorem.

Theorem 7.1.11

Let f ∶ [a, b]→ R be a four times continuously differentiable function and suppose that

max
x∈[a,b]

∣f (4)(x)∣ <M .

If p is the clamped cubic spline interpolant for f on x0, x1,. . . , xn in]a, b[, then

max
x∈[a,b]

∣f(x) − p(x)∣ ≤ 5M

384
max

0≤i<n−1
∣∆xi∣4

and

max
x∈[a,b]

∣f ′(x) − p′(x)∣ ≤ M
24

max
0≤i<n−1

∣∆xi∣3 .

It follows from the previous theorem that the clamped cubic spline polynomial p can be
a good fit for a function f if max

0≤i<n
∣∆xi∣ is small enough.

7.1.4 Another Approach

The presentation of the cubic spline that follows is based on [10].

Suppose that p is a cubic spline defined in Definition 7.1.1. If we express pi as

pi(x) = p(xi) + p[xi, xi](x − xi) + p[xi, xi, xi+1](x − xi)2 + p[xi, xi, xi+1, xi+1](x − xi)2(x − xi+1)

168 7. Splines

and substitute (x − xi+1) = (x − xi) + (xi − xi+1), we get

pi(x) = p(xi) + p[xi, xi](x − xi) + (p[xi, xi, xi+1] − (xi+1 − xi)p[xi, xi, xi+1, xi+1]) (x − xi)2

+ p[xi, xi, xi+1, xi+1](x − xi)3 .

Hence, we have
pi(x) = ai + bi (x − xi) + ci (x − xi)2 + di (x − xi)3 ,

where

ai = p(xi) ,
bi = p[xi, xi] = p′(xi) ,

di = p[xi, xi, xi+1, xi+1] =
p[xi, xi+1, xi+1] − p[xi, xi, xi+1]

∆xi

= p[xi+1, xi+1] − 2p[xi, xi+1] + p[xi, xi]
(∆xi)2

= bi+1 − 2f[xi, xi+1] + bi
(∆xi)2

,

ci = p[xi, xi, xi+1] − (xi+1 − xi)p[xi, xi, xi+1, xi+1]

= p[xi, xi+1] − p[xi, xi]
∆xi

− p[xi, xi, xi+1, xi+1]∆xi =
f[xi, xi+1] − bi

∆xi
− di∆xi

= −2bi − bi+1 + 3f[xi, xi+1]
∆xi

(7.1.9)

for i = 0, 1, . . . , n − 1. We have that p[xi, xi+1] = f[xi, xi+1] because p(xi) = f(xi) for all i.
We also have that p[xi, xi] = p′(xi) for 0 ≤ i ≤ n.

There are only n + 1 unknowns in (7.1.9); namely, bi for i = 0, 1, . . . , n.
The conditions p′′i−1(xi) = p′′i (xi) for 1 ≤ i ≤ n − 1 imply that

2ci−1 + 6di−1∆xi−1 = 2ci

for 1 ≤ i ≤ n − 1. Using the definitions of ci and di in (7.1.9), we get

(∆xi)bi−1 + 2(∆xi +∆xi−1)bi + (∆xi−1)bi+1 = 3 (f[xi−1, xi]∆xi + f[xi, xi+1]∆xi−1)

for 1 ≤ i ≤ n−1. Since we have n+1 unknowns and n−1 equations, we have two free variables.
It is natural to take b0 and bn as free variables.

For the clamped cubic spline interpolant, we require p′0(x0) = f ′(x0) and p′n−1(xn) =
f ′(xn). Since p′0(x0) = b0 and

p′n−1(xn) = bn−1 + 2cn−1(xn − xn−1) + 3dn−1(xn − xn−1)2

= bn−1 + 2(
−2bn−1 − bn + 3f[xn−1, xn]

∆xn−1
)∆xn−1

+ 3(bn − 2f[xn−1, xn] + bn−1
(∆xn−1)2

)(∆xn−1)2 = bn ,

7.1. Cubic Spline Interpolation 169

we have b0 = f ′(x0) and bn = f ′(xn). The other bi’s are given by the solution of n − 1
dimensional linear system Ab = q where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d1 u0 0
l2 d2 u1 0
0 l3 d3 u2
⋮ 0 l4 d4
⋮ ⋮ 0 l5
⋮ ⋮ ⋮ ⋮ ⋱
⋮ ⋮ ⋮ ⋮ ⋮ un−6 0
⋮ ⋮ ⋮ ⋮ ⋮ dn−4 un−5 0 . . .
⋮ ⋮ ⋮ ⋮ ⋮ ln−3 dn−3 ud−4 0
⋮ ⋮ ⋮ ⋮ ⋮ 0 ln−2 dn−2 un−3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 ln−1 dn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

q =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

−b0∆x1 + 3 (f[x0, x1]∆x1 + f[x1, x2]∆x0)
3 (f[x1, x2]∆x2 + f[x2, x3]∆x1)

⋮
3 (f[xn−3, xn−2]∆xn−2 + f[xn−2, xn−1]∆xn−3)

−bn∆xn−2 + 3 (f[xn−2, xn−1]∆xn−1 + f[xn−1, xn]∆xn−2)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

with di = 2(∆xi−1 +∆xi), ui =∆xi and li =∆xi−1.
This gives us another formulation for the clamped cubic spline.

Remark 7.1.12
To find the piecewise cubic Hermite interpolant p for a function f on the nodes x0, x1,. . . ,
xn, one uses the formulas above with bi = f[xi, xi] = f ′(xi) for i = 0, 1, . . . , n. The piecewise
cubic Hermite interpolant gives a good approximation of f but requires almost twice as much
information about f than the clamped or free spline interpolant. We need to know f ′(xi)
for i = 0, 1, . . . , n. ♠
Example 7.1.13
Using the information in the table below and the approach developed in this subsection,
construct the clamped spline interpolant for f on the nodes 0, 0.3 and 1.

x 0 0.3 1
f(x) 1 0.548811636094027 0.135335283236613
f ′(x) −2 −0.270670566473225

All the numerical results displayed will be rounded to 10 digits. The computations are done
with more precision.

We have
pi(x) = ai + bi (x − xi) + ci (x − xi)2 + di (x − xi)3

on [xi, xi+1] for i = 0 and 1, where x0 = 0, x1 = 0.3 and x2 = 1.

170 7. Splines

The coefficients of pi are given by

ai = p(xi) , bi = p′(xi) , di =
bi+1 − 2f[xi, xi+1] + bi

(∆xi)2

and

ci =
−2bi − bi+1 + 3f[xi, xi+1]

∆xi

for i = 0 and 1. We have b0 = f ′(0), b2 = f ′(1) and b1 is the solution of

(∆x1)b0 + 2(∆x0 +∆x1)b1 + (∆x0)b2 = 3 (f[x0, x1]∆x1 + f[x1, x2]∆x0) ;

namely,

0.7f ′(0) + 2b1 + 0.3f ′(1) = 3(
0.7

0.3
(f(0.3) − f(0)) + 0.3

0.7
(f(1) − f(0.3))) .

Thus b1 = −1.104364916 .

The following table gives the values of the coefficients of pi.

i di ci bi ai
0 −1.071583217 1.974937588 −2 1
1 −0.3952540283 1.010512693 −1.104364916 0.5488116361

As expected, we find the same clamped cubic spline as in Example 7.1.4. ♣

7.2 Parametric Curves: Bézier Curves

A general curves C in the plane is the image of a vector valued function ϕ ∶ [a, b] → R2.
The function ϕ is called a parametric representation of the curve C. The parametric
representation of a curve is not unique.

It is not always possible to describe a curve C by the graph of a function y = f(x) for
a ≤ x ≤ b. When it is possible, ϕ ∶ [a, b] → R2 defined by ϕ(x) = (x, f(x)) is a parametric
representation of the curve C.

Example 7.2.1
The circle C of radius 1 centred at the origin has the following well known parametric
representation.

ϕ(θ) = (cos(θ), sin(θ))

for 0 ≤ θ ≤ 2π. It is impossible to describe the full circle as the graph of a function y = f(x).
♣

Given n + 1 points p0 = (x0, y0), p1 = (x1, y1), . . . , pn = (xn, yn), the goal is to find
polynomial maps of degree three ϕi ∶ [0,1] → R2 such that ϕi(0) = pi and ϕi(1) = pi+1

7.2. Parametric Curves: Bézier Curves 171

for 0 ≤ i < n. By pasting all the mappings ϕi together, we hope to get a nice parametric
representation of a curve.

The curves that we are going to describe are called cubic Bézier curves. The mapping
ϕi ∶ [0,1]→ R2 between the points pi = (xi, yi) and pi+1 = (xi+1, yi+1), is defined by

1. ϕi(0) = pi,

2. ϕi(1) = pi+1,

3. ϕ′i(0) = 3(αi, βi) and

4. ϕ′i(1) = 3(αi+1, βi+1),

where the αi’s and βi’s are parameters to be described later.

Let q̌i = (xi + αi, yi + βi) and q̂i+1 = (xi+1 − αi+1, yi+1 − βi+1). It is easy to see that

ϕi(t) = (1 − t)3pi + 3t(1 − t)2q̌i + 3t2(1 − t)q̂i+1 + t3pi+1 (7.2.1)

satisfies the four conditions above.

The points q̌i and q̂i+1 are called the control points of the Bézier curve with endpoints
pi and pi+1.

For the parametric representation between pi and pi+1,

∂y

∂x
∣
x=pi

= βi
αi

.

As long as the ratio βi/αi is constant, the parametric representation has the same slope at
pi. By taking αi and βi very large, we flatten the image of the representation near pi.

We illustrate graphically the meaning of the parameters αi, βi. αi+1 and βi+1 in Figure 7.1.

x

q̂i+1 = (xi+1 − αi+1, yi+1 − βi+1)

q̌i = (xi + αi, yi + βi)
y

pi+1 = (xi+1, yi+1)pi = (xi, yi)

Figure 7.1: Piece of a Bézier curve

172 7. Splines

(7.2.1) can be rewritten as

ϕi = (−t3 + 3t2 − 3t + 1)pi + (3t3 − 6t2 + 3t)q̌i + (−3t3 + 3t2)q̂i+1 + t3pi+1

= (−pi + 3q̌i − 3q̂i+1 + pi+1) t3 + (3pi − 6q̌i + 3q̂i+1) t2

+ (−3pi + 3q̌i) t + pi . (7.2.2)

It is (7.2.2) instead of (7.2.1) that is used in computer codes to draw Bézier curves. The coef-
ficients are computed once and the nested form of (7.2.2) is used. The number of arithmetic
operations is minimal.

c

q̂i+1

b

pi+1

e
f

dq̌i

a

pi

Figure 7.2: Construction of a Bézier curve

Remark 7.2.2
There is a nice geometric interpretation of the Bézier curve.

Let a be the middle point of the line from pi to q̌i, b be the middle point of the line from
pi+1 to q̂i+1, c be the middle point of the line from q̌i to q̂i+1, d be the middle point of the
line from a to c, e be the middle point of the line from b to c, and f be the middle point of
the line from d to e.

The point f is on the Bézier curve Γ with endpoints pi, pi+1 and control points q̌i, q̂i+1.
Moreover, the Bézier curve Γ is the pasting of the Bézier curve with endpoints pi, f and
control points a, d, and the Bézier curve with endpoints f , pi+1 and control points e, b.

We can apply the previous construction to the Bézier curve with endpoints pi, f and
control points a, d to find another point f ′ on the the Bézier curve Γ. Similarly, the Bézier
curve with endpoints f , pi+1 and control points e, b gives another point f ′′ on the Bézier
curve Γ. Repeating this construction on smaller and smaller portion of the Bézier curve Γ
gives a sequence of points on the Bézier curve Γ. To draw the Bézier curve Γ, one may draw
straight lines between the points of Γ that have been found when the distance between them
is smaller than a given small value. It is not suggested however to use this method to draw
Bézier curves because of the large number of operations needed to draw the curve.

7.2. Parametric Curves: Bézier Curves 173

We first show that f is on the Bézier curve with endpoints pi, pi+1 and control points q̌i,
q̂i+1. We have that

f = 1

2
(d + e) = 1

2
(1
2
(a + c) + 1

2
(c + b)) = 1

4
a + 1

2
c + 1

4
b

= 1

4
(1
2
(pi + q̌i)) +

1

2
(1
2
(q̌i + q̂i+1)) +

1

4
(1
2
(q̂i+1 + pi+1))

= 1

8
(pi + 3q̌i + 3q̂i+1 + pi+1) = ϕi (

1

2
) .

We now show that the first half of the Bézier curve with endpoints pi, pi+1 and control
points q̌i, q̂i+1, namely ϕi(t) for 0 ≤ t ≤ 1/2, is the Bézier curve with endpoints pi, f and
control points a, d. We leave to the reader the proof that the second half of the Bézier curve
with endpoints pi, pi+1 and control points q̌i, q̂i+1, namely ϕi(t) for 1/2 ≤ t ≤ 1, is the Bézier
curve with endpoints f , pi+1 and control points e, b.

The parametric representation of the Bézier curve with endpoints pi, f and control points
a, d is given by

ψ(s) = (1 − s)3pi + 3s(1 − s)2a + 3s2(1 − s)d + s3f

for 0 ≤ s ≤ 1. Hence,

ψ(s) = (1 − s)3pi + 3s(1 − s)2a + 3s2(1 − s)d + s3
1

2
(d + e)

= (1 − s)3pi + 3s(1 − s)2a + (3s2(1 − s) +
1

2
s3)d + 1

2
s3e

= (1 − s)3pi + 3s(1 − s)2a + (3s2(1 − s) +
1

2
s3)(1

2
(a + c)) + 1

2
s3 (1

2
(c + b))

= (1 − s)3pi + (3s(1 − s)2 +
3

2
s2(1 − s) + 1

4
s3)a + (3

2
s2(1 − s) + 1

2
s3)c + 1

4
s3b

= (1 − s)3pi + (3s(1 − s)2 +
3

2
s2(1 − s) + 1

4
s3)(1

2
(pi + q̌i))

+ (3
2
s2(1 − s) + 1

2
s3)(1

2
(q̌i + q̂i+1)) +

1

4
s3 (1

2
(pi+1 + q̂i+1))

= ((1 − s)3 + 3

2
s(1 − s)2 + 3

4
s2(1 − s) + 1

8
s3)pi

+ (3
2
s(1 − s)2 + 3

2
s2(1 − s) + 3

8
s3) q̌i + (

3

4
s2(1 − s) + 3

8
s3) q̂i+1 +

1

8
s3pi+1

= (s
2
+ (1 − s))

3

pi +
3s

2
(s
2
+ (1 − s))

2

q̌i + 3(
s

2
)
2

(s
2
+ (1 − s)) q̂i+1 + (

s

2
)
3

pi+1

= (1 − s
2
)
3

pi +
3s

2
(1 − s

2
)
2

q̌i + 3(
s

2
)
2

(1 − s
2
) q̂i+1 + (

s

2
)
3

pi+1 = ϕi (
s

2
)

for 0 ≤ s ≤ 1. ♠
Example 7.2.3

174 7. Splines

We want to construct a piecewise cubic Bézier curve that satisfy the following conditions.

i pi pi+1 q̌i q̂i+1
0 (0,2) (1,3) (1,2) (0.5,2.5)
1 (1,3) (3,3) (1.5,3.5) (2.5,3.5)
2 (3,3) (4,2) (3.5,2.5) (3.5,2.5)
3 (4,2) (5,2) (4.5,1.5) (4.5,2.5)
4 (5,2) (5.5,1) (5.5,1.5) (5,1)

The pieces of the curve are given by

ϕi(t) = (−pi + 3q̌i − 3q̂i+1 + pi+1) t3 + (3pi − 6q̌i + 3q̂i+1) t2

+ (−3pi + 3q̌i) t + pi

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
2.5

−0.5
⎞
⎠
t3 +
⎛
⎝
−4.5
1.5

⎞
⎠
t2 +
⎛
⎝
3.0

0.0

⎞
⎠
t +
⎛
⎝
0.0

2.0

⎞
⎠

if i = 0

⎛
⎝
−1.0
0.0

⎞
⎠
t3 +
⎛
⎝
1.5

−1.5
⎞
⎠
t2 +
⎛
⎝
1.5

1.5

⎞
⎠
t +
⎛
⎝
1.0

3.0

⎞
⎠

if i = 1

⎛
⎝
1.0

−1.0
⎞
⎠
t3 +
⎛
⎝
−1.5
1.5

⎞
⎠
t2 +
⎛
⎝
1.5

−1.5
⎞
⎠
t +
⎛
⎝
3.0

3.0

⎞
⎠

if i = 2

⎛
⎝
1.0

−3.0
⎞
⎠
t3 +
⎛
⎝
−1.5
4.5

⎞
⎠
t2 +
⎛
⎝
1.5

−1.5
⎞
⎠
t +
⎛
⎝
4.0

2.0

⎞
⎠

if i = 3

⎛
⎝
2.0

0.5

⎞
⎠
t3 +
⎛
⎝
−3.0
0.0

⎞
⎠
t2 +
⎛
⎝
1.5

−1.5
⎞
⎠
t +
⎛
⎝
5.0

2.0

⎞
⎠

if i = 4

for 0 ≤ t ≤ 1. The graph of the piecewise cubic Bézier curve is given below.

♣
Remark 7.2.4
The Bernstein polynomial of degree m ∈ N+ for a function f ∶ [0,1]→ R is the polynomial

Bm(t; f) =
m

∑
k=0

f (k
m
)(m

k
)tk(1 − t)m−k . (7.2.3)

7.2. Parametric Curves: Bézier Curves 175

One can prove that Bm(⋅; f)→ f uniformely on [0,1] as m→∞ if f is continuous on [0,1].
One of the proofs of the Stone-Weierstrass Theorem, Theorem 9.1.1, is effectively based on
the Bernstein polynomials.

The Bézier curve (7.2.1) can be written as the Bernstein polynomial

ϕi(t) =
3

∑
k=0

ci,k(
3

k
)tk(1 − t)3−k

for 0 ≤ i < n, where ci,k ∈ R2 satisfies

(3
k
)ci,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pi if k = 0
q̌i if k = 1
q̂i+1 if k = 2
pi+1 if k = 3

for 0 ≤ i < n.
Similarly, we may generalize Bézier curves to more than two control points. For each

m ≥ 3, we define the Bézier curve with m − 1 control points as the curve defined by

ϕi(t) =
m

∑
k=0

ci,k(
m

k
)tk(1 − t)m−k . (7.2.4)

The control points are (m
k
)ci,k for k = 1, 2, . . . , m − 1. In particular, if we assume that

(m
k
)ci,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pi if k = 0
q̌i if k = 1
q̂i+1 if k =m − 1
pi+1 if k =m

then ϕi(0) = pi and ϕi(1) = pi+1 for 0 ≤ i < n. Moreover, since

ϕ′i(t) =m
m−1
∑
k=0
(ci,k+1 − ci,k) (

m − 1
k
)tk(1 − t)m−1−k ,

we get
ϕ′i(0) =m (ci,1 − ci,0) =m (q̌i − pi) =m(αi, βi)

and
ϕ′i(1) =m (ci,m − ci,m−1) =m (pi+1 − q̂i+1) =m(αi+1, βi+1) .

We still get a curve which is tangent to (αi, βi) at pi and tangent to (αi+1, βi+1) at pi+1. ♠

176 7. Splines

7.3 B-Spline Interpolation

In this section, we consider an infinite sequence of knots

. . . < t−2 < t−1 < t0 < t1 < t2 < . . .

such that lim
i→−∞

ti = −∞ and lim
i→∞

ti = +∞.

Definition 7.3.1

The B-splines of degree 0 are defined by

B0
i (t) =

⎧⎪⎪⎨⎪⎪⎩

1 if ti ≤ t < ti+1
0 otherwise

for i ∈ Z.
The B-splines of degree k > 0 are defined by the recurrence relation

Bk
i (t) = vki (t)Bk−1

i (t) + (1 − vki+1(t))Bk−1
i+1 (t) (7.3.1)

for i ∈ Z, where vki (t) =
t − ti
ti+k − ti

.

We sketch in Figure 7.3 a B-spline of degree 0 and a B-spline of degree 1.

1

y

t

1

y

t

1

y

t

ti ti+1 ti ti+1 ti+2

ti+3ti+2ti+1ti

Figure 7.3: Clockwise from the top left corner: B0
i , B

1
i and B2

i .

The next propositions state some of the properties of the B-splines. We give some of the
proofs and refer the reader to [21] for the missing proofs and more information.

7.3. B-Spline Interpolation 177

Proposition 7.3.2

The B-splines of degree 0 are piecewise constant functions which are continuous from
the right. For k > 0, the B-splines of degree k are piecewise polynomials of degree k
and class Ck−1.

That the B-splines of degree k > 0 are piecewise polynomials of degree k is proved by
induction using (7.3.1). To proof that they are of class Ck−1 requires induction and tedious
computations to show that

d

dt
Bk

i (t) = (
k

ti+k − ti
)Bk−1

i (t) − (
k

ti+k+1 − ti+1
)Bk−1

i+1 (t) (7.3.2)

for k > 1. This formula is also true for k = 1 as long as t ≠ tj for j = i, i + 1 and i + 2.
A simple proof by induction based on (7.3.1) gives the following result.

Proposition 7.3.3

B0
i (t) > 0 for ti ≤ t < ti+1 and B0

i (t) = 0 otherwise. For k > 0, Bk
i (t) > 0 for ti < t < ti+k+1

and Bk
i (t) = 0 otherwise.

The next result is quite useful to evaluate B-splines.

Proposition 7.3.4

Suppose that

p(t) =
∞
∑

i=−∞
Ck

i (t)Bk
i (t) .

Given t ∈ [tj, tj+1[, if we use the relation

Cr−1
i (t) = Cr

i (t)vri (t) +Cr
i−1 (1 − vri (t))

= 1

tr+i − ti
((t − ti)Cr

i (t) + (tr+i − t)Cr
i−1(t))

(7.3.3)

for r = k, k − 1, . . . , 0 to generate the table

Ck
j (t) Ck−1

j (t) . . . C1
j (t) C0

j (t)
Ck

j−1(t) Ck−1
j−1 (t) . . . C1

j−1(t)
⋮ ⋮ ⋰

Ck
j−k+1(t) Ck−1

j−k+1(t)
Ck

j−k(t)

then p(t) = C0
j (t).

Proof.

178 7. Splines

The proof of the previous proposition is based on the relation

∞
∑

i=−∞
Cr

i (t)Br
i (t) =

∞
∑

i=−∞
Cr

i (t) (vri (t)Br−1
i (t) + (1 − vri+1(t))Br−1

i+1)

=
∞
∑

i=−∞
Cr

i (t)vri (t)Br−1
i (t) +

∞
∑

i=−∞
Cr

i (t) (1 − vri+1(t))Br−1
i+1

=
∞
∑

i=−∞
Cr

i (t)vri (t)Br−1
i (t) +

∞
∑

i=−∞
Cr

i−1(t) (1 − vri (t))Br−1
i

=
∞
∑

i=−∞
(Cr

i (t)vri (t) +Cr
i−1(t) (1 − vri (t)))Br−1

i

=
∞
∑

i=−∞
Cr−1

i (t)Br−1
i (t)

and a simple proof by induction to get

p(t) =
∞
∑

i=−∞
Ck

i (t)Bk
i (t) =

∞
∑

i=−∞
C0

i (t)B0
i (t) .

Don’t forget that, for t given, all sums are finite.

Remark 7.3.5
The spline interpolant that we will present later will be of the form

p(t) =
∞
∑

i=−∞
ckiB

k
i (t)

for some constants cki . If we set Cr
i (t) = cri , we can use the method presented in the propo-

sition above to compute p(t). ♠

Proposition 7.3.6

+∞
∑

i=−∞
Bk

i (t) = 1 for all t ∈ R and k ≥ 0.

Proof.
We use the previous proposition with Ck

i (t) = 1 for all i. We have

Ck−1
i (t) = Ck

i (t)vki (t) +Ck
i−1 (1 − vki (t)) = vki (t) + (1 − vki (t)) = 1

for all i. A simple proof by induction shows that Cr
i (t) = 1 for all i and all r with 0 ≤ r ≤ k.

Thus,
∞
∑

i=−∞
Bk

i (t) =
∞
∑

i=−∞
B0

i (t) .

For t ∈ [tj, tj+1[, we get
∞
∑

i=−∞
Bk

i (t) =
∞
∑

i=−∞
B0

i (t) = B0
j (t) = 1 .

7.3. B-Spline Interpolation 179

Proposition 7.3.7

The set {Bk
j ,B

k
j+1, . . . ,B

k
j+k} is linearly independent on]tj+k, tj+k+1[.

We note that the only B-splines Bk
i that are not trivially null on]tj+k, tj+k+1[are those

for j ≤ i ≤ j + k. The proof of this proposition is by induction and requires the formula for
the derivative of the B-splines Bk

i that was required for the proof of Proposition 7.3.2.

Proposition 7.3.8

The set of B-splines {Bk
−k,B

k
−k+1, . . . ,B

k
n−1} is a basis for the space Sk

n of functions p

of class Ck−1 on [t0, tn] such that p∣[ti,ti+1] is a polynomials of degree at most k for

0 ≤ i < n.

Proof.
We note that the only B-splines Bk

i that are not trivially null on]t0, tn[are those for −k ≤
i ≤ n − 1.

Linear Independence: Suppose that
n−1
∑
i=−k

ciB
k
i = 0 on [t0, tn]. We therefore also have that

0

∑
i=−k

ciB
k
i =

n−1
∑
i=−k

ciB
k
i = 0

on]t0, t1[. It follows from the previous proposition that ci = 0 for −k ≤ i ≤ 0.
Suppose that j < n is the smallest index such that cj ≠ 0. From the previous discussion,

we have j > 0. Hence, for t ∈ [tj, tj + 1[, we have

0 =
n−1
∑
i=−k

ciB
k
i (t) =

n−1
∑
i=j
ciB

k
i (t) = cjBk

j (t) .

Since Bk
j (t) > 0, we get cj = 0. This is a contradiction that cj ≠ 0. So, there is no such j

between 0 and n such cj ≠ 0.
In particular, this proves that Sk

n is at least of dimension n + k.
Generating set: We prove that all functions p ∈ Sk

n can be expressed as a linear combination
over R of the following n + k functions in Sk

n: t
j for 0 ≤ j ≤ k and H(t − tj)(t − tj)k for

1 ≤ j ≤ n − 1, where H is the Heavyside function defined by

H(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ≥ 0
0 if x < 0

This will prove that Sk
n is at most of dimension n+k. Combined with what we proved in the

first part of the proof, this shows that Sk
n is of dimension n + k and that

{Bk
−k,B

k
−k+1, . . . ,B

k
n−1} is a basis of Sk

n.

180 7. Splines

Given p ∈ Sk
n, we have that p0 = p∣[t0,t1] is a polynomial of degree at most k. So p0(t) =

k

∑
i=0
ait

i for some ai ∈ R.

We prove by induction that there exist constants ak+i such that

p(t) =
k

∑
i=0
ait

i +
j

∑
i=1
ak+iH(t − ti)(t − ti)k (7.3.4)

for t0 ≤ t ≤ tj+1 with 1 ≤ j < n.
We have that P1 = p∣[t1,t2] is a polynomial of degree at most k. Since p is of class Ck−1,

we have that
dm

dtm
(p1 − p0)(t1) = 0

for 0 ≤m < k. Since p1 − p0 is a polynomial of degree at most k, it follows from Lemma 6.3.2
that (p1 − p0)(t) = ak+1(t − t1)k for some ak+1 ∈ R. Thus

p(t) =
k

∑
i=0
ait

i + ak+1H(t − t1)(t − t1)k

for t0 ≤ t ≤ t2. This proves (7.3.4) for j = 1.
Suppose that (7.3.4) is true for j. We have that pj+1 = p∣[tj+1,tj+2] is a polynomial of degree

at most k. Moreover,

pj = p∣[tj ,tj+1] = (
k

∑
i=0
ait

i +
j

∑
i=1
ak+iH(t − ti)(t − ti)k) ∣

[tj ,tj+1]

is a polynomial of degree at most k. Since p is of class Ck−1, we have that

dm

dtm
(pj+1 − pj)(tj+1) = 0

for 0 ≤ m < k. Since pj+1 − pj is a polynomial of degree at most k, it again follows from
Lemma 6.3.2 that (pj+1 − pj)(t) = ak+j+1(t − tj+1)k for some ak+j+1 ∈ R. thus

p(t) =
k

∑
i=0
ait

i +
j+1
∑
i=1
ak+iH(t − ti)(t − ti)k

for t0 ≤ t ≤ tj+2. This proves (7.3.4) for j replaced by j + 1.
(7.3.4) with j = n − 1 shows that f is a linear combination of the n + k functions tj for

0 ≤ j ≤ k and H(t − tj)(t − tj)k for 1 ≤ j ≤ n − 1 as claimed.

Our interpolation problem is as follows. Given points (x1, y1), (x2, y2), . . . , (xn+k, yn+k)
such that xj < xj+1 for 1 ≤ j < n + k, and xj ∈ [t0, tn] for 1 ≤ j ≤ n + k, can we find constants
ci with −k ≤ i ≤ n − 1 such that

n−1
∑
i=−k

ciB
k
i (xj) = yj (7.3.5)

7.3. B-Spline Interpolation 181

for 1 ≤ j ≤ n + k? If such ci exist, then

p(x) =
n−1
∑
i=−k

ciB
k
i (x) (7.3.6)

is a spline interpolant on the nodes x1, x2, . . . , xn+k.

The answer to this question is a consequence of the following result.

Theorem 7.3.9 (Schoemberg-Whitney)

Given q ∈ Z and x1 < x2 < . . . < xm, consider the m ×m matrix Q with the entries
Qj,i = Bk

i+q(xj) for 1 ≤ i, j ≤m. Then, Q is invertible if and only if Qj,j ≠ 0 for 1 ≤ j ≤m.

To find the cki required to satisfy (7.3.5), we have to solve the linear system Qz = y,
where Qj,i = Bk

i−k−1(xj) and zi = ci−k−1 for 1 ≤ i, j ≤ n + k. We get the following result from
Schoemberg-Whitney Theorem and Proposition 7.3.3.

Proposition 7.3.10

The system Qz = y defined above has a solution if and only if Qj,j = Bk
j−k−1(xj) ≠ 0 for

1 ≤ j ≤ n + k; namely, if tj−k−1 < xj < tj for 1 ≤ j ≤ n + k.

If we consider the set of B-splines {Bk
−k,B

k
−k+1, . . . ,B

k
n−1}, then Schoemberg-Whitney The-

orem not only gives a condition for the existence of a solution to Qz = y but it also shows
that this solution is unique. However, there is no obligation to specify all the n + k points
(x1, y1), (x2, y2), . . . , (xn+k, yn+k). Namely, we do not have to use all the equations (7.3.5)
for 1 ≤ j ≤ n + k to determine the ci. We may use other conditions to determine some of the
ci. We will do just that in an example below.

Remark 7.3.11
We will need the following information for the next example. Let

p(t) =
∞
∑
−∞
ciB

k
i (t) .

If we derive f using (7.3.2), we get

p′(t) = k
∞
∑
−∞
(ci − ci−1
ti+k − ti

)Bk−1
i (t)

for k > 1. This formula is also true for k = 1 as long as t ≠ ti for all i. Again, if we derive f ′

using (7.3.2), we get

p′′(t) = k(k − 1)
∞
∑
−∞
(1

ti+k−1 − ti
)(ci − ci−1

ti+k − ti
− ci−1 − ci−2
ti+k−1 − ti−1

)Bk−2
i (t)

for k > 2. This formula is also true for k = 2 as long as t ≠ ti for all i. ♠

182 7. Splines

Example 7.3.12
Suppose that f ∶ R → R. We will give a natural cubic interpolant of f on the nodes
x1 < x2 < . . . < xn.

We have k = 3 and we select the knots ti such that xj = tj−1 for 1 ≤ j ≤ n. The spline
interpolant p that we are looking for will be determined by the points (xj, yj) = (tj−1, f(tj−1))
for 1 ≤ j ≤ n. We need j − 4 ≤ i < j to possibly have that B3

i (xj) is non null.

The spline interpolant p is of the form

p(x) =
n−2
∑
i=−3

ciB
3
i (x) ,

where

p(xj) =
n−2
∑
i=−3

ciB
3
i (xj) =

j−2
∑

i=j−3
ciB

3
i (xj) = yj (7.3.7)

for 1 ≤ j ≤ n. We have dropped the term for i /∈ {−3,−2, . . . , n − 2} from the summation
because B3

i (xj) = B3
i (tj−1) = 0 for these values of i. There are n equations with n + 2

variables ci for −3 ≤ i ≤ n − 2. We use the two extra variables to satisfy the conditions for a
natural cubic spline interpolant; namely, p′′(x1) = p′′(xn) = 0.

From the result stated in the previous remark, we have

p′′(x1) = p′′(t0) = 6
∞
∑
−∞
(1

ti+2 − ti
)(ci − ci−1

ti+3 − ti
− ci−1 − ci−2
ti+2 − ti−1

)B1
i (t0)

= 6(1

t1 − t−1
)(c−1 − c−2

t2 − t−1
− c−2 − c−3
t1 − t−2

) = 0

and

p′′(xn) = p′′(tn−1) = 6(
1

tn − tn−2
)(cn−2 − cn−3

tn+1 − tn−2
− cn−3 − cn−4

tn − tn−3
) = 0 .

These give two extra equations,

(t1 − t−2)c−1 − (t2 + t1 − t−1 − t−2)c−2 + (t2 − t−1)c−3 = 0

and

(tn − tn−3)cn−2 − (tn+1 + tn − tn−2 − tn−3)cn−3 + (tn+1 − tn−2)cn−4 = 0 ,

to combine with the n equations in (7.3.7) to determine the n+2 variables c3i for −3 ≤ i ≤ n−2.
♣

Consider a function f ∶ I → R, where I is a sub-interval of R, and δ > 0. The modulus
of continuity of f on I is defined by

ω(f ; δ, I) = sup{∣f(x) − f(y)∣ ∶ x, y ∈ I and ∣x − y∣ ≤ δ} .

For a uniformly continuous function f on I, we can have ω(f ; δ, I) as small as we want by
taking δ small enough.

7.3. B-Spline Interpolation 183

Theorem 7.3.13

Let q(t) =
∞
∑

i=−∞
f(ti+2)Bk

i (t) for t ∈ R and k ≥ 2. If f ∶ [t−k, tn+1]→ R, then

sup
t0≤t≤tn

∣f(t) − q(t)∣ ≤ kω(f ; δ, [t−k, tn+1])

for δ = max
−k≤i≤n+1

∣ti − ti−1∣.

Proof.
Using Propositions 7.3.3 and 7.3.6, we may write

∣f(t) − q(t)∣ = ∣f(t)
∞
∑

i=−∞
Bk

i (t) −
∞
∑

i=−∞
f(ti+2)Bk

i (t)∣ = ∣
∞
∑

i=−∞
(f(t) − f(ti+2))Bk

i (t)∣

≤
∞
∑

i=−∞
∣f(t) − f(ti+2)∣Bk

i (t) =
j

∑
i=j−k
∣f(t) − f(ti+2)∣Bk

i (t)

for t ∈ [tj, tj+1] and 0 ≤ j ≤ n − 1. Hence,

∣f(t) − q(t)∣ ≤ max
j−k≤i≤j

∣f(t) − f(ti+2)∣
j

∑
i=j−k

Bk
i (t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

≤ max
j−k≤i≤j

∣f(t) − f(ti+2)∣

for t ∈ [tj, tj+1]. For i = j, we have

∣f(t) − f(ti+2)∣ = ∣f(t) − f(tj+2)∣ ≤ ∣f(t) − f(tj+1)∣ + ∣f(tj+1) − f(tj+2)∣ ≤ 2ω(f, δ, [t−k, tn+1])

for t ∈ [tj, tj+1]. For i = j − 1, we have

∣f(t) − f(ti+2)∣ = ∣f(t) − f(tj+1)∣ ≤ ω(f, δ, [t−k, tn+1])

for t ∈ [tj, tj+1]. For i = j − 2, we have

∣f(t) − f(ti+2)∣ = ∣f(t) − f(tj)∣ ≤ ω(f, δ, [t−k, tn+1])

for t ∈ [tj, tj+1]. For i = j − s with 3 ≤ s ≤ k, we have

∣f(t) − f(ti+2)∣ = ∣f(t) − f(tj−s+2)∣
≤ ∣f(t) − f(tj)∣ + ∣f(tj) − f(tj−1)∣ + . . . + ∣f(tj−s+3) − f(tj−s+2)∣ ≤ (s − 1)ω(f, δ, [t−k, tn−1])

for t ∈ [tj, tj+1]. In all cases, we have ∣f(t) − f(ti+2)∣ ≤ kω(f, δ, [t−k, tn−1]) for t ∈ [tj, tj+1].
The conclusion of the theorem follows since this is true for all j such that 0 ≤ j < n.
Note: As the proof shows, we could have used only the interval [t−k+2, tn+1] instead of
[t−k, tn+1] in the statement of the theorem. We have used the second one because the state-
ment was nicer.

Since every element of Sk
n is a linear combination of Bk

j for −k ≤ j < n, we get the following
result from the previous theorem.

184 7. Splines

Corollary 7.3.14

We have that
dist (f,Sk

n) ≤ kω(f ; δ, [t−k, tn+1])

for all f ∶ [t−k, tn+1]→ R.

If f is continuous on [t−k, tn−1], and so uniformly continuous on [t−k, tn−1], we have that
ω(f ; δ, [t−k, tn+1] → 0 as δ → 0. Therefore, to theoretically improve the accuracy of the
interpolation of a function f on a given interval, we may increase the number of knots ti in
the interval (increase n) while decreasing the distance between them (decreasing δ).

7.4 Other Spline Methods

Consider n+ 1 points pi = (xi, yi) for i = 0, 1, . . . , n. We now define a piecewise polynomial,
parametric representation of a curve that shadows the points pi but does not include the
points pi.

First, we add the points p−2 = p−1 = p0 and pn+2 = pn+1 = pn. There are other approaches
to handle the end points p0 and pn. With this approach, p0 and pn are on the spline.

For −1 ≤ i ≤ n, we define the curve with the parametric representation

ϕi(t) =
2

∑
j=−1

bj(t)pi+j , (7.4.1)

where b−1(t) = −
t3

6
+ t

2

2
− t
2
+ 1
6
, b0(t) =

t3

2
− t2 + 2

3
, b1(t) = −

t3

2
+ t

2

2
+ t
2
+ 1
6
and b2(t) =

t3

6
for

0 ≤ t ≤ 1. Each component of the parametric representation is a polynomial of degree three
in t.

The small curve defined by the parametric representation ϕi(t) with 0 ≤ t ≤ 1 is in the
convex hull of the points pj for j = i − 1, i, i + 1 and i + 2. The coordinates of ϕi(t) are the

weighted sums of the coordinates of pj for j = i− 1, i, i+ 1 and i+ 2 because
2

∑
j=−1

bj(t) = 1 for

all t.

The parametric representations ϕi(t) satisfy the following properties:

ϕi(1) = ϕi+1(0) , ϕ′i(1) = ϕ′i+1(0) and ϕ′′i (1) = ϕ′′i+1(0)

for i = −1, 0, 1, . . . , n.
The parametric representation ϕi(t) given in (7.4.1) can be rewritten as

ϕi(t) =
1

6
(−pi−1 + 3pi − 3pi+1 + pi+2) t3 +

1

6
(3pi−1 − 6pi + 3pi+1) t2

+ 1

6
(−3pi−1 + 3pi+1) t +

1

6
(pi−1 + 4pi + pi+1) . (7.4.2)

Note the resemblance between (7.4.2) and the definition of Bézier curves in Section 7.2.

7.5. Exercises 185

7.5 Exercises

Question 7.1
Construct the clamped cubic spline interpolant to f associated to the data of the following
table.

x 0 1 3 4 5 5.5
f(x) 2 3 3 2 2 1
f ′(x) 0 −2

Plot the graph of this cubic spline for 0 ≤ x ≤ 5.5.
Question 7.2
Write a code similar to Code 7.1.5 for the natural cubic spline interpolation and use it to
draw the natural cubic spline interpolant to f associated to the data of the following table.

x 0 1 3 4 5 5.5
f(x) 2 3 3 2 2 1

186 7. Splines

Chapter 8

Least Square Approximation (in L2)

To understand the foundation of least square approximation, we first need to briefly review
L2 spaces. The reader will notice many similarities with linear algebra in Rn.

8.1 L2 spaces

Readers who have not studied measure theory and functional analysis before may skip the
review of the theory and only read the examples in this sections.

Suppose that µ is a measure on a measurable space Ω. Let L2(Ω) be the space of

measurable functions f ∶ Ω → C such that ∫
Ω
f 2 dµ is finite. We can define a scalar product

on L2(Ω) by
⟨f, g⟩ = ∫

Ω
f g dµ , f, g ∈ L2(Ω) .

The associated L2-norm is

∥f∥2 =
√
⟨f, f⟩ = (∫

Ω
∣f ∣2 dµ)

1/2
, f ∈ L2(Ω) .

Equipped with this norm, L2(Ω) is a Hilbert space.

Definition 8.1.1

A set of functions {ϕα}α∈A ⊂ L2(Ω), where A is some index set, is linearly inde-

pendent if, for any finite subset {αi}ni=1 ⊂ A,
n

∑
i=1
ciϕαi

= 0 with ci ∈ C implies that

c1 = c2 = . . . = cn = 0.

187

188 8. Least Square Approximation (in L2)

Definition 8.1.2

A set of functions S = {ϕα}α∈A ⊂ L2(Ω), where A is some index set, is orthonormal if

⟨ϕα1 , ϕα2⟩ =
⎧⎪⎪⎨⎪⎪⎩

0 if α1 ≠ α2

1 if α1 = α2

If instead of ⟨ϕα1 , ϕα2⟩ = 1 for α1 ≠ α2, we have ⟨ϕα1 , ϕα2⟩ ≠ 0 for α1 = α2, we say that
S is an orthogonal set.

Orthogonal sets (and so orthonormal sets) are linear independent.

Definition 8.1.3

A complete orthonormal set or orthonormal basis is an orthonormal set S =
{ϕα ∶ α ∈ A} ⊂ L2(Ω), where A is some index set, such that the set of all finite linear
combinations of elements of S is dense in L2(Ω). If we replace “orthonormal” by “or-
thogonal” in the previous sentence, we get the definition of a complete orthogonal
set and orthogonal basis.

It is proved in Functional Analysis that an orthogonal (or orthonormal) set of functions
{ϕα ∶ α ∈ A}, where A is some index set, is complete if ⟨f, ϕα⟩ = 0 for all α ∈ A implies that
f = 0 almost everywhere on Ω.

Definition 8.1.4

Let S = {ϕα ∶ α ∈ A}, where A is some index set, be a orthonormal basis of L2(Ω). The
Fourier series of a function f ∈ L2(Ω) with respect to the orthonormal basis S is

f ∼ ∑
α∈A

aαϕα ,

where
aα = ⟨f, ϕα⟩ = ∫

Ω
f ϕα dµ , α ∈ A .

If S is only an orthogonal basis, then the Fourier series of a function f ∈ L2(Ω) with
respect to the orthogonal basis S is

f ∼ ∑
α∈A

aαϕα ,

where

aα =
⟨f, ϕα⟩
⟨ϕα, ϕα⟩

, α ∈ A .

It is proved in Functional Analysis that aα ≠ 0 for at most a countable number of indices.
Moreover,

⎛
⎝∫Ω
∣f −

J

∑
j=1

aαj
ϕαj
∣
2

dµ
⎞
⎠

1/2

→ 0 as J →∞

8.1. L2 spaces 189

whatever the ordering {αj}∞j=0 of the indices α ∈ A such that aα ≠ 0.
The following result gives the theoretical justification to the method of least square ap-

proximation of functions that we will present later.

Theorem 8.1.5

Let S = {ϕj ∶ 1 ≤ j ≤ J} be a finite orthonormal subset of L2[a, b]. Given f ∈ L2[a, b],
we have

∥f −
J

∑
j=1
⟨f, ϕj⟩ϕj∥

2

≤ ∥f −
J

∑
j=1
λjϕj∥

2

for all λj ∈ C, and

∥f −
J

∑
j=1
⟨f, ϕj⟩ϕj∥

2

= ∥f −
J

∑
j=1
λjϕj∥

2

if and only if λj = ⟨f, ϕj⟩ for all j.

Proof.
We have

∥f −
J

∑
j=1
λjϕj∥

2

= ⟨f −
J

∑
j=1
λjϕj, f −

J

∑
j=1
λjϕj⟩ = ⟨f, f⟩ −

J

∑
j=1
λi ⟨f, ϕj⟩ −

J

∑
j=1
λj ⟨ϕ, f⟩ +

J

∑
j=1
∣λj ∣2

= ⟨f, f⟩ −
J

∑
j=1
λj ⟨f, ϕj⟩ −

J

∑
j=1
λj⟨f, ϕ⟩ +

J

∑
j=1
∣λj ∣2

= ⟨f, f⟩ +
J

∑
j=1
∣λj − ⟨f, ϕj⟩ ∣2

´¹¹¸¹¹¹¶
≥0

−
J

∑
j=1
∣ ⟨ϕj, f⟩ ∣2 .

Hence,

∥f −
J

∑
j=1
λiϕj∥

2

≥ ⟨f, f⟩ −
J

∑
j=1
∣ ⟨ϕj, f⟩ ∣2

for all λj with j = 1, 2, . . . , J . We have equality if and only if λj = ⟨f, ϕj⟩ for j = 1, 2, . . . ,
J .

We give an example of how this theorem can be used, another example will be given in
the next section.

Example 8.1.6
Let ϕn(x) = enxi for n ∈ Z, where i is the complex number satisfying i2 = −1. Since

∫
π

−π
ϕk(x)ϕj(x)dx = ∫

π

−π
ekxie−jxi dx = ∫

π

−π
e(k−j)xi dx

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

(k − j)i
e(k−j)xi∣

π

x=−π
= 1

(k − j)i
(e(k−j)πi − e−(k−j)πi) = 0 if k ≠ j

x∣
π

x=−π
= 2π if k = j

190 8. Least Square Approximation (in L2)

The set S = {enxi ∶ n ∈ Z} is an orthogonal set in the space L2[−π,π] with the Lebesgue
measure. If we replace ϕn by (2π)−1/2ϕn, we get an orthonormal set. It can be shown that
the set of all finite linear combinations of elements of S is dense in L2[−π,π]. Hence, S is a
complete orthogonal set in L2[−π,π].

For f ∈ L2[−π,π], we have that

⎛
⎝∫

π

−π
(f(x) −

N

∑
n=−N

ane
nxi)

2

dx
⎞
⎠

1/2

→ 0 as N →∞ , (8.1.1)

where

an =
⟨f, ϕn⟩
⟨ϕn, ϕn⟩

= 1

2π ∫
π

π
f(x)ϕn(x)dx =

1

2π ∫
π

π
f(x)e−nxi dx , n ∈ Z . (8.1.2)

∑
n∈Z

ane
nxi is the (complex) Fourier series of f . We may write

f =∑
n∈Z

ane
nxi ,

if the equality is interpreted in the sense of (8.1.1). We do not necessarily have pointwise
convergence.

From Theorem 8.1.5, the minimum of

I(r−N , r−N+1, . . . , rN−1, rN) = ∫
π

−π
(f(x) −

N

∑
n=−N

rne
rxi)

2

dx

for rn ∈ C is given by rn = an in (8.1.2). ♣
For the rest of this section, we assume that Ω is an interval [a, b] and the measure is

dµ(x) = w(x)dx, where w ∶ [a, b] → R is a piecewise continuous function on the interval
[a, b] such that w(x) > 0 for almost all x ∈ [a, b]. The function w is called a weight
function on [a, b]. We consider only real valued functions. The following discussion is also
valid if we replace the interval [a, b] by an open interval]a, b[, a semi-open interval [a, b[, or
an unbounded interval.

L2[a, b] is the space of measurable functions f ∶ [a, b] → R such that ∫
b

a
f 2(x)w(x)dx is

finite. The scalar product on L2[a, b] is

⟨f, g⟩ = ∫
b

a
f(x)g(x)w(x)dx , f, g ∈ L2[a, b] . (8.1.3)

The L2-norm is

∥f∥2 =
√
⟨f, f⟩ = (∫

b

a
f 2(x)w(x)dx)

1/2
, f ∈ L2[a, b] . (8.1.4)

The space L2[a, b] has a countable orthonormal basis. Suppose that

S = {ϕn ∶ n ∈ N} ⊂ L2[a, b]

8.1. L2 spaces 191

is an orthonormal basis for L2[a, b], the Fourier series of a function f ∈ L2[a, b] with respect
to this basis is

f ∼
∞
∑
n=0

anϕn ,

where

an = ⟨f, vn⟩ = ∫
b

a
f(x)ϕn(x)w(x)dx , n = 0,1,2, . . .

Sometime, we only have a complete orthogonal set of functions

S = {ϕn ∶ n ∈ N} ⊂ L2[a, b]

In this case, the Fourier series of f ∈ L2[a, b] with respect to this set of functions is

f ∼
∞
∑
n=0

anϕn ,

where

an =
⟨f, ϕn⟩
∥ϕn∥2

= (∫
b

a
(ϕn(x))2w(x)dx)

−1

∫
b

a
f(x)ϕn(x)w(x)dx , n = 0,1,2, . . .

We have

∥f −
N

∑
n=1

anϕn∥
2

=
⎛
⎝∫

b

a
(f(x) −

N

∑
n=0

anϕn(x))
2

w(x)dx
⎞
⎠

1/2

→ 0 as N →∞ .

We say that
N

∑
n=0

anϕn converges in L2 to f as N →∞.

Example 8.1.7
There is a real form for the trigonometric polynomials of Example 8.1.6. As stated at the
beginning of the section, we consider only real valued functions. Let

ϕ0(x) =
1√
2π

, ϕ2j(x) =
1√
π
cos(jx) and ϕ2j−1(x) =

1√
π
sin(jx)

for j = 1, 2, . . . It is easy to verify that

∫
π

−π
ϕi(x)ϕj(x)dx =

⎧⎪⎪⎨⎪⎪⎩

0 i ≠ j
1 i = j

Thus S = {ϕn ∶ n ∈ N} is a set of orthonormal functions in L2[−π,π], where the weight
function is w(x) = 1 for all x. It is possible to show that the set of all linear combination of
elements of S is dense in L2[−π,π].

Hence, for f ∈ L2[−π,π], we have that

⎛
⎝∫

π

−π
(f(x) − a0 −

N

∑
n=0

an cos(nx) −
N

∑
n=0

bn sin(nx))
2

dx
⎞
⎠

1/2

→ 0 as N →∞ , (8.1.5)

192 8. Least Square Approximation (in L2)

where

a0 = ⟨f,
1√
2π
⟩ = 1√

2π
∫

π

π
f(x)dx , (8.1.6)

an = ⟨f,
1√
π
cos(nx)⟩ = 1√

π
∫

π

−π
f(x) cos(nx)dx (8.1.7)

and

bn = ⟨f,
1√
π
sin(nx)⟩ = 1√

π
∫

π

−π
f(x) sin(nx)dx (8.1.8)

for n = 1, 2, 3, . . . We write

f = a0 +
∞
∑
n=0

an cos(nx) +
∞
∑
n=0

bn sin(nx) .

This is the classical Fourier series of f . As for the complex Fourier series, the equality in
the expression above is in the sense of convergence in L2[−π,π]; namely, (8.1.5) is satisfied.
We may not have pointwise convergence for all x ∈ [a, b].

From Theorem 8.1.5, the minimum of

I(r0, r1, r2, . . . , rN , s1, s2, . . . , sN)

= ∫
π

−π
(f(x) − r0 −

N

∑
n=0

rn cos(nx) −
N

∑
n=0

sn sin(nx))
2

dx

for rn and sn in R is reached at rn = an and sn = bn defined in (8.1.6), (8.1.7) and (8.1.8). ♣
In the following section, we will only consider bases formed on polynomials.

8.2 Bases of Polynomial

For each n ∈ N, let Pn(x) =
n

∑
j=0
αn,jx

j be a polynomial of degree exactly n; namely, αn,n ≠ 0.

These polynomials can be considered as elements of L2[a, b].
We now prove that for any finite subset A of N, if ∑

n∈A
cnPn = 0 with cn ∈ R, then cn = 0

for all i. The proof is by induction on the cardinality of the set of indices A.

If A is of cardinality one, say A = {n1} ⊂ N, then c1Pn1 =
n1

∑
j=0
c1αn1,jx

j = 0 implies that

caαn1,n1 = 0 with αn1,n1 ≠ 0. Thus c1 = 0.
Our hypothesis of induction is that for any set A = {n1, n2, . . . , nk} ⊂ N of cardinality k (in

particular, nj ≠ ni for i ≠ j), we have that
k

∑
i=1
ciPni

= 0 with ci ∈ R implies that ci = 0 for all

8.2. Bases of Polynomial 193

i. Suppose that
k+1
∑
i=1
ciPni

= 0 with ci ∈ R for a set A = {n1, n2, . . . , nk, nk+1} ⊂ N of cardinality

k + 1. Let nj = max
1≤i≤k+1

{ni}. The only term of degree nj in
k+1
∑
i=1
ciPni

= 0 is cjαnj ,nj
xnj . Hence

cjαnj ,nj
xnj = 0 with αnj ,nj

≠ 0. Thus cj = 0. We therefore get
k+1
∑
i=1
i≠j

ciPni
= 0 with ci ∈ R. Since

the set of indices in this sum is of cardinality k, we get by induction that ci = 0 for all i.

We can also prove by induction on the degree that all polynomials of degree less then or
equal to k can be expressed as a linear combination of P0, P1, P2, . . . , Pk.

The result is obviously true for k = 0 because P0(x) = α0,0 ≠ 0 for all x, and every real
number can be expressed as the product of α0,0 with another real number.

We assume by induction that all polynomials of degree less then or equal to k can be
expressed as a linear combination of P0, P1, P2, . . . , Pk. Consider p, a polynomial of degree
k + 1. Suppose that c is the coefficient of xk+1 in p(x). Since p and Pk+1 are of degree k + 1,
we have that c ≠ 0 and αk+1,k+1 ≠ 0. Thus, p − (c/αk+1,k+1)Pk+1 is a polynomial of degree k.
By induction, we may write

p − c

αk+1,k+1
Pk+1 =

k

∑
j=0
cjPj

for some cj ∈ R. Hence

p =
k+1
∑
j=0
cjPj

with ck+1 = c/αk+1,k+1 and the other cj as before.

Using Stone-Weierstrass Theorem, Theorem 9.1.1, and the density of continuous functions
in L2[a, b], we may show that the set of all finite linear combinations of elements of the set
P = {Pn ∶ n ∈ N} is dense in L2[a, b]. Combined with the linear independence of P , this
shows that P is a basis of L2[a, b].
Remark 8.2.1

Amore direct proof of the linear independence of P can also be given. Suppose that
k

∑
i=1
ciPni

=

0 with ci ∈ R.
Without loss of generality, we may assume that n1 < n2 < . . . < nk. The previous equation

can be written
k

∑
i=0
(

ni

∑
j=0
ciαni,jx

j) = 0 .

If we consider only the terms in xnj , we get the following system of linear equations.

0 = ck αnk,nk
, (8.2.1)

0 = ck αnk,nk−1 + ck−1 αnk−1,nk−1 , (8.2.2)

0 = ck αnk,nk−2 + ck−1 αnk−1,nk−2 + ck−2 αnk−2,nk−2 , (8.2.3)

0 = ck αnk,nk−3 + ck−1 αnk−1,nk−3 + ck−2 αnk−2,nk−3 + ck−3 αnk−3,nk−3 , (8.2.4)

194 8. Least Square Approximation (in L2)

⋮ = ⋮
0 = ck αnk,n0 + ck−1 αnk−1,n0 + ck−2 αnk−2,n0 + . . . + c1 αn1,n0 . (8.2.5)

Using forward substitution to solve for the ci, we find that ci = 0 for all i. In other words,
since αnk,nk

≠ 0, (8.2.1) implies that ck = 0. Since ck = 0 and αnk−1,nk−1 ≠ 0, (8.2.2) implies
that ck−1 = 0. Since ck = ck−1 = 0 and αnk−2,nk−2 ≠ 0, (8.2.3) implies that ck−2 = 0. Inductively,
we get ci = 0 for all i. ♠
Remark 8.2.2
A direct proof that all polynomials of degree less then or equal to k can be expressed as
a linear combination of P0, P1, P2, . . . , Pk is as it follows. Since P0, P1, . . . , Pk are k + 1
linearly independent elements of the space of polynomials of degree less than or equal to k,
and since this space is of dimension k+1, we have that {P0, P1, . . . , Pk} is a basis of the space
of polynomials of degree less than or equal to k. ♠

The following theorem gives a simple procedure to generate families of orthogonal poly-
nomials. As shown in Question 8.2, the procedure is even simpler for families of orthonormal
polynomials.

Theorem 8.2.3

Let {P0, P1, P2, . . .} be an orthogonal set of polynomials on [a, b] with respect to a
weight function w. Moreover, suppose that Pk is of degree exactly k for all k. Then,

1. Any polynomial p(x) of degree at most n can be expressed as a linear combination

p =
n

∑
k=0

ck Pk for some constants c0, c1, . . . , cn.

2. If p is a polynomial of degree less than k, then p is orthogonal to Pk.

3. For each positive integer k, Pk has exactly k distinct real roots in]a, b[.

4. If the coefficient of xk in Pk is αk,k, then

Pk+1(x) = Ak(x −Bk)Pk(x) −CkPk−1(x)

for k ≥ 0, where

P−1 = 0 , Ak =
αk+1,k+1

αk,k

for k ≥ 0 , Bk =
∫

b

a
xP 2

k (x)w(x)dx

∫
b

a
P 2
k (x)w(x)dx

for k ≥ 0 ,

C0 = 0 and Ck =
Ak ∫

b

a
P 2
k (x)w(x)dx

Ak−1∫
b

a
P 2
k−1(x)w(x)dx

for k > 0 .

Proof.

8.2. Bases of Polynomial 195

1) We use induction on the degree of the polynomial p.

If p is of degree 0, then p(x) = b for all x, where b is a constant. Since P0 is a non-trivial
polynomial of degree 0 by assumption, P0(x) = α0,0 ≠ 0 for all x. Hence, p = a0P0 with
a0 = b/α0,0.

Assume that every polynomial of degree less than n can be expressed as a linear com-
bination of P0, P1, . . . , Pn−1. Let p be a polynomial of degree exactly n. Let b be the
coefficient of xn in p. The constant b is non-null because p is of degree exactly n. Similarly,
the coefficient αn,n of xn in Pn is non null because Pn is of degree exactly n. Hence, p−anPn

with an = b/αn,n is a polynomial of degree n − 1 that can therefore be expressed as a linear
combination of the polynomials Pi for 0 ≤ i < n by the hypothesis of induction. Namely,

p − anPn =
n−1
∑
j=0

ajPj

for some constants a0, a1, . . . , an−1. Hence,

p =
n

∑
j=0
ajPj .

2) Let p be a polynomial of degree less than k. According to (1), we can write p as a linear
combination

p =
k−1
∑
j=0
bjPj

for some constants b0, b1, . . . , bk−1. Then

∫
b

a
p(x)Pk(x)w(x)dx = ∫

b

a
(
k−1
∑
j=0
bjPj(x))Pk(x)w(x)dx =

k−1
∑
j=0
bj ∫

b

a
Pj(x)Pk(x)w(x)dx = 0

because ∫
b

a
Pj(x)Pk(x)w(x)dx = 0 for all j < k by hypothesis.

3) We note that a consequence of the Fundamental Theorem of Algebra is that Pk cannot
have more than k roots and so more than k distinct real roots in]a, b[. Suppose that Pk

change sign at r < k distinct points in]a, b[only. Let x1, x2, . . . , xr be these r distinct
points and choose x̂ ∈]a, b[such that xj < x̂ for 1 ≤ j ≤ r. Then

p(x) = Pk(x̂)(x − x1)(x − x2) . . . (x − xr)

is a polynomial of degree r < k such that p(x)Pk(x) > 0 for all x ∈]a, b[∖{x1, x2, . . . , xr}.
Hence,

∫
b

a
p(x)Pk(x)w(x)dx > 0

contradicts the orthogonality result of (2).

4) We write Pk+1(x) = AkxPk(x) + q(x), where Ak = αk+1.k+1/αk,k and q(x) is a polynomial
of degree at most k. From 1, we may write q as a linear combination

q(x) =
k

∑
j=0
bjPj

196 8. Least Square Approximation (in L2)

for some constants b0, b1, . . . , bk. Hence,

Pk+1(x) = AkxPk(x) +
k

∑
j=0
bjPj(x) . (8.2.6)

We have that

∫
b

a
Pk+1(x)Pi(x)w(x)dx = Ak ∫

b

a
xPk(x)Pi(x)w(x)dx

+
k

∑
j=0
bj ∫

b

a
Pj(x)Pi(x)w(x)dx

(8.2.7)

for all i. From (2), (8.2.7) yields

0 = bi∫
b

a
P 2
i (x)w(x)dx

for 0 ≤ i ≤ k − 2; namely,
bi = 0 , 0 ≤ i ≤ k − 2 . (8.2.8)

For i = k, (8.2.7) yields

0 = Ak ∫
b

a
xP 2

k (x)w(x)dx + bk ∫
b

a
P 2
k (x)w(x)dx .

Thus,

bk = −Ak
∫

b

a xP
2
k (x)w(x)dx

∫
b

a P
2
k (x)w(x)dx

= −AkBk . (8.2.9)

For i = k − 1, (8.2.7) yields

0 = Ak ∫
b

a
xPk(x)Pk−1(x)w(x)dx + bk−1∫

b

a
P 2
k−1(x)w(x)dx . (8.2.10)

However, from (1), we may write

xPk−1(x) −
αk−1,k−1

αk,k

Pk(x) =
k−1
∑
j=0
cjPj(x)

for some constants c0, c1, . . . , ck−1. Hence,

∫
b

a
xPk(x)Pk−1(x)w(x)dx =

αk−1,k−1

αk,k
∫

b

a
P 2
k (x)w(x)dx +

k−1
∑
j=0
cj ∫

b

a
Pj(x)Pk(x)w(x)dx

=
αk−1,k−1

αk,k
∫

b

a
P 2
k (x)w(x)dx =

1

Ak−1
∫

b

a
P 2
k (x)w(x)dx

by (2). Thus, from (8.2.10),

bk−1 = −
Ak ∫

b

a P
2
k (x)w(x)dx

Ak−1 ∫
b

a P
2
k−1(x)w(x)dx

= −Ck . (8.2.11)

Substituting (8.2.8), (8.2.9) and (8.2.11) into (8.2.6) gives (4).

8.2. Bases of Polynomial 197

Example 8.2.4
Find the first three polynomials of the orthogonal set {P0, P1, P2, . . .} if the interval is [a, b] =
[−1,1], the weight function is w(x) =

√
1 − x2, and the coefficient αk,k of xk in the polynomial

Pk is 1 for all k.

Due to our assumption on the coefficient of xi in Pi, we have that P0(x) = 1 for all x. For
the sake of the computations. we let P−1(x) = 0 for all x and C0 = 0. We have

P1 = A0(x −B0)P0 −C0P−1 ,

where A0 = α1,1/α0,0 = 1 and

B0 = ∫
1

−1 xP
2
0 (x)w(x)dx

∫
1

−1P
2
0 (x)w(x)dx

= ∫
1

−1 x
√
1 − x2 dx

∫
1

−1
√
1 − x2 dx

= 0 .

The integral on the numerator is zero because it is the integral of an odd function on the
symmetric interval [−1,1]. To compute the integral in the denominator, one may use the
trigonometric substitution x = sin(θ) for −π/2 ≤ θ ≤ π/2 or note that the integral is equal to
π/2, half the area of the disk of radius 1. Thus,

P1(x) = x

for all x.

We have
P2 = A1(x −B1)P1 −C1P0 ,

where A1 = α2,2/α1,1 = 1,

B1 = ∫
1

−1 xP
2
1 (x)w(x)dx

∫
1

−1P
2
1 (x)w(x)dx

= ∫
1

−1 x
3
√
1 − x2 dx

∫
1

−1 x
2
√
1 − x2 dx

= 0

and

C1 =
A1 ∫

1

−1P
2
1 (x)w(x)dx

A0 ∫
1

−1P
2
0 (x)w(x)dx

= ∫
1

−1 x
2
√
1 − x2 dx

∫
1

−1
√
1 − x2 dx

= 1

4
.

Again, the integral on the numerator of B1 is zero because it is the integral of an odd
function on the symmetric interval [−1,1]. To compute the other integrals, the trigonometric
substitution x = sin(θ) for −π/2 ≤ θ ≤ π/2 may be used. Hence,

P2(x) = x2 −
1

4

for all x. ♣
Example 8.2.5 (Normalized Legendre Polynomials)
If, in the fourth item of Theorem 8.2.3, we take a = −1, b = 1, w(x) = 1, α0,0 = 1 and

αk+1,k+1 =
2k + 1
k + 1

αk,k

198 8. Least Square Approximation (in L2)

for k ≥ 0, we get P0(x) = 1, P1(x) = x, P2(x) =
3

2
(x2 − 1

3
), P3(x) =

5

2
(x3 − 3

5
x), and in

general

Pk+1(x) =
1

k + 1
((2k + 1)xPk(x) − kPk−1(x))

for k = 1, 2, 3, . . . These polynomials are said to be normalized because Pk(1) = 1 for all i.

The usual approach to derive the recursion relation above is to show that the Legendre
polynomial Pn is the only bounded solution of the second order differential equation

(1 − x2)y′′ − 2xy′ + n(n − 1)y = 0 , −1 < x < 1 .

One can then show that

Pn(x) =
1

n! 2n
dn

dxn
(x2 − 1)n

for n ≥ 0. A good reference on the subject of Legendre polynomials is [29]. ♣
Example 8.2.6 (Normalized Chebyshev Polynomials)
If, in the fourth item of Theorem 8.2.3, we take a = −1, b = 1, w(x) = (1 − x2)−1/2, α0,0 = 1
and αk,k = 2k−1 for k ≥ 1, we get P0(x) = 1, P1(x) = x, P2(x) = 2x2 − 1, P3(x) = 4x3 − 3x, and
in general

Pk+1(x) = 2xPk(x) − Pk−1(x)

for k = 1, 2, 3, . . .
As for the Legendre polynomials, the usual approach to derive the recursion relation above

is to show that the Chebyshev polynomial Pn is the only bounded solution of the second
order differential equation

(1 − x2)y′′ − xy′ + n2y = 0 , −1 < x < 1 .

One can then show that
Pn(x) = cos(narccos(x))

for n ≥ 0. We prove this result in Section 9.2. A good reference on the subject of Chebyshev
polynomials is [29]. ♣
Example 8.2.7
There are many more sets of orthogonal polynomials.

1. If, in the fourth item of Theorem 8.2.3, we take a = −1, b = 1 and w(x) = (1−x)α(1+x)β
with α,β > −1, we get the Jacobi polynomials P

[α,β]
k for k = 0, 1, 2, . . . For each value

of α and β, we get a different sets of orthogonal polynomials. The sets of orthogonal
polynomials that we have seen in the two previous examples are associated to particular
values of α and β. For α = β = 0, we have the Legendre polynomials. For α = β = −1/2,
we have the Chebyshev polynomials.

2. If, in the fourth item of Theorem 8.2.3, we take a = 0, b = ∞ and w(t) = xαe−x with

α > −1, we get the Laguerre polynomials l
[α]
k .

8.3. Orthogonal Polynomials and Least Square Approximation 199

3. If, in the fourth item of Theorem 8.2.3, we take a = −∞, b = +∞ and w(x) = e−x2
, we

get the Hermite polynomials Hk.

Note that these orthogonal polynomials are not normalized.

As we mentioned before for the Legendre and Chebyshev polynomials, These classical
sets of orthogonal polynomials are generally introduced when studying their associated dif-
ferential equations. They represent polynomial solutions to these differential equations. The
recurrence formulae and many other properties of these orthogonal polynomials are more
naturally deduced using their presentation in the context of differential equations. ♣

8.3 Orthogonal Polynomials and Least Square Approx-

imation

For n ∈ N, let Pn ∶ R → R be polynomials of degree exactly n. These polynomials can be
considered as elements of L2[a, b].

We want to find the “best approximation” of f ∈ L2[a, b] by a finite linear combination of
the polynomials Pn. More precisely, let S = {Pn ∶ 0 ≤ n ≤ k}. We are looking for real values
a0, a1, a2, . . . , ak that minimize

I(a0, a1, . . . , ak) = ∥f −
k

∑
i=0
aiPi∥

2

2

= ∫
b

a
(f(x) −

k

∑
i=0
aiPi(x))

2

w(x)dx .

The good old calculus will help us to solve this problem, If I has a minimum at a =
(a0 a1 . . . ak)

⊺
, then ∇I(a) = 0. Assuming that we may differentiate under the inte-

gral sign (e.g. if f is continuous on the close interval [a, b]), we get

0 = −2aj ∫
b

a
(f(x) −

k

∑
i=0
aiPi(x))Pj(x)w(x)dx

for 0 ≤ j ≤ k. These equations yield the system of linear equations

Da = c , (8.3.1)

where

dj,i = ∫
b

a
Pi(x)Pj(x)w(x)dx

for 0 ≤ i, j ≤ k and

cj = ∫
b

a
f(x)Pj(x)w(x)dx

for 0 ≤ j ≤ k. There are k + 1 equations and k + 1 unknowns.

For general polynomials Pn, this system may be hard to solve. For instance, suppose that
the weight function is w(x) ≡ 1 and the polynomials are Pn(x) = xn for all n ∈ N. Then

dj,i = ∫
b

a
xixj dx = b

i+j+1 − ai+j+1
i + j + 1

200 8. Least Square Approximation (in L2)

for i, j = 0, 1, 2, . . . , k. The matrix D in (8.3.1) is then a Hilbert matrix. This type of
matrices is ill-conditioned. In particular, no pivoting technique can be used to get a good
approximation of the solution if the matrix is large. For this reason, we must choose a good
set S = {Pn ∶ n ∈ N} of polynomials, where we still have that Pn is a polynomial of degree
exactly n for n ∈ N. The obvious choice is an orthogonal (or even an orthonormal) set S of
polynomials. With this choice, D in (8.3.1) is a diagonal matrix and it is easy to find the
solution a of (8.3.1). More precisely,

ai = ∫
b

a f(x)Pi(x)w(x)dx

∫
b

a P
2
i (x)w(x)dx

for 0 ≤ i ≤ k as predicted by Theorem 8.1.5.

8.4 Exercises

Question 8.1
Suppose that w ∶ [a, b] → [0,∞[is a weight function. Without referring to Theorem 8.2.3,
prove that we cannot have two distinct orthogonal families of monic polynomials {Pk}∞k=0
such that Pk is of degree k and

⟨p,Pk⟩ = ∫
b

a
p(x)Pk(x)w(x)dx = 0

for all polynomial p of degree less than k. Recall that a monic polynomial p(x) of degree n
is a polynomial where the coefficient of the term in xn is 1.

Question 8.2
Let {P0, P1, P2, . . .} be an orthonornal set of polynomials on [a, b] with respect to a weight

function w. Suppose that Pk(x) =
k

∑
j=0
ak,jx

j with ak,k ≠ 0 for all k. Prove that

Pk+1(x) = Ak(x −Bk)Pk(x) −CkPk−1(x) (8.4.1)

for k = 0, 1, 2, . . . , where P−1 = 0, Ak =
ak+1,k+1
ak,k

, Bk =
ak,k−1
ak,k

−
ak+1,k
ak+1,k+1

and Ck =
ak+1,k+1ak−1,k−1

a2k,k
for k ≥ 0 if we set a−1,−1 = a0,−1 = 0.
Question 8.3
Prove that the normalized Legendre polynomial Pk(x) satisfies

∫
1

−1
∣Pk(x)∣2 dx =

2

2k + 1
.

Chapter 9

Uniform Approximation

Suppose that f ∶ R → R is a sufficiently differential function. The Taylor expansion of the
function f at a point c ∈ R is given by

f(x) = pn(x) + rn(x) ,

where

pn(x) = f(c) + f ′(c)(x − c) +
f ′(c)
2!
(x − c)2 + . . . + f

(n)(c)
n!

(x − c)n

and

rn(x) =
f (n+1)(ξ(x, c))
(n + 1)!

(x − c)n+1

for some ξ(x, c) between x and c. If c ∈ [a, b] and ∣f (n+1)(x)∣ <M for [a ≤ x ≤ b, then we get
that

sup
a≤x≤b
∣f(x) − pn(x)∣ ≤

M

(n − 1)!
(b − a)n+1 .

This is an uniform approximation of f by a polynomial pn. If M is small and b − a ≤ 1,
then p can be a good uniform approximation of f . So, instead of evaluating f(x), it may
be simpler and sufficiently accurate to evaluate pn(x). Unfortunately, in practice, it may be
very hard to compute the derivatives of f and to find an upper bound on ∣fn+1∣. Moreover,
the interval [a, b] may be of length greater than 1 and so (b − a)n+1 →∞ as n→∞.

Therefore, it is still preferable to use interpolation polynomials as presented in Chapter 6
to approximate f . However, among all the possible interpolating polynomials, it is possible
to choose the points of interpolation to minimize the degree of the interpolating polynomial
and the error. This is the major result of this chapter that we present in Section 9.2.1 below.

9.1 Stone-Weierstrass Theorem

The fundamental theorem in this chapter is the following.

201

202 9. Uniform Approximation

Theorem 9.1.1 (Stone-Weierstrass)

Given a continuous function f ∶ [a, b] → C, there exists a sequence of polynomials
{pn}∞n=0 over C such that

max
a≤x≤b
∣f(x) − pn(x)∣→ 0 as n→∞ .

If f ∶ [a, b]→ R, the polynomials can be assumed to be over R.

Basically, the theorem states that for any continuous function f ∶ [a, b]→ C, we can find a
sequence of polynomials converging to f uniformly on [a, b]. We will not prove this theorem.
There exist many proofs of it. The reader can find one of them in any good analysis textbook.

9.2 Chebyshev Polynomials

We have seen in Example 8.2.6 that the Chebyshev polynomials were defined by

Tn+1(x) = 2xTn(x) − Tn−1(x)

for n = 1, 2, 3, . . . with T0(x) = 1 and T1(x) = x. The tradition is to denote the Chebyshev
polynomials with the letter T instead of P because the translation from Russian to French
of Chebyshev is Tchébyshev.

There is an equivalent way to define the Chebyshev polynomials from which it is easier
to deduce some of the properties of the Chebyshev polynomials.

The Chebyshev polynomial Tn is also defined by

Tn(x) = cos(narccos(x)) , −1 ≤ x ≤ 1 . (9.2.1)

To verify that this is true, we note that T0(x) = cos(0) = 1 and T1(x) = cos(arccos(x)) = x
for x ∈ [−1,1]. Moreoevr, it follows from the addition formulae for the cosine function that

cos((n + 1)θ) = cos(nθ + θ) = cos(nθ) cos(θ) − sin(nθ) sin(θ)

and

cos((n − 1)θ) = cos(nθ − θ) = cos(nθ) cos(θ) + sin(nθ) sin(θ) .

Hence
cos((n + 1)θ) + cos((n − 1)θ) = 2 cos(nθ) cos(θ) .

If we substitute θ = arccos(x) in this last equation, we get the recurrence relation

Tn+1(x) = 2xTn(x) − Tn−1(x) (9.2.2)

for n = 1, 2, 3, . . . used to defined the Chebyshev polynomials. Thus (9.2.1) is another way
to define the Chebyshev polynomials.

9.2. Chebyshev Polynomials 203

We know from Theorem 8.2.3 that the Chebyshev polynomials are orthogonal on L2[−1,1],
where the weight function is w(x) = 1√

1 − x2
. This can be directly proved from (9.2.1). Using

the substitution θ = arccos(x) for −1 < x < 1 and dθ = −1√
1 − x2

dx, we get

∫
1

−1

Ti(x)Tj(x)√
1 − x2

dx = ∫
1

−1

cos(iarccos(x)) cos(j arccos(x))√
1 − x2

dx = −∫
0

π
cos(iθ) cos(jθ)dθ

= ∫
π

0
(1
2
cos((i + j)θ) + 1

2
cos((i − j)θ)) dθ

= (sin((i + j)θ)
2(i + j)

+ sin((i − j)θ)
2(i − j)

) ∣
π

θ=0
= 0

for i ≠ j. The Chebyshev polynomials are not of norm one because, using the substitution
for the previous integral, we have

∫
1

−1

T 2
i (x)√
1 − x2

dx = ∫
1

−1

cos2(iarccos(x))√
1 − x2

dx = −∫
0

π
cos2(iθ)dθ

= ∫
π

0

1

2
(1 + cos(2iθ)) dθ = 1

2
(θ − 1

2i
sin(2iθ)) ∣

π

θ=0
= π
2

for i ≠ 0, and

∫
1

−1

T 2
0 (x)√
1 − x2

dx = ∫
1

−1

1√
1 − x2

dx = −∫
0

π
dx = ∫

π

0
dx = π .

Proposition 9.2.1

For n ≥ 1, Tn has n distinct roots and they are in the interval [−1,1]. These roots are

ri = cos(
(2i − 1)π

2n
) , i = 1,2,3, . . . , n .

Proof.
It is easy to verify by substituting in (9.2.1) that the ri’s are n distinct roots of Tn. The ri’s
are in the interval [−1,1] since −1 < cos(θ) < 1 for all θ ≠ nπ. Since Tn is a polynomial of
degree n, it has no more roots according to the fundamental theorem of algebra.

Proposition 9.2.2

For n > 0, Tn reaches its absolute extrema in the interval [−1,1] at the points

si = cos(
iπ

n
) , i = 0,1,2, . . . , n .

Moreover, Tn(si) = (−1)i.

204 9. Uniform Approximation

Proof.

We have T ′n(x) =
n sin(narccos(x))√

1 − x2
. Since T ′n(si) = 0 for 0 < i < n, the si’s for 0 < i < n are

critical points of Tn. Since T ′n is a polynomial of degree n − 1, it has at most n − 1 roots.
Thus Tn has exactly n − 1 critical points in] − 1,1[given by si for 0 < i < n. These critical
points are the only points in the interval] − 1,1[where Tn reaches its extrema. A direct
computation shows that Tn(si) = cos(iπ) = (−1)i.

The other two possible points where Tn may reach its extrema are at the endpoints −1
and 1. Since Tn(−1) = cos(nπ) = (−1)n and Tn(1) = cos(0) = 1, the endpoints are also two
points where Tn reaches its extrema.

Definition 9.2.3

The monic Chebyshev polynomials T̃n for n ≥ 0 are defined by T̃0(x) = 1 and

T̃n(x) =
1

2n−1
Tn(x) for n > 0.

Remark 9.2.4

The recurrence relation (9.2.2) becomes T̃2(x) = xT̃1(x) −
1

2
T̃0(x) and T̃n+1(x) = xT̃n(x) −

1

4
T̃n−1(x) for n > 1. Using these relations, it follows by induction on the degree of the

polynomials that the coefficient of xn in T̃n(x) is 1, hence the name monic given to the
polynomials T̃n.

The roots of T̃n are the roots ri of Tn. T̃n and Tn reach their extrema at the same points;

namely, at si for 0 ≤ i ≤ n. However, T̃n(si) =
(−1)i
2n−1

for 0 ≤ i ≤ n and n > 0. ♠

Proposition 9.2.5

Let Π̃n be the set of all monic polynomials of degree exactly n. We have

1

2n−1
= max
−1≤x≤1

∣T̃n(x)∣ ≤ max
−1≤x≤1

∣p(x)∣ , p ∈ Π̃n .

We have equality for p = T̃n.

Proof.
Suppose that p ∈ Π̃n satisfies

max
−1≤x≤1

∣p(x)∣ ≤ 1

2n−1
. (9.2.3)

Since p and T̃n are both monic of degree n, we have that q = T̃n − p is a polynomial of degree
at most n − 1. Moreover, for 0 ≤ i ≤ n, we have

q(si) =
(−1)i
2n−1

− p(si) ≤ 0

9.2. Chebyshev Polynomials 205

if i is odd and

q(si) =
(−1)i
2n−1

− p(si) ≥ 0

if i is even because of (9.2.3). By the Intermediate Value Theorem, q has at least one root
between si and si+1 for 0 ≤ i < n. Hence, q is a polynomial of degree n − 1 with at least n
roots. The only possibility is if q(x) = 0 for all x ∈ [−1,1].

In Item 3 of Remark 6.2.16, we said that Chebyshev points adjusted to the interval [a, b]
were the “best” choice of interpolatory points for Lagrange interpolation on the interval
[a, b]. We now justify this statement.

Without loss of generality, we may assume that [a, b] = [−1,1]. If q is the Lagrange
interpolating polynomial of a sufficiently differentiable function f on the interval [−1,1] and
0 ≤ x0 < x1 < . . . < xn ≤ 1 are the interpolatory points, then the error is given by

∣f(x) − q(x)∣ = 1

(n + 1)!
f (n+1)(ξ(x))

n

∏
i=0
(x − xi)

for −1 ≤ x ≤ 1, where ξ ∶ [−1,1] → [−1,1]. If we assume that f (n+1) is (almost) constant on

the interval [−1,1], then we have to minimize p(x) =
n

∏
i=0
(x − xi) for −1 ≤ x ≤ 1 to minimize

the error. Note that p is a monic polynomial of degree n + 1, hence

1

2n
= max
−1≤x≤1

∣T̃n+1(x)∣ ≤ max
−1≤x≤1

∣p(x)∣ , p ∈ Π̃n+1 ,

according to the previous proposition. We have equality when p = T̃n+1; namely, when

xi = cos(
(2i − 1)π
2(n + 1)

) for 1 ≤ i ≤ n+1. These are the roots of Tn+1 which were called Chebychev

points in Remark 6.2.16.

Proposition 9.2.6

Let f be a sufficiently differentiable function f defined on the interval [−1,1]. If q is the

Lagrange interpolating polynomial of f at the Chebyshev points xi = cos(
(2i − 1)π
2(n + 1)

)

for 1 ≤ i ≤ n + 1, then

max
−1≤x≤1

∣f(x) − q(x)∣ ≤ 1

2n(n + 1)!
max
−1≤x≤1

∣f (n+1)(x)∣ .

Proof.
We have

f(x) − q(x) = 1

(n + 1)!
f (n+1)(ξ(x))

n

∏
i=0
(x − xi) =

1

(n + 1)!
f (n+1)(ξ(x))T̃n+1(x) .

206 9. Uniform Approximation

Hence,

max
−1≤x≤1

∣f(x) − q(x)∣ = 1

(n + 1)!
max
−1≤x≤1

∣f (n+1)(ξ(x))T̃n+1(x)∣

≤ 1

(n + 1)!
max
−1≤x≤1

∣f (n+1)(ξ(x))∣ max
−1≤x≤1

∣T̃n+1(x)∣

= 1

2n(n + 1)!
max
−1≤x≤1

∣f (n+1)(ξ(x))∣ ,

where the last equality comes from Proposition 9.2.5.

9.2.1 How to reduce the Degree of an Interpolating Polynomial
with a Minimal Loss of Accuracy

Suppose that q(x) =
n

∑
j=0
ajx

j, where an ≠ 0, is an interpolating polynomial of a fonction f

on the interval [−1,1]. The goal is to find a polynomial p of degree less than n such that
max
−1≤x≤1

∣p(x) − q(x)∣ is as small as possible. If p is of degree less than n, then (q − p)/an is a

monic polynomial of degree n. Hence,

max
−1≤x≤1

∣q(x) − p(x)∣ = ∣an∣ max
−1≤x≤1

∣q(x) − p(x)
an

∣ ≥ ∣an∣ max
−1≤x≤1

∣T̃n(x)∣ =
∣an∣
2n−1

.

We have equality when
q(x) − p(x)

an
= T̃n(x). We should therefore take p = q −anT̃n. For this

choice,

max
−1≤x≤1

∣q(x) − p(x)∣ = ∣an∣
2n−1

.

9.3 Exercises

Question 9.1
Consider f(x) = x − sin(x). Find a small value of n such that the truncation error of the
Taylor polynomial pn(x) of degree n of f about the origin for does not exceeding 10−9 for
∣x∣ < 1.
Question 9.2

Consider f(x) = 1

1 − x
. Give the Taylor polynomial pn of degree n of f about the origin as

well as the truncation formula for this polynomial. Find a small value of n such that pn
uniformly approximates f to within 10−6 on the interval [0,1/4].
Question 9.3
Find the Taylor polynomial p2(x) of degree two about the origin for the function f(x) =
ex cos(x). Approximate f(0.5) using p2(x). Find an upper bound on the error ∣f(0,5) −
p2(0.5)∣ using the truncation formula for the Taylor polynomial of degree two. Compare this
bound with the real error.

Chapter 10

Least Square Approximation (in ℓ2)

Consider the data provided in Figure 10.1

It is not reasonable to use polynomial interpolation at all these points to describe their
distribution. There seem to be a pattern in the distribution of these points that polynomial
interpolation will completely miss. Instead, it makes more sense to find a curve that “best
fit” the data. This curve may not intersect any of the given points but may better describe
the distribution of these points; in particular if we want to extrapolate from this set of data.

(x3, y3)
(x1, y1)

y
(x10, y10)

(x2, y2)

x

Figure 10.1: Least square approximation of a set of data by a straight line

If we assume that the data {(xi, yi) ∶ i = 1,2, . . . , n} represent a line as in Figure 10.1, the
best known methods to fit a line y = p(x) = ax+ b through this set of points are the following
methods.

Minimax : Find a and b that minimize I(a, b) =max
1≤i≤n
∣yi − (axi + b)∣.

Absolute Deviation : Find a and b that minimize I(a, b) =
n

∑
i=1
∣yi − (axi + b)∣.

Least Square : Find a and b that minimize I(a, b) =
n

∑
i=1
(yi − (axi + b))2.

207

208 10. Least Square Approximation (in ℓ2)

Instead of a straight line, we may have assumed that the data in Figure 10.1 represent a
parabola y = p(x) = ax2 + bx+ c or some other functions. We will say more on this later. We
have chosen a straight line to illustrate the discrete least square method. The least square
method is the most convenient method for the following reasons.

1. We can use elementary calculus to determine the values of a and b that minimize I(a, b)
because I is a differentiable function. I is not differentiable everywhere for the other
two methods.

2. The method does not assign too much weight to the few points which are far away
(vertically) from the straight line that we try to fit.

3. The method is statistically significant.

4. The method is theoretically significant. It is closely related to the notion of L2 approx-
imation that we will study in the next sections.

10.1 Linear Modeling

Let

I(a, b) =
n

∑
i=1
(yi − (axi + b))2 .

To minimize I, we first find the critical points of I.

∂I

∂a
= −2

n

∑
i=1
xi (yi − (axi + b)) = 0

and

∂I

∂b
= −2

n

∑
i=1
(yi − (axi + b)) = 0 .

This yields the system of linear equation

⎛
⎜⎜⎜
⎝

n

∑
i=1
x2i

n

∑
i=1
xi

n

∑
i=1
xi n

⎞
⎟⎟⎟
⎠
(a
b
) =
⎛
⎜⎜⎜
⎝

n

∑
i=1
xiyi

n

∑
i=1
yi

⎞
⎟⎟⎟
⎠
.

The solution of this system is

a =
n

n

∑
i=1
xiyi − (

n

∑
i=1
xi)(

n

∑
i=1
yi)

n(
n

∑
i=1
x2i) − (

n

∑
i=1
xi)

2

10.2. Nonlinear Modelling 209

and

b =
(

n

∑
i=1
x2i)(

n

∑
i=1
yi) − (

n

∑
i=1
xiyi)(

n

∑
i=1
xi)

n(
n

∑
i=1
x2i) − (

n

∑
i=1
xi)

2 .

Since I ∶ R2 → [0,∞[is a quadratic polynomial function, its only critical point must be a
local and absolute minimum.

10.2 Nonlinear Modelling

We will just present a couple of examples of nonlinear modelling to give a feeling of the
subject. We do not plan to investigate this topic very deeply.

If instead of a line, we assume that the data {(xi, yi) ∶ i = 1,2, . . . , n} represent a polyno-

mial p(x) =
m

∑
j=0
ajx

j, then we must minimize

I(a) =
n

∑
i=1
(yi − p(xi))2 =

n

∑
i=1
y2i − 2

m

∑
j=0
aj (

n

∑
i=1
yix

j
i) +

m

∑
j1=0

m

∑
j2=0

aj1aj2 (
n

∑
i=1
xj1+j2i) ,

where a = (a0 a1 . . . an)
⊺
. The critical points are given by

∂I

∂ak
= −2

n

∑
i=1
yix

k
i + 2

m

∑
j=0
aj (

n

∑
i=1
xj+ki) = 0 for k = 0,1,2, . . . ,m .

This yields the system of linear equations Ha = b, where

hk,j =
n

∑
i=1
xj+ki and bk =

n

∑
i=1
yix

k
i for k, j = 0,1,2, . . . ,m .

This is a system of linear equations with m+ 1 equations and m+ 1 unknowns. This system
has always a unique solution because the matrix H is a Hilbert matrix.

As a final example, suppose that the data {(xi, yi) ∶ i = 1,2, . . . , n} represent an exponen-
tial curve p(x) = beax (or p(x) = bxa = bea ln(x)). In theory, we have to minimize

I(a, b) =
n

∑
i=1
(yi − beaxi)2 .

However, this is not an easy function to minimize exactly or numerically (the reader should
try to do it). So, instead, we minimize

J(a, b) =
n

∑
i=1
(ln(yi) − ln (beaxi))2 =

n

∑
i=1
(ln(yi) − ln(b) − axi)2 .

210 10. Least Square Approximation (in ℓ2)

The unique critical point of J is given by

a =
n

n

∑
i=1
xi ln(yi) − (

n

∑
i=1
xi)(

n

∑
i=1

ln(yi))

n(
n

∑
i=1
x2i) − (

n

∑
i=1
xi)

2

and

ln(b) =
(

n

∑
i=1
x2i)(

n

∑
i=1

ln(yi)) − (
n

∑
i=1
xi ln(yi))(

n

∑
i=1
xi)

n(
n

∑
i=1
x2i) − (

n

∑
i=1
xi)

2 .

These values of a and b are not the values of a and b that minimize I. Thus, y = beax may
not be a “best fit” for the set of data as we will expect with the least square method.

10.3 Trigonometric Polynomial Approximation (Real

Case)

Suppose that {(xn, yn) ∶ n = 0,1,2, . . . ,2N − 1} are 2N data points, where xn =
nπ

N
for n = 0,

1, 2,. . . , 2N −1. We suppose that these data come from (the approximation of) a 2π-periodic
function f ∶ R→ R; namely, yn = f(xn) for all n.

Our goal is to find the coefficients a0, a1, . . . , aK , b1, b2, . . . , bK of the trigonometric
polynomial

p(x) = a0 +
K

∑
k=1

ak cos(kx) +
K

∑
k=1

bk sin(kx) (10.3.1)

that minimizes

I(a0, a1, . . . , aK , b1, b2, . . . , bK) =
2N−1
∑
n=0
(yn − p(xn))2 .

We assume that K ≤ N . The main goal of this section is to efficiently generalize the method
of least square approximation presented in Section 10.1. For that, we need a couple of results
about the trigonometric polynomial given in (10.3.1).

Lemma 10.3.1

Assume that r ∈ Z. If r is not a multiple of 2N , then

2N−1
∑
n=0

cos(rxn) =
2N−1
∑
n=0

sin(rxn) = 0 . (10.3.2)

10.3. Trigonometric Polynomial Approximation (Real Case) 211

Moreover, if r is not a multiple of N , then

2N−1
∑
n=0

cos2(rxn) =
2N−1
∑
n=0

sin2(rxn) = N . (10.3.3)

Proof.
Using complex notation, we have

2N−1
∑
n=0

cos(rxn) + i
2N−1
∑
n=0

sin(rxn) =
2N−1
∑
n=0

eirxn =
2N−1
∑
n=0

e(rnπ/N)i =
⎛
⎝
1 − (e(rπ/N)i)2N

1 − e(rπ/N)i
⎞
⎠
= 0

because (e(rπ/N)i)2N = e2rπi = 1 whatever r, and e(rπ/N)i ≠ 1 since r is not a multiple of 2N .
Thus (10.3.2) follows from setting the real and imaginary parts of the right hand side of the
previous relation to 0.

If r is not a multiple of N , then 2r is not a multiple of 2N and it follows from (10.3.2)

that
2N−1
∑
n=0

cos(2rxn) = 0. Hence

2N−1
∑
n=0

cos2(rxn) =
2N−1
∑
n=0

1

2
(1 + cos(2rxn)) =

1

2

2N−1
∑
n=0

1 + 1

2

2N−1
∑
n=0

cos(2rxn) = N .

A similar proof gives
2N−1
∑
n=0

sin2(rxn) = 1.

Proposition 10.3.2

Suppose that K ≤ N . Let SK = {ϕk}2Kk=0, where ϕ0(x) = 1/2, ϕ2k(x) = cos(kx) and
ϕ2k−1(x) = sin(kx) for k = 1, 2, . . . , K. The set SK is an orthogonal set of functions
with respect to the pseudo scalar product

⟪f, g⟫ =
2N−1
∑
n=0

f(xn)g(xn) , f, g ∶ [0,2π[→ R . (10.3.4)

Namely, ⟪ϕk, ϕj⟫ = 0 for k ≠ j.

Remark 10.3.3
We call (10.3.4) a pseudo scalar product because ⟪f, f⟫ = 0 implies only that f(xn) = 0
for 0 ≤ n < 2N . We do not necessarily get f(x) = 0 for all x ∈ [0,2π[. All the other properties
for a scalar product are satisfied by (10.3.4). We could consider that (10.3.4) defines a scalar
product if we consider only functions defined on the set {x0, x1, . . . , x2N−1}. ♠

212 10. Least Square Approximation (in ℓ2)

Proof.
Using basic trigonometric identities and (10.3.2), we get

⟪ϕ2j, ϕ2k⟫ =
2N−1
∑
n=0

cos(jxn) cos(kxn) =
2N−1
∑
n=0

1

2
(cos((j + k)xn) + cos((j − k)xn))

= 1

2

2N−1
∑
n=0

cos((j + k)xn) +
1

2

2N−1
∑
n=0

cos((j − k)xn) = 0

for k ≠ j and 0 < k, j ≤ K because 0 < ∣j + k∣ < 2K and 0 < ∣j − k∣ < 2K; so neither j + k nor
j − k is a multiple of 2N .

Similarly,

⟪ϕ2j−1, ϕ2k−1⟫ =
2N−1
∑
n=0

sin(jxn) sin(kxn) = 0

for k ≠ j and 0 < k, j ≤K, and

⟪ϕ2j, ϕ2k−1⟫ =
2N−1
∑
n=0

cos(jxn) sin(kxn) = 0

for 0 < k, j ≤K. Finally,

⟪ϕ0, ϕ2j⟫ =
2N−1
∑
n=0

1

2
cos(jxn) = 0 and ⟪ϕ0, ϕ2j−1⟫ =

2N−1
∑
n=0

1

2
sin(jxn) = 0

according to (10.3.2).

We may now give the formulae to compute the values of ak for 0 ≤ k ≤ K and bk for
1 ≤ k ≤K that minimize I(a0, a1, . . . , aK , b1, b2, . . . , bK).

Theorem 10.3.4

Suppose that K ≤ N . The values of the coefficients a0, a1, . . . , aK , b1, b2, . . . , bK of
the trigonometric polynomial p defined in (10.3.1) that minimizes

I(a0, a1, . . . , aK , b1, b2, . . . , bK) =
2N−1
∑
n=0
(yn − p(xn))2

are given by

a0 =
1

2N

2N−1
∑
n=0

yn , ak =
1

N

2N−1
∑
n=0

yn cos(kxn) and bk =
1

N

2N−1
∑
n=0

yn sin(kxn) (10.3.5)

for k = 1, 2, . . . , K.

Proof.
The idea of the proof is not profound. We just have to find the critical points of I. We get
from

∂I

∂bk
= −2

2N−1
∑
n=0
(yn − p(xn)) sin(kxn) = 0

10.3. Trigonometric Polynomial Approximation (Real Case) 213

that

2N−1
∑
n=0

yn sin(kxn) = a0
2N−1
∑
n=0

sin(kxn) +
K

∑
j=0
aj (

2N−1
∑
n=0

cos(jxn) sin(kxn))

+
K

∑
j=0
bj (

2N−1
∑
n=0

sin(jxn) sin(kxn)) .

Using (10.3.2) and (10.3.3) of Proposition 10.3.2, we can simplify this expression to get

2N−1
∑
n=0

yn sin(kxn) = bk
2N−1
∑
n=0

sin2(kxn) = Nbk .

Solving for bk gives the formula in (10.3.5). A very similar reasoning yields the formula for
ak in (10.3.5). For a0, we have

∂I

∂a0
= −2

2N−1
∑
n=0
(yn − p(xn)) = 0 .

Thus

2N−1
∑
n=0

yn = a0
2N−1
∑
n=0

1 +
K

∑
k=0

ak (
2N−1
∑
n=0

cos(kxn)) +
K

∑
k=0

bk (
2N−1
∑
n=0

sin(kxn)) = 2Na0 ,

where we have used (10.3.2) to get the last equality.

Finally, since I ∶ R2N+1 → [0,∞[is a quadratic polynomial function with a single critical
point, this critical point is a local and absolute minimum.

Remark 10.3.5
If we use yn = f(xn) for all n, we get from Theorem 10.3.4 that

ak =
⟪f(x), cos(kx)⟫
⟪cos(kx), cos(kx)⟫

= (
2N−1
∑
n=0

f(xn) cos(kxn))/(
2N−1
∑
n=0

cos2(kxn))

for k = 0, 1, 2, . . . , K and

bk =
⟪f(x), sin(kx)⟫
⟪sin(kx), sin(kx)⟫

== (
2N−1
∑
n=0

f(xn) sin(kxn))/(
2N−1
∑
n=0

sin2(kxn))

for k = 1, 2, . . . , K. ♠
Remark 10.3.6
It was shown in Example 8.1.7 of Chapter 8 that the trigonometric polynomials defined
in Proposition 10.3.2 form an orthogonal set of functions in the space of square integrable
functions on the interval [0,2π], where the scalar product is defined by the integral ⟨f, g⟩ =

∫
2π

0
f(x)g(x)dx for f and g two square integrable functions. In the space of square in-

tegrable functions, the least square problem is to find a0, a1, . . . , aK , b1, b2, . . . , bK that

214 10. Least Square Approximation (in ℓ2)

minimize I(a0, . . . , bK) = ∫
π

−π
(f(x) − p(x))2 dx, where p is defined in (10.3.1). The values of

ak and bk that minimize I are

a0 =
1

2π ∫
2π

0
f(x)dx , ak =

1

π ∫
2π

0
f(x) cos(kx)dx and bk =

1

π ∫
2π

0
f(x) sin(kx)dx

for k = 1, 2, . . . , K. These coefficients can also be expressed as

ak =
⟨f(x), cos(kx)⟩
⟨cos(kx), cos(kx)⟩

= (∫
2π

0
f(x) cos(kx)dx)/(∫

2π

0
cos2(kx)dx)

for k = 0, 1, 2, . . . , K and

bk =
⟨f(x), sin(kx)⟩
⟨sin(kx), sin(kx)⟩

== (∫
2π

0
f(x) sin(kx)dx)/(∫

2π

0
sin2(kx)dx)

for k = 1, 2, . . . , K.

This information is not needed in this section but shows the similarities between the
discrete least square method and the least square method in the space of square integrable
functions studied in Chapter 8. ♠

10.4 Trigonometric Polynomial Approximation (Com-

plex Case)

Instead of limiting the theory to 2π-periodic real value functions as we have done in the
previous section, we now consider 2π-periodic complex valued functions. In the context of
complex valued functions, the complex trigonometric polynomials are finite linear combina-
tions of ekxi for k ∈ Z, where i is the complex number satisfying i2 = −1. In particular, we
will consider trigonometric polynomials of the form

p(x) =
K

∑
k=−K

rke
kxi (10.4.1)

for rk ∈ C.

Suppose that {(xn, yn) ∶ n = 0,1,2, . . . ,N − 1} areN data points, where xn =
2nπ

N
for n = 0,

1, 2,. . . , N − 1.
We suppose that these data comes from (the approximation of) a 2π-periodic function

f ∶ R → C; namely, yn = f(xn) for all n. Unlike the least square for real trigonometric
polynomials of the previous section, we now accept an odd number of data points.

The least square method in the present context is to find the coefficients rk in (10.4.1)
that minimize

I(r−K , r−K+1, . . . , rK) =
N−1
∑
n=0
∣yn − p(xn)∣2 . (10.4.2)

10.4. Trigonometric Polynomial Approximation (Complex Case) 215

The points xn are called sampling points. The values f(xn) are called the sampling
values. 2π/N is the sampling interval and N/(2π) is the sampling frequency.

In the context of complex valued functions, the pseudo scalar product (10.3.4) becomes

⟪f, g⟫ =
N−1
∑
n=0

f(xn)g(xn) , f, g ∶ [0,2π]→ C . (10.4.3)

The set S = {ekxi}k∈Z is not orthogonal with respect to this pseudo scalar product. However,
we have a result similar to orthogonality.

Proposition 10.4.1

The set S = {ekxi}k∈Z satisfies

⟪ekxi, ejxi⟫ =
⎧⎪⎪⎨⎪⎪⎩

N if k ≡ j (mod N)
0 if k /≡ j (mod N)

Proof.
The proof is similar to the proof of Lemma 10.3.1. For k /≡ j (mod N), we have

⟪ekxi, ejxi⟫ =
N−1
∑
n=0

e(k−j)xni =
N−1
∑
n=0

e(2nπ(k−j)/N)i =
1 − (e(2π(k−j)/N)i)N

1 − e(2π(k−j)/N)i
= 0

because (e(2π(k−j)/N)i)N = e2(k−j)πi = 1 and e(2π(k−j)/N)i ≠ 1 since k − j is not a multiple of N .

For k ≡ j (mod N), we have

⟪ekxi, ejxi⟫ =
N−1
∑
n=0

e(k−j)xni =
N−1
∑
n=0

e(2nπ(k−j)/N)i =
N−1
∑
n=0

1 = N

because e(2nπ(k−j)/N)i = 1 since k − j is a multiple of N .

Based on our experience in the previous section with 2π-periodic real valued functions,
it would tempting to say that the coefficients rk in (10.4.1) that minimize 10.4.2 are

rk =
⟪f(x), ekxi⟫
⟪ekxi, ekxi⟫

= 1

N

N−1
∑
n=0

f(xn)e−kxni , −K ≤ k ≤K . (10.4.4)

Unfortunately, this is only true for K < N/2. For K = N/2, the coefficients r−K and rK have
to be modified. More precisely,

r−K =
1

2N

N−1
∑
n=0

f(xn)e−Kxni and rK =
1

2N

N−1
∑
n=0

f(xn)eKxni . (10.4.5)

216 10. Least Square Approximation (in ℓ2)

The reason for this exception comes from the fact that ⟪f(x), eKxi⟫ = ⟪f(x), e−Kxi⟫ for
K = N/2 because

e−Kxni = e−nπi = enπi = eKxni =
⎧⎪⎪⎨⎪⎪⎩

1 n is even

−1 n is odd

Thus
N−1
∑
n=0

f(xn)eKxni =
N−1
∑
n=0

f(xn)e−Kxni =
N−1
∑
n=0
(−1)nf(xn) .

A proof similar to the proof of Theorem 10.3.4 could be given to show that the coeffi-
cients rk defined above for K ≤ N/2 minimize (10.4.2) (This is left to the reader). We will
proceed differently. The proof that we will give requires some knowledge of Fourier series
of complex valued functions in L2. This was the subject of Chapter 8. We only state the
result that is needed from that chapter. This approach has the advantage of linking the
discrete least square method above to L2 approximation in the space of 2π-periodic square
integrable functions. However, it has the disadvantage or requesting that f be continuously
differentiable. This is an extra condition which is not required to determine the coefficients
rk minimizing (10.4.2).

We saw in Chapter 8 that if f is an L2-integrable function on [0,2π], then we may write

f =∑
k∈Z

Ake
kxi ,

where the convergence is the L2 convergence and

Ak =
1

2π ∫
2π

0
f(x)e−kxi , k ∈ Z .

If f is a 2π-periodic differentiable function, then it can be proved [27] that the series∑
k∈Z

Ake
kxi

converges absolutely to f(x) for all x and uniformly on R to f . In particular, this implies that
∞
∑
k=0

Aαk
eαkxi converges pointwise to f(x) for any reordering {αk}∞k=0 of the natural numbers1.

Hence, we can change the order of the summation without changing the limit.

Let

ak =
1

N

N−1
∑
n=0

f(xn)e−kxni , k ∈ Z . (10.4.6)

Before stating the relation between the ak’s and the Ak’s, we show that ⟪f, ej1xi⟫ = ⟪f, ej2xi⟫
for j1 ≡ j2 (mod N). This is at the root of the relation that we will find between the ak’s
and Ak’s. Suppose that j2 = sN + j1 with s ∈ Z, then

ej2xni = e(2π(sN+j1)n/N)i = e2πsnie(2πj1n/N)i = ej1xni

for n = 0, 1, 2,. . . , N − 1 because e2πsni = 1 for all n. Thus

⟪f, ej1xi⟫ =
N−1
∑
n=0

f(xn)ej1xni =
N−1
∑
n=0

f(xn)ej2xni = ⟪f, ej2xi⟫ .

1Namely, k ↦ αk is an injective and surjective mapping of Z to itself.

10.4. Trigonometric Polynomial Approximation (Complex Case) 217

Proposition 10.4.2

If f is a 2π-periodic differentiable function, then

ak = ∑
j≡k (mod N)

Aj .

Proof.
We have

ak =
1

N

N−1
∑
n=0

f(xn)e−kxni = 1

N

N−1
∑
n=0
(lim
J→∞

J

∑
j=−J

Aje
jxni) e−kxni

= lim
J→∞

J

∑
j=−J

Aj (
1

N

N−1
∑
n=0

ejxnie−kxni) = ∑
j≡k (mod N)

Aj .

The third equality comes from the absolute convergence of the series ∑
k∈Z

Ake
kxi to f(x) for

all x. The last equality comes from Proposition 10.4.1 and the absolute convergence of the
series ∑

k∈Z
Ak.

The result of the previous proposition is called aliasing.

Theorem 10.4.3

Assume that f is a 2π-periodic differentiable function and that ak is defined by (10.4.6)
for all k.

1. If K < N/2, then I(r−K , r−K+1, . . . , rK) ≤ I(b−K , b−K+1, . . . , bK) for all bk ∈ C with
∣k∣ ≤K if rk = ak for k) ≤K.

2. If K = N/2, then I(r−K , r−K+1, . . . , rK) ≤ I(b−K , b−K+1, . . . , bK) for all bk ∈ C with

∣k∣ ≤K if rk = ak for ∣k∣ <K and r−K = rK =
1

2
aK .

Proof.
i) If K < N/2 and bk = 0 for K < ∣k∣ ≤ N/2, we have

N−1
∑
n=0
∣f(xn) −

K

∑
k=−K

bke
kxni∣

2

=
N−1
∑
n=0
∣(∑

j∈Z
Aje

jxni) −
K

∑
k=−K

bke
kxni∣

2

=
N−1
∑
n=0

RRRRRRRRRRR
∑

−N/2<k≤N/2

⎛
⎝ ∑
j≡k (mod N)

Aj

⎞
⎠
ekxni −

K

∑
k=−K

bke
kxni

RRRRRRRRRRR

2

=
N−1
∑
n=0

RRRRRRRRRRR
∑

−N/2<k≤N/2

⎛
⎝
⎛
⎝ ∑
j≡k (mod N)

Aj

⎞
⎠
− bk
⎞
⎠
ekxni

RRRRRRRRRRR

2

218 10. Least Square Approximation (in ℓ2)

=
N−1
∑
n=0

RRRRRRRRRRR
∑

−N/2<k≤N/2
(ak − bk) ekxni

RRRRRRRRRRR

2

.

To get the first equality, we have used ejxni = ekxni for j ≡ k (mod N) and the absolute
convergence of the series to rearrange the summation. Hence

N−1
∑
n=0
∣f(xn) −

K

∑
k=−K

bke
kxni∣

2

= ∑
−N/2<k1≤N/2
−N/2<k2≤N/2

(ak1 − bk1) (ak2 − bk2)(
N−1
∑
n=0

ek1xnie−k2xni)

´¹¹¸¹¹¹¶

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if k1 ≠ k2
N if k1 = k2

= N ∑
−N/2<k≤N/2

∣ak − bk∣2

because of Lemma 10.4.1. Therefore, the minimum N(∑
−N/2<k<−K
K<k≤N/2

∣ak∣2). is reached at bk = ak

for ∣k∣ ≤K.

i) If K = N/2, we have as for the case K < N/2 above that

N−1
∑
n=0
∣f(xn) −

K

∑
k=−K

bke
kxni∣

2

=
N−1
∑
n=0
∣(∑

j∈Z
Aje

jxni) −
K

∑
k=−K

bke
kxni∣

2

=
N−1
∑
n=0

RRRRRRRRRRR
∑

−N/2<k≤N/2

⎛
⎝ ∑
j≡k (mod N)

Aj

⎞
⎠
ekxni −

K

∑
k=−K

bke
kxni

RRRRRRRRRRR

2

=
N−1
∑
n=0

RRRRRRRRRRR
∑
∣k∣<N/2

⎛
⎝
⎛
⎝ ∑
j≡k (mod N)

Aj

⎞
⎠
− bk
⎞
⎠
ekxni +

⎛
⎝
⎛
⎝ ∑
j≡K (mod N)

Aj

⎞
⎠
− bK − b−K

⎞
⎠
eKxni

RRRRRRRRRRR

2

.

Hence,

N−1
∑
n=0
∣f(xn) −

K

∑
k=−K

bke
kxni∣

2

=
N−1
∑
n=0

RRRRRRRRRRR
∑
∣k∣<N/2

(ak − bk) ekxni + (aK − bK − b−K) eKxni

RRRRRRRRRRR

2

= N
⎛
⎝ ∑
−N/2<k<N/2

∣ak − bk∣2 + ∣aK − b−K − bK ∣2
⎞
⎠

because of Lemma 10.4.1. Therefore, the minimum is 0 when bk = ak for ∣k∣ < K and

b−K = bK =
aK
2
.

Note that other choices of b−K and bK are possible as long as aK = b−K + bK .

Remark 10.4.4

1. There is another proof for the case K < N/2 in Theorem 10.4.3. According to Propo-
sition 10.4.1, the set SN = {ekxi}∣k∣≤K is a orthogonal set with respect to the pseudo

10.4. Trigonometric Polynomial Approximation (Complex Case) 219

scalar product (10.4.3). Hence, a theorem similar to Theorem 8.1.5 in Chapter 8 says
that I(r−K , r−K+1, . . . , rK) = ⟪f − p, f − p⟫, where p is defined in (10.4.1), reaches its
minimum if and only if rk is given by (10.4.4) for ∣k∣ ≤K.

2. Since e−Kxni = eKxni for all n when K = N/2, it follows from the proof of the previous
theorem that

p(x) = ∑
−N/2<k≤N/2

ake
kxi

minimizes
N−1
∑
n=0
∣yn − p(xn)∣2 among all trigonometric polynomials of the form

∑
∣k∣≤⌊N/2⌋

ake
kxi, where ⌊N/2⌋ is the largest integer less than or equal to N/2.

3. Let p(x) = ∑
∣k∣≤K

rke
kxi be the polynomial given by Theorem 10.4.3 when K = ⌊N/2⌋.

Since

f(xn) =∑
j∈Z
Aje

jxni = ∑
−N/2<k≤N/2

⎛
⎝ ∑
k≡j (mod N)

Aj

⎞
⎠
ekxni = ∑

−N/2<k≤N/2
ake

kxni = p(xn)

for 0 ≤ n < N , the polynomial p is an interpolating polynomial of f at x0, x1, . . . , xN−1.

4. If f is a 2π-periodic real valued function, then a−k = ak for all k. In particular, a0 ∈ R.
Hence, for K < N/2, we have

p(x) =
K

∑
k=−K

ake
kxi = a0 +

K

∑
k=1
(akekxi + akekxi) = a0 + 2

K

∑
k=1

Re (akekxi)

= a0 + 2
K

∑
k=1
(Re(ak) cos(kx) − Im(ak) sin(kx))

= ã0 +
K

∑
k=1

ãk cos(kx) +
K

∑
k=1

b̃k sin(kx) ,

where

ã0 = a0 =
1

N

N−1
∑
n=0

f(xn) ,

ãk = 2Re(ak) = 2Re(
1

N

N−1
∑
n=0

f(xn)e−kxni) = 2

N

N−1
∑
n=0

f(xn) cos(kxn)

and

b̃k = −2 Im(ak) = −2 Im(
1

N

N−1
∑
n=0

f(xn)e−kxni) = 2

N

N−1
∑
n=0

f(xn) sin(kxn) .

Therefore, the real case is a special case of the complex case when K < N/2.

220 10. Least Square Approximation (in ℓ2)

♠
Remark 10.4.5
We considered in Example 8.1.6 of Chapter 8 the following least square problem. Let f
be a 2π-periodic complex valued functions, find rk ∈ C for −K ≤ k ≤ K that minimize

I(r−K , r−K+1, . . . , rK) = ∫
2π

0
(f(x) − p(x))2 dx, where p is defined in (10.4.1). We showed in

Example 8.1.6 that the choice of rk that minimize I is given by

rk = Ak =
1

2π ∫
2π

0
f(x)e−kxi dx , k ∈ Z .

It is interesting to approximate the coefficients Ak using a numerical method like the
composite trapezoidal rule given in Theorem 12.4.1. Suppose that g ∶ R→ C is a 2π-periodic

function. If we use the partition of the interval [0,2π] given by xn =
2nπ

N
for 0 ≤ n ≤ N , we

get

∫
2π

0
g(x)dx ≈ π

N
g(0) + 2π

N

N−1
∑
n=1

g (xn) +
π

N
g(2π) = 2π

N
g(0) + 2π

N

N−1
∑
n=1

g (xn) =
2π

N

N−1
∑
n=0

g (xn) .

In particular, if g(x) = f(x)e−kxi with f a 2π-periodic complex valued function, we get

Ak =
1

2π ∫
2π

0
f(x)e−kxi dx ≈= 1

N

N−1
∑
n=0

f(xn)e−kxni = ak .

So ak is approximately Ak. The terms other than Ak in ak = ∑
j≡k (mod N)

Aj are almost

negligible. ♠
Example 10.4.6
Find the trigonometric polynomial p(x) = ∑

∣k∣≤1
bke

kxi that interpolates f(x) = sin2(x) at

xn = 2nπ/3 for n = 0, 1 and 2.

According to Item 3 of Remark 10.4.4, the answer is given by Theorem 10.4.3 with N = 3
and K = 1. Since f is a real valued function, we may used Item 4 of Remark 10.4.4, to write

p(x) = a0 + a1 cos(x) + b1 sin(x) ,

where

a0 =
1

3

2

∑
n=0

sin2(xn) =
1

3
(sin2(0) + sin2 (2π

3
) + sin2 (4π

3
)) = 1

3
(0 + 3

4
+ 3

4
) = 1

2
,

a1 =
2

3

2

∑
n=0

sin2(xn) cos(xn) =
2

3
(sin2(0) cos(0) + sin2 (2π

3
) cos(2π

3
) + sin2 (4π

3
) cos(4π

3
))

= 2

3
(0 + 3

4
(−1
2
) + 3

4
(−1
2
)) = −1

2

10.5. Fast Fourier Transform 221

and

b1 =
2

3

2

∑
n=0

sin2(xn) sin(xn) =
2

3
(sin3(0) + sin3 (2π

3
) + sin3 (4π

3
))

= 2

3
(0 + 3

4
(
√
3

2
) + 3

4
(−
√
3

2
)) = 0 .

Hence,

p(x) = 1

2
− 1

2
cos(x) .

♣
Remark 10.4.7
Suppose that N is odd and let K = ⌊N/2⌋. Let ΠK be the space of all trigonometric
polynomials of the form p(x) = ∑

∣k∣≤K
bke

kxi. Suppose that f is a 2π-periodic continuous

function and let dist (f,ΠK) = inf
q∈ΠK

∥f − q∥∞, where ∥h∥∞ = max
0≤x≤2π

∣h(x)∣ for all continuous

function h ∶ [0,2π] → C. If p(x) = ∑
∣k∣≤K

rke
kxi is the trigonometric polynomial given by

Theorem 10.4.3, then one can prove that

∥f − p∥∞ ≤ Cdist (f,ΠK)

for some constant C [10].

Moreover, if f is j-times differentiable with f (j) piecewise continuous, one can prove that
∣Ak∣ = O(∣k∣−j−1) and that this implies that dist (f,ΠK) = O(K−j) [10]. ♠

10.5 Fast Fourier Transform

As we have seen in the previous section, the main task for the complex case of trigonometric
polynomial approximation was to compute the coefficients ak defined in (10.4.6); namely,

ak =
1

N

N−1
∑
n=0

f(xn)e−2πkni/N

for k ∈ Z, where f ∶ R→ C is a 2π-periodic function. We present in this section fast algorithms
to compute these coefficients. The Fast Fourier Transform algorithms that we will introduce
have many other applications.

Definition 10.5.1

Let ΠN be the space of all periodic functions z ∶ Z→ C of period N and let ωN be the
N th root of unity defined by ωN = e2πi/N . The Discrete Fourier Transform is the

222 10. Least Square Approximation (in ℓ2)

mapping FN ∶ ΠN → ΠN such that y = FNx is defined by

y(n) ≡ 1

N

N−1
∑
k=0

ω−nkN x(k)

for n ∈ Z.

The Discrete Fourier Transform has the following property.

Proposition 10.5.2

FN ∶ ΠN → ΠN is one-to-one and onto. The inverse of FN is the mapping F−1N ∶ ΠN →
ΠN such that x = F−1N y is defined by

x(n) ≡
N−1
∑
k=0

ωnk
N y(k)

for n ∈ Z.

The functions x ∶ ΠN → ΠN and y ∶ ΠN → ΠN could also be written as the infinite
sequences {xn}n∈Z and {yn}n∈Z respectively. We do not use this notation to avoid complicated
indices in the formulae that we will introduce later.

In this subsection, we will develop some Fast Fourier Transform algorithms to compute
the Discrete Fourier Transform on ΠN . There are many Fast Fourier Transform algorithms;
one for each integer decomposition of N . The Fast Fourier Transform algorithms that we give
below is based on the work of Cooley and Tukey [11]. The Fast Fourier Transform is used in
signal processing, image compression, . . . Fast Poisson Solver is a technique to solve some
types of partial differential equations using the Fast Fourier Transform. We will not cover
any of these applications in this book. Henrici [16] has a nice overview of the applications
of the Fast Fourier Transforms. Another good starting reference for the applications of the
Fast Fourier Transforms is Strang [30].

To simplify the notation, we consider

F∗Nx ≡ NFNx

for x ∈ ΠN . Hence, y∗ = F∗Nx is given by

y∗(n) ≡
N−1
∑
k=0

ω−nkN x(k)

for n ∈ Z. In many books, F∗N is used as the definition of the Discrete Fourier Transform.

The idea behind the Fast Fourier Transforms is to construct a sequence ỹm, ỹm−1, . . . ,
ỹ0 of functions from Z × Z into R such that ỹj−1 is obtained from ỹj for j = m, m − 1, . . . ,
2, 1. Moreover, ỹm(⋅,0) is x and ỹ0(0, ⋅) is y∗ = F∗Nx.

10.5. Fast Fourier Transform 223

Definition 10.5.3

1. Given x ∈ ΠN , if N = AB with A and B two integers, we define xA,a ∈ ΠB with
a ∈ N by

xA,a(n) = x(a +An)

for n ∈ Z.

2. Suppose that N = P1P2P3 . . . Pm and let N = AkPkBk, where Ak = P1P2 . . . Pk−1
and Bk = Pk+1Pk+2 . . . Pm. If k = 0, we set Pk = 1 and Ak = 1. If k = m, we set
Bk = 1.
For each q ∈ Z, we define the function y∗AkPk,q

∈ ΠBk
by

y∗AkPk,q
= F∗Bk

xAkPk,q .

Namely,

y∗AkPk,q
(b) =

Bk−1
∑
s=0

x(q +AkPks)ω−nsBk
∣
n=b
=

Bk−1
∑
s=0

x(q +AkPks)ω−sbBk
(10.5.1)

for b ∈ Z.

3. y∗AkPk,q
can be used to define the function

ỹk ∶ Z ×Z→ R
(q, b)↦ y∗AkPk,q

(b)

The function ỹk is of period Bk in its second variable and of period N in its first
variable.

Remark 10.5.4

1. For k =m, we have the special case Ak = P1P2 . . . Pm−1, Pk = Pm and Bk = 1 in (10.5.1).
Thus,

y∗AmPm,q(0) = F∗1 xN,q(n)∣
n=0
=

0

∑
s=0

x(q +Ns)ω−ns1 ∣
n=0
= x(q)

for q ∈ N. Namely, ỹm(q,0) = x(q) for q ∈ N.

2. For k = 0, we have Ak = Pk = 1 and Bk = N in (10.5.1). Thus,

y∗A0P0,0
(b) = F∗Nx1,0(n)∣

n=b
=

N−1
∑
s=0

x(s)ω−nsN ∣
n=b
= y∗(b) = F∗Nx(n)∣

n=b

for b ∈ N. Namely, ỹ0(0, b) = F∗Nx(b) for b ∈ N.
♠

The next proposition justifies the method to compute ỹj from ỹj−1 that will be introduced
later.

224 10. Least Square Approximation (in ℓ2)

Proposition 10.5.5

Pk−1
∑
s=0

ỹk(a +Aks, b)ω−s(b+Bkp)
PkBk

= ỹk−1(a, b +Bkp)

for a, b and p in N.

Proof.
We have

Pk−1
∑
s=0
F∗Bk

xAkPk,a+Aks(b)ω
−s(b+Bkp)
PkBk

=
Pk−1
∑
s=0
(
Bk−1
∑
r=0

x(a +Aks +AkPkr)ω−brBk
)ω−s(b+Bkp)

PkBk

=
Pk−1
∑
s=0

Bk−1
∑
r=0

x(a +Ak(s + Pkr))ω−brPk

BkPk
ω
−s(b+Bkp)
PkBk

=
Pk−1
∑
s=0

Bk−1
∑
r=0

x(a +Ak(s + Pkr))ω−(s+rPk)(b+Bkp)
BkPk

= F∗PkBk
xAk,a(b +Bkp)

because ω−mPkBk

PkBk
= 1−m = 1 for all m ∈ Z. Thus

Pk−1
∑
s=0

ỹk(a +Aks, b)ω−s(b+Bkp)
PkBk

= ỹk−1(a, b +Bkp) .

A consequence of Proposition 10.5.5 for 0 ≤ a < Ak, 0 ≤ b < Bk and 0 ≤ p < Pk is the
following Fast Fourier Transform algorithms.

Code 10.5.6 (Fast Fourier Transform)

To compute the Fast Fourier Transform of x in ΠN . We assume that N = P1P2 . . . Pm.
Input: The vector (P1, P2, . . . Pm) and the column vector x which are respectively
denoted MP and X in the code below. Since x is N -periodic, only the components x(j)
for 0 ≤ j < N are needed.
Output: The Fast Fourier Transform y∗ = F∗Nx which is denoted Z in the code below.
As for the input, only the components y∗(j) for 0 ≤ j < N are returned because of the
periodicity of y∗.

function Z = FFT(X,MP)

m = length(MP);

% For k = m, Y = X

Y(:,1) = X;

for k = m:-1:1

if k < m

B = prod(MP(k+1:m));

else

B = 1;

10.5. Fast Fourier Transform 225

end

P = MP(k);

if (k > 1)

A = prod(MP(1:k-1));

else

A = 1;

end

x = 1;

omega = exp(-(2*pi*i)/(P*B))

p = [0:P-1]’;

for b = 0:B-1

omega_p = omega.^(b+B*p);

for a = 0:A-1

%%%

% Do not forget that the column vectors in Matlab are

% indexed (1,1),(2,1), ...

Ytempo = ones(P,1)*Y(1+b+B*a+A*B*(P-1),1);

for s = P-2:-1:0

Ytempo = Ytempo.*omega_p + Y(1+b+B*a+A*B*s,1);

end

%%

% We transfer the information to Z for the next value of m.

for s = 0:P-1

Z(1+b+B*s+B*P*a,1) = Ytempo(s+1);

end

end

end

% The value of Y for the next value of m.

Y = Z;

end

% The final result

% For m = 1, Z is the Fast Fourier Transform of X.

end

Remark 10.5.7

1. The portion of code between the two lines of %’s is

Pk−1
∑
s=0

ỹk(a +Aks, b)ω−s(b+Bkp)
PkBk

(10.5.2)

computed for all the values of p at the same time using Matlab matrix operations. We
repeat this operation for 0 ≤ a < Ak and 0 ≤ b < Bk to get the full vector ỹk−1(a, b+Bkp).

226 10. Least Square Approximation (in ℓ2)

We have also used the nested form of the polynomial in ω
−(b+Bkp)
PkBk

to evaluate the
expression (10.5.2) above. To formulate (10.5.2) in MATLAB, we have to note that

• Z(1+b+B*p+B*P*a,1) represents ỹk−1(a, b +Bkp) and
• Y(1+b+B*a+A*B*s,1) = Y(1+b+B*(a+A*s),1) represents ỹk(a +Aks, b)

for 0 ≤ a < Ak, 0 ≤ b < Bk and 0 ≤ p, s < Pk.

2. About N(P1 + P2 + . . . + Pm) = N log(N) operations are needed in the code above to
compute F∗Nx. The evaluation of omega and copying data has been ignored when
computing the number of operations. The number of operations to compute F∗Nx
directly from the definition is about N2. This is much larger than N(P1+P2+ . . .+Pm)
in general.

3. When N = 2m, an efficient Fast Fourier Transform algorithm can be developed. It is
probably the must often used Fast Fourier Transform algorithm.

F∗Nx(n) =
N−1
∑
k=0

ω−nkN x(k) =
2m−1
∑
k=0

ω−nk2m x(k)

=
2m−1−1
∑
k=0

ω
−n(2k)
2m x(2k) +

2m−1−1
∑
k=0

ω
−n(2k+1)
2m x(2k + 1)

=
2m−1−1
∑
k=0

ω−nk2m−1x(2k) + ω
−n
2m

2m−1−1
∑
k=0

ω−nk2m−1x(2k + 1)

= F∗2m−1xe(n) + ω−n2m F∗2m−1xo(n) ,

where xe(k) = x(2k) and xo(k) = x(1 + 2k) for k ∈ N. We have used the relation

ω2n
2m = ωn

2m−1 to get the fourth equality. Moreover, since ω−j−2
m−1

2m = −ω−j2m for 0 ≤ j < 2m−1,
we get

F∗Nx(n) = F∗2m−1xe(n) + ω−n2m F∗2m−1xo(n)

and

F∗Nx (n + 2m−1) = F∗2m−1xe (n + 2m−1) + ω−(n+2
m−1)

2m F∗2m−1xo (n + 2m−1)
= F∗2m−1xe(n) − ω−n2m F∗2m−1xo(n)

for 0 ≤ n < 2m−1. The last equality, comes from the fact that F∗
2m−1xe and F∗

2m−1xo are
of period 2m−1 because xe and xo are of period 2m−1. This gives the following simple
algorithm.

Code 10.5.8 (Fast Fourier Transform)

To compute the Fast Fourier Transform of x in ΠN , where N = 2m.
Input: The column vector x (denoted X in the code below). Since x is N -
periodic, only the components x(j) for 0 ≤ j < N are needed.

10.5. Fast Fourier Transform 227

Output: The Fast Fourier Transform y∗ = F∗Nx (denoted Z in the code below).
As for the input, only the components z∗(j) for 0 ≤ j < N are returned because
of the periodicity of z∗.

function Z = recursiveFFT(X)

N = length(X);

if N == 1

Z = X;

else

% We compute the Fourier Transform for x_{2k}

Y1 = recursiveFFT(X(1:2:N));

% We compute the Fast Fourier Transform for x_{1+2k}

Y2 = recursiveFFT(X(2:2:N));

a = [0:N/2-1]’;

Y3 = Y2.*exp(-(2*pi*i)*a/N);

Z = [Y1+Y3 ; Y1-Y3];

end

end

♠

228 10. Least Square Approximation (in ℓ2)

Chapter 11

Iterative Methods to Approximate
Eigenvalues

11.1 Background in Linear Algebra

Before developing methods to approximate eigenvalues of linear operators, we need to review
some basic concepts of Linear Algebra. We also present some theoretical results about
the location of the eigenvalues. In Section 3.1 of Chapter 3, we have already given some
properties of the eigenvalues of a linear operator. We refer in particular to Definition 3.1.10,
Theorem 3.1.11 and Remarks 3.1.9 and 3.1.12,

11.1.1 Orthogonality

To really understand the Gram-Schmidt orthogonalization process that we give in Defini-
tion 11.6.1, we need to review some useful concepts including projections on subspace of
Rn.

Definition 11.1.1

Let ⟨⋅, ⋅⟩ be a scalar product on Rn. A set of non-null vectors {v1,v2, . . . ,vk} is or-
thogonal if ⟨vi,vj⟩ = 0 for i ≠ j.

Proposition 11.1.2

Let ⟨⋅, ⋅⟩ be a scalar product on Rn and S = {v1,v2, . . . ,vk} be a set of orthogonal
vectors. Then S is a set of linearly independent vectors.

229

230 11. Iterative Methods to Approximate Eigenvalues

Proof.

Suppose that 0 =
k

∑
j=1
ajvj. We have

0 = ⟨vi,0⟩ = ⟨vi,
k

∑
j=1
ajvj⟩ =

k

∑
j=1
aj ⟨vi,vj⟩
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=0 for j≠i

= ai ⟨vi,vi⟩

for i = 1, 2, . . . , k. Since ⟨vi,vi⟩ ≠ 0 because vi ≠ 0, we get ai = 0.

Definition 11.1.3

Let S = {v1,v2, . . . ,vk} be a set of vectors in Rn. The span of S is the subspace,
denoted span(S), defined by

span(S) = {
k

∑
j=1
ajvj ∶ aj ∈ R} .

Definition 11.1.4

Let ⟨⋅, ⋅⟩ be a scalar product on Rn. Let S = {v1,v2, . . . ,vk} be an orthogonal set of
Rn and V = span(S). The orthogonal projection P on V is the mapping defined

by P (x) =
k

∑
j=1
ajvj, where aj =

⟨vj,x⟩
⟨vj,vj⟩

.

Proposition 11.1.5

The orthogonal project P defined in Definition 11.1.4 is a linear mapping such that
x − P (x) � V for all x ∈ Rn; namely, ⟨v,x − P (x)⟩ = 0 for all v ∈ V .

Proof.
That P is a linear mapping is a consequence of the linearity in the second component of the
scalar product. We leave it to the reader to verify that P (ax + by) = aP (x) + bP (y) for all
x,y ∈ Rn and a, b ∈ R.

Choose x ∈ Rn. To prove that x − P (x) � V , it suffices to prove that ⟨vi,x − P (x)⟩ = 0
for 1 ≤ i ≤ k.

Let P (x) =
k

∑
j=1
ajvj with aj =

⟨vj,x⟩
⟨vj,vj⟩

. We have

⟨vi,x − P (x)⟩ = ⟨vi,x −
k

∑
j=1
ajvj⟩ = ⟨vi,x⟩ −

k

∑
j=1
aj ⟨vi,vj⟩

= ⟨vi,x⟩ − ai ⟨vi,vi⟩ = 0

for 1 ≤ i ≤ k by definition of ai.

11.1. Background in Linear Algebra 231

We illustrate in Figure 11.1 an orthogonal projection P on a subspace V of R3 generated
by two orthogonal vectors v1 and v2.

0

v1

v2

w

P (x)

x − P (x)
x

x −w

Figure 11.1: Sketch of the image of a vector x by the orthogonal projection P on
a subspace V of R3 generated by two orthogonal vectors v1 and v2.

Proposition 11.1.6

The orthogonal project P defined in Definition 11.1.4 has the following property.

∥x − P (x)∥ < ∥x −w∥

for all w ∈ V such that w ≠ P (x). The norm of a vector y ∈ Rn is obviously defined

by ∥y∥ =
√
⟨y,y⟩.

Proof.
The conclusion of the proposition is illustrated in Figure 11.1.

Suppose that x,w ∈ Rn. Since P (x)−w ∈ V , we have from the previous proposition that
⟨P (x) −w,x − P (x)⟩ = 0. Hence

∥x −w∥2 = ⟨x −w,x −w⟩
= ⟨(x − P (x)) + (P (x) −w), (x − P (x)) + (P (x) −w)⟩
= ⟨x − P (x),x − P (x)⟩ + ⟨P (x) −w,x − P (x)⟩ + ⟨x − P (x), P (x) −w⟩
+ ⟨P (x) −w, P (x) −w⟩

= ⟨x − P (x),x − P (x)⟩ + ⟨P (x) −w, P (x) −w⟩
= ∥x − P (x)∥2 + ∥P (x) −w∥2 > ∥x − P (x)∥2

unless ∥P (x) −w∥ = 0; namely, unless w = P (x).

Remark 11.1.7
The previous proposition shows that the orthogonal projection P defined in Definition 11.1.4
is independent of the orthogonal set S generating the subspace V . ♠

232 11. Iterative Methods to Approximate Eigenvalues

Definition 11.1.8

Let ⟨⋅, ⋅⟩ be a scalar product on Rn and V be a subspace of Rn. A set of non-null vector
{v1,v2, . . . ,vk} is orthogonal basis of V if it is a basis of V and it is orthogonal. It
is an orthonormal basis of V if it an orthogonal basis of V such that ∥vj∥ = 1 for
1 ≤ j ≤ k.

Proposition 11.1.9

Let ⟨⋅, ⋅⟩ be a scalar product on Rn. If S = {v1,v2, . . . ,vk} is an orthogonal basis of a

subspace V of Rn, then v =
k

∑
j=1
ajvj with aj =

⟨vj,x⟩
⟨vj,vj⟩

for all v ∈ V .

Proof.

Given v ∈ V , since S is a basis of V , we have v =
k

∑
j=1
ajvj for some aj ∈ R. Hence

⟨vi,v⟩ = ⟨vi,
k

∑
j=1
ajvj⟩ =

k

∑
j=1
aj ⟨vi,vj⟩ = ai ⟨vi,vi⟩

for 1 ≤ i ≤ k. Thus, ai =
⟨vi,x⟩
⟨vi,vi⟩

for 1 ≤ i ≤ k.

11.1.2 Self-adjoint and Unitary Operators

Let V be a vector space over the complex numbers. A linear functional L on V is a linear
mapping from V to C. The vector space of all linear functional on V is denoted V ∗. It is
called the dual of V .

Theorem 11.1.10 (Reisz)

Let V be a vector space over the complex numbers and ⟨⋅, ⋅⟩ ∶ V × V → C be an
hermitian product. Given a linear functional L on V , there exist a unique w ∈ V such
that L(v) = ⟨v,w⟩ for all v ∈ V . The mapping w ↦ ⟨⋅,w⟩ is a conjugate-linear
isomorphism from V to V ∗ (because λw ↦ λ ⟨⋅,w⟩).

Corollary 11.1.11

Let V be a vector space over the complex numbers and ⟨⋅, ⋅⟩ ∶ V ×V → C be an hermitian
product. Suppose that A is a linear mapping from V into itself. There exists a unique
linear mapping B from V into itself such that ⟨Av,w⟩ = ⟨v,Bw⟩ for all v and w in
V .

11.1. Background in Linear Algebra 233

Definition 11.1.12

The linear mapping B in Corollary 11.1.11 is called the adjoint of A and is denoted
A∗. If V = Cn and ⟨⋅, ⋅⟩ ∶ Cn × Cn → C is the standard hermitian product, then this
definition of adjoint corresponds to the definition of adjoint for a matrix. Namely,

A∗ = A⊺.
We say that A is hermitian or self-adjoint if A = A∗.

Definition 11.1.13

Let V be a vector space over the complex numbers and ⟨⋅, ⋅⟩ ∶ V ×V → C be an hermitian
product. A linear mapping A ∶ V → V is (complex) unitary if ⟨Av,Aw⟩ = ⟨v,w⟩ for
all v and w in V .

Theorem 11.1.14

Let V be a vector space over the complex numbers and ⟨⋅, ⋅⟩ ∶ V × V → C be an
hermitian product. Let ∥ ⋅ ∥ ∶ V → [0,∞[be the norm induced by the scalar product

on V ; namely, ∥v∥ =
√
⟨v,v⟩ for all v ∈ V . Let A ∶ V → V be a linear mapping. The

following statement are equivalent:

1. A is complex unitary.

2. ∥Av∥ = ∥v∥ for all v ∈ V .

3. A∗A = AA∗ = Id.

11.1.3 Symmetric and Orthogonal Operators

The notion of Hermitian and unitary Operators can be restricted to vector spaces over the
real numbers. To do this, we need the following theorem.

Theorem 11.1.15

Let V be a vector space over the real numbers and ⟨⋅, ⋅⟩ ∶ V × V → R be a scalar
product. Suppose that A ∶ V → V is a linear mapping. Then there exists a unique
linear mapping B ∶ V → V such that ⟨Av,w⟩ = ⟨v,Bw⟩ for all v and w in V .

Definition 11.1.16

The linear mapping B in Corollary 11.1.15 is called the transpose of A and is denoted
A⊺. If V = Rn and ⟨⋅, ⋅⟩ ∶ Rn×Rn → R is the standard scalar product, then this definition
of transpose corresponds to the definition of transpose for a matrix. We say that A is
symmetric if A = A⊺.

234 11. Iterative Methods to Approximate Eigenvalues

Definition 11.1.17

Let V be a vector space over the real numbers and ⟨⋅, ⋅⟩ ∶ V ×V → R be a scalar product.
A linear mapping A ∶ V → V is real unitary or orthogonal if ⟨Av,Aw⟩ = ⟨v,w⟩ for
all v and w in V .

Theorem 11.1.18

Let V be a vector space over the real numbers and ⟨⋅, ⋅⟩ ∶ V × V → R be a scalar
product. Let ∥ ⋅ ∥ ∶ V → [0,∞[be the norm induced by the scalar product on V ;

namely, ∥v∥ =
√
⟨v,v⟩. Let A ∶ V → V be a linear mapping. The following statement

are equivalent:

1. A is orthogonal.

2. ∥Av∥ = ∥v∥ for all v ∈ V .

3. A⊺A = AA⊺ = Id.

11.1.4 Triangular and Diagonal Matrices

Definition 11.1.19

Two n×n matrices A and B are similar if there exists an invertible n×n matrix N
such that B = N−1AN .

Theorem 11.1.20

Let A and B be two similar n×n matrices as defined in the previous definition. Then
A and B have the same characteristic polynomial. In particular, x is an eigenvector of
A associated to the eigenvalue λ if and only if N−1x is an eigenvector of B associated
to the eigenvalue λ.

Theorem 11.1.21 (Schur Form and decomposition)

Let A be an n × n matrix with entries in C. Then there exists an unitary matrix
U such that U∗AU is upper-triangular. We say that A is unitary similar to an
upper-triangular matrix.

Theorem 11.1.22

Let V be a vector space over the real numbers and ⟨⋅, ⋅⟩ ∶ V × V → R be a scalar
product. Suppose that A ∶ V → V is a symmetric linear mapping. Then there exists an
orthogonal basis of V consisting of eigenvectors of A. In particular, all the eigenvalues
of A are real.

11.1. Background in Linear Algebra 235

Corollary 11.1.23

Let A be a n × n symmetric matrix with entries in R and ⟨⋅, ⋅⟩ ∶ Rn ×Rn → R be the
standard scalar product. Then there exists a real unitary matrix U such that U⊺AU is
diagonal. If E is the canonical basis in Rn and B is the orthogonal basis of eigenvectors
of A given in Theorem 11.1.22, then U = QBE (Idn), where QBE (Idn) is the matrix of
change of basis from B to E .

11.1.5 Definite Positive Matrices

Definition 11.1.24

A quadratic form on Rn (resp. Cn) is a real-valued function Q of the form Q(x) =
x∗Ax for x in Rn (resp. Cn), where A is a n×n symmetric (resp. hermitian) matrix.

Definition 11.1.25

1. A quadratic form Q(x) is positive definite if Q(x) ≥ 0 for all x.

2. A quadratic form Q(x) is strictly positive definite if Q(x) > 0 for all x ≠ 0.

3. A quadratic form Q(x) is indefinite if there exists x1 and x2 such that Q(x1) <
0 < Q(x2).

4. A n × n matrix A is positive definite (resp. strictly positive definite) if
Q(x) = x ∗Ax is positive definite (resp. strictly positive definite).

Theorem 11.1.26

Let A be a n × n symmetric matrix. A is positive definite if and only if all the
eigenvalues of A are greater than 0.

Proof.
i) Suppose that A is positive definite. Let λ be an eigenvalue of A and v be an eigenvector
associated to λ. We have

0 < v⊺Av = v⊺ (λv) = λv⊺v = λ∥v∥2 .

Thus λ > 0.
ii) Suppose that all eigenvalues of A are positive. Let {vi}ni=1 be an orthogonal basis of
eigenvectors of A given by Theorem 11.1.22. Let λj be the eigenvalue associated to the

eigenvector vj for j = 1, 2, . . . , n. Given x ∈ Rn, we may write x =
n

∑
j=1
βjvj for some unique

236 11. Iterative Methods to Approximate Eigenvalues

βj ∈ R. Hence,

x⊺Ax = x⊺ (
n

∑
j=1
βjAvj) = x⊺ (

n

∑
j=1
λjβjvj) =

n

∑
i=1
(

n

∑
j=1
λjβjβiv

⊺
i vj)

=
n

∑
i=1
(

n

∑
j=1
λjβjβiδi,j) =

n

∑
j=1
λjβ

2
j > 0

if x ≠ 0.

Theorem 11.1.27

Let A be a n × n symmetric (or hermitian) matrix.

1. A is positive definite if and only if det(Ak) > 0 for all principal submatrices

Ak =
⎛
⎜
⎝

a1,1 . . . a1,k
⋮ ⋱ ⋮

ak,1 . . . ak,k

⎞
⎟
⎠

of A.

2. A is positive definite if and only if all the pivots used in the reduction process of
A to a row-echelon form, without interchanging rows, are positive.

11.1.6 Gerschgorin’s Theorem

Theorem 11.1.28 (Gerschgorin’s Circles)

Let A be an n × n matrix and λ be an eigenvalue of A. Then there exists an index i
with 1 ≤ i ≤ n, such that

∣λ − ai,i∣ ≤
n

∑
j=1
j≠i

∣ai,j ∣ .

More precisely, each component (i.e. a connected set which is not properly contained

in a larger connected set) of the union
n

⋃
i=1

Ui of the Gerschgorin’s circles

Ui =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ ∶ ∣λ − ai,i∣ ≤
n

∑
j=1
j≠i

∣ai,j ∣

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

contains exactly as many eigenvalues of A (counted with algebraic multiplicity) as
circles Ui forming the component.

11.1. Background in Linear Algebra 237

Proof.
i) Suppose that λ is an eigenvalue of A and that v is an eigenvector associated to λ. Let
k be an integer such that ∣vk∣ = ∥v∥∞ = max

1≤j≤n
∣vj ∣. Note that vk ≠ 0 because v ≠ 0. From

Av = λv, we get
n

∑
j=1
ak,jvj = λvk .

Thus

∣(ak.k − λ)vk∣ =

RRRRRRRRRRRRRRRR

−∑
j=1
j≠k

ak,jvj

RRRRRRRRRRRRRRRR

.

After dividing both sides of this equality by ∣vk∣, we get

∣ak.k − λ∣ ≤∑
j=1
j≠k

∣ak,j ∣
∣vj ∣
∣vk∣
≤∑

j=1
j≠k

∣ak,j ∣ .

This implies that λ ∈ Uk.

ii) To prove the second statement of the theorem, suppose that U is a component of the
form

U =⋃
i∈I
Ui ,

where I is a subset of {1,2, . . . , n}. Let A(t) = tA+ (1− t)D. where D is the diagonal matrix
defined by

D =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1,1 0 0 . . . 0
0 a2,2 0 . . . 0
0 0 a3,3 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . an,n

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

Let R(t) =⋃
i∈I
Ri(t) with

Ri(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z ∶ ∣z − ai,i∣ ≤ t∑
j=1
j≠i

∣ai,j ∣

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

At t = 0, there are obviously ∣I ∣ eigenvalues of A(0) =D in R(0) = {aj,j ∶ j ∈ I} (counted with
algebraic multiplicity); these eigenvalues are aj,j for j ∈ I.

The eigenvalues of A(t) are in
n

⋃
i=1
Ri(t) because of (i). Moreover, R(t) is a closed set such

that R(t) ∩Ri(t) = ∅ for all i /∈ I and all 0 ≤ t ≤ 1 because Ri(t) ⊂ Ri(1) = Ui for all 0 ≤ t ≤ 1
and all i, and U∩Ui = ∅ for all i /∈ I (Figure 11.2). Since the eigenvalues of A(t) are continuous
functions of t, because the roots of the characteristic polynomial pt(λ) = det(A(t)−λ Id) are
continuous functions of its coefficients which are continuous functions of t, the number of

238 11. Iterative Methods to Approximate Eigenvalues

eigenvalues of A(t) in R(t) (counted with algebraic multiplicity) is constant. No eigenvalue
of A(t) can jump from R(t) to one of the Ri(t) with i /∈ I by continuity.

Therefore, R(1) = U contains ∣I ∣ eigenvalues (counted with algebraic multiplicity) as
R(0).

U3

R5(t)

R4(t)

U2

R2(t)
U1

R1(t)

a5,5

a4,4

a2,2

a1,1

a3,3

U5

U4

C

R3(t)

Figure 11.2: Example of the Gerschgorin’s circles in the case of a 5 × 5 matrix
A. U = U1 ∪ U2 ∪ U3 is a component containing three eigenvalues (counted with
multiplicity) of A.

11.2 Power Method

The first method that we present can be used to approximate the largest eigenvalue in
absolute value of an n × n matrix A.

Suppose that the n × n matrix A has m distinct eigenvalues such that

∣λ1∣ > ∣λ2∣ ≥ ∣λ3∣ ≥ . . . ≥ ∣λm∣ . (11.2.1)

We assume that there is a basis of eigenvectors of A for Rn. So, every vector in x ∈ Rn can

be expressed uniquely as a sum x =
m

∑
j=1

vj, where vj is an eigenvector associated to λj or the

null vector.

Given y ≠ 0, we may write y as y =
m

∑
j=1

vj where vj is an eigenvector associated to λj for

each j. It is easy to prove by induction that

Ajy =
m

∑
i=1
λjivi = λji (v1 +

m

∑
i=2
(λi
λ1
)
j

vi)

11.2. Power Method 239

for j ≥ 0. If

ψj =
m

∑
i=2
(λi
λ1
)
j

vi ,

we have that ψj → 0 as j → 0 because of (11.2.1), and so λ−j1 Ajy = v1 + ψj → v1 as j →∞.

Let ϕ ∶ Rn → R be a linear functional such that ϕ(v1) ≠ 0. We have that

µj =
ϕ(Ajy)
ϕ(Aj−1y)

= λ1
ϕ (v1 + ψj)
ϕ (v1 + ψj−1)

→ λ1
ϕ (v1)
ϕ (v1)

= λ1 as j →∞ .

There are infinitely many possible choices for the linear functional ϕ. A linear functional
that is often used is defined by ϕ(x) = xk, the kth component of the vector x, for k constant.

Generally, the sequence {µj}∞j=1 converge linearly to λ1. We have

∣
µj+1 − λ1
µj − λ1

∣ =
RRRRRRRRRRR
(λ1

ϕ (v1 + ψj+1)
ϕ (v1 + ψj)

− λ1)(λ1
ϕ (v1 + ψj)
ϕ (v1 + ψj−1)

− λ1)
−1RRRRRRRRRRR

= ∣(
ϕ (v1 + ψj+1) − ϕ (v1 + ψj)
ϕ (v1 + ψj) − ϕ (v1 + ψj−1)

)(
ϕ (v1 + ψj−1)
ϕ (v1 + ψj)

)∣

= ∣(
ϕ (ψj+1) − ϕ (ψj)
ϕ (ψj) − ϕ (ψj−1)

)(
ϕ (v1) + ϕ (ψj−1)
ϕ (v1) + ϕ (ψj)

)∣ ,

where the linearity of ϕ has been used to get the last equality. If we assume that ∣λ3∣ < ∣λ2∣,
then

ϕ (ψj+1) − ϕ (ψj)
ϕ (ψj) − ϕ (ψj−1)

=

m

∑
i=2
(λi
λ1
)
j+1

ϕ(vi) −
m

∑
i=2
(λi
λ1
)
j

ϕ(vi)

m

∑
i=2
(λi
λ1
)
j

ϕ(vi) −
m

∑
i=2
(λi
λ1
)
j−1

ϕ(vi)

= (λ2
λ1
)
(λ2
λ1
− 1)ϕ(v2) +

m

∑
i=3
(λi
λ1
− 1)(λi

λ2
)
j

ϕ(vi)

(λ2
λ1
− 1)ϕ(v2) +

m

∑
i=3
(λi
λ1
− 1)(λi

λ2
)
j−1

ϕ(vi)
→ (λ2

λ1
) ≠ 0 as j →∞

because ∣λi∣/∣λ2∣ < 1 for 3 ≤ i ≤ n. Moreover

ϕ (v1) + ϕ (ψj−1)
ϕ (v1) + ϕ (ψj)

→ ϕ (v1)
ϕ (v1)

= 1 as j →∞ .

Thus

lim
j→∞
∣
µj+1 − λ1
µj − λ1

∣ = ∣λ2
λ1
∣ ≠ 0

if ∣λ3∣ < ∣λ2∣. The method may converge less than linearly if ∣λ3∣ = ∣λ2∣. Even when the
convergence is linear, it could still be very slow if ∣λ1∣ ≈ ∣λ2∣. There is also the danger

240 11. Iterative Methods to Approximate Eigenvalues

of divisions by very small numbers if Ajy approaches the origin when j → ∞ 1. So, the
power method is not that powerful. It will need to be improved. One may use Aitken’s ∆2

procedure to accelerate the convergence toward the eigenvalue λ1 but even that is not a huge
improvement.

If λ1 is real and positive, the sequence {w}∞j=0 defined by wj =
1

∥Ajy∥
Ajy converges to

1

∥v1∥
v1, an eigenvector of norm one associated to the eigenvalue λ1, because

wj =
1

∥Ajy∥
Ajy = ∥

m

∑
i=1
λjivi∥

−1

(
m

∑
i=1
λjivi) =

1

∥v1 + ψj∥
(v1 + ψj)→

1

∥v1∥
v1 as j →∞ .

In general, the vector wj is getting “more parallel” to the direction of the eigenvector v1 as
j →∞.

11.3 Rayleigh Quotient for Symmetric Matrices

We consider a n × n symmetric matrix A. As for the iterative power method of the pre-
vious section, we assume that A has m distinct eigenvalues which are real according to
Theorem 11.1.22.

∣λ1∣ > ∣λ2∣ ≥ ∣λ3∣ ≥ . . . ≥ ∣λm∣ .

Moreover, there exists an orthonormal basis of eigenvectors of A. As we mentioned in the
previous section in such case, every vector in x ∈ Rn can be expressed uniquely as a sum

x =
m

∑
j=1

vj, where vj is an eigenvector associated to λj or the null vector.

Definition 11.3.1

The Rayleigh Quotient of the symmetric matrix A is the function

ρA(x) =
⟨x,Ax⟩
⟨x,x⟩

for x ≠ 0.

Given y ≠ 0, we write y =
m

∑
j=1

vj, where vj is an eigenvector associated to λj. The sequence

{µj}∞j=1 defined by µj = ρA(Ajy) converges to λ1. To prove it, let

ψk =
m

∑
i=2
(λi
λ1
)
k

v⊺i vi .

1To avoid divisions by very small numbers, one may generate the yj as it follows: y0 = ∥y∥−1y and

yj = ∥Ayj−1∥−1Ayj−1 for j > 0. Then µj =
ϕ(yj)
ϕ(yj−1)

for j > 0.

11.4. Inverse Power Method 241

We then have

µj =
(Ajy)⊺A(Ajy)
(Ajy)⊺(Ajy)

= y⊺A2j+1y

y⊺A2jy
=

m

∑
i=1
λ2j+1i v⊺i vi

m

∑
i=1
λ2ji v⊺i vi

= λ1 (
v⊺1v1 + ψ2j+1

v⊺1v1 + ψ2j

)→ λ1 as j →∞

because ∣λi/λ1∣ < 1 for all i > 1.
The sequence {µj}∞j=1 converges much faster to the eigenvalue λ1 than the simple power

method of the previous section.

As for the power method of the previous section, if λ1 > 0, the sequence {w}∞j=0 defined by

wj =
1

∥Ajy∥
Ajy converges to

1

∥v1∥
v1, an eigenvector of norm one associated to the eigenvalue

λ1. If λ1 < 0, the sequence {w}∞j=0 defined by wj =
1

∥A2jy∥
A2jy converges to

1

∥v1∥
v1.

11.4 Inverse Power Method

Until now, we have presented methods to approximate the largest eigenvalue in absolute value
of a n × n matrix A. How can we find the other eigenvalues? We present in this section
one possible method to answer this question. Suppose that {λi}ni=1 are the eigenvalues of A
counted with their algebraic multiplicity.

Choose q ≠ λi for all i. The matrix A−q Id is invertible and the eignevalues of (A−q Id)−1
are of the form 1/(λi + q), where λi is an eigenvalue of A. In fact, vi is an eigenvector of A
associated to the eigenvalue λi if and only if

(λi − q)vi = (A − q Id)vi .

This is if and only if

(A − q Id)−1 vi =
1

λi − q
vi .

This last equation says that vi is an eigenvector of A − q Id associated to the eigenvalue
1/(λi − q).

Suppose that k is an index such that 1/∣λk − q∣ > 1/∣λi − q∣ for i ≠ k. We may then use
the iterative power method with (A − q Id)−1 instead of A, to approximate the eigenvalue
1/(λk − q) and an eigenvector associated to this eigenvalue. This gives us an approximation
of the eigenvalue λk of A.

If A is symmetric, then (A − q Id)−1 is also a symmetric matrix. Hence, we may use the
Rayleigh quotient to approximate the eigenvalue 1/(λk − q) of (A − q Id)−1.

242 11. Iterative Methods to Approximate Eigenvalues

11.5 Householder’s Matrices and Hessemberg Forms

The (principal) subdiagonal of an n × n matrix B is the set formed by the components
bi+1,i for i = 1, 2, . . .n − 1. Given an n × n matrix A, the goal of this section is to find a
matrix B conjugate to A such that the elements below the principal subdiagonal are zero
(i.e. bi,j = 0 for i > j + 1). If A is symmetric, then B is also symmetric. Thus B satisfies
bi,j = 0 for ∣i − j∣ ≥ 2. Such matrices are called tridiagonal matrices.

In the next section, we will present a method to find eignevalues of symmetric tridiagonal
matrices like B above. But first, we have to review some concepts in linear algebra.

Definition 11.5.1

Let w ∈ Rn be a non-null vector. the n × n Householder matrix Hw is defined by

Hw = Idn −(
2

w⊺w
)ww⊺ .

We present a geometric interpretation of the Householder matrix. Let Π be the n − 1
dimensional subspace of Rn defined by Π = {v ∈ Rn ∶ v � w} and L ∶ Rn → Rn be the
reflection through Π.

0

Π

z

w

x

y

L is a linear mapping. If y = L(x), we have that y = x + αw for some α ∈ R. Thus

z = x + α
2
w ∈ Π and z � w.

From

0 =w⊺z =w⊺ (x + α
2
w) =w⊺x + α

2
w⊺w ,

we get

α = −2w
⊺x

w⊺w
.

Hence,

L(x) = x + αw = x − (2w
⊺x

w⊺w
)w = x − (2

w⊺w
)ww⊺x =Hw(x) .

Thus Hw is the reflection through the subspace orthogonal to w.

Theorem 11.5.2

Let Hw be an n × n Householder matrix. Then

1. Hw is symmetric and orthogonal.

11.5. Householder’s Matrices and Hessemberg Forms 243

2. Hw(x) is the reflection of the vector x through the subspace orthogonal to w.

3. det(Hw) = −1.

4. For any x and y with x ≠ y, there exists w ∈ Rn such that Hw(x) is a scalar
multiple of y. In fact,

(i) if x ≠ λy with λ > 0, then we can takew = x−∥x∥2
∥y∥2

y. We getHw(x) =
∥x∥2
∥y∥2

y.

(ii) if x ≠ λy with λ < 0, then we can take w = x + ∥x∥2
∥y∥2

y. We get Hw(x) =

−∥x∥2
∥y∥2

y.

Proof.
1) We have

H⊺w = (Idn −(
2

w⊺w
)ww⊺)

⊺
= Id⊺n −(

2

w⊺w
) (ww⊺)⊺

= Idn −(
2

w⊺w
)ww⊺ =Hw .

Thus, Hw is symmetric. Moreover,

H2
w = (Idn −(

2

w⊺w
)ww⊺)(Idn −(

2

w⊺w
)ww⊺)

= Idn −(
4

w⊺w
)ww⊺ + (4

(w⊺w)2
)ww⊺ww⊺

= Idn −(
4

w⊺w
)ww⊺ + (4

(w⊺w)2
)w (w⊺w)w⊺ = Idn .

Thus H−1w =Hw =H⊺w implies that Hw is orthogonal.

2) This has been proved before the statement of the theorem.

3) Let {v1,v2, . . . ,vn−1} be an orthogonal basis of Π = {v ∈ Rn ∶ v � w}. Then
{w,v1,v2, . . . ,vn−1} is an orthogonal basis of Rn. Since Hw(w) = −w and Hw(vi) = vi for
all i, we have that −1 is an eigenvalue of algebraic and geometric multiplicity one while 1 is
an eigenvalue of algebraic and geometric multiplicity n − 1. Hence, since det(Hw) is equal
to the product of the eigenvalues, we have that det(Hw) = −1.

Another way to show that det(Hw) = −1 is to consider the n × n matrix
A = (w v1 v2 . . . vn−1). We have that HwA = (−w v1 v2 . . . vn−1). Since HwA is
obtained from A by multiplying the first column of A by −1, we have that

det(Hw)det(A) = det(HwA) = −det(A)

244 11. Iterative Methods to Approximate Eigenvalues

Since det(A) ≠ 0, we get det(Hw) = −1.

4) For (i). it is enough to prove that
2w⊺x

w⊺w
= 1 for w = x− ∥x∥2

∥y∥2
y because this will implies

that

Hw(x) = x − (
2

w⊺w
)ww⊺x = x − (2w

⊺x

w⊺w
)w = x −w = ∥x∥2

∥y∥2
y .

0

Πw

x

y

w

Hw(x) =
∥x∥2
∥y∥2

y = x −w

Since x ≠ λy with λ > 0, we have that w ≠ 0. Hence,

w⊺x = (x − ∥x∥2
∥y∥2

y)
⊺

x = x⊺x − ∥x∥2
∥y∥2

y⊺x = ∥x∥22 −
∥x∥2
∥y∥2

y⊺x

and

w⊺w = (x⊺ − ∥x∥2
∥y∥2

y⊺)(x − ∥x∥2
∥y∥2

y) = x⊺x − ∥x∥2
∥y∥2

(y⊺x + x⊺y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=2y⊺x

+∥x∥
2
2

∥y∥22
y⊺y

= 2(∥x∥22 −
∥x∥2
∥y∥2

y⊺x) .

Thus
2w⊺x

w⊺w
= 1.

For (ii). it is also enough to prove that
2w⊺x

w⊺w
= 1 for w = x + ∥x∥2

∥y∥2
y because this will

implies that

Hw(x) = x − (
2

w⊺w
)ww⊺x = x − (2w

⊺x

w⊺w
)w = x −w = −∥x∥2

∥y∥2
y .

0

Πw

x
w

Hw(x) = −
∥x∥2
∥y∥2

y = x −w

y

Since x ≠ λy with λ < 0, we have that w ≠ 0. Hence,

w⊺x = (x + ∥x∥2
∥y∥2

y)
⊺

x = x⊺x + ∥x∥2
∥y∥2

y⊺x = ∥x∥22 +
∥x∥2
∥y∥2

y⊺x

11.5. Householder’s Matrices and Hessemberg Forms 245

and

w⊺w = (x⊺ + ∥x∥2
∥y∥2

y⊺)(x + ∥x∥2
∥y∥2

y) = x⊺x + ∥x∥2
∥y∥2

(y⊺x + x⊺y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=2y⊺x

+∥x∥
2
2

∥y∥22
y⊺y

= 2(∥x∥22 +
∥x∥2
∥y∥2

y⊺x) .

Thus
2w⊺x

w⊺w
= 1.

Algorithm 11.5.3 (QR Decomposition with Householder Matrices)

Let A be a n ×m matrix with entries in R.
1. Use item 4 of Theorem 11.5.2 to find w ∈ Rn such that Hw maps the first column

of A to a non-negative multiple of e1 in Rn. If the first column of A is already a
multiple of e1 ∈ Rn, take w = 0.

2. Let Q1 = Hw (when the first column of A is already a multiple of e1 ∈ Rn, then
Q1 = Idn) and let A1 = Q1A. The matrix Q1 is an orthogonal matrix. A1 is of
the form

A1 = (
R1 B1

0 C1
) ,

where R1 ∈ R.

3. Suppose that Ai is of the form

Ai = (
Ri Bi

0 Ci
) ,

where Ri is an i × i upper-triangular matrix. Use item 4 of Theorem 11.5.2
to find w ∈ Rn−i such that Hw maps the first column of Ci to a non-negative
multiple of e1 in Rn−i. If the first column of Ci is already a non-negative multiple
of e1 ∈ Rn−i, take w = 0.

4. Let

Qi+1 = (
Idi 0
0 Hw

)

(when the first column of Ci is already a non-negative multiple of e1 ∈ Rn−i, then
Qi+1 = Idn) and let Ai+1 = Qi+1Ai. The matrix Qi+1 is an orthogonal matrix. Ai+1
is of the form

Ai+1 = (
Ri+1 Bi+1
0 Ci+1

) ,

where Ri is an (i + 1) × (i + 1) upper-triangular matrix.

5. Repeat (3) and (4) with i replace by i + 1 until i = n − 1.
Then QnQn−1⋯Q1A = R is an upper-triangular matrix with non-negative entries on the
main diagonal. If Q = Q1Q2⋯Qn, then Q is an orthogonal matrix such that A = QR.

246 11. Iterative Methods to Approximate Eigenvalues

The QR decomposition with Householder matrices gives a method to solve linear systems
of equations of the form Ax = b, where A is an n ×m matrix and b ∈ Rn . Suppose that
A = QR is the QR decomposition of A. Since Q−1 = Q⊺, x is the solution of Ax = b if and
only if x is the solution of Rx = Q⊺b. The solution x of Rx = Q⊺b is found using backward
substitution.

Definition 11.5.4

We say that an n × n matrix M is in Hessemberg form if mi,j = 0 for j + 1 < i ≤ n
and 1 ≤ j ≤ n − 2.

Algorithm 11.5.5 (Hessemberg form)

Let A be a n × n -matrix with entries in R.

1. Suppose that

A = (T r⊺

s C
) ,

where T ∈ R. Use item 4 of Theorem 11.5.2 to find w1 ∈ Rn−1 such that Hw1

maps s to a multiple of e1 in Rn−1. If s is already a non-negative multiple of
e1 ∈ Rn−1, take w1 = 0.

2. Let

G1 = (
1 0
0 Hw1

)

(when s is already a non-negative multiple of e1 ∈ Rn−1, then G1 = Idn) and let
A1 = G1AG1. The matrix G1 is an orthogonal matrix. A1 is of the form

A1 = (
T1 B1

0 C1
) ,

where T1 is an 2 × 1 matrix.

3. Suppose that Ai is of the form

Ai = (
Ti Bi

0 Ci
) ,

where M = Ti is an (i + 1)× i matrix satisfying Mj,k = 0 for j > k + 1. Use item 4
of Theorem 11.5.2 to find wi+1 ∈ Rn−i−1 such that Hwi+1 maps the first column of
Ci to a multiple of e1 in Rn−i−1. If the first column of Ci is already a non-negative
multiple of e1 ∈ Rn−i−1, take wi+1 = 0.

4. Let

Gi+1 = (
Idi+1 0
0 Hwi+1

)

11.5. Householder’s Matrices and Hessemberg Forms 247

(when the first column of Ci is already a non-negative multiple of e1 ∈ Rn−i−1,
then Gi+1 = Idn) and let Ai+1 = Gi+1AiGi+1. The matrix Gi+1 is an orthogonal
matrix. Ai+1 is of the form

Ai+1 = (
Ti+1 Bi+1
0 Ci+1

) ,

where M = Ti+1 is an (i + 2) × (i + 1) matrix satisfying Mj,k = 0 for j > k + 1.

5. Repeat (3) and (4) with i replace by i + 1 until i = n − 3.

Then T = Gn−2Gn−3 . . .G1AG1G2⋯Gn−2 is a matrix in the Hessemberg form. If G =
G1G2⋯Gn−2, then the matrix G is an orthogonal matrix such that A = G⊺TG.

Our goal is now to implement efficiently the previous theorem to get, for any given matrix
A, an Hessemberg form conjugate to A. The implementation presented is based on [6].

11.5.1 Finding the vector wi

The first task is to find an efficient way to find the vector wi. Without lost of generality, we
will assume that ∥wi∥2 = 1. This rule out the possibility of using item 4 of Theorem 11.5.2
to find wi. Though this complicates the procedure to find wi, it is a small price to pay to
get a more efficient procedure to compute GiAi−1Gi later.

We have

Gi = (
Idi 0
0 Hwi

) ,

where M =Hwi
is an (n − i) × (n − i) matrix with the components

mj,k =
⎧⎪⎪⎨⎪⎪⎩

1 − 2w2
i,j if j = k

−2wi,jwi,k if j ≠ k

for 1 ≤ j, k ≤ n − i, and wi,j is the jth coordinates of the vector wi. We can write Ai−1 as

Ai−1 = (
B C
D E

) ,

where B is an i× i matrix in Hessemberg form, C is an i× (n − i) matrix, D is an (n − i)× i
matrix of the form

D =
⎛
⎜⎜⎜
⎝

0 0 . . . 0 d1,i
0 0 . . . 0 d2,i
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . 0 dn−i,i

⎞
⎟⎟⎟
⎠

and E is an (n − i) × (n − i) matrix. We then have

GiAi−1Gi = (
Idi 0
0 Hwi

)(B C
D E

)(Idi 0
0 Hwi

) = (B CHwi

Hwi
D Hwi

EHwi

) ,

248 11. Iterative Methods to Approximate Eigenvalues

where

Hwi
D =Hwi

⎛
⎜⎜⎜
⎝

0 0 . . . 0 d1,i
0 0 . . . 0 d2,i
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . 0 dn−i,i

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 . . . 0 d1,i − 2
n−i
∑
k=1

wi,1wi,kdk,i

0 0 . . . 0 d2,i − 2
n−i
∑
k=1

wi,2wi,kdk,i

⋮ ⋮ ⋱ ⋮ ⋮

0 0 . . . 0 dn−i,i − 2
n−i
∑
k=1

wi,n−iwi,kdk,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We need to have

dm,i − 2wi,m

n−i
∑
k=1

wi,kdk,i = 0 (11.5.1)

for m = 2, 3, . . . , n − i. Let σi =
n−i
∑
k=1

wi,kdk,i. We have

n−i
∑
m=1
(dm,i − 2wi,mσi)2 =

n−i
∑
m=1

d2m,i − 4σi
n−i
∑
m=1

wi,mdm,i + 4σ2
i

n−i
∑
m=1

w2
i,m =

n−i
∑
m=1

d2m,i , (11.5.2)

where we have used ∥wi∥2 = 1 and the definition of σi to get the last equality. From (11.5.1),
we have dm,i − 2wi,mσi = 0 for m = 2, 3, . . . , n − i. Hence, we get from (11.5.2) that

d1,i − 2wi,1σi = ϵ

¿
ÁÁÀ n−i
∑
m=1

d2m,i , (11.5.3)

where ϵ = 1 or −1. Let

si =

¿
ÁÁÀ n−i
∑
m=1

d2m,i . (11.5.4)

We may assume that si ≠ 0. If si = 0, then we may take wi = 0 because dm,i = 0 for m = 1, 2,
. . . , n − i. It follows from the definition of σi, (11.5.1), (11.5.3) and ∥wi∥2 = 1 that

σi = wi,1d1,i +
n−i
∑
k=2

wi,kdk,i = (2wi,1σi + ϵsi)wi,1 +
n−i
∑
k=2

wi,k (2wi,kσi)

= ϵsiwi,1 + 2σi
n−i
∑
k=1

w2
i,k = ϵsiwi,1 + 2σi .

Thus, σi = −ϵsiwi,1. If we substitute this expression in (11.5.3), we get d1,i + 2ϵw2
i,1si = ϵsi.

Hence,

w2
i,1 =

si − ϵd1,i
2si

. (11.5.5)

To avoid the possibility of a subtraction of two numbers almost equal, we take ϵ = − sgn(d1,i).
The formulae to compute wi,k for k > 1 will involve a division by wi,1. It is therefore important
to compute wi,1 as accurately as we can. The formula to compute wi,1 is

w2
i,1 =

si + ∣d1,i∣
2si

. (11.5.6)

11.5. Householder’s Matrices and Hessemberg Forms 249

For the other components of wi, we use (11.5.1) to get

0 = dm,i − 2wi,mσi = dm,i + 2wi,m (ϵsiwi,1)

for m = 2, 3, . . . , n − i. Thus

wi,m =
−dm,i

2ϵwi,1si
= sgn(d1,i)

dm,i

2wi,1si
(11.5.7)

for m = 2, 3, . . . , n − i.
Note that

w⊺i wi =
n−i
∑
k=1

w2
i,k = w2

i,1 +
n−i
∑
k=2

w2
i,k =

si + ϵd1,i
2si

+
n−i
∑
k=2

d2k,i
4w2

i,1s
2
i

=
si + ϵd1,i

2si
+ 1

4w2
i,1s

2
i

(
n−i
∑
k=1

d2k,i − d21,i) =
si + ϵd1,i

2si
+ 1

4w2
i,1s

2
i

(s2i − d21,i) . (11.5.8)

Since

4w2
i,1s

2
i = 4(

si + ϵd1,i
2si

) s2i = 2 (si + ϵd1,i) si ,

we get from (11.5.8) that

w⊺i wi =
si + ϵd1,i

2si
+ 1

2 (si + ϵd1,i) si
(s2i − d21,i)

=
(si + ϵd1,i) (si + ϵd1,i) + (s2i − d21,i)

2 (si + ϵd1,i) si
=

2s2i + 2ϵd1,isi
2 (si + ϵd1,i) si

= 1

as expected.

(11.5.6) and (11.5.7) are the formulae used to find the vectors wi ∈ Rn−i for i = 1, 2, . . . ,
n − 2.

11.5.2 Computing GiAi−1Gi

We now give an efficient way to compute GiAi−1Gi for each i. Let

vi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0

sgn(d1,i)si + d1,i
d2,i
⋮

dn−i,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (11.5.9)

250 11. Iterative Methods to Approximate Eigenvalues

Recall that the vector wi is represented algebraically by a (n − i) × 1 column matrix. We
get from (11.5.5) and (11.5.7) that

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0
wi

⎞
⎟⎟⎟⎟⎟⎟
⎠

=
sgn(d1,i)
2wi,1si

vi .

Thus

Gi = (
Idi 0
0 Hwi

) = Idn −2

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0
wi

⎞
⎟⎟⎟⎟⎟⎟
⎠

(0 0 ⋯ 0 w⊺i)

= Idn −2(
sgn(d1,i)
2wi,1si

)
2

viv
⊺
i = Idn −

1

2w2
i,1s

2
i

viv
⊺
i .

From (11.5.6), we get

2w2
i,1s

2
i = 2(

si + ∣d1,i∣
2si

) s2i = (si + ∣d1,i∣) si .

Hence, if we define

αi =
1

(si + ∣d1,i∣) si
, (11.5.10)

then Gi = Idn −αiviv
⊺
i . Let

xi = αiAi−1vi , yi = αiA
⊺
i−1vi , µi =

1

2
αiv

⊺
i xi ,

pi = yi − µivi and qi = xi − µivi .
(11.5.11)

We have

GiAi−1Gi = (Idn −αiviv
⊺
i)Ai−1 (Idn −αiviv

⊺
i)

= Ai−1 − αiviv
⊺
iAi−1 − αiAi−1viv

⊺
i + α2

iviv
⊺
iAi−1viv

⊺
i

= Ai−1 − vi (αiv
⊺
iAi−1 −

1

2
α2
iv
⊺
iAi−1viv

⊺
i)

− (αiAi−1vi −
1

2
α2
iviv

⊺
iAi−1vi)v⊺i

= Ai−1 − vi (y⊺i − µiv
⊺
i) − (xi − µivi)v⊺i

= Ai−1 − vip
⊺
i − qiv

⊺
i . (11.5.12)

We can combine (11.5.4), (11.5.9), (11.5.10), (11.5.11) and (11.5.12) to get the following
code.

11.5. Householder’s Matrices and Hessemberg Forms 251

Code 11.5.6 (Householder Reduction Algorithm)

To produce a matrix B in the Hessemberg form which is conjugate to the given matrix
A.
Input: The matrix A.
Output: The matrix B.

% function B = householder(A)

function B = householder(A)

dim = size(A,1);

for i = 1:dim-2

v = zeros(dim,1);

z = v;

% s_i

s = norm(A(i+1:dim,i));

if (s != 0)

% alpha_i

alpha = 1/((s + abs(A(i+1,i)))*s);

% v_i

v(i+1,1) = sign(A(i+1,i))*s + A(i+1,i);

z(i+1,1) = alpha*v(i+1,1);

v(i+2:dim,1) = A(i+2:dim,i);

z(i+2:dim,1) = alpha*v(i+2:dim,1);

% x_i and y_i

x = A*z;

y = A’*z;

% mu_i

mu = (alpha * (v’ *x))/2;

% p_i and q_i

z = mu*v;

p = y - z;

q = x - z;

% A_i

A = A - v * p’ - q*v’;

end

end

B = A;

end

252 11. Iterative Methods to Approximate Eigenvalues

Remark 11.5.7

1. The previous algorithm requires O(4n2) multiplications to compute Ai from Ai−1. The
direct product GiAi−1Gi requires O(2n3) multiplications.

2. If A is symmetric, it is easy to prove by induction that the matrices Ai are symmetric for
all i because the Gi are symmetric. The resulting matrix B is a symmetric tridiagonal
matrix. The previous algorithm may also be improved because xi = yi and pi = qi.

♠
Since the resulting matrix T given by the Householder Reduction Algorithm is conjugate

to the given matrix A, the matrices A and T have the same eigenvalues. In particular, if A is
symmetric, then T is a symmetric tridiagonal matrix. The next section will present a method
to compute the eigenvalues of a symmetric tridiagonal matrix T , hence the eigenvalues of A.

We now present a theoretical method to find the eigenvalues of a symmetric tridiagonal
n × n matrix T = (ti,j). We say theoretical because it is not the best method to compute
eigenvalues of a matrix. Let

Mi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

t1,1 − λ t1,2 0 0 . . . 0 0 0
t2,1 t2,2 − λ t2,3 0 . . . 0 0 0
0 t3,2 t3,3 − λ t3,4 . . . 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 . . . ti−1,i−2 ti−1,i−1 − λ ti−1,i
0 0 0 0 . . . 0 ti,i−1 ti,i − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and pi(λ) = detMi for i = 1, 2, . . . , n. We have T = Mn. Let p0(λ) = 1. Developing
the determinant of Mi along the last row and using the symmetry of T (in particular,
ti,i−1 = ti−1,i), we get

pi(λ) = (ti,i − λ)pi−1(λ) − t2i,i−1pi−2(λ) , i = 2,4, . . . , n . (11.5.13)

Only 3n− 6 multiplications are needed to compute the determinant of T ; a lot less than the
n! multiplication needed for a full ordinary n × n matrix.

Theorem 11.5.8

Consider a symmetric tridiagonal matrix T . If ti,i−1 ≠ 0 for 2 ≤ i ≤ n, then the roots of
pi are distinct and between any two consecutive roots of pi there is a root of pi−1.

Proof.
1) We first show that pi and pi−1 cannot have a common root. Suppose that c is a common
root of pi and pi−1 for some i. If i ≥ 2, we get from (11.5.13) that c is also a root of pi−2
because ti,i−1 ≠ 0. Thus, inductively, c is a root of p0 which is impossible because p0(x) = 1
for all x.

2) We prove by induction that the roots of pi are distinct and between any two roots of pi
there is a root of pi−1

11.5. Householder’s Matrices and Hessemberg Forms 253

We have p1(λ) = t1,1 − λ and p2(λ) = (t2,2 − λ)(t1,1 − λ) − t22,1. The only root of p1 is t1,1.
Since p2(t1,1) = −t22,1 < 0 and p2 is a polynomial of degree 2 of the form p2(λ) = λ2 + l.o.t.
(l.o.t. stands for lower order terms in λ), it has two distinct roots; one smaller than t1,1 and
one bigger that t1,1. Thus, the hypothesis of induction is true for i = 2.

Let’s assume that the hypothesis of induction is true for i. We have that

pi+1(λ) = (ti+1,i+1 − λ)pi(λ) − t2i+1,ipi−1(λ) .

Let α be the largest root of pi. We assume first that i is even. We have

pi−1(λ) = (−1)i−1λi−1 + l.o.t. = −λi−1 + l.o.t.

Since pi−1 does not have roots bigger than α because the roots of pi−1 are between the roots
of pi by the induction hypothesis, we have that pi−1(α) < 0. Since

pi+1(α) = (ti+1,i+1 − α)pi(α) − t2i+1,ipi−1(α) = −t2i+1,ipi−1(α) ,

we have that pi+1(α) > 0. But we also have that

pi+1(λ) = (−1)i+1λi+1 + l.o.t. = −λi+1 + l.o.t.

Thus, there must be a root of pi+1 greater than α.

Similarly, if i is odd, we have

pi−1(λ) = (−1)i−1λi−1 + l.o.t. = λi−1 + l.o.t.

Since pi−1 does not have roots bigger than α because the roots of pi−1 are between the roots
of pi by the induction hypothesis, we have that pi−1(α) > 0. Since

pi+1(α) = (ti+1,i+1 − α)pi(α) − t2i+1,ipi−1(α) = −t2i+1,ipi−1(α) ,

we have that pi+1(α) < 0. But we also have that

pi+1(λ) = (−1)i+1λi+1 + l.o.t. = λi+1 + l.o.t.

Thus, again, there must be a root of pi+1 greater than α.

Proceeding as we did for the largest root of pi, we can show that pi+1 has a root smaller
than the smallest root of pi.

Let’s α < β be two consecutive roots of pi. Since there is one (and only one) root of pi−1
between two consecutive roots of pi by the hypothesis of induction, pi−1(α) and pi−1(β) must
be of opposite sign. However, since

pi+1(α) = (ti+1,i+1 − α)pi(α) − t2i+1,ipi−1(α) = −t2i+1,ipi−1(α)

and

pi+1(β) = (ti+1,i+1 − β)pi(β) − t2i+1,ipi−1(β) = −t2i+1,ipi−1(β) ,

254 11. Iterative Methods to Approximate Eigenvalues

we have that pi+1(α) and pi+1(β) must also be of opposite sign. So there is a root of pi+1
between the two consecutive roots, α and β, of pi.

The distinct roots βj for 1 ≤ j ≤ i of pi divide the real line into n+1 subintervals]−∞, β1[,
]βj, βj+1[for 1 ≤ j < i, and]βi,∞[. We have shown that there is a root of pi+1 in each of these
subintervals. Since pi+1 is of degree i+1, those are all the roots of pi+1 and they separate the
roots of pi. This complete the proof by induction.

The number Ni(β) of sign agreements at λ = β ∈ R is the number of times that
sgn(pj(β)) = sgn(pj−1(β)) for j = 1, 2, . . . , i. By convention, we assume that there is a sign
agreement when pj(β) = 0. For instance, there are three sign agreements in the sequence
+,+,+,−,−. There are also three sign agreements in the sequence +,+,0,−,−.

The following result follows from the previous theorem.

Proposition 11.5.9

Consider a symmetric tridiagonal matrix T . Ni(β) is equal to the number of roots of
pi which are greater or equal to β ∈ R.

Proof.
As in the previous theorem, we will first assume that ti,i−1 ≠ 0 for 2 ≤ i ≤ n. So, we have that
the roots pi are distinct and between any two consecutive roots of pi there is a root of pi−1.

The proof is by induction on i, the degree of the polynomial pi.

Since p0(λ) = 1 and p1(λ) = t1,1 − λ, we have that

N1(β) =
⎧⎪⎪⎨⎪⎪⎩

1 if β ≤ t1,1
0 if β > t1,1

λ
t1,1

y = p0(λ)
y = p1(λ)

β

y

Effectively, p1 has one root greater or equal to β if β ≤ t1,1 and no root greater or equal to β
if β > t1,1. Thus, the induction hypothesis is true for i = 1.

Let’s assume that the result is true for i; namely, pi has Ni(β) roots greater or equal to
β.

Let αi,1 < αi,2 < . . . < αi,i and αi+1,1 < αi+1,2 . . . < αi+1,i+1 be the roots of pi and pi+1
respectively. From the previous theorem, we know that

αi+1,1 < αi,1 < αi+1,2 < αi,2 < . . . < αi,i < αi+1,i+1 .

Suppose that Ni(β) = i − j. By induction, this means that β ≤ αi,1 if j = 0, αi,j < β ≤ αi,j+1 if
0 < j < i, or β > αi,i if j = i.

11.5. Householder’s Matrices and Hessemberg Forms 255

When i is even, we have pi(λ) = λi + l.o.t. and pi+1(λ) = −λi+1 + l.o.t.. We have sketched
the case i = 2 in the following figure.

y

β

y = p3(λ)

α2,1

y = p2(λ)

λ
α3,3α2,2α3,1

α3,2

When i is odd, we have pi(λ) = −λi + l.o.t. and pi+1(λ) = λi+1 + l.o.t.. We have sketched the
case i = 3 in the following figure.

y

λ

y = p3(λ)

y = p4(λ)

α4,1 α4,4

α3,3

α3,1 α4,2

β

α4,3

α3,2

We consider first the case for 0 < j < i. We have that αi,j < αi+1,j+1 ≤ αi,j+1. Either
αi,j < β ≤ αi+1,j+1 or αi+1,j+1 < β ≤ αi,j+1

1. When αi,j < β ≤ αi+1,j+1, we have that sgn(pi(β)) = sgn(pi+1(β)) or pi+1(β) = 0. Thus,
we have an additional sign agreement and Ni+1(β) = 1+Ni(β) = 1+(i−j). We effectively
have i + 1 − j roots of pi+1 greater or equal to β; namely, αi+1,k for k > j.

2. When αi+1,j+1 < β ≤ αi,j+1, we have that sgn(pi(β)) ≠ sgn(pi+1(β)). Thus, we have no
additional sign agreement and Ni+1(β) = Ni(β) = i−j. We effectively have (i+1)−(j+1)
roots of pi+1 greater or equal to β; namely, αi+1,k for k > j + 1.

A similar argument can be used for j = 0 and j = i to prove that pi+1 has Ni+1(β) roots
greater or equal to β.

To show that the assumption that ti,i−1 ≠ 0 for 2 ≤ i ≤ n is not needed, we note that
any symmetric tridiagonal matrix with some null elements on its subdiagonal is the limit of
symmetric tridiagonal matrices with no null element on its subdiagonal. We leave the details
to the reader.

We can use this theorem and the bisection method to find all the roots of pn.

Algorithm 11.5.10

Algorithm Suppose that [a, b] is an interval containing all the roots of pn. Such an
interval can be found with the help of Gerschgorin theorem. We obviously have that

256 11. Iterative Methods to Approximate Eigenvalues

N(a) = n and N(b) = 0. To find all the roots of pn, one may proceed as follows for
i = 1, 2, . . . , n.

1. Let α = a and β = b.

2. Let m = (α + β)/2. m is the midpoint of the interval [α,β].

3. If Nn(m) = i, then a single root of pn exists in [m,β]. The bisection method
may be used to approximate the root of pn in the interval [m,β].
If Nn(m) > i, set α =m and go back to (2).
If Nn(m) < i, set β =m and go back to (2).

4. Let β =m and go back to (1) until all n roots of pn have been found.

This method to find all the roots of pn may not work if the distance between two roots
of pn is smaller than the accuracy of the computer used. If ti,i−1 ≠ 0 for 2 ≤ i ≤ n is not
satisfied, there may be roots of algebraic multiplicity greater than one. The method will not
provide the algebraic multiplicity of the roots. At the third step of the algorithm above, if
Nn(m) > i for all computed midpoints. One may temporary say that b is a root of algebraic
multiplicity Nn(m) − i + 1 and proceed to step (4) with i = Nn(m) + 1. The roots of pn very
closed to b have to be determined using another approach.

11.6 QR Algorithm

The mean goal of this section is to present a method to compute the eigenvalues of a sym-
metric tridiagonal matrix T .

Let A be an n × n matrix. Starting with A0 = A, we produce recursively a sequence of
n × n matrices {Ai}∞i=0 which are all conjugated to A as follows. Given the n × n matrix Ai,
we write Ai as Ai = QiRi, where Qi is an orthogonal matrix and Ri is an upper-triangular
matrix. The next matrix is defined by Ai+1 = RiQi.

We have that
Ai+1 = RiQi = Q⊺iAiQi .

By induction,

Ai+1 = Q⊺iQ⊺i−1 . . .Q⊺0A0Q0 . . .Qi−1Qi = (Q0 . . .Qi−1Qi)⊺A0 (Q0 . . .Qi−1Qi) . (11.6.1)

Thus Ai is orthogonally conjugate to A. In particular, Ai and A have the same eigenvalues
with the same algebraic multiplicity.

In Section 11.6.2, we explain how to express a n × n matrix A as the product A = QR,
where Q is an orthogonal matrix and R is an upper-triangular matrix. The tool that we
will use to do this is the Gram-Schmidt orthogonalization process that we cover in the next
section.

11.6. QR Algorithm 257

11.6.1 Gram-Schmidt Orthogonalization Process

Definition 11.6.1 (Gram-Schmidt Orthogonalization Process)

Let ⟨⋅, ⋅⟩ be a scalar product on Rn and let {u1,u2, . . . ,uk} be a subset of Rn. We
define the set {v1,v2, . . . ,vk} as follows:

1. v1 = u1

2. For 2 ≤ i ≤ k, vi = ui −
i−1
∑
j=1
rj,ivj, where

rj,i =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨vj,ui⟩
⟨vj,vj⟩

if vj ≠ 0

0 if vj = 0

for 1 ≤ j < i.

The set {v1,v2, . . . ,vk} given by the Gram-Schmidt Orthogonalization Process has the
following properties.

Proposition 11.6.2

Let uj and vj for 1 ≤ j ≤ k be the vectors defined in Definition 11.6.1. Let Si =
{u1,u2, . . . ,ui} and Vi = span(Si) for 1 ≤ i ≤ k.

1. Vi = span(Ti) where Ti = {v1,v2, . . . ,vi}.

2. ⟨vp,vq⟩ = 0 for 1 ≤ p < q ≤ i.

3. vi = 0 if and only if ui ∈ Vi−1.

4. If Sk is a basis of Vk, then Tk is an orthogonal basis of V .

Remark 11.6.3
If Pj is the orthogonal projection of Rn onto Vj for 1 ≤ j ≤ k, we have that vi = ui −Pi−1(ui).
Items 2 and 4 of the previous proposition imply that all finite dimensional vector spaces have
an orthogonal basis. ♠

Proof.
1) The proof is by induction on i.

Since v1 = u1, we have that V1 = span(T1). So, the result is true for i = 1.
Suppose that the result is true for i; namely, Vi = span(Ti). To show that Vi+1 = span(Ti+1),

it suffices to show that ui+1 ∈ span(Ti+1) because uj ∈ span(Ti) ⊂ span(Ti+1) for 1 ≤ j ≤ i by

258 11. Iterative Methods to Approximate Eigenvalues

the hypothesis of induction. From

vi+1 = ui+1 −
i

∑
j=1
rj,i+1vj ,

we get

ui+1 = vi+1 +
i

∑
j=1
rj,i+1vj .

Thus ui+1 ∈ span(Ti+1).
2) The proof is again by induction on i.

Since v2 = u2 − r1,2v1 with

r1,2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨v1,u2⟩
⟨v1,v1⟩

if v1 ≠ 0

0 if v1 = 0

we get
⟨v1,v2⟩ = ⟨v1,u2 − r1,2v1⟩ = ⟨v1,u2⟩ − r1,2 ⟨v1,v1⟩ = 0 .

So the result is true for i = 2.
Suppose that the result is true for i; namely, ⟨vp,vq⟩ = 0 for 1 ≤ p < q ≤ i. To prove that

⟨vp,vq⟩ = 0 for 1 ≤ p < q ≤ i + 1, it suffices to prove that ⟨vm,vi+1⟩ = 0 for 1 ≤ m ≤ i. Since

vi+1 = ui+1 −
i

∑
j=1
rj,i+1vj, where

rj,i+1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨vj,ui+1⟩
⟨vj,vj⟩

if vj ≠ 0

0 if vj = 0

we get

⟨vm,vi+1⟩ = ⟨vm,ui+1 −
i

∑
j=1
rj,i+1vj⟩ = ⟨vm,ui+1⟩ −

i

∑
j=1
rj,i+1 ⟨vm,vj⟩

= ⟨vm,ui+1⟩ − rm,i+1 ⟨vm,vm⟩ = 0

for 1 ≤m ≤ i. So the result is true for i + 1.

3) If vi = 0, then ui −
i−1
∑
j=1
rj,ivj = 0. This gives ui =

i−1
∑
j=1
rj,ivj. Thus ui ∈ Vi−1 because

Vi−1 = span(Ti−1) by (1). Conversely, if ui ∈ Vi−1 = span(Ti−1), we get from Proposition 11.1.9

that ui =
i

∑
j=1
ajvj with aj = rj,i. Thus, vi+1 = ui −

i−1
∑
j=1
rj,ivj = 0.

4) If we use (2), this follows from (1) with i = k.

11.6. QR Algorithm 259

Proposition 11.6.4

Let ⟨⋅, ⋅⟩ be the standard scalar product on Rn and let {v1,v2, . . . ,vk} be an orthonor-
mal basis of a subspace V of Rn. Let Q = (v1 v2 . . . vk). Then

1. Q⊺Q = Idk.

2. The orthogonal projection P on V is given by P = QQ⊺.

3. P is symmetric (i.e. P ⊺ = P).

4. P 2 = P .

5. P (Idn −P) = (Idn −P)P = 0.

6. (Idn −P)Q = 0.

Proof.
1) The component on the ith row and jth column of Q⊺Q is

⟨vi,vj⟩ = δi,j =
⎧⎪⎪⎨⎪⎪⎩

1 if i = j
0 if i ≠ j

2) Given v ∈ Rn,

QQ⊺v = Q
⎛
⎜⎜⎜
⎝

v⊺1x
v⊺2x
⋮

v⊺kx

⎞
⎟⎟⎟
⎠
=

k

∑
j=1
⟨vj,x⟩vj =

k

∑
j=1

⟨vj,x⟩
⟨vj,vj⟩

vj = Px

because ⟨vj,x⟩ = v⊺1x and ⟨vj,vj⟩ = 1 for 1 ≤ j ≤ k.
3) We have

P ⊺ = (QQ⊺)⊺ = (Q⊺)⊺Q⊺ = QQ⊺ = P .

4) We have

P 2 = (QQ⊺)(QQ⊺) = Q(Q⊺Q)Q⊺ = Q IdnQ
⊺ = QQ⊺ = P .

5) We have

P (Idn −P) = P − P 2 = P − P = 0 and (Idn −P)P = P − P 2 = P − P = 0 .

6) We have

(Idn −P)Q = Q − (QQ⊺)Q = Q −Q(Q⊺Q) = Q −Q Idk = Q −Q = 0 .

260 11. Iterative Methods to Approximate Eigenvalues

11.6.2 Normalized QR Decomposition

The Gram-Schmidt orthogonalization process given in Definition 11.6.1 can be summarize
as follows. Consider the n × k matrices A = (u1 u2 . . . uk) and Q0 = (v1 v2 . . . vk).
Let R0 be the k × k upper-triangular matrix

⎛
⎜⎜⎜⎜⎜⎜
⎝

r1,1 r1,2 r1,3 . . . r1,k
r2,1 r2,2 r2,3 . . . r2,k
r3,1 r3,2 r3,3 . . . r3,k
⋮ ⋮ ⋮ ⋱ ⋮
rk,1 rk,2 rk,3 . . . rk,k

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where

rj,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if j > i
1 if j = i
⟨vj,ui⟩
⟨vj,vj⟩

if j < i and vj ≠ 0

0 if j < i and vj = 0

.

Then A = Q0R0. This is called the unnormalized QR decomposition of the matrix A.

If we eliminate the null columns of Q0, we get a n × p matrix Q1 = (vj1 vj2 . . . vjp)
for some j1 < j2,< . . . < jp in {1,2, . . . , k} with p ≤ k. If we eliminate the rows other than the
rows j1, j2, . . . , jp from R0, we get the p × k upper-triangular matrix

R1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

rj1,1 rj1,2 rj1,3 . . . rj1,k
rj2,1 rj2,2 rj2,3 . . . rj2,k
rj3,1 rj3,2 rj3,3 . . . rj3,k
⋮ ⋮ ⋮ ⋱ ⋮

rjp,1 rjp,2 rjp,3 . . . rjp,k

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

We have A = Q1R1. Finally, if we define the n × p matrix

Q = Q1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

∥vj1∥
0 . . . 0

0
1

∥vj2∥
. . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . .

1

∥vjp∥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and the p × k matrix

R =
⎛
⎜⎜⎜
⎝

∥vj1∥ 0 . . . 0
0 ∥vj2∥ . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . ∥vjp∥

⎞
⎟⎟⎟
⎠
R1 ,

then A = QR. This is the (normalized) QR decomposition of A. We have that Q⊺Q = Idk

and R is upper-triangular. The columns of Q are the normalized columns of Q1.

The following result is an interesting consequence of the QR decomposition of a matrix.

11.6. QR Algorithm 261

Proposition 11.6.5

Let S = {u1,u2, . . . ,uk} be a subset of Rn and V = span(S). If A = (u1 u2 . . . uk)
and A = QR is the normalized QR decomposition of A, then P = QQ⊺ is the projection
on V .

Proof.

The set { 1

∥vj1∥
vj1 ,

1

∥vj2∥
vj2 , . . . ,

1

∥vjp∥
vjp ,} formed of the columns of Q is an orthonormal

basis of V . It follows from Proposition 11.6.4 that P = QQ⊺ is the projection on V .

Since our goal is to find the eigenvalues of a matrix, the interesting case of QR decom-
position is when A is a n × n matrix. Thus k = n in the previous presentation of the QR
decomposition. Moreover, we will assume that A is invertible. Thus, the set formed of the n
columns of A is linearly independent. This implies that Q0 = Q1 and R0 = R1 in the previous
discussion of the QR decomposition. Moreover, item 1 of Proposition 11.6.4 implies that Q
is an orthogonal matrix.

We now summarize the algorithm to compute the QR decomposition of an n×n invertible
matrix.

Algorithm 11.6.6 (Normalized QR decomposition)

Let A = (u1 u2 . . . un) and qi be the ith column of the matrix Q in the QR
decomposition A = QR.

r1,1 = ∥u1∥

q1 =
1

r1,1
u1

For i = 1, 2, . . .n − 1

rj,i+1 = u⊺i+1qj for j = 1,2, . . . , i

ri+1,i+1 = ∥ui+1 −
i

∑
j=1
rj,i+1qj∥

qi+1 =
1

ri+1.i+1
(ui+1 −

i

∑
j=1
rj,i+1qj)

Since ri,i > 0 for all i (i.e. the elements on the diagonal of R are all positive), Q is uniquely
determined.

Remark 11.6.7
For full non-singuliar matrix A, the algorithm above will take O(n3) multiplications to
produce the QR decomposition of A. However, if A in the Hessemberg form, the algorithm
will take only O(n2) multiplications to produce the QR decomposition of A. Even better,

262 11. Iterative Methods to Approximate Eigenvalues

if A is a symmetric tridiagonal matrix, the algorithm will take only O(n) multiplications to
produce the QR factorization of A. ♠

11.6.3 General QR Algorithm

We have presented all the techniques needed to execute the following algorithm.

Algorithm 11.6.8 (QR Algorithm)

Let A be an n × n matrix.

1. Let A0 = A.

2. Given the n × n matrix Ai, find a QR decomposition Ai = QiRi,

3. Let Ai+1 = RiQi. Then Ai+1 = Q⊺AiQ and Ai+1 is orthogonally similar to Ai.

4. Repeat (2) and (3) with i replace by i + 1.

The matrices Ai are orthogonally similar to A.

We shall now justify why this algorithm is useful to find the eigenvalues of a matrix.

Theorem 11.6.9 (Francis)

If A is a n×n matrix with n eigenvalues λ1, λ2, . . . , λn such that ∣λ1∣ < ∣λ2∣ < . . . < ∣λn∣,
then the sequence {Ai}∞i=0 converges toward an upper-triangular matrix B.

A proof of this result can be found in the article The QR Transformation: A Unitary
Analogue to the LR Transformation, Part 1, J. G. F. Francis, The Computer Journal, Vol.
4, Issue 3, 1961, pp. 265–271.

It follows from the previous theorem that the diagonal elements of Ai converge toward
the eigenvalues of A since the Ai’s are conjuagte to A.

If some of the eigenvalues of A have equal magnitude in absolute value, then the diagonal
of B may contain subblocks whose eigenvalues are the eigenvalues of equal magnitude. If
the subblocks are large (i.e. larger than 2 × 2 matrix), it may be difficult to compute these
eigenvalues.

Since ∣λ1∣ < ∣λ2∣ < . . . < ∣λn∣ is a very restrictive condition for the eigenvalues of A, we
need a less restrictive condition on the eigenvalues of A. To do that, we first consider the
convergence of the sequence {Ai}∞i=0.
Remark 11.6.10
If A is an Hessemberg form, then the matrices Ai produced by the QR algorithm are also in
Hessemberg form. We present a “graphical” proof of this claim. It is as good as an algebraic
proof without the mess of the indices. Suppose that Ai is in Hessemberg form and Ai = QiRi,
where Qi is orthogonal and Ri is upper-triangular. Since R−1i is also upper-triangular, we

11.6. QR Algorithm 263

have that

Qi = AiR
−1
i

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 . . . 0 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗
0 0 0 . . . ∗ ∗ ∗
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 . . . 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 . . . 0 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is in Hessemberg form. Hence,

Ai+1 = RiQi

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗
0 0 0 . . . ∗ ∗ ∗
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 . . . 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 . . . 0 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 . . . 0 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is in Hessember form.

Hence, if A is in Hessemberg form, the matrices Ai provided by the QR algorithm are
also in Hessemberg form. ♠

For the sake of determining the eigenvalues of a matrix A in Hessemberg form, the conver-
gence of the elements on the subdiagonal plays a fundamental role. If they converge rapidly
toward zero, then we will rapidly get good approximations for the eigenvalues of A even if
the components above the diagonal have not reached their limit yet. Suppose that all the
elements on the subdiagonal of Ai are null (the situation is rarely that simple), then the
diagonal of Ai has the eigenvalues of A because Ai is conjugate to A. This is true even if
all the other components of Ai have not reached their limit yet. This justify the following
definition.

Definition 11.6.11

Let A be a matrix in Hessemberg form. We say that the sequence {Ai}∞i=0 produce by
the QR algorithm converges if

max
2≤j≤n−1
M=Ai

∣mj+1,jmj,j−1∣→ 0 as i→∞ .

The following theorem demonstrates the importance of the elements on the subdiagonal
of the matrices Ai.

264 11. Iterative Methods to Approximate Eigenvalues

Theorem 11.6.12 (Parlett)

Let A be a n × n matrix in Hessemberg form. The sequence of matrices {Ai}∞i=0
produced with the QR algorithm converges as defined in the previous definition if and
only if each set of eigenvalues of A of the same magnitude in absolute value contains at
most two eigenvalues of even algebraic multiplicity or two eigenvalues of odd algebraic
multiplicity.

A proof of this theorem is given in the article Global Convergence of the Basic QR Algo-
rithm On Hessemberg Matrices, B. Parlett, Mathematics of Computation, Vol. 22, No. 104
(Oct. 1968), pp. 803-817.

The limit of the sequence {Ai}∞i=0 predicted by the previous theorem will be a matrix
having sub-blocks of dimension at most 2 × 2 on the diagonal. The eigenvalues of these
sub-blocks are the eigenvalues of A.

The convergence of the sequence {Ai}∞i=0 if A is in Hessemberg matrices A is not fast.
Moreover, the convergence of the sequence {Ai}∞i=0 is not faster for a symmetric tridiagonal
matrices A but the QR factorization of the Ai’s is fast (of the order of O(n) multiplications
as we have seen in Remark 11.6.7). In the next section, we present an efficient algorithm
to find an orthogonal matrix Qi and an upper-triangular matrix Ri for the factorization
Ai = QiRi in the case where Ai is a symmetric tridiagonal matrix.

Obviously, not all matrices are in Hessemberg form. However, we have seen that for
any given matrix, we can use Householder matrices to find a Hessemberg matrix conjugate
to it. Then the QR algorithm can be applied to this Hessemberg matrix. We summarize
this algorithm in the next theorem. In this statement, we also use Householder matrices to
find the QR decomposition instead of Gram-Schmidt as we have done before. We will not
elaborate on this approach in these notes. It is an interesting theoretical approach but not
computationally efficient.

Algorithm 11.6.13 (The QR Algorithm)

Let A be a n × n matrix with entries in R.

1. Let G1, G2, . . . , Gn−2 be n−2 Householder matrices (given by Algorithm 11.5.5)
such that A1 = G⊺AG is a matrix in Hessemberg form for G = G1G2⋯Gn−2.

2. Given the n × n matrix Ai in Hessemberg form, let Q1, Q2, . . . , Qn be n
Householder matrices (given by Algorithm 11.5.3) such that An = QR for
Q = Q1Q2⋯Qn and R an upper-triangular n × n matrix.

3. Let Ai+1 = RQ. Then Ai+1 = Q⊺AiQ and Ai+1 is orthogonally similar to Ai.

4. Repeat (2) and (3) with i replace by i + 1.

The matrices Ai are orthogonally similar to A.

11.6. QR Algorithm 265

11.6.4 QR Factorization for Symmetric Tridiagonal Matrices

Let

P1(θ) =
⎛
⎜
⎝

cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 Idn−2

⎞
⎟
⎠
, Pn−1(θ) =

⎛
⎜
⎝

Idn−2 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

⎞
⎟
⎠
,

and

Pj(θ) =
⎛
⎜⎜⎜
⎝

Idj−1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 Idn−j−1

⎞
⎟⎟⎟
⎠

for j = 2, 3 ,. . . , n − 2. Suppose that A is a symmetric tridiagonal matrix. Let A0 = A. We
explain how to use the matrices Pj(θ) to find a QR decomposition Ai = QiRi for i ≥ 0. Recall
that Ai+1 = QiRi.

Suppose that

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 b1 0 . . . 0 0 0
b1 a2 b2 . . . 0 0 0
0 b2 a3 . . . 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 . . . bn−2 an−1 bn−1
0 0 0 . . . 0 bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

To compute Qi and Ri in Ai = QiRi, choose θ1 such that

B1 = P1(θ1)Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1 β1 γ1 0 . . . 0 0
0 x2 y2 0 . . . 0 0
0 b2 a3 b3 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 . . . an−1 bn−1
0 0 0 0 . . . bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

;

namely,

α1 = a1 cos(θ1) + b1 sin(θ1) ,
β1 = b1 cos(θ1) + a2 sin(θ1) ,
γ1 = b2 sin(θ1) ,
x2 = −b1 sin(θ1) + a2 cos(θ1) ,
y2 = b2 cos(θ1)

(11.6.2)

and
0 = −a1 sin(θ1) + b1 cos(θ1) .

We have that cos2(θ1) + sin2(θ1) = 1 and 0 = −a1 sin(θ1) + b1 cos(θ1) are satisfied by

cos(θ1) =
a1√
a21 + b21

and sin(θ1) =
b1√
a21 + b21

. (11.6.3)

266 11. Iterative Methods to Approximate Eigenvalues

This is a possible choice.

Suppose that we have found θj and Bj for j = 1, 2, . . . , k with k < n − 2 such that

Bk = Pk(θk)Pk−1(θk−1) . . . P1(θ1)Ai

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1 β1 γ1 0 . . . 0 0 0 0 . . . 0 0
0 α2 β2 γ2 . . . 0 0 0 0 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 . . . αk βk γk 0 . . . 0 0
0 0 0 0 . . . 0 xk+1 yk+1 0 . . . 0 0
0 0 0 0 . . . 0 bk+1 ak+2 bk+2 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 . . . 0 0 0 0 . . . an−1 bn−1
0 0 0 0 . . . 0 0 0 0 . . . bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Choose θk+1 such that

Bk+1 = Pk+1(θk+1)Bk

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1 β1 γ1 0 . . . 0 0 0 0 . . . 0 0
0 α2 β2 γ2 . . . 0 0 0 0 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 . . . αk+1 βk+1 γk+1 0 . . . 0 0
0 0 0 0 . . . 0 xk+2 yk+2 0 . . . 0 0
0 0 0 0 . . . 0 bk+2 ak+3 bk+3 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 . . . 0 0 0 0 . . . an−1 bn−1
0 0 0 0 . . . 0 0 0 0 . . . bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

;

namely,

αk+1 = xk+1 cos(θk+1) + bk+1 sin(θk+1) ,
βk+1 = yk+1 cos(θk+1) + ak+2 sin(θk+1) ,
γk+1 = bk+2 sin(θk+1) ,
xk+2 = −yk+1 sin(θk+1) + ak+2 cos(θk+1) ,
yk+2 = bk+2 cos(θk+1)

(11.6.4)

and
0 = −xk+1 sin(θk+1) + bk+1 cos(θk+1) .

We have that cos2(θk+1) + sin2(θk+1) = 1 and 0 = −xk+1 sin(θk+1) + bk+1 cos(θk+1) are satisfied
by

cos(θk+1) =
xk+1√

x2k+1 + b2k+1
and sin(θk+1) =

bk+1√
x2k+1 + b2k+1

. (11.6.5)

Proceeding inductively, we can find θj and Bj for j = 1, 2, . . . , n − 2 such that

Bn−2 = Pn−2(θn−2)Pn−1(θn−1) . . . P1(θ1)Ai

11.6. QR Algorithm 267

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1 β1 γ1 0 . . . 0 0 0
0 α2 β2 γ2 . . . 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 . . . αn−2 βn−2 γn−2
0 0 0 0 . . . 0 xn−1 yn−1
0 0 0 0 . . . 0 bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Choose θn−1 such that

Bn−1 = Pn−1(θn−1)Bn−2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1 β1 γ1 0 . . . 0 0 0
0 α2 β2 γ2 . . . 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 . . . αn−2 βn−2 γn−2
0 0 0 0 . . . 0 αn−1 βn−1
0 0 0 0 . . . 0 0 αn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

;

namely,

αn−1 = xn−1 cos(θn−1) + bn−1 sin(θn−1) ,
βn−1 = yn−1 cos(θn−1) + an sin(θn−1) ,
αn = −yn−1 sin(θn−1) + an cos(θn−1)

(11.6.6)

and
0 = −xn−1 sin(θn−1) + bn−1 cos(θn−1) .

We have that cos2(θn−1) + sin2(θn−1) = 1 and 0 = −xn−1 sin(θn−1) + bn−1 cos(θn−1) are satisfied
by

cos(θn−1) =
xn−1√

x2n−1 + b2n−1
and sin(θn−1) =

bn−1√
x2n−1 + b2n−1

. (11.6.7)

We end up with the upper-triangular matrix

Bn−1 = Pn−1(θn−1)Pn−2(θn−2) . . . P1(θ1)Ai .

Let

Ri = Bn−1

and

Qi = (Pn−1(θn−1)Pn−2(θn−2) . . . P1(θ1))⊺ = P1(θ1)⊺P2(θ2)⊺ . . . Pn−1(θn−1)⊺

= P1(−θ1)P2(−θ2) . . . Pn−1(−θn−1) .

We have Ai = QiRi, where Ri is an upper-triangular matrix and Qi is an orthogonal matrix.

To complete the justification of the QR algorithm above for the symmetric tridiagonal
matrices, we now show that Ai is symmetric tridiagonal for all i. Since A is symmetric, it
follows by induction from (11.6.1) that Ai is symmetric (i.e. A⊺i = Ai) for all i. Moreover,
since A0 = A is in Hessemberg form, it follows from Remark 11.6.10 that Ai is in Hessemberg
form for all i. Thus, the matrix Ai is symmetric tridiagonal for all i.

268 11. Iterative Methods to Approximate Eigenvalues

11.6.5 Shifting Technique

We have mentioned before that the convergence of the sequence {Ai}∞i=0 provided by the QR
algorithm is not fast, even if A0 = A is symmetric tridiagonal. To accelerate the convergence
of the sequences, we present a technique similar to the shifting technique used for the inverse
power method.

Suppose that we have computed

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ai;1 bi;1 0 . . . 0 0 0
bi;1 ai;2 bi;2 . . . 0 0 0
0 bi;2 ai;3 . . . 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 . . . bi;n−2 ai;n−1 bi;n−1
0 0 0 . . . 0 bi;n−1 ai;n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

To compute Ai+1, we consider the matrix Ai − si Id, where si is the eigenvalue of

(ai;n−1 bi;n−1
bi;n−1 ai;n

)

which is closest to ai;n. Since Ai − si Id is symmetric tridiagonal, we may use the QR factor-
ization method of the previous section to write Ai − si Id = QiRi, where Qi is an orthogonal
matrix and Ri is an upper-triangular matrix. The matrix Ai+1 is defined by Ai+1 = RiQi as
usual.

We first prove by induction that

Ai+1 = Q⊺iQ⊺i−1 . . .Q⊺0A0Q0Q1 . . .Qi −
i

∑
j=0
sj Id . (11.6.8)

Since A0 − s0 Id = Q0R0 and A1 = R0Q0, we get

A1 = Q⊺0 (A0 − s0 Id)Q0 = Q⊺0A0Q0 − s0 Id .

This proves (11.6.8) for i = 0. Suppose that (11.6.8) is true for i = k; namely,

Ak+1 = Q⊺kQ⊺k−1 . . .Q⊺0A0Q0Q1 . . .Qk −
k

∑
j=0
sj Id .

Then Ak+1 − sk+1 Id = Qk+1Rk+1 and Ak+2 = Rk+1Qk+1 yield

Ak+2 = Q⊺k+1 (Ak+1 − sk+1 Id)Qk+1

= Q⊺k+1 (Q⊺kQ⊺k−1 . . .Q⊺0A0Q0Q1 . . .Qk −
k

∑
j=0
sj Id−sk+1 Id)Qk+1

= Q⊺k+1Q⊺k . . .Q⊺0A0Q0Q1 . . .Qk+1 − (
k+1
∑
j=0
sj)Q⊺k+1 IdQk+1

11.6. QR Algorithm 269

= Q⊺k+1Q⊺k . . .Q⊺0A0Q0Q1 . . .Qk+1 −
k+1
∑
j=0
sj Id ,

where we have used the hypothesis of induction for the second equality. This proves that
(11.6.8) is true for i = k + 1. By induction, (11.6.8) is true for all i.

Hence, the eigenvalues of A are of the form λ +
i

∑
j=0
sj, where λ is an eigenvalue of Ai+1.

If bi+1;n−1 is negligible (to be defined by the user), we may assume that bi+1,n−1 = 0 and thus

ai+1;n +
i

∑
j=0
sj is an eigenvalue of A.

To find the other eigenvalues of A, we consider the (n − 1) × (n − 1) matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ai+1;1 bi+1;1 0 . . . 0 0 0
bi+1;1 ai+1;2 bi+1;2 . . . 0 0 0
0 bi+1;2 ai+1;3 . . . 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 . . . bi+1;n−3 ai+1;n−2 bi+1;n−2
0 0 0 . . . 0 bi+1;n−2 ai+1;n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The eigenvalues of Ai+1 other than (one copy of) ai+1;n+
i

∑
j=0
sj “are” the eigenvalues of C. We

used quotation marks in the previous sentence because it is rigorously true only if bi+1,n−1 = 0,
not just when bi+1,n−1 is negligible. We repeat the previous QR algorithm with shifting with

A0 replaced by C to find an eigenvalue λ of C. We have that λ+
i

∑
j=0
sj is an eigenvalue of A.

In general, we can repeat recursively this procedure to approximate all eigenvalues of A.
The QR algorithm with shifting suffers from some of the weaknesses that the standard QR
algorithm has.

The following code implement the QR algorithm with shifting. The equations (11.6.2) to
(11.6.7) inclusively have been used to create this algorithm.

Code 11.6.14 (QR Algorithm with Shifting)

To find the eigenvalues of a symmetric tridiagonal matrix A.
Input: The components a1, a2, . . . , an, b1, b2, . . . , bn−1 of the symmetric tridiagonal
matrix A.
The maximum number N of iterations for the QR decomposition.
The value d such that numbers b satisfying ∣b∣ < d may be considered as null.
Output: An approximation for each eigenvalue of A if it is possible.

function E = QRshifting(a, b, N, d)

n = length(a);

E = repmat(NaN,n,1);

nE = 0;

s = 0; % sum of the shifts

270 11. Iterative Methods to Approximate Eigenvalues

for k = 1:N

fprintf(’%d ... ’,k);

% If n=1, we are done

if (n == 1)

nE = nE + 1;

E(nE) = a(1) + s;

return;

end

% If the matrix can be splitted into two symmetric tridiagonal

% matrices, we do so.

for j = 1:n-1

if (abs(b(j)) < d)

disp ’Splitting the matrix’;

E(nE+1:nE+j,1) = QRshifting(a(1:j),b(1:j-1), N, d) + s;

E(nE+j+1:n,1) = QRshifting(a(j+1:n),b(j+1:n-1), N, d) + s;

return;

end

end

% We compute the eigenvalues of the matrix

% [a_{n-1} b_{n-1}]

% [b_{n-1} a_n]

% We use the appropriate form of the formula to find the roots

% of a quadratic equation to avoid subtraction of almost equal

% numbers.

B = -(a(n-1) + a(n));

C = a(n)*a(n-1) - b(n-1)*b(n-1);

D = sqrt(B^2-4*C);

if (B > 0)

r1 = -2*C/(B+D);

r2 = -(B+D)/2;

else

r1 = (D-B)/2;

r2 = 2*C/(D-B);

end

% If we have only a 2 x 2 matrix, we have found approximations

% for the last two eigenvalues of A.

if (n == 2)

nE = nE + 1;

E(nE,1) = r1 + s;

nE = nE + 1;

E(nE,1) = r2 + s;

return;

11.6. QR Algorithm 271

end

% Chose the appropriate shift

if (abs(r1-a(n)) < abs(r2 -a(n)))

stmp = r1;

else

stmp = r2;

end

s = s + stmp;

a = a - stmp;

% Get the QR decomposition

x = a(1);

y = b(1);

for j = 1:n-1

alpha(j) = sqrt(x^2 +b(j)^2);

ccc(j) = x/alpha(j);

sss(j) = b(j)/alpha(j);

beta(j) = y*ccc(j) + a(j+1)*sss(j);

x = - y*sss(j) + a(j+1)*ccc(j);

if (j ~= n-1)

gamma(j) = b(j+1)*sss(j);

y = b(j+1)*ccc(j);

end

end

alpha(n) = x;

% Compute RQ knowing that the result is a symmetric tridiagonal matrix

a(1) = alpha(1)*ccc(1) + beta(1)*sss(1);

b(1) = alpha(2)*sss(1);

for j = 2:n-1;

a(j) = alpha(j)*ccc(j-1)*ccc(j) + beta(j)*sss(j);

b(j) = alpha(j+1)*sss(j);

end

a(n) = alpha(n)*ccc(n-1);

end

end

272 11. Iterative Methods to Approximate Eigenvalues

Chapter 12

Numerical Differentiation and
Integration

Readers have probably learned many techniques to compute derivatives and integrals in their
calculus courses. They probably remember how tricky and convoluted the computations can
be when the function is a little bit complex. They probably have also seen some examples of
integrals that cannot be evaluated using any of the integration methods. Powerful programs
doing symbolic computations can, to some extend, compute all the derivatives and integrals
but their answers are sometime very complicated formulae that still have to be evaluated
numerically. It is often less costly (in computer time) and more accurate to simply use
numerical methods to compute the derivative of a function at a point or the integral of a
function on an interval. This chapter introduces some of the most often used numerical
methods to compute derivative and evaluate integrals.

12.1 Numerical Differentiation

Let f ∶]a, b[→ R be a sufficiently continuously differentiable function and let p be the inter-
polating polynomial of f at some well chosen nodes x0. x1, . . . , xn in]a, b[. To develop
formulae to approximate f ′(x) at x ∈]a, b[, we use the interpolating polynomial p.

Theorem 12.1.1

Let f be a three times continuously differentiable function near a ∈ R. Then

f ′(a) = f(a + h) − f(a)
h

− 1

2
f ′′(η)h (12.1.1)

for some η between a and a + h.

Remark 12.1.2

1. (12.1.1) is called a forward difference formula if h > 0 and a backward difference
formula if h < 0.

273

274 12. Numerical Differentiation and Integration

2. If h is small, we have f ′(a) ≈ (f(a + h) − f(a))/h. The term −f ′′(η)h/2, which has
been dropped, is the truncation error.

♠

Proof.
If we use two nodes x0 and x1, we have

f(x) = f(x0) + f[x0, x1](x − x0) + f[x0, x1, x](x − x0)(x − x1) .

Hence,

f ′(x) = f[x0, x1] + f[x0, x1, x] ((x − x0) + (x − x1)) + (
d

dx
f[x0, x1, x]) (x − x0)(x − x1)

= f[x0, x1] + f[x0, x1, x] ((x − x0) + (x − x1)) + f[x0, x1, x, x] (x − x0)(x − x1)

= f[x0, x1] +
1

2
f ′′(η)((x − x0) + (x − x1)) +

1

3!
f ′′′(ξ)(x − x0)(x − x1) (12.1.2)

for some η and ξ in the smallest interval containing x0, x1 and x. If we choose x = x0 = a
and x1 = a + h with h ∈ R, (12.1.2) becomes

f ′(a) = f[a, a + h] − 1

2
f ′′(η)h

for some η between a and a + h.

Theorem 12.1.3 (Central Difference Formula)

Let f be a four times continuously differentiable function near a ∈ R. Then

f ′(a) = f(a + h) − f(a − h)
2h

− 1

6
f (3)(η)h2 (12.1.3)

for some η between a − h and a + h.

Remark 12.1.4
If h is small, f ′(a) ≈ (f(a + h) − f(a − h))/(2h) and the truncation error is the term

−1
6
f (3)(η)h2. ♠

Proof.
If we use three nodes x0, x1 and x2, we have

f(x) = f(x0) + f[x0, x1](x − x0) + f[x0, x1, x2](x − x0)(x − x1)
+ f[x0, x1, x2, x](x − x0)(x − x1)(x − x2) .

Hence,

f ′(x) = f[x0, x1] + f[x0, x1, x2]((x − x0) + (x − x1))

12.1. Numerical Differentiation 275

+ f[x0, x1, x2, x]((x − x1)(x − x2) + (x − x0)(x − x2) + (x − x0)(x − x1))

+ (d

dx
f[x0, x1, x2, x]) (x − x0)(x − x1)(x − x2)

= f[x0, x1] + f[x0, x1, x2]((x − x0) + (x − x1))
+ f[x0, x1, x2, x]((x − x1)(x − x2) + (x − x0)(x − x2) + (x − x0)(x − x1))
+ f[x0, x1, x2, x, x](x − x0)(x − x1)(x − x2)
= f[x0, x1] + f[x0, x1, x2]((x − x0) + (x − x1))

+ 1

3!
f (3)(η)((x − x1)(x − x2) + (x − x0)(x − x2) + (x − x0)(x − x1))

+ 1

4!
f (4)(ξ)(x − x0)(x − x1)(x − x2) (12.1.4)

for some η and ξ in the smallest interval containing x0, x1, x2 and x. If we choose x = x1 = a,
x0 = a − h and x2 = a + h with h ∈ R, (12.1.4) becomes

f ′(a) = f[a − h, a] + f[a − h, a, a + h]h − 1

3!
f (3)(η)h2

= f(a + h) − f(a − h)
2h

− 1

3!
f (3)(η)h2

for some η between a − h and a + h.

Remark 12.1.5
Due to rounding error, numerical differentiation is unstable. The truncation error decreases
as h decreases but rounding error increases as h decreases.

To illustrate this phenomenon, we consider the central difference formula (12.1.3). Let
fa−h be the computed value of f(a − h) and fa+h be the computed value of f(a + h). The
rounding errors in computing f(a−h) and f(a+h) are respectively E− = fa−h − f(a−h) and
E+ = fa+h − f(a + h).

From (12.1.3), we have

f ′(a) = (fa+h −E+) − (fa−h −E−)
2h

− 1

6
f (3)(η)h2 .

for η between a − h and a + h. The computed value used to approximate f ′(a) is

fa+h − fa−h
2h

(12.1.5)

and the error is

R(h) = E− −E+
2h

− 1

6
f (3)(η)h2 . (12.1.6)

We have assumed that the subtraction and division in (12.1.5) can be performed without
rounding error to simplify the discussion.

276 12. Numerical Differentiation and Integration

We may assume that E− and E+ have the same (small) magnitude. Moreover, if we
assume that f (3) is almost constant near a, then we see from (12.1.6) that ∣R(h)∣ increases
as h decreases. For instance, if f(x) = ln(x) and a = 2, we have

f ′(2) ≈ ln(2 + h) − ln(2 − h)
2h

(12.1.7)

with error

R(h) = E− −E+
2h

+ h2

3η3

for some η between 2 − h and 2 + h. If we assume that ∣E− −E+∣ ≈ 10−8 and η ≈ 2, then

∣R(h)∣ ≈ 10−8

2h
+ h2

3 × 23
= 10−8

2h
+ h

2

24
.

The graph of ∣R(h)∣ is given in Figure 12.1. ∣R(h)∣ effectively increases as h decreases.
Moreover, ∣R(h)∣ is minimal at h ≈ 0.003915. For this value, (12.1.7) gives f ′(2) ≈ 0.50000064
which is a good approximation of f ′(2) = 0.5. ♠

Figure 12.1: Graph of ∣R(h)∣ where R(y) = 10−8/(2h) + h2/24.

12.2 Richardson Extrapolation

Richardson extrapolation is also called extrapolation to the limit.

Let f ∶ R → R be a sufficiently continuously differentiable function and L(f) = f ′(c)

for some c ∈ R (or L(f) = ∫
b

a
f(x)dx as we will see later). Suppose that Lh(f) is an

approximation of L(f) satisfying

L(f) = Lh(f) +
∞
∑
j=1
Kj h

2j (12.2.1)

12.2. Richardson Extrapolation 277

for h near the origin. We now describe a procedure that generates better approximations of
L(f) than Lh(f) from a truncation point of view.

If we replace h in (12.2.1) by h/2 and h/22, we respectively get

L(f) = Lh/2(f) +
∞
∑
j=1
Kj (

h

2
)
2j

. (12.2.2)

and

L(f) = Lh/22(f) +
∞
∑
j=1
Kj (

h

22
)
2j

. (12.2.3)

If we subtract (12.2.1) from 4 times (12.2.2) and divide the result by 4 − 1, we get

L(f) = L1
h/2(f) +

1

4 − 1
(4

∞
∑
j=1
Kj (

h

2
)
2j

−
∞
∑
j=1
Kj h

2j)

= L1
h/2(f) +

1

4 − 1
(
∞
∑
j=1
(4Kj (

h

2
)
2j

− 4jKj (
h

2
)
2j

))

= L1
h/2(f) +

∞
∑
j=2

4 − 4j
4 − 1

Kj (
h

2
)
2j

, (12.2.4)

where

L1
h/2(f) =

4Lh/2(f) −Lh(f)
4 − 1

is an approximation of L(f) with truncation error −K2 h4/4 + O(h6). Recall that the ex-
pression O(hk) replaces a function g(h) for which there exists a constant M such that
∣g(h)∣ ≤Mhk for h closed to the origin. In theory, L1

h/2(f) is a better approximation of L(f)
than Lh/2(f) because, for h < 1 given, the truncation error for L1

h/2(f) in (12.2.4) is generally

smaller than the truncation error for Lh/2(f) in (12.2.2).

If we subtract (12.2.2) from 4 times (12.2.3) and divide the result by 4 − 1, we get

L(f) = L1
h/22(f) +

1

4 − 1
(4

∞
∑
j=1
Kj (

h

22
)
2j

−
∞
∑
j=1
Kj (

h

2
)
2j

)

= L1
h/22(f) +

1

4 − 1
(
∞
∑
j=1
(4Kj (

h

22
)
2j

− 4jKj (
h

22
)
2j

))

= L1
h/22(f) +

∞
∑
j=2

4 − 4j
4 − 1

Kj (
h

22
)
2j

, (12.2.5)

where

L1
h/22(f) =

4Lh/22(f) −Lh/2(f)
4 − 1

is an approximation of L(f) with truncation error −K2 h4/43 +O(h6).

278 12. Numerical Differentiation and Integration

In the spirit of the discussion above, we can easily prove by induction that

L(f) = L1
h/2k(f) +

∞
∑
j=2

4 − 4j
4 − 1

Kj (
h

2k
)
2j

, (12.2.6)

where

L1
h/2k(f) =

4Lh/2k(f) −Lh/2k−1(f)
4 − 1

is an approximation of L(f) with truncation error O(h4).
If we subtract (12.2.4) from 42 times (12.2.5) and divide the result by 42 − 1, we get

L(f) = L2
h/22(f) +

1

42 − 1
(42

∞
∑
j=2

4 − 4j
4 − 1

Kj (
h

22
)
2j

−
∞
∑
j=2

4 − 4j
4 − 1

Kj (
h

2
)
2j

)

= L2
h/22(f) +

1

42 − 1

∞
∑
j=2
(424 − 4

j

4 − 1
Kj (

h

22
)
2j

− 4j 4 − 4
j

4 − 1
Kj (

h

22
)
2j

)

= L2
h/22(f) +

∞
∑
j=3

(42 − 4j)(4 − 4j)
(42 − 1)(4 − 1)

Kj (
h

22
)
2j

, (12.2.7)

where

L2
h/22(f) =

42L1
h/22(f) −L

1
h/2(f)

42 − 1
is an approximation of L(f) with truncation error K3h6/64 +O(h8). We may assume that
L2
h/22(f) is the best approximation of Lh(f) that we have found so far in this section.

For small h < 1, the truncation error is generally smaller for L2
h/22(f) than for the other

approximations.

In general, we generate the following table:

Order of the truncation error
O(h2) O(h4) O(h6) O(h8)
L0
h(f)

L0
h/2(f) L1

h/2(f) =
4L0

h/2(f)−L
0
h(f)

4−1

L0
h/4(f) L1

h/4(f) =
4L0

h/4(f)−L
0
h/2(f)

4−1 L2
h/4(f) =

42L1
h/4(f)−L

1
h/2(f)

42−1

L0
h/8(f) L1

h/8(f) =
4L0

h/8(f)−L
0
h/4(f)

4−1 L2
h/8(f) =

42L1
h/8(f)−L

1
h/4(f)

42−1 L3
h/8(f) =

43L2
h/8(f)−L

2
h/4(f)

43−1
⋮ ⋮ ⋮ ⋮

where L0
h/2k(f) = Lh/2k(f). The general formula is

Ln
h/2k(f) =

4nLn−1
h/2k(f) −L

n−1
h/2k−1(f)

4n − 1
(12.2.8)

for k ≥ n > 0.

12.2. Richardson Extrapolation 279

Proposition 12.2.1

Given any non-negative integer n, we have that

L(f) = Ln
h/2k(f) +

∞
∑

j=n+1
K̂j,n (

h

2k
)
2j

, (12.2.9)

where

K̂j,n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Kj if n = 0

(4n − 4j)(4n−1 − 4j) . . . (4 − 4j)
(4n − 1)(4n−1 − 1) . . . (4 − 1)

Kj if n > 0

for j ≥ n. The Kn are defined in (12.2.1). In particular, L(f) = Ln
h/2k +O(h

2n+2).

Proof.
The proof is by induction on n. From (12.2.1), we have that

L(f) = L0
h(f) +

∞
∑
j=1
Kj h

2j

for all h. Replacing h by h/2k with k ≥ 0 gives (12.2.9) for n = 0. The case n = 1 is (12.2.6).

We assume that (12.2.9) is true for n replaced by n − 1; namely,

L(f) = Ln−1
h/2k(f) +

∞
∑
j=n

K̂j,n−1 (
h

2k
)
2j

with

K̂j,n−1 =
(4n−1 − 4j)(4n−2 − 4j) . . . (4 − 4j)
(4n−1 − 1)(4n−2 − 1) . . . (4 − 1)

Kj .

Then (12.2.8) yields

Ln
h/2k(f) =

4nLn−1
h/2k(f) −L

n−1
h/2k−1(f)

4n − 1

= 1

4n − 1
(4n (L(f) −

∞
∑
j=n

K̂j,n−1 (
h

2k
)
2j

) − (L(f) −
∞
∑
j=n

K̂j,n−1 (
h

2k−1
)
2j

))

= 1

4n − 1
((4n − 1)L(f) −

∞
∑
j=n

K̂j,n−1 (4n − 22j) (
h

2k
)
2j

)

= L(f) −
∞
∑
j=n

4n − 4j
4n − 1

K̂j,n−1 (
h

2k
)
2j

= L(f) −
∞
∑

j=n+1
K̂j,n (

h

2k
)
2j

which is (12.2.9). This complete the proof by induction.

Remark 12.2.2

280 12. Numerical Differentiation and Integration

1. Before using Ln
h/2k as a good approximation of L(f), we should verify that

Ln−1
h/2k(f) −L

n−1
h/2k−1(f)

Ln−1
h/2k+1(f) −L

n−1
h/2k(f)

≈ 4n . (12.2.10)

This rule is motivated by the following observation. From the previous proposition,

Ln−1
h/2k(f) −L

n−1
h/2k−1(f)

Ln−1
h/2k+1(f) −L

n−1
h/2k(f)

=

∞
∑
j=n

K̂j,n−1 ((
h

2k
)
2j

− (h

2k−1
)
2j

)

∞
∑
j=n

K̂j,n−1 ((
h

2k+1
)
2j

− (h
2k
)
2j

)

=

∞
∑
j=n

K̂j,n−1 ((
h

2k
)
2j

− (h

2k−1
)
2j

)

∞
∑
j=n

K̂j,n−12
−2j ((h

2k
)
2j

− (h

2k−1
)
2j

)
.

If we assume that terms for j > n are negligible and drop them, we get (12.2.10). This
is a nice theoretical observation but, in concrete computations, this criterion has a big
weakness that limits its usefulness as shown in Question 12.13. Since we may expect
that Ln−1

h/2k+1(f) ≈ L
n−1
h/2k(f), the formula in (12.2.10) involves a division by a number

closed to 0. Thus, there is a large round off error in the computation of (12.2.10).

2. Let f ∶ [a, b]→ R be an analytic function at c ∈ [a, b]. The central difference formula

Lh(f) =
f(c + h) − f(c − h)

2h

is an approximation of L(f) = f ′(c) that satisfies (12.2.1). The Taylor series of f
around c gives

f(c + h) =
∞
∑
j=0

1

j!
f (j)(c)hj and f(c − h) =

∞
∑
j=0
(−1)j 1

j!
f (j)(c)hj .

Hence,

Lh(f) =
f(c + h) − f(c − h)

2h
= 1

2h
(
∞
∑
j=0
(1 − (−1)j) 1

j!
f (j)(c)hj)

=
∞
∑
j=0

1

(2j + 1)!
f (2j+1)(c)h2j .

Solving for f ′(c) gives

f ′(c) = L(f) = Lh(f) −
∞
∑
j=1

1

(2j + 1)!
f (2j+1)(c)h2j .

So, it is justified to use Richardson extrapolation with the central difference formula.

12.2. Richardson Extrapolation 281

3. The justification of Richardson extrapolation could have been based only on the hy-
pothesis that

L(f) = Lh(f) +
m

∑
j=1
Kj h

2j +O(h2n+1)

for m large enough instead of (12.2.1).

♠
Example 12.2.3
Use Richardson extrapolation with the central difference formula to approximate f ′(1) where
f(x) = sin(x).

We have

L(f) = f ′(1)

and

Lh(f) =
sin(1 + h) − sin(1 − h)

2h
.

With h = 1.6/2n for 0 ≤ n ≤ 7, we give the values of (12.2.8) and (12.2.10) in Table 12.1.

A good approximation of f ′(1) is given by L4
0.05(f) ≈ 0.54030230587. The exact value is

f ′(1) = cos(1) = 0.54030230586814 ♣

Code 12.2.4 (Richardson Table)

To generate the full Richardson table.
Input: The first column T (1,1) = Lh(f), T (2,1) = Lh/2(f), . . . , T (N,1) = Lh/2N−1(f)
of the Richardson table.
Output: The full Richardson table as represented in Table 12.1.

% T = richardson(col1)

function T = richardson(col1)

% default arguments

arguments

col1 (:,1) double;

end

N = size(col1,1);

T = repmat(NaN,N,2*N-1);

T(:,1) = col1;

for i=2:1:N

T(i:1:N,2*i-1) = ((4^(i-1))*T(i:1:N,2*i-3) - T(i-1:1:N-1,2*i-3))...

/(4^(i-1)-1);

if (i < N)

T(i:1:N-1,2*(i-1)) = (T(i:1:N-1,2*i-3) - T(i-1:1:N-2,2*i-3))...

282 12. Numerical Differentiation and Integration

h
L
h
(f
)

L
1 h
(f
)

L
2 h
(f
)

L
3 h
(f
)

1.
6

0
.3
37

54
49

51
63

0.
8

0
.4
84

48
64

37
55

3.
53

88
29

0.
53

34
66

93
28

6
0.
4

0
.5
26

00
90

70
74

3.
88

11
94

0.
53

98
49

94
84

7
15

.0
65

71
7

0.
54

02
75

48
28

5

0.
2

0
.5
36

70
74

87
67

3.
97

00
75

0.
54

02
73

62
66

5
15

.7
61

62
7

0.
54

03
01

87
18

6
61

.7
76

29
5

0.
54

03
02

29
07

3

0.
1

0
.5
39

40
22

52
17

3.
99

25
05

0.
54

03
00

50
70

0
15

.9
40

10
2

0.
54

03
02

29
90

3
63

.4
36

04
0

0.
54

03
02

30
58

1
25

0.
12

9
7
4
8

0.
0
5

0
.5
40

07
72

08
05

3.
99

81
25

0.
54

03
02

19
33

4
15

.9
85

00
7

0.
54

03
02

30
57

6
63

.8
59

83
8

0.
54

03
02

30
58

7
25

6.
95

8
3
5
3

0.
02

5
0
.5
40

24
60

26
14

3.
99

95
31

0.
54

03
02

29
88

3
15

.9
96

24
8

0.
54

03
02

30
58

7
63

.9
24

41
8

0.
54

03
02

30
58

7
11

7.
38

8
8
8
9

0.
01

25
0
.5
40

28
82

35
61

0.
54

03
02

30
54

3
0.
54

03
02

30
58

7
0.
54

03
02

30
58

7

n
L
4 h
(f
)

L
5 h
(f
)

L
6 h
(f
)

L
7 h
(f
)

1.
6

0.
8

0.
4

0.
2

0.
1

0
.5
40

30
23

05
87

0.
05

0
.5
40

30
23

05
87

−1
38

8.
8
88

88
88

89
0.
54

03
02

30
58

7
0.
0
25

0
.5
40

30
23

05
87

−0
.8
18

18
18

18
2

0.
54

03
02

30
58

7
−2

.0
00

00
00

00
0

0.
54

03
02

30
58

7
0.
01

25
0
.5
40

30
23

05
87

0.
54

03
02

30
58

7
0.
54

03
02

30
58

7
0.
54

03
02

30
58

7

Table 12.1: Richardson table to approximate sin(x) near x = 1

12.3. Closed and Open Newton-Cotes Formulae 283

./(T(i+1:1:N,2*i-3)-T(i:1:N-1,2*i-3));

end

end

end

12.3 Closed and Open Newton-Cotes Formulae

Let f ∶ [a, b] → R be a sufficiently continuously differentiable function on [a, b]. An ap-

proximation of ∫
b

a
f(x)dx is given by ∫

b

a
p(x)dx, where p is an interpolating polynomial

of f at some notes x0 < x1 < . . . xn. The closed Newton-Cotes formulae are based on
interpolating polynomials p of f at the points a = x0 < x1 < x2 < . . . < xn = b. The open
Newton-Cotes formulae are based on interpolating polynomials p of f at the points
a < x0 < x1 < x2 < . . . < xn < b.

The following result from Analysis will be quite useful to derive integration formulae.

Theorem 12.3.1 (Mean Value Theorem for Integrals)

Let a < b be two real numbers and f ∶ [a, b] → R be a continuous function. Let
g ∶ [a, b] → R be an integrable function on [a, b] such that g does not change sign on
[a, b]. Then there exists c between a and b such that

∫
b

a
f(x) g(x)dx = f(c) ∫

b

a
g(x)dx .

Theorem 12.3.2 (Trapezoidal Rule)

Suppose that f ∶ [a, b] → R is a twice continuously differentiable function on [a, b].
Then

∫
b

a
f(x)dx = f(a) + f(b)

2
(b − a) − f

′′(ξ) (b − a)3
12

for some ξ between a and b.

Proof.
We consider the interpolating polynomial p of f at the points x0 = a and x1 = b; namely,
p(x) = f(a) + f[a, b](x − a). We have that f(x) = p(x) + f[a, b, x](x − a)(x − b). Thus

∫
b

a
f(x)dx = ∫

b

a
f(a)dx + ∫

b

a
f[a, b](x − a)dx + ∫

b

a
f[a, b, x](x − a)(x − b)dx .

We have that

∫
b

a
f(a)dx + ∫

b

a
f[a, b](x − a)dx = f(a) (b − a) + f[a, b](b − a)

2

2
= f(a) + f(b)

2
(b − a)

284 12. Numerical Differentiation and Integration

and the truncation error is

∫
b

a
f[a, b, x](x − a)(x − b)dx = f[a, b, η]∫

b

a
(x − a)(x − b)dx = f

′′(ξ)
2 ∫

b

a
(x − a)(x − b)dx

= f
′′(ξ)
2
(x

3

3
− (a + b)x

2

2
+ abx)∣

b

a

= −f
′′(ξ) (b − a)3

12
.

The first equality is a consequence of the Mean Value Theorem for Integrals because (x −
a)(x−b) does not change sign on [a, b]. The value η is between a and b. The second equality
comes from Theorem 6.2.5 for some ξ between a and b.

Remark 12.3.3

1. The trapezoidal rule is a closed Newton-Cotes formula.

2. If ∣a − b∣ is small, ∫
b

a
f(x)dx ≈ f(a) + f(b)

2
(b − a) with the truncation error

−f ′′(ξ)(b − a)
3

2
.

♠

Theorem 12.3.4 (Simpson’s Rule)

Suppose that f ∶ [a, b]→ R is a four times continuously differentiable function on [a, b].
Then

∫
b

a
f(x)dx =

f(a) + 4f((a + b)/2) + f(b)
6

(b − a) − f
(4)(ξ) (b − a)5

2880

for some ξ between a and b.

Proof.
We consider the interpolating polynomial p of f at the points x0 = a, x1 = (a + b)/2 and
x2 = b; namely,

p(x) = f(a) + f[a, b](x − a) + f [a, a + b
2

, b] (x − a) (x − a + b
2
) .

We have that

f(x) = p(x) + f [a, a + b
2

, b, x] (x − a) (x − a + b
2
) (x − b) .

Thus

∫
b

a
f(x)dx = ∫

b

a
f(a)dx + ∫

b

a
f [a, a + b

2
] (x − a)dx

+ ∫
b

a
f [a, a + b

2
, b] (x − a) (x − a + b

2
) dx

+ ∫
b

a
f [a, a + b

2
, b, x] (x − a) (x − a + b

2
) (x − b)dx .

12.3. Closed and Open Newton-Cotes Formulae 285

Expanding the divide differences, we get

∫
b

a
f(a)dx + ∫

b

a
f [a, a + b

2
] (x − a)dx + ∫

b

a
f [a, a + b

2
, b] (x − a) (x − a + b

2
) dx

= f(a) (b − a) + f [a, a + b
2
] (b − a)

2

2
+ f [a, a + b

2
, b] (b − a)

3

12

= (f(a) + 4f (a + b
2
) + f(b))(b − a

6
) .

The truncation error is

R = ∫
b

a
f [a, a + b

2
, b, x] (x − a) (x − a + b

2
) (x − b)dx .

We cannot use the Mean Value Theorem for Integrals to evaluate this integral because

(x − a) (x − a + b
2
) (x − b) changes same sign on [a, b]. But, from

f [a + b
2

, a,
a + b
2

, b, x] =
f [a, a + b

2
, b, x] − f [a + b

2
, a,

a + b
2

, b]

x − a + b
2

,

we get

R = ∫
b

a
f [a + b

2
, a,

a + b
2

, b] (x − a) (x − a + b
2
) (x − b)dx

+ ∫
b

a
f [a + b

2
, a,

a + b
2

, b, x] (x − a) (x − a + b
2
)
2

(x − b)dx .

The first integral is 0 because (x − a) (x − a + b
2
) (x − b) is like an odd function with respect

to the line x = a + b
2

. We can use the Mean Value Theorem for Integrals for the second

integral because (x−a) (x − a + b
2
)
2

(x−b) does not change sign on [a, b]. Hence, there exists
η between a and b such that

R = f [a + b
2

, a,
a + b
2

, b, η]∫
b

a
(x − a) (x − a + b

2
)
2

(x − b)dx

= f
(4)(ξ)
4! ∫

b

a
(x − a) (x − a + b

2
)
2

(x − b)dx = −f
(4)(ξ)
4!

(b − a)5
120

= −f
(4)(ξ)(b − a)5

2880
.

The second equality follows from Theorem 6.2.5 for some ξ between a and b.

Remark 12.3.5

1. The Simpson’s rule is also a closed Newton-Cotes formula.

2. If ∣a − b∣ is small, ∫
b

a
f(x)dx ≈ 1

2
(f(a) + f (a + b

2
) + f(b)) (b − a) and the truncation

error is −f
(4)(ξ)
2880

(b − a)5.
♠

286 12. Numerical Differentiation and Integration

Theorem 12.3.6 (Midpoint Rule)

Suppose that f ∶ [a, b]→ R is twice continuously differentiable function on [a, b]. Then

∫
b

a
f(x)dx = f (a + b

2
) (b − a) + f

′′(ξ)
24
(b − a)3

for some ξ between a and b.

Proof.

We consider the interpolating polynomial p of f at the point x0 =
a + b
2

; namely, p(x) =

f (a + b
2
). We have that f(x) = f (a + b

2
) + f [a + b

2
, x] (x − a + b

2
). Thus

∫
b

a
f(x)dx = ∫

b

a
f (a + b

2
) dx + ∫

b

a
f [a + b

2
, x] (x − a)dx .

We have that

∫
b

a
f (a + b

2
) dx = f (a + b

2
) (b − a) .

The truncation error is

R = ∫
b

a
f [a + b

2
, x] (x − a + b

2
) dx .

We cannot use the Mean Value Theorem for Integrals to evaluate this integral because

(x − a + b
2
) changes same sign on [a, b]. But, from

f [a + b
2

,
a + b
2

, x] =
f [a + b

2
, x] − f [a + b

2
,
a + b
2
]

x − a + b
2

,

we get

R = ∫
b

a
f [a + b

2
,
a + b
2
] (x − a + b

2
) dx + ∫

b

a
f [a + b

2
,
a + b
2

, x] (x − a + b
2
)
2

dx .

The first integral is 0 because (x − a + b
2
) is like an odd function with respect to the line

x = a + b
2

. We can use the Mean Value Theorem for Integrals in the second integral because

(x − a + b
2
)
2

does not change sign on [a, b]. Hence, there exists η between a and b such that

R = f [a + b
2

,
a + b
2

, η]∫
b

a
(x − a + b

2
)
2

dx = f
′′(ξ)
2! ∫

b

a
(x − a + b

2
)
2

dx

= f
′′(ξ)
2!

(x − a + b
2
)
3

3
∣
b

a

= f
′′(ξ)
24
(b − a)3 .

The second equality follows from Theorem 6.2.5 for some ξ between a and b.

12.4. Composite Numerical Integration 287

Remark 12.3.7

1. The midpoint rule is an open Newton-Cotes formula.

2. If ∣a−b∣ is small, ∫
b

a
f(x)dx ≈ f (a + b

2
) (b−a) and the truncation error is

f ′′(ξ)
24
(b−a)3.

♠

12.4 Composite Numerical Integration

Let f ∶ [a, b] → R be a sufficiently continuously differentiable function. The trapezoidal,

Simpson’s and midpoint rules do not give good approximations of ∫
b

a
f(x)dx if the interval

[a, b] is large. To get better approximations of ∫
b

a
f(x)dx, we divide the interval [a, b] into

small subintervals of equal lengths and apply the trapezoidal, Simpson’s and midpoint rules
on each subintervals.

1. Let x0 = a < x1 < . . . < xn = b. Since ∫
b

a
f(x)dx =

n

∑
i=1
∫

xi

xi−1
f(x)dx, the sum of the

approximation of ∫
xi

xi−1
f(x)dx for 1 ≤ i ≤ n gives an approximation of ∫

b

a
f(x)dx. If

a linear interpolating polynomial of f at the two endpoints xi−1 and xi is used on each
subinterval [xi−1, xi] to approximate f , we get the composite trapezoidal rule.

2. Let x0 = a < x1 < . . . < xn=2m = b. Since ∫
b

a
f(x)dx =

m

∑
i=1
∫

x2i

x2i−2
f(x)dx, the sum of the

approximation of ∫
x2i

x2i−2
f(x)dx for 1 ≤ i ≤ m gives an approximation of ∫

b

a
f(x)dx.

If a quadratic interpolating polynomial of f at the three points x2i−2, x2i−1 and x2i is
used on each subinterval [x2i−2, x2i] to approximate f , we get the composite Simpson’s
rule.

3. Let x0 = a < x1 < . . . < xn=2m = b. Since ∫
b

a
f(x)dx =

m

∑
i=1
∫

x2i

x2i−2
f(x)dx, the sum of the

approximation of ∫
x2i

x2i−2
f(x)dx for 1 ≤ i ≤ m gives an approximation of ∫

b

a
f(x)dx.

If a constant interpolating polynomial of f at the middle point x2i−1 is used on each
subinterval [x2i−2, x2i] to approximate f , namely f(x) is approximated by f(x2i−1) for
all x ∈ [x2i−2, x2i], we get the composite midpoint rule.

288 12. Numerical Differentiation and Integration

12.4.1 Composite Trapezoidal Rule

Theorem 12.4.1 (Composite Trapezoidal Rule)

Let f ∶ [a, b]→ R be a twice continuously differentiable function. Let h = (b−a)/n and
xj = a + j h for j = 0, 1, . . . , n. Then

∫
b

a
f(x)dx = h

2
(f(x0) + 2

n−1
∑
j=1

f(xj) + f(xn)) −
f ′′(ξ) (b − a)

12
h2

for some ξ ∈ [a, b].

Proof.
Using the trapezoidal rule on [xj−1, xj] for 1 ≤ j ≤ n, we get that

∫
xj

xj−1
f(x)dx =

f(xj−1) + f(xj)
2

(xj − xj−1) −
f ′′(ξj)
12

(xj − xj−1)3

=
f(xj−1) + f(xj)

2
h −

f ′′(ξj)
12

h3

for some ξj ∈ [xj−1, xj], where we have used xj − xj−1 = h.
Since

min
x∈[a,b]

f ′′(x) ≤ 1

n

n

∑
j=1

f ′′(ξj) ≤ max
x∈[a,b]

f ′′(x) ,

there exists ξ ∈ [a, b] such that

f ′′(ξ) = 1

n

n

∑
j=1

f ′′(ξj)

by the Intermediate Value Theorem. Hence,

∫
b

a
f(x)dx =

n

∑
j=1
∫

xj

xj−1
f(x)dx = h

2

n

∑
j=1
(f(xj−1) + f(xj)) −

h3

12

n

∑
j=1

f ′′(ξj)

= h
2
(f(x0) + 2

n−1
∑
j=1

f(xj) + f(xn)) −
h3

12
nf ′′(ξ)

= h
2
(f(x0) + 2

n−1
∑
j=1

f(xj) + f(xn)) −
f ′′(ξ) (b − a)

12
h2

because h = (b − a)/n.

Remark 12.4.2

We have ∫
b

a
f(x)dx ≈ h

2
(f(x0) + 2

n−1
∑
j=1

f(xj) + f(xn)) and the truncation error is

−f
′′(ξ) (b − a)

12
h2. ♠

12.4. Composite Numerical Integration 289

b
x

y

a

y = f(x)

xjxj−1

Figure 12.2: Trapezoidal Rule

Example 12.4.3

Use the composite trapezoidal rule to approximate ∫
1

0
ex

2

dx. Choose the number of subin-

tervals such that the magnitude of the truncation error is smaller than 10−4.

We first choose n such that the magnitude of the truncation error in the composite
trapezoidal rule (Theorem 12.4.1) is smaller than 10−4; namely,

∣f
′′(ξ) (b − a)

12
h2∣ < 10−4 .

We have f(x) = ex2

, a = 0, b = 1, xj = jh and h = 1/n. Since ∣f ′′(x)∣ = (2 + 4x2)ex2

, we have

that ∣f ′′(x)∣ ≤ 6e for x ∈ [0,1]. The magnitude of the truncation error is at most
e

2n2
. We

choose n such that
e

2n2
< 10−4; namely, n > 116.5821991 With n = 117, we get h = 1/117

and

∫
b

a
f(x)dx ≈ 1

234
(f(0) + 2

116

∑
j=1

f(j/117) + f(1))

= 1

234
(1 + 2e(1/117)2 + 2e(2/117)2 + . . . + 2e(115/117)2 + 2e(116/117)2 + e) ≈ 1.46268 .

♣

12.4.2 Composite Simpson’s Rule

Theorem 12.4.4 (Composite Simpson’s Rule)

Let f ∶ [a, b] → R be a four times continuously differentiable function. Let n = 2m,
h = (b − a)/n and xj = a + j h for j = 0, 1, . . . , n. then

∫
b

a
f(x)dx = h

3
(f(x0) + 2

m−1
∑
j=1

f(x2j) + 4
m−1
∑
j=0

f(x2j+1) + f(xn)) −
f (4)(ξ) (b − a)

180
h4

for some ξ ∈ [a, b].

290 12. Numerical Differentiation and Integration

Proof.
Using the Simpson’s rule on [x2j−2, x2j] for 1 ≤ j ≤m, we get that

∫
x2j

x2j−2
f(x)dx =

f(x2j−2) + 4f(x2j−1) + f(x2j)
6

(x2j − x2j−2) −
f (4)(ξj)
2880

(x2j − x2j−2)5

=
f(x2j−2) + 4f(x2j−1) + f(x2j)

3
h −

f (4)(ξj)
90

h5

for some ξj ∈ [x2j−2, x2j], where we have used x2j − x2j−2 = 2h.
Since

min
x∈[a,b]

f (4)(x) ≤ 1

m

m

∑
j=1

f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x) ,

there exists ξ ∈ [a, b] such that

f (4)(ξ) = 1

m

m

∑
j=1

f (4)(ξj)

by the Intermediate Value Theorem. Hence,

∫
b

a
f(x)dx =

m

∑
j=1
∫

x2j

x2j−2
f(x)dx = h

3

m

∑
j=1
(f(x2j−2) + 4f(x2j−1) + f(x2j)) −

h5

90

m

∑
j=1

f (4)(ξj)

= h
3
(f(x0) + 2

m−1
∑
j=1

f(x2j) + 4
m−1
∑
j=0

f(x2j+1) + f(x2m)) −
h5

90
mf (4)(ξ)

= h
3
(f(x0) + 2

m−1
∑
j=1

f(x2j) + 4
m−1
∑
j=0

f(x2j+1) + f(x2m)) −
h4(b − a)

180
f (4)(ξ)

because h = (b − a)/(2m).

x

y = f(x)

b

y

a x2jx2j−1x2j−2

Figure 12.3: Simpson’s Rule

Remark 12.4.5

We have ∫
b

a
f(x)dx ≈ h

3
(f(x0) + 2

m−1
∑
j=1

f(x2j) + 4
m−1
∑
j=0

f(x2j+1) + f(xn)) with the

truncation error −f
(4)(ξ) (b − a)

180
h4. ♠

12.4. Composite Numerical Integration 291

Example 12.4.6

Use the composite Simpson’s rule to approximate ∫
1

0
ex

2

dx. Choose the number of subin-

tervals such that the magnitude of the truncation error is smaller than 10−4.

We first choose m such that the magnitude of the truncation error in the composite
Simpson’s rule (Theorem 12.4.4) is smaller than 10−4; namely,

∣f
(4)(ξ) (b − a)

180
h4∣ < 10−4 .

We have f(x) = ex2

, a = 0, b = 1, xj = jh and h = 1/n where n = 2m. Since ∣f (4)(x)∣ =
4ex

2 (3 + 12x2 + 4x4), we have that ∣f (4)(x)∣ ≤ 76e on [0,1]. Thus, the magnitude of the

truncation error is at most
76e

180(2m)4
= 19e

720m4
. We choose m such that

19e

720m4
< 10−4;

namely, m > 5.175220955 With m = 6, we get h = 1/12 and

∫
1

0
ex

2

dx ≈ 1

36
(f(0) + 2

5

∑
j=1

f(j/6) + 4
5

∑
j=0

f((2j + 1)/12) + f(1))

= 1

36
(1 + 2 (e(2/12)2 + . . . + e(10/12)2) + 4 (e(1/12)2 + . . . + e(11/12)2) + e) ≈ 1.46267 .

♣

Code 12.4.7 (Composite Simpson’s Rule)

To approximate the value of the integral

∫
b

a
f(x)dx .

Input: The function f (Denoted funct in the code below).
The endpoints a and b.
The number m which is half the number of subintervals that will be used.
Output: The approximation to the value of the integral.

% s = simpson(funct,a,b,m)

function s = simpson(funct,a,b,m)

N = 2*m;

h = (b-a)/N;

if (m > 1)

x = linspace(a,b,N+1);

x4 = x(2:2:N);

x2 = x(3:2:N-1);

s = h*(funct(a) + funct(b) + 2*sum(funct(x2)) + 4*sum(funct(x4)))/3;

else

s = h*(funct(a) + funct(b) + 4*funct(a+h))/3;

end

end

292 12. Numerical Differentiation and Integration

12.4.3 Composite Midpoint Rule

Theorem 12.4.8 (Composite Midpoint Rule)

Let f ∶ [a, b] → R be a twice continuously differentiable function. Let n = 2m, h =
(b − a)/n and xj = a + j h for j = 0, 1 . . . , 2m. Then

∫
b

a
f(x)dx = 2h

m

∑
j=1

f(x2j−1) +
f ′′(ξ) (b − a)

6
h2

for some ξ ∈ [a, b].

Proof.
Using the midpoint rule on [x2j−2, x2j] for 1 ≤ j ≤m, we get that

∫
x2j

x2j−2
f(x)dx = f(x2j−1) (x2j − x2j−2) +

f ′′(ξj)
24

(x2j − x2j−2)3 = 2hf(x2j−1) +
f ′′(ξj)h3

3

for some ξj ∈ [x2j−2, x2j], where we have used x2j − x2j−2 = 2h.
Again, as in the proofs of Theorem 12.4.1 for the composite trapezoidal rule and Theo-

rem (12.4.4) for the Simpson’s rule, since

min
x∈[a,b]

f ′′(x) ≤ 1

m

m

∑
j=1

f ′′(ξj) ≤ max
x∈[a,b]

f ′′(x) ,

there exists ξ ∈ [a, b] such that

f ′′(ξ) = 1

m

m

∑
j=1

f ′′(ξj)

by the Intermediate Value Theorem. Hence,

∫
b

a
f(x)dx =

m

∑
j=1
∫

x2j

x2j−2
f(x)dx = 2h

m

∑
j=1

f(x2j−1) +
h3

3

m

∑
j=1

f ′′(ξj)

= 2h
m

∑
j=1

f(x2j−1) +
h3

3
mf ′′(ξ) = 2h

m

∑
j=1

f(x2j−1) +
f ′′(ξ) (b − a)

6
h2

because h = (b − a)/(2m).

Remark 12.4.9

We have that ∫
b

a
f(x)dx ≈ 2h

m

∑
j=1

f(x2j−1) and the truncation error is
f ′′(ξ) (b − a)

6
h2. ♠

Example 12.4.10

Use the composite midpoint rule to approximate ∫
1

0
ex

2

dx. Choose the number of subin-

tervals such that the magnitude of the truncation error is smaller than 10−4. Compare with
Examples 12.4.6 and 12.4.3.

12.4. Composite Numerical Integration 293

b
x

y = f(x)y

a x2j−2 x2j−1 x2j

Figure 12.4: Midpoint Rule

We first choose m such that the magnitude of the truncation error in the composite
midpoint rule (Theorem 12.4.8) is smaller than 10−4; namely,

∣f
′′(ξ) (b − a)

6
h2∣ < 10−4 .

We have f(x) = ex2

, a = 0, b = 1, xj = j h and h = 1/n where n = 2m. Since ∣f ′′(x)∣ =
(2+4x2)ex2

, we have that ∣f ′′(x)∣ ≤ 6e for x ∈ [0,1]. The magnitude of the truncation error is

at most
e

(2m)2
. We choose m such that

e

(2m)2
< 10−4; namely, m > 82.436 With m = 83,

we get h = 1/166 and

∫
b

a
f(x)dx ≈ 1

83

83

∑
j=1

f((2j − 1)/166) = 1

83
(e(1/166)2 + e(3/166)2 + ⋅ ⋅ ⋅ + e(163/166)2 + e(165/166)2)

≈ 1.4626189 .

♣
Remark 12.4.11
Contrary to numerical differentiation, numerical integration is stable with respect to round-
ing error. We demonstrate this with the composite Simpson’s rule.

Let f ∶ [a, b] → R be a four times continuously differentiable function. Moreover, let
n = 2m, h = (b − a)/n and xj = a + j h for j = 0, 1, . . . , n. Finally, let fi be the computed
value of f(xi) and ei = fi − f(xi) be the rounding error in computing f(xi).

From Theorem 12.4.4, there exists ξ ∈ [a, b] such that

∫
b

a
f(x)dx = h

3
(f(x0) + 2

m−1
∑
j=1

f(x2j) + 4
m−1
∑
j=0

f(x2j+1) + f(xn)) −
f (4)(ξ) (b − a)

180
h4

= h
3
(f0 + 2

m−1
∑
j=1

f2j + 4
m−1
∑
j=0

f2j+1 + fn) −R(h) ,

where

R(h) = h
3
(e0 + 2

m−1
∑
j=1

e2j + 4
m−1
∑
j=0

e2j+1 + en) +
f (4)(ξ) (b − a)

180
h4

294 12. Numerical Differentiation and Integration

is the error. We have assumed that the arithmetic operations in

h

3
(f0 + 2

m−1
∑
j=1

f2j + 4
m−1
∑
j=0

f2j+1 + fn)

can be performed without rounding error to simplify the discussion.

Suppose that the rounding errors ei are uniformly bounded by r, namely ∣ei∣ < r for all i,
and M = supx∈[a,b] ∣f (4)(x)∣. Then

∣R(h)∣ ≤ h
3
(r + 2

m−1
∑
j=1

r + 4
m−1
∑
j=0

r + r) + M (b − a)
180

h4

= 2hmr + M (b − a)
180

h4 = (b − a)r + M (b − a)
180

h4

because h = (b − a)/(2m). Thus R(h) is bounded for small h. R(h) does not blow up as h
gets smaller. ♠

12.5 Romberg Integration

Romberg integration is nothing else than Richardson extrapolation with L(f) = ∫
b

a
f(x)dx

and

Lh(f) =
h

2
(f(x0) + 2

n−1
∑
j=1

f(xj) + f(xn)) , (12.5.1)

where xj = a + j h with h = (b − a)/n. Lh(f) is the approximation formula for the composite
trapezoidal rule.

Remark 12.5.1

1. We will prove in Theorem 12.8.5 of Section 12.8 that (12.2.1) is satisfied for h small if
f is smooth. Thus, Richardson extrapolation can be used with the trapezoidal rule.

2. The value of Lh(f) can be used to reduce the number of operations in the computation
of Lh/2(f).

Suppose that Lh(f) is given by (12.5.1). Let ñ = 2n, h̃ = b − a
ñ
= h
2

and x̃j = a + j h̃.
Then, because x̃2j = xj for all j, we get

Lh/2(f) =
h̃

2
(f(x̃0) + 2

ñ−1
∑
j=1

f(x̃j) + f(x̃ñ))

= 1

2
(h
2
(f(x0) + 2

n−1
∑
j=1

f(xj) + f(xn)) + h
n

∑
j=1

f(x̃2j−1))

= 1

2
(Lh(f) +Mh/2(f)) ,

12.5. Romberg Integration 295

where

Mh/2(f) = h
n

∑
j=1

f(x̃2j−1)

is the approximation formula given by the composite midpoint rules with 2n subinter-
vals.

♠
Romberg Integration may be used with functions which are only continuous and, therefore,

do not satisfy (12.2.1) in theory.

Theorem 12.5.2

If f ∶ [a, b]← R is a continuous function, then

Ln
h/2k(f)→ L(f) as k →∞ . (12.5.2)

Proof.
The proof of (12.5.2) is by induction on n.

We rewrite L0
h/2k(f) as

L0
h/2k(f) =

1

2

⎛
⎝

2k−1
∑
j=0

f(xj)h +
2k

∑
j=1
f(xj)h

⎞
⎠
,

where xj = a + j h and h = b − a
2kn

. The two sums are Riemann sums (the left and right sums)

that converge to the value of the integral ∫
b

a
f(x)dx as k →∞. Hence,

lim
k→∞

L0
h/2k(f) =

1

2
(∫

b

a
f(x)dx + ∫

b

a
f(x)dx) = ∫

b

a
f(x)dx .

This proves (12.5.2) for n = 0.
We assume that (12.5.2) is true for n: that is Ln

h/2k(f)→ L(f) as k →∞. Then,

lim
k→∞

Ln+1
h/2k(f) =

4n+1 lim
k→∞

Ln
h/2k(f) − lim

k→∞
Ln
h/2k−1(f)

4n+1 − 1

=
4n+1∫

b

a
f(x)dx − ∫

b

a
f(x)dx

4n+1 − 1
= ∫

b

a
f(x)dx .

This proves (12.5.2) for n + 1 instead of n and complete the proof by induction.

296 12. Numerical Differentiation and Integration

12.6 Adaptive Quadrature Methods

Let f ∶ [a, b] → R be a sufficiently continuously differentiable function. Our goal is to
approximate the integral

∫
b

a
f(x)dx

with an accuracy of ϵ > 0.
In the composite methods of Section 12.4, the step size (the distance between the points

xi in the partition of the interval [a, b]) was constant. To get a good approximation of the
integral, it would be advantageous to choose a smaller step size where the function f varies
more rapidly. This is the idea motivating the adaptive quadrature methods.

There are many adaptive quadrature methods. The adaptive quadrature method that we
consider in this subsection is based on the composite Simpson’s rule.

Let a = x0 < x1 < . . . < xn = b be a partition of [a, b]. The xi may not be equally spaced.
We compute two approximations of

Ii = ∫
xi

xi−1
f(x)dx

using the composite Simpson’s rule. With m = 1, a = xi−1, b = xi and h = hi = (xi − xi−1)/2 in
Theorem 12.4.4, we get Ii = Si +Ri, where

Si =
hi
3
(f(xi−1) + 4f(xi−1 + hi) + f(xi))

and

Ri = −
f (4)(ηi) (xi − xi−1)

180
h4i = −

f (4) (ηi)
90

h5i

for ηi between xi−1 and xi. With m = 2, a = xi−1, b = xi and h = hi/2 = (xi − xi−1)/4 in
Theorem 12.4.4, we get Ii = S̃i + R̃i, where

S̃i =
hi
6
(f(xi−1) + 4f (xi−1 +

hi
2
) + 2f(xi−1 + hi) + 4f (xi−1 +

3hi
2
) + f(xi))

and

R̃i = −
f (4)(µi) (xi − xi−1)

180
(hi
2
)
4

= −f
(4)(µi)
90 × 16

h5i ,

for hi = (xi − xi−1)/2 and µi between xi−1 and xi.

If we assume that f 4(x) is almost constant on [xi−1, xi], we may suppose that f 4(ηi) ≈
f 4(µi). Hence Ri ≈ 16R̃i.

If we subtract Ii = S̃i + R̃i from Ii = Si +Ri =≈ Si + 16R̃i, we get 0 ≈ (Si − S̃i)+ 15R̃i. Thus

R̃i ≈
1

15
(S̃i − Si).

12.6. Adaptive Quadrature Methods 297

In summary,

Ii ≈ S̃i +
1

15
(S̃i − Si) .

Thus S̃i is an approximation of Ii with truncation error almost equals to
1

15
(S̃i − Si).

Suppose that x0, x1, . . . , xn is a partition of [a, b] such that

1

15
(S̃i − Si) <

xi − xi−1
b − a

ϵ (12.6.1)

for 1 ≤ i ≤ n. Then

∫
b

a
f(x)dx =

n

∑
i=1
∫

xi

xi−1
f(x)dx ≈

n

∑
i=1
S̃i

and the approximation
n

∑
i=1

1

15
(S̃i − Si) of the truncation error satisfies

∣
n

∑
i=1

1

15
(S̃i − Si)∣ ≤

n

∑
i=1
∣ 1
15
(S̃i − Si)∣ <

n

∑
i=1

xi − xi−1
b − a

ϵ = ϵ .

If
1

15
(S̃i − Si) ≥

xi+1 − xi
b − a

ϵ

for some i, we add a point in]xi−1, xi[to our partition of [a, b]. Usually, we choose the
midpoint of]xi, xi+1[. This has the effect of splitting the interval [xi, xi+1] into two smaller
intervals. We hope that, with this new finer partition that we also call x0, x1, . . . , xn, the
relation (12.6.1) will be satisfied for all i. If (12.6.1) is not satisfy for all i, we keep on adding
points to the partition as we just did. We hope that after having added a finite number of
points to the initial partition of [a, b], (12.6.1) will be satisfied for all i.

The following code implement the adaptive method above.

Code 12.6.1 (Adaptive Method Based on the Composite Simpson’s Rule)

To approximate the integral

∫
b

a
f(x)dx .

Input: The endpoints of the interval [a, b].
The function f (denoted funct in the code below).
The maximal tolerated error T.
The maximal number of times Max that the program may subdivide the interval [a, b].
Output: The program gives the approximation of the integral if it does not have to
subdivide the interval [a, b] more than Max times to reach the accuracy T.

function sum = simpson_adapt(funct,a,b,T,Max)

sum = nested_adaptive(funct,a,b,T,Max,simpsonNC(funct,a,b));

end

function sum = nested_adaptive(funct,a,b,T,Max,S)

298 12. Numerical Differentiation and Integration

if (Max < 0)

sum = NaN;

return;

end

mid = (a+b)/2;

sum1 = S;

sum2L = simpsonNC(funct,a,mid);

sum2R = simpsonNC(funct,mid,b);

sum2 = sum2L + sum2R;

if (abs(sum1-sum2)/15 < T)

sum = sum2;

else

sum = nested_adaptive(funct,a,mid,T/2,Max-1,sum2L) + ...

nested_adaptive(funct,mid,b,T/2,Max-1,sum2R);

end

end

function sum = simpsonNC(funct,a,b)

sum = (b-a).*(funct(a) + 4*funct((a+b)/2) + funct(b))/6;

end

Example 12.6.2
Use the adaptive quadrature method defined above to approximate

∫
1

0

√
xdx

with an accuracy of 0.0005.

For this purpose and to simplify the discussion, let S(a, b, h) is the approximation of

∫
b

a

√
xdx given by the composite Simpson’s rule, Theorem 12.4.4, with m = (b − a)/(2h).

The values displayed in the following computations have been rounded to at least 6 significant
digits though the computations have been done with as many digits as possible.

Level 0:
i 1 2 3 4 5
xi 0 1/4 1/2 3/4 1

h = 0.5, T = 0.0005, S[0,1] = S(0,1,0.5) = 0.63807119,
S1 = S(0,0.5,0.25) = 0.22559223, S2 = S(0.5,1,0.25) = 0.43093403,
S̃[0,1] = S(0,1,0.25) = S1 + S2 and R̃[0,1] ≈

1

15
∣S̃[0,1] − S[0,1]∣ ≈ 0.123034 × 10−2 /< 0.0005.

Level 1:
i 1 2 3 4 5
xi 0.0 1/8 1/4 3/8 1/2

h = 0.25, T = 0.00025 (stored for [0.5,1]), S[0,0.5] = S(0,0.5,0.25) = 0.22559223,
S1 = S(0,0.25,0.125) = 0.07975890, S2 = S(0.25,0.5,0.125) = 0.15235819,

12.6. Adaptive Quadrature Methods 299

S̃[0,0.5] = S(0,0.5,0.125) = S1 + S2 and

R̃[0,0.5] ≈
1

15
∣S̃[0,0.5] − S[0,0.5]∣ ≈ 0.43499 × 10−3 /< 0.00025.

Level 2:
i 1 2 3 4 5
xi 0.0 1/16 1/8 3/16 1/4

h = 0.125, T = 0.000125 (stored for [0.25,0.5]), S[0,0.25] = S(0,0.25,0.125) = 0.07975890,
S1 = S(0,0.125,0.0625) = 0.02819903, S2 = S(0.125,0.25,0.0625) = 0.05386675,
S̃[0,0.25] = S(0,0.25,0.0625) = S1 + S2 and

R̃[0,0.25] ≈
1

15
∣S̃[0,0.25] − S[0,0.25]∣ ≈ 0.153792 × 10−3 /< 0.000125.

Level 3:
i 1 2 3 4 5
xi 0.0 1/32 1/16 3/32 1/8

h = 0.0625, T = 0.0000625 (stored for [0.125,0.25]),
S[0,0.125] = S(0,0.125,0.0625) = 0.02819903,
S1 = S(0,0.0625,0.03125) = 0.00996986, S2 = S(0.0625,0.125,0.03125) = 0.01904477,
S̃[0,0.125] = S(0,0.125,0.03125) = S1 + S2 and

R̃[0,0.125] ≈
1

15
∣S̃[0,0.125] − S[0,0.125]∣ ≈ 0.5437 × 10−4 < 0.0000625.

So, we accept S̃[0,0.125] as an approximation of ∫
1/8

0

√
xdx; namely,

∫
1/8

0

√
xdx ≈ S̃[0,0.125] = 0.02901464.

Level 3:
i 1 2 3 4 5
xi 1/8 5/32 3/16 7/32 1/4

h = 0.0625, T = 0.0000625 (retrieved from [0,0.125]),
S[0.125,0.25] = S(0.125,0.25,0.0625) = 0.05386675,
S1 = S(0.125,0.1875,0.03125) = 0.02466359, S2 = S(0.1875,0.25,0.03125) = 0.02920668,
S̃[0.125,0.25] = S(0.125,0.25,0.03125) = S1 + S2 and

R̃[0.125,0.25] ≈
1

15
∣S̃[0.125,0.25] − S[0.125,0.25]∣ ≈ 0.2347 × 10−6 < 0.0000625.

So, we accept S̃[0.125,0.25] as an approximation of ∫
1/4

1/8

√
xdx; namely,

∫
1/4

1/8

√
xdx ≈ S̃[0.125,0.25] = 0.05387027.

Hence, ∫
1/4

0

√
xdx = ∫

1/8

0

√
xdx + ∫

1/4

1/8

√
xdx ≈ 0.08288491.

Level 2:
i 1 2 3 4 5
xi 1/4 5/16 3/8 7/16 1/2

h = 0.125, T = 0.000125 (retrieved from [0,0.25]),
S[0.25,0.5] = S(0.25,0.5,0.125) = 0.15235819,

300 12. Numerical Differentiation and Integration

S1 = S(0.25,0.375,0.06125) = 0.06975918, S2 = S(0.375,0.5,0.0615) = 0.08260897,
S̃[0.25,0.5] = S(0.25,0.5,0.06125) = S1 + S2 and

R̃[0.25,0.5] ≈
1

15
∣S̃[0.25,0.5] − S[0.25,0.5]∣ ≈ 0.664 × 10−6 < 0.000125.

So, we accept S̃[0.25,0.5] as an approximation of ∫
1/2

1/4

√
xdx; namely,

∫
1/2

1/4

√
xdx ≈ S̃[0.25,0.5] = 0.15236815.

Hence, ∫
1/2

0

√
xdx = ∫

1/4

0

√
xdx + ∫

1/4

0

√
xdx ≈= 0.23525305.

Level 1:
i 1 2 3 4 5
xi 1/2 5/8 3/4 7/8 1

h = 0.25, T = 0.00025 (retrieved from [0,0.5]), S[0.5,1] = S(0.5,1,0.25) = 0.43093403,
S1 = S(0.5,0.75,0.125) = 0.19730874, S2 = S(0.75,1,0.125) = 0.23365345,
S̃[0.5,1] = S(0.5,1,0.125) = S1 + S2 and

R̃[0.5,1] ≈
1

15
∣S̃[0.5,1] − S[0.5,1]∣ ≈ 0.18773 × 10−5 < 0.00025.

So, we accept S̃[0.5,1] as an approximation of ∫
1

1/2

√
xdx; namely,

∫
1

1/2

√
xdx ≈ S̃[0.5,1] = 0.43096219.

Hence, ∫
1

0

√
xdx = ∫

1/2

0

√
xdx + ∫

1

1/2

√
xdx = 0.66621525.

Level 0: We have found that

∫
1

0

√
xdx ≈ 0.66621525 .

The exact answer is 2/3 = 0.6. ♣

12.7 Gaussian Quadrature

Let f ∶]a, b[→ R be an integrable function on]a, b[. f may not be a nice function to

integrate. For instance, f may not be bounded at the endpoints, thus ∫
b

a
f(x)dx is in

improper integral.

In this section, we assume that we can write f as the product of two functions g and w,
where g is a nice function on]a, b[and w is a function on]a, b[taking only non-negative
values (and almost everywhere non-null).

12.7. Gaussian Quadrature 301

Definition 12.7.1

A Gaussian quadrature is a formula of the form

∫
b

a
f(x)dx = ∫

b

a
g(x)w(x)dx ≈

n

∑
i=1

cig(xi) , (12.7.1)

where we choose the nodes x1, x2, . . . , xn in [a, b] and the weights c1, c2, . . . , cn such
that the formula is exact for all polynomials g of degree lest than a given constant k
(usually k = 2n).

It is easy to find a Gaussian quadrature that is exact for polynomials of degree less than
n. Given any nodes a ≤ x1 < x2 < . . . < xn ≤ b, let

ℓi(x) =
n

∏
j=1
j≠i

x − xj
xi − xj

and

ci = ∫
b

a
ℓi(x)w(x)dx (12.7.2)

for 1 ≤ i ≤ n. Since any polynomial p of degree less than n can be written as

p(x) =
n

∑
i=1
p(xi)ℓi(x) ,

we have

∫
b

a
p(x)w(x)dx =

n

∑
i=1
p(xi) (∫

b

a
ℓi(x)w(x)dx) =

n

∑
i=1
cip(xi) .

We would like to do better than that.

Example 12.7.2
Find x1 and c1 such that

∫
b

a
f(x)dx ≈ c1f(x1)

is exact for polynomial of degree less than 2. The node x1 and the weight c1 must satisfy

∫
b

a
1dx = c1 and ∫

b

a
xdx = c1x1; namely, a+ b = c1 and

b2

2
− a

2

2
= c1x1. The values of c1 and

x1 satisfying these two equations are c1 = b − a and x1 = (b + a)/2. The quadrature formula
is therefore

∫
b

a
f(x)dx ≈ (b − a)f(b + a

2
) .

This is the Midpoint rule. The truncation error for f(x) = x2 is

∫
b

a
x2 dx − (b − a) (b + a

2
)
2

= b
3 − a3
3
− (b − a)(b + a)

2

4
= −(b − a)

3

12
.

This is −f ′′(ξ)(b − a)3/24. ♣

302 12. Numerical Differentiation and Integration

Example 12.7.3
Find x1, x2, c1 and c2 such that

∫
b

a
f(x)dx ≈ c1f(x1) + c2f(x2)

is exact for polynomial of degree less than 4. The nodes x1, x2 and the weights c1, c2 must

satisfy ∫
b

a
1dx = c1+c2, ∫

b

a
xdx = c1x1+c2x2, ∫

b

a
x2 dx = c1x21+c2x22 and ∫

b

a
x3 dx = c1x31+

c2x
3
2; Namely, b−a = c1+c2,

b2 − a2
2
= c1x1+c2x2,

b3 − a3
3
= c1x21+c2x22 and

b4 − a4
4
= c1x31+c2x32.

The values of c1, c2, x1 and x2 satisfying these four nonlinear equations are c1 = c2 =
b − a
2

,

x1 = z and x2 = a + b − z, where z is the positive root of 6z2 − 6(a + b)z + a2 + b2 + 4ab.
If a = −1 and b = 1, we get c1 = c2 = 1 and x1 = −x2 = 1/

√
3. Hence,

∫
1

−1
f(x)dx ≈ f (1√

3
) + f (−1√

3
) .

We will see later that this is the Gauss-Legendre quadrature formula for n = 2. ♣
We now show in general how to choose the nodes x1, x2, . . . , xn and the weights c1, c2,

. . . , cn such that (12.7.1) is exact for polynomials of degree less than 2n.

Remark 12.7.4

Using the polynomial p(x) =
n

∏
i=1
(x − xi)2, we ask the reader in Question 12.40 to show that

2n is the largest value k such that (12.7.1) is exact for polynomials of degree less than k. ♠

Theorem 12.7.5

Let {P0, P1, P2, . . .} be an orthogonal set of polynomials on [a, b] with respect to a
weight function w. Suppose that Pn is of degree exactly n. If p is a polynomial of
degree less than 2n, then

∫
b

a
p(x)w(x)dx =

n

∑
j=1

cj p(xj) ,

where

cj = ∫
b

a

⎛
⎜⎜
⎝

n

∏
i=1
i/=j

x − xi
xj − xi

⎞
⎟⎟
⎠
w(x)dx

and x1, x2, . . . , xn are the roots of the polynomial Pn of degree n.

Proof.
A) If the degree of p is less than n.

12.7. Gaussian Quadrature 303

Using the Lagrange’s form of the interpolating polynomial of p at the roots x1, x2, . . . ,
xn of Pn, formula (6.1.1), we have

p(x) =
n

∑
j=1

⎛
⎜⎜
⎝

n

∏
i=1
i/=j

x − xi
xj − xi

⎞
⎟⎟
⎠
p(xj) .

Recall that there is a unique polynomial of degree less than n that interpolates p at the
points x1, x2, . . . , xn. It must therefore be p itself. Hence

∫
b

a
p(x)w(x)dx =

n

∑
i=j

p(xj)∫
b

a

⎛
⎜⎜
⎝

n

∏
i=1
i/=j

x − xi
xj − xi

⎞
⎟⎟
⎠
w(x)dx =

n

∑
j=1

cj p(xj) .

B) If the degree of p is greater or equal to n but less than 2n.

If we divide p by Pn, we get p = qPn+r, where q and r are polynomials of degree less than
n.

From the first conclusion of Theorem 8.2.3, we have that q =
n−1
∑
i=0

αiPi for some constants

α0, α1, α2, . . . , αn−1. Hence,

∫
b

a
p(x)w(x)dx = ∫

b

a
q(x)Pn(x)w(x)dx + ∫

b

a
r(x)w(x)dx

=
n−1
∑
i=0

αi ∫
b

a
Pi(x)Pn(x)w(x)dx + ∫

b

a
r(x)w(x)dx

= ∫
b

a
r(x)w(x)dx =

n

∑
i=1

ci r(xi) , (12.7.3)

where x1, x2, . . . , xn are the roots of Pn. The third equality comes from the orthogonality
property of the polynomials Pi. The last equality comes from the previous case for the
polynomials of degree less than n.

Finally, since x1, x2, . . . , xn are the roots of Pn, then p(xi) = q(xi)Pn(xi) + r(xi) = r(xi)
for 1 ≤ i ≤ n, and the conclusion of the theorem follows from (12.7.3).

Remark 12.7.6
If we substitute g(x) = 1 in a Gaussian quadrature formula

∫
b

a
g(x)w(x)dx ≈

n

∑
j=1
cjg(xj)

which is exact for polynomials of degree less than 2n, we find that ∫
b

a
w(x)dx =

n

∑
j=1
cj. ♠

304 12. Numerical Differentiation and Integration

12.7.1 Gauss-Legendre quadrature

If we use the Legendre polynomials and w(x) = 1 for −1 ≤ x ≤ 1 in Theorem 12.7.5, we

get the Gauss-Legendre quadrature. The integral ∫
1

−1
f(x)dx is approximately equal to

n

∑
j=1
cjf(xj), where the xj’s are the roots of the Legendre polynomial Pn and the cj’s are given

by Theorem 12.7.5 with a = −1, b = 1 and w(x) = 1 for −1 ≤ x ≤ 1. The values of cj and xj
for n = 2, 3, 4 and 5 are given in the following table.

n roots xj of Pn(x) coefficients cj
2 0.5773502692 1.0

−0.5773502692 1.0
3 0.7745966692 0.5555555556

0.0 0.8888888889
−0.7745966692 0.5555555556

4 0.8611363116 0.3478548451
0.3399810436 0.6521451549
−0.3399810436 0.6521451549
−0.8611363116 0.3478548451

5 −0.9061798459 0.2369268851
−0.5384693101 0.4786286705

0.0 0.5688888889
0.5384693101 0.4786286705
0.9061798459 0.2369268851

Example 12.7.7
Use Gauss-Legendre quadrature with n = 3 to approximate

∫
3

1

sin2(x)
x

dx .

Using the change of variable t = x − 2, we get

∫
3

1

sin2(x)
x

dx = ∫
1

−1

sin2(t + 2)
t + 2

dt ≈
3

∑
i=1
ci
sin2(xi + 2)
xi + 2

≈ 0.5555555556 sin2(2 + 0.7745966692)
2 + 0.7745966692

+ 0.8888888889 sin2(2)
2

+ 0.5555555556 sin2(2 − 0.7745966692)
2 − 0.7745966692

≈ 0.79465267 .

♣
Remark 12.7.8

In general, to transform an integral of the form ∫
b

a
f(x)dx into an integral of the form

∫
1

−1
g(t)dt, one uses the substitution t = x − (a + b)/2

(b − a)/2
, where (a + b)/2 is the middle of the

interval [a, b] and (b − a)/2 is half the length of [a, b]. ♠

12.7. Gaussian Quadrature 305

12.7.2 Gauss-Chebyshev quadrature

If we use the Chebyshev polynomials and w(x) = 1/
√
1 − x2 for −1 < x < 1 in Theorem 12.7.5,

we get the Gauss-Chebyshev quadrature. The integral ∫
1

−1

g(x)√
1 − x2

dx is approximately

equal to
n

∑
j=1
cjg(xj), where the xj’s are the roots of the Chebyshev polynomial Tn and the

cj’s are given by Theorem 12.7.5 with a = −1, b = 1 and w(x) = 1/
√
1 − x2 for −1 < x < 1. So,

xj = cos((2j − 1)π/(2n)) for 1 ≤ j ≤ n, and one can prove that cj = π/n for all j.

Example 12.7.9
Use Gauss-Chebyshev quadrature to approximate

∫
1

−1

x2√
1 − x2

dx .

We use Gauss-Chebyshev quadrature with n = 2. We have that

∫
1

−1

x2√
1 − x2

dx = c1x21 + c2x22 =
π

2
(cos(π/4))2 + π

2
(cos(3π/4))2 = 1.57079632679 . . .

because Gauss-Chebyshev quadrature with n = 2 is exact for polynomial of degree less than

2n = 4. In general, ∫
1

−1

p(x)√
1 − x2

dx = c1p(x1)+ c2p(x2) for any polynomial p(x) of degree less

than 4. ♣

12.7.3 Convergence and accuracy

Theorem 12.7.10

Let g ∶ [a, b]→ R be a continuous function. Suppose that, for each positive integer n,

∫
b

a
g(x)w(x)dx ≈

n

∑
j=1
cjg(xj)

is a Gaussian quadrature formula which is exact for polynomials of degree less than
2n (as given in Theorem 12.7.5 for instance). Then,

n

∑
j=1
cjg(xj)→ ∫

b

a
g(x)w(x)dx as n→∞ .

Proof.
Given ϵ > 0, Stone-Weierstrass Theorem, Theorem 9.1.1, gives a polynomial p such that

max
a≤x≤b
∣g(x) − p(x)∣ < ϵ

2∫
b

a
w(x)dx

.

306 12. Numerical Differentiation and Integration

Hence, since the Gaussian quadrature formula is exact for polynomials of degree less than
2n, we have for 2n greater than the degree of p that

∣∫
b

a
g(x)w(x)dx −

n

∑
j=1
cjg(xj)∣

= ∣∫
b

a
g(x)w(x)dx − ∫

b

a
p(x)w(x)dx +

n

∑
j=1
cjp(xj) −

n

∑
j=1
cjg(xj)∣

≤ ∫
b

a
∣g(x) − p(x)∣w(x)dx +

n

∑
j=1
cj ∣p(xj) − g(xj)∣

≤ ϵ

2∫
b

a
w(x)dx

(∫
b

a
w(x)dx +

n

∑
j=1
cj) = ϵ .

The last equality comes from Remark 12.7.6.

Theorem 12.7.11

Let g ∶ [a, b]→ R be a twice continuously differentiable function and suppose that the
hypotheses of Theorem 12.7.5 are satisfied. Then,

∫
b

a
g(x)w(x)dx −

n

∑
j=1

cj g(xj)

= ∫
b

a
g[x1, x2, . . . , xn, x1, x2, . . . , xn, x]

n

∏
i=1
(x − xi)2w(x)dx .

Moreover, if g is continuously differentiable of order 2n,

∫
b

a
g(x)w(x)dx −

n

∑
j=1

cj g(xj) =
f (2n)(ξ)
(2n)! ∫

b

a

n

∏
i=1
(x − xi)2w(x)dx

for some ξ ∈ [a, b].

Proof.
The interpolating polynomial p of g(x) at the points x1, x2, . . . , xn, x1, x2, . . . , xn satisfies

g(x) = p(x) + g[x1, x2, . . . , xn, x1, x2, . . . , xn, x]
n

∏
i=1
(x − xi)2 .

The polynomial p is of degree less than 2n. The divided difference
g[x1, x2, . . . , xn, x1, x2, . . . , xn, x] is well defined because g(x) is twice continuously differen-
tiable. The nodes xj come in pairs and the only cases where we can have three equal nodes
are when x = xj for some j.

Since p is of degree less than 2n,

∫
b

a
p(x)w(x)dx =

n

∑
j=1

cj p(xj) .

12.8. Bernoulli Polynomials 307

Hence,

∫
b

a
g(x)w(x)dx −

n

∑
j=1

cj g(xj) = ∫
b

a
p(x)w(x)dx

+ ∫
b

a
g[x1, x2, . . . , xn, x1, x2, . . . , xn, x]

n

∏
i=1
(x − xi)2w(x)dx

−
n

∑
j=1

cj p(xj) −
n

∑
j=1

cj g[x1, x2, . . . , xn, x1, x2, . . . , xn, xj]
n

∏
i=1
(xj − xi)2

= ∫
b

a
g[x1, x2, . . . , xn, x1, x2, . . . , xn, x]

n

∏
i=1
(x − xi)2w(x)dx .

The last sum of the first equality is zero because the divided differences

g[x1, x2, . . . , xn, x1, x2, . . . , xn, xj] are well defined and
n

∏
i=1
(xj − xi)2 = 0 for all j.

Since
n

∏
i=1
(x−xi)2w(x) ≥ 0 for x ∈ [a, b], we get from the Mean Value Theorem for Integrals

that

∫
b

a
g(x)w(x)dx −

n

∑
j=1

cj g(xj) = g[x1, x2, . . . , xn, x1, x2, . . . , xn, ν]∫
b

a

n

∏
i=1
(x − xi)2w(x)dx

for some ν ∈ [a, b]. If g(x) is 2n continuously differentiable, Theorem 6.2.5 gives

∫
b

a
g(x)w(x)dx −

n

∑
j=1

cj g(xj) =
g(2n)(ξ)
(2n)! ∫

b

a

n

∏
i=1
(x − xi)2w(x)dx

for some ξ ∈ [a, b]

12.8 Bernoulli Polynomials

One of the major results of this section is Theorem 12.8.5. It proves that Richardson ex-
trapolation can be applied to the composite trapezoidal rule to get Romberg integration.

Definition 12.8.1

The polynomials Bn(x) defined recursively by the series

n

∑
j=0
(n + 1

j
)Bj(x) = (n + 1)xn (12.8.1)

for n = 0, 1, 2, . . . are the Bernoulli polynomials.

Remark 12.8.2

The first four Bernoulli polynomials are B0(x) = 1, B1(x) = x −
1

2
, B2(x) = x2 − x +

1

6
and

B3(x) = x3 −
3

2
x2 + 1

2
x. ♠

308 12. Numerical Differentiation and Integration

Proposition 12.8.3

The Bernoulli polynomials satisfy the following properties.

1. B′n(x) = nBn−1(x) for n ≥ 1.

2. Bn(x + 1) −Bn(x) = nxn−1 for n ≥ 1.

3. Bn(x) =
n

∑
j=0
(n
j
)Bj(0)xn−j for n ≥ 0.

4. Bn(1 − x) = (−1)nBn(x) for n ≥ 0.

Proof.

1) We prove (1) by induction. The case n = 1 is a consequence of B0(x) = 1 andB1(x) = x−
1

2
.

We assume that B′j(x) = jBj−1(x) for 1 ≤ j < n. The derivative on both side of (12.8.1) yields

n

∑
j=1
(n + 1

j
)B′j(x) = (n + 1)nxn−1 = (n + 1)

n−1
∑
j=0
(n
j
)Bj(x) , (12.8.2)

where the second equality comes from (12.8.1) with n replaced by n − 1.
From the hypothesis of induction, we get

n

∑
j=1
(n + 1

j
)B′j(x) = (

n + 1
n
)B′n(x) +

n−1
∑
j=1
(n + 1

j
)jBj−1(x)

= (n + 1)B′n(x) + (n + 1)
n−1
∑
j=1
(n

j − 1
)Bj−1(x)

= (n + 1)B′n(x) + (n + 1)
n−2
∑
j=0
(n
j
)Bj(x) .

because

(n + 1
j
)j = ((n + 1)!

j!(n + 1 − j)!
) j = (n + 1) n!

(j − 1)!(n − (j − 1))!
= (n + 1)(n

j − 1
) .

Hence, after dividing both sides of (12.8.2) by (n + 1), we get

B′n(x) +
n−2
∑
j=0
(n
j
)Bj(x) =

n−1
∑
j=0
(n
j
)Bj(x) .

After cancelling the terms that are equal from both sides, we get B′n(x) = (
n

n − 1
)Bn−1(x) =

nBn−1(x) which proved (1).

2) From (1), we have that

B
(j)
n (x) = n(n − 1)(n − 2) . . . (n − j + 1)Bn−j(x)

12.8. Bernoulli Polynomials 309

for j > 0 and n > 0. Hence,

Bn(x + h) =
n

∑
j=0

1

j!
B
(j)
n (x)hj = Bn(x) +

n

∑
j=1

n(n − 1)(n − 2) . . . (n − (j − 1))
j!

Bn−j(x)hj

= Bn(x) +
n

∑
j=1
(n
j
)Bn−j(x)hj = Bn(x) +

n

∑
j=1
(n

n − j
)Bn−j(x)hj

= Bn(x) +
n−1
∑
j=0
(n
j
)Bj(x)hn−j (12.8.3)

With h = 1, we get

Bn(x + 1) = Bn(x) +
n−1
∑
j=0
(n
j
)Bj(x) = Bn(x) + nxn−1 .

where the last equality comes from (12.8.1) with n replaced by n − 1. This prove (2).

3) The case n = 0 can be verified directly. For n > 0, if we set x = 0 in (12.8.3), we get

Bn(h) ==
n

∑
j=0
(n
j
)Bj(0)hn−j

which is (3).

4) If we substitute x by −x in (2), we get

Bn(1 − x) −Bn(−x) = n(−x)n−1 = (−1)n−1 (nxn−1) = (−1)n−1 (Bn(x + 1) −Bn(x))

for n > 0. Hence,

(−1)nBn(x + 1) −Bn(−x) = (−1)nBn(x) −Bn(1 − x) . (12.8.4)

If F (x) = (−1)nBn(x) −Bn(1 − x) for all x, then (12.8.4) shows that F (x + 1) = F (x) for all
x. Thus, F is a periodic function of period 1. Since F is also a polynomial, we must have
that F (x) = Cn, a constant, for all x.

Hence

0 = F ′(x) = (−1)nB′n(x) +B′n(1 − x) = (−1)nnBn−1(x) + nBn−1(1 − x)

and (4) with n replaced by n − 1 follows after a division by n.

Lemma 12.8.4

Given any positive integer n, we have that B2n(x) −B2n(0) ≠ 0 for all x ∈]0,1[.

Proof.
Let Gn(x) = B2n(x) −B2n(0) for all x ∈ [0,1].

310 12. Numerical Differentiation and Integration

From (2) of Proposition 12.8.3 with x = 0, we get that Bj(0) = Bj(1) for j ≥ 2. Thus
Gn(0) = Gn(1) = 0 for n > 0.

Moreover, from (2) and (4) of Proposition 12.8.3 with x = 0, we get Bj(0) = Bj(1) =
(−1)jBj(0) for all j ≥ 2. Thus, B2j−1(0) = B2j−1(1) = 0 for j = 2, 3, . . .

We may assume that n > 1. Since G1(x) = B2(x)−B2(0) is a polynomial of degree 2 that
already vanishes at 0 and 1, it cannot have another zero.

Suppose that Gn with n > 1 vanishes at a point η ∈]0,1[. We first prove by induction that
this implies that B2k−1 has always two distinct zeros in]0,1[for k = n, n − 1, . . . , 2.

Since Gn(0) = Gn(1) = 0, the Mean Value Theorem on [0, η] and [η,1] yields two distinct
zeros, η1 ∈]0, η[and η2 ∈]η,1[, of G′n(x) = B′2n(x) = 2nB2n−1(x) in]0,1[. Thus B2n−1 has two
distinct zeros η1 < η2 in]0,1[. The induction hypothesis is thus true for k = n.

Suppose that B2k−1 for 2 < k ≤ n has two distinct zeros η1 < η2 in]0,1[. Since B2k−1
vanishes also at 0 and 1, the Mean value Theorem on the intervals [0, η1], [η1, η2] and [η2,1]
yields three distinct zeros of B′2k−1(x) = (2k − 1)B2k−2(x) in]0,1[. Let η3 ∈]0, η1[, η4 ∈]η1, η2[
and η5 ∈]η2,1[be these three distinct zeros. Thus B2n−2 has three distinct zeros η3 < η4 < η5
in]0,1[. The Mean Value Theorem on the intervals [η3, η4] and [η4, η5] yields two distinct
zeros, η6 ∈]η3, η4[and η7 ∈]η4, η5[, of B′2k−2(x) = (2k − 2)B2k−3(x) in]0,1[. Thus B2k−3 has
two distinct zeros η6 < η7 in]0,1[. The induction hypothesis is true for k − 1 instead of k.
This completes the proof by induction.

This shows that B3 has four zeros: 0, 1 and the two distinct zeros in]0,1[. But this
is impossible because B3 is a non-trivial polynomial of degree 3. The assumption that Gn

vanishes at a point η ∈]0,1[yields a contradiction.

Theorem 12.8.5

If f ∶ [a, b]→ R is a 2n-continuously differentiable function,

∫
b

a
f(x)dx = h

2
(f(a) + f(b)) −

n−1
∑
j=0

B2j(0)
(2j)!

(f (2j−1)(b) − f (2j−1)(a))h2j

− B2n(0)
(2n)!

f (2n)(η)h2n+1
(12.8.5)

for some η ∈ [a, b], where h = b − a.

Proof.
If we substitute x = a + th in the integral, we get

∫
b

a
f(x)dx = h∫

1

0
f(a + th)dt .

Let g(t) = f(a + th). We will show that

∫
1

0
g(t)dt = 1

2
(g(0) + g(1)) −

n−1
∑
j=0

B2j(0)
(2j)!

(g(2j−1)(1) − g(2j−1)(0)) − B2n(0)
(2n)!

g(2n)(ν) (12.8.6)

12.8. Bernoulli Polynomials 311

for some ν ∈ [0,1]. This yields (12.8.5) if g(t) = f(a + th) since

g(k)(t) = dk

dtk
g(t) = dk

dtk
f(a + th) = f (k)(a + th)hk .

We first prove by induction that

∫
1

0
g(t)dt = 1

2
(g(1) + g(0)) −

k

∑
j=1

B2j(0)
(2j)!

(g(2j−1)(1) − g(2j−1)(0))

+ 1

(2k)! ∫
1

0
g(2k)(t)B2k(t)dt

(12.8.7)

for k = 1, 2, . . . , n.
Using integration by parts, we have

∫
1

0
g(t)dt = ∫

1

0
g(t)B′1(t)dt = (g(t)B1(t)) ∣

1

t=0
− ∫

1

0
g′(t)B1(t)dt

= 1

2
(g(1) + g(0)) − ∫

1

0
g′(t)B1(t)dt

because B1(1) = −B1(0) = 1/2. Another integration by parts and (1) of Proposition 12.8.3
yield

∫
1

0
g′(t)B1(t)dt =

1

2 ∫
1

0
g′(t)B′2(t)dt =

1

2
(g′(t)B2(t)) ∣

1

t=0 −
1

2 ∫
1

0
g′′(t)B2(t)dt

= B2(0)
2
(g′(1) − g′(0)) − 1

2 ∫
1

0
g′′(t)B2(t)dt

because B2(0) = B2(1) as can be seen from (2) of Proposition 12.8.3 with x = 0. Hence

∫
1

0
g(t)dt = 1

2
(g(1) + g(0)) − B2(0)

2
(g′(1) − g′(0)) + 1

2 ∫
1

0
g′′(t)B2(t)dt .

This prove (12.8.7) for k = 1.
Suppose that (12.8.7) is true for k. From (2) and (4) of Proposition 12.8.3 with x = 0, we

find that B2j+1(0) = B2j+1(1) = 0 for all j > 0. Hence,

∫
1

0
g(2k)(t)B2k(t)dt =

1

2k + 1 ∫
1

0
g(2k)(t)B′2k+1(t)dt

= 1

2k + 1
(g(2k)(t)B2k+1(t)) ∣

1

t=0
− 1

2k + 1 ∫
1

0
g(2k+1)(t)B2k+1(t)dt

= − 1

2k + 1 ∫
1

0
g(2k+1)(t)B2k+1(t)dt . (12.8.8)

Moreover,

∫
1

0
g(2k+1)(t)B2k+1(t)dt =

1

2k + 2 ∫
1

0
g(2k+1)(t)B′2k+2(t)dt

312 12. Numerical Differentiation and Integration

= 1

2k + 2
(g(2k+1)(t)B2k+2(t)) ∣

1

t=0
− 1

2k + 2 ∫
1

0
g(2k+2)(t)B2k+2(t)dt

= B2k+2(0)
2k + 2

(g(2k+1)(1) − g(2k+1)(0)) − 1

2k + 2 ∫
1

0
g(2k+2)(t)B2k+2(t)dt (12.8.9)

because B2j(0) = B2j(1) for all j > 0 as can been seen from (2) of Proposition 12.8.3 with
x = 0. Hence (12.8.8) and (12.8.9) imply that

∫
1

0
g(2k)(t)B2k(t)dt = −

B2k+2(0)
(2k + 1)(2k + 2)

(g(2k+1)(1) − g(2k+1)(0))

+ 1

(2k + 1)(2k + 2) ∫
1

0
g(2k+2)(t)B2k+2(t)dt .

If we substitute this expression in (12.8.7), we get (12.8.7) for k replaced by k + 1. This
completes the proof by induction.

(12.8.7) for k = n gives

∫
1

0
g(t)dt = 1

2
(g(1) + g(0)) −

n

∑
j=1

B2j(0)
(2j)!

(g(2j−1)(1) − g(2j−1)(0))

+ 1

(2n)! ∫
1

0
g(2n)(t)B2n(t)dt .

(12.8.10)

Since the last term of the series in (12.8.10) is

B2n(0)
(2n)!

(g(2n−1)(1) − g(2n−1)(0)) = B2n(0)
(2n)! ∫

1

0
g(2n)(t)dt ,

we can rewrite (12.8.10) as

∫
1

0
g(t)dt = 1

2
(g(1) + g(0)) −

n−1
∑
j=1

B2j(0)
(2j)!

(g(2j−1)(1) − g(2j−1)(0))

+ 1

(2n)! ∫
1

0
g(2n)(t) (B2n(t) −B2n(0)) dt .

(12.8.11)

From the previous lemma, B2n(t)−B2n(0) does not change sign on the interval [0,1]. Hence,
from the Mean Value Theorem for Integrals, we may write

1

(2n)! ∫
1

0
g(2n)(t) (B2n(t) −Bn(0)) dt =

g(2n)(ν)
(2n)! ∫

1

0
(B2n(t) −Bn(0)) dt

for some ν ∈ [0,1]. Moreover,

∫
1

0
B2n(t)dt =

1

2n + 1 ∫
1

0
B′2n+1(t)dt =

1

2n + 1
(B2n+1(1) −B2n+1(0)) = 0

because B2n+1(0) = B2n+1(1) = 0. Thus,

1

(2n)! ∫
1

0
g(2n)(t) (B2n(t) −Bn(0)) dt = −

g(2n)(ν)
(2n)!

Bn(0) ,

and substituting this expression in (12.8.11) gives (12.8.6).

12.9. Exercises 313

12.9 Exercises

Question 12.1
Using polynomial interpolation, derive the following formula with its truncation error.

f ′(x) ≈ 1

2h
(−3f(x) + 4f(x + h) − f(x + 2h)) . (12.9.1)

Question 12.2
Using polynomial interpolation, derive the following formula with its truncation error.

f ′′(x) ≈ 1

h2
(f(x) − 2f(x + h) + f(x + 2h)) . (12.9.2)

Question 12.3
Develop a method similar to the Richardson extrapolation method given in Section 12.2 if
Lh(f) is an approximation of L(f) with

L(f) = Lh(f) +
∞
∑
j=1
ajh

2j−1 . (12.9.3)

Question 12.4
Develop a method similar to the Richardson extrapolation method given in Section 12.2 if
Lh(f) is an approximation of L(f) with

L(f) = Lh(f) +
∞
∑
j=1
ajh

3j . (12.9.4)

Question 12.5
Use Richardson extrapolation with the centrale difference formula to approximate the deriva-
tive of f(x) = sin(ln(x)) at x = 3 with an accuracy of 10−7. Start with h = 0.8.
Question 12.6
Use the composite midpoint rule to approximate

∫
π/2

0
sin(x)dx

with an accuracy of 10−5. You have to find a number of subintervals of [1,3] (and so a step
size h) such that the local truncation error is smaller than 10−5.

Question 12.7
Use the composite midpoint rule to approximate

∫
3

1
(x ln(x) + x

3

24
− 5x2) dx

314 12. Numerical Differentiation and Integration

with an accuracy of 10−5. You have to find a number of subintervals of [1,3] (and so a step
size h) such that the local truncation error is smaller than 10−5.

Question 12.8
Use the composite Simpson rule to find an approximation of the integral

∫
4

2
(x + 1)1/3 dx

with an accuracy of 10−5. You have to find a number of subintervals of [2,4] (and so a step
size h) such that the local truncation error is smaller than 10−5.

Question 12.9
For each of the integration methods below, determine the theoretical value of n (and h) that
will give an approximation of

∫
3

1
x2 ln(x)dx

to within 10−5 and compute the approximation with this value of n.
a) The composite midpoint rule.
b) The composite trapezoidal rule.
c) The composite Simpson’s rule.

Compare with the exact answer.

Question 12.10
Show that Simpson’s rule is exact for polynomials of degree up to 3 but not (generally) exact
for degrees higher than 3.

Question 12.11
Use Romberg integration to approximate the integral

∫
4

2
(x + 1)1/3 dx

with an accuracy of 10−5. Start with two subdivisions of the interval [2,4].
Question 12.12
Use Romberg integration to approximate the integral

∫
5

3
(x − 2)1/4 dx

with an accuracy of 10−5. Start with one subdivision of the interval [3,5].
Question 12.13
Use Romberg integration to approximate the integral

∫
3

1
x2 ln(x)dx .

Stop when the difference between two successive iterations on the diagonal line is smaller
than 10−5.

12.9. Exercises 315

Question 12.14
Show that the formula used to generate the second column of the table associated to Romberg
integration is the Simpson’s rule.

Question 12.15
Use an adaptive method based on the composite Simpson rule to approximate the integral

∫
5

3
(x − 2)1/4 dx

with an accuracy of 10−5. Start with one subdivision of the interval [3,5].
Question 12.16
Show that the following formula is exact for all polynomials of degree less than or equal to
4.

∫
1

0
f(x)dx = 1

90
(7 f(0) + 32 f(1/4) + 12 f(1/2) + 32 f(3/4) + 7 f(1)) . (12.9.5)

Use this formula to deduce a formula for the integral ∫
b

a
f(x)dx, where a and b are any real

numbers.

Question 12.17
Find, if possible, an integration formula of the form

∫
1

0
f(x)dx ≈ A (f(x0) + f(x1))

that is exact for polynomials of degree less or equal to 2.

Question 12.18
Find the values of A, B and C such that

∫
2

0
xf(x)dx ≈ Af(0) +B f(1) +C f(2)

is exact for polynomials of degree as high as possible.

Question 12.19
Find a formula of the form

∫
2π

0
f(x)dx = Af(0) +B f(π)

that is exact for f(x) = cos(kx) with k = 0 and k = 1. Show that it is exact for any function
of the form

f(x) =
n

∑
k=0
(ak cos((2k + 1)x) + bk sin(k x)) . (12.9.6)

Question 12.20
Use an interpolating polynomial to derive a formula of the form

∫
b

a
f(x)dx ≈ Af (a + b − a

3
) +Bf (a + 2(b − a)

3
) .

316 12. Numerical Differentiation and Integration

If there exists a constant M such that ∣f ′′(x)∣ < M for all x ∈ [a, b], find a bound for the
truncation error of this formula.

Question 12.21
Use polynomial interpolation to derive a formula of the form

∫
b

a
f(x)dx ≈ Af (a + b − a

4
) +B f (a + b − a

2
) +C f (a + 3(b − a)

4
) .

Find a bound on the truncation error if there exists a constant M such that ∣f (3)(x)∣ < M
for all x ∈ [a, b].
Question 12.22
a) Use polynomial interpolation to find an integration formula of the form

∫
h

0
f(x)dx ≈ h (Af(0) +Bf(−h) +Cf(−2h))

with its truncation error.

b) Use the formula in (a) to deduce a formula for the integral ∫
b

a
f(x)dx and its truncation

error.
c) Use the formula that you have found in (b) to approximate the value of the solution of
the differential equation y′ = f(x, y) at a + h if you know the values of y(a), y(a − h) and
y(a − 2h).
Note: The formula that you use in (c) is a “Fourth-Order Adams-Bashforth Formula.” We
will study such methods of integration in Section 13.5. They are called “multistep methods”
because they use nodes, a − h and a − 2h, before a to approximate y(a + h).
Question 12.23
a) Use polynomial interpolation to find an integration formula of the form

∫
h

−h
f(x)dx ≈ h (Af(0) +B f(−h) +C f(−2h))

with its truncation error.
b) Use the formula in (a) to deduce a formula for the integral between a and b, and its
truncation error.

Question 12.24
Suppose that a ≤ x1 < x2 < . . . < xk ≤ b and w ∶ [a, b] → [0,∞[is a weight function. Give a
different proof than the one given at the beginning of Section 12.7 that there exist constants
c1, c2, . . . , ck such that

∫
b

a
p(x)w(x)dx =

k

∑
j=1

cj p(xj) (12.9.7)

for all polynomials p of degree less than k.

Question 12.25
Let w ∶ [a, b]→ [0,∞[be a weight function. Suppose that P is a polynomial of degree k > 0
with k distinct roots x1, x2, . . . , xk in the interval [a, b] such that

⟨p,P ⟩ = ∫
b

a
p(x)P (x)w(x)dx = 0

12.9. Exercises 317

for all polynomials p of degree less than m ≤ k. Let c1, c2, . . . , ck be the coefficients given in
(12.7.2). Show that (12.9.7) is exact for all polynomials of degree less than k +m.

Moreover, if ⟨xm, P ⟩ ≠ 0, show that (12.9.7) is not true for all polynomials of degree equal
to k +m.

Question 12.26
Let w ∶ [a, b] → [0,∞[be a weight function and suppose that there exist nodes xj in [a, b]
and weight cj for 1 ≤ j ≤ k such that

∫
b

a
p(x)w(x)dx =

k

∑
j=1
bj p(cj)

for all polynomials p of degree less than q. Show that exists a constant K =K(a, b,w, k, q, bj)
such that

∣∫
b

a
f(x)w(x)dx −

k

∑
j=1
bj f(cj)∣ ≤K(b − a)q max

a≤x≤b
∣f (q)(x)∣

for all q-time continuously differentiable functions f on an open interval containing [a, b].
Question 12.27
Approximate

∫
π/4

0
x2 sin(x)dx

using Gauss-Legendre quadrature with n = 5.
Question 12.28
Approximate

∫
3

1
x2 ln(x)dx (12.9.8)

using Gauss Legendre quadrature with n = 5.
Question 12.29
Use the appropriate Gaussien quadrature (Legendre or Chebyshev) with n = 3 to approximate
the integral

∫
3

2

sin(x)√
(x − 2)(3 − x)

dx .

Question 12.30
Use the appropriate Gaussian quadrature (Legendre or Chebyshev) with n = 3 to find an
approximation of the integral

∫
3

2

sin(x)√
−6 + 5x − x2

dx .

Question 12.31
Use the appropriate Gaussian quadrature formula with n = 3 to approximate the following
integral. Determine if the approximation is exact?

∫
2

0

1√
(4 − x2) cos(x/4)

dx .

318 12. Numerical Differentiation and Integration

Question 12.32
Use the appropriate Gaussian quadrature (Legendre or Chebyshev) with n = 3 to find an
approximation of the integral

∫
1

0

ex√
x(1 − x)

dx .

Question 12.33
Use the appropriate Gaussian quadrature (Legendre or Chebyshev) to compute exactly the
integral

∫
1

0

x2√
1 − x2 + x4 − x6

dx .

Question 12.34
Use the appropriate Gaussian quadrature (Legendre or Chebyshev) to compute exactly the
value of the integral

∫
1

−3

(1 + x)4√
(1 − x)(3 + x)

dx .

Question 12.35
Use the appropriate Gaussian quadrature (Legendre or Chebyshev) to compute exactly the
integral

∫
2

0

x4 + 5√
4 − x2

dx .

Question 12.36
Find a Gaussian quadrature formula of the form

∫
1

0
xf(x)dx ≈ Af(x1) +B f(x2) (12.9.9)

that is exact for polynomial f of degree up to 3.

Question 12.37
Find a Gaussian quadrature formula of the form

∫
1

−1
x2f(x)dx ≈ Af(x1) +B f(x2) (12.9.10)

that is exact for polynomial f of degree up to 3.

Question 12.38
Let f ∶ [a, b] → R be a sufficiently differentiable function. If max

a≤x≤b
∣f (n+1)(x)∣ < M for some

constant M , find a bound for the truncation error of the Gauss-Chebyshev quadrature with
n > 0.

12.9. Exercises 319

Question 12.39
If the formula

∫
b

a
f(x)w(x)dx ≈

n

∑
i=1
ai f(xi)

is exact for all polynomials of degree less than 2n, show that
n

∏
j=1
(x − xj) is orthogonal to all

polynomials of degree less than n with respect to the weight function w.

Question 12.40
Could a Gaussian quadrature formula of the form

∫
b

a
f(x)w(x)dx =

n

∑
j=1
cj f(xj) (12.9.11)

be exact for polynomial of degree 2n?

Question 12.41
Use polynomial interpolation to derive a Gaussian quadrature formula of the form

∫
b

a
f(x)dx ≈ c0f(a) + c1f(b) + c2f ′(a) + c3f ′(b) . (12.9.12)

What is the highest value n such that (12.9.12) is exact for polynomials of degree smaller
than n. This type of Gaussian quadrature is called Gauus-Hermite quadrature.

320 12. Numerical Differentiation and Integration

Chapter 13

Initial Value Problems for Ordinary
Differential Equations

13.1 Introduction to Ordinary Differential Equations

We consider the initial value problem

dy

dt
(t) = f(t, y(t)) , t0 ≤ t ≤ tf

y(t0) = y0
(13.1.1)

where f ∶ [t0, tf] ×R→ R.
In this section, we develop numerical algorithms to approximate the solution y of (13.1.1)

on [t0, tf]. Before attempting to numerically solve (13.1.1), we have to get a positive answer
to the following questions.

Question(s)

Is the initial value problem (13.1.1) “well-posed?” Namely, is there a solution to
(13.1.1) and, if there is one, is it unique? Moreover, does a small “perturbation” of
(13.1.1) implies only a “small variation” in the solution of (13.1.1)?

If the initial value problem is not well-posed, then there is not point in attempting to
numerically solve (13.1.1). Suppose that (13.1.1) is deduced from experimental data associ-
ated to a given physical phenomenon, then (13.1.1) is a “perturbation” of the real ordinary
differential equation governing this physical phenomenon. Hence, if the problem is not “well-
posed”, then the analytical solution of (13.1.1) may not be related to the analytical solution
of the real ordinary differential equation governing the physical phenomenon. The same can
be said about the numerical solution. Moreover, even if (13.1.1) is the real ordinary differen-
tial equation governing the physical phenomenon, solving (13.1.1) numerically is equivalent
to solving analytically a “perturbation” of (13.1.1). Hence, if the problem is not “well-

321

322 13. Initial Value Problems

posed”, then the numerical solution of (13.1.1) may not be related to the analytic solution
of (13.1.1) but to the analytic solution of the “perturbation” of (13.1.1)

Before giving conditions on f that guarantee that an initial value problem (13.1.1) is
“well-posed”, we have to clarify the meaning of “perturbation” and “well-posed” problem.

Definition 13.1.1

A perturbation of (13.1.1) is an initial value problem of the form

dz

dt
(t) = f(t, z(t)) + δ(t) , t0 ≤ t ≤ tf

z(t0) = y0 + δ0
(13.1.2)

where δ ∶ [t0, tf]→ R is a continuous function and δ0 is a constant.

Definition 13.1.2

The initial value problem (13.1.1) is well posed if:

1. There is a unique solution y to (13.1.1).

2. There exist positive constants K and E such that for any positive ϵ ≤ E, the
solution z(t) of the perturbed problem (13.1.2) satisfies

∣y(t) − z(t)∣ <Kϵ

for all t ∈ [t0, tf] if ∣δ(t)∣ < ϵ for all t ∈ [t0, tf] and ∣δ0∣ < ϵ (Figure 13.1).

t0 tf
t

y(t) −Kϵ

y(t) +Kϵy

y(t)

z(t)

Figure 13.1: Uniform approximation of y by z on [t0, tf].

The following theorem gives conditions for the initial value problem (13.1.1) to be well-
posed.

13.1. Introduction to Ordinary Differential Equations 323

Theorem 13.1.3

Let D = {(t, y) ∶ t0 ≤ t ≤ tf and −∞ < y <∞}. Suppose that f ∶ D → R is continuous
and that there exists a constant L such that

∣f(t, y) − f(t, ỹ)∣ ≤ L∣y − ỹ∣ (13.1.3)

for all (t, y) and (t, ỹ) in D. Then the initial value problem (13.1.1) is well-posed.

Remark 13.1.4
If (13.1.3) is satisfied, we say that f satisfies a Lipschitz condition with respect to its
second variable on D or that f is Lipschitz continuous with respect to its second variable
on D. L is called a Lipschitz constant. ♠

Proof (partial).
The existence and uniqueness of the solution of the initial value problem (13.1.1) is usually
proved in good introductory textbooks on ordinary differential equations. The main idea
for the proof of existence given by Peano is to construct a contraction mapping whose fixed
point is the local solution of the ordinary differential equations.

We prove the second condition of the definition of well-posed problem.

Let r(t) = z(t) − y(t) where y(t) is the solution of (13.1.1) and z(t) is the solution of
(13.1.2). If we subtract (13.1.1) from (13.1.2), we get

r′(t) = f(t, z(t)) − f(t, y(t)) + δ(t)
r(t0) = δ0

As required in Definition 13.1.2, let’s assume that ∣δ(t)∣ < ϵ for all t ∈ [t0, tf] and ∣δ0∣ < ϵ. We
get from (13.1.3) that

r(t) − r(t0) = ∫
t

t0
r′(s)ds = ∫

t

t0
f(s, z(s)) − f(s, y(s))ds + ∫

t

t0
δ(s)ds .

Hence,

∣r(t)∣ ≤ ∣r(t0)∣ + ∫
t

t0
∣f(s, z(s)) − f(s, y(s))∣ds + ∫

t

t0
∣δ(s)∣ds ≤ ϵ +L∫

t

t0
∣r(s)∣ds + ϵ(tf − t0)

for all t ∈ [t0, tf]. It follows from Gronwall’s Lemma1 that

∣r(t)∣ ≤ ϵ(1 + tf − t0)eL(t−t0) ≤ ϵ(1 + tf − t0)eL(tf−t0)

for all t ∈ [t0, tf]. We conclude that
∣r(t)∣ ≤Kϵ

with
K = (1 + tf − t0)eL(tf−t0)

for t ∈ [t0, tf].
1Another fundamental result that one can find in a good introductory textbook on ordinary differential

equations.

324 13. Initial Value Problems

13.2 Euler’s Method

We introduce in this section the simplest numerical method to approximate the solution of an
initial value problem. Even if it is not the best numerical method, it is still a good method
to introduce most of the concepts and issues involved in the numerical approximation of
solutions of initial value problem.

Suppose that (13.1.1) is well-posed. The general procedure to approximate the solu-
tion of (13.1.1) is as follows:

1. Choose a positive integer N .

2. Select N + 1 mesh points t0 < t1 < t2 < . . . < tN = tf (usually equally spaced.)

3. Find an approximation wi of yi = y(ti) for i = 1, 2, . . . , N .

4. Use linear interpolation at the points (ti,wi) (or higher order polynomial interpolation)
to approximate y(t) at t /= ti for i = 0, 1, . . . , N (Figure 13.2).

Our first procedure to compute an approximation wi to yi is the Euler’s method.

Definition 13.2.1 (Euler’s Method)

Let h = (tf − t0)/N , ti = t0 + ih and yi = y(ti) for i = 0, 1, 2, . . . , N . The approximation
wi of yi is the solution of the difference equation

wi+1 = wi + hf(ti,wi) , 0 ≤ i < N
w0 = y0

(13.2.1)

Remark 13.2.2

1. The mesh points in the presentation of the Euler’s method are equally spaced. However,
the mesh points ti do not have to be equally spaced. We may simply require that
hi = ti+1 − ti for 0 ≤ i < N satisfy max

0≤i<N
∣hi∣ <K min

0≤i<N
∣hi∣ for a constant K.

2. The Euler’s method can be justified as follows. Suppose that f is continuously differ-
ential with respect to both variables. From Theorem 2.1.6, we have

y(ti+1) = y(ti) + y′(ti) (ti+1 − ti) +
y′′(ξi)

2
(ti+1 − ti)2

for some ξi between ti and ti+1. If we substitute y′(ti) = f(ti, y(ti)), yi = y(ti) and
h = ti+1 − ti in the previous equation, we get

yi+1 = yi + f(ti, yi)h +
y′′(ξi)

2
h2 (13.2.2)

for some ξi between ti and ti+1. If we assume that y′′(ξi)h2/2 is much smaller than
yi + f(ti, yi)h for all i and for h small enough, we get the Euler’s method by removing
this term from (13.2.2).

13.2. Euler’s Method 325

w3

w2

w1
w0

t0 t1 t2 t3
t

y y(t)

Line of equation
(y −w1) = f(t1,w1)(t − t1)

Line of equation
(y −w0) = f(t0,w0)(t − t0)

Line of equation
(y −w2) = f(t2,w2)(t − t2)

Figure 13.2: Graph of the solution y and its approximation given by the Euler’s
method.

3. The local discretization error for the Euler’s method is y′′(ξi)h2/2.
♠

Example 13.2.3
Use Euler’s method with N = 5 to approximate the solution y of

y′(t) = 0.2 ty , 1 ≤ t ≤ 1.5
y(1) = 1

(13.2.3)

We have t0 = 1, tf = t5 = 1.5, y0 = 1 and f(t, y) = 0.2 ty. Hence h = (t5 − t0)/5 = 0.1,
ti = t0 + ih = 1 + 0.1i and the approximation wi of yi = y(ti) is given by

w0 = 1
wi+1 = wi + 0.02 tiwi , 0 ≤ i < 5.

The results of these computations are given in the following table.

i ti wi yi absolute relative
error error

0 1.00 1.0000 1.0000 0.0 0.0
1 1.10 1.02 1.0212220516 −0.0012220516 0.0011966561
2 1.20 1.04244 1.0449823549 −0.0025423549 0.0024329166
3 1.30 1.06745856 1.0714362091 −0.0039776491 0.0037124461
4 1.40 1.0952124826 1.1007590640 −0.0055465814 0.0050388696
5 1.50 1.1258784321 1.1331484531 −0.0072700210 0.0064157710

Since the differential equation in (13.2.3) is separable, it is easy to find the exact solution
y(t) = e0.1t2−0.1 of (13.2.3). We have used this formula to compute yi. Our approximation w5

of y5 has a relative error of about 0.64 %. This is good. ♣

326 13. Initial Value Problems

Example 13.2.4
Use the Euler’s method with N = 5 to approximate the solution y of

y′(t) = 2 ty , 1 ≤ t ≤ 1.5
y(1) = 1

(13.2.4)

As in the previous example, we have t0 = 1, tf = t5 = 1.5 and y0 = 1. However, f(t, y) = 2 ty.
Hence h = (t5 − t0)/5 = 0.1, ti = t0 + hi = 1 + 0.1i and the approximation wi of yi = y(ti) is
given by

w0 = 1
wi+1 = wi + 0.2 tiwi , 0 ≤ i < 5 .

The results of these computations are given in the following table.

i ti wi yi absolute relative
error error

0 1.0 1.0000 1.0000 0.0 0.0
1 1.1 1.2000 1.2336780600 −0.0336780600 0.0272989048
2 1.2 1.4640 1.5527072185 −0.0887072185 0.0571306795
3 1.3 1.81536 1.9937155332 −0.1783555332 0.0894588673
4 1.4 2.2873536 2.6116964734 −0.3243428734 0.1241885789
5 1.5 2.927812608 3.4903429575 −0.5625303495 0.1611676435

Since the differential equation in (13.2.4) is separable, it is easy to find the exact solution
y(t) = et2−1 of (13.2.4). We have used this formula to compute yi. Our approximation w5

of y5 has a relative error of about 16.12 %. This is not good. The Euler’s method does not
give good approximations of yi for 1 ≤ i ≤ 5.

To find the reason behind these poor numerical results compared to those of the previous
example, we have to compare the graphs of the solutions. The graph of the solution of
(13.2.3) is concave up and so is the graph of the solution of (13.2.4) because f(t, y) > 0 for
t > 0 and y > 0 in both cases. However, the solution of (13.2.4) increases a lot faster than the
solution of (13.2.3). It is therefore easy to imagine (Figure 13.3) that the distance between
the graph of the solution of (13.2.4) and the graph of its numerical approximation increases
faster than the distance between the graph of the solution of (13.2.3) and the graph of its
numerical approximation. ♣

We now investigate the effect of local discretization and rounding error on the Euler’s
method. Due to rounding error, solving (13.2.1) numerically is equivalent to solving

ui+1 = ui + hf(ti, ui) + δi+1
u0 = y0 + δ0

(13.2.5)

exactly, where δ0 is the error in approximating y0 and δ1+i is the rounding error in computing
wi + hf(ti,wi). For 0 ≤ i ≤ N , the value ui represents the computed value of wi.

13.2. Euler’s Method 327

Figure 13.3: Graphs of the solution (in black) of (13.2.3) on the left and of (13.2.4)
on the right with the graphs of their approximation (in blue) given by the Euler’s
method.

Theorem 13.2.5

Let ei = yi − ui for i = 0, 1, . . . , N . Suppose that:

1. There exists δ such that ∣δi∣ < δ for i = 1, 2, . . . , N . (Note that for a given
computer, this assumption makes sense.)

2. The function f satisfies the Lipschitz condition (13.1.3) on [t0, tf] ×R.

3. There exists M > 0 such that ∣y′′(t)∣ <M for all t in [t0, tf].

Then,

∣ei∣ ≤
1

L
(Mh

2
+ δ
h
) (eL(ti−t0) − 1) + ∣δ0∣ eL(ti−t0) . (13.2.6)

Proof.
If we subtract the first equation of (13.2.5) from (13.2.2), we get

ei+1 = ei + h (f(ti, yi) − f(ti, ui)) +
y′′(ξi)

2
h2 − δ1+i

e0 = −δ0
(13.2.7)

Since f satisfies the Lipschitz condition (13.1.3) on [t0, tf] ×R, we have

∣f(t, yi) − f(t, ui)∣ ≤ L∣yi − ui∣ .

Hence, if we take the absolute value on both sides of the equations in (13.2.7), we get

∣ei+1∣ ≤ ∣ei∣ + hL∣ei∣ +
M

2
h2 + δ

∣e0∣ = ∣δ0∣
(13.2.8)

328 13. Initial Value Problems

Consider the difference equation

ηi+1 = ηi + hLηi +
M

2
h2 + δ

η0 = ∣δ0∣
(13.2.9)

The solution of (13.2.9) is
ηi = A(1 + hL)i +B ,

where

A = ∣δ0∣ +
1

hL
(M
2
h2 + δ) = ∣δ0∣ +

1

L
(Mh

2
+ δ
h
)

and

B = − 1

hL
(M
2
h2 + δ) = − 1

L
(Mh

2
+ δ
h
) .

We can easily show by induction that ∣ei∣ ≤ ηi for i = 0, 1, . . . , N . This is true for i = 0
because η0 = ∣δ0∣ = ∣e0∣. Suppose that ∣ei∣ ≤ ηi for i = 0, 1, . . . , k. Then it follows from (13.2.8)
that

∣ek+1∣ ≤ ∣ek∣ + hL∣ek∣ +
M

2
h2 + δ ≤ ηk + hLηk +

M

2
h2 + δ = ηk+1 .

Thus, ∣ei∣ ≤ ηi for all i by induction.

Hence,

∣ei∣ ≤ ηi = A(1 + hl)i +B = (∣δ0∣ +
1

L
(Mh

2
+ δ
h
)) (1 + hL)i − 1

L
(Mh

2
+ δ
h
)

≤ (∣δ0∣ +
1

L
(Mh

2
+ δ
h
)) eihL − 1

L
(Mh

2
+ δ
h
)

= 1

L
(Mh

2
+ δ
h
) (eL(ti−t0) − 1) + ∣δ0∣ eL(ti−t0) ,

where we have used (1 + x)n ≤ enx for x > 0 in the second inequality, and ih = ti − t0 in the
last equality.

Remark 13.2.6

1. If we assume the idealistic case where there are no rounding and approximation errors,
namely δ = δ0 = 0, then (13.2.6) in Theorem 13.2.5 yields

∣wi − y(ti)∣ = ∣ei∣ ≤
M

2L
(eL(tf−t0) − 1) h

for all i. It follows that
lim
h→0

max
0≤i≤N

∣wi − y(ti)∣ = 0 .

13.3. Higher-Order Taylor Methods 329

2. As for numerical differentiation, Euler’s method is sensitive to rounding error. Theo-
rem 13.2.5 suggests that

∣ei∣ ≈
1

L
(Mh

2
+ δ
h
) (eL(ti−t0) − 1) + ∣δ0∣ eL(ti−t0) ,

where the factor
Mh

2
+ δ
h
goes to infinity as h goes to 0.

♠

13.3 Higher-Order Taylor Methods

The Euler’s method is a nice method to introduce the concept of numerical solution of initial
value problems of the form (13.1.1). However, it is not a really good method. We now turn
our attention to “better methods.” Before that, we need some concepts to define what we
mean by “better methods.”

Definition 13.3.1

The local truncation error of a method of the form

wi+1 = wi + hϕ(ti,wi) , 0 ≤ i < N
w0 = y0

(13.3.1)

to numerically solve (13.1.1) is defined as

τi+1(h) = (yi+1 − yi)/h − ϕ(ti, yi) (13.3.2)

with yi = y(ti) for i = 0, 1, 2,. . . , N .
If there exist a function τ ∶ R → R such that ∣τi+1(h)∣ ≤ τ(h) for all i, and a positive
integer k (as large as possible) such that τ(h) = O(hk) near the origin, then we say
that the method (13.3.1) is of order k.

Example 13.3.2
For the Euler’s method ϕ(t, y) = f(t, y) in (13.3.1) It follows from (13.2.2) that the local
truncation error for the Euler’s method is

τi+1(h) = (yi+1 − yi)/h − f(ti, yi) =
y′′(ξi)

2
h

for some ξi in [ti−1.ti]. If there exists a constant M such that ∣y′′(t)∣ ≤M for all t ∈ [t0, tf],
then ∣τi+1(h)∣ ≤ τ(h) ≡ M ∣h∣/2 for all i and τ(h) = O(h) near the origin. So, the Euler’s
method is of order 1. ♣
Remark 13.3.3
Since ∣hp∣ is a decreasing function of p for ∣h∣ < 1 fixed, the local truncation error is generally
smaller for high order methods than for low order methods. ♠

330 13. Initial Value Problems

Definition 13.3.4 (Taylor Method of order 2)

Let h = (tf − t0)/N , ti = t0 + ih and yi = y(ti) for i = 0, 1, 2, . . . , N . The approximation
wi of yi is the solution of the difference equation

wi+1 = wi + hϕ(ti,wi) , 0 ≤ i < N
w0 = y0

where

ϕ(t, y) = f(t, y) + h
2
(∂f
∂t
(t, y) + (∂f

∂y
(t, y)) f(t, y)) .

Remark 13.3.5

1. Assuming that f is sufficiently differentiable, we may derive Taylor methods of order
n > 2 by differentiating n − 1 times with respect to t the expression f(t, y(t)). The
Taylor method of order n can be justified as follows. From Theorem 2.1.6, we have

y(ti+1) = y(ti) + y′(ti) (ti+1 − ti) +
y′′(ti)

2
(ti+1 − ti)2 + . . . +

y(n)(ti)
n!

(ti+1 − ti)n

+ y
(n+1)(ξi)
(n + 1)!

(ti+1 − ti)n+1

for some ξi between ti and ti+1. We also have that

y′(t) = f(t, y(t)) ,

y′′(t) = d

dt
f(t, y(t)) = ∂f

∂t
(t, y(t)) + (∂f

∂y
(t, y(t))) y′(t)

= ∂f
∂t
(t, y(t)) + (∂f

∂y
(t, y(t))) f(t, y(t)) ,

y(3)(t) = . . .

Since h = ti+1 − ti, yi = y(ti), y′(ti) = f(ti, yi), y′′(ti) =
∂f

∂t
(ti, yi) +

∂f

∂y
(ti, yi) f(ti, yi),

. . . , we get

yi+1 = yi + h(f(ti, yi) +
h

2
(∂f
∂t
(ti, yi) +

∂f

∂y
(ti, yi) f(ti, yi)) + . . .)

´¹¹¸¹¹¹¶
=ϕ(ti,yi)

+ y
(n+1)(ξi)
(n + 1)!

hn+1

(13.3.3)

for some ξi between ti and ti+1. If we assume that
y(n+1)(ξi)
(n + 1)!

hn+1 is small for all i, we

get the Taylor method of order n by removing this term from (13.3.3).

13.4. Runge-Kutta Methods 331

2. The local discretization error for the Taylor method of order n is

1

(n + 1)!
y(n+1)(ξi)hn+1 .

3. The local truncation error is

τi+1(h) =
yi+1 − yi

h
− ϕ(ti, yi) =

y(n+1)(ξi)
(n + 1)!

hn

for ξi ∈ [ti, ti+1]. If there exists a constant M such that ∣y(n+1)(t)∣ ≤M for all t ∈ [t0, tf],
then ∣τi+1(h)∣ ≤ τ(h) ≡M ∣h∣n/(n + 1)! for all i and τ(h) = O(hn) near the origin. This
justifies the name Taylor method of order n.

4. From a numerical point of view, the Taylor methods of order n > 1 are not very useful.
We may use these methods only when ϕ(t, y) can be easily computed symbolically.
Moreover, though the local truncation error is smaller for the Taylor methods of order
n > 1 than it is for the Euler’s method, rounding error is generally larger for the Taylor
methods of order n > 1 because of the number of numerical operations necessary to
evaluate ϕ(ti,wi) for i = 0, 1, . . . , N − 1.

♠

13.4 Runge-Kutta Methods

In this section, we develop numerical methods to approximate the solution of (13.1.1) that
are of order greater than one and do not require the evaluation of complicate functions like
ϕ(t, y) in the high order Taylor methods.

Definition 13.4.1 (General Form of the Runge-Kutta Method)

Let h = (tf − t0)/N , ti = t0 + ih and yi = y(ti) for i = 0, 1, 2, . . . , N . The approximation
wi of yi is the solution of the difference equation

wi+1 = wi + h
s

∑
j=1
γjKj , 0 ≤ i < N

w0 = y0

where s is a positive integer,

Kj = f(ti + αjh,wi + h
s

∑
m=1

βj,mKm) , 1 ≤ j ≤ s

and αj, βj,m and γj are constants such that

αj =
s

∑
m=1

βj,m and
s

∑
j=1
γj = 1 . (13.4.1)

332 13. Initial Value Problems

The valuesKm are called the stages and the method is described as a s-stage Runge-
Kutta method.
If βj,m = 0 for m ≥ j, the Runge-Kutta method is called an explicit method. Other-
wise, it is called an implicit method. If βj,m = 0 for m > j, the Runge-Kutta method
is called a semi-implicit method.

The classical way to describe a Runge-Kutta method is with its Butcher array.

α1 β1,1 β1,2 . . . β1,1
α2 β2,1 β2,1 . . . β2,1
α3 β3,1 β3,2 . . . β3,1
⋮ ⋮ ⋮ ⋱ ⋮
αs βs,1 βs,2 . . . βs,s

γ1 γ2 . . . γs

The Butcher array for the explicit Runge-Kutta methods is as follows.

α1

α2 β2,1
α3 β3,1 β3,2
⋮ ⋮ ⋮
αs βs,1 βs,2 . . . βs,s−1

γ1 γ2 . . . γs−1 γs

The Runge-Kutta methods do not only get some information from the solution through
(t0, y(t0)) but also from solutions that are near the solution through (t0, y(t0)). This infor-
mation comes from f(t, y). Let’s consider the explicit Runge-Kutta methods. We first note
that α1 = 0 because of (13.4.1).

• We have K1 = f(ti,wi).

• K2 = f(ti+α2h,wi+β2,1hK1), where wi+β2,1hK1 = wi+α2hf(ti,wi) is the approximation
of y(t) at t = ti + α2h given by the Euler’s method.

• K3 = f(ti +α3h,wi + β3,1hK1 + β3,2hK2), where β3,1K1 + β3,2K2 = (α3 − β3,2)K1 + β3,2K2

is a weighted average of the approximations of y′(t) at ti and ti + α2h respectively.

• Similarly, K4 = f(ti + α4h,wi + β4,1hK1 + β4,2hK2 + β4,3hK3), where β4,1K1 + β4,2K2 +
β4,3K3 = (α4−β4,2−β4,3)K1+β4,2K2+β4,3K3 is a weighted average of the approximations
of y′(t) at ti, ti + α2h and ti + α3h.

• And so on for all the K5, K6, . . .

Hence, Kj is an approximation of y′(t) at ti + αjh for 1 ≤ j ≤ s and wi+1 = wi + h
s

∑
k=1

γkKk,

where
s

∑
k=1

γkKk is a weighted average of these approximations.

13.4. Runge-Kutta Methods 333

Remark 13.4.2
We will see later that the conditions (13.4.1) are necessary conditions for an s-stage Runge-
Kutta method to be of order s. ♠

We now present some of the most famous explicit Runge-Kutta methods.

Definition 13.4.3 (Runge-Kutta Methods of order two)

Let h = (tf − t0)/N , ti = t0 + ih and yi = y(ti) for i = 0, 1, 2, . . . , N . The approximation
wi of yi is the solution of the difference equation

wi+1 = wi + h (γ1f(ti,wi) + γ2f(ti + α2h,wi + β2,1hf(ti,wi))) , 0 ≤ i < N
w0 = y0

where α2, β2,1, γ1 and γ2 are constants satisfying γ1 +γ2 = 1, α2 = β2,1 and α2γ2 = 1/2.

Remark 13.4.4

1. Some well known Runge-Kutta methods of order two are:

Midpoint method: α2 = β2,1 = 1/2, γ1 = 0 and γ2 = 1, Its Butcher array is

0
1/2 1/2

0 1

Modified Euler’s method: α2 = β2,1 = 1 and γ1 = γ2 = 1/2, Its Butcher array is

0
1 1

1/2 1/2

Heun’s method: α2 = β2,1 = 2/3, γ1 = 1/4 and γ2 = 3/4. Its Butcher array is

0
2/3 2/3

1/4 3/4

2. The motivation for the Runge-Kutta methods of order two is as follows. We assume
that all the mixed partial derivatives of f ∶ [t0, tf] × R → R exist and are continuous
up to order two. Up to O(h2), we replace the function ϕ(t, y) in the Taylor method of
order 2 (Definition 13.3.4) by an expression of the form γ1K1+γ2K2, where K1 = f(t, y)
and K2 = f(t + α2h, y + β2,1hK1) for some γ1, γ2, α2 and β2,1.

Using Taylor expansion theorem in two variables, we have

f(t + α2h, y + β2,1hK1) = f(t, y) + α2h
∂f

∂t
(t, y) + β2,1hK1

∂f

∂y
(t, y) +O(h2) .

334 13. Initial Value Problems

Hence

γ1K1 + γ2K2 = (γ1 + γ2)f(t, y) + α2γ2h
∂f

∂t
(t, y)

+ β2,1γ2hf(t, y)
∂f

∂y
(t, y) +O(h2) .

(13.4.2)

If we match the coefficients of f(t, y), h ∂f
∂t
(t, y) and hf(t, y) ∂f

∂y
(t, y) in (13.4.2) with

those in

ϕ(t, y) = f(t, y) + 1

2
h
∂f

∂t
(t, y) + 1

2
hf(t, y) ∂f

∂y
(t, y) ,

we get γ1 + γ2 = 1, α2γ2 = 1/2 and β2,1γ2 = 1/2.

3. If we assume that all the mixed partial derivatives of f ∶ [t0, tf] × R → R exist and
are continuous up to order two, then the local truncation errors of the Runge-Kutta
methods in Definition 13.4.3 are bounded by a function τ (found for the Taylor method
of order 2) such that τ(h) = O(h2) near the origin as their name suggests.

♠
Example 13.4.5
Use the modified Euler’s method with N = 5 to approximate the solution y of the initial
value problem (13.2.4) of Example 13.2.4.

We have t0 = 1, tf = t5 = 1.5, y0 = 1 and f(t, y) = 2 ty. Hence h = (t5 − t0)/5 = 0.1 and
tj = t0 + hi = 1 + 0.1i. The approximation wi of yi = y(ti) is given by

w0 = 1
w∗i =wi + 0.2 tiwi

wi+1 =wi + 0.1 (tiwi + ti+1w∗i)
} , 0 ≤ i < 5

The results of these computations are given in the following table:

i ti wi yi absolute relative
error error

0 1.00 1.00000000 1.0000 0.0 0.0
1 1.10 1.23200000 1.23367806 0.00167806 0.00136021
2 1.20 1.54788480 1.55270722 0.00482242 0.00310581
3 1.30 1.98315006 1.99371553 0.01056553 0.00529942
4 1.40 2.59078717 2.61169647 0.02090931 0.00800602
5 1.50 3.45092851 3.49034296 0.03941445 0.01129243

We get approximation of yi that are much better than those given by the Euler’s method in
Example 13.2.4. ♣

13.4. Runge-Kutta Methods 335

Definition 13.4.6 (Runge-Kutta Method of Order Four)

Let h = (tf − t0)/N , ti = t0 + ih and yi = y(ti) for i = 0, 1, 2, . . . , N . The approximation
wi of yi is the solution of the difference equation

wi+1 = wi +
h

6
(K1 + 2K2 + 2K3 +K4) , 0 ≤ i < N

w0 = y0

where K1 = f(ti,wi), K2 = f(ti + h/2,wi + hK1/2), K3 = f(ti + h/2,wi + hK2/2) and
K4 = f(ti+1,wi + hK3).

This method is often called the classical Runge-Kutta method. A graphical inter-
pretation of the Runge-Kutta method classic is given in Figure 13.4. Its Butcher array
is

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

ti + h/2 ti+1ti

y = y(t)

t

wi+1

wi + hK3

wi

wi + hK1/2
wi + hK2/2

y

h

slope f(ti,wi)
slope f(ti + h/2,wi + hK2/2)
slope f(ti + h/2,wi + hK1/2)
slope f(ti+1,wi + hK3)

with y(t0) = y0
solution of y′ = f(t, y)

Figure 13.4: The expression K1/6 + 2K2/3 + 2K3/3 +K4/6 in the formula for the
Runge-Kutta classic is a weighted average of the four slopes shown in the figure
above.

Remark 13.4.7

1. The motivation for the Runge-Kutta methods of order four is as follows. We assume
that all the mixed partial derivatives of f ∶ [t0, tf] × R → R exist and are continuous
up to order four. Up to O(h4), we replace the function ϕ(t, y) in the Taylor method

336 13. Initial Value Problems

of order 4 (Definition 13.3.4) by an expression of the form γ1K1 + γ2K2 + γ3K3 + γ4K4

where K1 = f(t, y), K2 = f(t +α2h, y + β2,1hK1), K3 = f(t +α3h, y + β3,1hK1 + β3,2hK2)
and K4 = f(t + α4h, y + β4,1hK1 + β4,2hK3 + β4,3hK3) for some γj, αj and βj,m. After a
long computation that can be found in [23], we find the following conditions on γj, αj

and βj,m:

β2,1 = α2 , β3,1 + β3,2 = α3 , β4,1 + β4,2 + β4,3 = α4 ,
4

∑
j=1
γj = 1 ,

4

∑
j=2
γjα

k
j =

1

k + 1
for k = 1,2,3 ,

γ3α2β3,2 + γ4(α2β4,2 + α3β4,3) =
1

6
, γ3α2α3β3,2 + γ4α4(α2β4,2 + α3β4,3) =

1

8
,

γ3α
2
2β3,2 + γ4(α2

2β4,2 + α2
3β4,3) =

1

12
and γ4α2β3,2β4,3 =

1

24
.

The Runge-Kutta of order four given in the definition above corresponds to a particular
choice for these constants. We will present in the following sections other techniques
to develop Runge-Kutta methods.

2. If we assume that all the mixed partial derivatives of f ∶ [t0, tf] × R → R exist and
are continuous up to order four, then the local truncation error of the Runge-Kutta
method in the previous definition is O(h4) as its name suggests.

3. Note that
s

∑
j=1
γj = 1 is a necessary condition for the s-stage Runge-Kutta method to be

of order s.

4. There is no explicit Runge-Kutta method of order s for s ≥ 5 that have at most s
stages. We have the following relation between the order of an explicit Runge-Kutta
method and the number s of stage.

Order 1 2 3 4 5 6 7 8 9 10
Minimum stage number 1 2 3 4 6 7 9 11 12 ≤ s ≤ 17 13 ≤ s ≤ 17

♠
Example 13.4.8
Use Runge-Kutta classic of order four with N = 5 to approximate the solution y of (13.2.4)
in Example 13.2.4.

We have t0 = 1, tf = t5 = 1.5, y0 = 1 and f(t, y) = 2 ty. Hence h = (t5 − t0)/5 = 0.1 and
ti = 1 + 0.1i for i = 0, 1, . . . , 5. The approximation wi of yi = y(ti) is given by

w0 = 1.0

wi+1 = wi +
0.1

6
(K1 + 2K2 + 2K3 +K4) , 0 ≤ i < 5

where

K1 = 2 tiwi

13.4. Runge-Kutta Methods 337

K2 = 2(ti + 1/20)(wi +K1/20)
K3 = 2(ti + 1/20)(wi +K2/20)
K4 = 2ti+1(wi +K3/10)

The results of this computation are given in the following table:

i ti wi yi absolute relative
error error

0 1.00 1.0000000000 1.0000000000 0.0 0.0
1 1.10 1.2336743500 1.2336780600 0.000003710 0.0000030072
2 1.20 1.5526953980 1.5527072185 0.000011820 0.0000076128
3 1.30 1.9936867693 1.9937155332 0.000028764 0.0000144273
4 1.40 2.6116332332 2.6116964734 0.000063240 0.0000242142
5 1.50 3.4902106364 3.4903429575 0.000132321 0.0000379106

We get approximations of yi that are much better than those given by the modified Euler’s
method in Example 13.4.5 and the Euler’s method in Example 13.2.4. ♣

Code 13.4.9 (Runge-Kutta of Order Four)

To approximate the solution of the initial value problem

y′(t) = f(t, y(t)) , t ≥ t0
y(0) = y0

Input: The function f(t, y) (funct in the code below).
The step-size h.
The number of steps N .
The initial time t0 (t0 in the code below) and the initial conditions y0 (y0 in the code
below) at t0.
Output: The approximations wi (ww(i+1) in the code below) of y(ti) at ti (tt(i+1)
in the code below).

function [tt,ww] = rgkt4(funct,h,N,t0,y0)

tt(1) = t0;

ww(1) = y0;

h2 = h/2;

for j=1:N

tt(j+1) = tt(1)+j*h;

k1 = h*funct(tt(j),ww(j));

k2 = h*funct(tt(j)+h2,ww(j)+k1/2);

k3 = h*funct(tt(j)+h2,ww(j)+k2/2);

k4 = h*funct(tt(j+1),ww(j)+k3);

ww(j+1) = ww(j) + (k1+2*(k2+k3)+k4)/6;

end

end

338 13. Initial Value Problems

13.4.1 Derivation of Runge-Kutta Methods – Collocation Method

We present a method to derive some Runge-Kutta methods in this section. A more general
method will be presented in the next section.

As usual, we consider the initial value problem (13.1.1) and assume that we have a
partition t0 < t1 < . . . < tN = tf of [t0, tf] such that ti+1 − ti = h for i = 0, 1, . . . , N − 1.

Definition 13.4.10 (Collocation Method)

We consider k distinct nodes α1 < α2 < . . . < αk in [0,1]. Assuming that we have
wi ≈ y(ti), we seek a polynomial p of degree k such that

p(ti) = wi

p′(ti + αjh) = f(ti + αjh, p(ti + αjh)) , 1 ≤ j ≤ k .

The approximation wi+1 of y(ti+1) is given by p(ti+1). We repeat this construction for
i = 0, 1, . . . , N − 1.

The idea behind the collocation method is to use a polynomial of degree k on each interval
[ti, ti+1] to approximate the solution between ti and ti+1.

Theorem 13.4.11

Let

ℓm(t) =
k

∏
j=1
j≠m

t − αj

αm − αj

for 1 ≤m ≤ k and

βj,m = ∫
αj

0
ℓm(t)dt and γj = ∫

1

0
ℓj(t)dt

for 1 ≤ j,m ≤ k. Then, the collocation method presented in Definition 13.4.10 is an
implicit Runge-Kutta method with Butcher array

α1 β1,1 β1,2 . . . β1,k
α2 β2,1 β2,2 . . . β2,k
⋮ ⋮ ⋮ ⋱ ⋮
αk βk,1 βk,2 . . . βk,k

γ1 γ2 . . . γk

Proof.
Suppose that p is the polynomial given in Definition 13.4.10. Let

q(t) =
k

∑
m=1

p′(ti + αmh) ℓm (
t − ti
h
) .

13.4. Runge-Kutta Methods 339

q and p′ are two polynomials of degree k−1 that coincide at the k points ti+αjh for 1 ≤ j ≤ k;
namely, q(ti + αjh) = p′(ti + αjh) for 1 ≤ j ≤ k. Therefore q(t) = p′(t) for all t ∈ [ti, ti+1].
Hence

p′(t) =
k

∑
m=1

p′(ti + αmh) ℓm (
t − ti
h
) =

k

∑
m=1

f(ti + αmh, p(ti + αmh)) ℓm (
t − ti
h
)

and

p(t) = p(ti) + ∫
t

ti
p′(s)ds = wi +

k

∑
m=1
(f(ti + αmh, p(ti + αmh)) ∫

t

ti
ℓm (

s − ti
h
) ds)

= wi + h
k

∑
m=1
(f(ti + αmh, p(ti + αmh)) ∫

(t−ti)/h

0
ℓm(s)ds) . (13.4.3)

Let Km = f(ti + αmh, p(ti + αmh)) for 1 ≤ m ≤ k. If we substitute t = ti + αjh in (13.4.3),
we get

p(ti + αjh) = wi + h
k

∑
m=1

βj,mKm (13.4.4)

for 1 ≤ j ≤ k. Thus,

Kj = f (ti + αjh,wi + h
k

∑
m=1

βj,mKm) (13.4.5)

for 1 ≤ j ≤ k.
If we now substitute t = ti+1 in (13.4.3), we get

wi+1 = wi + h
k

∑
j=1

γjKj . (13.4.6)

(13.4.5) and (13.4.6) define the expected implicit Runge-Kutta method.

Remark 13.4.12

1. Not all Runge-Kutta methods comes from collocation methods. For instance

0 0 0
2/3 1/3 1/3

1/4 3/4
and

0 1/4 −1/4
2/3 1/4 5/12

1/4 3/4

are two Runge-Kutta methods but there is a unique collocation method associated to
the nodes α1 = 0 and α2 = 2/3.

2. The choice of βj,m for 1 ≤m,j ≤ k is such that

∫
αj

0
q(t)dt =

k

∑
m=1

βj,m q(αm) (13.4.7)

340 13. Initial Value Problems

is true for all polynomials q of degree less than k because all polynomials of degree less
than k can be written as

q(t) =
k

∑
m=1

q(αm) ℓm(t)

since we assume that the αm are distinct. Similarly, we have

∫
1

0
q(t)dt =

k

∑
j=1
γj q(αj) (13.4.8)

is true for polynomial q of degree less than k. Question 13.12 expands on this subject.
In particular, the βi,m and γm are uniquely determined by (13.4.7) and (13.4.8).

♠
We state the next proposition in the context of an initial value problem in Rn; namely,

f ∶ [t0, tf] × Rn → Rn with n > 1. The statement of this proposition is more interesting in
this context despite the fact that we will only use it for n = 1.

Proposition 13.4.13 (Alekseev-Gröbner Lemma)

Let y ∶ [a, b]→ Rn be the solution of

y′(t) = f(t,y(t)) , t0 ≤ t ≤ tf
y(t0) = y0

where the function f ∶ [t0, tf] ×Rn → Rn is continuously differentiable. Suppose that
v ∶ [t0, tf] → Rn is a continuously differentiable function and v(t0) = y0. Then v
satisfies

v(t) = y(t) + ∫
t

t0
A(t, s,v(s)) (v′(s) − f(s,v(s))) ds

for t0 ≤ t ≤ tf , where A is the Jacobian matrix with respect to w of the solution
u = u(t, s,w) of

u′(t) = f(t,u(t)) , t ≥ s
u(s) =w

for every s ≥ t0.

We will not prove this proposition. However, we will illustrate it for n = 1.
Example 13.4.14
Consider the initial value problem

y′(t) = ay(t) , t0 ≤ t ≤ tf
y(t0) = y0

Its solution is y(t) = ea(t−t0)y0 for t0 ≤ t ≤ tf .

13.4. Runge-Kutta Methods 341

Suppose that v ∶ [t0, tf]→ R is a continuously differentiable function such that v(t0) = y0.
Consider the initial value problem

u′(t) = au(t) , t ≥ s
u(s) = w

Its solution is u(t) = ea(t−s)w for t ≥ s.
According to Alekseev-Gröbner Lemma, we have

v(t) = ea(t−t0)y0 + ∫
t

t0
ea(t−s) (v′(s) − av(s)) ds (13.4.9)

for t0 ≤ t ≤ tf . This is a well known result because v(t), the solution of

v′(t) = av(t) + g(t) , t0 ≤ t ≤ tf
v(t0) = y0

where g(t) = v′(t) − av(t) for t0 ≤ t ≤ tf , is given by (13.4.9). ♣

Theorem 13.4.15

Let q(t) =
k

∏
j=1
(t−αj), where the αj are the nodes given in Definition 13.4.10. Suppose

that m is the largest integer such that 0 <m ≤ k and

∫
1

0
q(t) tj dt = 0 (13.4.10)

for 0 ≤ j < m. Then, the collocation method in Definition 13.4.10 is of order k +m
(Definition 13.3.1) if we assume that f is sufficiently continuously differentiable.

Proof.
From Alekseev-Gröbner lemma with t0 replaced by ti, t by ti+1 and v(t) by the collocation
polynomial p(t) in Definition 13.4.10, we get

wi+1 − y(ti+1) = ∫
ti+1

ti
g(s)ds = h ∫

1

0
g(ti + sh)ds , (13.4.11)

where
g(s) = A(ti+1, s, p(s)) (p′(s) − f(s, p(s))) .

As we have seen at the beginning of Section 12.7, if we use the nodes αj and the weight
γj for 1 ≤ j ≤ k given in Theorem 13.4.11, we get from (13.4.11) that

wi+1 − y(ti+1) = h
k

∑
j=1

γj g(ti + αjh) + hEi ,

342 13. Initial Value Problems

where Ei is the discretization error of the quadrature formula. However, in the Defini-
tion 13.4.10 of the collocation method, we have that

p′(ti + αjh) − f(ti + αjh, p(ti + αjh)) = 0

for 1 ≤ j ≤ k. Thus wi+1 − y(ti+1) = hEi. From (13.4.10) and Question 12.25, we have that
the quadrature formula is exact for polynomials of degree less than k +m. It follows from
Question 12.26 that there exist a constant K =K(k,m, γj) such that

∣Ei∣ = ∣∫
1

0
g(ti + sh)ds −

k

∑
j=1

γj g(ti + αjh)∣ ≤Kmax
0≤s≤1

∣ d
k+m

dsk+m
g(ti + sh)∣

=Khk+m max
0≤s≤1

∣g(k+m)(ti + sh)∣ ≤Khk+m max
a≤t≤b

∣g(k+m)(t)∣

for 0 ≤ i < N . Let ϕ(ti,wi) =
k

∑
j=1
γjKj be the formula for the Runge-Kutta method provided

by the collocation method. Then

τi+1(h) =
y(ti+1) − y(ti)

h
− ϕ(ti, y(ti)) =

(wi+1 − hEi) − (wi − hEi−1)
h

− ϕ(ti,wi − hEi−1)

= wi+1 −wi

h
− ϕ(ti,wi)

´¹¹¹¸¹¹¹¶
=0

−Ei +Ei−1 − h
∂ϕ

∂w
(ti, ξi)Ei−1

for some ξi between wi and wi −Ei−1 is we assume that ∣h∣ ≤ 1.
Since Ei = O(hk+m) near the origin for all i, we may assume that there exists an interval

[c, d] such that wi and wi − Ei are in [c, d] for all i and all small h (i.e. for all partitions
a ≤ t0 < t1 < ⋅ ⋅ ⋅ < tN = b with ti+1 − ti = h small enough). Since ϕ is composed of f and

some of its partial derivatives, there exists a constant M such that ∣ ∂ϕ
∂w
(t,w)∣ ≤ M for all

(t,w) ∈ [a, b] × [c, d]. Hence

∣τi+1(h)∣ ≤ τ(h) = (2 + ∣h∣M)K ∣h∣k+m max
a≤t≤b

∣g(k+m)(t)∣ = O(hk+m)

near the origin. Proving that the collocation method is of order at least k +m.

To prove that the collocation method is not of order greater than k +m, it suffices to
apply the collocation method to

y′(t) = (k +m + 1)tk+m

y(0) = 0

Corollary 13.4.16

Let q(t) =
k

∏
j=1
(t−αj), where the αj are the nodes used in the collocation method given

13.4. Runge-Kutta Methods 343

in Definition 13.4.10. Suppose that

∫
1

0
q(t) ti dt = 0

for i = 0, 1, . . . , k − 1. Then, the collocation method is of order 2k.

Example 13.4.17 (Gauss-Legendre Methods)
Suppose that q(t) = t − 1/2, the Gauss-Legendre polynomial of degree 1, and α1 = 1/2. The
previous Corollary is satisfied with k = 1. From Theorem 13.4.11, we get the Runge-Kutta
method of order two associated to the Butcher array2

1/2 1/2
1

This is the Implicit Midpoint Rule.

Suppose that q(t) = t2 − t + 1/6, the Gauss-Legendre polynomial of degree 2. q(t) =
(t − α1)(t − α2), where α1 = (3 −

√
3)/6 and α2 = (3 +

√
3)/6. The previous Corollary is

satisfied with k = 2. From Theorem 13.4.11, we get the Runge-Kutta method of order four
associated to the Butcher array

(3 −
√
3)/6 1/4 (3 − 2

√
3)/12

(3 +
√
3)/6 (3 + 2

√
3)/12 1/4

1/2 1/2

♣

13.4.2 Derivation of Runge-Kutta Methods – Rooted Trees

In this section, we will use trees to derive Runge-Kutta methods. None of the results from
graph theory will be proved. This could be the subject for another book. Moreover, we will
consider initial value problems like (13.1.1) where f ∶ [to, tf] ×Rn → Rn with n > 1. Namely,
we will consider the initial value problem

dy

dt
(t) = f(t,y(t)) , t0 ≤ t ≤ tf

y(t0) = y0 ∈ Rn
(13.4.12)

where f ∶ [t0, tf] ×Rn → Rn and n > 1.
It is true that most of what we have said for initial value problems with f ∶ [t0, tf]×R→ R

is also true for initial value problems with f ∶ [t0, tf] × Rn → Rn and n > 1. But there are

2This is the case k = 1 in Theorem 13.4.11. We then have that ℓ1(t) = 1 for all t by definition. The empty
product is defined to be 1, the neutral element for the multiplication, as the empty sum is defined to be 0,
the neutral element for the addition.

344 13. Initial Value Problems

some differences. One property that is influenced by the dimension of the space is the order
of the method. As we will show later in this section, some Runge-Kutta methods do not
have the same order in R than in Rn with n > 1.

Some good references on the subject of this section are [8, 19, 23, 24]. The proof of many
of the results stated in this section can be found in those references. They also include good
references to the publications on the rooted tree approach.

13.4.2.1 Elementary differentials

For simplicity and without too much lost of generality, we assume that f in (13.4.12) is
independent of t.

Let Lm(Rn,Rn) be the space of multilinear mappings from Rn ×Rn × ⋯ ×Rn (m times)
to Rn.

Definition 13.4.18

The Frechet derivative of degree n of f ∶ Rn → Rn is the mapping Dmf ∶ Rn →
Lm(Rn,Rn) defined by

Dmf(y)(k1,k2, . . . ,km)

=
n

∑
i=1
(

n

∑
j1=1

n

∑
j2=1

. . .
n

∑
jm=1

∂mf

∂yj1∂yj2 . . . ∂yjm
(y)k1,j1 k2,j2 . . . km,jm)ei ,

where ki = (ki,1 ki,2 . . . k1,n)
⊺
.

Example 13.4.19
If f ∶ R2 → R2,

D2f(y)(k1,k2) =

⎛
⎜⎜⎜⎜⎜
⎝

2

∑
j1=1

2

∑
j2=1

∂2f1
∂yj1∂yj2

(y)k1,j1 k2,j2
2

∑
j1=1

2

∑
j2=1

∂2f2
∂yj1∂yj2

(y)k1,j1 k2,j2

⎞
⎟⎟⎟⎟⎟
⎠

.

♣

Definition 13.4.20

The elementary differentials of f ∶ Rn → Rn and their order are defined recursively.

1. f ∶ Rn → Rn is the only elementary differential of order 1.

2. if g1 ∶ Rn → Rn, g2 ∶ Rn → Rn, . . . , gr ∶ Rn → Rn are r elementary differentials of f
of order m1, m2, . . . , mr respectively, then Drf(⋅)(g1(⋅), g2(⋅), . . . , gr(⋅)) ∶ Rn →
Rn, defined by

Drf(y)(g1(y), g2(y), . . . , gr(y))

13.4. Runge-Kutta Methods 345

=
n

∑
i=1
(

n

∑
j1=1

n

∑
j2=1

. . .
n

∑
jr=1

∂rf

∂yj1∂yj2 . . . ∂yjr
(y) g1,j1(y) g2,j2(y), . . . gr,jr(y))ei

for y ∈ Rn, is an elementary differential of order 1 +
r

∑
i=1

mi of f .

For simplicity, Drf(⋅)(g1(⋅), g2(⋅), . . . , gr(⋅)) is denoted {g1 g2 . . . gr}.

The order of an elementary differential is not related to the degree of the Frechet deriva-
tives of f that are used in the definition of the elementary differential.

Example 13.4.21
The elementary differential of f ∶ Rn → Rn of order 2 is {f} = Df(⋅)(f(⋅)) defined by

Df(y)(f(y)) =
n

∑
i=1
(

n

∑
j=1

∂fi
∂yj
(y)fj(y))ei .

This is y′′(t) if y′(t) = f(y(t)). This is the motivation for the definition of the order of an
elementary differential. Only partial derivative of order 1 of f are used but it is associated
to the second order derivative of y when y′(t) = f(y(t)). Note that Df ≡ D1f .

Here are two elementary differentials of f ∶ Rn → Rn of order 2:
{{f}} = Df(⋅)(Df(⋅)(f(⋅))) defined by

Df(y)(Df(y)(f(y))) =
n

∑
i=1
(

n

∑
k=1

∂fi
∂yk
(y)(

n

∑
j=1

∂fk
∂yj
(y)fj(y)))ei

for y ∈ Rn, and {f f} = D2f(⋅)(f(⋅), f(⋅)) defined by

D2f(y)(f(y), f(y)) =
n

∑
i=1
(

n

∑
j1=1

n

∑
j2=1

∂2fi
∂yj1∂yj1

(y)fj1(y) fj2(y))ei

for y ∈ Rn.

From now on, we will ignore the dependent variable y and write {{f}} = Df (Df (f))
and {f f} = D2f (f, f) to simplify the notation. ♣

13.4.2.2 Rooted Trees

In this section, we briefly introduce some concepts about rooted trees without giving any
proof. We only introduce the concepts that will provide the tools to compute elementary
differentials. The proofs of the results mentioned in this section can be found in [23].

The easiest way to define the rooted trees is to give some examples of them.

A rooted tree of order 1: r
A rooted tree of order 2: r

r

346 13. Initial Value Problems

A rooted tree of order 7: r
r r

rr
r r

❆
❆
❆

✁
✁
✁
❆

❆
❆

✁
✁
✁

❆
❆
❆

✁
✁
✁

We can combine rooted trees together to form another rooted tree.

Let τ1 = r
r r
❆
❆
❆

✁
✁
✁

, τ2 = r
r

r

✁
✁
✁
❆
❆
❆

and τ3 = r
r

r r
❆
❆
❆

✁
✁
✁

.

The new rooted tree [τ1 τ2 τ3] is defined by r
r

r r
r

r
r

r
r

r r

❆
❆
❆

✁
✁
✁

❆
❆
❆

✁
✁
✁

✁
✁
✁
❆
❆
❆

✁
✁
✁
❆
❆
❆

✁
✁
✁

. The three rooted trees
were combined using the rooted tree in blue.

Remark 13.4.22
It is interesting to know that if ai is the number of rooted trees of order i, then

a1 + a2u + a2u2 + a3u3 + . . . = (1 − u)−a1 (1 − u2)−a2 (1 − u3)−a3 . . .

♠

Definition 13.4.23

Let τ be a rooted tree. We define the following values associated to the rooted tree τ .

1. r(τ) is the order of τ .

2. σ(τ) is the symmetry of τ .

3. γ(τ) is the density of τ .

4. α(τ) is the number of “distinct ways of numbering the nodes” of τ such that the
numbers increase along the branches if we start from the root.

The order, symmetry and density are defined recursively.
If τ is a rooted tree of order one, then r(τ) = σ(τ) = γ(τ) = 1.
If

τ = [τ1 τ1 . . . τ1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n1 times

τ2 τ2 . . . τ2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n2 times

. . . τq τq . . . τq
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nq times

] ,

then

r(τ) = 1 + n1 r(τ1) + n2 r(τ2) + . . . + nq r(τq)

13.4. Runge-Kutta Methods 347

σ(τ) = n1!n2! . . . nq! (σ(τ1))n1(σ(τ2))n2 . . . (σ(τq))nq

γ(τ) = r(τ) (γ(τ1))n1 (γ(τ2))n2 . . . (γ(τq))nq

Remark 13.4.24
We explain the expression “distinct ways of numbering the nodes” of a rooted tree with
the help of some examples. The following numberings are not considered to be distinct:

r1
r2r3 r4
❆
❆
❆

✁
✁
✁

and r1
r3r4 r2
❆
❆
❆

✁
✁
✁

. However, the following numberings are distinct: r 1
r2 r3

r4

❆
❆
❆

✁
✁
✁
❆
❆
❆

and r 1
r4 r2

r3

❆
❆
❆

✁
✁
✁
❆
❆
❆

♠
The number of distinct ways of numbering the nodes of a rooted tree τ is given by the

following theorem.

Theorem 13.4.25

If τ is a rooted tree, then

α(τ) = r(τ)!
σ(τ)γ(τ)

.

We give in Table 13.1 the order, symmetry, density and number of distinct ways of
numbering the nodes for some of the basic rooted trees.

rooted tree name order symmetry density numbering

r τ 1 1 1 1

r
r

[τ] 2 1 2 1

r
r r
❆

❆
❆

✁
✁
✁

[τ τ] 3 2 3 1

r
r

r

❆
❆
❆
✁
✁
✁

[[τ]] 3 1 6 1

348 13. Initial Value Problems

rooted tree name order symmetry density numbering

r
rr r
❆

❆
❆

✁
✁
✁

[τ τ τ] 4 6 4 1

r
r r

r

❆
❆
❆

✁
✁
✁
❆
❆
❆

[τ [τ]] 4 1 8 3

r
r

rr
❆

❆
❆

✁
✁
✁

[[τ τ]] 4 2 12 1

r
r

r
r

✁
✁
✁
❆
❆
❆
✁
✁
✁

[[[τ]]] 4 1 24 1

Table 13.1: The order, symmetry, density and number of distinct ways of numbering
the rooted trees of order 1 to 4 inclusively.

13.4.2.3 Relation Between Elementary Differentials and Rooted Trees

We define a mapping F which associates to each rooted tree τ an elementary differential
F (τ) of a function f . The easiest way to explain how F associates elementary differentials
to rooted trees is to give some examples.

rooted tree elementary differential
τ F (τ)

r f

r
r

{f} = Df (f)

r
r r

✁
✁
✁

❆
❆
❆

{f f} = D2f (f, f)

13.4. Runge-Kutta Methods 349

τ F (τ)

r
r

r

❆
❆
❆
✁
✁
✁

{{f}} = Df (Df (f))

⋮ ⋮

The following proposition follows easily from the definitions.

Proposition 13.4.26

1. If τ is the rooted tree associated to the elementary differential g of f (i.e. g =
F (τ)), then g and τ have the same order.

2. If g1, g2, . . . , gs are elementary differentials of f associated to the rooted trees
τ1, τ2, . . . , τs respectively, then the elementary differential {g1 g2 . . . gs} =
Dsf (g1, g2, . . . , gs) is associated to the rooted tree [τ1 τ2 . . . τs].

Example 13.4.27
If τ1, τ2 and τ3 are the rooted trees defined at the beginning of Section 13.4.2.2, we have that
g1 = {f f} is associated to τ1, g2 = {{f}} is associated to τ2 and g3 = {{f f}} is associated
to τ3. Thus {g1 g2 g3} is associated to the rooted tree [τ1 τ2 τ3]. ♣
Remark 13.4.28
If we have f ∶ R→ R, the relation between rooted trees and elementary differentials is simple.

For instance, let τf be the rooted tree r
r
r

r r
r r

❆
❆
❆

✁
✁
✁

❆
❆
❆

✁
✁
✁

. We associate to this rooted tree the

rooted tree rfy
rfy
rfyy

rfyy rf
rf rf

❆
❆
❆

✁
✁
✁

❆
❆
❆

✁
✁
✁

. Let τ be the rooted tree of order one. Then τf = [[[τ [τ τ]]]]
and the elementary differential of f associate to τf = is {{{f {f f}}}} = f 2

yy f
2
y f

3. We only
have to multiply the derivatives that appear in the second rooted tree. ♠

350 13. Initial Value Problems

13.4.2.4 Runge-Kutta Methods

We now use rooted trees and elementary differentials to develop Runge-Kutta methods.

Theorem 13.4.29

We consider the initial value problem (13.4.12) where f does not depend on the time.
Thus, f ∶ Rn → Rn and y′(t) = f(y(t)). We have that

y(q)(t) = ∑
r(τ)=q

α(τ)F (τ) ,

where F (τ) is evaluated at y(t).

Example 13.4.30

y(4) = {f f f} + 3{f {f}} + {{f f}} + {{{f}}}
= D3f(f, f, f) + 3D2f(f,Df (f)) +Df(D2f(f, f)) +Df (Df (Df (f))) .

If we have f ∶ R→ R, we then get

y(4) = fyyyf 3 + 3fyyfyf 2 + fyyfyf 2 + f 3
y f = fyyyf 3 + 4fyyfyf 2 + f 3

y f .

♣
From now on, we consider the general definition of the Runge-Kutta methods given in

Definition 13.4.1.

We define a mapping Ψ which associates to each rooted tree τ a sum Ψ(τ) constructed
from some elements of the Butcher array

α1 β1,1 β1,2 . . . β1,s
α2 β2,1 β2,2 . . . β2,s
⋮ ⋮ ⋮ ⋱ ⋮
αs βs,1 βs,2 . . . βs,s

γ1 γ2 . . . γs

If τ is a rooted tree, Ψ(τ) = ψs+1(τ), where the function ψs+1 is defined recursively as follows.
Let βs+1,j = γj for 1 ≤ j ≤ s.

1. If τ is the rooted tree of order 1, then ψj(τ) ≡
s

∑
k=1

βj,k for 1 ≤ j ≤ s + 1.

2. If τ = [τ1 τ2 . . . τq] , where τ1, τ2, . . . , τq are rooted trees, then

ψi(τ) ≡
s

∑
j=1

βi,j ψj(τ1)ψj(τ2) . . . ψj(τq)

for 1 ≤ i ≤ s + 1.

13.4. Runge-Kutta Methods 351

There is an easy way to compute Ψ(τ). We illustrate it with some examples in Table 13.3
below.

τ Ψ(τ)

r rj s

∑
j=1

βs+1,j =
s

∑
j=1

γj = 1

r
r

rj1
rj2 s

∑
j1=1
(βs+1,j1

s

∑
j2=1

βj1,j2)

=
s

∑
j1=1

γj1 αj1

r
r r

✁
✁
✁

❆
❆
❆ rj1

rj2 rj3
✁
✁
✁

❆
❆
❆

s

∑
j1=1
(βs+1,j1 (

s

∑
j2=1

βj1,j2)(
s

∑
j3=1

βj1,j3))

=
s

∑
j1=1

γj1α
2
j1

r
r

r

❆
❆
❆
✁
✁
✁

rj1
rj2

rj3

❆
❆
❆
✁
✁
✁

s

∑
j1=1
(βs+1,j1 (

s

∑
j2=1

βj1,j2 (
s

∑
j3=1

βj2,j3)))

=
s

∑
j1=1
(γj1 (

s

∑
j2=1

βj1,j2αj2))

r
r r

r

❆
❆
❆

✁
✁
✁
❆
❆
❆

rj1
rj2 rj3

r j4

❆
❆
❆

✁
✁
✁
❆
❆
❆

s

∑
j1=1
(βs+1,j1 (

s

∑
j2=1

βj1,j2)(
s

∑
j3=1

βj1,j3 (
s

∑
j4=1

βj3,j4)))

=
s

∑
j1=1
(γj1αj1 (

s

∑
j3=1

βj1,j3αj3))

Table 13.3: Computation of Ψ(τ) for some basic tress

We define the function

Yi(z) = y(ti) + y′(ti) z +
1

2!
y′′(ti) z2 +

1

3!
y(3)(ti) z3 + . . .

We have that yi+1 = y(ti+1) = Y(h). We are assuming that the Taylor series of y at ti has
a radius of convergence greater than h. From the Runge-Kutta method, we also define the
function

Wi(z) =wi + z
s

∑
j=1

γjKj ,

352 13. Initial Value Problems

where

Kj = f (ti + αjz,wi + z
s

∑
k=1

βj,kKk)

for 1 ≤ j ≤ s. We have that wi+1 =Wi(h).
Our goal is to match the series expansions of Wi and Yi near the origin to generate

Runge-Kutta methods of high order. To be rigorous, the only think that we need is Taylor
polynomial expansions ofYi andWi of degree sufficiently large. We use the series expansions
with a large enough radius of convergence to simplify the presentation.

Proposition 13.4.31

We have that
dqWi

dzq
(0) = ∑

r(τ)=q
α(τ)γ(τ)Ψ(τ)F (τ) ,

where F (τ) is evaluated at Wi(0) =wi

Theorem 13.4.32

A Runge-Kutta method is of order p if Ψ(τ) = 1/γ(τ) for all rooted trees τ of order
less than or equal to p, and Ψ(τ) /= 1/γ(τ) for at least one rooted tree of order p + 1.

Proof.
We have

Yi(z) = yi + y′(ti) z +
1

2!
y′′(ti) z2 +

1

3!
y(3)(ti) z3 + . . . = yi +

∞
∑
q=1

1

q!
(∑

r(τ)=q
α(τ)F (τ))zq ,

where F (τ) is evaluated at yi, and

Wi(z) =wi +
dWi

dz
(0) z + 1

2

d2Wi

dz2
(0) z2 + . . . =wi +

∞
∑
q=1

1

q!
(∑

r(τ)=q
α(τ)γ(τ)Ψ(τ)F (τ))zq ,

where F (τ) is evaluated at Wi(0) =wi.

To compute the local truncation error, we make use of the localisation assumption yi =wi.

Hence, if γ(τ)Ψ(τ) = 1 for all rooted trees of order less than or equal to p, then the series
expansions of Yi and Wi have identical terms in zq for q ≤ p. We thus have that

Y(z) =Wi(z) +
∞
∑

q=p+1
(1
q!
∑

r(τ)=q
α(τ) (1 − γ(τ)Ψ(τ))F (τ))zq ,

where F (τ) is evaluated at yi =wi.

Hence, the local truncation error is

τi+1(h) =
y(ti+1) − y(ti)

h
− ϕ(ti,y(ti)) =

Yi(h) −Wi(h)
h

= hp

(p + 1)! ∑
r(τ)=p+1

α(τ) (1 − γ(τ)Ψ(τ))F (τ) +O(hp+1) ,
(13.4.13)

13.4. Runge-Kutta Methods 353

where F (τ) is evaluated at yi = wi. Therefore, the local truncation error is of order at
least p. It will be exactly of order p if there exists a rooted tree of order p + 1 such that
γ(τ)Ψ(τ) /= 1 (Remark 13.4.35 below).

Example 13.4.33
We consider the 3-stage explicit Runge-Kutta methods. Since the methods are explicit, we
have α1 = 0 and βi,j = 0 for j ≥ i. We look for methods of order at least 3.

For the rooted tree τ of order one, we get from Ψ(τ) = 1/γ(τ) that 1 =
3

∑
j=1
γj.

For the rooted tree τ of order two, we get from Ψ(τ) = 1/γ(τ) that 1

2
=

3

∑
j=2

αj γj since

α1 = 0.

For the tree τ = r
r r
❆
❆
❆

✁
✁
✁

of order three, we get from Ψ(τ) = 1/γ(τ) that

1

3
=

3

∑
i=1

γi (
3

∑
j=1

βi,j)(
3

∑
k=1

βi,k) =
3

∑
i=1

γiα
2
i =

3

∑
i=2

γiα
2
i

since α1 = 0.

For the tree τ = r
r

r

❆
❆
❆
✁
✁
✁

of order three, we get from Ψ(τ) = 1/γ(τ) that

1

6
=

3

∑
i=1

γi (
3

∑
j=1

βi,j (
3

∑
k=1

βj,k)) =
3

∑
i=1

γi (
3

∑
j=1

βi,j αj) = γ3 β3,2 α2

since α1 = 0 and βi,j = 0 for j ≥ i.
Two possible Butcher arrays that satisfy γ1+γ2+γ3 = 1, α2γ2+α3γ3 = 1/2 and γ3β3,2α2 = 1/6

are:

Heun’s method:
0
1/3 1/3
2/3 0 2/3

1/4 0 3/4

Kutta’s method of order three:

0
1/2 1/2
1 −1 2

1/6 2/3 1/6

354 13. Initial Value Problems

These method are therefore of order at least three. The reader can verify that, for each
of these methods, there is a rooted three of order four τ such that Ψ(τ) ≠ 1/γ(τ). So the
method are of order three. ♣
Example 13.4.34
We consider the 2-stage implicit Runge-Kutta methods of order four. We have the relations

α1 = β1,1 + β1,2
α2 = β2,1 + β2,2

from the definition of the Runge-Kutta methods. From Theorem 13.4.32, we also have the
following relations.

From the rooted tree of order one, we get 1 = γ1 + γ2.

From the rooted tree of order two, we get
1

2
=

2

∑
j=1
γjαj.

From the two rooted trees of order three, we get
1

3
=

2

∑
j=1
γjα

2
j and

1

6
=

2

∑
j=1

2

∑
k=1

γjβj,kαk.

From the four rooted trees of order four, we get
1

4
=

2

∑
j=1
γjα

3
j ,

1

8
=

2

∑
j=1

2

∑
k=1

γjαjβj,kαk,

1

12
=

2

∑
j=1

2

∑
k=1

γjβj,kα
2
k and

1

24
=

2

∑
j=1

2

∑
k=1

2

∑
l=1
γjβj,kβk,lαl.

Miraculously, there is a unique solution (modulo conjugacy) of all these equations. We
get the Butcher array

(3 −
√
3)/6 1/4 (3 − 2

√
3)/12

(3 +
√
3)/6 (3 + 2

√
3)/12 1/4

1/2 1/2

that we have already found in Example 13.4.17, using collocation methods. ♣
Remark 13.4.35
We show that the 4-stage Runge-Kutta method given by the Butcher array

0
1/2 1/2
−1 1/2 −3/2
1 0 4/3 −1/3

1/6 2/3 0 1/6

is of order 4 if f ∶ R→ R and of order 3 if f ∶ Rn → Rn with n > 1.
In the proof of Theorem 13.4.32, we use the conditions Ψ(τ)γ(τ) = 1 for all rooted trees

τ of order q ≤ p to ensure that

∑
r(τ)=q

α(τ)F (τ) = ∑
r(τ)=q

α(τ)γ(τ)Ψ(τ)F (τ) (13.4.14)

13.4. Runge-Kutta Methods 355

for q ≤ p. This was sufficient to ensure that the coefficient of coefficient of zq in Yi(z) was
equal to the coefficient of zq in Wi(z). However, for n = 1, the condition Ψ(τ)γ(τ) = 1 for
all rooted trees τ of order q is not always necessary to satisfy (13.4.14).

We leave it to the reader to verify that, for the 4-stage Runge-Kutta method above, the
condition Ψ(τ)γ(τ) = 1 for all rooted trees τ of order q ≤ 3 is satisfied. However, this is not
true for q = 4. Despite that, the 4-stage Runge-Kutta method is of order four for n = 1 but
not for n > 1.

Let τ1 = [[τ τ]] and τ2 = [τ [τ]] where τ is the tree of order one. τ1 and τ2 are two trees
of order four (Table 13.1).

If f ∶ R→ R, then

F (τ1) = {{f f}} = Df(D2f(f, f))) = fyy fy f 2

and
F (τ2) = {f {f}} = D2f(f,Df(f)) = fyy fy f 2 .

Since F (τ1) = F (τ2), we can replace Ψ(τj)γ(τj) = 1 for j = 1 and 2 by

α(τ1)γ(τ1)Ψ(τ1) + α(τ2)γ(τ2)Ψ(τ2) = α(τ1) + α(τ1)

with Ψ(τ)γ(τ) = 1 for the other rooted trees τ of order four. This ensures that the coefficient
of z4 in Yi is still equal to the coefficient of z4 in Wi.

The condition α(τ1)γ(τ1)Ψ(τ1) + α(τ2)γ(τ2)Ψ(τ2) = α(τ1) + α(τ1), instead of the two
conditions Ψ(τj)γ(τj) = 1 for j = 1 and 2, was used to obtain the 4-stage Runge-Kutta
method above. We leave it to the reader to verify that the 4-stage Runge-Kutta method
above verify this condition.

When f ∶ Rn → Rn with n > 1, the relation F (τ1) = F (τ2) is not necessary true and so
the condition α(τ1)γ(τ1)Ψ(τ1)+α(τ2)γ(τ2)Ψ(τ2) = α(τ1)+α(τ1) may not guarantee that the
coefficient of z4 in Yi is equal to the coefficient of z4 in Wi.

As a simple example for F (τ1) ≠ F (τ2), consider the initial value problem

y′(t) = f(t, y(t)) , t0 ≤ t ≤ tf
y(t0) = y0

(13.4.15)

where f ∶ R2 → R. We can rewrite this initial value problem as a system

z′(t) = f̃(z(t)) , t0 ≤ s ≤ tf
z(t0) = z0

where f̃(z) = (f(z2, z1)
1

) and z0 = (
y0
t0
). Hence,

F (τ1) = {{f̃ f̃}} = (
fz1 (fz2z2 + 2f fz1z2 + f 2 fz1z1)

0
)

356 13. Initial Value Problems

and

F (τ2) = {f̃ {f̃}} = (
(fz2z1 + f fz1z1) (fz2 + f fz1)

0
)

are generally different.

Note: This also shows that the 4-stage Runge-Kutta method above is only of order three
for the initial value problem (13.4.15). ♠
Remark 13.4.36
Consider the following three statements about a fixed Runge-Kutta method applied to the
initial value problem (13.4.12).

A The method is of order p with f ∶ Rn → Rn, n > 1. Note that f does not depend on time.

B The method is of order p with f ∶ R ×R→ R. Note that f depends on time.

C The method is of order p with f ∶ R→ R. Note that f does not depend on time.

It has been proved that

1. A⇔ B⇔ C if 1 ≤ p ≤ 3.

2. A⇔ B ⇒ C and C /⇒ B if p = 4.

3. A⇒ B ⇒ C, C /⇒ B and B /⇒ A if p > 4.

♠

13.4.2.5 Maximal Order of Explicit Runge-Kutta Methods

Theorem 13.4.37

An s-stage explicit Runge-Kutta method cannot be of order greater than s.

Proof.
Let τ be the rooted tree of order one. Consider the rooted tree τp of order p defined by

τp = [[. . . [
²

p − 1 times

τ] . . .]] .

We have that γ(τp) = p! and

Ψ(τp) =
s

∑
j1=1

s

∑
j2=1

. . .
s

∑
jp=1

γj1 βj1,j2 . . . βjp−1,jp .

Since βi,j = 0 for j ≥ i, Ψ(τp) = 0 unless s ≥ j1 > j2 > . . . > jp. This is possible only if s ≥ p.
So, for p > s, Ψ(τp) = 0 and we cannot get 1 = γ(τp)Ψ(τp).

We have an even stronger result for the 5-stage explicit Runge-Kutta methods.

13.4. Runge-Kutta Methods 357

Theorem 13.4.38

There is no 5-stage explicit Runge-Kutta method of order five.

13.4.3 Variable Step-Size Methods

Up until now, we have only considered methods with equally spaced mesh points ti for i = 0,
1, 2, . . . , N . It will be advantageous to have some control on the step-size (i.e. the distance)
between two consecutive mesh points. A large step-size could be used on the portions of the
interval [t0, tf] where the solution y of (13.1.1) varies slowly and a small step-size could be
used on the portions of the interval [t0, tf] where the solution y of (13.1.1) varies rapidly.

A method often used to control the step-size between each pair of mesh points is the
Runge-Kutta-Fehlberg method. Let

w0 = y0
wi+1 = wi + hϕ(ti,wi)

(13.4.16)

be a Runge-Kutta method of order four and

w̃i = wi

w̃i+1 = w̃i + hϕ̃(ti, w̃i)
(13.4.17)

be a Runge-Kutta method of order five. The functions ϕ and ϕ̃ associated to the Runge-
Kutta-Fehlberg method will be given below.

Let τi+1(h) be the local truncation error for the Runge-Kutta method of order four
(13.4.16). Combining the Runge-Kutta methods of orders four and five, (13.4.16) and
(13.4.17) respectively, we can determine the step-size h between ti and ti+1 such that τi+1(h) <
ϵ for a ϵ given.

The Runge-Kutta-Fehlberg method can be summarized as follows:

Algorithm 13.4.39 (Runge-Kutta-Fehlberg Method)

1. w0 = y0.

2. Stop if ti = tf .

3. Suppose that wi is an approximation of yi = y(ti) and h > 0 is given. Compute a
first approximation wi+1 of yi+1 using (13.4.16) and a second approximation w̃i+1
of yi+1 using (13.4.17) with w̃i = wi.

4. If ∣(w̃i+1 − wi+1)/h∣ < ϵ, accept wi+1 as an approximation of yi+1 = y(ti + h).
Substitute h by qh where q = ∣ϵh/(w̃i+1 −wi+1)∣1/4.

5. If ∣(w̃i+1 −wi+1)/h∣ ≥ ϵ, reject wi+1 as an approximation of y(ti + h). Substitute h
by qh where q = ∣ϵ h/(w̃i+1 −wi+1)∣1/4.

358 13. Initial Value Problems

6. If h > tf − ti, replace h by tf − ti.

7. If wi+1 has been accepted, go back to 2 with i replaced by i+1 and the new value
of h. If wi+1 has been rejected, go back to 2 with i again and the new smaller
value of h.

The function ϕ(ti,wi) in (13.4.16) is defined by

ϕ(ti,wi) =
25

216
K1 +

1408

2565
K3 +

2197

4104
K4 −

1

5
K5

and the function ϕ̃(ti, w̃i) in (13.4.17) (recall that wi = w̃i) is defined by

ϕ̃(ti,wi) =
16

135
K1 +

6656

12825
K3 +

28561

56430
K4 −

9

50
K5 +

2

55
K6 ,

where

K1 = f (ti,wi) ,

K2 = f (ti +
h

4
,wi +

hK1

4
) ,

K3 = f (ti +
3h

8
,wi +

3hK1

32
+ 9hK2

32
) ,

K4 = f (ti +
12h

13
,wi +

1932hK1

2197
− 7200hK2

2197
+ 7296hK3

2197
) ,

K5 = f (ti + h,wi +
439hK1

216
− 8hK2 +

3680hK3

513
− 845hK4

4104
)

and

K6 = f (ti +
h

2
,wi −

8hK1

27
+ 2hK2 −

3544hK3

2565
+ 1859hK4

4104
− 11hK5

40
) .

Both Runge-Kutta methods can be summarized in the following Butcher array

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40
25/216 0 1408/2565 2197/4104 −1/5
16/135 0 6656/12825 28561/56430 −9/50 2/55

Remark 13.4.40
A non-rigorously justification of the Runge-Kutta-Fehlberg method is as follows. Let τ̃i+1(h)

13.4. Runge-Kutta Methods 359

be the local truncation error for the Runge-Kutta method of order five (13.4.17). Suppose
that yi ≈ wi = w̃i, then

yi+1 −wi+1 = yi+1 −wi − hϕ(ti,wi) ≈ yi+1 − yi − hϕ(ti, yi) = hτi+1(h) .

Similarly,
yi+1 − w̃i+1 ≈ hτ̃i+1(h) .

Hence,

τi+1(h) ≈
1

h
(yi+1 −wi+1) =

1

h
(yi+1 − w̃i+1 + w̃i+1 −wi+1)

= 1

h
(yi+1 − w̃i+1) +

1

h
(w̃i+1 −wi+1) ≈ τ̃i+1(h) +

1

h
(w̃i+1 −wi+1) .

Since τi+1(h) = O(h4) and τ̃i+1(h) = O(h5), (w̃i+1 −wi+1)/h is the dominant term on the right
hand side for h small. Thus, we may assume that

τi+1(h) ≈
1

h
(w̃i+1 −wi+1) . (13.4.18)

If ∣(w̃i+1 −wi+1)/h∣ < ϵ, we may assume that ∣τi+1(h)∣ < ϵ. Therefore, wi+1 is an acceptable
approximation of y(ti + h).

If ∣(w̃i+1 −wi+1)/h∣ ≥ ϵ, then wi+1 is probably not an acceptable approximation of y(ti+h).
We choose a new (smaller) step-size h. We repeat (13.4.16) and (13.4.17) starting at (ti,wi)
again and using the new step-size.

How do we select a new step-size h to go from ti to ti+1? Formula (13.4.18) is used to find
a new value of h such that ∣(w̃i+1 −wi+1)/h∣ < ϵ. Since τi+1(h) = O(h4), we may assume that
τi+1(h) ≈ Ch4 for some constant C and h small. Let q be a positive constant and suppose
that (13.4.16) is used to approximate y(ti + qh). The local truncation error in this case is

τi+1(hq) ≈ Cq4h4 ≈ q4τi+1(h) ≈
q4

h
(w̃i+1 −wi+1) .

If we require ∣τi+1(qh)∣ < ϵ, then q4 ∣(w̃i+1 −wi+1)/h∣ < ϵ or

q < ∣ ϵh

w̃i+1 −wi+1
∣
1/4

. (13.4.19)

The new step-size that is used is qh where q satisfies (13.4.19). ♠
Remark 13.4.41
In step 4 of the Runge-Kutta-Fehlberg method, we replace h by qh even if wi+1 is accepted.
The reason is simple. If ∣(w̃i+1 −wi+1)/h∣ is small, then q should be greater than one and the
step-size is increased. This corresponds to taking a large step-size when y varies slowly. ♠

We now implement the Runge-Kutta-Fehlberg method.

360 13. Initial Value Problems

Code 13.4.42 (Runge-Kutta-Fehlberg Method)

To approximate the solution of the initial value problem

y′(t) = f(t, y(t)) , t0 ≤ t ≤ tf
y(0) = y0

Input: The maximal step-size hmax.
The minimal step-size hmin.
The maximal tolerated error T.
The initial time t0 (t0 in the code below) and final time tf (tf in the code below).
The initial conditions y0 (y0 in the code below) at t0.
The function f(t, y) (funct in the code below).
Output: The approximations wi (gw(i+1) in the code below) of y(ti) at ti (gt(i+1)
in the code below) with the requested tolerance and the step-size between hmin and
hmax if it is possible.

function [gt,gw] = rgktfb(funct,t0,y0,tf,hmin,hmax,T)

h = hmax;

gt(1) = t0;

gw(1) = y0;

t = t0;

w = y0;

while (0 == 0)

k1 = h*funct(t,w);

k2 = h*funct(t+h/4,w+k1/4);

k3 = h*funct(t+3*h/8,w+3*k1/32+9*k2/32);

k4 = h*funct(t+12*h/13,w+1932*k1/2197-7200*k2/2197+7296*k3/2197);

k5 = h*funct(t+h,w+439*k1/216-8*k2+3680*k3/513-845*k4/4104);

k6 = h*funct(t+0.5*h,w-8*k1/27+2*k2-3544*k3/2565+1859*k4/4104-11*k5/40);

sigma = abs(k1/360-128*k3/4275-2197*k4/75240+k5/50+2*k6/55);

if (sigma < T)

% We accept w as an approximation of y(t) . w is an approximation

% of y(t) given by a Runge-Kutta method of order four.

t = t+h;

w = w+25*k1/216+1408*k3/2565+2197*k4/4104-k5/5;

gt = [gt;t];

gw = [gw;w];

end

% We have reached tf and the program should stop.

if (t >= tf)

return;

end

if (sigma == 0)

13.5. Multistep Methods 361

% We choose a large value for q if the error seems to be negligable.

q = 5;

else

q = (T/sigma)^(0.25);

end

% We choose the step-size less than hmax and larger than hmin

% such that the local error should still be less than T.

if (q < 0.1)

% We do not reduce the step-size h to less than 1/10

% its original size.

h = 0.1*h;

elseif (q > 4)

% We do not increase the step-size h to more than 4 times

% its original size or hmax.

h = min(4*h,hmax);

else

h = min(h*q,hmax);

end

% We make sure than the step-size is not smaller than hmin.

if (h < hmin)

break;

gt = NaN;

gw = NaN;

end

% We adjust the step-size if we are going to exceed tf at the next

% step.

if (t + h > tf)

h = tf - t;

end

end

end

13.5 Multistep Methods

Up until now, we have only considered one-step methods; namely, methods where the
approximation wi+1 of yi+1 is obtained from the approximation wi of yi. We fix m > 0 and
consider methods where the approximation wi+1 of yi+1 is obtained from a combination of
the approximations wj of yj for j = i + 1, i, i − 1, . . . , i −m.

In this section, we assume that f ∶ [t0, tf] × R → R in (13.1.1) is nice; namely, all the
mixed derivatives of f that we need exist and are continuous. This implies that the solution
y of (13.1.1) is sufficiently differentiable.

362 13. Initial Value Problems

Definition 13.5.1 (General Form of a Multistep Method)

Let 0 < m < N , h = (tf − t0)/N , ti = t0 + ih and yi = y(ti) for i = 0, 1, 2, . . . , N . The
approximation wi of yi is the solution of the difference equation

wi+1 =
m

∑
j=0
ajwi−j + h

m

∑
j=−1

bjf(ti−j,wi−j) , i =m,m + 1, . . . ,N − 1

wi = yi , i = 0,1, . . . ,m
(13.5.1)

for some given constants ai and bi. If b−1 = 0, the method is called an explicit or
open method. If b−1 /= 0. the method is called an implicit or closed method.

Definition 13.5.2

For a multistep method, the local truncation error is defined by

τi+1(h) =
1

h
(yi+1 −

m

∑
j=0
ajyi−j) −

m

∑
j=−1

bjf(ti−j, yi−j) , m ≤ i < N .

If, for all well-posed initial value problems (13.1.1), there exists a function τ ∶ R → R
such that ∣τi+1(h)∣ ≤ τ(h) = O(hp) near the origin for all i, we say that the method is
of order p.

13.5.1 Classical Methods

We consider (13.1.1) with the usual partition t0 < t1 < . . . < tN = tf and h = (tf − t0)/N .

If we approximate f(t, y(t)) on ti ≤ t ≤ ti+1 by the average value

f(ti+1, y(ti+1)) + f(ti, y(ti))
2

,

then

y(ti+1) = y(ti) + ∫
ti+1

ti
y′(t)dt = y(ti) + ∫

ti+1

ti
f(t, y(t))dt

≈ y(ti) + ∫
ti+1

ti

f(ti+1, y(ti+1)) + f(ti, y(ti))
2

dt

= y(ti) +
f(ti+1, y(ti+1)) + f(ti, y(ti))

2
h .

If we suppose that wi ≈ y(ti), we get the following method.

Definition 13.5.3 (Trapezoidal Method)

Consider the initial value problem (13.1.1). Let h = (tf−t0)/N , ti = t0+ih and yi = y(ti)
for i = 0, 1, 2, . . . , N . The approximation wi of yi is the solution of the difference

13.5. Multistep Methods 363

equation

wi+1 = wi +
h

2
(f(ti+1.wi+1) + f(ti,wi)) , 0 ≤ i < N

w0 = y0

The trapezoidal method is an implicit rule because wi+1 appears on both sides of the
equation. Note that a one-step method like the trapezoidal method is still a multistep
method.

To compute the order of the trapezoidal method, we use Taylor series expansions of y(t)
and y′(t) for t near ti. Namely,

τi+1(h) =
y(ti+1) − y(ti)

h
− 1

2
(f(ti, y(ti)) + f(ti+1, y(ti+1)))

= y(ti+1) − y(ti)
h

− 1

2
(y′(ti) + y′(ti+1))

=
(y(ti) + y′(ti)h + y′′(ti)h2/2 + y(3)(ξi)h3/6) − y(ti)

h

− 1

2
(y′(ti) + (y′(ti) + y′′(ti)h +

1

2
y(3)(ηi)h2)) =M(ξi, ηi)h2

for some ξi and ηi between ti and ti+1, where

M(ξ, η) = (1
6
y(3)(ξ) − 1

4
y(3)(η)) .

If f is twice continuously differentiable on [t0, tf] ×R, then ∣y(3)(t)∣ is continuous on [t0, tf]
and reaches is maximum at a point on the interval [t0, tf]. Let K be the maximum of ∣y(3)(t)∣
on [t0, tf], then

∣τi+1(h)∣ ≤ τ(h) ≡ (
1

6
+ 1

4
)Kh2 = 5K

12
h2 = O(h2)

for all i. Hence, the trapezoidal method is of order 2.

Remark 13.5.4
The Trapezoidal Method is part of a family of methods called the Theta Method.

We consider (13.1.1) with the usual partition a = t0 < t1 < . . . < tN = tf and h = (tf −t0)/N .
The Theta Method is defined by

wi+1 = wi + h ((1 − θ) f(ti+1,wi+1) + θ f(ti,wi)) , 1 ≤ i < N
w0 = y(t0)

If θ = 0, we get the Backward Euler’s method. If θ = 1/2, we get the Trapezoidal Method.
If θ = 1, we get the Euler’s method.

We compute the local truncation error of the Theta Method with the help of the Taylor
series expansions of y(t) and y′(t) for t near ti. We have

τi+1(h) =
y(ti+1) − y(ti)

h
− (θ f(ti, y(ti)) + (1 − θ) f(ti+1, y(ti+1)))

364 13. Initial Value Problems

= y(ti+1) − y(ti)
h

− (θ y′(ti) + (1 − θ) y′(ti+1))

=
(y(ti) + y′(ti)h + y′′(ti)h2/2 + y(3)(ξi)h3/6) − y(ti)

h

− (θ y′(ti) + (1 − θ) (y′(ti) + y′′(ti)h +
1

2
y(3)(ηi)h2))

= (θ − 1

2
) y′′(ti)h + (

1

6
y(3)(ξi) +

θ − 1
2

y(3)(ηi)) h2

for some ξi and ηi between ti and ti+1. If we assume that f is twice continuously differentiable
on [t0, tf]×R, then ∣y′′(t)∣ and ∣y(3)(t)∣ are continuous on [t0, tf] and reaches their maximum
at a point on the interval [t0, tf]. Let M2 be the maximum of ∣y′′(t)∣ on [t0, tf] and M3 be
the maximum of ∣y(3)(t)∣ on [t0, tf]. For θ = 1/2, we have

∣τi+1(h)∣ = ∣
1

6
y(3)(ξ) + ∣θ − 1∣

2
y(3)(η)∣h2 ≤ τ(h) ≡ (1

6
+ 1

2
)M3 h

2 = O(h2) .

Hence, the Theta Method with θ = 1/2 is of order 2. However, for θ ≠ 1/2, we have

∣τi+1(h)∣ = ∣(θ −
1

2
) y′′(ti)h + (

1

6
y(3)(ξ) + ∣θ − 1∣

2
y(3)(η))h2∣

≤ τ(h) ≡ 1

2
M2h + (

1

6
+ 1

2
)M3 h

2 = (M2

2
+ 2M3

3
h)h = O(h) .

Hence, the Theta Methods with θ ≠ 1/2 are of order 1. The Trapezoidal Method is the best
method of this family. ♠

13.5.2 General Approach

The general procedure to derive explicit multistep methods is as follows. We assume that
m, N , h and ti are as in Definition 13.5.1.

We consider the Newton backward divided difference formula of the interpolating
polynomial p of g(t) = f(t, y(t)) at ti, ti−1, . . . , ti−m. Namely,

p(t) = g[ti] + g[ti, ti−1](t − ti) + g[ti, ti−1, ti−2](t − ti)(t − ti−1) + . . .
+ g[ti, ti−1, . . . , ti−m](t − ti)(t − ti−1) . . . (t − ti−m+1) .

(13.5.2)

We have

g(t) = p(t) + g[ti, ti−1, . . . , ti−m, t]
i

∏
j=i−m

(t − tj) . (13.5.3)

If we substitute t = ti + sh in (13.5.2), we get

p(t) =
m

∑
j=0
(−1)j(−s

j
)∇jgi , (13.5.4)

13.5. Multistep Methods 365

where gk = g(tk) for 0 ≤ k ≤ N ,

(r
j
) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if j = 0
r(r − 1)(r − 2) . . . (r − j + 1)

j!
if j > 0

for r ∈ R, and ∇kgi for k ∈ N is the kth backward difference of gi defined by

∇gi = gi − gi−1 ,
∇2gi = ∇(gi − gi−1) = ∇gi −∇gi−1 = gi − 2gi−1 + gi−2

and in general
∇kgi = ∇k−1 (∇gi)

for k > 1. (13.5.4) is called theNewton backward difference formula for the interpolating
polynomial of g at ti, ti−1, . . . , ti−m.

If we substitute t = ti + sh in the error term of the polynomial interpolation p of g given
in (13.5.3), we get

g[ti, ti−1, . . . , ti−m, t]
i

∏
j=i−m

(t − tj) = (−1)m+1(
−s
m + 1

)g(m+1)(ti + ηi(s)h)hm+1

for some ηi(s) in the smallest interval containing s, 0, −1, . . . , −m; namely, ti + ηi(s)h is in
the smallest interval containing t, ti, ti−1, . . . , ti−m.

Given 0 ≤ q ≤m, since

yi+1 − yi−q = ∫
ti+1

ti−q
y′(t)dt = ∫

ti+1

ti−q
g(t)dt ,

we get

yi+1 − yi−q = h
m

∑
j=0
(−1)j∇jgi∫

1

−q
(−s
j
)ds

+ (−1)m+1hm+2∫
1

−q
(−s
m + 1

)g(m+1)(ti + ηi(s)h)ds .
(13.5.5)

The explicit multistep methods comes from this formula if we ignore the local discretization
error

hm+2∫
1

−q
(−1)m+1(−s

m + 1
)g(m+1)(ti + ηi(s)h)ds .

The case m = 3 and q = 0 in (13.5.5) gives

yi+1 = yi +
h

24
(55 f(ti.yi) − 59 f(ti−1, yi−1) + 37 f(ti−2, yi−2) − 9 f(ti−3, yi−3))

+ (251/720) y(5)(ξi)h5

366 13. Initial Value Problems

for some ξi ∈ [ti−3, ti+1] and 3 ≤ i < N . We had to use the Mean Value Theorem for Integrals,
Theorem 12.3.1, to get the discretization error (251/720) y(5)(ξi)h5; namely,

∫
1

0
(−1)4(−s

4
)g(4)(ti + ηi(s)h)ds = ∫

1

0
(−1)4 (−s)(−s − 1)(−s − 2)(−s − 3)

4!
y(5)(ti + ηi(s)h)ds

= 1

24 ∫
1

0
s(s + 1)(s + 2)(s + 3)
´¹¹¸¹¹¶

≥0

y(5)(ti + ηi(s)h)ds

= 1

24
y(5)(ti + η̃ih)∫

1

0
s(s + 1)(s + 2)(s + 3)ds

for some η̃i ∈ [−3,1]. If we let ξi = ti + η̃ih and compute the integral, we get
(251/720) y(5)(ξi)h5.

We get the following famous explicit method.

Definition 13.5.5 (Adams-Bashforth Method of Order Four)

Let h = (tf − t0)/N , ti = t0 + ih and yi = y(ti) for i = 0, 1, 2, . . . , N . The approximation
wi of yi is the solution of the difference equation

wi+1 = wi +
h

24
(55 f(ti.wi) − 59 f(ti−1,wi−1) + 37 f(ti−2,wi−2)

−9 f(ti−3,wi−3)) , 3 ≤ i < N
wi = yi , 0 ≤ i < 4

The local truncation error τi+1(h) is (251/720) y(5)(ξi)h4 for some ξi ∈ [ti−3, ti+1] and
3 ≤ i < N .

The procedure to derive implicit multistep methods is as follows. We assume that m, N ,
h and ti are as in Definition 13.5.1.

We consider the Newton backward divided difference formula of the interpolating poly-
nomial p of g(t) = f(t, y(t)) at ti+1, ti, . . . , ti−m. Namely,

p(t) = g[ti+1] + g[ti+1, ti](t − ti+1) + g[ti+1, ti, ti−1](t − ti+1)(t − ti) + . . .
+ g[ti+1, ti, . . . , ti−m](t − ti+1)(t − ti) . . . (t − ti−m+1) .

(13.5.6)

We have

g(t) = p(t) + g[ti+1, ti, . . . , ti−m, t]
i+1
∏

j=i−m
(t − tj) . (13.5.7)

If we substitute t = ti + sh in (13.5.6), we get

p(t) =
m+1
∑
j=0
(−1)j(1 − s

j
)∇jgi+1 .

13.5. Multistep Methods 367

If we substitute t = ti + sh in the error term of the polynomial interpolation p of g given
in (13.5.7), we get

g[ti+1, ti, . . . , ti−m, t]
i+1
∏

j=i−m
(t − tj) = (−1)m+2(

1 − s
m + 2

)g(m+2)(ti + ηi(s)h)hm+2

for some ηi(s) in the smallest interval containing s, 1, 0, −1, . . . , −m.

Given 0 ≤ q ≤m, since

yi+1 − yi−q = ∫
ti+1

ti−q
y′(t)dt = ∫

ti+1

ti−q
g(t)dt ,

we get

yi+1 − yi−q = h
m+1
∑
j=0
(−1)j∇jgi+1∫

1

−q
(1 − s
j
)ds

+ (−1)m+2hm+3∫
1

−q
(1 − s
m + 2

)g(m+2)(ti + ηi(s)h)ds .
(13.5.8)

The implicit multistep methods comes from this formula if we ignore the local discretization
error

hm+3∫
1

−q
(−1)m+2(1 − s

m + 1
)g(m+2)(ti + ηi(s)h)ds .

The case m = 2 and q = 0 in (13.5.8) gives

yi+1 = yi +
h

24
(9 f(ti+1, yi+1) + 19 f(ti.yi) − 5 f(ti−1, yi−1) + f(ti−2, yi−2))

− (19/720) y(5)(ξi)h5

for some ξi ∈ [ti−2, ti+1] and 2 ≤ i < N . As for the previous explicit method, we had to use
the Mean Value Theorem for Integrals to get the discretization error −(19/720) y(5)(ξi)h5.

We get the following famous implicit method.

Definition 13.5.6 (Adams-Moulton Method of Order Four)

Let h = (tf − t0)/N , ti = t0 + ih and yi = y(ti) for i = 0, 1, 2, . . . , N . The approximation
wi of yi is the solution of the difference equation

wi+1 = wi +
h

24
(9 f(ti+1,wi+1) + 19 f(ti.wi) − 5 f(ti−1,wi−1)

+f(ti−2,wi−2)) , 2 ≤ i < N
wi = yi , 0 ≤ i < 3

The local truncation error τi+1(h) is −(19/720) y(5)(ξi)h4 for some ξi ∈ [ti−2, ti+1] and
2 ≤ i < N .

368 13. Initial Value Problems

By varying m and q in (13.5.5) and (13.5.8), we can find many more multistep methods.

Example 13.5.7
It is generally impossible to solve explicitly for wi+1 the finite difference equations of the
implicit multistep methods. For instance, the Adams-Moulton method of order four applied
to the initial value problem

y′(t) = ey(t) , 0 ≤ t ≤ 0.25
y(0) = 1

gives the equation

wi+1 = wi +
h

24
(9ewi+1 + 19ewi − 5ewi−1 + ewi−2)

which cannot be solved explicitly for wi+1. ♣
Remark 13.5.8

1. Iterations are used to find the approximation wi+1 of yi+1 in the implicit multistep
methods (13.5.1). Suppose that a first approximation w

[0]
i+1 of wi+1 is given — We will

provide in the next section a method to obtain a first approximation. The solution
wi+1 of (13.5.1) is approximated using the iterative system

w
[k+1]
i+1 =

m

∑
j=0
ajwi−j + hb−1f (ti+1,w[k]i+1) + h

m

∑
j=0
bjf(ti−j,wi−j) (13.5.9)

for k = 0, 1, . . .
We now show that if h is small enough such that ∣b−1h∣L < 1, where L is the Lipschitz

constant associated to f as in (13.1.3), then {w[k]i+1}
∞

k=0
converges to the unique solu-

tion wi+1 of (13.5.1). The reader will recognize that the following proof is “basically
identical” to the proof of the Fixed Point Theorem, Theorem 2.4.2.

The iterative system (13.5.9) can be rewritten as

w
[k+1]
i+1 = Ai + hb−1Gi (w[k]i+1) + hFi , (13.5.10)

where

Ai =
m

∑
j=0
ajwi−j and Fi =

m

∑
j=0
bjf(ti−j.wi−j)

are constant, and Gi (w[k]i+1) = f (ti+1,w
[k]
i+1).

We first prove that if there is a solution to

w = Ai + hb−1Gi(w) + hFi , (13.5.11)

then it is unique. Suppose that w and w∗ are two distinct solutions of (13.5.11); namely,
if

w = Ai + b−1hGi(w) + hFi

13.5. Multistep Methods 369

and

w∗ = Ai + b−1hGi(w∗) + hFi .

Then
∣w −w∗∣ = ∣b−1h(Gi(w) −Gi(w∗))∣ ≤ ∣b−1h∣L∣w −w∗∣ < ∣w −w∗∣ .

This is a contradiction.

We prove that the sequence {w[k]i+1}
∞

k=0
defined by (13.5.10) converges. In fact, we prove

that it is a Cauchy sequence. Let ϵ be a small number. We find a positive integer N

such that ∣w[r]i+1 −w
[s]
i+1∣ < ϵ whenever r, s ≥ N .

First, we prove by induction that

∣w[k+1]i+1 −w
[k]
i+1∣ ≤ ∣hb−1L∣k ∣w

[1]
i+1 −w

[0]
i+1∣ . (13.5.12)

for all k. We have that (13.5.12) is obviously true for k = 0. Suppose that (13.5.12) is
true for k, then

∣w[k+2]i+1 −w
[k+1]
i+1 ∣ = ∣hb−1 (G (w

[k+1]
i+1) −G (w

[k]
i+1))∣ ≤ ∣hb−1L∣ ∣w

[k+1]
i+1 −w

[k]
i+1∣

≤ ∣hb−1L∣ ∣hb−1L∣k ∣w[1]i+1 −w
[0]
i+1∣ = ∣hb−1L∣k+1 ∣w

[1]
i+1 −w

[0]
i+1∣ ,

where the first inequality comes from the Lipschitz continuity of G and the second
inequality comes from the hypothesis of induction. Hence, (13.5.12) is true for k + 1.
This complete the proof by induction.

Hence, if ∣hb−1L∣ < 1 and

r > s ≥ N >
ln(ϵ) + ln(1 − ∣hb−1L∣) − ln (∣w[1]i+1 −w

[0]
i+1∣)

ln(∣hb−1L∣)
,

we have

∣w[r]i+1 −w
[s]
i+1∣ ≤ ∣w

[r]
i+1 −w

[r−1]
i+1 ∣ + ∣w

[r−1]
i+1 −w

[r−2]
i+1 ∣ + . . . + ∣w

[s+1]
i+1 −w

[s]
i+1∣

≤ (∣hb−1L∣r−s−1 + ∣hb−1L∣r−s−2 + . . . + ∣hb−1L∣ + 1) ∣hb−1L∣s ∣w[1]i+1 −w
[0]
i+1∣

= 1 − ∣hb−1L∣r−s
1 − ∣hb−1L∣

∣hb−1L∣s ∣w[1]i+1 −w
[0]
i+1∣ ≤

∣hb−1L∣s
1 − ∣hb−1L∣

∣w[1]i+1 −w
[0]
i+1∣ < ϵ

Finally, let wi+1 be the limit of {w[k]i+1}
∞

k=0
. We show that wi+1 is a solution of (13.5.11).

Since G is a continuous function, if we take the limit with respect to k on both sides
of (13.5.10), we get

wi+1 = lim
k→∞

w
[k+1]
i+1 = lim

k→∞
(Ai + hb−1Gi (w[k]i+1) + hFi) = Ai + hb−1Gi(wi+1) + hFi .

370 13. Initial Value Problems

2. Implicit multistep methods may seem to be inefficient methods to find an approxima-
tion wi of yi because iterations have to be done to find this approximation. However,
for some multistep methods, the number of iterations necessary to find a good ap-
proximation of yi is small and the step-size h can be taken relatively large. Moreover,
implicit multistep methods are usually “stable” as we will see later. They are also very
useful to solve “stiff” differential equations as we will also see soon.

♠
Remark 13.5.9
Instead of using the Newton backward divided difference formula of the interpolating poly-
nomial p of g(t) = f(t, y(t)) to derive explicit and implicit multistep methods to approximate
the solution of (13.1.1), we can use the Lagrange Interpolating Polynomial

p(t) =
i

∑
j=i−m

⎛
⎜⎜
⎝
f(tj, y(tj))

i

∏
k=i−m
k≠j

(t − tk
tj − tk

)
⎞
⎟⎟
⎠

to get the formula

wi+1 = wi−q +
i

∑
j=i−m

⎛
⎜⎜
⎝
f(tj,wj)∫

ti+1

ti−q

i

∏
k=i−m
k≠j

(t − tk
tj − tk

) dt
⎞
⎟⎟
⎠

for the explicit multistep methods, and the Lagrange Interpolating Polynomial

p(t) =
i+1
∑

j=i−m

⎛
⎜⎜
⎝
f(tj, y(tj))

i+1
∏

k=i−m
k≠j

(t − tk
tj − tk

)
⎞
⎟⎟
⎠

to get the formula

wi+1 = wi−q +
i+1
∑

j=i−m

⎛
⎜⎜
⎝
f(tj,wj)∫

ti+1

ti−q

i+1
∏

k=i−m
k≠j

(t − tk
tj − tk

) dt
⎞
⎟⎟
⎠

for the implicit multistep methods. The two integrals above can be computed using the
substitution t = ti + sh. We get respectively

∫
ti+1

ti−q

i

∏
k=i−m
k≠j

(t − tk
tj − tk

) dt = h∫
1

−q

m

∏
k=0
k≠i−j

(ti + sh − ti−k
ti−(i−j) − ti−k

) ds = h∫
1

−q

m

∏
k=0
k≠i−j

(s + k
−(i − j) + k

) ds

= h(−1)i−j
(i − j)! (m − i + j)! ∫

1

−q

m

∏
k=0
k≠i−j

(s + k)ds

after substituting k by i − k and noting that 0 ≤ i − j ≤m, and

∫
ti+1

ti−q

i+1
∏

k=i−m
k≠j

(t − tk
tj − tk

) dt = h∫
1

−q

m+1
∏
k=0

k≠i−j+1

(ti + sh − ti−k+1
ti−(i−j) − ti−k+1

) ds

13.5. Multistep Methods 371

= h∫
1

−q

m+1
∏
k=0

k≠i−j+1

(s + k − 1
−(i − j + 1) + k

) ds = h(−1)i−j+1
(i − j + 1)! (m − i + j)! ∫

1

−q

m+1
∏
k=0

k≠i−j+1

(s + k − 1)ds .

after substituting k by i − k + 1 and noting that 0 ≤ i − j + 1 ≤m + 1.
This approach obviously yields the same formulae than those found with the approach

that we have chosen. However, it does not provide the local truncation error that we have
been able to find with our approach. ♠

13.5.3 Another Approach to Multistep Methods

There is still another approach to develop multistep methods based on the following theorem.

Theorem 13.5.10

The multistep method (13.5.1) is of order p ≥ 1 if and only if there exists c ≠ 0 such
that

p(w) − q(w) ln(w) = c(w − 1)p+1 +O((w − 1)p+2)

for w near 1, where

p(w) = wm+1 −
m

∑
j=0

aj w
m−j and q(w) =

m

∑
j=−1

bj w
m−j .

The polynomial p is called the characteristic polynomial of the multistep method.

The beauty of this approach is, as we will see in Section 13.6, that the polynomials p and
q in the previous theorem play in important role in the study of “consistency”, “stability”
and “convergence” of numerical methods to approximate solutions of ordinary differential
equations.

Proof.
As usual, we assume that f is smooth enough such that we can express the solution y of
(13.1.1) as a Taylor series of radius at least mh about any point ti ∈ [a, b]. Hence, since
f(ti, y(ti)) = y′(ti), we get

hτi+1(h) = y(ti + h) −
m

∑
j=0

aj y(ti − jh) − h
m

∑
j=−1

bj f(ti − jh, y(ti − jh))

=
∞
∑
k=0

1

k!
y(k)(ti)hk −

m

∑
j=0

aj (
∞
∑
k=0

1

k!
y(k)(ti) (−j)khk) − h

m

∑
j=−1

bj (
∞
∑
k=0

1

k!
y(k+1)(ti) (−j)khk)

= (1 −
m

∑
j=0

aj) y(ti) + (1 +
m

∑
j=0

aj j −
m

∑
j=−1

bj) y′(ti)h

+
∞
∑
k=2

1

k!
(1 − (−1)k

m

∑
j=0

aj j
k) y(k)(ti)hk − h

∞
∑
k=1

1

k!
((−1)k

m

∑
j=−1

bj j
k) y(k+1)(ti)hk

372 13. Initial Value Problems

= (1 −
m

∑
j=0

aj) y(ti) + (1 +
m

∑
j=0

aj j −
m

∑
j=−1

bj) y′(ti)h

+
∞
∑
k=2

1

k!
(1 − (−1)k

m

∑
j=0

aj j
k − (−1)k−1k

m

∑
j=−1

bj j
k−1)y(k)(ti)hk .

Thus, (13.5.1) is of order p ≥ 1 if and only if

1 −
m

∑
j=0

aj = 0 and 1 − (−1)k
m

∑
j=0

aj j
k − (−1)k−1k

m

∑
j=−1

bj j
k−1 = 0 (13.5.13)

for 1 ≤ k ≤ p, and

c ≡ 1 − (−1)p+1
m

∑
j=0

aj j
p+1 − (−1)p(p + 1)

m

∑
j=−1

bj j
p /= 0 . (13.5.14)

In this case, we have that

hτi+1(h) = c
y(p+1)(ti)
(p + 1)!

hp+1 +O(hp+2) .

Moreover, if we set w = ex, we get

p(w) − q(w) ln(w)
em

= ex −
m

∑
j=0

aj e
−jx − x

m

∑
j=−1

bj e
−jx

=
∞
∑
k=0

1

k!
xk −

m

∑
j=0

aj (
∞
∑
k=0

1

k!
(−j)kxk) − x

m

∑
j=−1

bj (
∞
∑
k=0

1

k!
(−j)kxk)

= (1 −
m

∑
j=0

aj) + (1 +
m

∑
j=0

aj j −
m

∑
j=−1

bj)x

+
∞
∑
k=2

1

k!
(1 − (−1)k

m

∑
j=0

aj j
k)xk −

∞
∑
k=1

1

k!
((−1)k

m

∑
j=−1

bj j
k)xk+1

= (1 −
m

∑
j=0

aj) + (1 +
m

∑
j=0

aj j −
m

∑
j=−1

bj)x

+
∞
∑
k=2

1

k!
(1 − (−1)k

m

∑
j=0

aj j
k − (−1)k−1k

m

∑
j=−1

bj j
k−1)xk .

So,
p(w) − q(w) ln(w) = cxp+1 +O(xp+2) = c (w − 1)p+1 +O((w − 1)p+2)

if and only if (13.5.13) and (13.5.14) are satisfied. Recall that x = ln(w) = (w−1)+O((w−1)2)
for w near 1.

Remark 13.5.11
We will see in Section 13.6 that the condition

p(1) = 1 −
m

∑
j=0
aj = 0

13.5. Multistep Methods 373

is necessary for the method to be “consistent.” We will see that consistency and the “root
condition” imply that the method is “convergent.” The “root condition” also implies that
the method is “zero-stable.” But we are getting ahead of ourselves and should go back to
multistep methods. ♠
Example 13.5.12
The multistep method

wi+1 = wi + h(
23

12
f(ti,wi) −

4

3
f(ti−1,wi−1) +

5

12
f(ti−2,wi−2)) , 0 ≤ i < N

is of order 3. We use the previous theorem with m = 2 to prove this statement. We have
p(w) = w3 −w2 and

q(w) = 23

12
w2 − 4

3
w + 5

12
.

To develop p(w) − q(w) lnw near w = 1, we set v = w − 1. Hence

p(w) = (v + 1)3 − (v + 1)2 = v3 + 2v2 + v ,

q(w) = 23

12
(v + 1)2 − 4

3
(v + 1) + 5

12
= 23

12
v2 + 5

2
v + 1

and

p(w) − q(w) lnw = (v3 + 2v2 + v) − (23
12
v2 + 5

2
v + 1)(

∞
∑
k=1
(−1)k+1v

k

k
)

= 3

8
v4 +O(v5) = 3

8
(w − 1)4 +O((w − 1)5) .

♣
We can use Theorem 13.5.10 to construct multistep methods of any order.

To construct an explicit multistep method of order p, choose a polynomial p(w) = wm+1 −
m

∑
j=0

aj w
m−j such that p(1) = 0. The polynomial q(w) is the polynomial of degree m (if such

polynomial exists) given by the relation

p(w) − q(w) ln(w) = O((w − 1)p+1) .

To construct an implicit multistep method of order p, choose p(w) as before but this time
the polynomial q(w) is the polynomial of degree m+1 (if such a polynomial exists) given by
the relation

p(w) − q(w) ln(w) = O((w − 1)p+1) .

As we will realize in the next examples, it is useful to note that
v

ln(v + 1)
can be defined

at v = 0 by the extension

g(v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

v

ln(v + 1)
if v ≠ 0

1 if v = 0

374 13. Initial Value Problems

Moreover,

g(v) = 1 + v
2
− v

2

12
+ v

3

24
+O(v4) .

Example 13.5.13
To construct an implicit method of order 4 from p(w) = w3 −w2, let v = w − 1. Then

p(w)
ln(w)

= w
2(w − 1)
ln(w)

= (v + 1)2 v

ln(v + 1)

= (v2 + 2v + 1) (1 + v
2
− v

2

12
+ v

3

24
+O(v4))

= 1 + 5

2
v + 23

12
v2 + 3

8
v3 +O(v4)

= 1

24
− 5

24
w + 19

24
w2 + 3

8
w3 +O((w − 1)4) .

Thus

q(w) = 1

24
− 5

24
w + 19

24
w2 + 3

8
w3

and the multistep method is

wi+1 = wi + h(
3

8
f(ti+1,wi+1) +

19

24
f(ti,wi) −

5

24
f(ti−1,wi−1) +

1

24
f(ti−2,wi−2)) , ≤ i < N .

This is our famous Adams-Moulton method of order four. ♣
Example 13.5.14
To construct an explicit method of order 1 from p(w) = w2 −w, let v = w − 1. Then

p(w)
ln(w)

= w(w − 1)
ln(w)

= (v + 1) v

ln(v + 1)
= (v + 1) (1 + v

2
−O(v2))

= 1 + 3

2
v +O(v2) = −1

2
+ 3

2
w +O(∣w − 1∣2) .

Thus q(w) = −1
2
+ 3

2
w and the multistep method is

wi+1 = wi + h(
3

2
f(ti,wi) −

1

2
f(ti−1,wi−1)) , 1 ≤ i < N .

♣
Remark 13.5.15
If we consider p(w) = wm−1(w − 1), we get the Adams methods. The implicit methods are
called Adams-Moulton methods and the explicit methods are called Adams-Bashforth
methods.

If we consider p(w) = wm−2(w2−1), the explicit methods (of order m) are called Nystron
methods and the implicit methods (of order m + 1) are called Milne methods. ♠

13.5.4 Backward Difference Formulae

13.5. Multistep Methods 375

Definition 13.5.16

A multistep method of the form (13.5.1) and of order m + 1 is called a Backward
Difference Formula if b−1 ≠ 0 and bj = 0 for 0 ≤ j ≤m.

Proposition 13.5.17

For a Backward Difference Formula, we have b−1 = (
m+1
∑
j=1

1

j
)
−1

and the characteristic

polynomial is p(w) = b−1
m+1
∑
j=1

1

j
wm+1−j(w − 1)j.

Proof.
We will use Theorem 13.5.10. We have by hypothesis that q(w) = b−1wm+1 for some non-zero
constant b−1 ∈ R. Since the Backward Difference Formula is of order m + 1, we have

p(w) − b−1wm+1 ln(w) = O((w − 1)m+2) (13.5.15)

for w near 1. If we substitute w = 1/v in this equation and multiply it by vm+1, we get

vm+1p(1
v
) = b−1 ln(v) +O((v − 1)m+2)

for v near 1. Since

ln(v) = ln(1 + (v − 1)) =
m+1
∑
j=1

(−1)j−1
j

(v − 1)j +O((v − 1)m+2)

for v near 1, we get

vm+1p(1
v
) = b−1

m+1
∑
j=1

(−1)j
j
(v − 1)j +O((v − 1)m+2) .

If we rewrite this equation in function of w, we get

p(w) = b−1wm+1
m+1
∑
j=1

(−1)j
j
(1 −w)j w−j +O((w − 1)m+2)

= b−1
m+1
∑
j=1

1

j
(w − 1)j wm+1−j +O((w − 1)m+2) .

Since p(w) is a polynomial of degree m + 1 and any extra terms of the form (w − 1)k with
k ≥m + 2 will not affect (13.5.15), we may assume that

p(w) = b−1
m+1
∑
j=1

1

j
(w − 1)j wm+1−j .

To get p of the form p(w) = wm+1 −
m

∑
j=0
ajw

m−j, we need 1 = b−1
m+1
∑
j=1

1

j
.

376 13. Initial Value Problems

Example 13.5.18
The case m = 0 gives b−1 = 1 and p(w) = w − 1. We get the Backward Euler’s method
wi+1 = wi + hf(ti+1,wi+1) for 0 ≤ i < N .

The case m = 1 gives b−1 = 2/3 and

p(w) = 2

3
((w − 1)w + 1

2
(w − 1)2) = w2 − 4

3
w + 1

3
.

We get the backward method

wi+1 =
4

3
wi −

1

3
wi−1 +

2

3
hf(ti+1,wi+1) , 1 ≤ i < N .

♣

13.5.5 Predictor-Corrector Methods

Since it is generally impossible to solve explicitly for wi+1 the finite difference equations of
the implicit multistep methods, we do not use implicit multistep methods to approximate
yi+1 but we use them to improve the approximation of yi+1 given by the explicit methods.

The combination of an explicit and an implicit multistep method of the same order gives
a predictor-corrector method. We illustrate this idea with the Adams-Bashforth method of
order four and the Adams-Moulton method of order four. Both are multistep methods of
order four.

Algorithm 13.5.19 (Predictor-Corrector Method)

1. Use Runge-Kutta Method of order four to get approximations wi, of yi for i = 1,
2, and 3. Recall that w0 = y0.

2. (P) Suppose that we have found the approximation wi of yi for i ≥ 3. Use
Adams-Bashforth formula to get a first approximation

w
[0]
i+1 = wi +

h

24
(55 f(ti.wi) − 59 f(ti1 ,wi−1) + 37 f(ti−2,wi2) − 9 f(ti−3,wi−3))

of yi+1.

3. (C) Use Adams-Moulton formula to get a better (we hope) approximation

w
[1]
i+1 = wi +

h

24
(9 f (ti+1,w[0]i+1) + 19 f(ti.wi) − 5 f(ti−1,wi−1) + f(ti−2,wi−2))

of yi+1. Accept w
[1]
i+1 as the approximation wi+1 of yi+1.

4. Go back to (2) if i < N .

13.5. Multistep Methods 377

Remark 13.5.20
Generally, no more than two iterations are done. If the iterative process does not give a
“good” approximation after two iterations. The step-size is usually reduced. ♠

We now look a little deeper into the theory to determine the order of the predictor-
corrector method resulting from combining two multistep methods.

We consider two multistep methods to approximate the solution of (13.1.1). The first
method is an explicit method of order p given by

wi+1 =
m

∑
j=0

aj wi−j + h
m

∑
j=0

bj f(ti−j,wi−j) (13.5.16)

for m ≤ i < N and the second method is an implicit method of order p̃ given by

w̃i+1 =
m̃

∑
j=0

ãj w̃i−j + h
m̃

∑
j=−1

b̃j f(ti−j, w̃i−j) (13.5.17)

for m̃ ≤ i < N . We have that wi−j is the approximation of y(ti−j) given by (13.5.16) and w̃i−j
is the approximation of y(ti−j) given by (13.5.17).

We combine these two multistep methods to create a predictor-corrector method as fol-
lows.

Let M = max{m,m̃}. Suppose that w0, w1, . . . , wM have been obtained from a method
of order at least equal to max{p, p̃}.

Assuming that we have the values of wi−j = w̃i−j and fi−j = f(ti−j,wi−j) for 0 ≤ J ≤M , we
compute the value of wi+1 for i ≥M as follows.

P: Prediction

w
[0]
i+1 =

m

∑
j=0

aj wi−j + h
m

∑
j=0

bj fi−j (13.5.18)

(EC)ν: Evaluation and Correction for k = 0, 1, . . . ν − 1.

f
[k+1]
i+1 = f(ti+1,w[k]i+1)

w
[k+1]
i+1 =

m̃

∑
j=0

ãj wi−j + h(
m̃

∑
j=0
b̃j fi−j + b̃i+1 f [k+1]i+1) (13.5.19)

We set wi+1 = w̃i+1 = w[ν]i+1.

E: Evaluation
fi+1 = f(ti+s,wi+s)

This predictor-corrector method is named P (EC)νE. In general, the number of iterations
ν should be small.

378 13. Initial Value Problems

In the proof of Theorem 13.5.10, we have shown that a multistep method of the form
(13.5.1) satisfies

y(ti + h) −
m

∑
j=0

aj y(ti − jh) − h
m

∑
j=−1

bj f(ti − jh, y(ti − jh))

= (1 −
m

∑
j=0

aj) y(ti) + (1 +
m

∑
j=0

aj j −
m

∑
j=−1

bj) y′(ti)h

+
∞
∑
k=2

1

k!
(1 − (−1)k

m

∑
j=0

aj j
k − (−1)k−1k

m

∑
j=−1

bj j
k−1) y(k)(ti)hk .

(13.5.20)

To compute the order of the predictor-corrector method, we make the localisation as-
sumption that wi−j = yi−j = y(ti−j) for 0 ≤ j ≤ m. Using (13.5.20), we find that our explicit
multistep method (b−1 = 0) of order p satisfies

y(ti+1) −w[0]i+1 = Cph
p+1y(p+1)(ti) +O(hp+2) , (13.5.21)

where

Cp =
1

(p + 1)!
(1 + (−1)p

m

∑
j=0

aj j
p+1 − (−1)p(p + 1)

m

∑
j=0

bj j
p) .

Again, using (13.5.20), we find that our implicit multistep method of order p̃ satisfies

y(ti+1) −w[k+1]i+1 = hb̃−1 (f(ti+1, y(ti+1)) − f(ti+1,w[k]i+1)) + (y(ti+1) −wi+1)

= hb̃−1 (f(ti+1, y(ti+1)) − f(ti+1,w[k]i+1)) + D̃p̃h
p̃+1y(p̃+1)(ti) +O(hp̃+2)

= hb̃−1
∂f

∂y
(ti+s, ηi) (y(ti+s) −w[k]i+s) + D̃p̃h

p̃+1y(p̃+1)(ti) +O(hp̃+2) (13.5.22)

for some ηi,k between y(ti+1) and w[k]i+1, where

D̃p̃ =
1

(p̃ + 1)!
(1 + (−1)p̃

m̃

∑
j=0

ãj j
p̃+1 − (−1)p̃(p̃ + 1)

m̃

∑
j=−1

b̃j j
p̃) .

If p ≥ p̃, we get from (13.5.22) with k = 0 that

y(ti+1) −w[1]i+1 = = hb̃−1
∂f

∂y
(ti+1, ηi.0) (y(ti+1) −w[0]i+1)

´¹¹¸¹¹¹¶
=O(hp+1)

+D̃ph
p̃+1y(p̃+1)(ti) +O(hp̃+2)

= D̃ph
p̃+1y(p̃+1)(ti) +O(hp̃+2)

because of (13.5.21). If we substitute this result into (13.5.22) with k = 1, we get

y(ti+s) −w[2]i+s = = hb̃−1
∂f

∂y
(ti+1, ηi,1) (y(ti+1) −w[1]i+1)

´¹¹¸¹¹¹¶
=O(yp̃+1)

+D̃ph
p̃+1y(p̃+1)(ti) +O(hp̃+2)

13.5. Multistep Methods 379

= D̃ph
p̃+1y(p̃+1)(ti) +O(hp̃+2) .

Proceeding this way with k = 2, 3, . . . , ν − 1, we get

y(ti+s) −w[ν]i+s = D̃ph
p̃+1y(p̃+1)(ti) +O(hp̃+2) .

This shows that the principal part of the local truncation error (the term in h with the
smallest exponent) for the predictor-corrector method is given by the principal part of the
corrector only. The predictor-corrector method is of order p̃.

Proceeding as we have just done, we find that

1. If p < p̃ and ν ≥ p̃−p, the predictor-corrector method has the same order as the corrector
method. However, the principal part of the local truncation error for the predictor-
corrector method is not the principal part of the local truncation error for the corrector
method.

2. If p < p̃ and ν < p̃ − p, the predictor-corrector method is of order p + ν. Each iteration
of the implicit multistep method increases the order of the method by 1.

13.5.6 Variable Step-Size Multistep methods

We show how the predictor-corrector method of the previous section can be adapted to
control the step-size.

Let τ̃i+1(h) be the local truncation error for the Adams-Moulton method of order four.
Combining the Adams-Bashforth Method of order four and the Adams-Moulton method of
order four, we can determine the step-size h between ti and ti+1 such that τ̃i+1(h) < ϵ where
ϵ is given.

The following procedure outlines this variable step-size multistep method based on the
Adams-Moulton method of order four and the Adams-Bashforth method of order four.

Algorithm 13.5.21 (Variable Step-Size Multistep method)

1. Let i = 0, t̃0 = t0 and w̃0 = y(t0).

2. Use Runge-Kutta Method of order four starting with w̃0 as approximation of
y(t0) to get approximations w̃j of y(t) at t̃j = t̃0+jh for 1 ≤ j ≤ 3. Let wi−j = w̃3−j
and ti−j = t̃3−j for 0 ≤ j ≤ 3.

3. Use Adams-Bashforth formula to get a first approximation

w
[0]
i+1 = wi +

h

24
(55 f(tj.wj) − 59 f(tj−1,wj−1) + 37 f(tj−2,wj−2) − 9 f(tj−3,wj−3))

of y(t) at tj+1 = ti + h. .

380 13. Initial Value Problems

4. Use Adams-Moulton formula to get a better (we hope) approximation

w
[1]
i+1 = wi +

h

24
(9 f (ti+1,w[0]i+1) + 19 f(ti.wi) − 5 f(ti−1,wi−1) + f(ti−2,wi−2))

of y(t) at ti+1 = ti + h.

5. If
19

270

RRRRRRRRRRR

w
[1]
i+1 −w

[0]
i+1

h

RRRRRRRRRRR
< ϵ ,

we accept wi+1 = w[1]i+1, wi, wi−1 and wi−2 as approximations of y(t) at ti+1 = ti+h,
ti, ti−1 = t0 − h, and ti−2 = t0 − 2h respectively.

(a) We choose a bigger step-size if

19

270

RRRRRRRRRRR

w
[1]
i+1 −w

[0]
i+1

h

RRRRRRRRRRR
< ϵ
2
.

We replace h by qh, where

q =
RRRRRRRRRRR
(270
19
) hϵ

w
[1]
i+1 −w

[0]
i+1

RRRRRRRRRRR

1/4

. (13.5.23)

q should be greater than 1 as we will show below. Set t̃0 = ti+1 and w̃0 = wi+1,
increase i by 4, and go back to step 2.

(b) We do not change the step-size if

ϵ

2
≤ 19

270

RRRRRRRRRRR

w
[1]
i+1 −w

[0]
i+1

h

RRRRRRRRRRR
< ϵ .

Increase i by 1 and go back to step 3.. Changing the step-size is expensive.
So, we do not change it if there is little or no gain to make.

6. If
19

270

RRRRRRRRRRR

w
[1]
i+1 −w

[0]
i+1

h

RRRRRRRRRRR
≥ ϵ ,

we reduce the step-size. We replace h by qh, where q is defined in (13.5.23). q
should be less than 1. If wj for i − 3 ≤ j ≤ i have already been accepted as good
approximations (i.e. wi comes from the Adams-Moulton method of order four),
set t̃0 = ti and w̃0 = wi, go back to step 2. Otherwise (i.e. wi comes from the
Runge-Kutta method of order four), just go back to step 2 with the same t̃0 and
w̃0 but the new h.

We now justify non-rigorously this variable step-size multistep method.

13.5. Multistep Methods 381

We suppose that wi−j has been accepted as an approximation of y(ti−j) with the local
truncation error for the Adams-Moulton method of order four less than ϵ for 0 ≤ j ≤ 3.
Moreover, we make the localization assumption that wi−j ≈ y(ti−j) for 0 ≤ j ≤ 3. Then, from
Definition 13.5.5, we get

y(ti+1) −w[0]i+1
h

≈ τi+1(h) =
251

720
y(5)(η)h4 (13.5.24)

for some η between ti−3 and ti+1, where τi+1(h) denotes the local truncation error for the
Adams-Bashforth method of order four.

If we also assume that y(ti+1) ≈ w[0]i+1, we get from Definition 13.5.6 that

y(ti+1) −w[1]i+1
h

≈ τ̃i+1(h) = −
19

720
y(5)(ξ)h4 (13.5.25)

for some ξ between ti−2 and ti+1, where τ̃i+1(h) denotes the local truncation error for the
Adams-Moulton method of order four.

Finally, if we assume that y(5)(t) is almost constant on [ti−3, ti+1] and subtract (13.5.25)
from (13.5.24), we get

w
[1]
i+1 −w

[0]
i+1

h
≈ 270

720
Y h4 = 3

8
Y h4 ,

where Y ≈ y(5)(ξ) ≈ y(5)(η).

Thus Y ≈ 8

3

⎛
⎝
w
[1]
i+1 −w

[0]
i+1

h5
⎞
⎠
. If we substitute y(5)(ξ) by Y in (13.5.25), we get

∣τ̃i+1(h)∣ ≈
19

720

⎛
⎝
8

3

RRRRRRRRRRR

w
[1]
i+1 −w

[0]
i+1

h5

RRRRRRRRRRR

⎞
⎠
h4 = 19

270

RRRRRRRRRRR

w
[1]
i+1 −w

[0]
i+1

h

RRRRRRRRRRR
.

If
19

270

RRRRRRRRRRR

w
[1]
i+1 −w

[0]
i+1

h

RRRRRRRRRRR
< ϵ, we may expect that ∣τ̃i+1(h)∣ < ϵ.

If we use qh instead of h in the previous discussion (we keep the same estimate for Y),
we get

∣τ̃i+1(qh)∣ ≈
19

720
Y (qh)4 ≈ 19

720

⎛
⎝
8

3

RRRRRRRRRRR

w
[1]
i+1 −w

[0]
i+1

h5

RRRRRRRRRRR

⎞
⎠
(qh)4 = 19

270

RRRRRRRRRRR

w
[1]
i+1 −w

[0]
i+1

h

RRRRRRRRRRR
q4 .

To get ∣τ̃i+1(qh)∣ < ϵ, we choose q such that

19

270

RRRRRRRRRRR

w
[1]
i+1 −w

[0]
i+1

h

RRRRRRRRRRR
q4 < ϵ ;

namely,

q <
⎛
⎝
270ϵ

19

RRRRRRRRRRR

h

w
[1]
i+1 −w

[0]
i+1

RRRRRRRRRRR

⎞
⎠

1/4

.

The following code implement the variable step-size multistep method outlined above.

382 13. Initial Value Problems

Code 13.5.22 (Variable Step-Size Multistep Method)

To approximate the solution of the initial value problem

y′(t) = f(t, y(t)) , t0 ≤ t ≤ tf
y(t0) = y0

.

Input: The maximal step-size hmax.
The minimal step-size hmin.
The maximal tolerated error T.
The initial time t0 (t0 in the code below).
The final time tf (tf in the code below).
The initial condition y0 (y0 in the code below).
The function f(t, y) (funct in the code below).
Output: The approximations wi (gw(i+1) in the code below) of y(ti) at ti (gt(i+1)
in the code below) if all the requested requirements can be met.

function [gt,gw] = multistepABM(funct,t0,y0,tf,hmin,hmax,T)

% last = 1 if we have reached tf or h < hmin at some point,

% and last = 0 otherwise.

last = 0;

h = hmin;

gt(1) = t0;

gw(1) = y0;

t(1) = t0;

w(1) = y0;

% Given t0 and y0, we use Runge-Kutta of order four, to compute

% an approximation w(i+1) of y(t0+i*h) for i = 1, 2 and 3 .

% The code for the function rgkt4() was given previously.

[t,w] = rgkt4(funct,h,3,t(1),w(1));

% rkflag = 1 if the last stage used Runge-Kutta of order four and

% rkflag = 0 otherwise,

rkflag = 1;

i=1:4;

f(i) = funct(t(i),w(i));

while (1==1)

t(5) = t(4) + h;

% We use the predictor-corrector method

predict = w(4) + h*(55*f(4) - 59*f(3) + 37*f(2) - 9*f(1))/24;

f(5) = funct(t(5),predict);

correct = w(4) + h*(9*f(5) + 19*f(4) - 5*f(3) + f(2))/24;

sigma = 19*abs(predict-correct)/(270*h);

if (sigma < T)

w(5) = correct;

f(5) = funct(t(5),correct);

13.5. Multistep Methods 383

j=1:4;

t(j) = t(j+1);

w(j) = w(j+1);

f(j) = f(j+1);

if (rkflag==1)

% We accept the three values obtained from Runge-Kutta of order

% four and the one obtained with the predictor-corrector method.

for j=1:4

gt = [gt,t(j)];

gw = [gw,w(j)];

end

else

% We accept the new value obtained with the predictor-corrector

% method. The other values have already been accepted.

% It is at least the second time in a row that we apply

% the predictor-corrector method.

gt = [gt,t(4)];

gw = [gw,w(4)];

end

if (last == 1)

break;

end

% We have now executed at least one iteration of the

% predictor-corrector method

rkflag = 0;

if ((t(4)+h > tf) || (sigma < T/2))

% We now choose a bigger step-size.

if (sigma == 0)

q = 4.0;

else

q = (T/sigma)^0.25;

end

h = min([hmax,4*h,q*h]);

% We check that after the next stage t will not exceed tf.

if (t(4) + h > tf)

% We divide by four because we are now going to use

% rgkt4 and one step of Adams-Moulton to

% complete the integration; we must therefore

% have that t(4) + 4*h = tf.

h = (tf-t(4))/4;

last = 1;

384 13. Initial Value Problems

end

t(1) = t(4);

w(1) = w(4);

f(1) = f(4);

[t,w] = rgkt4(funct,h,3,t(1),w(1));

rkflag = 1;

j=2:4;

f(j) = funct(t(j),w(j));

end

else

% We choose a smaller step-size.

q = max([0.1, (T/sigma)^0.25]);

h = q*h;

if (h < hmin)

gt = NaN;

gw = NaN;

break

end

% We start Runge-Kutta with t(4) and w(4) if

% we have used the predictor-corrector method at the previous

% stage.

if (rkflag == 0)

t(1) = t(4);

w(1) = w(4);

f(1) = f(4);

end

[t,w] = rgkt4(funct,h,3,t(1),w(1));

rkflag = 1;

last = 0;

j=2:4;

f(j) = feval(funct,t(j),w(j));

end

end

end

We now describe non-rigorously how to control the step-size for general variable step-size
multistep methods.

We consider two multistep methods of order p to approximate the solution of (13.1.1).
The first method is an explicit method given by

wi+1 =
m

∑
j=0

aj wi−j + h
m

∑
j=0

bj f(ti−j,wi−j) (13.5.26)

13.5. Multistep Methods 385

for m ≤ i < N and the second method is an implicit method given by

w̃i+1 =
m̃

∑
j=0

ãj w̃i−j + h
m̃+1
∑
j=−1

b̃j f(ti−j, w̃i−j) (13.5.27)

for m̃ ≤ i < N . We have that wi−j is the approximation of y(ti−j) given by (13.5.26) and w̃i−j
is the approximation of y(ti−j) given by (13.5.27).

In the proof of Theorem 13.5.10, we have shown that a multistep method of the form
(13.5.1) satisfies

y(ti + h) −
m

∑
j=0

aj y(ti − jh) − h
m

∑
j=−1

bj f(ti − jh, y(ti − jh))

= (1 −
m

∑
j=0

aj) y(ti) + (1 +
m

∑
j=0

aj j −
m

∑
j=−1

bj) y′(ti)h

+
∞
∑
k=2

1

k!
(1 − (−1)k

m

∑
j=0

aj j
k − (−1)k−1k

m

∑
j=−1

bj j
k−1) y(k)(ti)hk . (13.5.28)

Using (13.5.28) with b−1 = 0 and the localization assumption wi−j = yi−j = y(ti−j) for
0 ≤ j ≤m, we find that the first multistep method of order p satisfies

y(ti+1) −wi+1 = Cph
p+1y(p+1)(ti) +O(hp+2) , (13.5.29)

where

Cp =
1

(p + 1)!
(1 + (−1)p

m

∑
j=0

aj j
p+1 − (−1)p(p + 1)

m

∑
j=0

bj j
p) .

Similarly, w̃i−j = yi−j = y(ti−j) for 0 ≤ j ≤ m and wi+1 ≈ yi+1 = y(ti+1), the second multistep
method of order p satisfies

y(ti+1) − w̃i+1 = D̃ph
p+1y(p+1)(ti) +O(hp+2) , (13.5.30)

C̃p =
1

(p + 1)!
(1 + (−1)p

m̃

∑
j=0

aj j
p+1 − (−1)p(p + 1)

m̃

∑
j=−1

bj j
p) .

If we assume that y(p+1)(t) is almost constant on an interval [ti−m, ti+1], we may choose
K such that y(p+1)(ti) ≈K. Hence,

y(ti+1) −wi+1 ≈ CpKh
p+1 +O(hp+2) and y(ti+1) − w̃i+1 = C̃pKh

p+1 +O(hp+2) .

Thus, after subtracting the second expression from the first expression, we get

w̃i+1 −wi+1 ≈ (Cp − C̃p)Khp+1 +O(hp+2) .

If we ignore the small error of order hp+2, we get

Khp+1 ≈ w̃i+1 −wi+1

Cp − C̃p

386 13. Initial Value Problems

if Cp ≠ C̃p. If we substitute this expression into

y(ti+s) −wi+s ≈ CpKh
p+1 +O(hp+2) ,

we get

y(ti+s) −wi+s ≈
Cp

Cp − C̃p

(w̃i+1 −wi+1) . (13.5.31)

Let δ be a small number. We may require

∣
Cp

Cpc − D̃p

(w̃
i+s −wi+s) ∣ < δ

at each step. This is called error control per step. If the requirement is not satisfied, we
reduce the step-size h. We may instead require

∣
Cp

Cpc − C̃p

(w̃
i+s −wi+s) ∣ < δh

at each step. This is called error control per unit step. This takes care of the accumula-
tion of error at each step (assuming that the error is evenly distributed among the integration
steps). We have that Nδh = δ(b − a) is the cumulative error.

13.6 Convergence, Consistency and Stability

The content of this section is based in great part on [19, 20].

We consider the initial value problem (13.1.1), where we assume that f ∶ [t0, tf] ×R → R
has continuous mixed derivatives of sufficiently high order. This implies that the solution y
of (13.1.1) is sufficiently differentiable.

In this section, we consider multistep methods of the form

wi+1 =
m

∑
j=0

ajwi−j + hF (h, t,w, f) , m ≤ i < N

wi = y(ti) , 0 ≤ i ≤m
(13.6.1)

where am ≠ 0, t = (ti−m . . . ti−1 ti ti+1)
⊺
and w = (wi−m . . . wi−1 wi wi+1)

⊺
. We

assume that
F (h, t,w,0) = 0 (13.6.2)

and

∣F (h, t,w[1], f) − F (h, t,w[2], f) ∣ ≤ R ∥w[1] −w[2]∥
1
= R

m

∑
j=−1
∣w[1]i−j −w

[2]
i−j ∣ (13.6.3)

for a constant R.

13.6. Convergence, Consistency and Stability 387

1. The Multistep methods defined in Definition 13.5.1 are of the form (13.6.1), and satisfy
(13.6.2) and (13.6.3).

We have

F (h, t,w, f) =
m

∑
j=−1

bjf(ti−j,wi−j) .

Obviously, F (h, t,w,0) = 0. Suppose that L is the Lipschitz constant in the definition
of a well posed differential equation; namely, L is such that ∣f(t, x) − f(t, y)∣ ≤ L∣x − y∣
for all (t, x) and (t, y) in the domain of f . We have that

∣F (h, t,w[1], f) − F (h, t,w[2], f)∣ ≤
m

∑
j=−1
∣bj ∣ ∣f (ti−j,w[1]i−j) − f (ti−j,w

[2]
i−j)∣

≤ L
m

∑
j=−1
∣bj ∣ ∣w[1]i−j −w

[2]
i−j ∣ ≤ L max

−1≤j≤m
∣bj ∣

m

∑
j=−1
∣w[1]i−j −w

[2]
i−j ∣ = R ∥w[1] −w[2]∥1

for R = L max
−1≤j≤m

∣bj ∣.

2. The Runge-Kutta methods defined in Definition 13.4.1 are also of the form (13.6.1),
and satisfy (13.6.2) and (13.6.3).

We have

F (h, t,w, f) =
s

∑
j=1
γjKj ,

where t = (ti) and w = (wi) since Runga-Kutta methods are one-step methods.

By definition of the Kj, we have that F (h, t,w,0) = 0. As before, let L be the Lipschitz
constant in the definition of a well posed differential equation; namely, L is such that
∣f(t, x) − f(t, y)∣ ≤ L∣x − y∣ for all (t, x) and (t, y) in the domain of f . Let

K
[k]
j = f(ti + αjh,w

[k]
i + h

s

∑
m=1

βj,mK
[k]
m)

for k = 1 and 2. To verify this claim, we first note that

∣K[1]j −K
[2]
j ∣ = ∣f(ti + αjh,w

[1]
i + h

s

∑
m=1

βj,mK
[1]
m) − f(ti + αjh,w

[2]
i + h

s

∑
m=1

βj,mK
[2]
m)∣

≤ L ∣w[1]i −w
[2]
i ∣ +Lh

s

∑
m=1

βj,m ∣K[1]m −K[2]m ∣ , 1 ≤ j ≤ s . (13.6.4)

Let

B =
⎛
⎜⎜⎜
⎝

β1,1 β1,2 . . . β1,s
β2,1 β2,2 . . . β2,s
⋮ ⋮ ⋱ ⋮
βs,1 βs,2 . . . βs,s

⎞
⎟⎟⎟
⎠
, K =

⎛
⎜⎜⎜⎜⎜⎜
⎝

∣K[1]1 −K
[2]
1 ∣

∣K[1]2 −K
[2]
2 ∣

⋮
∣K[1]s −K[2]s ∣

⎞
⎟⎟⎟⎟⎟⎟
⎠

and W =

⎛
⎜⎜⎜⎜⎜⎜
⎝

∣w[1]i −w
[2]
i ∣

∣w[1]i −w
[2]
i ∣

⋮
∣w[1]i −w

[2]
i ∣

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

388 13. Initial Value Problems

We can rewrite (13.6.4) as
K ≤ LW +LhBK ,

where the inequality is component by component. We have that

∥K∥1 ≤ L∥W∥1 +Lh∥B∥1∥K∥1 .

Thus

∣K[1]j −K
[2]
j ∣ ≤ ∥K∥1 ≤

L

1 −Lh∥B∥1
∥W∥1 ≤ 2L∥W∥1 = 2Ls ∣w[1]i −w

[2]
i ∣ , 1 ≤ j ≤ s ,

if we assume that h is small enough to have Lh∥B∥1 < 1/2 3. Finally, we have that

∣F (h, t,w[1], f) − F (h, t,w[2], f)∣ ≤
s

∑
j=1
γj ∣K[1]j −K

[2]
j ∣ ≤

s

∑
j=1
γj

±
=1

2Ls ∣w[1]i −w
[2]
i ∣

= 2Ls ∣w[1]i −w
[2]
i ∣ = R ∣w

[1]
i −w

[2]
i ∣

for R = 2Ls.

To define the stability of a numerical method, we consider a perturbation of (13.6.1) given
by the difference equation

ui+1 =
m

∑
j=0

ajui−j + hF (h, t,w, f) + δi+1(h) , m ≤ i < N

ui = y(ti) + δi(h) , 0 ≤ i ≤m
(13.6.5)

Convergence and consistency are two primordial concepts. Convergence obviously does
not need any motivation.

Definition 13.6.1

A multistep method of the form (13.6.1) 4 is convergent if, for all well-posed initial
value problems (13.1.1),

lim
h→0

max
0≤i≤N

∣yi − ui∣ = 0 ,

where ui is the numerical approximation of wi.

Remark 13.6.2
To prove convergence of a multistep method, we will require that max

0≤i≤N
∣δi(h)∣ → 0 as h → 0.

Obviously, in practice, this is not realistic. We do not expect round off errors to go to 0 as
h goes to 0. However, our theoretical result shows that by having max

0≤i≤N
∣δi(h)∣ very small, we

3Any value smaller than 1 could have been used.
4From now on, this will refer to Runge-Kutta methods (Definition 13.4.1) and multistep methods (Defi-

nition 13.5.1).

13.6. Convergence, Consistency and Stability 389

may hope that our numerical approximation of the solution be very accurate. To decrease
round off errors (by choosing the right algorithm, by efficiently programming it, ...) is one
of the big challenges in numerical analysis. ♠
Remark 13.6.3
A definition of convergence that is often given in textbooks is the following.

A multistep method is convergent if, for all well-posed initial value problems (13.1.1),

lim
h→0

max
0≤i≤N

∣yi −wi∣ = 0 .

All rounding errors are assumed to be null.

For the Euler’s method, if we ignore rounding errors in Theorem 13.2.5 (i.e. δ = δ0 = 0),
we get

max
0≤i≤N

∣yi −wi∣ ≤
Mh

2L
(eL(tf−t0) − 1)→ 0

as h → 0. So, the Euler’s method is converging in this weak sense. Unfortunately, this does
not prove that the Euler’s method is convergent according to Definition 13.6.1. In fact, we
will need to assume (the unrealistic assumption) that max

0≤i≤N
∣δi(h)∣ = O(h2) to be able to show

that Euler’s method is converging in the sense of Definition 13.6.1.

Another example is given by the Trapezoidal Method. It is convergent in the weak sense
above. For this example, we refer to Definition 13.5.3 and the paragraphs following this
definition. We prove that

lim
h→0

max
0≤i≤N

∣wi − y(ti)∣ = 0 . (13.6.6)

Let ei = wi − y(ti). If we subtract

y(ti+1) = y(ti) +
h

2
(f(ti, y(ti)) + f(ti+1, y(ti+1))) +M(ξi, ηi)h3

from

wi+1 = wi +
h

2
(f(ti+1,wi+1) + f(ti,wi)) ,

we get

ei+1 = ei +
h

2
(f(ti,wi) − f(ti, y(ti)) + f(ti+1,wi+1) − f(ti+1, y(ti+1))) −M(ξi, ηi)h3 . (13.6.7)

As we have seen when computing the order of the Trapezoidal Method if we assume that
f is twice continuously differentiable on [t0, tf] × R, then ∣M(ξi, ηi)∣ ≤ Q for all i, where
Q = 5K/12 and K is the maximum of y(3)(t) on [t0, tf]. If we use this property and the
assumption that f satisfies the Lipschitz condition (13.1.3), we get from (13.6.7) that

∣ei+1∣ ≤ ∣ei∣ +
hL

2
(∣ei∣ + ∣ei+1∣) +Qh3 . (13.6.8)

Since h→ 0, we may assume that hL/2 < 1. Hence, we get from (13.6.8) that

∣ei+1∣ ≤
1 + hL/2
1 − hL/2

∣ei∣ +
Qh3

1 − hL/2
. (13.6.9)

390 13. Initial Value Problems

We now show by induction that

∣ei∣ ≤
Q

L

⎛
⎝
(1 + hL/2
1 − hL/2

)
i

− 1
⎞
⎠
h2 , 0 ≤ i ≤ N . (13.6.10)

The result is true for i = 0 because we assume that w0 = y0. Suppose (13.6.10) it is true for
i. Using (13.6.9) and (13.6.10), we get

∣ei+1∣ ≤
1 + hL/2
1 − hL/2

∣ei∣ +
Qh3

1 − hL/2
≤ 1 + hL/2
1 − hL/2

⎛
⎝
Q

L

⎛
⎝
(1 + hL/2
1 − hL/2

)
i

− 1
⎞
⎠
h2
⎞
⎠
+ Qh3

1 − hL/2

= Q
L
(1 + hL/2
1 − hL/2

)
i+1

h2 + Qh2

L(1 − hL/2)
(−(1 + hL

2
) +Lh)

= Q
L
(1 + hL/2
1 − hL/2

)
i+1

h2 − Qh
2

L
= Q
L

⎛
⎝
(1 + hL/2
1 − hL/2

)
i+1

− 1
⎞
⎠
h2 .

So (13.6.10) is true for i replaced by i + 1, completing the proof by induction. Since 0 <
hL/2 < 1, we have that

0 < 1 + hL/2
1 − hL/2

= 1 + hL

1 − hL/2
≤
∞
∑
j=0

1

j!
(hL

1 − hL/2
)
j

= ehL/(1−hL/2) .

Thus

∣ei∣ ≤
Q

L
(1 + hL/2
1 − hL/2

)
i

h2 ≤ Q
L
eihL/(1−hL/2) h2 ≤ Q

L
e(tf−t0)L/(1−hL/2) h2 , 0 ≤ i ≤ N .

Hence

max
0≤i≤N

∣wi − y(ti)∣ = max
0≤i≤N

∣ei∣ ≤
Q

L
e(tf−t0)L/(1−hL/2) h2 → 0

as h→ 0. This proves (13.6.6). ♠
Consistency ensure that the numerical method approximates adequately the differential

equation.

Definition 13.6.4

The local truncation error of a multistep method of the form (13.6.1) is defined by

τi+1(h) =
1

h
(yi+1 −

m

∑
j=0

ajyi−j) − F (h, t,y, h) , 0 ≤ i < N ,

where y = (yi−m . . . yi−1 yi yi+1)
⊺
and yi = y(ti) for all i as usual.

we say that a multistep method is consistent if, for each well posed initial value
problems (13.1.1), there exists a function τ ∶ R→ R such that

max
0≤i<N

∣τi+1(h)∣∣ ≤ τ(h)→ 0

13.6. Convergence, Consistency and Stability 391

as h→ 0.

A finite difference problem of order greater than 0 is consistent.

For the Runga-Kutta methods given in Definition 13.4.1, the local truncation error is
defined by

τi+1(h) =
yi+1 − yi

h
− h

s

∑
j=1
γjKj , 0 ≤ i < N ,

where

Kj = f(ti + αjh, yi + h
s

∑
k=1

βj,kKk) ,

For the multistep methods given in Definition 13.5.1, the local truncation error is defined
by

τi+1(h) =
1

h
(ai+1 −

m

∑
j=0

ajy(ti+j)) −
m

∑
j=−1

bjf(ti−j, yi−j) , m ≤ i < N .

Remark 13.6.5
In the definitions of convergence and consistency, we consider the limit when h→ 0. We have
to keep in mind that h = (tf − t0)/N and that N →∞. It would have been more appropriate
to write hN instead of h in these definitions but we will stick to the tradition of only writing
h. ♠
Example 13.6.6
One of the simplest multistep methods is obviously the Euler’s method.

Assume that f in the initial value problem (13.1.1) satisfies a Lipschitz condition on
[t0, tf]×R with respect to the second variable and that L is the Lipschitz constant. Moreover,
assume that ∣y′′∣ is bounded by M on [t0, tf] where y is the solution of (13.1.1).

The Euler’s method is consistent with respect to (13.1.1) because

∣τi+1(h)∣ = ∣
h

2
y′′(ξi)∣ ≤ τ(h) ≡

Mh

2
→ 0

as h→ 0. ♣
Example 13.6.7
Consider the following Adams-Bashforth Method of order two.

wi+1 = wi−1 + 2hf(ti,wi) , 1 ≤ i < N
w0 = y0
w1 = y1

This method is obtained by taking m = 1 and q = 1 in (13.5.5). We now show that this is a
consistent method of order two. Since

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ti) +

h3

3!
y′′′(ξi)

392 13. Initial Value Problems

and

y(ti−1) = y(ti) − hy′(ti) +
h2

2
y′′(ti) −

h3

3!
y′′′(νi)

for some number ξi and νi between ti−1 and ti+1, and f(ti, yi) = y′(ti), we get

τi+1(h) =
yi+1 − yi−1

h
− 2f(ti, yi)

=
(y(ti) + hy′(ti) +

h2

2
y′′(ti) +

h3

3!
y′′′(ξi)) − (y(ti) − hy′(ti) +

h2

2
y′′(ti) −

h3

3!
y′′′(νi))

h
− 2y′(ti)

= (y
′′′(ξi)
3!

+ y
′′′(νi)
3!
)h2 .

Hence,

∣τi+1(h)∣ ≤ τ(h) ≡
2

3
max
t0≤t≤tf

∣y′′′(t)∣h2 = 2M

3
h2 , 1 ≤ i < N ,

where M = max
t0≤t≤tf

∣y′′′(t)∣. Therefore, the method is of order two and ∣τi+1(h)∣ ≤ τ(h) → 0 as

h→ 0. The method is therefore consistent. ♣
The definition of stability that we adopt is given below.

Definition 13.6.8

A multistep method of the form (13.6.1) is zero-stable if, for any well-posed initial
value problems (13.1.1), there exist S and h0 such that for any partition of [t0, tf] with
h < h0, any solution {u[j]i }Ni=0 of (13.6.5) with δi = δ[j]i for j = 1 and 2, then

∣u[1]i − u
[2]
i ∣ < Sϵ

for i = 0, 1, . . . , N whenever ∣δ[1]i − δ
[2]
i ∣ < ϵ for i = 0, 1, . . . , N .

Remark 13.6.9
This definition is reminiscent of the definition of stability for systems of linear equations. A
system of the form Ax = b, where A is a n × n matrix, is stable is there exists a constant K
such that ∥x∥ ≤ K∥Ax∥ for all x. This ensures that if b̃ is a slight perturbation of b than
the solution xb̃ of Ax = b̃ is a slight perturbation of the solution xb of Ax = b because

∥xb̃ − xb∥ ≤K∥Axb̃ −Axb∥ =K∥b̃ − b∥ .

♠

13.6.1 Consistency

13.6. Convergence, Consistency and Stability 393

Proposition 13.6.10

Runge-Kutta methods are consistent if and only if

s

∑
j=1
γj = 1 .

Proof.
Since y(ti+1) = y(ti) + hy′(ξi) for some ξi between ti and ti+1, we have

τi+1(h) =
y(ti+1) − y(ti)

h
−

s

∑
j=1
γjKj = y′(ξi) −

s

∑
j=1
γjKj

for 0 ≤ i < N . Let c ∈ [a, b] be a fixed value such that ti ≤ c ≤ ti+1 for all h. So i will increase
and converge to ∞ as h goes to 0 to ensure that ti ≤ c ≤ ti+1. We have that ti+1 → c, ti → c,
yi → y(c) and ξi → c as h→ 0. Thus

lim
h→0

τi+1(h) = y′(c) −
s

∑
j=1

γif(c, y(c)) = y′(c)(1 −
s

∑
j=1

γj) = 0

if and only if
s

∑
j=1

γi = 1 .

So, all our Runge-Kutta methods are consistent since we require
s

∑
j=1
γj = 1.

Proposition 13.6.11

If the multistep method given in Definition 13.5.1 is consistent, then

1 =
m

∑
i=0

ai and
m

∑
k=−1

bk =
m

∑
k=0

ak (k + 1) .

Proof.
From the Mean Value Theorem, we have that yi−k = y(ti−k) = y(ti+1) − (k + 1)hy′(ξi−k) for
some ξi−k ∈ [ti−k, ti+1], where 0 ≤ k ≤ m. If we substitute these expressions in the definition
of local truncation error given in Definition 13.6.4, we get

τi+1(h) = (1 −
m

∑
k=0

ak)
yi+1
h
+

m

∑
k=0

ak (k + 1)y′(ξi−k) −
m

∑
k=−1

bkf(ti−k, yi−k) . (13.6.11)

Choose an increasing sequence {Nj}∞j=1 of positive integers converging to ∞ such that there
always is a value ij of i such that tij+1 = c, a constant value, when N = Nj. We have that

ij → ∞, h = hj ≡
tf − t0
Nj

→ 0, tij−k → c and ξi−k → c for all 0 ≤ k ≤ m as Nj → ∞ because

394 13. Initial Value Problems

ti+1 − ti−m = (m + 1)hj → 0 as hj → 0. If we assume that the multistep method is consistent,
then h = hj → 0 in (13.6.11) yields

0 = (1 −
m

∑
k=0

ak) y(c) and 0 =
m

∑
k=0

ak (k + 1)y′(c) −
m

∑
k=−1

bmf(c, y(c)) .

We get 1 −
m

∑
k=0

ak = 0 from the first equation and, because y′(t) = f(t, y(t)), we get

0 =
m

∑
k=0

ak (k + 1) −
m

∑
k=−1

bk

from the second equation.

Remark 13.6.12
We can easily show that if a consistent multistep method is converging according to the

definition given Remark 13.6.3; namely max
0≤i≤N

∣wi − yi∣→ 0 as h→ 0, then 1 =
m

∑
i=0

ai. ♠

13.6.2 Finite Difference Equations

Before diving deeper into the analysis of multistep methods, we need to introduce some
notions about finite difference equations.

Definition 13.6.13

Consider the finite difference equation

s

∑
j=0

aj ui−j = Ci , i ≥ s

ui = vi , 0 ≤ i < s
(13.6.12)

where the constants aj for 0 ≤ j ≤ s, vj for 0 ≤ j < s, and Ci for i ≥ s are given. A
sequence {ui}∞i=0 that satisfies (13.6.12) is called a solution of (13.6.12).
If as a0 ≠ 0, the finite difference equation is said to be of order s.

Theorem 13.6.14

If (13.6.12) is of order s, then there is a unique solution of (13.6.12).

Proof.
Since a0 ≠ 0, the existence of the solution follows recursively from

ui = −
1

a0

s

∑
j=1

aj ui−j +Ci , i ≥ s , (13.6.13)

13.6. Convergence, Consistency and Stability 395

with ui = vi for 0 ≤ i < s.

Suppose that there are two solutions {u[1]i }
∞

i=0
and {u[2]i }

∞

i=0
of (13.6.12). Then, {ui}∞i=0

with ui = u[1]i − u
[2]
i for all i ≥ 0 is a solution of (13.6.12) with Ci = 0 for i ≥ s and ui = 0 for

0 ≤ i < s. It follows from (13.6.13) that ui = u[1]i − u
[2]
i = 0 for i ≥ 0.

Consider the homogeneous finite difference equation

s

∑
j=0

aj ui−j = 0 , i ≥ s , (13.6.14)

of order s.

It is clear that a linear combination of solutions of (13.6.14) is a solution of (13.6.14).
Moreover, it follows from (13.6.13) with Ci = 0 for all i ≥ s that the linear independence

of solutions {u[j]i }∞i=0 of (13.6.14) for 1 ≤ j ≤ k is completely determined by the linear inde-

pendence of the vectors (u[j]0 u
[j]
1 . . . u

[j]
s−1)

⊺
in Rs for 1 ≤ j ≤ k. It follows that (13.6.14)

may have s linearly independent solutions. For instance, given 0 ≤ k < s, let {u[k]i }
∞

i=0
be the

solution of

s

∑
j=0

aj ui−j = 0 , i ≥ s

ui = δk,i , 0 ≤ i < s

where

δk,i =
⎧⎪⎪⎨⎪⎪⎩

0 if i ≠ k
1 if i = k

is the well known Dirac Delta function. The solutions {u[0]i }
∞

i=0
, {u[1]i }

∞

i=0
, . . . , {u[s−1]i }

∞

i=0
form a set of s linearly independent solutions of (13.6.14).

Definition 13.6.15

A set of s linearly independent solutions of an homogeneous finite difference equation
of order s is called a fundamental set of solutions.

Theorem 13.6.16

Let {u[k]i }∞i=0 for 0 ≤ k < s be a fundamental set of solutions of the homogeneous finite
difference equation (13.6.14). Then, the solution of

s

∑
j=0

aj ui−j = 0 , i ≥ s

ui = vi , 0 ≤ i < s

can be expressed uniquely as a linear combination of {u[k]i }
∞

i=0
for 0 ≤ k < s.

396 13. Initial Value Problems

Proof.
We have to find α0, α1, . . . , αs−1 such that

s−1
∑
k=0

αk u
(k)
i = vi

for 0 ≤ i < s. Namely, we have to solve Aα = v where

A =

⎛
⎜⎜⎜⎜
⎝

u
(0)
0 u

(1)
0 . . . u

(s−1)
0

u
(0)
1 u

(1)
1 . . . u

(s−1)
1

⋮ ⋮ ⋱ ⋮
u
(0)
s−1 u

(1)
s−1 . . . u

(s−1)
s−1

⎞
⎟⎟⎟⎟
⎠

, v =
⎛
⎜⎜⎜
⎝

v0
v1
⋮

us−1

⎞
⎟⎟⎟
⎠

and α =
⎛
⎜⎜⎜
⎝

α0

α1

⋮
αs−1

⎞
⎟⎟⎟
⎠
.

Since {u[k]i }∞i=0 for 0 ≤ k < s are linearly independent, the columns of A must also be linearly
independent. Thus the matrix A is invertible. Hence there is a unique solution to Aα = v.

Suppose that ui = zi for i ≥ 0 is a solution of the homogeneous finite difference equation
(13.6.14). If we substitute this formula for ui in (13.6.14) and factor out zi−s, we get the
characteristic polynomial

s

∑
j=0

aj z
s−j = 0 . (13.6.15)

If r is a real root of the characteristic polynomial, then {ui}∞i=0 with ui = ri is a solution for
(13.6.14). We note that r ≠ 0 because we assume that as ≠ 0. If we could find s distinct roots
of the characteristic polynomial, then we will have s solutions that provide a fundamental
set of solutions for (13.6.14). Unfortunately, not all polynomials of degree s have s distinct
real roots. If we work in C, we can describe all the solutions of (13.6.14).

Proposition 13.6.17

If r ∈ C is a root of algebraic multiplicity m of the characteristic polynomial (13.6.15)

with as ≠ 0, then {u[k]i }
∞

i=0
with ui = ikri and 0 ≤ k < m are m linearly independent

solutions for (13.6.14).

Proof.
Let

p(z) =
s

∑
j=0

aj z
s−j

If r is a root of p of algebraic multiplicity m (so a zero of order m of p), we have that
p(r) = p′(r) = . . . = p(m−1)(r) = 0 and p(m)(r) ≠ 0. Let q(z) = zi−sp(z) for some i ≥ s. We have

q(k)(z) =
k

∑
j=0
(k
j
)(∂

j

∂zj
zi−s)p(k−j)(z) .

Hence, q(r) = q′(r) = . . . = q(m−1)(r) = 0 and q(m)(r) = ri−sp(m)(r) ≠ 0. Therefore,

q(k)(r) =
s

∑
j=0

aj (i − j)(i − j − 1) . . . (i − j − k + 1)ri−j−k = 0

13.6. Convergence, Consistency and Stability 397

for 0 < k <m. Hence

zkq(k)(r) =
s

∑
j=0

aj (i − j)(i − j − 1) . . . (i − j − k + 1)ri−j = 0

for 0 < k < m. We have shown that {v[k]i }∞i=0 with vi = i(i − 1) . . . (i − k + 1)ri and 0 < k < m
are solutions for (13.6.14). Since

i
N

∏
n=1
(i − an) = iN+1 + (−

N

∑
n1=1

an1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=A1

iN +
⎛
⎜⎜
⎝
(−1)2

N

∑
n1,n2=1
n1≠n2

an1an2

⎞
⎟⎟
⎠

´¹¹¹¸¹¹¹¶
=A2

iN−1 + . . . + ((−1)N
N

∏
n1=1

an1)

´¹¹¹¸¹¹¹¶
=AN

i ,

we have that

i(i − 1) . . . (i − k + 1) = ik +
k−1
∑
j=1
Aji

k−j

for 0 < k <m and the appropriate definitions of the Aj; for instance, A1 = −
k−1
∑
n=1

n. Using the

fact that a linear combination of solutions of (13.6.14) is a solution of (13.6.14), we have that

{u[0]i }∞i=0 with u
(0)
i = ri, {u

[1]
i }∞i=0 with u

[1]
i = v

[1]
i = iri, and in general {u[k]i }∞i=0 with 1 < k <m

and

u
[k]
i = v

[k]
i −

k−1
∑
j=1
Aju

[j]
i = ikri

are linearly independent solutions of (13.6.14).

Suppose that z1, z2, . . . , zq are the roots of the characteristic polynomial of multiplicities
k1, k2, . . . , kq respectively. It follows from the previous proposition that the general solution
{ui}∞i=0 of (13.6.14) is given by

ui =
q

∑
j=1

⎛
⎝

kj−1

∑
m=0

cj,m i
m
⎞
⎠
zij

for i ≥ 0, where the constants cj,m are determined by the initial conditions u0, u1, . . . , us−1.

We note that s =
q

∑
j=1
kj.

Example 13.6.18
Consider the finite difference equation

ui+3 − 9ui+2 + 24ui+1 − 20ui = 0

for i ≥ 0 with initial conditions u0 = u1 = 0 and u2 = 1. The characteristic polynomial is
z3 − 9z2 + 24z − 20 = (z − 2)2(z − 5). There are two distinct roots: 2 of multiplicity 2 and 5 of
multiplicity 1. The general solution is

ui = (c1.0 + c1,1 i)2i + c2,0 5i

398 13. Initial Value Problems

for i ≥ 1. From the initial conditions, we get

u0 = 0⇒ c1,0 + c2,0 = 0
u1 = 0⇒ 2(c1,0 + c1,1) + 5c2,0 = 0
u2 = 1⇒ (c1,0 + 2c1,1)22 + c2,0 52 = 1

Solving, we find c1,0 = −1/9, c2,0 = 1/9 and c1,1 = −1/6.

The solution {ui}∞i=0 is given by ui = −(
1

9
+ 1

6
i)2i + 1

9
5i for i = 0, 1, 2, . . . ♣

Theorem 13.6.19

Suppose that (13.6.12) is of order s and let {u[k]i }∞i=0 be the solution of the homogeneous
finite difference equation

s

∑
j=0

aj ui−j = 0 , i ≥ s

ui = δk,i , 0 ≤ i < s

for 0 ≤ k < s. Then, the solution {ui}∞i=0 of (13.6.12) is given by

ui =
s−1
∑
k=0

vi u
[k]
i +wi , i ≥ 0 , (13.6.16)

where

wi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

a0

i−s
∑
k=0

Cs+k u
[s−1]
i−k−1 if i ≥ s

0 if 0 ≤ i < s
(13.6.17)

Proof.
It is easy to see that the first sum in (13.6.16) satisfies the homogeneous finite difference
problem

s

∑
j=0

aj ui−j = 0 , i ≥ s

ui = vi , 0 ≤ i < s

We now proof that (13.6.17) satisfies
s

∑
j=0

aj wi−j = Ci , i ≥ s

wi = 0 , 0 ≤ i < s

We obviously have wi = 0 for 0 ≤ i < s by definition of the wi. We have that

s

∑
j=0

aj wi−j =
1

a0

s

∑
j=0

aj (
i−j−s
∑
k=0

Cs+k u
[s−1]
i−j−k−1) =

1

a0

s

∑
j=0

aj (
i−s
∑
k=0

Cs+k u
[s−1]
i−j−k−1)

13.6. Convergence, Consistency and Stability 399

because i− j − k − 1 < s− 1 for k > i− j − s implies that u
[s−1]
i−j−k−1 = 0. To simplify the notation,

we assume that u
[s−1]
i = 0 for i < 0. Hence,

s

∑
j=0

aj wi−j =
1

a0

i−s
∑
k=0

Cs+k (
s

∑
j=0

aj u
[s−1]
i−j−k−1) =

1

a0
Ci (

s

∑
j=0

aj u
[s−1]
s−j−1) = Ci

for i ≥ s. We note that s−1 ≤ i−k−1 ≤ i−1 for 0 ≤ k ≤ i−s. Hence, the second equality comes

from
s

∑
j=0

aj u
(s−1)
(i−k−1)−j = 0 for i − k − 1 ≥ s because {u(s−1)i }∞i=0 is a solution of the homogeneous

difference equation. The last equality, for i − k − 1 = s − 1, comes from

u
(s−1)
(i−k−1)−j = u

(s−1)
s−j−1 =

⎧⎪⎪⎨⎪⎪⎩

1 if j = 0
0 if j > 0

13.6.3 Convergence

Our study of the convergence of multistep methods will use the notion of ”root condition”
that we first define.

If F ≡ 0 in (13.6.1), we get wi+1 =
m

∑
k=0

akwi−k. If we substitute λi for wi in this expression,

we get λi+1 =
m

∑
k=0

akλ
i−k. If we multiply both sides of this equation by λm−i, we get p(λ) = 0

for p(λ) = −λm+1 +
m

∑
k=0

akλ
m−k.

Definition 13.6.20

The characteristic polynomial of the multistep method (13.6.1) is the polynomial

p(λ) = −λm+1 +
m

∑
k=0

akλ
m−k.

Definition 13.6.21

1. A multistep method satisfies the root condition if all the roots of its character-
istic polynomial have absolute values less than or equal to one and those equal
to one are simple roots.

2. A multistep method is strongly stable if all the roots of its characteristic
polynomial have absolute values less than one except for one root which is equal
to one.

3. A multistep method is weakly stable if it satisfies the root condition and has
more than one root of absolute value one.

4. A multistep method is unstable if it does not satisfy the root condition.

400 13. Initial Value Problems

Example 13.6.22

1. The characteristic polynomial of Adams-Bashforth method of order four is p(λ) =
−λ4 + λ3. 1 is a root of multiplicity one and 0 is a root of multiplicity three. The
method is strongly stable.

2. The characteristic polynomial of the Adams-Bashforth method of order two from Ex-
ample 13.6.7 is p(λ) = −λ2 + 1. 1 and −1 are the two roots of this polynomial. The
method is weakly stable.

♣

Proposition 13.6.23

If the finite difference method in (13.6.1) satisfies (13.6.2) and is convergent, then
(13.6.1) satisfies the root condition.

Proof.
We give a special initial value problem with specific values for the δi in (13.6.5) such that
the multistep method is not convergent if the root condition is not satisfied.

Consider the initial value problem

y′(t) = 0 , t0 ≤ t ≤ tf
y(a) = 0

(13.6.18)

Thus F ≡ 0 in (13.6.1). If we assume that δi+1 = 0 for m ≤ i < N , the finite difference problem
(13.6.5) becomes

ui+1 −
m

∑
j=0

aj ui−j = 0 , m ≤ i < N

ui = δi , 0 ≤ i ≤m
(13.6.19)

The solution of (13.6.18) is y(t) = 0 for all t. We show that the finite difference problem
is not convergent for our initial value problem; namely, we do not have that

lim
h→0

max
0≤i≤N

∣ui∣ = 0 . (13.6.20)

Suppose that c is a root of the characteristic polynomial p(z) such that ∣c∣ > 1. Let

ui =
⎧⎪⎪⎨⎪⎪⎩

hci if c ∈ R
h (ci + c̄i) if c ∈ C ∖R

for 0 ≤ i ≤ N , where h = (tf − t0)/N as usual. We have that {ui}Ni=0 is a solution of (13.6.19)
if we set δi = ui for 0 ≤ i ≤m. For c ∈ C∖R, {ui}Ni=0 is linear combination of the two solutions,
{ci}Ni=0 and {ci}Ni=0. However,

∣uN ∣ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

tf − t0
N
∣cN ∣ if c ∈ R

tf − t0
N
∣cN + c̄N ∣ if c ∈ C ∖R

13.6. Convergence, Consistency and Stability 401

does not converge to 0 as N →∞ (Remark 13.6.24 below). Thus (13.6.20) is not satisfied.

Suppose that c is a root of the characteristic polynomial such that ∣c∣ = 1 and c is not
simple. Let

ui =
⎧⎪⎪⎨⎪⎪⎩

hici if c ∈ R
hi (ci + c̄i) if c ∈ C ∖R

for 0 ≤ i ≤ N , where h = (tf − t0)/N . Again, {ui}Ni=0 is a solution of (13.6.19) if we set δi = ui
for 0 ≤ i ≤ m. For c ∈ C ∖R, {ui}Ni=0 is linear combination of the two solutions: {ici}Ni=0 and
{ici}Ni=0 (Proposition 13.6.17). However,

∣uN ∣ =
⎧⎪⎪⎨⎪⎪⎩

(tf − t0)∣cN ∣ if c ∈ R
(tf − t0)∣cN + c̄N ∣ if c ∈ C ∖R

does not converge to 0 as N →∞ (Remark 13.6.24 below). Thus (13.6.20) is not satisfied.

Remark 13.6.24

1. In the proof of the previous proposition, we could have used a fixed value of t ∈ [t0, tf]
associated to another index than N . Suppose that t = ti(N); namely, we have

t − t0
i(N)

=
tf − t0
N

= h

or, stated differently,

i(N) = t − t0
tf − t0

N .

We have that i(N) = CN with C = (t− t0)/(tf − t0). If we select an increasing sequence
{Nj}∞j=0 of positive integers (e.g. Nj+1 = 2Nj) such that CNj reminds an integer, then
t = ti(Nj) is always one of the nodes of the partition of [t0, tf] and i(Nj) increase
proportionally to Nj according to i(Nj) = CNj. It is then easy to modify the reasoning
in the proof of the previous proposition to show that ui(Nj), the approximation of
y(t) = y(ti(Nj)), does not converge to 0 as j →∞.

2. In the proof of the previous proposition, we have used the following claims:

(a) {∣cj ∣/j}∞j=1 does not converge to 0 if c ∈ R satisfies ∣c∣ > 1.
(b) {∣cj + c̄j ∣/j}∞j=1 does not converge to 0 if c ∈ C ∖R satisfies ∣c∣ > 1.
(c) {∣cj ∣}∞j=1 does not converge to 0 if c ∈ R satisfies ∣c∣ = 1.
(d) {∣cj + c̄j ∣}∞j=1 does not converge to 0 if c ∈ C ∖R satisfies ∣c∣ = 1.

The two cases where c ∈ R are easy to prove because ∣c∣j/j →∞ as j →∞ when ∣c∣ > 1,
and ∣c∣j = 1 for all j when ∣c∣ = 1.
If c ∈ C ∖R, we have c = ∣c∣eiθ for some θ ≠ nπ for n ∈ Z. Thus,

cj + c̄j = ∣c∣jejθ i + ∣c∣je−jθ i = 2∣c∣j cos(jθ) .

402 13. Initial Value Problems

We now show that there exists a strictly increasing sequence {jk}∞k=1 of positive integers
and a constant C > 0 depending on θ such that ∣ cos(jkθ)∣ ≥ C for all k.

If θ = mπ
n

for two positive integer m and n such that m/n is in its reduced form and

n ≠ 2, then we can take jk = 2kn + 1 and C = ∣ cos(θ)∣. We have

∣ cos(jkθ)∣ = ∣ cos((2kn + 1)θ)∣ = ∣ cos(2kmπ + θ)∣ = ∣ cos(θ)∣ = C

for all k.

If θ = mπ
2

for m = 1 or 3, then we can take jk = 2k and C = 1. We have

∣ cos(jkθ)∣ = ∣ cos(2kθ)∣ = ∣ cos(kmπ)∣ = 1

for all k.

If θ/π ∈ R ∖Q with 0 < θ < 2π, we need to use the fact that {ejθ}∞j=0 is dense on the
unit circle. Thus, there exist an infinite strictly increasing sequence {jk}∞k=0 such that
jkθ is between π/6 and π/3 modulo 2π. We then have

∣ cos(jkθ)∣ ≥ ∣cos(
π

3
)∣ = 1

2

for all k. We can take these jk and C = 1/2.
Hence,

∣cjk + c̄jk ∣
jk

= 2∣c∣jk ∣ cos(jkθ)∣
jk

≥ 2C ∣c∣
jk

jk
.

Since lim
k→∞

∣c∣jk
jk
=∞ because ∣c∣ > 1, we get that lim

k→∞

∣cjk + c̄
j
k∣

jk
=∞.

Similarly,
∣cjk + c̄jk ∣ = 2∣c∣jk ∣ cos(jkθ)∣ ≥ 2C

for ∣c∣ = 1 and all k. So {∣cjk + c̄jk ∣}∞k=0 does not converge to 0.

♠

Proposition 13.6.25

If the finite difference method in (13.6.1) satisfies (13.6.2) and is zero-stable, then
(13.6.1) satisfies the root condition.

Proof.
We proceed as in the proof of Proposition 13.6.23. We give a special initial value problem
with specific values for the δi in (13.6.5) such that the multistep method is not zero-stable
if the root condition is not satisfied.

Consider the initial value problem

y′(t) = 0 , t0 ≤ t ≤ tf

13.6. Convergence, Consistency and Stability 403

y(a) = 0

Thus F ≡ 0 in (13.6.1). If we assume that δi+1 = 0 for m ≤ i < N , the finite difference problem
(13.6.5) becomes

ui+1 −
m

∑
j=0

aj ui−j = 0 , m ≤ i < N

ui = δi , 0 ≤ i ≤m
(13.6.21)

Moreover, we consider the perturbed finite difference problem given by (13.6.5) with δi = 0
for 0 ≤ i ≤ N ; namely,

ũi+1 −
m

∑
j=0

aj ũi−j = 0 , m ≤ i < N

ũi = δ̃i = 0 , 0 ≤ i ≤m

The solution of this perturbed finite difference problem is obviously {ũi}Ni=0, where ũi = 0 for
0 ≤ i ≤ N .

We show that the multistep method is not zero-stable for our initial value problem;
namely, given ϵ > 0, there does not exist S and h0 such that

max
0≤i≤N

∣ui − ũi∣ = max
0≤i≤N

∣ui∣ < Sϵ (13.6.22)

if ∣δi − δ̃i∣ = ∣δi∣ < ϵ for 0 ≤ i ≤ N and h < h0.
Suppose that c is a root of the characteristic polynomial p(z) such that ∣c∣ > 1. Let

ui =
⎧⎪⎪⎨⎪⎪⎩

δ ci if c ∈ R
δ (ci + c̄i) if c ∈ C ∖R

for 0 ≤ i ≤ N . We have that {ui}Ni=0 is a solution of (13.6.21) if we set δi = ui for 0 ≤ i ≤ m.
We select δ small enough to get ∣δi − δ̃i∣ = ∣ui∣ < ϵ for 0 ≤ i ≤m. However,

∣uN ∣ =
⎧⎪⎪⎨⎪⎪⎩

δ ∣c∣N if c ∈ R
δ ∣cN + c̄N ∣ if c ∈ C ∖R

does not converge to 0 as N →∞. There are strictly increasing sequences {Nj}∞j=0 of positive
integers such that {∣uNj

∣}∞j=0 converges to ∞ (Remark 13.6.24). Thus, we can take Nj large
enough such that h = (tf − t0)/Nj < h0 and ∣uNj

∣ > Sϵ for whatever S and h0 that we choose.
Therefore, contradicting (13.6.22).

Suppose that c is a root of the characteristic polynomial p(z) such that ∣c∣ = 1 and c is
not simple. Let

ui =
⎧⎪⎪⎨⎪⎪⎩

δ ici if c ∈ R
δ i (ci + c̄i) if c ∈ C ∖R

404 13. Initial Value Problems

for 0 ≤ i ≤ N . Again, {ui}Ni=0 is a solution of (13.6.19) if we set δi = ui for 0 ≤ i ≤m. We also
can select δ small enough to get ∣δi − δ̃i∣ = ∣ui∣ < ϵ for 0 ≤ i ≤m. However,

∣uN ∣ =
⎧⎪⎪⎨⎪⎪⎩

δN ∣c∣N if c ∈ R
δN ∣cN + c̄N ∣ if c ∈ C ∖R

does not converge to 0 as N →∞. There are strictly increasing sequences {Nj}∞j=0 of positive
integers such that {∣uNj

∣}∞j=0 converges to ∞ (Remark 13.6.24). Again, we can take Nj large
enough such that h = (tf − t0)/Nj < h0 and ∣uNj

∣ > Sϵ for whatever S and h0 that we choose.
Therefore, contradicting (13.6.22).

Theorem 13.6.26 (Dahlquist)

Suppose that the finite difference method in (13.6.1) satisfies (13.6.2) and (13.6.3), and
that max

0≤i≤N
∣δi(h)∣ ≤ δ(h) = O(h2) in (13.6.5). If the finite difference problem (13.6.1) is

consistent, then (13.6.1) is convergent if and only if it satisfies the root condition.

Remark 13.6.27
It is not too outrageous to require δ(h) = O(h2) in the statement of Theorem 13.6.26.

Suppose that {ui}Ni=0 is a solution of

1

h
(ui+1 −

m

∑
j=0

ajui−j) + F (h, t,u, f) + σi+1(h) , m ≤ i < N ,

where σi+1(h) represents the perturbation. Then,

ui+1 −
m

∑
j=0

ajui−j + hF (h, t,w, f) + hσi+1(h) , m ≤ i < N .

We may set δi(h) = hσi(h). So, the real assumption that we make is that max
0≤i≤N

∣σi(h)∣ ≤
σ(h) = O(h) near the origin. ♠

Proof (of Dahlquist’s theorem).
That convergence implies that the root condition is satisfied is a consequence of Proposi-
tion 13.6.23. We need only prove the converse. Suppose that the root condition is satisfied.

As mentioned in the previous remark, we may assume that δi(h) = hσi(h) and δ(h) =
hσ(h), where both σi(h) and σ(h) are O(h) near the origin.

If we subtract

y(ti+1) −
m

∑
j=0

ajy(ti−j) − hF (h, t,y, f) = hτi+1(h)

from

ui+1 −
m

∑
j=0

ajui−j − hF (h, t,u, f) = hσi+1(h)

13.6. Convergence, Consistency and Stability 405

for m ≤ i < N , we get
m

∑
j=−1

aj ei−j = Ci , m ≤ i < N , (13.6.23)

where a−1 = −1, ej = uj − y(tj) for 0 ≤ j ≤ N and

Ci = −h (F (h, t,u, f) − F (h, t,y, f)) − h(σi+1(h) − τi+1(h)) , m ≤ i < N .

If we replace j by j − 1 and i by i − 1 in (13.6.23), we get the finite difference equation

m+1
∑
j=0

aj−1 ei−j = Ci−1 for m < i ≤ N

ei = hσi(h) for 0 ≤ i ≤m
(13.6.24)

Let {u[k]i }
∞

i=0
be the solution of

m+1
∑
j=0

aj−1 ui−j = 0 , i >m

ui = δk,i , 0 ≤ i ≤m

for 0 ≤ k ≤ m. From Theorem 13.6.19 (with vi = ei, aj replaced by aj−1, Ci replaced by Ci−1
and s =m + 1 in (13.6.12)), the solution of (13.6.24) is

ei =
m

∑
k=0

ei u
[k]
i +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

a−1

i−m−1
∑
k=0

Ck+m u
[m]
i−k−1 if m < i ≤ N

0 if 0 ≤ i ≤m

=
m

∑
k=0

ei u
[k]
i −

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i−m−1
∑
k=0

Ck+m u
[m]
i−k−1 if m < i ≤ N

0 if 0 ≤ i ≤m
(13.6.25)

The root condition implies that there exist a constant Q ≥ 1 such that ∣u[k]i ∣ ≤ Q for all i
and k. Recall that all solutions of the homogeneous difference equation

m+1
∑
j=0

aj−1 ui−j = 0 , i >m , (13.6.26)

are linear combinations of solutions with terms of the form ei = inci, where c is a root of the
characteristic polynomial

m+1
∑
j=0

aj−1 z
m+1−j =

m

∑
j=−1

aj z
m−j = 0

and n is a non-negative integer smaller than the multiplicity of c.

It follows from the definition of Ci and (13.6.3) that

∣Ck+m∣ ≤ h
⎛
⎝
R

k+m+1
∑
j=k
∣ej ∣ + σ(h) + τ(h)

⎞
⎠
≤ h(R (m + 2) max

k≤j≤k+m+1
∣ej ∣ + σ(h) + τ(h))

406 13. Initial Value Problems

≤ h(R (m + 2) max
0≤j≤i
∣ej ∣ + σ(h) + τ(h))

for 0 ≤ k ≤ i −m − 1. Hence, from (13.6.25), we get

∣ei∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(m + 1) max
0≤j≤m

∣ej ∣

+Q(i −m + 1)h(R (m + 2) max
0≤j≤i
∣ej ∣ + σ(h) + τ(h)) if m < i ≤ N

Q(m + 1) max
0≤j≤m

∣ej ∣ if 0 ≤ i ≤m

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(m + 1) max
0≤j≤m

∣ej ∣

+Qih(R (m + 2) max
0≤j≤i
∣ej ∣ + σ(h) + τ(h)) if m < i ≤ N

Q(m + 1) max
0≤j≤m

∣ej ∣ if 0 ≤ i ≤m

(13.6.27)

We get from (13.6.27) that

max
0≤j≤i
∣ej ∣ ≤ Q(m + 1) max

0≤j≤m
∣ej ∣ +Mih max

0≤j≤i
∣ej ∣ +Qih (σ(h) + τ(h)) , m < i ≤ N , (13.6.28)

where M = RQ(m + 2).
We choose h small enough (i.e. N large enough) such that 1/(2Mh) >m+ 1 and consider

m < i ≤ 1/(2Mh). We get from (13.6.28) that

max
0≤j≤i
∣ej ∣ ≤ Q(m + 1) max

0≤j≤m
∣ej ∣ +

1

2
max
0≤j≤i
∣ej ∣ +Qih (σ(h) + τ(h))

for m < i ≤ 1/(2Mh). If we isolate max
0≤j≤i
∣ej ∣, we get

max
0≤j≤i
∣ej ∣ ≤ 2Q((m + 1) max

0≤j≤m
∣ej ∣ +

1

2M
(σ(h) + τ(h))) (13.6.29)

for m < i ≤ 1/(2Mh).
Let ik = ⌊k/(2Mh)⌋ for 1 ≤ k ≤K, where K = ⌊2M(tf − t0)⌋. Recall that ⌊a⌋ is the largest

integer smaller than or equal to a. Let i−1 = 0, i0 =m and iK+1 = N .

If we repeat the same argument on the interval Ik = [t0 + k/(2M), t0 + (k + 1)/(2M)] for
1 ≤ k ≤K with the initial conditions at tj given by ej for ik −m ≤ j ≤ ik, we get

max
ik−m≤j≤i

∣ej ∣ ≤ 2Q((m + 1) max
i1−m≤j≤i1

∣ej ∣ +
1

2M
(σ(h) + τ(h))) (13.6.30)

for ik < i ≤ ik+1 and 1 ≤ k ≤K.

Let Ek = max
ik≤i≤ik+1

∣ei∣ for −1 ≤ k ≤K. We deduce from (13.6.29) that

E0 ≤ 2Q((m + 1)E−1 +
1

2M
(σ(h) + τ(h)))

13.6. Convergence, Consistency and Stability 407

and from (13.6.30) that

Ek ≤ 2Q((m + 1)Ek−1 +
1

2M
(σ(h) + τ(h)))

for 1 ≤ k ≤K. By induction, we find

Ek ≤ (2Q(m + 1))k+1E−1 + (
1 − (2Q(m + 1))k+1

1 − 2Q(m + 1)
) Q
M
(σ(h) + τ(h))

≤ (2Q(m + 1))K+1E−1 + (
1 − (2Q(m + 1))K+1

1 − 2Q(m + 1)
) Q
M
(σ(h) + τ(h))

for 0 ≤ k ≤K because Q(m + 1) ≥ 1 by assumption. Therefore,

max
0≤i≤N

∣ui − y(yi)∣ = max
−1≤k≤K

Ek → 0

as h → 0 independently of f . Recall that E−1 → 0 as h → 0 because E−1 = max
0≤j≤m

∣ej ∣ =

max
0≤j≤m

∣δj(h)∣ = O(h2).

Remark 13.6.28
If we use the definition of convergence given in remark 13.6.3 which is equivalent to assuming
that δi(h) ≡ 0 for all i in (13.6.5), the previous theorem can be stated as follows.

Suppose that the finite difference method in (13.6.1) satisfies (13.6.2) and (13.6.3). If the
finite difference problem (13.6.1) is consistent, then (13.6.1) is convergent if and only if it
satisfies the root condition.

There is no reference to perturbations δi in this statement. ♠

Theorem 13.6.29

Suppose that the finite difference method in (13.6.1) satisfies (13.6.2) and (13.6.3),
and that max

0≤i≤N
∣δi(h)∣ ≤ δ(h) = O(h2) in (13.6.5). Then (13.6.1) is zero-stable if and

only if it satisfies the root condition.

Proof.
We have from Proposition 13.6.25 that zero-stable implies root condition. We only need to
prove the converse.

The proof is similar to the proof of the previous theorem. If we subtract

u
[1]
i+1 −

m

∑
j=0

aju
[1]
i−j − hF (h, t,u[1], f) = δ

[1]
i+1(h)

from

u
[2]
i+1 −

m

∑
j=0

aju
[2]
i−j − hF (h, t,u[2], f) = δ

[2]
i+1(h)

408 13. Initial Value Problems

for m ≤ i < N , we get
m

∑
j=−1

aj ei−j = Ci , m ≤ i < N ,

where a−1 = −1, ej = u[2]j − u
[1]
j for 0 ≤ j ≤ N and

Ci = −h (F (h, t,u[2], f) − F (h, t,u[1], f)) − (δ[2]i+1 − δ
[1]
i+1) , m ≤ i < N .

Let δ
[j]
i (h) = hσ

[j]
i (h) for j = 1 and 2. Moreover, let

σ(h) = max
0≤i≤N

∣σ[2]i (h) − σ
[1]
i (h)∣ .

We then have that5

∣δ[2]i (h) − δ
[1]
i (h)∣ ≤ hσ(h) , 0 ≤ i ≤ N .

Proceeding as we did in the proof of Dahlquist’s theorem, we show that

Ek ≤ (2Q(m + 1))K+1E−1 + (
1 − (2Q(m + 1))K+1

1 − 2Q(m + 1)
) Q
M

σ(h)

for 0 ≤ k ≤K, where

E−1 = max
0≤i≤m

∣ei∣ = max
0≤i≤m

∣u[2]i − u
[1]
i ∣ = max

0≤i≤m
∣hσ[2]i − hσ

[1[
i ∣ ≤ hσ(h)

because u
[1]
i = y(ti) + δ

[1]
i (h) and u

[2]
i = y(ti) + δ

[2]
i (h) for 0 ≤ i ≤m. Thus

Ek ≤ ((2Q(m + 1))K+1h + (
1 − (2Q(m + 1))K+1

1 − 2Q(m + 1)
) Q
M
)σ(h)

for −1 ≤ k ≤M .

Let

K = (2Q(m + 1))K+1 + (1 − (2Q(m + 1))
K+1

1 − 2Q(m + 1)
) Q
M

.

Given ϵ > 0, choose h0 < 1 such that σ(h) < ϵ for ∣h∣ < h0. This is possible because σ(h) → 0
as h→ 0. Then

max
0≤i≤N

∣u[1]i − u
[2]
i ∣ = max

−1≤k≤K
Ek <Kϵ

namely, the definition of zero-stability is satisfied with these values of K and h0.

We end this section by stating (without proofs) a couple of results providing some con-
straints on the maximal order of some numerical methods if stability and convergence have
to be preserved.

5Instead of requiring max
0≤i≤N

∣δi(h)∣ ≤ δ(h) = O(h2) in the statement of the theorem, we could have only

required max
0≤i≤N

∣δ[2]i (h) − δ
[1]
i (h)∣ ≤ δ(h) = O(h

2).

13.6. Convergence, Consistency and Stability 409

Theorem 13.6.30 (Dahlquist First Barrier)

The maximum order of a zero-stable implicit multistep method of the form (13.5.1) is
m + 3 when m is even and m + 1 when m is odd. For a zero-stable explicit multistep
method of the form (13.5.1), the maximum order is m + 1.

Proposition 13.6.31

The Backward Difference Formulae satisfy the root condition if and only if 0 ≤ m ≤ 5
(i.e. they are method of order 1 to 6 inclusively). Since these methods are consistent
by construction, they are convergent if and only if 0 ≤m ≤ 5.

13.6.4 Absolute Stability and A-Stability

Stability is a delicate concepts. There are several ways to define it. The goal is always to
ensure (as much as possible) that errors do not increase as we iterate; namely, that ∣ui−y(ti)∣
does not increase as i increases, where ui is the numerical approximation of wi.

To define the new notion of stability, we consider the simple linear initial value problem

y′(t) = µy(t) , t0 ≤ t ≤ tf
y(t0) = y0

(13.6.31)

where Reµ < 0.
We will start with Runge-Kutta methods before turning our attention to multistep meth-

ods (with m > 0).

13.6.4.1 Runge-Kutta Methods

If we apply the general Runge-Kutta method given in Definition 13.4.1 to (13.6.31), we get

wi+1 = wi + h
s

∑
j=1
γjKj

w0 = y0
for 0 ≤ i < N , where

Kj = µ(wi + h
s

∑
m=1

βj,mKm)

for 1 ≤ j ≤ s.
We can rewrite these two formulae in a more compact way using vectors and matrices.

Let

B =
⎛
⎜⎜⎜
⎝

β1,1 β1,2 . . . β1,s
β2,1 β2,2 . . . β2,s
⋮ ⋮ ⋱ ⋮
βs,1 βs,2 . . . βs,s

⎞
⎟⎟⎟
⎠
, c =

⎛
⎜⎜⎜
⎝

γ1
γ2
⋮
γs

⎞
⎟⎟⎟
⎠
, K =

⎛
⎜⎜⎜
⎝

K1

K2

⋮
Ks

⎞
⎟⎟⎟
⎠
, u =

⎛
⎜⎜⎜
⎝

1
1
⋮
1

⎞
⎟⎟⎟
⎠

and wi = wiu .

410 13. Initial Value Problems

We can rewrite the formulae above as

wi+1 = wi + hc⊺K
w0 = y0

for 0 ≤ i < N , where
K = µ (wi + hBK) .

If we solve this last equation for K, we get

K = µ (Id−hµB)−1wi

Thus
wi+1 = wi + hµc⊺(Id−hµB)−1wi = wi (1 + hµc⊺(Id−hµB)−1u) (13.6.32)

for 0 ≤ i < N .

Definition 13.6.32

The region of absolute stability of a Runge-Kutta method is the set of all values
hµ ∈ C such that lim

i→+∞
wi = 0 for all solutions {wi}∞i=0 of the difference equation associ-

ated to the Runge-Kutta method given in Definition 13.4.1 applied to the initial value
problem (13.6.31).
A Runge-Kutta method is A-stable if the region of absolute stability contains the
half-plane to the left of the imaginary axis (complex numbers with a negative real
part.)

Remark 13.6.33
In the previous definition, we have to remember that we assume that Reµ < 0. Hence, all
solutions y(t) = eµ(t−t0)y0 of the differential equation (13.6.31) satisfy lim

t→∞
y(t) = 0. ♠

Example 13.6.34
We find the region of absolute stability for the Runge-Kutta method of order two given in
Definition 13.4.3. The computations for the other explicit Runge-Kutta methods are similar
but more convoluted.

The recursive formula for the Runge-Kutta method of order two is

wi+1 = wi + h (γ1f(ti,wi) + γ2f(ti + α2h,wi + β2,1hf(ti,wi))) .

If we use the Runge-Kutta method of order two to solve the non-trivial initial value problem
(13.6.31), the iterative formula becomes

wi+1 = wi + h (γ1µwi + γ2µ (wi + β2,1hµwi))
= (1 + (γ1 + γ2)µh + γ2β2,1(µh)2)wi .

(13.6.33)

If we substitute λi for wi, we get

λi+1 = (1 + (γ1 + γ2)µh + γ2β2,1(µh)2)λi

13.6. Convergence, Consistency and Stability 411

and, after dividing by λi, we get the only non-null root

λ = (1 + (γ1 + γ2)µh + γ2β2,1(µh)2) .

Hence, the general solution of (13.6.33) is wi = λiw0 for i = 0, 1, 2, . . . From the condition
γ1 + γ2 = 1 and β2,1γ2 = 1/2 (Definition 13.4.3), we get

λ = (1 + µh + 1

2
(µh)2) . (13.6.34)

We need

∣λ∣ = ∣1 + µh + 1

2
(µh)2∣ < 1 (13.6.35)

to get lim
i→∞

wi = 0.

The region of absolute stability of the Runge-Kutta methods of order two is the set of
all hµ ∈ C such that (13.6.35) is satisfied. The set of values z ∈ C such that 1 + z + z2/2
is on the unit circle is the black curve shown in Figure 13.5. To draw this black curve, we
may use the fact that 1 + z + z2/2 = eiθ is a quadratic equation whose solutions are given by

z = −1±
√
−1 + 2eiθ. The number i in the previous sentence is the complex number such that

i2 = −1 and not the index i in the Runge-Kutta method. As θ goes from 0 to 2π, we move
along the (upper and lower branches of the) black curve.

The region of absolute stability is inside the black curve. To determine if the region
of absolute stability is inside or outside the continuous curve, we have drawn the curve
generated by the set of points z such that ∣1 + z + z2/2∣ = 1.2, the red curve in Figure 13.5,
and the curve generated by the set of points z such that ∣1 + z + z2/2∣ = 0.8, the blue curve
in Figure 13.5. In the first case, the points z correspond to values of hµ for which ∣λ∣ > 1, so
they are outside the region of absolute stability, while in the second case they correspond to
values of hµ for which ∣λ∣ < 1, so they are inside the region of absolute stability.

One can show that all the Runge-Kutta methods of order p fixed have the same region of
absolute stability. It is certainly true for p = 2 as we have just shown. ♣

Proposition 13.6.35

Consider the general Runge-Kutta method from Definition 13.4.1. There exists a
rational function r ∶ C → C such that wi = (r(hµ))iw0 for 0 ≤ i ≤ N . If the Runge-
Kutta method is explicit, r is a polynomial.

Proof.
We get by induction from (13.6.32) that

wi = w0 (1 + hµc⊺(Id−hµB)−1u)
i

for 0 ≤ i ≤ N . Thus, we have to show that

r(z) = 1 + zc⊺(Id−zB)−1u

412 13. Initial Value Problems

Figure 13.5: Boundaries of the region of absolute stability for the Runge-Kutta
method of order two (black curve) and the curve generated by the set of points
z ∈ C such that ∣1 + z + z2/2∣ = 1.2 and 0.8 (red and blue curves respectively). The
region of absolute stability is inside the black curve.

is a rational function. It is enough to show that c⊺(Id−zB)−1u is a rational function in z.
This comes from

(Id−zB)−1 = 1

det(Id−zB)
(adj(Id−zB))⊺ ,

where det(Id−zB) is a polynomial in z of degree at most s, and adj(Id−zB) is an s × s
matrix whose (i, j) entry is the cofactor (−1)i+j detAi,j, where Ai,j is obtained from Id−zB
by removing the ith row and jth column. The cofactors are polynomials in z of degree at
most s − 1. Hence, c⊺(Id−zA)−1u is the quotient of a polynomial of degree at most s − 1 by
a polynomial of degree at most s.

If the Runge-Kutta method is explicit, Id−zB is a lower-triangular matrix with only 1
on the diagonal. Thus det(Id−zB) = 1.

Corollary 13.6.36

The stability domain of a general Runge-Kutta method is {z ∈ C ∶ ∣r(z)∣ < 1}.

Proof.
The result follows from

lim
i→+∞

wi = 0⇔ lim
i→+∞
(r(hµ))i = 0⇔ ∣r(hµ)∣ < 1 .

13.6. Convergence, Consistency and Stability 413

Remark 13.6.37
To motivate the definition of stability, suppose that ui is the numerical approximation of wi.
Let r(hµ) = 1 + hµc⊺(Id−hµB)−1u. We have from (13.6.32) that

wi+1 = r(hµ)wi , 0 ≤ i < N .

We have by definition of the local truncation error that

yi+1 −wi+1 = r(hµ)(yi −wi) + hτi+1(h) , 0 ≤ i < N , (13.6.36)

where yi = y(ti) for 0 ≤ i ≤ N .

Moreover, we may assume that ui is the exact solution of

ui+1 = r(hµ)ui + δi , 0 ≤ i < N ,

where δi represents the error for each computation. Hence,

ui+1 −wi+1 = r(hµ)(ui −wi) + δi , 0 ≤ i < N . (13.6.37)

If we subtract (13.6.37) from (13.6.36), we get

(yi+1 − ui+1) = r(hµ)(yi − ui) + hτi+1(h) − δi , 0 ≤ i < N . (13.6.38)

We now prove by induction that

∣yi − ui∣ ≤ ∣r(hµ)∣i ∣y0 − u0∣ +
i−1
∑
j=0
∣r(hµ)∣j(∣hτi−j(h)∣ + ∣δi−1−j ∣) , 0 < i ≤ N . (13.6.39)

It follows from (13.6.38) with i = 0 that (13.6.39) is true for i = 1. Suppose that (13.6.39) is
true. then (13.6.38) and the induction hypothesis imply that

∣yi+1 − ui+1∣ ≤ ∣r(hµ)∣ ∣yi − ui∣ + ∣hτi+1(h)∣ + ∣δi∣

≤ ∣r(hµ)∣ (∣r(hu)∣i∣y0 − u0∣ +
i−1
∑
j=0
∣r(hµ)∣j(∣hτi−j(h)∣ + ∣δi−1−j ∣)) + ∣hτi+1(h)∣ + ∣δi∣

= ∣r(hu)∣i+1∣y0 − u0∣ +
i−1
∑
j=0
∣r(hµ)∣j+1(∣hτi−j(h)∣ + ∣δi−1−j ∣) + ∣hτi+1(h)∣ + ∣δi∣

= ∣r(hu)∣i+1∣y0 − u0∣ +
i

∑
j=1
∣r(hµ)∣j(∣hτi+1−j(h)∣ + ∣δi−j ∣) + ∣hτi+1(h)∣ + ∣δi∣

= ∣r(hu)∣i+1∣y0 − u0∣ +
i

∑
j=0
∣r(hµ)∣j(∣hτi+1−j(h)∣ + ∣δi−j ∣)

This is (13.6.39) with i replaced by i + 1. Thus completing the proof by induction.

Suppose that the Runge-Kutta method is consistent; namely, max
0≤i<N

∣τi+1(h)∣ ≤ τ(h)→ 0 as

h→ 0. Moreover, suppose that ∣δi∣ < δ for all i.

414 13. Initial Value Problems

If hµ is in the region of absolute stability, then ∣r(hµ)∣ < 1. Hence, (13.6.39) yields

∣yi − ui∣ ≤ ∣r(hu)∣i ∣y0 − u0∣ +
i−1
∑
j=0
∣r(hµ)∣j(hτ(h) + δ)

= ∣r(hu)∣i ∣u0 −w0∣ +
1 − ∣r(hµ)∣i
1 − ∣r(hµ)∣

(hτ)h) + δ)

≤ ∣u0 −w0∣ +
hτ(h)

1 − ∣r(hµ)∣
+ δ

1 − ∣r(hµ)∣
, 1 < i ≤ N .

Thus, the error of the approximation ui does not increase as i increases.

If we consider the previous example for the Runge-Kutta method of order two, we have
r(hµ) = 1 + hµ + (hµ)2/2. Then

1 − ∣r(hµ)∣ = 1 − (1 − r(hµ) r(hµ))
1/2
= 1 − (1 − (µ + µ)h +O(h2))1/2

= 1 − (1 − (µ + µ)h
2

+O(h2)) = (µ + µ)h
2

+O(h2) .

Thus,
hτ(h)

1 − ∣r(hµ)∣
= τ(h)
(µ + µ)/2 +O(h)

→ 0

as h → 0. However, since r(hµ) → 1 as h → 0, δ/(1 − ∣r(hµ)∣) increases as h → 0. So, the
numerical approximations ui may not get better as h → 0. As for the Euler’s method (see
the remark after Theorem 13.2.5), we may suspect that there is an optimal value of h to

reduce round off errors. This will require a thorough analysis of
hτ(h)

1 − ∣r(hµ)∣
+ δ

1 − ∣r(hµ)∣
. ♠

Corollary 13.6.38

No explicit Runge-Kutta method is A-stable

Proof.
For an explicit Runge-Kutta method, the function r in Proposition 13.6.35 is a polynomial.
There is no polynomial r of degree greater than zero that is bounded on {z ∶ Re z < 0}. If r
is constant, then r(z) = 1 for all z because r(0) = 1. So, there is no polynomial r such that
∣r(z)∣ < 1 for all z in {z ∶ Re z < 0}.

Example 13.6.39
Consider the Runge-Kutta method given by the Butcher array

0 1/4 −1/4
2/3 1/4 5/12

1/4 3/4

13.6. Convergence, Consistency and Stability 415

So B = (1/4 −1/4
1/4 5/12) and c = (1/4

3/4). Thus, Id−zB = (
1 − z/4 z/4
−z/4 1 − 5z/12) and

r(z) = 1 + zc⊺(Id−zB)−1u = 1 + z

(1 − z/4)(1 − 5z/12) + z2/16
c⊺ (1 − 5z/12 −z/4

z/4 1 − z/4)u

= 1 + z/3
1 − 2z/3 + z2/6

.

To show that this method is A-stable, we show that ∣r(z)∣ < 1 for z = ρeiθ with ρ > 0 and
π/2 < θ < 3π/2. We have

∣r(z)∣ < 1⇔ ∣1 + ρe
iθ

3
∣
2

< ∣1 − 2

3
ρeiθ + 1

6
ρ2e2iθ∣

2

⇔ 2ρ(1 + 1

9
ρ2) cos(θ) < 2

3
ρ2 cos2(θ) + 1

36
ρ4 .

Since the last inequality is always true for ρ > 0 and π/2 < θ < 3π/2 (because 2ρ(1+ρ2/9) > 0,
cos(θ) < 0 and 2ρ2 cos2(θ)/3 + ρ4/36 > 0), the method is A-stable. We will see shortly that
this is typical for a large class of implicit Runge-Kutta methods. ♣

Lemma 13.6.40

Let r be a rational non-constant function. ∣r(z)∣ < 1 in {z ∈ C ∶ Re z < 0} if and only if
r has no pole in {z ∈ C ∶ Re z ≤ 0} and ∣r(z)∣ ≤ 1 for all z on the imaginary axis.

Proof.
Let D = {z ∈ C ∶ Re z < 0}. So, D = {z ∈ C ∶ Re z ≤ 0}.

Suppose that ∣r(z)∣ < 1 in D. Then ∣r(z)∣ ≤ 1 in D by continuity. Thus, r has no pole in
D and ∣r(z)∣ ≤ 1 for all z on the imaginary axis.

Conversely, suppose that r has no pole in D and ∣r(z)∣ ≤ 1 for all z on the imaginary axis.
The function r cannot reach its absolute maximum in D because it is an analytic and non
constant function on the open set D6. However, r must reach its absolute maximum at one
point of D because it is continuous on D 7. Since r is not constant, r reaches its absolute
maximum on the imaginary axis only; the boundary of D. Since r(z) ≤ 1 for all z on the
imaginary axis, then r(z) < 1 in D.

Example 13.6.41 (Example 13.6.39 continued)
The poles of

r(z) = 1 + z/3
1 − 2z/3 + z2/6

are the roots of 1 − 2z/3 + z2/6; namely, z± = 2 ± i
√
2. The poles of r(z) are not in the

half-plane {z ∈ C ∶ Re z ≤ 0}.
6We use the Maximum Modulus Theorem from complex analysis.
7Since r has no pole at infinity, We may consider that r is a continuous function on the compactification

of D.

416 13. Initial Value Problems

Moreover, on the imaginary axis, z = ti with t ∈ R. Thus,

r(ti) = 1 + ti/3
1 − 2it/3 − t2/6

and

∣r(ti)∣ ≤ 1⇔ ∣1 + ti
3
∣
2

≤ ∣1 − 2it

3
− t

2

6
∣
2

⇔ 0 ≤ t
4

36
.

Since the last inequality is true for all t ∈ R, ∣r(z)∣ ≤ 1 on the imaginary axis. Thus, from the
previous lemma, ∣r(z)∣ < 1 for all z in {z ∈ C ∶ Re z < 0}. Namely, the method is A-stable as
we have already shown in example 13.6.39. ♣

Lemma 13.6.42

Suppose that r is the rational function associated to a Runge-Kutta method as in
Proposition 13.6.35 and that the Runge-Kutta method is of order p, then r(z) =
ez +O(zp+1) as z → 0.

Proof.
By definition of order, y(ti+1) = y(ti) + hϕ(ti, y(ti)) +O(hp+1) where ϕ(ti,wi) represents the
right hand side summation in the Runge-Kutta method. Thus, for i = 0, we get

y(t1) = y(t0) + hϕ(t0, y(t0)) +O(hp+1) = w0 + hϕ(t0,w0) +O(hp+1) = w1 +O(hp+1)

because w0 = y0 = y(t0). But wi+1 = r(hµ)wi for i ≥ 0 and the solution of (13.6.31) is
y(t) = etµw0. Thus,

ehµw0 = r(hµ)w0 +O(hp+1) .

We get the conclusion of the lemma after a division by w0 on both sides of the previous
equality.

Theorem 13.6.43

A Runge-Kutta method given by a collocation method satisfying Corollary 13.4.16
with k > 0 is A-stable.

Proof.
From Corollary 13.4.16, the Runge-Kutta method is of order 2k. For the initial value problem
(13.6.31), we have from Proposition 13.6.35 that the approximation wj of y(tj) given by
the Runge-Kutta method is wi = (r(hλ))iw0 for i ≥ 0, where r(z) is the quotient of two
polynomials of degree at most k. From Lemma 13.6.42, r(z) is a “Padé approximation”
of ez of order 2k. From Wanner-Hairer-Norsett theorem8, r is associated to a A-stable
method.

8Roughly, this theorem states that a r(z) = p(z)/q(z), a “Padé approximante to the exponential function”,
is A-acceptable if and only if the p and q have a specific form and deg p ≤ deg q ≤ 2 + degp.

13.6. Convergence, Consistency and Stability 417

13.6.4.2 Multistep Methods

The finite difference formula (13.5.1) applied to (13.6.31) becomes

wi+1 =
m

∑
k=0

akwi−k + hµ
m

∑
k=−1

bkwi−k .

If we substitute λi for wi, we get

λi+1 =
m

∑
k=0

akλ
i−k + hµ

m

∑
k=−1

bkλ
i−k .

If we subtract λi+1 from both sides of this equality and multiply them by λm−i, we get

p(λ) + hµq(λ) = 0 ,

where

p(λ) = −λm+1 +
m

∑
k=0

akλ
m−k and q(λ) =

m

∑
k=−1

bkλ
m−k .

We have already defined p(λ) as the characteristic polynomial of the multistep method
given in Definition 13.5.1. We add another definition.

Definition 13.6.44

The stability polynomial of the multistep method given in Definition 13.5.1 is the
polynomial p(λ) + hµq(λ).

Remark 13.6.45

1. We have from Proposition 13.6.11 that 1 =
m

∑
i=0

ai (i.e. p(1) = 0) if the multistep method

is consistent. Thus, a necessary condition for the consistency of a multistep method is
the existence of 1 has a root of its characteristic polynomial.

2. For the multistep method given in Definition 13.5.1, we have seen that the finite dif-
ference formula (13.5.1) was derived from a formula of the form

yi+1 =
m

∑
k=0

akyi−k + h
m

∑
k=−1

bkf(ti−k, yi−k) + hτi+1(h)

for m ≤ i < N . Since y(t) = Aeµ t is the general solution of y′ = µy,

yi = Aeµ(t0+ih) = Aeµt0 (eµh)
i

is a solution of

yi+1 =
m

∑
k=0

akyi−k + hµ
m

∑
k=−1

bkyi−k + hτi+1(h) .

Thus

(eµh)i+1 =
m

∑
k=0

ak (eµh)
i−k + hµ

m

∑
k=−1

bk (eµh)
i−k + h (Aeµt0)−1 τi+1(h) .

418 13. Initial Value Problems

If the multistep method is consistent for (13.6.31), one of the roots of the stability
polynomial must approximate eµh for h small. This root is called the principal root
of the stability polynomial.

3. Because the roots of the stability polynomial are continuous functions of h, the roots
of the characteristic polynomial can be use to approximate the roots of the stability
polynomial for h small.

♠
We can now restate the definition of absolute stability for the multistep methods defined

in Definition 13.5.1.

Definition 13.6.46

The region of absolute stability of a multistep method as defined in definition 13.5.1
is the set of all values hµ ∈ C such that lim

i→+∞
wi = 0 for all solutions {wi}∞i=0 of the

difference equation (13.5.1) applied to the initial value problem (13.6.31).
We say that a multistep method is absolutely stable for the value hµ if hµ is in the
region of absolute stability.
A multistep method is A-stable if the region of absolute stability contains the half-
plane to the left of the imaginary axis (complex numbers with a negative real part.)

Remark 13.6.47
As for the Runge-Kutta methods, we have to remember that Reµ < 0 in the previous
definition. Hence, all solutions y(t) = eµ(t−t0)y0 of the differential equation (13.6.31) satisfy
lim
t→∞

y(t) = 0. ♠

The following example illustrates the crucial role played by absolute stability.

Example 13.6.48
Consider the initial value problem

y′(t) = 1 − 2y(t) , 0 ≤ t ≤ 4
y(0) = 1

(13.6.40)

The exact general solution of y′ = 1−2y is y(t) = ce−2t+1/2. The initial condition y(0) = 1
gives c = 1/2.

If we use the Euler’s Method with N = 128, then h = (tf − t0)/N = 1/32, ti = t0 + ih = i/32
for i = 0, 1, . . . , 128 and the approximations wi of yi are given by the difference equation

w0 = 1
wi+1 = wi + h(1 − 2wi)

for i = 0, 1, . . . , 127. The values of some of the wi are given in Table 13.4 and the graph of
the approximation of y given by the wi can be found in Figure 13.6.

13.6. Convergence, Consistency and Stability 419

i ti wi yi wi − yi ∣yi −wi∣/∣yi∣
0 0 1 1 0 0
8 0.25 0.79835974 0.80326533 −0.00490559 0.00610706
16 0.5 0.67803707 0.68393972 −0.00590266 0.00863038
24 0.75 0.60623818 0.61156508 −0.00532690 0.00871027
32 1 0.56339439 0.56766764 −0.00427325 0.00752773
40 1.25 0.53782867 0.54104250 −0.00321383 0.00594007
48 1.5 0.52257310 0.52489353 −0.00232043 0.00442076
56 1.75 0.51346981 0.51509869 −0.00162888 0.00316227
64 2 0.50803770 0.50915782 −0.00112012 0.00219995
72 2.25 0.50479625 0.50555450 −0.00075825 0.00149983
80 2.5 0.50286202 0.50336897 −0.00050696 0.00100713
88 2.75 0.50170782 0.50204339 −0.00033556 0.00066840
96 3 0.50101909 0.50123938 −0.00022029 0.00043948
104 3.25 0.50060811 0.50075172 −0.00014361 0.00028679
112 3.5 0.50036287 0.50045594 −0.9307 × 10−4 0.00018596
120 3.75 0.50021653 0.50027654 −0.6001 × 10−4 0.00011995
128 4 0.50012921 0.50016773 −0.3852 × 10−4 0.7702 × 10−4

Table 13.4: Some results from the Euler’s method used in Example 13.6.48 to
approximate the solution of (13.6.40).

If we use the Adams-Bashforth method of order two from Example 13.6.7 with N = 128,
then h = (tf − t0)/N = 1/32, ti = t0 + ih = i/32 for i = 0, 1, . . . , 128 and the approximations wi

of yi are given by the difference equation

w0 = 1
w1 = y(1/32) = (e−1/16 + 1)/2 = 9.69706531 . . . × 10−1

wi+1 = wi−1 + 2hf(ti,wi) = wi−1 + 2h(1 − 2wi)

for i = 1, 2, . . . , 127. The values of some of the wi are given in Table 13.5 and the graph of
the approximation of y given by the wi can be found in Figure 13.6.

For the first steps, the magnitude of the absolute error for the Euler’s method is bigger
than the magnitude of the absolute error for the Adams-Bashforth method of order two.
However, the magnitude of the absolute error for the Euler’s method decreases as the index
i increases while the magnitude of the absolute error for the Adams-Bashforth method of
order two increases as the index i increases. As i approaches 128, the values of wi start
to oscillate between values above and values below the exact value of y at ti. For i near
128 the approximation wi given by the Adams-Bashforth method of order two has only one
significant digit.

To find out why the Adams-Bashforth method of order two gives a poor approximation
of the solution of (13.6.40), we rewrite the equation wi+1 = wi−1 + 2h(1 − 2wi) as

wi+1 + 4hwi −wi−1 = 2h . (13.6.41)

420 13. Initial Value Problems

i ti wi yi wi − yi ∣yi −wi∣/∣yi∣
0 0 1 1 0
1 0.03125 0.96970653 0.96970653 0 0
8 0.25 0.80337381 0.80326533 0.00010848 0.00013505
16 0.5 0.68408166 0.68393972 0.00014194 0.00020754
24 0.75 0.61171439 0.61156508 0.00014931 0.00024415
32 1 0.56782462 0.56766764 0.00015698 0.00027654
40 1.25 0.54122426 0.54104250 0.00018176 0.00033594
48 1.5 0.52513250 0.52489353 0.00023897 0.00045527
56 1.75 0.51544736 0.51509869 0.00034867 0.00067691
64 2 0.50969996 0.50915781 0.00054215 0.00106479
72 2.25 0.50642522 0.50555450 0.00087072 0.00172230
80 2.5 0.50478834 0.50336897 0.00141937 0.00281974
81 2.53125 0.50167598 0.50316486 −0.00148887 0.00295902
82 2.5625 0.50457884 0.50297311 0.00160573 0.00319249
83 2.59375 0.50110363 0.50279298 −0.00168935 0.00335993
88 2.75 0.50437208 0.50204339 0.00232869 0.00463843
89 2.78125 0.49945547 0.50191958 −0.00246412 0.00490939
90 2.8125 0.50444014 0.50180328 0.00263686 0.00525477
91 2.84375 0.49890045 0.50169403 −0.00279358 0.00556829
96 3 0.50507032 0.50123938 0.00383094 0.00764293
104 3.25 0.50706105 0.500751720 0.00630933 0.01259971
112 3.5 0.51085173 0.50045594 0.01039579 0.02077264
113 3.53125 0.48936667 0.50042832 −0.01106164 0.02210435
114 3.5625 0.51218090 0.50040237 0.01177853 0.02353812
115 3.59375 0.48784406 0.50037799 −0.01253393 0.02504892
120 3.75 0.51740867 0.50027654 0.01713212 0.03424531
121 3.78125 0.48202618 0.50025979 −0.01823360 0.03644827
128 4 0.52840330 0.50016773 0.02823557 0.05645221

Table 13.5: Some results from the Adams-Bashforth method of order two used in
Example 13.6.48 to approximate the solution of (13.6.40).

The general solution of (13.6.41) is

wi = c1λi1 + c2λi2 +
1

2
, (13.6.42)

where

λ1 = −2h +
√
1 + 4h2 = 1 − 2h +O(h2) and λ2 = −2h −

√
1 + 4h2 = −1 − 2h +O(h2)

are the roots of λ2 + 4hλ − 1 = 0, and c1 and c2 are arbitrary constants. Note that wi = 1/2
for all i is a solution of the non-homogeneous equation (13.6.41) and wi = c1λi + c2λi2 is the
general solution of the homogeneous equation

wi+1 + 4hwi −wi−1 = 0 .

13.6. Convergence, Consistency and Stability 421

Figure 13.6: Approximation of the solution of y′(t) = 1 − 2y(t) where 0 ≤ t ≤ 4 and
y(0) = 1 given by three different numerical methods.

The initial conditions w0 = y(0) = 1 and w1 = y(1/32) = 0.96970 . . . gives c1 = 0.50793 . . . ≅ 1/2
and c2 = 0.0079 . . . ≅ 0 because of round off errors. The exact values are c1 = 1/2 and c2 = 0.
Even if the initial conditions were such that c2 = 0, the effect of rounding error is equivalent
to having c2 ≠ 0. Because ∣λ2∣ > 1, the magnitude of the second term of (13.6.42) increases
as i increases. This explains the increase of the errors as i increases.

If we substitute λ1 and λ2 in (13.6.42), we get

wi = c1 (−2h +
√
1 + 4h2)

i
+ c2 (−2h −

√
1 + 4h2)

i
+ 1

2

= c1 (1 − 2h +O(h2))
i + c2(−1)i (1 + 2h +O(h2))

i + 1

2

≈ c1 (1 − 2h)i + c2(−1)i (1 + 2h)i +
1

2
≈ c1e−2ti + c2(−1)ie2ti +

1

2
(13.6.43)

for h very small. For the last approximation above, we note that

(1 − 2h)i = ((1 − 2h)−1/(2h))−2ih ,

where lim
h→0
(1 − 2h)−1/(2h) = e. Thus, for h very small, we may assume that (1 − 2h)i ≈ e−2ih =

e−2ti . Similarly, (1 + 2h)i ≈ e2ti for h very small.

From (13.6.43) we may conclude that the first term in (13.6.42) is associated to the
solution of y′ = 1−2y but the second term in (13.6.42) exists only because we have transformed

422 13. Initial Value Problems

the first order differential equation y′ = 1 − 2y into a second order difference equation wi+1 =
wi−1 + 2h(1 − 2wi).

This example shows that it is important to study the magnitude of the roots of the
stability polynomial associated to a multistep method. ♣
Remark 13.6.49
The Adams-Bashforth method of order two from Example 13.6.7 is consistent and, as we
saw in Example 13.6.22, satisfies the root condition. Thus, this Adams-Bashforth method
of order two is convergent according to Theorem 13.6.26. However, we saw in the numerical
experiment of Example 13.6.48 that this Adams-Bashforth method of order two does not
converge. Is there anything wrong with Theorem 13.6.26? No, there is nothing wrong
mathematically but the theory assumes that δi(h) = O(h2) which is rarely satisfied by round
off errors (round off errors do not generally go to 0 as h decreases). Moreover, the theory
does not take into account the information provided by the stability polynomial that may
have many roots. This illustrate the limits of the theory presented so far where we ignore
the information provided by the stability polynomial and the full effect of round off errors.
We therefore need a stability criteria which is stronger than the root condition. Absolute
stability is this criteria. ♠

Proposition 13.6.50

The region of absolute stability is the set of all value hµ ∈ C with Reµ < 0 such that
all the roots of the stability polynomial have absolute values less than one.

Proof.
The multistep method (13.5.1) applied to this initial value problem (13.6.31) is the finite
difference equation

m

∑
k=−1
(ak + hµbk)wi−k = 0 , i ≥m ,

where a−1 = −1. A solution {wi}∞i=0 of this finite difference equation is a linear combination
of solutions of the form {inλi}∞i=0, where λ ∈ C is a root of multiplicity s of the stability
polynomial

p(λ) + hµq(λ) =
m

∑
k=−1
(ak + hµbk)λm−k (13.6.44)

and 0 ≤ n < s. Hence, ∣λ∣ < 1 for all roots of (13.6.44) if and only if any non-trivial solution
{wi}∞i=0 of the finite difference equation above satisfies lim

i→+∞
wi = 0 . Namely, if and only if

hµ is in the region of absolute stability.

Example 13.6.51
We illustrate with the Euler’s method why we should choose hµ in the region of absolute
stability.

Consider the initial value problem (13.6.31). The exact solution is y(t) = y0 eµt. The
approximation wi of yi given by the Euler’s method (Definition 13.2.1) is the solution of

w0 = y0

13.6. Convergence, Consistency and Stability 423

wi+1 = wi + hµwi = (1 + hµ)wi

Thus, wi = (1 + hµ)iy0 for i ≥ 0.
Since Reµ < 0, we have that y(t) → 0 as t → 0. To get the same behaviour for wi (i.e.

wi → 0 as i→∞), we need ∣1 + hµ∣ < 1.
Suppose that an error δ0 is introduced in the initial condition; namely, w0 = y0 + δ0. The

new value of wi is (1+ hµ)iy0 + (1+ hµ)iδ0 which differ from the unperturbed value of wi by
(1 + hµ)iδ0. To have this difference decreases as i→∞, we need ∣1 + hµ∣ < 1.

Let us show that ∣1+hµ∣ < 1 is the condition for hµ to be in the region of absolute stability.
The stability polynomial of the Euler’s method is −λ + (1 + hµ). Obviously, the only root
is λ = 1 + hµ. The region of absolute stability is {hµ ∶ ∣1 + hµ∣ < 1}. This is the open disk of
radius 1 centred at (−1,0) in the complex plane. ♣
Remark 13.6.52
Suppose that p(λ)+hµq(λ) is the stability polynomial of a multistep method. If we draw the
graph of z = −p(λ)/q(λ) for λ on the unit circle in the complex plane, we get the boundary of
the region of absolute stability of the multistep method; namely, the values of hµ for which
∣λ∣ = 1. ♠
Example 13.6.53
The stability polynomial for the Adams-Bashforth method of order two from Example 13.6.7
is

p(λ) + hµq(λ) = −λ2 + 1 + 2hµλ .
If λ is a root of this polynomial such that ∣λ∣ = 1, we may assume that λ = eθi for some
θ ∈ [0,2π[. We get

−e2θi + 1 + 2hµeθi = 0⇒ hµ = e
2θi − 1
2eθi

= e
θi − eθi
2

= i sin(θ) .

Thus, the boundary of the region of absolute stability is the segment {ri ∶ −1 ≤ r ≤ 1} on
the imaginary axis. All points outside this segment are on curves given by λ = reθi for both
r > 1 and r < 1. The region of absolute stability has no interior (Figure 13.7). Thus, the
region of absolute stability is empty. This explains why this method fails to converge in
Example 13.6.48. ♣
Example 13.6.54
The boundaries for the region of absolute stability for the Adams-Bashforth method of order
four is drawn in Figure 13.8. To produce this boundary, we drew the graph of z = −p(λ)/q(λ)
for λ = eiθ with 0 ≤ θ < 2π. For the Adams-Bashforth method of order four p(λ) = −λ4 + λ3
and q(λ) = (55λ3 − 59λ2 + 37λ − 9)/24.

The boundaries for the region of absolute stability for the Adams-Moulton method of order
four is drawn in Figure 13.9. To produce this boundary, we drew the graph of z = −p(λ)/q(λ)
for λ = eiθ with 0 ≤ θ < 2π. For the Adams-Moulton method of order four p(λ) = −λ3 + λ2
and q(λ) = (9λ3 + 19λ2 − 5λ + 1)/24.

The regions inside the boundary curves (the black curve) and to the left of the imaginary
axis are the regions of absolute stability. The two lobes for the Adams-Bashforth method of

424 13. Initial Value Problems

Figure 13.7: Regions of absolute stability for the Adams-Bashforth method of order
two of Example 13.6.7. We have drawn the curve z = −p(λ)/q(λ) for λ = eiθ (black
curve), for λ = 1.1eiθ and λ = 1.5eiθ (red curves) and λ = 0.8eiθ (blue curve). The
region of absolute stability is empty.

order four do not represent regions of absolute stability. To justify this, we have also drawn
the curves z = −p(λ)/q(λ) for λ = 1.2eiθ and λ = 0.8eiθ with 0 ≤ θ < 2π for the two methods.
The points z on the curves in red associated to λ = 1.2eiθ correspond to values of hµ for
which the stability polynomial has a root λ of absolute value 1.2, these points are therefore
outside the region of absolute stability, whereas the points z on the curves in blue associated
to λ = 0.8eiθ correspond to values of hµ for which the stability polynomial has a root λ of
absolute value 0.8, these points are inside the region of absolute stability. ♣
Example 13.6.55
The region of absolute stability of the Trapezoidal method is the half-plane to the left of the
imaginary axis. Hence, the trapezoidal method is A-stable.

The stability polynomial of the trapezoidal method is p(λ)+hµq(λ) where p(λ) = −λ2+λ
and q(λ) = (λ2 + λ)/2. We draw the graph of z = −p(λ)/q(λ) for λ on the unit circle in
Figure 13.10.

We now prove rigorously that the region of absolute stability of the Trapezoidal Method
is the half-plane to the left of the imaginary axis.

The Trapezoidal Method applied to the initial value problem (13.6.31) gives

wi+1 = wi +
h

2
(µwi+1 + µwi) , 0 ≤ i < N .

If we solve for wi+1, we get

wi+1 = (
1 + hµ/2
1 − hµ/2

)wi .

13.6. Convergence, Consistency and Stability 425

Figure 13.8: Regions of absolute stability for the Adams-Bashforth method of order
four. We have drawn the curve z = −p(λ)/q(λ) for λ = eiθ (black curve), for λ = 1.2eiθ
(red curve) and λ = 0.8eiθ (blue curve). The region to the left of the imaginary axis
and inside the black curve is the region of absolute stability.

Hence, by induction,

wi+1 = (
1 + hµ/2
1 − hµ/2

)
i+1

w0 , i ≥ 0 .

The region of absolute stability is

{hµ ∶ ∣1 + hµ/2
1 − hµ/2

∣ < 1} = {z ∶ Re z < 0}

because

∣1 + hµ/2
1 − hµ/2

∣ < 1⇔ ∣1 + hµ
2
∣
2

< ∣1 − hµ
2
∣
2

⇔ Rehµ < 0 .

♣
Remark 13.6.56
The fact that the trapezoidal method is A-stable does not mean that all values of h can be
used. Consider the differential equation

y′(t) = µ(t)y(t) , t ≥ 0
y(0) = y0

where µ is a differentiable function such that µ(t) < 0 and µ′(t) > 0 for all t > 0. All solutions
y of this differential equation satisfy lim

t→∞
y(t) = 0.

The trapezoidal method gives

wi+1 =
1 + hµ(ti)/2
1 − hµ(ti+1)/2

wi

426 13. Initial Value Problems

Figure 13.9: Regions of absolute stability for the Adams-Moulton method of order
four. We have drawn the curve z = −p(λ)/q(λ) for λ = eiθ (black curve), for
λ = 1.2eiθ (red curve) and λ = 0.8eiθ (blue curve). The region to the left of the
imaginary axis and inside the black curve is the region of absolute stability.

for i ≥ 0. Since µ(t) < 0 for all t > 0, we still need

∣ 1 + hµ(ti)/2
1 − hµ(ti+1)/2

∣ < 1

to ensure that wi → 0 as i → ∞. However, if µ(t) → 0 as t → ∞, we will have that

∣ 1 + hµ(ti)/2
1 − hµ(ti+1)/2

∣ → 1 as i → ∞. Thus, the convergence of wi to 0 will be really slow and

taking h smaller will further slow the convergence. ♠
Example 13.6.57
Consider the initial value problem

y′(t) = 100y(t) + 100t2 − 2t − 100 , 0 ≤ t ≤ 1
y(0) = 1

(13.6.45)

If we use the modified Euler’s method, the Runge-Kutta method of order four and the
Adams-Bashfort method of order four to approximate y(1), we get the following results:

Approximation of y(1)
number N Modified Runge-Kutta Adams-Bashforth
of steps Euler’s method Method of order 4 Method of order 4

10 5.9445 . . . × 1014 3.9941 . . . × 1024 2.9627 . . . × 1014
20 7.8754 . . . × 1021 2.0564 . . . × 1032 2.9976 . . . × 1019
30 1.4899 . . . × 1026 2.6381 . . . × 1035 3.2001 . . . × 1023
40 9.7746 . . . × 1028 5.5303 . . . × 1036 4.2923 . . . × 1026

13.6. Convergence, Consistency and Stability 427

Figure 13.10: Regions of absolute stability for the trapezoidal method. We have
drawn the curve z = −p(λ)/q(λ) for λ = eiθ (black curve), for λ = 1.2eiθ (red curve)
and λ = 0.8eiθ (blue curve). The region to the left of the imaginary axis is the
region of absolute stability.

The exact solution of (13.6.45) is y(t) = 1 − t2 + Ce100t. The initial condition y(0) = 1
implies that C = 0. However, because of round off error, the solution that we compute is one
with C /= 0 small.

We now use the trapezoidal method to approximate y(1). First, we have to explain how
to implement the trapezoidal method.

Given wi, we have to solve wi+1 = wi +
h

2
(f(ti+1.wi+1) + f(ti,wi)) for wi+1. This is an

implicit equation for wi+1. In general, this equation cannot be solved explicitly for wi+1.
To compute wi+1, we use Euler’s method to get a first approximation of wi+1 and then use

Newton’s Method to approximate a root of 0 = z −wi −
h

2
(f(ti+1.z) + f(ti,wi)). The root of

this equation is the value of wi+1.

To get a first approximation of wi+1, we apply the Euler’s method with N = 1 to

y′(t) = f(t, y(t)) , ti ≤ t ≤ ti+1
y(ti) = wi

to get the first approximation of wi+1. The Euler’s method gives an approximation of y(ti+1)
if wi = yi.

The following code is an implementation of the trapezoidal method. Using this code with
t0 = 0, tf = 1, y0 = 1, the number of subinterval N = 10, the tolerance T = 10−5 and the
maximum number of iterations for the Newton’s Method M = 10, we get

i 0 1 2 3 4 5 6 7 8 9 10
ti 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
wi 1.00 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 0.19 0.0

428 13. Initial Value Problems

rounded to two decimal places. The approximations wi of yi are exact. ♣

Code 13.6.58 (Trapezoidal Method)

To approximate the solution of the initial value problem

y′(t) = f(t, y(t)) , t0 ≤ t ≤ tf
y(0) = y0

Input: The initial time t0 (t0 in the code below).
The final time tf (tf in the code below).
The number N of subintervals of [t0, tf].
The initial condition y0 (y0 in the code below).
The tolerance T for the Newton’s Method.
The maximum number of iterations M for the Newton’s Method.
The function f(t, y) (funct in the code below).
The derivative of f(t, y) with respect to y (functprime in the code below).
Output: The approximations wi (w(i+1) in the code below) of y(ti) for i = 0, 1, . . . ,
N , where ti = t0 + ih (t(i+1) in the code below) with h = (tf − t0)/N .

function [t,w] = trapez(funct,functprime,t0,y0,tf,N,M,T)

h = (tf-t0)/N;

half = h/2;

t(1) = t0;

w(1) = y0;

for i = 1:1:n

% We start the iteration with the approximation of y(t_0 + h)

% given by the Euler method.

k = feval(funct,t(i),w(i));

w0 = w(i) + h*k;

t(i+1) = t(1) + i*h;

% Newton-Raphson iterations

for j = 1:M

numer = w0 - w(i)- half*(funct(t(i+1),w0) + k);

denum = 1-half*functprime(t(i+1),w0);

if (denum == 0)

% Newton-Raphson iterative method does not converge (fast enough).

t = NaN;

w = NaN;

return;

end

w1 = w0 - numer/denum;

if (abs(w1-w0) < T)

w(i+1) = w1;

13.6. Convergence, Consistency and Stability 429

break;

else

w0 = w1;

if (j == max)

% The maximum number of iterations has been reached

% before getting an approximation of w(i+1) within the

% required tolerance.

t = NaN;

w = NaN;

return;

end

end

end

end

end

We conclude this section with a couple more results. This can be used as a starting point
for further reading on the subject of this chapter.

Proposition 13.6.59

The multistep method (13.5.1) is A-stable if and only if b−1 > 0 and, for each hµ on
the imaginary axis, the roots of the stability polynomial are less than or equal to 1 in
absolute value.

Lemma 13.6.60 (Cohn-Schur Criterion)

Consider the quadratic equation p(z) = az2 + bz + c, where a, b, c ∈ C and a /= 0. Then,
the roots of p are inside the closed disk of radius 1 centred at the origin if and only if
∣a∣ ≥ ∣c∣ and ∣∣a∣2 − ∣c∣2∣ ≥ ∣ab − bc∣

The proofs of these two results is sketched in [19]. We show in the next example how
these results can be used.

Example 13.6.61
We prove that the backward divided difference

wi+1 −
4

3
wi +

1

3
wi−1 =

2

3
hf(ti+1,wi+1) , 1 ≤ i < N (13.6.46)

is A-stable.

If we apply this multistep method to the initial value problem (13.6.31), we get

wi+1 −
4

3
wi +

1

3
wi−1 =

2

3
hµwi+1

for 1 ≤ i ≤ N − 1. Thus, the stability polynomial is

p(λ) + hµq(λ) = (−1 + 2

3
hµ)λ2 + 4

3
λ − 1

3
= 0 .

430 13. Initial Value Problems

1. We have that b−1 = 2/3 > 0.

2. We show that the roots of the characteristic equation with hµ on the imaginary axis
are less than or equal to 1.

If we substitute hµ = ti with t ∈ R in the stability polynomial, we get

(−1 + 2

3
ti)λ2 + 4

3
λ − 1

3
= 0 . (13.6.47)

We now apply Lemma 13.6.60 to this polynomial equation. We have a = −1 + 2ti/3,
b = 4/3 and c = −1/3. Thus, for all t ∈ R, we have that

(a) a /= 0.
(b) ∣a∣2 − ∣c∣2 = ∣1 − 2ti/3∣2 − ∣1/3∣2 = 4(2 + t2)/9 > 0. Thus ∣a∣ > ∣c∣.
(c) (∣a∣2 − ∣c∣2)2 − ∣ab − bc∣2 = 16(2 + t2)2/81 − 64(1 + t2)/81 = 16t4/81 ≥ 0.

Hence, the conditions of Lemma 13.6.60 are satisfied and we can conclude that, for all
t ∈ R, the roots of (13.6.47) are smaller than or equal to 1 in absolute value.

1 and 2 imply that the conditions of Proposition 13.6.59 are satisfied and so the method
(13.6.46) is A-stable. ♣

The next theorem tells us that the Trapezoidal Method is basically the best multistep
method that we can hope for if A-stability is required.

Theorem 13.6.62 (Dahlquist Second Barrier)

The highest order of an A-stable multistep method is 2.

Remark 13.6.63
We should not completely reject the higher order multistep methods. There are multistep
methods of order higher than 2, though not A-stable, that are A(α)-stable; namely, the
stability region contain the cone {z ∈ C ∶ z = ρ eθ with ρ > 0 and ∣θ − π∣ < α}. For some
multistep methods, α may be closed to π/2. ♠

13.6.5 Conclusion

Theorem 13.6.26 is a beautiful and simple theoretical result to ensure convergence of a
numerical method to solve initial value problems. However, it can only be use as a necessary
criteria to ensure convergence because of the strong hypothesis on the size of round off error.
That was the motivation to introduce a stronger stability criteria; namely, absolute stability.
However, even absolute stability is not ideal. It may impose strict conditions on the step-size
h depending on the region of absolute stability. We will see in the next section that for some
initial value problems (particularly in higher dimension), there may be conditions on the
step-size that are almost impossible (if not impossible) to satisfy.

13.7. Stiff Systems and Stability 431

This demonstrates that solving initial value problems is still a subject of research since
we are now intensively using initial value problems to model physical phenomena.

Though solving numerically initial value problems is not simple, it is still a lot simpler
than solving partial differential equation as we will see in Chapter 15.

13.7 Stiff Systems and Stability

We consider the initial value problem

dy

dt
(t) = f(t,y(t)) , t0 ≤ t ≤ tf

y(t0) = y0

(13.7.1)

where f ∶ [t0, tf] ×Rn → Rn.

As we will see, there are additional constraints on the step-size h than those needed to
get a converging and stable Runge-Kutta or multistep method to numerically solve (13.7.1).
We already know that the requirements on the step size h to get a stable method may be
stronger than what is necessary for the required accuracy. If an implicit multistep method
is used with an iterative algorithm, h may have to be small enough for the iterations to
converge as we have seen in Remark 13.5.8). In that remark, we showed that h had to be
small enough to get ∣b−1hL∣ < 1, where L is the Lipschitz constant associated to the second
variable of the function f ; namely, ∣f ∣t, x) − f(t, y)∣ ≤ L∣x − y∣ for all (t, x) and (t, y) in the
domain of f . We will add to this list the case where some ”components” of the solution vary
much faster than others. This will be one of the major characteristics of Stiff differential
equations.

The differential equation (13.7.1) is stiff when basically no reasonable choice of h can
address all the constraints. A mistake often made is to say that a system is stiff when in
fact the system is unstable.

Example 13.7.1
Consider the initial value problem

y′ = Ay , 0 ≤ t ≤ tf
y(0) = y0

(13.7.2)

where y ∶ R→ R2, y0 = (
y0,1
y0,2
) ∈ R2, and A = (−λ 1

0 −0.1) for a large positive number λ.

Since A = QBQ−1, where Q = (1 1
0 λ − 0.1) and B = (

−λ 0
0 −0.1), the solution of (13.7.2) is

y = etAy0 = QetBQ−1y0 = (
e−λt (e−0.1t − e−λt)/(λ − 0.1)
0 e−0.1t

)(y0,1
y0,2
) . (13.7.3)

432 13. Initial Value Problems

Choose N ∈ N. Let h = tf/N and tj = jh for 0 ≤ j ≤ N . With the Euler’s method for
systems of ordinary differential equations, approximations wj of the exact values y(tj) of
the solution of (13.7.2) are given by

wj+1 = (I2 + hA)wj , 0 ≤ j < N
w0 = y0

(13.7.4)

The solution {wj}∞j=0 of (13.7.4) is given by

wj = (I2 + hA)jw0 = Q(I2 + hB)jQ−1w0

= Q((1 − λh)
j 0

0 (1 − 0.1h)j)Q
−1w0 .

(13.7.5)

Suppose that y0 = (
1

λ − 0.1). This is an eigenvector of A associated to the eigenvalue

−0.1. The solution of (13.7.2) for 0 ≤ t ≤ tf is then given by y(t) = e−0.1ty0.

If h is small enough such that

(1 − 0.1h)j ≈ e−0.1jh (13.7.6)

and

∣1 − λh∣ < 1 , (13.7.7)

then (13.7.5) will give a good approximation of y(tj).
Unfortunately, because λ is a large positive number, the restriction (13.7.7) is much more

severe than the restriction (13.7.6). So (13.7.7) may force h to be smaller than the computer
accuracy. Therefore, the Euler’s method will not give a good approximation of the solution of
(13.7.2). This type of problems occurs in system that have two quite different ”time-scales”
as we have for the present system with the two requirements on h. ♣
Remark 13.7.2
Lambert [23] defines stiffness as follows. The differential equation (13.7.1) is stiff for t0 <
t < tf if, for all t between t0 and tf , Reλi(t) < 0 for all eigenvalues λi(t) of Dyf(t,y(t)) and
max

i
{Reλi(t)}≫min

i
{Reλi(t)}. The ratio

max
i
{Re λi(t)}/min

i
{Re λi(t)}

is called the stiffness ratio.

We do not use this definition because it does not cover all the cases of stiffness as we have
defined it. Note that if the stiffness ratio is large then the Lipschitz constant L will be large.

♠
Example 13.7.3
We use the Trapezoidal Method to approximate the solution of the initial value problem
(13.7.2) considered in the previous example. Namely, we consider

wi+1 =wi +
h

2
(Awi+1 +Awi) , 0 ≤ i < N .

13.7. Stiff Systems and Stability 433

If we solve for wi+1, we get

wi+1 = (Id−
h

2
A)
−1
(Id+h

2
A)wi .

Note that Id−(h/2)A is invertible for all h. By induction, we get that

wi+1 = (Id−
h

2
A)
−i−i
(Id+h

2
A)

i+1
w0 .

Since A = QBQ−1 for Q = (1 1
0 λ − 0.1) and B = (

−λ 0
0 −0.1), we get

wi+1 = Q(Id−
h

2
B)
−i−i
(Id+h

2
B)

i+1
Q−1w0 .

Since

Id−h
2
B = (1 + λh/2 0

0 1 + h/20) and Id+h
2
B = (1 − λh/2 0

0 1 − h/20)

commute, we get

wi+1 = Q((Id−
h

2
B)
−1
(Id+h

2
B))

i+1

Q−1w0

= Q

⎛
⎜⎜⎜⎜⎜
⎝

(1 − λh/2
1 + λh/2

)
i+1

0

0 (1 − h/20
1 + h/20

)
i+1

⎞
⎟⎟⎟⎟⎟
⎠

Q−1w0 .

We finally get

wi+1 =

⎛
⎜⎜⎜⎜⎜
⎝

(1 − λh/2
1 + λh/2

)
i+1

1

λ − 0.1
⎛
⎝
(1 − h/20
1 + h/20

)
i+1

− (1 − λh/2
1 + λh/2

)
i+1⎞
⎠

0 (1 − h/20
1 + h/20

)
i+1

⎞
⎟⎟⎟⎟⎟
⎠

w0 , 0 ≤ i < N .

Independently of the choice of h, we have that wi → 0 as i →∞ because ∣1 − λh/2
1 + λh/2

∣ < 1 and

∣1 − h/20
1 + h/20

∣ < 1 for all h.

So there is no constraints on h other than the one that we may impose for the accuracy.

In general, we should use A-stable methods, like the Trapezoidal Method, to solve stiff
differential equations. ♣

434 13. Initial Value Problems

13.8 Exercises

Question 13.1
Show that the following initial value problems are well posed.

a)
y′(t) = 2y(t) + 2 , 0 ≤ t ≤ 1
y(0) = 1 b)

y′(t) = t2y(t) + 1 , 0 ≤ t ≤ 1
y(0) = 1

c)
y′(t) = t2 sin(y(t)) + y(t) , 0 ≤ t ≤ 1
y(0) = 1

Question 13.2
Consider the initial value problem

y′ = 1 − y , 0 ≤ t ≤ 1
y(0) = 0

a) Estimate the value of h (the step size) that minimize the error bound for the Euler’s
method. Assume that all rounding errors have magnitude less than 10−8.
b) With the value of h found in (a), compute the error bound on the interval [0,1].
Question 13.3
Consider the initial value problem

y′ = y + t
t

, 1 ≤ t ≤ 2

y(1) = 0

a) Show that this initial value problem is well posed.
b) Estimate the value of the step size h that minimizes the error bound for the Euler’s
method. Assume that all rounding errors have magnitude less than 10−8.
c) Use the Euler’s method with the value of h found in (b) (after a slight adjustment if
needed) to find an approximation of the solution to the initial value problem above.
d) With the value of h found in (b), compute the predicted error bound at t = 2 with the
actual error. What can you conclude?

Question 13.4
Use Runge-Kutta method of order four to approximate the solution of the initial value
problem

y′ = 1 + (t − y)2 , 2 ≤ t ≤ 3
y(2) = 1

(13.8.1)

Use a step size of 0.1 and compute the absolute and relative error at each step. You obviously
need to find the analytic solution of the initial value problem (13.8.1) to compute the errors.

13.8. Exercises 435

Question 13.5
Use Runge-Kutta method of order four to approximate the solution of

y′ = sin(t − y) , 2 ≤ t ≤ 3
y(2) = 1

Use different step sizes.

Question 13.6
Consider the Runge-Kutta Method

wi+1 =wi + h((
1

2
+ β)K1 + (

1

2
− β)K2) ,

where
K1 = f(wi + βhK1) and K2 = f(wi + hK1 + βhK2) .

a) Give the Butcher array associated to this Runge-Kutta Method.
b) Use Theorem 13.4.32 to determine the order of the method? Show that it does not
depend on β.
c) Find the first term of the local truncation error.
d) If we use the Runge-Kutta Method above to find an approximation of the solution of the
initial value problem

y′(t) = Ay(t) , a ≤ t ≤ b
y(a) = y0

(13.8.2)

where A is a n × n matrix, can we chose β to get a method of order greater than the ordre
found in (b)?
e) Show that the Runge-Kutta Method above applied to (13.8.2) yields a finite difference
equation of the form

wi+1 = R(hA,β)wi ,

where R is a rational function.

Question 13.7
Compute the local truncation error of the trapezoidal method

wi+1 = wi +
h

2
(f(ti,wi) + f(ti+1,wi+1)) , 0 < i < N .

What is the order of this method? Is the method consistent?

Question 13.8
Show that two successive steps of the trapezoidal method

wi+1 = wi +
h

2
(f(ti,wi) + f(ti+1,wi+1))

(ti to ti+1 followed by ti+1 to ti+2) yields one step of a 3-stage Runge-Kutta Method (ti to ti+2).
Give the Butcher array of the Runge-Kutta Method. What is the order of this method?

436 13. Initial Value Problems

Question 13.9
Find the 2-stage Runge-Kutta Method given by the collocation method associated to the
nodes α1 = 1/3 and α2 = 2/3. Find the order of this method? What is the maximal order of
a 2-stage Runge-Kutta Method that we can get with the collocation method?

Question 13.10
Consider an implicit Runge-Kutta Method given by the Butcher array

α1 β1,1 β1,2 . . . β1,k
α2 β2,1 β2,2 . . . β2,k
⋮ ⋮ ⋮ ⋱ ⋮
αk βk,1 βk,2 . . . βk,k

γ1 γ2 . . . γk

Assume that the order of the method is greater or equal to p and αi /= αj for i ≠ j. Show
that this method is given by the collocation method if and only if

k

∑
j=1

βi,jα
n−1
j =

αn
i

n
and

k

∑
j=1

γjα
n−1
j = 1

n
(13.8.3)

for 1 ≤ i, n ≤ k.
Question 13.11
Consider the initial value problem

y′(t) = µy(t) , t ≥ 0
y(0) = y0

Show that all semi-implicit Runge-Kutta Method applied to this initial value problem is of
the form wi = (r(hµ))iw0, where r(z) is a rational function whose denominator is a product
of factor of degree one.

Question 13.12
Prove without using Theorem 13.6.43 that the Runge-Kutta Method given by the Butcher
array

(3 −
√
3)/6 1/4 (3 − 2

√
3)/12

(3 +
√
3)/6 (3 + 2

√
3)/12 1/4

1/2 1/2
is A-stable?

Question 13.13
Consider the initial value problem

y′(t) = f(t, y(t)) , t0 ≤ t ≤ tf
y(0) = y0

(13.8.4)

An explicit method to approximate the solution of (13.8.4) is defined as follows. The ap-
proximation wi of y(ti) is given by the solution of

wi+1 = wi +
h

2
(3f(ti,wi) − f(ti−1,wi−1)) , w1 = y1 and w0 = y0 .

13.8. Exercises 437

a) Show that this method is of order 2 and that it is consistent.
b) Is this method strongly stable?
c) Is this method convergent?

Question 13.14
Consider the initial value problem

y′(t) = f(t, y(t)) , t0 ≤ t ≤ tf
y(0) = y0

(13.8.5)

An implicit method to approximate the solution of (13.8.5) is defined as follows. The ap-
proximation wi of y(ti) is given by the solution of

wi+1 = wi−1 +
2

3
h (f(ti+1,wi+1) + f(ti,wi) + f(ti−1,wi−1)) , w1 = y1 and w0 = y0 .

a) Show that this method is of order 2 and that it is consistent.
b) Does this method satisfy the root condition?
c) Is this method convergent?

Question 13.15
Consider the initial value problem

y′(t) = f(t, y(t)) , t0 ≤ t ≤ tf
y(0) = y0

(13.8.6)

The Simpson’s method is an implicit method to approximate the solution of (13.8.6) defined
as follows. The approximation wi of y(ti) is given by the solution of

wi+1 = wi−1 +
h

3
(f(ti+1,wi+1) + 4f(ti,wi) + f(ti−1,wi−1)) , w1 = y1 and w0 = y0 .

a) Apply the Simpson rule of integration to

∫
ti+1

ti−1
f(t, y(t)) dt

to derive the Simpson method above and its local truncation error.
b) Show that Simpson’s method is consistent.
c) Does the Simpson’s method satisfy the root condition?
d) Is the Simpson’s method convergent?

Question 13.16
To approximate the solution of the initial value problem

y′(t) = t , 0 ≤ t ≤ 5
y(0) = 0

(13.8.7)

we use the multistep method

wi+1 = wi +
h

12
(4f(ti+1,wi+1) + 9f(ti,wi) − f(ti−1,wi−1)) , (13.8.8)

438 13. Initial Value Problems

w1 = y1 and w0 = y0 .

for 1 ≤ i < N with ti = ih and h = 5/N
a) Write the difference equation associated to (13.8.7).
b) Find the general solution of the difference equation in (a). A particular solution of this
equation is of the form wi = Ai2 +Bi for some constants A and B.
c) Find the solution of the difference equation in (a) with w0 = 0.
d) Does the solution that you have found in (c) converge to the solution of (13.8.7) as h→ 0?
e) Does this multistep method satisfy the root condition?
f) Is this multistep method consistent?

Question 13.17
Use the technique presented in Section 13.5.3 to answer the following questions.

a) Construct a multistep method of order at least 2 of the form

wi+1 = wi−2 +
m

∑
j=−1

bjf(ti−j,wi−j) , m ≤ i < N

wi = yi , 0 ≤ i ≤m

b) Construct a multistep method of order at least 3 of the form

wi+1 = wi−2 +
m

∑
j=−1

bjf(ti−j,wi−j) , m ≤ i < N

wi = yi , 0 ≤ i ≤m

Question 13.18
Consider the multistep method

wi+1 =
m

∑
j=0
ajwi−j + h

m

∑
j=−1

bjf(ti−j,wi−j) , m ≤ i < N

wi = yi , 0 ≤ i ≤m

Let

p(w) = 1 −
m

∑
j=0
ajw

j and q(w) =
m

∑
j=−1

bjw
j .

Moreover, let p1(w) = p(w), pk+1(w) = 1 − wp′k(w) for k > 0, q1(w) = q(w) and qk+1(w) =
−wq′k(w) for k > 0. Show that the method is of order r if and only if p1(1) = 0, pk+1(1) =
kqk(1) for 1 ≤ k ≤ r, and pr+2(1) ≠ (p + 1)qr+1(1).
Question 13.19
a) Find the multistep method of the form

wi+1 = a0wi + a1wi−1 + h (b0f(ti,wi) + b1f(ti−1,wi−1))

13.8. Exercises 439

of highest order.
b) What is the order of the method?
c) Is this method A-stable?

Question 13.20
If the multistep method

wi+1 =
m

∑
j=0
ajwi−j +

m

∑
j=−1

bjf(ti−j,wi−j)

is convergent, shows that 0 is on the boundary of the region of absolute stability for this
method.

440 13. Initial Value Problems

Chapter 14

Boundary Value Problems for
Ordinary Differential Equations

The content of this chapter is based in great part on [22].

14.1 Introduction

Example 14.1.1
A simple example of a boundary value problem is given by the second order differential
equation

y′′(t) + y(t) = 0 , 0 ≤ t ≤ π
2

(14.1.1)

y(0) = 0 and y(π/2) = 1

The conditions that y must satisfy at 0 and π/2 are the boundary conditions. The general
solution of (14.1.1) is y(t) = a cos(t) + b sin(t) where a and b are constants. y(0) = 0 implies
that a = 0 and y(π/2) = 1 implies that b = 1. The solution of the boundary value problem is
therefore y(t) = sin(t). ♣

We have to be prudent when solving boundary value problems because there may not
exist a solution.

Example 14.1.2
The boundary value problem

y′′(t) + y(t) = 0 , 0 ≤ t ≤ π
y(0) = 0 and y(π) = 1

does not have a solution as can be seen by trying to satisfy the boundary conditions with
y(t) = a cos(t) + b sin(t). ♣

441

442 14. Boundary Value Problems

14.2 Shooting Methods

This section is based on Keller’s lectures [22].

Consider the boundary value problem

y′′ = f(t, y, y′) , a ≤ t ≤ b
y(a) = α and y(b) = β

(14.2.1)

Assuming that this problem has a solution (which is not always true even for nice boundary
value problems), a possible approach to solve this problem is to use our knowledge of initial
value problems. We have seen several analytical and numerical methods to solve initial value
problems. We solve the initial value problem

y′′ = f(t, y, y′) , a ≤ t ≤ b
y(a) = α and y′(a) = x

(14.2.2)

to find a solution y(t) = y(t, x) for a ≤ t ≤ b. Then we find xb such that y(b, xb) − β = 0 is
satisfied to get the solution y(t) = y(t, xb) of (14.2.1).

When no analytical solution of (14.2.2) is available, numerical solutions of the initial value
problem have to be found to approximate y(b). This means that a value of x has to be chosen
and a numerical solution of (14.2.2) has to be found to be able to compute y(b) = y(b, x). If
y(b) ≠ β, then another value of x has to be chosen and another numerical solution of (14.2.2)
has to be found to get a new value of y(b) = y(b, x). This has to be repeated until we find xb
such that y(b) = y(b, xb) is closed enough to β to meet the required accuracy. This approach
bears some resemblance to shooting where one tries to adjust the initial velocity to reach
the target.

We present a more general approach of the shooting method than the one usually found
in textbooks. Solving (14.2.2) using the numerical methods that we have presented requires
rewriting (14.2.2) has a system of first order differential equations. Moreover, the boundary
conditions may be more complex than the simple ones that we used given above. Our
approach will take all that into consideration.

14.2.1 Shooting Method for Linear Boundary Value Problems

Let GL(n) be the group of n × n matrices with real entries. We consider the boundary
value problem

P (y(t)) ≡ y′(t) −A(t)y(t) = f(t) , a ≤ t ≤ b
Bay(a) +Bby(b) = yc

(14.2.3)

where y ∶ [a, b] → Rn, A ∶ [a, b] → GL(n) and f ∶ [a, b] → Rn are sufficiently differentiable
functions, and Ba,Bb ∈ GL(n).

To solve this problem, we proceed as follows:

14.2. Shooting Methods 443

Algorithm 14.2.1 (Shooting Method)

1. We solve the initial value problems

P (y0(t)) = f(t) , a ≤ t ≤ b
y0(a) = yc

(14.2.4)

and

P (yj(t)) = 0 , a ≤ t ≤ b
yj(a) = ej

(14.2.5)

for j = 1, 2, . . . , n. Any other vector than yc would have been acceptable.

2. The general solution yg ∶ [a, b] → Rn of the differential equation in (14.2.3) is of
the form

yg(t) = y0(t) +
n

∑
j=1
djyj(t) = y0(t) + Y (t)d ,

where Y (t) = (y1(t) y2(t) . . . yn(t)) and d = (d1 d2 . . . dn)
⊺ ∈ Rn.

3. yg will be the solution of the boundary value problem (14.2.3) if there exists
d ∈ Rn such that

yc −Bay0(a) −Bby0(b) = Qd , (14.2.6)

where Q = Ba +BbY (b). With this value of d, we have that Bayg(a)+Bbyg(b) =
yc.

Example 14.2.2 (Example 14.1.1 continued)
The boundary value problem of Example 14.1.1 can be restated in the format (14.2.3) with

a = 0, b = π/2, y(t) = (x(t)
x′(t)), A = (

0 1
−1 0

), f(t) = (0
0
), Ba = (

1 0
0 0
), Bb = (

0 0
1 0
) and

yc = (
0
1
).

Since the general solution of P (y(t)) = y′(t) −A(t)y(t) = 0 is

y(t) = etAy(0) = (cos(t) sin(t)
− sin(t) cos(t))y(0) ,

we get y0(t) = (
sin(t)
cos(t)), y1(t) = (

cos(t)
− sin(t)), y2(t) = (

sin(t)
cos(t)) and Y (t) = (cos(t) sin(t)

− sin(t) cos(t)).

Thus

yg(t) = (
sin(t)
cos(t)) + (

cos(t) sin(t)
− sin(t) cos(t))(

d1
d2
)

and Q = Id. Since yc − Bay0(a) − Bby0(b) = 0 and Q is non-singular, the only solution of
(14.2.6) is d = 0. We find the solution yg(t) = y0(t) as expected. ♣

444 14. Boundary Value Problems

Theorem 14.2.3

If A ∶ [a, b] → GL(n) and f ∶ [a, b] → Rn are functions of class Cr, then the boundary
value problem (14.2.3) has a unique solution of class Cr+1 if and only if Q defined in
step 3 above is invertible.

Proof.
The existence (and uniqueness) of the solutions to (14.2.4) and (14.2.5) is proved in a basic
course on ordinary differential equations. It is proved in basic linear algebra that (14.2.6)
has a unique solution if and only if Q is invertible.

The following code implement the shooting method for our linear boundary value prob-
lem.(14.2.3).

Code 14.2.4 (Shooting Method)

To approximate the solution of the boundary value problem y′ − A(t) = f(f) with
Bay(a) +Bby(b) = yc for a ≤ t ≤ b. The classical fourth order Runga-Kutta is use to
solve initial value problems in the algorithm. For N given, the step size is h = (b−a)/N
and ti = a + ih for 0 ≤ i ≤ N .
Input: The vector valued function f ∶ [a, b]→ Rn (f in the code below).
The n × n matrix valued function A defined on [a, b] (A in the code below).
The n × n matrix Ba (Ba in the code below).
The n × n matrix Bb (Bb in the code below).
The (column) vector yc (yc in the code below).
The number N of equal partitions of [a, b].
The endpoints a and b of the interval of integration [a, b]
Output: The n × (N + 1) matrix ww that contains the approximation wk,i of yk,i =
yk(ti) for 1 ≤ k ≤ n and 0 ≤ i ≤ N , and the vector tt that contains ti for 0 ≤ i ≤ N .

function [tt,ww] = shooting(f,A,Ba,Bb,yc,N,a,b)

funct1 = @(t,y) A(t)*y + f(t);

funct2 = @(t,y) A(t)*y;

h = (b-a)/N;

n = length(yc);

% Solve the initial value problem

% y’(t) - A(t) y(t) = f(t) with y(a) = y_c

[tt,ww1] = rgkt4(funct1,h,N,a,yc);

% Solve the initial value problems

% y’(t) - A(t) y(t) = 0 with y(a) = e_i

% for 1 <= j <= n

WW = repmat(NaN,n,N+1,n);

for j=1:1:n

yj = zeros(n,1);

yj(j) = 1;

14.2. Shooting Methods 445

[tt,ww2] = rgkt4(funct2,h,N,a,yj);

WW(:,:,j) = ww2;

end

% Solve yc -B_a y_0(a) - B_b y_0(b) = Q d

% with Q = B_a + B_b Y(b)

Y = yc - Ba*ww1(:,1) -Bb*ww1(:,N+1);

Q = Ba + Bb*squeeze(WW(:,N+1,:));

d = linsolve(Q,Y);

ww2 = repmat(0,n,N+1);

for j=1:1:n

ww2 = ww2 + d(j)*squeeze(WW(:,:,j));

end

ww = ww1 + ww2;

end

We could have used one of the “ode” solvers in Matlab. However, we have chosen to use
our own implementation of Runage-Kutta in Rn. It is basically the same code that we have
presented in Code 13.4.9. We give it below.

Code 14.2.5 (Runge-Kutta of Order Four)

To approximate the solution of the initial value problem

y′(t) = f(t,y(t)) , t ≥ t0
y(0) = y0

Input: The function f(t,y) (funct in the code below).
The step-size h.
The number of steps N .
The initial time t0 (t0 in the code below) and the initial conditions y0 (y0 in the code
below) at t0.
Output: The approximations wi (ww(:,i+1) in the code below) of y(ti) at ti (tt(i+1)
in the code below).

function [tt,ww] = rgkt4(funct,h,N,t0,y0)

tt(1) = t0;

ww(:,1) = y0;

h2 = h/2;

for j=1:N

tt(j+1) = tt(1)+j*h;

k1 = h*funct(tt(j),ww(:,j));

k2 = h*funct(tt(j)+h2,ww(:,j)+k1/2);

k3 = h*funct(tt(j)+h2,ww(:,j)+k2/2);

k4 = h*funct(tt(j+1),ww(:,j)+k3);

ww(:,j+1) = ww(:,j) + (k1+2*(k2+k3)+k4)/6;

446 14. Boundary Value Problems

end

end

Example 14.2.6
Consider the following boundary value problem

y′1(t) = y2(t) , y′2(t) = 4y1(t) − 3et

with
y1(0) = 1 , y2(1) = e

This problem can be restated as y′(t) = A(t)y(t) + f(t) with Bay(0) +Bby(1) = yc, where

y = (y1(t)
y2(t)

) , A(t) = (0 1
4 0
) , f(t) = (0

−3et) , Ba = (
1 0
0 0
) , Bb = (

0 0
1 0
) and yc = (

1
e
) .

If we use the code above with N = 25, we find the following approximations of the solution.

i ti w1,i w2,i i ti w1,i w2,i

0 0 1.0 1.0 17 0.68 1.9738778 1.9738778
1 0.04 1.0408108 1.0408111 18 0.72 2.0544333 2.0544332
2 0.08 1.0832871 1.0832873 19 0.76 2.1382763 2.1382762
3 0.12 1.1274969 1.1274971 20 0.80 2.2255410 2.2255409
4 0.16 1.1735109 1.1735111 21 0.84 2.3163670 2.3163669
5 0.20 1.2214028 1.2214030 22 0.88 2.4108997 2.4108996
6 0.24 1.2712492 1.2712494 23 0.92 2.5092904 2.5092903
7 0.28 1.3231299 1.3231300 24 0.96 2.6116965 2.6116963
8 0.32 1.3771278 1.3771280 25 1.00 2.7182818 2.7182816
⋮ ⋮ ⋮ ⋮

where w1,i ≈ y1,i = y1(ti) and w2,i ≈ y2,i = y2(ti) for all i. All the approximations have at least

6-digit accuracy. The exact solution is y(t) = (e
t

et
).

For the sake of completeness, here is the code used to call the shooting method.

Code 14.2.7

format long

f = @(t) [0 ; -3*exp(t)];

A = @(t) [0 1 ; 4 0];

Ba = [1 0 ; 0 0];

Bb = [0 0 ; 1 0];

yc = [1 ; exp(1)];

N = 25;

[t,w] = shooting(f,A,Ba,Bb,yc,N,0,1)

♣

14.2. Shooting Methods 447

Example 14.2.8
The following example was used in [9] to test the shooting method and the parallel shooting
method that we will see shortly.

Consider the boundary value problem

y(4)(t) − 401y′′(t) + 400y(t) + 1 − 200t2 = 0

with

y(0) = 1 , y′(0) = 1 , y(1) = 3

2
+ sinh(1) and y′(1) = 1 + cosh(1) .

This problem can be rewritten as y′(t) = A(t)y(t) + f(t) with Bay(0) +Bby(1) = yc, where

y =
⎛
⎜⎜⎜
⎝

y1(t)
y2(t)
y3(t)
y4(t)

⎞
⎟⎟⎟
⎠
, A(t) =

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
−400 0 401 0

⎞
⎟⎟⎟
⎠
, f(t) =

⎛
⎜⎜⎜
⎝

0
0
0

−1 + 200t2

⎞
⎟⎟⎟
⎠
, Ba =

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
,

Bb =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠

and yc =
⎛
⎜⎜⎜
⎝

1
1

3/2 + sinh(1)
1 + cosh(1)

⎞
⎟⎟⎟
⎠
.

If we use the code above with N = 25, we find the following approximations of the solution
y(t) = y1(t).

i ti w1,i i ti w1,i i ti w1,i

0 0 1.0000000 9 0.36 1.4326265 18 0.72 2.0430405
1 0.04 1.0408107 10 0.40 1.4907523 19 0.76 2.1241049
2 0.08 1.0832854 11 0.44 1.5511354 20 0.80 2.2081060
3 0.12 1.1274882 12 0.48 1.6138455 21 0.84 2.2951282
4 0.16 1.1734835 13 0.52 1.6789536 22 0.88 2.3852584
5 0.20 1.2213360 14 0.56 1.7465317 23 0.92 2.4785857
6 0.24 1.2711106 15 0.60 1.8166536 24 0.96 2.5752018
7 0.28 1.3228730 16 0.64 1.8893942 25 1.00 2.6752012
8 0.32 1.3766894 17 0.68 1.9648304

where w1,i ≈ yi = y(ti) for all i because y1(t) = y(t) for all t. All the approximations have at
least 7-digit accuracy. The exact solution is y(t) = 1 + t2/2 + sinh(t).

It is interesting to note how much more accurate our results are then those in [9]. The
difference is not in the algorithm used because we both use a simple shooting method. The
difference is in the fact that they use single precision arithmetic (common for the main frame
computers at that time) while we use double precision arithmetic.

Moreover, the matrix A(t) has eigenvalues ±1 and ±20. So, we have a stiff ordinary
differential equation. However, the solution that we are approximating is the one associated
to the eigenvalues ±1. Fortunately, the fact that we use double precision arithmetic and that
we have imposed a condition at t = 1 eliminate the part associated to the eigenvalue 20. This

448 14. Boundary Value Problems

explain why the shooting method could give us a reasonably good solution. The reader is
invited to numerically solve the initial value problem y′(t) = A(t)y(t) + f(t) with y(0) = yc

using the classical fourth order Runge-Kutta methods. The solution obtained is not even
remotely closed to y(t) = 1 + t2/2 + sinh(t). The part of the general solution associated to
the eigenvalue 20 dominates. ♣

14.2.2 Numerical Aspect of the Shooting Method

Let {ti}Ni=0 be a partition of [a, b]. More precisely, t0 = a, tN = b , ti+1 = ti + hi with hi > 0 for
0 ≤ i < N and h = max

0≤i<N
hi ≤ θ min

0≤i<N
hi for some constant θ.

Remark 14.2.9 (Important)
The constant θ ≥ 1 is an absolute constant for the entire chapter. In particular, θ does not
vary with the choice of partitions. If θ = 1, we have that hi = h for all i. The step size is
constant. ♠

We assume that a stable and convergent numerical method is used to numerically solve
(14.2.4) and (14.2.5). Let wj,i be the numerical approximation of yj(ti) given by the numer-
ical method for 0 ≤ i ≤ N and 0 ≤ j ≤ n. Suppose that

∥wj,i − yj(ti)∥ = O(hp) , 0 ≤ i ≤ N , (14.2.7)

for 0 ≤ j ≤ n.
If we set QT = Ba +BbWN , where Wi = (w1,i w2,i . . . wn,i) ∈ GL(n) for 0 ≤ i ≤ N , then

(14.2.6) becomes
yc −Baw0,0 −Bbw0,N = QTdT (14.2.8)

for some dT ∈ Rn. Since ∥Q −QT ∥ = O(hp) from (14.2.7) and Q is invertible, we get from
Banach Lemma that QT is invertible for h small enough. To be more precise, if h is small
enough to have ∥Q − QT ∥ < 1/∥Q−1∥, then QT is invertible. Thus (14.2.8) has a unique
solution. Note that (14.2.8) is a system of linear equations which is not necessarily easy to
solve.

An approximation of the solution yg of the boundary value problem (14.2.3) is given by

wi =w0,i +WidT , 0 ≤ i ≤ N .

We now show that the approximation of the solution given by the shooting method also
satisfies

∥wi − y(ti)∥ = O(hp) .
Since ∥Q −QT ∥ = O(hp), we have that ∥QT ∥ is uniformly bounded for h small enough. To
prove this, choose h0 such that ∥Q −QT ∥ < 1/(2∥Q−1∥) for h < h0 and note that

∥Q−1T ∥ − ∥Q−1∥ ≤ ∥Q−1T −Q−1∥ = ∥Q−1T (Q −QT)Q−1∥ ≤ ∥Q−1T ∥ ∥Q −QT ∥ ∥Q−1∥

implies

∥Q−1T ∥ ≤
∥Q−1∥

1 − ∥Q −QT ∥ ∥Q−1∥
≤ 2∥Q−1∥

14.2. Shooting Methods 449

for h < h0. It follows that

∥Q−1 −Q−1T ∥ = ∥Q−1(QT −Q)Q−1T ∥ ≤ ∥Q−1∥
²
bounded

∥QT −Q∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=O(hp)

∥Q−1T ∥
²
bounded

= O(hp) . (14.2.9)

Since

∥y(ti) −wi∥ = ∥y0(ti) + Y (ti)d −w0,i −WidT ∥
≤ ∥y0(ti) −w0,i∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= O(hp) by (14.2.7)

+ ∥Y (ti) −Wi∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= O(hp) by (14.2.7)

∥d∥ + ∥Wi∥
±
bounded

∥d − dT ∥

and

∥d − dT ∥ = ∥Q−1 (yc −Bay0(a) −Bby0(b)) −Q−1T (yc −Baw0,0 −Bbw0,N) ∥

≤ ∥Q−1∥(∥Ba∥ ∥y0(a) −w0,0∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= O(hp) by (14.2.7)

+∥Bb∥ ∥y0(b) −w0,N∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= O(hp) by (14.2.7)

)

+ ∥Q−1 −Q−1T ∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= O(hp) by (14.2.9)

∥yc −Baw0,0 −Bbw0,N∥
´¹¹¸¹¹¹¶

bounded

,

we get
∥y(ti) −wi∥ = O(hp) .

This shows that the order of the shooting method is determined by the order of the numerical
methods used to solve the initial value problems (14.2.4) and (14.2.5).

Obviously, in the previous discussion, we have ignored rounding errors.

14.2.3 Separated and Partially Separated Boundary Conditions

For the boundary value problem (14.2.3), we generally assumed that

rank (Ba Bb) = n (14.2.10)

to get n linearly independent boundary conditions. This is a necessary condition to get Q
invertible.

Suppose that rankBb = q < n. There exists an n × n invertible matrix Rb (built from
operations on the rows of Bb) such that

RbBb = (
0

B
[b]
b

) ,

where B
[b]
b is a q × n matrix of rank q.

We define

(y
[a]
c

y
[b]
c

) = Rbyc ,

450 14. Boundary Value Problems

where y
[b]
c ∈ Rq and y

[a]
c ∈ Rn−q, and

(B
[a]
a

B
[b]
a

) = RbBa ,

where B
[a]
a is an (n − q)×n matrix and B

[b]
a is a q×n matrix. We have applied the operations

on the rows of Bb above to the rows of Ba. Note that B
[a]
a is of rank n−q because of (14.2.10).

The boundary conditions in (14.2.3) can then be rewritten as

B
[a]
a y(a) = y[a]c

B
[b]
a y(a) +B[b]b y(b) = y[b]c

(14.2.11)

The boundary conditions are separable if B
[b]
a = 0 and partially separable if B

[b]
a ≠ 0.

We now explain how to solve the boundary value problem (14.2.3). Let Da be a q × n
matrix such that

Ma = (
B
[a]
a

Da
)

is invertible. This is possible because B
[a]
a is of rank n − q and thus the rows of B

[a]
a are

linearly independent. Let Fa be the n × q matrix defined by

M−1
a = (Ea Fa) .

Note that Fa is of rank q because Ma is invertible.

To solve this problem, we may proceed as follows:

Algorithm 14.2.10

1. We solve the initial value problems

P (y0(t)) = f(t) , a ≤ t ≤ b
B
[a]
a y0(a) = y[a]c (14.2.12)

and

P (yj(t)) = 0 , a ≤ t ≤ b
yj(a) = Faej

for ej ∈ Rq and j = 1, 2, . . . , q. Since q < n, there are less initial value problems
to solve.

2. The general solution yg ∶ [a, b] → Rn of the differential equation in (14.2.3) is of
the form

yg(t) = y0(t) +
q

∑
j=1
djyj(t) = y0(t) + V (t)d ,

14.2. Shooting Methods 451

where V (t) = (y1(t) y2(t) . . . yq(t)) and d = (d1 d2 . . . dq)
⊺ ∈ Rq.

3. yg above will be a solution of the boundary value problem (14.2.3) if there exists
d ∈ Rq such that

B
[b]
a yg(a) +B[b]b yg(b) = y[b]c . (14.2.13)

Note that
B
[a]
a yg(a) = B[a]a y0(a) +B[a]a Fad = B[a]a y0(a) = y[a]c .

The second equality in the previous equation comes from B
[a]
a Fa = 0 because MaM−1

a = Id
and the last equality comes from (14.2.12).

Using the general form of yg and V (a) = Fa Idq, we get from (14.2.13) that

(B[b]a Fa +B[b]b V (b))d = y[b]c −B[b]a y0(a) −B[b]b y0(b) . (14.2.14)

Since q < n, we have a smaller system of linear equations to solve than in the general shooting
method.

Since V (t) = Y (t)Fa, where Y is the fundamental solution given in (14.2.5), the equation
in (14.2.14) can be rewritten

Qbd = y[b]c −B[b]a y0(a) −B[b]b y0(b) ,

where Qb = (B[b]a +B[b]b Y (b))Fa because V (b) = Y (b)Fa. The matrix Qb is an invertible q×q

matrix if and only if Q = B̃a + B̃bY (b) with B̃a = (
B
[a]
a

B
[b]
a

) and B̃b = (
0

B
[b]
b

) is invertible. To

prove the last sentence, it suffices to note that

QM−1
a = (

B
[a]
a

B
[b]
a +B[b]b Y (b)

) (Ea Fa) = (
Id 0
∗ Qb

)

because MaM−1
a = Id.

Remark 14.2.11
Similarly, if rankBa = p < n, we can rewrite the boundary conditions in (14.2.3) as

B
[a]
a y(a) +B[a]b y(b) = y[a]c

B
[b]
b y(b) = y[b]c

where B
[a]
a is a p × n matrix of rank p, B

[b]
b is a (n − p) × n matrix of rank n − p, and B[a]b

is a p × n matrix.

Obviously, there is also the alternative to reorder the coordinates of y to reduce this case
to the previous case. ♠

452 14. Boundary Value Problems

14.2.4 Parallel Shooting for Linear Boundary Value Problems

The parallel shooting method that we present in this section and the procedure presented in
the next section to determine the Fi and yc,i used in the parallel shooting method are based
on [9, 22].

A potential serious issue with the simple shooting method is that the solutions yj(t) given
by (14.2.5) may become more and more dependent as t increases; namely, the matrix Y (t) =
(y1(t) y2(t) . . . yn(t)) may become more and more singular, and so ill-conditioned, as t
increases. In particular, Y (b) could be ill-conditioned. Therefore, solving (14.2.6) may lead
to serious numerical errors.

The first step to address the issue above is to integrate on shorter interval of time
instead of the full interval [a, b]. It is crucial to do so if the solution is rapidly increasing in
some regions of the interval [a, b]. The basic idea is to apply the shooting method on each
interval [ti−1, ti].

We consider the boundary value problem (14.2.3). As usual, we let {ti}Ni=0 be a partition
of [a, b] with t0 = a, tN = b , ti+1 = ti + hi with hi > 0 for 0 ≤ i < N and h = max

0≤i<N
hi ≤ θ min

0≤i<N
hi

for some constant θ.

On each subinterval [ti, ti+1], we solve the initial value problems

P (yi,0(t)) = f(t) , ti ≤ t ≤ ti+1
yi,0(ti) = yc,i

(14.2.15)

and

P (yi,j(t)) = 0 , ti ≤ t ≤ ti+1
yi,j(ti) = Fiej

(14.2.16)

for the canonical vectors ej ∈ Rn and 1 ≤ j ≤ n. The matrices Fi of rank n and the vector
yc,i will be defined in Section 14.2.5 below.

We look for a solution yg ∶ [a, b]→ Rn of the boundary value problem (14.2.3) defined on
each interval [ti, ti+1] by

yg(t) = yi(t) = yi,0(t) + Vi(t)di , ti ≤ t ≤ ti+1 ,

where Vi(t) = (yi,1(t) yi,2(t) . . . yi,n(t)) for ti ≤ t ≤ ti+1 and di ∈ Rn.

To get a continuous solution y at the points ti for 0 < i < N , we impose the condition

yi(ti) = yi−1(ti) , 1 < i < N .

Namely,
yc,i + Fidi = yi−1,0(ti) + Vi−1(ti)di−1 , 1 < i < N . (14.2.17)

Moreover, the boundary condition in (14.2.3) gives

Ba (yc,0 + F0d0) +Bb (yN−1,0(b) + VN−1(b)dN−1) = yc . (14.2.18)

14.2. Shooting Methods 453

We can combine (14.2.17) and (14.2.18) to get the system ASd = BS, where

AS =

⎛
⎜⎜⎜⎜⎜⎜
⎝

BaF0 0 0 . . . 0 BbVN−1(b)
−V0(t1) F1 0 . . . 0 0

0 −V1(t2) F2 . . . 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 . . . −VN−2(tN−1) FN−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (14.2.19)

d =
⎛
⎜⎜⎜
⎝

d0

d1

⋮
dN−1

⎞
⎟⎟⎟
⎠

and BS =
⎛
⎜⎜⎜
⎝

yc −Bayc,0 −BbyN−1.0(b)
y0,0(t1) − yc,1

⋮
yN−2,0(tN−1) − yc,N−1

⎞
⎟⎟⎟
⎠
. (14.2.20)

Remark 14.2.12

1. If the Fi for 0 ≤ i < N are invertible, the parallel shooting method is equivalent to the
simple shooting method. In fact, we have

AS =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Q0 Q1 Q2 . . . QN−1
0 Id 0 . . . 0
0 0 Id . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . Id

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

F0 0 0 . . . 0
−V0(t1) F1 0 . . . 0

0 −V1(t2) F2 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 −VN−2(tN−1) FN−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where

Qi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

BbVi(b)F −1i for i = N − 1
Qi+1Vi(ti+1)F −1i for i = N − 2,N − 3, . . . ,1
Ba +Qi+1Vi(ti+1)F −1i for i = 0

Since Vi(t) = Yi(t)Fi for ti ≤ t ≤ ti+1, where Yi(t) is the fundamental solution of
P (y(t)) = 0 on [ti, ti+1], in particular Yi(ti) = Id, we have that

Q0 = Ba +BbVN−1(tN)F −1N−1VN−2(tN−1)F −1N−2 . . . V0(t1)F −10

= Ba +BbYN−1(b)YN−2(tN−1) . . . Y0(t1)
= Ba +BbY (b) = Q ,

where Y is the fundamental solution of P (y(t)) = 0 on [a, b]. To get the second to last
equality in the previous equation, we have use the uniqueness of solutions for initial
value problems.

Thus AS is invertible if and only if Q is invertible.

2. Note that the decomposition of AS above is an LU decomposition of AS that may be
used (with care) to solve ASd = BS.

3. If we have separated or partially separated end-conditions, then we may assume that

the row operations (i.e. Rb in Section 14.2.3) have been performed to get yc = (
y
[a]
c

y
[b]
c

),

454 14. Boundary Value Problems

Ba = (
B
[a]
a

B
[b]
a

) and Bb = (
0

B
[b]
b

). The matrices Fi in (14.2.16) are now n × q matrices

of rank q. We can then repeat the reasoning in this section to get a system of linear
equations ASd = BS with AS, BS and d defined by

AS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B
[a]
a F0 0 0 . . . 0 0
−V0(t1) F1 0 . . . 0 0

0 −V1(t2) F2 . . . 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 . . . −VN−2(tN−1) FN−1

B
[b]
a F0 0 0 . . . 0 B

[b]
b VN−1(b)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, d =
⎛
⎜⎜⎜
⎝

d0

d1

⋮
dN−1

⎞
⎟⎟⎟
⎠

and

BS =

⎛
⎜⎜⎜⎜⎜⎜
⎝

y
[a]
c −B[a]a yc,0

y0(t1) − yc,1

⋮
yN−2(tN−1) − yc,N−2

y
[b]
c −B[b]a yc,0 −B[b]b yN−1,0(b)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The first n− q rows of AS above are the first n− q rows of AS in (14.2.19), and the last
q rows of AS above are the q rows from the (n − q + 1)th to the nth row inclusively of
AS in (14.2.19). We have a similar statement for BS above and BS in (14.2.20).

Matrices like AS (i.e. lower or almost lower block triangular) often appear in the nu-
merically solution of systems of partial differential equations. This type of matrices
has been extensively studied in numerical analysis.

♠

14.2.5 The Choice of Fi and yc,i

The simple shooting method is given by Fi = Id for 0 ≤ i < N , yc,i = 0 for 1 ≤ i < N , and
yc,0 = yc, where yc is defined in (14.2.3). But this is not the one interesting us.

The second step to address the issue mentioned at the beginning of Section 14.2.4 is
to replace (14.2.17) and (14.2.18) by equations that no longer involve the Vi−1(ti) but only
matrices Fi−1 that have orthonormal columns.

The last step to address the issue mentioned at the beginning of Section 14.2.4 is
to ensure that yc,i is not in the range of Vi−1(ti) in order to provided a transition from the
integration on the interval [ti−1, ti] to the interval [ti, ti+1]. It is traditional to take yc,i in
the orthogonal complement of the column span of Vi−1(ti).

We implement these two steps below.

From now on, we assume that the boundary conditions are partially separated.

1. Let F0 = Fa and yc,0 = y0(a), where Fa and y0 are defined in Section 14.2.3.

14.2. Shooting Methods 455

2. Suppose that we have determined Vi−1(ti). The q columns of Fi are the q columns of
Vi−1(ti) after they have been orthonormalized. Therefore, Fi = Vi−1(ti)Pi−1 for some
q × q upper-triangular matrix Pi−1. Usually, the Gram-Schmidt method seen in linear
algebra is used for this purpose.

3. yc,i is the projection of yi−1,0(ti) on the orthogonal complement of the column span of
Fi. Therefore, yc,i = (Id−FiF

⊺
i)yi−1,0(ti).

We now explain how to compute the di for 0 ≤ i < N that are used to define the yi of the
parallel shooting method.

We rewrite (14.2.17) as

yc,i + Fidi = yi−1,0(ti) + Vi−1(ti)di−1

for i = N − 1, N − 2, . . . , 1. If we interpret this equation for the shooting method with
partially separated boundary conditions, we get

(Id−Vi−1(ti)Pi−1F
⊺
i)yi−1,0(ti) + Vi−1(ti)Pi−1di = yi−1,0(ti) + Vi−1(ti)di−1

for i = N − 1, N − 2, . . . , 1. This equation can be simplified to yield

Vi−1(ti)Pi−1 (di − F ⊺i yi−1,0(ti)) = Vi−1(ti)di−1

for i = N − 1, N − 2, . . . , 1.
Since Vi−1(ti) has rank q because the columns of Vi−1 are q linearly independent solutions

of P (y(t)) = 0 1, we can simplify the previous equation to get

di−1 = Pi−1 (di − F ⊺i yi−1,0(ti)) ∈ Rq (14.2.21)

for j = N , N − 1, N − 2, . . . , 1. Note that we have extended (14.2.21) to i = N . the extra FN

and yc,N are also given by the previous 3-step procedure.

We first show that the condition

B
[a]
a F0d0 = y[a]c −B[a]a yc,0 (14.2.22)

from the first n − q rows of (14.2.18) (Item 3 of Remark 14.2.12) is automatically satisfied

by construction. We have that (14.2.22) is equivalent to B
[a]
a yc,0 = y

[a]
c because F0 = Fa

and B
[a]
a Fa = 0 since MM−1 = Id. Moreover, it follows from (14.2.12) that B

[a]
a yc,0 = y[a]c is

satisfied because we assume that yc,0 = y0(a).
We now consider the condition

B
[b]
a F0d0 +B[b]b VN−1(b)dN−1 = y[b]c −B[b]a yc,0 −B[b]b yN−1,0(b)

1We use the uniqueness of solutions for ordinary differential equations to conclude that if {yi,j(t)}qj=1 is a

linearly independent set of solutions, then {yi,j(s)}qj=1 is a linear independent set of vectors in Rn for every
s ∈ [ti, ti+1].

456 14. Boundary Value Problems

from the last q rows of (14.2.18) (Item 3 of Remark 14.2.12). Using (14.2.21) for i = N , we
get

B
[b]
a F0d0 +B[b]b VN−1(b)PN−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=FN

(dN − F ⊺NyN−1,0(tN)) = y[b]c −B[b]a yc,0 −B[b]b yN−1,0(b)

⇒ B
[b]
a F0d0 +B[b]b FNdN −B[b]b FNF

⊺
NyN−1,0(tN) = y[b]c −B[b]a yc,0 −B[b]b yN−1,0(b)

⇒ B
[b]
a F0d0 +B[b]b FNdN = y[b]c −B[b]a yc,0 −B[b]b (Id−FNF

⊺
N)yN−1,0(tN)

´¹¹¸¹¹¹¶
=yc,N

⇒ B
[b]
a F0d0 +B[b]b FNdN = y[b]c −B[b]a yc,0 −B[b]b yc,N .

Therefore, the vectors di are given by the system of linear equations ASd = BS, where

AS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− Id P0 0 . . . 0 0
0 − Id P1 . . . 0 0
0 0 − Id . . . 0 0

⋱
0 0 0 . . . − Id PN−1

B
[b]
a F0 0 0 . . . 0 B

[b]
b FN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, d =
⎛
⎜⎜⎜
⎝

d0

d1

⋮
dN

⎞
⎟⎟⎟
⎠

and

BS =

⎛
⎜⎜⎜⎜
⎝

P0F
⊺
1 y0,0(t1)
⋮

PN−1F
⊺
NyN−1,0(tN)

y
[b]
c −B[b]a yc,0 −B[b]b yc,N

⎞
⎟⎟⎟⎟
⎠

.

Remark 14.2.13
The method proposed above could be improved. Since orthonormalization is costly in com-
putation time and prone to numerical round off errors, it may be preferable to perform it only
when the matrix Vi−1(ti) is “nearly singular” only. A method to determine if orthonormal-
ization is required is to test for the size of the angles between the column vectors of Vi−1(ti).
If the angles get “too close” to 0, orthonormalization should be used. Recall that the cosine
of the angle between two vectors a and b is determined by ⟨a,a⟩ /(∥a∥ ∥b∥). Unfortunately,
even this method is kind of computer time intensive.

The method could also be improved by appropriately choosing the mesh points {ti}Ni=0
such that ti+1 − ti is “small” when the solution is “rapidly” increasing. We select the mesh
points as i increases to ensure that Vi−1(ti) does not get too “large.” ♠

Code 14.2.14 (Parallel Shooting Method for Linear Problems with Partially
Separated End-conditions)

To approximate the solution of the boundary value problem y′ − A(t) = f(f) with
Bay(a)+Bby(b) = yc for a ≤ t ≤ b. We consider the intervals [ti, ti+1] for 0 ≤ i < N with
ti = a+ iH and H = (b− a)/N . We use the classical fourth order Runge-Kutta on each
interval [ti, ti+1] with the step size h = (ti − ti+1)/M to solve initial value problems.

14.2. Shooting Methods 457

Let ti,j = ti + jh for 0 ≤ i < N and 0 ≤ j ≤M .
Input: The vector valued function f ∶ [a, b]→ Rn (f in the code below).
The n × n matrix valued function A defined on [a, b] (A in the code below).

The (n − q) × n matrix B
[a]
a (Baa in the code below).

The q × n matrix B
[b]
a (Bab in the code below).

The q × n matrix B
[b]
b (Bbb in the code below).

The (column) vector yc ∈ Rn (yc in the code below).
The number N of partitions of [a, b].
The number M of partitions of each [ti, ti+1].
The endpoints a and b of the interval of integration [a, b].
Output: The n × (MN + 1) matrix ww that contains the approximations wk,iM+j
of yk(ti,j) and the vector tt that contains tiM+j = ti,j for 1 ≤ k ≤ n, 0 ≤ i < N , and
0 ≤ j <M if i < N − 1 or 0 ≤ j ≤M if i = N − 1.

function [tt,ww] = par_shooting(f,A,Baa,Bab,Bbb,yc,M,N,a,b)

funct1 = @(t,y) A(t)*y + f(t);

funct2 = @(t,y) A(t)*y;

n = length(yc);

q = size(Bbb,1);

nmq = n - q;

ttt = repmat(NaN,M+1,N);

WW1 = repmat(NaN,n,M+1,N);

WWW = repmat(NaN,n,M+1,q,N);

PPi = repmat(NaN,q,q,N+1);

FFi = repmat(NaN,n,q,N+1);

yci = repmat(NaN,n,N+1);

% We choose the matrix D_a such that M_a is invertible

Da = zeros(q,n);

s = 1;

for j=1:1:n

v = zeros(1,n);

v(j) = 1;

MM = [Baa ; v];

if (rank(MM) > nmq)

Da(s,:) = v;

s = s +1;

end

if (rank(Da) == q)

break;

end

end

% We find the matrix F_a

Ma = [Baa ; Da];

Mainv = inv(Ma);

458 14. Boundary Value Problems

Fa = Mainv(:,(q+1):n);

% We now compute the approximation of y_i(t_j) and

% V_i(t_j) for 0 <= i < N and 0 \leq j \leq M, and the

% F_i and R_i for 0 <= i <= N.

% Warning: the indices i and j in matlab are shifted by 1

% because vectors start with the index 1.

H = (b-a)/N;

h = H/M;

ti = a;

FFi(:,:,1) = Fa;

% We solve M_a y_{c,0} = y_c instead of B_a^{[a]} y_{c,0} = y_c^{[a]}

% to ensure that there is only one solution for Matlab to find.

yci(:,1) = linsolve(Ma,yc);

for i=1:1:N+1

% Solve the initial value problem

% y’(t) - A(t) y(t) = f(t) with y_{i,0}(t_i) = y_{c,i}

if (i <= N)

[t,ww1] = rgkt4(funct1,h,M,ti,yci(:,i));

WW1(:,:,i) = ww1;

end

% Solve the initial value problems

% y’(t) - A(t) y(t) = 0 with y_{i,j}(t_i) = F_i e_j

% for 1 <= j <= q

WW = repmat(NaN,n,M+1,q);

for j=1:1:q

yj = zeros(q,1);

yj(j) = 1;

y = FFi(:,:,i)*yj;

[tt,ww2] = rgkt4(funct2,h,M,ti,y);

WW(:,:,j) = ww2;

end

if (i <= N)

ttt(:,i) = tt;

WWW(:,:,:,i) = WW;

end

% We choose F_{i+1} and Y_{c,i+1} for the next interval

% The function par_QR is defined in the following code.

% It is used to find F_i and P_{i-1}.

Vi = squeeze(WW(:,M+1,:));

[Fi,R] = par_QR(Vi);

FFi(:,:,i+1) = Fi;

14.2. Shooting Methods 459

PPi(:,:,i) = inv(R);

if (i <= N)

yci(:,i+1) = (eye(n) - Fi*Fi’)*ww1(:,M+1);

end

ti = ti + H;

end

% We now find the vector d_i for 0 <= i < N .

qN = q*N;

qNp1 = q*(N+1);

As = zeros(qNp1,qNp1);

Bs = zeros(qNp1,1);

for i=1:1:N

qi = q*i;

qim1 = qi - q + 1;

As(qim1:qi, qim1:qi) = - eye(q);

As(qim1:qi, qi+1:qi+q) = squeeze(PPi(:,:,i));

Bs(qim1:qi,1) = PPi(:,:,i)*(FFi(:,:,i+1)’)*WW1(:,M+1,i);

end

As(qN+1:qNp1, 1:q) = Bab*FFi(:,:,1);

As(qN+1:qNp1, qN+1:qNp1) = Bbb*FFi(:,:,N+1);

Bs(qN+1:qNp1,1) = yc(nmq+1:n,1) - Bab*yci(:,1) - Bbb*yci(:,N+1);

D = linsolve(As,Bs);

% The results

ww = [];

tt = [];

for i=1:1:N

w = zeros(n,M+1);

for j=1:1:q

w = w + D((i-1)*q+j)*squeeze(WWW(:,:,j,i));

end

if (i < N)

ww = [ww, WW1(:,1:M,i) + w(:,1:M)];

tt = [tt, ttt(1:M,i)’];

else

ww = [ww, WW1(:,:,i) + w];

tt = [tt, ttt(:,i)’];

end

end

end

Finding the QR decomposition of a matrix is normally seen in a first course on linear
algebra. We also presented it in Section 11.6.1i of Chapter 11.

460 14. Boundary Value Problems

Code 14.2.15 (QR Decomposition)

Find the QR decomposition of a matrix A: namely, A = QR where the columns of
Q are orthonormal and R is upper triangular. The columns of A must be linearly
independent.
Input: The n × q matrix A.
Output: The matrices Q and R of the QR decomposition of A.

% [Q,R] = par_QR(A)

%

function [Q,R] = par_QR(A)

n = size(A,1);

q = size(A,2);

Q = repmat(NaN,n,q);

R = zeros(q);

if (rank(A) < q)

return;

end

R(1,1) = norm(A(:,1));

Q(:,1) = (1/R(1,1))*A(:,1);

for i = 2:1:q

v = A(:,i);

for j = 1:1:i-1

R(j,i) = Q(:,j)’*A(:,i);

v = v - R(j,i)*Q(:,j);

end

R(i,i) = norm(v);

Q(:,i) = (1/R(i,i))*v;

end

end

We now revisit the two examples that we have considered with our code for the parallel
shooting method.

Example 14.2.16 (Example 14.2.6 Continued)
If we use the Code 14.2.14 with N = M = 10, we get the following approximations of the

14.2. Shooting Methods 461

solution.

i ti w1,i w2,i i ti w1,i w2,i

0 0 1 1 93 0.92 2.5092904 2.5092904
1).01 1.0100502 1.0100502 93 0.93 2.5345092 2.5345092
2 0.02 1.0202013 1.0202013 94 0.94 2.5599814 2.5599814
3 0.03 1.0304545 1.0304545 95 0.95 2.5857097 2.5857097
4 0.04 1.0408108 1.0408108 96 0.96 2.6116965 2.6116965
5 0.05 1.0512711 1.0512711 97 0.97 2.6379445 2.6379445
6 0.06 1.0618365 1.0618365 98 0.98 2.6644562 2.6644562
7 0.07 1.0725082 1.0725082 99 0.99 2.6912345 2.6912345
8 0.08 1.0832871 1.0832871 100 1.00 2.7182818 2.7182818
⋮ ⋮ ⋮ ⋮

where w1,i ≈ y1,i = y1(ti) and w2,i ≈ y2,i = y2(ti) for all i. All the approximations have at least
8-digit accuracy.

For the sake of completeness, here is the code used to call the parallel shooting method.

Code 14.2.17

format long

f = @(t) [0 ; -3*exp(t)];

A = @(t) [0 1 ; 4 0];

Baa = [1 0];

Bab = [0 0];

Bbb = [1 0];

yc = [1 ; exp(1)];

N = 10;

M = 10;

[t,w] = par_shooting(f,A,Baa,Bab,Bbb,yc,M,N,0,1)

♣
Example 14.2.18 (Example 14.2.6 Continued)
If we use the Code 14.2.14 with N = M = 10, we get the following approximations of the
solution.

i ti w1,i i ti w1,i i ti w1,i

0 0.00 1.00000000000 9 0.09 1.09417154921 92 0.92 2.47858567444
1 0.01 1.01005016666 10 0.10 1.10516675001 93 0.93 2.50242773364
2 0.02 1.02020133336 11 0.11 1.11627196757 94 0.94 2.52647679150
3 0.03 1.03045450020 12 0.12 1.12748820742 95 0.95 2.55073431794
4 0.04 1.04081066751 13 0.13 1.13881647619 96 0.96 2.57520179373
5 0.05 1.05127083593 14 0.14 1.15025778172 97 0.97 2.59988071063
6 0.06 1.06183600647 15 0.15 1.16181313314 98 0.98 2.62477257154
7 0.07 1.07250718067 16 0.16 1.17348354101 99 0.99 2.64987889067
8 0.08 1.08328536063 ⋮ ⋮ ⋮ 100 1.00 2.67520119364

where w1,i ≈ yi = y(ti) for all i. All the approximations have at least 10-digit accuracy. ♣

462 14. Boundary Value Problems

14.2.6 Shooting Method for Non-Linear Boundary Value Prob-
lems

We consider the boundary value problem

y′(t) = f(t,y(t)) , a ≤ t ≤ b
g(y(a),y(b)) = 0

(14.2.23)

This problem can be reformulated as follows. Find s ∈ Rn such that the solution u(t, s) of

∂u

∂t
(t, s) = f(t,u(t, s)) , a ≤ t ≤ b

u(a, s) = s
(14.2.24)

satisfies
ϕ(s) = g(s,u(b, s)) = 0 . (14.2.25)

We have reduced the problem to finding the roots of ϕ(s). Hence, u(t, s) will be a solution
of (14.2.23) if s is a root of ϕ(s).

The following theorem (assuming that g in (14.2.23) is also sufficiently differentiable) will
ensure that the solution of (14.2.23), if there is one, is sufficiently differentiable. Moreover,
the following theorem will also be used to justify the use of the Newton Method to find a
root of ϕ(s).

Theorem 14.2.19

Suppose that yg is a solution of (14.2.23) and that there exist two positive constants
K and δ such that

∥f(t,v) − f(t,w)∥ ≤K∥v −w∥

for all (t,v), (t,w) ∈ Tδ(y), where

Tδ(y) = {(t,v) ∈ R ×Rn ∶ a ≤ t ≤ b and ∥y(t) − v∥ ≤ δ} .

(Figure 14.1) If s ∈ {s ∈ Rn ∶ ∥y(a) − s∥ ≤ δe−K(b−a)}, then there exists a unique
solution u of (14.2.24). Moreover, if f is continuously differentiable on Tδ(y), then
U(t, s) = Dsu(t, s) exists for a ≤ t ≤ b and is the fundamental solution of

U ′(t) = Dyf(t,u(t, s))U(t) , a ≤ t ≤ b . (14.2.26)

In particular, U(a, s) = Id.

Proof.
The domain Tδ(y) is sketched in Figure 14.1. These are classical results of ordinary differ-
ential equations.

14.2. Shooting Methods 463

Tδ(y)

t

y

a b

y = y(t)

c
Sδ(y(c))

Figure 14.1: The domain Tf(y) of Theorem 14.2.19 used to define conditions that
will ensure solutions of an initial value problem. Note that Sδ(y(c)) = {v ∶ ∥v −
y(c)∥ < δ}.

The Newton Method applied to (14.2.25) is

Q(s[j]) (s[j+1] − s[j]) = −ϕ(s[j]) , j ≥ 0 , (14.2.27)

where
Q(s) = Dsϕ(s) = Dy1g(s,u(b, s)) +Dy2g(s,u(b, s))U(b, s)

for

g ∶ Rn ×Rn → Rn

(y1,y2)↦ g(y1,y2)

The following theorem justifies the use of the Newton Method to find a root of ϕ. It also
gives a (not that useful) hint on how to choose s0.

Theorem 14.2.20

Suppose that ϕ has an isolate root s∗ and that there exist ρ∗ > 0, β and γ such that

∥Q−1(s∗)∥ < β ,
∥Q(s) −Q(s̃)∥ ≤ γ∥s − s̃∥

for all s, s̃ ∈ Sρ∗(s∗) = {s ∶ ∥s − s∗∥ ≤ ρ∗}, and ρ∗βγ <
2

3
.

Then, for all s[0] ∈ Sρ∗(s∗), the sequence {s[j]}∞j=0 given by the iterative method defined
in (14.2.27) stays in Sρ∗(s∗) and converge to s∗. The convergence is quadratic; namely,

∥s[j+1] − s∗∥ ≤ α∥s[j] − s∗∥2 , (14.2.28)

where α = βγ

2(1 − ρ∗βγ)
.

464 14. Boundary Value Problems

Proof.
For all s,

Q(s) = Q(s∗) (Id−Q−1(s∗) (Q(s∗) −Q(s))) .

Since

∥Q−1(s∗) (Q(s) −Q(s∗)) ∥ ≤ ∥Q−1(s∗)∥ ∥Q(s∗) −Q(s)∥ ≤ βγ∥s − s∗∥ ≤ βγρ∗ <
2

3
< 1

for all s ∈ Sρ∗(s∗), it follows from the Banach Lemma (Proposition 3.2.5 and Corollary 3.2.6)
that Id−Q−1(s∗) (Q(s∗) −Q(s)) is invertible for all s ∈ Sρ∗(s∗). Thus Q(s) is invertible and

∥Q−1(s)∥ < ∥ (Id−Q−1(s∗) (Q(s∗) −Q(s)))
−1 ∥ ∥Q−1(s∗)∥ ≤

β

1 − ρ∗βγ

for all s ∈ Sρ∗(s∗).
We prove that s[j] ∈ Sρ∗(s∗) for all j by induction. We have that s[0] ∈ Sρ∗(s∗). We

assume that s[j] ∈ Sρ∗(s∗) and show that this implies that s[j+1] ∈ Sρ∗(s∗). Since ϕ(s∗) = 0
and Q−1(s) exists for all s ∈ Sρ∗(s∗), we get from (14.2.27) that

s[j+1] − s∗ = (s[j] − s∗) +Q−1(s[j]) (ϕ(s∗) − ϕ(s[j]))
= Q−1(s[j]) (Q(s[j]) −Q(s∗, s[j])) (s[j] − s∗) ,

where

Q(s, s̃) = ∫
1

0
Q(θs + (1 − θ)s̃)dθ .

Note that

Q(θs + (1 − θ)s̃) (s − s̃) = d

dθ
ϕ(θs + (1 − θ)s̃)

since Q(s) = Dsϕ(s). Hence,

∥s[j+1] − s∗∥ ≤ ∥Q−1(s[j])∥ ∥Q(s[j]) −Q(s∗, s[j])∥ ∥s[j] − s∗∥

≤ (β

1 − ρ∗βγ
) γ
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=α

∥s[j] − s∗∥2 , (14.2.29)

where the last inequality comes from

∥Q(s[j]) −Q(s∗, s[j])∥ = ∥∫
1

0
(Q(s[j]) −Q(θs∗ + (1 − θ)s[j])) dθ∥

≤ ∫
1

0
∥Q(s[j]) −Q(θs∗ + (1 − θ)s[j])∥ dθ

≤ γ ∫
1

0
∥s[j] − θs∗ − (1 − θ)s[j])∥ dθ

= γ ∥−s∗ + s[j]∥∫
1

0
θ dθ = γ

2
∥−s∗ + s[j]∥ . (14.2.30)

14.2. Shooting Methods 465

It follows from (14.2.29) that

∥s[j+1] − s∗∥ ≤ αρ2∗ < ρ∗

because α < 3βγ/2 < 1/ρ∗ which is a consequence of ρ∗βγ < 2/3. Thus s[j] ∈ Sρ∗(s∗) for all j
by induction.

Since Sρ∗(s∗) is complete, there is a subsequence of {s[j]}∞j=0 that converges. However, we
also have from (14.2.29) that

∥s[j+1] − s∗∥ ≤ (
ρ∗βγ

2(1 − ρ∗βγ)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<1

∥s[j] − s∗∥ (14.2.31)

again because ρ∗βγ < 2/3. As we have done in the proof of the Fixed Point Theorem,
Theorem 2.4.2, we can show that {s[j]}∞j=0 converges to s∗.

Finally, we also have from (14.2.29) that (14.2.28) is satisfied.

Remark 14.2.21
To compute s[j+1], we must solve (14.2.24) and compute the fundamental solution of (14.2.26),
where s is replaced by s[j]. ♠

14.2.7 Error Analysis

Numerical computations are never exact. We now consider the effect of truncation (e.g.
in numerical integration) on the Newton Method (14.2.27). To simplify the discussion, we
assume that there is no round off error which, in practice, is not negligible. Because of
truncation, instead of (14.2.27), we actually compute

Q(s̃[j]) (s̃[j+1] − s̃[j]) = −ϕ(s̃[j]) + δj+1(h) (14.2.32)

for j ≥ 0, where h is the maximum step size of the partition of [a, b] for the converging and
stable numerical method used to solve the differential equation. We assume that, for all j,
∥δj(h)∥ ≤Mhp for some constant M and positive integer p.

Theorem 14.2.22

Suppose that the hypothesis of Theorem 14.2.20 are satisfied with ρ∗ replaced by
ρ̃ = ρ∗ + δ∗ and ρ∗βγ < 2/3 replaced by ρ̃βγ < 1/2. Suppose that θ ∈]0,1[satisfies

2γMhp (βγ

1 − 2ρ̃βγ
)
2

≤ θ (14.2.33)

and

σ ≡ 1

1 +
√
1 − θ

(2βMhp

1 − 2ρ̃βγ
) ≤ δ∗ . (14.2.34)

466 14. Boundary Value Problems

Then, if s[0] ∈ Sρ∗(s∗) satisfies ∥s[1] − s[0]∥ ≤ ρ∗, the sequences {s[j]}∞j=0 of (14.2.27) and
{s̃[j]}∞j=0 of (14.2.32) with s̃[0] = s[0] satisfy

∥s[j] − s̃[j]∥ ≤ σ and ∥s̃[j] − s∗∥ ≤
1

α
(α∥s[0] − s∗∥)

2j + σ

for all j ≥ 0, where α is defined in the statement of Theorem 14.2.20.

Proof.
As in Theorem 14.2.20, we can show that Q(s) is invertible and

∥Q−1(s)∥ ≤ β

1 − ρ̃βγ

for all s ∈ Sρ̃(s∗). Moreover, as in Theorem 14.2.20, we can show that s[j] ∈ Sρ∗(s∗) and

∥s[j+1] − s[j]∥ ≤ ρ∗ (14.2.35)

for j ≥ 0 if s0 ∈ Sρ∗(s∗) because ρ∗βγ ≤ ρ̃βγ < 1/2 < 2/3. In particular, (14.2.35) follows from
the hypothesis that ∥s[1] − s[0]∥ ≤ ρ∗ and

∥s[j+1] − s[j]∥ ≤ λ∥s[j] − s[j−1]∥

with λ = ρ∗βγ

2(1 − ρ∗βγ)
< 1 that can be proved as (14.2.31) was proved.

Let r[j] = s[j] − s̃[j]. If we subtract (14.2.32) from (14.2.27), we get

Q(s̃[j]) r[j+1] = (Q(s̃[j]) −Q(s[j], s̃[j])) r[j]

+ (Q(s̃[j]) −Q(s[j])) (s[j+1] − s[j]) −∆j(h) .
(14.2.36)

A) If s̃[j] ∈ Sρ̃(s∗), we show that ∥r[j]∥ < σ and s̃[j+1] ∈ Sρ̃(s∗). From (14.2.36), we get

∥r[j+1]∥ ≤ ∥Q−1(s̃[j])∥(∥Q(s̃[j]) −Q(s[j], s̃[j])∥
´¹¹¹¸¹¹¹¶
≤(γ/2)∥r[j]∥ as in (14.2.30)

∥r[j]∥

+ ∥Q(s̃[j]) −Q(s[j])∥
´¹¹¹¸¹¹¹¶
≤γ∥r[j]∥ by Hypothesis of
Theorem 14.2.20 with

ρ∗ replaced by ρ̃

∥s[j+1] − s[j]∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤ρ̃ from (14.2.35)

+ ∥δj+1(h)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤Mhp

)

= β

1 − ρ̃βγ
(γ
2
∥r[j]∥2 + γρ̃∥r[j]∥ − 1 − ρ̃βγ

β
∥r[j]∥ +Mhp) + ∥r[j]∥

= q(∥r[j]∥) + ∥r[j]∥ , (14.2.37)

where

q(z) = β

1 − ρ̃βγ
(γz

2

2
− (1 − 2ρ̃βγ

β
)z +Mhp)

14.2. Shooting Methods 467

because

γρ̃ − 1 − ρ̃βγ
β

= 2ρ̃βγ − 1
β

.

Since ((1−2ρ̃βγ)/β)2−2γMhp > 0 from (14.2.33), and (1−2ρ̃βγ)/β > 0 because ρ̃βγ < 1/2,
the quadratic polynomial q(z) has two positive roots z+ > z−. We show by induction that
∥r[j]∥ ≤ z− for all j. The result is true for j = 0 because ∥r[0]∥ = 0. Suppose that ∥r[j]∥ ≤ z−.
Since

q′(z) = β

1 − ρ̃βγ
(γz − (1 − 2ρ̃βγ

β
)) ,

we have that

−1 < −1 − 2ρ̃βγ
1 − ρ̃βγ

= q′(0) ≤ q′(z) ≤ q′(z−) < 0

for 0 ≤ z ≤ z− and q is concave up. We get the following figure

w

w = q(z)
q(z)

q′(z) with −1 ≤ q′(z) ≤ 0
Tangent line of slope

π/4
z−z + q(z)z

It follows that z + q(z) < z− for 0 ≤ z ≤ z−. Therefore ∥r[j+1]∥ ≤ z− from (14.2.37). This
completes the proof by induction.

We now show that z− ≤ σ. Since z+z− = 2Mhp/γ and

z+ =
1 − 2ρ̃βγ
βγ

⎛
⎜
⎝
1 +

¿
ÁÁÀ1 − 2γMhp (β

1 − 2ρ̃βγ
)
2⎞
⎟
⎠
≥ 1 − 2ρ̃βγ

βγ
(1 +
√
1 − θ) > 0

because

2γMhp (β

1 − 2ρ̃βγ
)
2

≤ θ

according to (14.2.33), it follows that

z− =
2Mhp

γz+
≤ 2Mhp

1 +
√
1 − θ

(β

1 − 2ρ̃βγ
) = σ .

Finally,

∥s̃[j+1] − s∗∥ ≤ ∥s̃[j+1] − s[j+1]∥ + ∥s[j+1] − s∗∥ = ∥r[j+1]∥ + ∥s[j+1] − s∗∥
≤ σ + ρ∗ ≤ δ∗ + ρ∗ = ρ̃ ,

where the last inequality comes from the hypothesis σ < δ∗. Thus, s̃[j+1] ∈ Sρ(s∗).
B) By induction, we get from (14.2.28) that

∥s[j] − s∗∥ ≤ α2j−1∥s[0] − s∗∥2
j

,

468 14. Boundary Value Problems

where α = βγ

2(1 − ρ∗βγ)
. Hence,

∥s̃[j] − s∗∥ ≤ ∥s̃[j] − s[j]∥ + ∥s[j] − s∗∥ ≤ δ + α2j−1∥s[0] − s∗∥2
j ≤ δ + 1

α
(α∥s[0] − s∗∥)

2j

.

It follows from the previous theorem that the accuracy of the approximation s̃[j] of s∗ is
limited by σ. Moreover, recall that α ∥s[0] − s∗∥ ≤ αρ∗ < 2/3 < 1. Thus, the error ∥s̃[j] − s∗∥
does not grow as j increases.

14.2.8 Parallel Shooting for Non-Linear Boundary Value Prob-
lems

As usual, let {ti}Ni=0 be a partition of [a, b] such that t0 = a, tN = b , ti+1 = ti + hi with hi > 0
for 0 ≤ i < N and h = max

0≤i<N
hi ≤ θ min

0≤i<N
hi for some constant θ.

Parallel Shooting Method applied to the boundary value problem (14.2.23) can be sum-
marized as follows. Solve the initial value problems

y′i(t, si) = f(t,yi(t, si)) , ti ≤ t ≤ ti+1
yi(ti, si) = si

for 0 ≤ i < N , where the initial conditions si are such that the function y ∶ [a, b]→ Rn defined
by

yg(t) = yi(t, si) , ti ≤ t ≤ ti+1
is a solution of the differential equation in (14.2.23) satisfying

ϕ(s) ≡
⎛
⎜⎜⎜
⎝

g(s0,yN−1(b, sN−1))
s1 − y0(t1, s0)

⋮
sN−1 − yN−2(tN−1, sN−2)

⎞
⎟⎟⎟
⎠
= 0 , where s =

⎛
⎜⎜⎜
⎝

s0
s1
⋮

sN−1

⎞
⎟⎟⎟
⎠
.

The first n equations in ϕ(s) = 0 are the boundary conditions and the other equations are
to ensure that we get a continuous (and differentiable) solution at ti for 1 ≤ i ≤ N − 1.

The Parallel Shooting Method can be rewritten as a simple Shooting Method. Let

zi(τ) = y((ti−1 + τ(ti − ti−1)) for 1 ≤ i ≤ N ,

z(τ) =
⎛
⎜⎜⎜
⎝

zi(τ)
z2(τ)
⋮

zN(τ)

⎞
⎟⎟⎟
⎠

, F (τ,z(τ)) =
⎛
⎜⎜⎜
⎝

(t1 − t0)f(t0 + τ(t1 − t0),z1(τ))
(t2 − t1)f(t1 + τ(t2 − t1),z2(τ))

⋮
(tN − tN−1)f(tN−1 + τ(tN − tN−1),zN(τ))

⎞
⎟⎟⎟
⎠

and G(v,w) =
⎛
⎜⎜⎜
⎝

g(v1,wN)
v2 −w1

⋮
vN −wN−1

⎞
⎟⎟⎟
⎠

14.2. Shooting Methods 469

for 0 ≤ τ ≤ 1 and v,w ∈ (Rn)N ≅ RnN .

The boundary value problem (14.2.23) can be rewritten as

z′(τ) = F (τ,z(τ)) , 0 ≤ τ ≤ 1
G(z(0),z(1)) = 0

(14.2.38)

We get the Shooting Method

u′(τ, s) = F (τ,u(τ, s) , 0 ≤ τ ≤ 1
u(0, s) = s

(14.2.39)

where s ∈ RnN is a solution of
ϕ(s) ≡ G(s,u(1, s)) = 0 (14.2.40)

and

u(τ, s) =
⎛
⎜⎜⎜
⎝

u1(τ, s1)
u2(τ, s2)
⋮

uN(τ, sN

⎞
⎟⎟⎟
⎠
.

Theorem 14.2.23

Suppose that ti − ti−1 = h > 0 for 1 ≤ i ≤ N , and that the hypothesis of Theorem 14.2.19
are satisfied (with y replaced by z and (14.2.23) replaced by 14.2.38). Then, there
exists a unique solution of (14.2.39) for any

s ∈
⎧⎪⎪⎨⎪⎪⎩
s ∈ (Rn)N ≅ RnN ∶ ∥s − z(0)∥ = (

N

∑
i=1
∥si − zi(0)∥2)

1/2

≤ δe−Kh

⎫⎪⎪⎬⎪⎪⎭
.

Proof.
The conclusion follows from Theorem 14.2.19 (with K replaced by hK and [a, b] by [0,1])
after we note that

∥F (τ,u) − F (τ, ũ)∥ = (
N

∑
i=1
∥hfi(τ,ui) − hfi(τ, ũi)∥2)

1/2

≤ (
N

∑
i=1

h2K2∥ui − ũi∥2)
1/2

= hK∥u − ũ∥

for all (τ,u) and (τ, ũ) in

⎧⎪⎪⎨⎪⎪⎩
(τ,u) ∈ [0,1] × (Rn)N ∶ 0 ≤ τ ≤ 1 and ∥u − z(τ)∥ = (

N

∑
i=1
∥ui − zi(τ)∥2)

1/2

< δ
⎫⎪⎪⎬⎪⎪⎭
.

It follows from the previous theorem that we only need to solve (14.2.40) to get the
solution of (14.2.38).

470 14. Boundary Value Problems

If Newton method is used to approximate the solution of ϕ(s) = 0 in (14.2.40), then the
initial condition s0 should be taken from the disk of radius δe−Kh centred at z(0).

If we compare with the simple Shooting Method of Section 14.2.6, The dimension of the
system for the Parallel Shooting Method (i.e. nN) is larger than the dimension of the system
for the simple Shooting Method (i.e. n). However, the initial condition s0 for the Newton
method can be chosen from a disk of larger radius for the Parallel Shooting Method (i.e.
δe−Kh) than for the simple Shooting Method (i.e. δe−K(b−a)). The integration time is also
shorter for the Parallel Shooting Method (i.e. h) than for the simple Shooting Method (i.e.
b − a) though repeated n times.

Remark 14.2.24
Theorem 14.2.20 can also be applied to (14.2.38) and (14.2.40). The Newton Method is

Q(s[j]) (s[j+1] − s[j]) = −ϕ(s[j]) , j ≥ 0 ,

where

Q(s) = Dsϕ(s) =
⎛
⎜⎜⎜⎜⎜⎜
⎝

Dy1g(s1,uN(1, sN)) 0 . . . 0 Dy2g(s1,uN(1, sN))UN(1, sN)
−U1(1, s1) Id . . . 0 0

0 −U2(1, s2) . . . 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . −UN−1(1, sN−1) Id

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where
Ui(τ, si) = Dsiui(τ, si)

for 1 ≤ i ≤ N . ♠

14.2.9 Family of Solutions

One of the difficulty with the Shooting Method is to choose s[0] in the Newton Method. If
the boundary value problem that we want to solve is “closed” to another boundary value
problem for which we know how to choose s[0], we may perhaps use this information to
guess s[0] for our boundary value problem. For us, two “closed” boundary value problems
will mean that they are two “closed” members of a family of boundary value problems.

Suppose that f and g in (14.2.23) depend on a parameter σ ∈ [σa, σb]. We get the following
family of boundary value problems

y′(t, σ) = f(t,y(t, σ), σ) , a ≤ t ≤ b
g(y(a, σ),y(b, σ), σ) = 0

(14.2.41)

for σa ≤ σ ≤ σb. Recall that y′(t, σ) = dy

dt
(t, σ). We generally assume that (14.2.41) has

a unique isolated solution y(t, σ) for each σ and that the dependence of y(t, σ) on σ is
sufficiently differentiable. We get the family of solutions {y(t, σ) ∶ σa ≤ σ ≤ σb}.

14.2. Shooting Methods 471

A simple boundary value problem like (14.2.23) can be included in a family of boundary
value problems as in (14.2.41) by defining

F (t,y, σ) = σf(t,y) + (1 − σ) (A(t)y + g(t))

and

G(v,w, σ) = σg(v,w) + (1 − σ) (Bav +Bbw − yc)

in (14.2.41). We have a linear boundary value problem (that we may have chosen) for σ = 0,
and our original non-linear boundary value problem for σ = 1.

To compute a branch of solutions of (14.2.41), we solve

u′(t, s, σ) = F (t,u(t, s, σ), σ) , a ≤ t ≤ b
u(a, s, σ) = s

(14.2.42)

where s is a solution of
ϕ(s, σ) ≡ G(s,u(b, s, σ), σ) = 0 . (14.2.43)

Theorem 14.2.25

Suppose that:

1. There is a solution u of (14.2.42) and (14.2.43) for σ = σ∗ ∈ [σa, σb] and s = s∗.

2. There exist η1 and η2 such that F (t,w, σ) is of class C1 in the tubular neigh-
bourhood of {(t,u(t, s∗, σ∗), σ∗) ∶ a ≤ t ≤ b} defined by

{(t,w, σ) ∶ a ≤ t ≤ b, ∣σ − σ∗∣ < η1 and ∥w − u(t, s∗, σ∗)∥ < η2} ,

and G(r,w, σ) is of class C1 in the neighbourhood of (s∗,u(b, s∗, σ∗), σ∗) defined
by

{(r,w, σ) ∶ ∥r − s∗∥ < η2 , ∥w − u(b, s∗, σ∗)∥ < η2 and ∣σ − σ∗∣ < η1} .

3. Dsϕ(s∗, σ∗) is non-singular.

Then, there exist δ > 0 and a continuously differentiable function s ∶]σ∗−δ, σ∗+δ[→ Rn

such that s(σ∗) = s∗ and u(t, s(σ), σ) for a ≤ t ≤ b is a solution of (14.2.42) and
(14.2.43).

Proof.
We have that ϕ(s∗, σ∗) = 0 and Dsϕ(s∗, σ∗) is non-singular. It follows from the implicit
function theorem that all solutions of ϕ(s, σ) = 0 in a sufficiently small open neighbourhood
of (s∗, σ∗) is of the form (s(σ), σ) for a differentiable function s ∶]σ∗ − δ, σ∗ + δ[→ Rn with δ
sufficiently small. Moreover, s(σ∗) = s∗.

The continuous differentiability of s comes from our usual assumption that f is as smooth
as needed. In the present case, we need f to be continuously differentiable.

472 14. Boundary Value Problems

Remark 14.2.26

1. Since s ∶]σ∗−δ, σ∗+δ[→ Rn given by the previous theorem is of class C1, we may derive
ϕ(s(σ), σ) = 0 with respect to σ to get

d

dσ
ϕ(s(σ), σ) = Dsϕ(s, σ)∣

s=s(σ)

ds

dσ
(σ) + ∂ϕ

∂σ
(s(σ), σ) = 0 .

This is a differential equation for s(σ) with initial condition s(σ∗) = s∗. Note that

∂ϕ

∂σ
(s, σ) = ∂G

∂σ
(s,u(b, s, σ), σ) +Dy2G(s,u(b, s, σ), σ)V (b, s, σ) ,

where

V (t, s, σ) = ∂u
∂σ
(t, s, σ)

is the solution of

V ′(t, s, σ) = DuF (t,u(t, s, σ), σ)V (t, s, σ) +
∂F

∂σ
(t,u(t, s, σ), σ) .

2. From s(σ∗ + δ) = s(σ∗) + s′(σ∗) δ + O(δ2), we may choose s(σ∗) + s′(σ∗)δ as initial
value in the Newton iterative method for the boundary value problem (14.2.42) and
(14.2.43) given by σ = σ∗ + δ. Recursively, we may be able to “find” a branch of
solutions s ∶ [σa, σb]→ Rn for the family of boundary value problems given by (14.2.42)
and (14.2.43). This subject of “path following” is another exciting subject of numerical
analysis that unfortunately we will not address in this book.

♠

14.3 Finite Difference Methods

This section is based on Keller’s lectures [22] and Ascher et al.’s book [2].

The next chapter will cover finite difference methods to solve partial differential equations.
The present section can be seen as an introduction to this broader subject since a boundary
value problem for ordinary differential equation is a one-dimensional boundary value problem
for partial differential equation.

The general boundary value problem is of the form

P (y(t)) ≡ y′(t) − f(t,y(t)) = 0 , a ≤ t ≤ b
g(y(a),y(b)) = 0

(14.3.1)

As usual, let {ti}Ni=0 be a partition of [a, b] such that t0 = a, tN = b , ti+1 = ti + hi with
hi > 0 for 0 ≤ i < N and h = max

0≤i<N
hi ≤ θ min

0≤i<N
hi for some constant θ.

14.3. Finite Difference Methods 473

The associated general form of a finite difference method to approximate the solution of
(14.3.1) is

Pi,h(W) = 0 , 0 ≤ i < N
g(w0,wN) = 0

(14.3.2)

where W =
⎛
⎜⎜⎜
⎝

w0

w1

⋮
wN

⎞
⎟⎟⎟
⎠
∈ (Rn)N+1. We hope that the solution {wi}Ni=0 of this finite difference

equation (14.3.2) will provide an approximation of the solution of (14.3.1). Namely, we hope
that wi will be a good approximation of yi ≡ y(ti) for 0 ≤ i ≤ N .

Example 14.3.1
The trapezoidal method or scheme to solve a general boundary value problem is a one-
step method defined by

Pi,h(W) =
wi+1 −wi

hi
− 1

2
(f(ti+1,wi+1) + f(ti,wi)) = 0 , 0 ≤ i < N

g(w0,wN) = 0

where hi = ti+1 − ti. ♣
Remark 14.3.2 (Important)
In this section, when we write lim

h→0
E = 0 for some expression E that depends on h, we mean

that for each ϵ > 0, there exist hϵ > 0 such that ∣E∣ < ϵ for all partition {ti}Ni=0 as defined
above such that h < hϵ. If N is included in the expression E, it is the N associated to the
partition with maximum step size h under consideration in the expression E.

The same consideration applies if we say that an expression E that depends on h is true
for h < h0. Namely, it means that E is true for all partition {ti}Ni=0 as defined above such
that h < h0 and, if N is included in the expression E, then N is associated to the partition
with maximum step size h under consideration in the expression E. ♠

To determine the quality of a finite difference method to approximate the solution of a
boundary value problem, we will use concepts similar to those used before for the initial
value problems; namely, convergence, consistency and stability.

Definition 14.3.3

The method (14.3.2) is convergent if, for all well-posed boundary value problem
(14.3.1),

lim
h→0

max
0≤i≤N

∥y(ti) −wi∥ = 0 .

Remark 14.3.4
As for the shooting methods, we will not consider any perturbation of (14.3.1) as we did for
the initial value problems. We will come back on convergence of finite difference methods in
Chapter 15. ♠

474 14. Boundary Value Problems

Definition 14.3.5

The local truncation error of a finite difference method as in (14.3.2) is

τi(y) = Pi,h(Y) , 0 ≤ i < N ,

where Y =
⎛
⎜⎜⎜
⎝

y0

y1

⋮
yN

⎞
⎟⎟⎟
⎠
∈ (Rn)N+1. Recall that yi = y(ti) for 0 ≤ i ≤ N , where {ti}Ni=0 is any

partition of [a, b] with the maximum step-size h.
The method (14.3.2) is of order p > 0 if there exist a function τ ∶ Rn → [0,∞[such
that ∥τi(y)∥ ≤ τ(y) = O(hp) for 0 ≤ i < N .

Definition 14.3.6

The finite difference method (14.3.2) is consistent if, for all well-posed boundary
value problem (14.3.1),

lim
h→0

max{max
0≤i<N

∥τi(y)∥.∥g(y0,yN∥} = 0 .

Definition 14.3.7

The finite difference method (14.3.2) is stable if, for any well-posed boundary value
problem (14.3.1), there exist K > 0, h0 > 0 and δ > 0 such that

∥ui − vi∥ ≤Kmax{∥g(u0,uN) − g(v0,vN)∥,max
1≤i<N

∥Pi,h(U) − Pi,h(V)∥} (14.3.3)

for all U =
⎛
⎜⎜⎜
⎝

u0

u1

⋮
uN

⎞
⎟⎟⎟
⎠
and V =

⎛
⎜⎜⎜
⎝

v0

v1

⋮
vN

⎞
⎟⎟⎟
⎠
in

Sδ(y) = {w ∈ (Rn)N+1 ∶ ∥wi − yi∥ < δ for 0 ≤ i ≤ N} ,

and all h < h0.

The following theorem will be proved in Chapter 15 (Theorem 15.3.9) about finite differ-
ence methods for partial differential equations.

Theorem 14.3.8

If a method like (14.3.2) is stable and consistent for the linear boundary value problem
(14.3.1), then the method is convergent.

We will prove a version of this theorem for the linear boundary value problems in the

14.3. Finite Difference Methods 475

next section.

14.3.1 Finite Difference Methods for Linear Boundary Value Prob-
lems

As we did for the shooting methods, we start with the linear boundary value problem

P (y(t)) = y′(t) −A(t)y(t) − f(t) = 0 , a ≤ t ≤ b
Bay(a) +Bby(b) − yc = 0

(14.3.4)

The general form of a finite difference method to approximate the solution of (14.3.4) is

Pi,h(W) = Li,h(W) − Fi,h(f) = 0 , 0 ≤ i < N
Baw0 +BbwN − yc = 0

(14.3.5)

where W =
⎛
⎜⎜⎜
⎝

w0

w1

⋮
wN

⎞
⎟⎟⎟
⎠
∈ (Rn)N+1 and Li,h(W) is associated to the linear part L(y(t)) = y′(t) −

A(t)y(t).
Example 14.3.9
The midpoint scheme or centred Euler scheme to solve linear boundary value problems
is a one-step method defined by

Pi,h(W) = Li,h(W) − Fi,h(f) = 0 , 0 ≤ i < N
Baw0 +BbwN = yc

where Li,h(W) =
wi+1 −wi

hi
− 1

2
A(ti + hi/2) (wi+1 +wi) and Fi,h(f) = f(ti + hi/2). ♣

Example 14.3.10
The trapezoidal scheme to solve linear boundary value problems is a one-step method defined
by

Pi,h(W) = Li,h(W) − Fi,h(f) = 0 , 0 ≤ i < N
Baw0 +BbwN = yc

where Li,h(W) =
wi+1 −wi

h
− 1

2
(A(ti + h)wi+1 +A(ti)wi) and Fi,h(f) =

1

2
(f(ti + h) + f(ti)).

♣
Because of the very special form of (14.3.5), in particular the linearity of Li,h, the stability

condition (14.3.3) can be reduced to

∥ui∥ ≤Kmax{∥Bau0 +BbuN∥, max
0≤j<N

∥Lj,h(U)∥} , 0 ≤ i ≤ N , (14.3.6)

476 14. Boundary Value Problems

for all U =
⎛
⎜⎜⎜
⎝

u0

u1

⋮
uN

⎞
⎟⎟⎟
⎠
∈ (Rn)N+1 and all h < h0.

Proposition 14.3.11

If a method like (14.3.5) is stable and consistent for the linear boundary value problem
(14.3.4), then it is convergent.

Proof.

To prove this result, let ri = y(ti) −wi for 0 ≤ i ≤ N , and R =
⎛
⎜⎜⎜
⎝

r0
r1
⋮
rN

⎞
⎟⎟⎟
⎠
. The local truncation

error is

τi(y) = Li,h(Y) − Fi,h(f) = Li,h(R) +Li,h(W) − Fi,h(f)
´¹¹¸¹¹¶

=Pi,h(W)=0

= Li,h(R) , 0 ≤ i < N ,

and Bar0 + BbrN = 0 because Baw0 + BbwN − yc = 0 and Bay0 + BbyN − yc = 0. Since the
method is consistent, lim

h→0
max
0≤i<N

∥τi(y)∥ = 0. Finally, since the method is stable, we have from

the remark before the statement of the proposition that

∥ri∥ ≤Kmax{∥Bar0 +BbrN∥, max
1≤j<N

∥Lj,h(R)∥} ≤K max
0≤j<N

∥τj(y)∥

for some constant K and 0 ≤ i ≤ N . Thus

0 ≤ lim
h→0

max
1≤i≤N

∥ri∥ ≤K lim
h→0

max
0≤j<N

∥τj(y)∥ = 0 ,

where, as usual, N is associated to the chosen partition of [a, b] of maximum size h.

The result is also true for finite difference methods (14.3.2) applied to the general bound-
ary value problem (14.3.1) (Theorem 14.3.8 above) but the proof is not as direct as for the
linear boundary value problems above.

The next two propositions will be used to prove that the method (14.3.5) applied to the
linear boundary value problem (14.3.4) is stable and consistent if it is stable and consistent
when applied to the initial value problem

L(y(t)) = y′(t) −A(t)y(t) = 0
y(a) = s ∈ Rn

(Corollary 14.3.16 below).

14.3. Finite Difference Methods 477

Proposition 14.3.12

Consider two linear boundary value problems

L(y(t)) = y′(t) −A(t)y(t) = f(t) , a ≤ t ≤ b
B
[ν]
a y(a) +B[ν]b y(b) = yc

(14.3.7)

for ν = 0 and 1.

1. For ν fixed,

L(Y [ν](t)) = 0 , a ≤ t ≤ b
B
[ν]
a Y [ν](a) +B[ν]b Y [ν](b) = Id

(14.3.8)

has a unique solution Y [ν](t) if and only if (14.3.7) has a unique solution.

2. Moreover, if (14.3.7) for ν = 0 has a unique solution, then (14.3.7) for ν = 1 has

a unique solution if and only if B
[1]
a Y [0](a) +B[1]b Y [0](b) is invertible.

Proof.
1) For this part, we assume that ν is fixed. From Theorem 14.2.3, the boundary value

problem (14.3.7) has a unique solution if and only if Q[ν] = B[ν]a + B[ν]b Y (b) is invertible,
where Y (t) is the (fundamental) solution of L(Y) = 0 with Y (a) = Id.

Moreover, it follows from the second step in Algorithm 14.2.1 with yc = 0 and y0(t) = 0 for
all t that the solution of (14.3.8) is of the form Y [ν](t) = Y (t)R[ν], where R[ν] is a constant
matrix satisfying

Id = B[ν]a Y [ν](a) +B[ν]b Y [ν](b) = (B[ν]a +B[ν]b Y (b))R[ν] = Q[ν]R[ν] .

Such a system has a unique solution R[ν] if and only if Q[ν] is non-singular. In that case,
R[ν] = (Q[ν])−1.
2) To prove this part of the theorem, suppose that (14.3.7) with ν = 0 has a unique solution.
Then (14.3.8) with ν = 0 has a unique solution given by Y [0](t) = Y (t) (Q[0])−1. In particular,
Q[0] is invertible. Since

B
[1]
a Y [0](a) +B[1]b Y [0](b) = (B[1]a +B[1]b Y (b)) (Q[0])−1 = Q[1] (Q[0])−1 ,

we have that Q[1] is invertible if and only if B
[1]
a Y [0](a) + B[1]b Y [0](b) is invertible. Thus,

(14.3.8) with ν = 1 has a unique solution if and only if B
[1]
a Y [0](a)+B[1]b Y [0](b) is invertible.

The conclusion from the first part for ν = 1.

The general form (14.3.5) of a finite difference method for a linear boundary value problem

478 14. Boundary Value Problems

can be written explicitly as

Li,h(W) =
N

∑
k=0

Ci,kwk = Fi,h(f) , 0 ≤ i < N

Baw0 +BbwN = yc

(14.3.9)

The Ci,k may depend on h and ti. If we set

A =
⎛
⎜⎜⎜
⎝

Ba 0 . . . Bb

C0,0 C0,1 . . . C0,N

⋮ ⋮ ⋱ ⋮
CN−1,0 CN−1,1 . . . CN−1,N

⎞
⎟⎟⎟
⎠
, W =

⎛
⎜⎜⎜
⎝

w0

wq

⋮
wN

⎞
⎟⎟⎟
⎠

and F =
⎛
⎜⎜⎜
⎝

yc

F0,h(f)
⋮

FN−1,h(f)

⎞
⎟⎟⎟
⎠
,

we can rewrite (14.3.9) as
AW = F . (14.3.10)

Proposition 14.3.13

The finite difference method (14.3.9) is stable for the linear boundary value problem
(14.3.4) if and only if there exist two constants K and h0 such that A−1 exists and
∥A−1∥∞ <K for 0 < h < h0.

Proof.
A) Suppose that (14.3.9) is stable for the linear boundary value problem (14.3.4). Thus,
there exist K > 0 and h0 > 0 such that (14.3.6) is satisfied for all U ∈ (Rn)N+1 and h < h0.
But (14.3.6) is another way of saying that ∥U∥∞ ≤K∥AU∥∞ for all U ∈ (Rn)N+1 and h < h0.
From this relation, we have that A is one-to-one and therefore invertible. We can then write
that ∥A−1U∥∞ ≤K∥U∥∞ for all U ∈ (Rn)N+1 and h < h0; namely, ∥A−1∥∞ ≤K for h < h0.
B) Suppose that there exist two constants K and h0 such that A−1 exists and ∥A−1∥∞ <K
for 0 < h < h0. From the definition of the norm of matrices, we get ∥A−1U∥∞ ≤ K∥U∥∞ for
all U ∈ (Rn)N+1 and h < h0. Thus, ∥U∥∞ ≤ K∥AU∥∞ for all U ∈ (Rn)N+1 and h < h0. This
is exactly the statement of (14.3.6); namely, (14.3.9) is stable for the linear boundary value
problem (14.3.4).

Theorem 14.3.14

Consider the linear boundary value problems (14.3.7) and the finite difference methods

Li,h(W) =
N

∑
k=0

Ci,kwk = Fi,h(f) , 0 ≤ i < N

B
[ν]
a w0 +B[ν]b wN = yc

(14.3.11)

for ν = 0 and 1. Suppose that both linear boundary value problems in (14.3.7) have a
unique solution. The method (14.3.11) with ν = 0 is stable and consistent for (14.3.7)
with ν = 0 if and only if the method (14.3.11) with ν = 1 is stable and consistent for
(14.3.7) with ν = 1.

14.3. Finite Difference Methods 479

Remark 14.3.15
Before proving this theorem, it will help to review some of the properties of the infinity
norm.

We have ∥u∥∞ =max
1≤i≤n
∣ui∣ for u ∈ Rn and ∥U∥∞ = max

0≤i≤N
∥ui∥∞ for U =

⎛
⎜⎜⎜
⎝

u0

u1

⋮
uN

⎞
⎟⎟⎟
⎠
∈ (Rn)N+1. The

associated norm of the linear mapping from (Rn)N+1 to itself defined by the matrix

M =
⎛
⎜⎜⎜
⎝

M0,0 M0,1 . . . M0,N

M1,0 M1,1 . . . M1,N

⋮ ⋮ ⋱ ⋮
MN,0 MN,1 . . . MN,N

⎞
⎟⎟⎟
⎠
,

where the Mi,j are n × n matrices, is given by ∥M∥∞ = max
U∈(Rn)N+1

U≠0

∥MU∥∞
∥U∥∞

.

We now show that there exists H > 1 such that

1

H
max
0≤i≤N

N

∑
j=0
∥Mi,j∥∞ ≤ ∥M∥∞ ≤ max

0≤i≤N

N

∑
j=0
∥Mi,j∥∞ . (14.3.12)

Since all norms on a finite dimensional space are equivalent, there exist constants C1 and C2

such that

C1 max
0≤i≤N

N

∑
j=0
∥Mi,j∥∞ ≤ ∥M∥∞ ≤ C2 max

0≤i≤N

N

∑
j=0
∥Mi,j∥∞ (14.3.13)

because max
0≤i≤N

N

∑
j=0
∥Mi,j∥∞ is a norm on the space of n(N + 1) × n(N + 1) matrices.

If (14.3.13) is true with C1 ≥ 1, then it is obviously true if we replace C1 by a constant
1/H with H > 1. We can take C2 = 1 because

∥MU∥∞ = max
0≤i≤N

∥
N

∑
j=0
Mi,juj∥∞ ≤ max

0≤i≤N
(

N

∑
j=0
∥Mi,j∥∞∥uj∥∞)

≤ max
0≤i≤N

(
N

∑
j=0
∥Mi,j∥∞) max

0≤j≤N
∥uj∥∞ = max

0≤i≤N
(

N

∑
j=0
∥Mi,j∥∞)∥U∥∞

for all U ∈ (Rn)N+1. Thus ∥M∥∞ ≤ max
0≤i≤N

N

∑
j=0
∥Mi,j∥∞. ♠

Proof of Theorem 14.3.14.
Since Pi,h(W) = Li,h(W)−Fi,h(f) is independent of ν, the local truncation error τi(y[ν]) for
0 ≤ i < N are identical for both problems. Hence the methods are either both consistent or
both non-consistent. Recall that the boundary conditions are exactly satisfied in both cases.

480 14. Boundary Value Problems

Suppose that the method (14.3.11) with ν = 0 is stable and consistent for (14.3.7) with
ν = 0. Let

A[ν] =

⎛
⎜⎜⎜⎜
⎝

B
[ν]
a 0 . . . B

[ν]
b

C0,0 C0,1 . . . C0,N

⋮ ⋮ ⋱ ⋮
CN−1,0 CN−1,1 . . . CN−1,N

⎞
⎟⎟⎟⎟
⎠

.

For h small enough, we can write

A[1] = (Id+D (A[0])−1)A[0] , (14.3.14)

where

D = A[1] −A[0] =

⎛
⎜⎜⎜⎜
⎝

B
[1]
a −B[0]a 0 . . . B

[1]
b −B

[0]
b

0 0 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . 0

⎞
⎟⎟⎟⎟
⎠

,

because (A[0])−1 exists. To be precise, according to Proposition 14.3.13, there exist K > 0
and h0 > 0 such that (A[0])−1 exists and ∥ (A[0])−1 ∥∞ ≤K if 0 < h < h0.

Suppose that

(A[0])−1 =
⎛
⎜⎜⎜
⎝

Z0,0 Z0,1 . . . Z0,N

Z1,0 Z1,1 . . . Z1,N

⋮ ⋮ ⋱ ⋮
ZN,0 ZN,1 . . . ZN,N

⎞
⎟⎟⎟
⎠
,

where the matrices Zi,j are n×nmatrices. Since A[0] (A[0])−1 = Id, we get B[0]a Z0,j+B[0]b ZN,j =
0 for 1 ≤ j ≤ N and B

[0]
a Z0,0 +B[0]b ZN,0 = Id. Therefore,

Id−D (A[0])−1 =
⎛
⎜⎜⎜
⎝

Q0,0 Q0,1 . . . Q0,N

0 Id . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . Id

⎞
⎟⎟⎟
⎠
,

where
Q0,j = B[1]a Z0,j +B[1]b ZN,j

for j = 0, 1, . . . , N .

Moreover, A[0] (A[0])−1 = Id implies that B
[0]
a Z0,0 + B[0]b ZN,0 = Id and Li,h(Z0) = 0 for

1 ≤ i < N where Z0 =
⎛
⎜⎜⎜
⎝

Z0,0

Z1,0

⋮
ZN,0

⎞
⎟⎟⎟
⎠
. Thus {Zi,0}Ni=0 is an approximation of the solution of

L(Y (t)) = Y ′(t) −A(t)Y (t) = 0 , a ≤ t ≤ b
B
[0]
a Y (a) +B[0]b Y (b) = Id

14.3. Finite Difference Methods 481

Since the method (14.3.11) with ν = 0 is consistent and stable, it is convergent according to
Proposition 14.3.11. Therefore, if we use the method (14.3.11) for the linear boundary value
problem (14.3.7) with ν = 0 and f = 0, we get that lim

h→0
max
0≤i≤N

∥Zi,0 − Y [0](ti)∥∞ = 0. Hence

∥Q0,0 −B[1]a Y [0](a) −B[1]b Y [0](b)∥
∞

= ∥B[1]a (Z0,0 − Y [0](a)) −B[1]b (ZN,0 − Y [0](b))∥∞ → 0
(14.3.15)

as h→ 0. From Proposition 14.3.12 and our hypothesis about the uniqueness of the solutions,
we have that B

[1]
a Y [0](a) +B[1]b Y [0](b) is invertible. Thus, if we select h̃0 < h0 small enough

such that

∥Q0,0 −B[1]a Y [0](a) −B[1]b Y [0](b)∥
∞
< 1

2
∥(B[1]a Y [0](a) +B[1]b Y [0](b))−1∥

−1

∞

for h < h̃0, then it follows from the Banach Lemma (Corollary 3.2.7) that Q0,0 is invertible
for h < h̃0 and

∥Q−10,0∥ ≤ T ≡ 2 ∥(B
[1]
a Y [0](a) +B[1]b Y [0](b))−1∥

∞
.

Therefore, Id−D (A[0])−1 is invertible for h < h̃0 and it follows from (14.3.14) that A[1] is
invertible for h < h̃0. In fact, we have

(A[1])−1 = (A[0])−1
⎛
⎜⎜⎜
⎝

Q−10,0 −Q−10,0Q0,1 . . . −Q−10,0Q0,N

0 Id . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . Id

⎞
⎟⎟⎟
⎠
. (14.3.16)

Finally, we now use (14.3.12) in Remark 14.3.15 to obtain

N

∑
j=1
∥Q0,j∥∞ =

N

∑
j=1
∥B[1]a Z0,j +B[1]b ZN,j∥∞ ≤ ∥B[1]a ∥∞

N

∑
j=1
∥Z0,j∥∞

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤H∥(A[0])−1∥∞

+∥B[1]b ∥∞
N

∑
j=1
∥ZN,j∥∞

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤H∥(A[0])−1∥∞

≤H ∥(A[0])−1∥
∞
(∥B[1]a ∥∞ + ∥B[1]b ∥∞) ≤KH (∥B

[1]
a ∥∞ + ∥B[1]b ∥∞) .

Hence, we get from (14.3.16) that

∥(A[1])−1∥
∞
≤KT (1 +KH (∥B[1]a ∥∞ + ∥B[1]b ∥∞))

for h < h̃0. Thus, from Proposition 14.3.13, the finite difference method (14.3.11) with ν = 1
is stable for the linear boundary value problem (14.3.7) with ν = 1.

The opposite implication follows by interchanging ν = 0 and ν = 1.

482 14. Boundary Value Problems

Corollary 14.3.16

Suppose that (14.3.4) has a unique solution. The finite difference method (14.3.9) is
stable and consistent for (14.3.4) if and only if the finite difference method

Li,h(W) =
N

∑
k=0

Ci,kwk = Fi,h(f) , 0 ≤ i < N

w0 = yc

(14.3.17)

is stable and consistent for the initial value problem

L(y(t)) = y′(t) −A(t)y(t) = f(t) , a ≤ t ≤ b
y(a) = yc

. (14.3.18)

Proof.
The conclusion follows from Theorem 14.3.14 with (14.3.4) and (14.3.9) as the linear bound-
ary value problem with its associated finite difference method for ν = 1, and (14.3.18) and
(14.3.17) as the linear boundary value problem with its associated finite difference method
for ν = 0. Note that (14.3.18) has a unique solution.

14.3.2 Numerical Aspect of the One-Step Finite Difference Method
for Linear Boundary Value Problems

If only wi and wi+1 are used in (14.3.9), we say that the method is a one-step finite difference
method.

Example 14.3.17

1. For the midpoint scheme, we have Ci,i = −
1

hi
Id−1

2
A(ti +hi/2), Ci,i+1 =

1

hi
Id−1

2
A(ti +

hi/2) and Fi,h(f) = f(ti + hi/2) for 0 ≤ i < N . We also have that Ci,j = 0 otherwise.

2. For the trapezoidal scheme, we have Ci,i = −
1

hi
Id−1

2
A(ti), Ci,i+1 =

1

hi
Id−1

2
A(ti + h)

and Fi,h(f) =
1

2
(f(ti) + f(ti + h)) for 0 ≤ i < N . We also have that Ci,j = 0 otherwise.

♣
If the boundary conditions are separable, namely B

[b]
a = 0 in (14.2.11) of Section 14.2.3,

we can rewrite A as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B
[a]
a 0 . . . 0 0

C0,0 C0,1 . . . 0 0
0 C1,1 . . . 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . CN−1,N−1 CN−1,N

0 0 . . . 0 B
[b]
b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (14.3.19)

14.3. Finite Difference Methods 483

where B
[a]
a is a (n − q) × n matrix and B

[b]
b is a q × n matrix. We also rewrite F to get

F =

⎛
⎜⎜⎜⎜⎜⎜
⎝

y
[a]
c

F0(f)
⋮

FN−1(f)
y
[b]
c

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

As we can see, the problem now is to solve a large system of linear equations. The matrix
A in (14.3.19) is a block tridiagonal matrix of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A0 C0 0 . . . 0 0
B1 A1 C1 . . . 0 0
0 B2 A2 . . . 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 . . . AN−1 CN−1
0 0 0 . . . BN AN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where each block is a n×n matrix, the q last rows of the n×n matrices Bj and the n−q first
rows of the n × n matrices Cj are null. Moreover, if A is nonsingular then we can express it
as A = LU , where

Lh =

⎛
⎜⎜⎜⎜⎜⎜
⎝

L0,0 0 . . . 0 0
L1,0 L1,1 . . . 0 0
0 L2,1 . . . 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . LN,N−1 LN,N

⎞
⎟⎟⎟⎟⎟⎟
⎠

and Uh =

⎛
⎜⎜⎜⎜⎜⎜
⎝

U0,0 U0,1 0 . . . 0
0 U1,1 U1,2 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . UN−1,N
0 0 0 . . . UN,N

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The n × n matrices Li,j and Ui,j satisfy

L0,0U0,0 = A0

Li−1,i−1Ui−1,i = Ci−1
Li,i−1Ui−1,i−1 = Bi

Li,iUi,i = Ai −Li,i−1Ui−1,i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, i = 1,2, . . . ,N

The LU decomposition of A above is not unique. To determine a unique LU decomposi-
tion, it is standard to set Li,i = Id for 0 ≤ i ≤ N . We do that below for the case of the partially
separable boundary conditions. It is proved in [22] that this decomposition can be obtained
using row interchanges on the first n − q rows, the last q rows, and the n rows between the
(jn − q + 1)th and ((j + 1)n − q)th rows for 1 ≤ j ≤ N .

Let F =

⎛
⎜⎜⎜⎜
⎝

f̃0
f̃1
⋮
f̃N

⎞
⎟⎟⎟⎟
⎠

, where f̃j ∈ Rn for all j. To solve AW = F for W ∈ (Rn)N+1, we first

solve LV = F̃ for V ∈ (Rn)N+1. Namely, we use the forward substitution L0,0v0 = f̃0 and

484 14. Boundary Value Problems

Li,ivi = f̃i −Li,i−1vi−1 for i = 1, 2, . . . , N . Then we solve UW =V for W ∈ (Rn)N+1. Namely,
we use the backward substitution UN,NwN = vN and Ui,iwi = vi − Ui,i+1wi+1 for i = N − 1,
N − 2, . . . , 0.

If the boundary condition are only partially separable, namely B
[b]
a ≠ 0 in (14.2.11) of

Section 14.2.3, we can rewrite A as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B
[a]
a 0 . . . 0 0

C0,0 C0,1 . . . 0 0
0 C1,1 . . . 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . CN−1,N−1 CN−1,N

B
[b]
a 0 . . . 0 B

[b]
b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (14.3.20)

where B
[a]
a is a (n − q) × n matrix, and B

[b]
b and B

[b]
a are q × n matrices.

A in (14.3.20) is of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A0 C0 0 . . . 0 0
B1 A1 C1 . . . 0 0
0 B2 A2 . . . 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 . . . AN−1 CN−1
CN 0 0 . . . BN AN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where each block is a n×n matrix, the q last rows of the n×n matrices Bj and the n−q first
rows of the n × n matrices Cj are null. If A is non-singular, we can express it as A = LU ,
where

L =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Id 0 . . . 0 0
L1,0 Id . . . 0 0
0 L2,1 . . . 0 0
⋮ ⋮ ⋱ ⋮ ⋮

LN,0 LN,1 . . . LN,N−1 Id

⎞
⎟⎟⎟⎟⎟⎟
⎠

and U =

⎛
⎜⎜⎜⎜⎜⎜
⎝

U0,0 U0,1 . . . 0 0
0 U1,1 . . . 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . UN−1,N−1 UN−1,N
0 0 . . . 0 UN,N

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The n × n matrices Li,j and Ui,j satisfy

U0,0 = A0

U0,1 = C0

LN,0U0,0 = CN

Li,i−1Ui−1,i−1 = Bi

Ui,i = Ai −Li,i−1Ui−1,i
Ui,i+1 = Ci

LN,iUi,i = −LN,i−1Ui−1,i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, i = 1,2, . . . ,N − 2

LN−1,N−2UN−2,N−2 = BN−1

UN−1,N−1 = AN−1 −LN−1,N−2UN−2,N−1

14.3. Finite Difference Methods 485

UN−1,N = CN−1

LN,N−1UN−1,N−1 = BN −LN,N−2UN−2,N−1

UN,N = AN −LN,N−1UN−1,N

To solve AW = F for W ∈ (Rn)N+1, we first solve LV = F̃ for V ∈ (Rn)N+1 using forward
substitution as we did for the separable boundary conditions case above; the last substitution

is now vN = f̃N −
N−1
∑
j=0

LN,jvj. The second step is to solve UW = V for W ∈ (Rn)N+1 using

backward substitution as for the separable boundary conditions case above.

As for the separable case, the LU decomposition of A above is not unique. To determine
a unique LU decomposition, it is standard to require that Li,i = Id for 0 ≤ i ≤ N as we did
above. It is proved in [22] that this decomposition can be obtained with the same restrictions
on the row interchanges as above if h is small enough, the linear boundary value problem
(14.3.4) with the boundary conditions expressed as in (14.2.11) has a unique solution, and

Li,h(W) =
N

∑
k=0

Ci,kwk = Fi,h(f) , 0 ≤ i < N

w0 = yv

is consistent and stable for the initial value problem

L(y(t)) = y′(t) −A(t)y(t) = f(t) , a ≤ t ≤ b
y(a) = yc

Code 14.3.18 (One-Step Finite Difference Method for Linear Boundary
Value Problems)

To approximate the solution of the boundary value problem y′ − A(t) = f(f) with
Bay(a)+Bby(b) = yc for a ≤ t ≤ b. We consider the intervals [ti, ti+1] for 0 ≤ i < N with
ti = a + ih and h = (b − a)/N .
Input: The vector valued function F ∶ [a, b] ×R→ Rn (F in the code below).
The n × n matrix valued function Ci,i defined on [a, b] ×R (Ci in the code below).
The n × n matrix valued function Ci,i+1 defined on [a, b] ×R (Cii in the code below).

The (n − q) × n matrix B
[a]
a (Baa in the code below).

The q × n matrix B
[b]
a (Bab in the code below).

The q × n matrix B
[b]
b (Bbb in the code below).

The (column) vector yc ∈ Rn (yc in the code below).
The number N > 2 of partitions of [a, b].
The endpoints a and b of the interval of integration [a, b].
Output: The n × (N + 1) matrix ww that contains the approximations wi of y(ti)
and the vector tt that contains ti for 0 ≤ i ≤ N .

function [tt,ww] = linearFDM(F,Ci,Cii,Baa,Bab,Bbb,yc,N,a,b)

n = length(yc);

486 14. Boundary Value Problems

q = size(Bbb,1);

nmq = n - q;

h = (b-a)/N;

% We construct the matrix A and the vector F

A = zeros(n,n,N+1); % A(:,:,i) = A_{i-1} for 1 <= i <= N+1

B = zeros(n,n,N); % B(:,:,i) = B_i for 1 <= i <= N

C = zeros(n,n,N+1); % C(:,:,i) = C_{i-1} for 1 <= i <= N+1

FF = zeros(n,N+1); % F(:,:,i) = \tilde{f}_{i-1} for 1 <= i <= N+1

A(1:nmq,:,1) = Baa;

C(nmq+1:n,:,N+1) = Bab;

t = (N-1)*h;

Civ = Ci(t,h);

Ciiv = Cii(t+h,h);

B(1:nmq,:,N) = Civ(q+1:n,:);

A(1:nmq,:,N+1) = Ciiv(q+1:n,:);

A(nmq+1:n,:,N+1) = Bbb;

FF(1:nmq,1) = yc(1:nmq,1);

tt = [];

for i=1:1:N

t = a + (i-1)*h;

tt = [tt t];

Civ = Ci(t,h);

Ciiv = Cii(t+h,h);

A(nmq+1:n,:,i) = Civ(1:q,:);

C(nmq+1:n,:,i) = Ciiv(1:q,:);

B(1:nmq,:,i) = Civ(q+1:n,:);

A(1:nmq,:,i+1) = Ciiv(q+1:n,:);

v = F(t,h);

FF(nmq+1:n,i) = v(1:q,1);

FF(1:nmq,i+1) = v(q+1:n,1);

end

FF(nmq+1:n,N+1) = yc(nmq+1:n,1);

tt = [tt b];

% We construct the matrices L nad U

Ud = zeros(n,n,N+1); % Ud(:,:,i) = U_{i-1,i-1} , 1 <= i <= N+1

Uu = zeros(n,n,N); % Uu(:,:,i) = U_{i-1,i} , 1 <= i <= N

Ll = zeros(n,n,N); % Ll(:,:,i) = L_{i,i-1} , 1 <= i <= N

Lr = zeros(n,n,N); % Lr(:,:i) = L_{N.i-1} , 1 <= i <= N-1

Ud(:,:,1) = A(:,:,1);

Uu(:,:,1) = C(:,:,1);

% Lr(:,:,1) = C(:,:,N+1)*inv(Ud(:,:,1));

Lr(:,:,1) = linsolve(Ud(:,:,1)’,C(:,:,N+1)’)’;

14.3. Finite Difference Methods 487

for i=1:1:N-2

% Ll(:,:,i) = B(:,:,i)*inv(Ud(:,:,i));

Ll(:,:,i) = linsolve(Ud(:,:,i)’,B(:,:,i)’)’;

Ud(:,:,i+1) = A(:,:,i+1) - Ll(:,:,i)*Uu(:,:,i);

Uu(:,:,i+1) = C(:,:,i+1);

% Lr(:,:,i+1) = -Lr(:,:,i)*Uu(:,:,i)*inv(Ud(:,:,i+1));

Lr(:,:,i+1) = -linsolve(Ud(:,:,i+1)’, Uu(:,:,i)’*Lr(:,:,i)’)’;

end

% Ll(:,:,N-1) = B(:,:,N-1)*inv(Ud(:,:,N-1));

Ll(:,:,N-1) = linsolve(Ud(:,:,N-1)’,B(:,:,N-1)’)’;

Ud(:,:,N) = A(:,:,N) - Ll(:,:,N-1)*Uu(:,:,N-1);

Uu(:,:,N) = C(:,:,N);

% Ll(:,:,N) = (B(:,:,N) - Lr(:,:,N-1)*Uu(:,:,N-1))*inv(Ud(:,:,N));

Ll(:,:,N) = linsolve(Ud(:,:,N)’,(B(:,:,N) - Lr(:,:,N-1)*Uu(:,:,N-1))’)’;

Ud(:,:,N+1) = A(:,:,N+1) - Ll(:,:,N)*Uu(:,:,N);

% We now solve the system A W = F

% First, we solve L V = F

V = zeros(n,N+1);

V(:,1) = FF(:,1);

for i=2:1:N+1

V(:,i) = FF(:,i) - Ll(:,:,i-1)*V(:,i-1);

end

for i=1:1:N-1

V(:,N+1) = V(:,N+1) - Lr(:,:,i)*V(:,i);

end

% Second, we solve U W = V

W = zeros(n,N+1);

% W(:,N+1) = inv(Ud(:,:,N+1))*V(:,N+1);

W(:,N+1) = linsolve(Ud(:,:,N+1),V(:,N+1));

for i=N:-1:1

% W(:,i) = inv(Ud(:,:,i))*(V(:,i) - Uu(:,:,i)*W(:,i+1));

W(:,i) = linsolve(Ud(:,:,i),V(:,i) - Uu(:,:,i)*W(:,i+1));

end

ww = W;

end

Example 14.3.19 (Example 14.2.6 Continued)
Recall that the boundary value problem was y′(t) = A(t)y(t)+ f(t) with Bay(0)+Bby(1) =
yc, where

y = (y1(t)
y2(t)

) , A(t) = (0 1
4 0
) , f(t) = (0

−3et) , Ba = (
1 0
0 0
) , Bb = (

0 0
1 0
) and yc = (

1
e
) .

We use the previous code with the trapezoidal method to numerically solve the boundary

488 14. Boundary Value Problems

value problem. We need to set

Ci,i = −
1

h
Id−1

2
A(ti) = (

−1/h −1/2
−2 −1/h) , Ci,i+1 =

1

h
Id−1

2
A(ti + h) = (

1/h −1/2
−2 1/h) ,

Fi,h(f) =
1

2
(f(ti) + f(ti + h)) = (

0
−3 (et1 + eti+h) /2) , B

[a]
a = (1 0) , B[b]a = (0 0) ,

B
[b]
b = (1 0) and yc = (

1
e1
) .

If we use the code above with N = 100, we find the following approximations of the solution.

i ti w1,i w2,i i ti w1,i w2,i

0 0 1 0.9999829 90 0.90 2.4596020 2.4595917
1 0.01 1.0100501 1.0100332 91 0.91 2.4843215 2.4843112
2 0.02 1.0202012 1.0201844 92 0.92 2.5092895 2.5092793
3 0.03 1.0304543 1.0304377 93 0.93 2.5345084 2.5344983
4 0.04 1.0408104 1.0407940 94 0.94 2.5599807 2.5599707
5 0.05 1.0512707 1.0512544 95 0.95 2.5857091 2.5856991
6 0.06 1.0618361 1.0618199 96 0.96 2.6116960 2.6116861
7 0.07 1.0725076 1.0724916 97 0.97 2.6379449 2.6379343
8 0.08 1.0832864 1.0832706 98 0.98 2.6644560 2.6644463
9 0.09 1.0941736 1.0941578 99 0.99 2.6912343 2.6912248
10 0.10 1.1051701 1.1051545 100 1.00 2.7182818 2.7182723
⋮ ⋮ ⋮ ⋮

where w1,i ≈ y1,i = y1(ti) and w2,i ≈ y2,i = y2(ti) for all i. All the approximations have at
least 5-digit accuracy. These results are not as good as those that we found with the parallel
shooting method but we have to keep in mind that the trapezoidal method is of order 2 while
the classical forth order Runge-Kutta method that we have used for the parallel shooting
if of order four. There are finite difference schemes that can give better results. However,
those schemes will generally not be one-step scheme and, therefore, the matrix A will not be
as nice as the one that we have for one-step schemes.

Here is the code used to call the finite difference method.

Code 14.3.20

format long

F = @(t,h) [0 ; -3*(exp(t)+exp(t+h))/2];

Ci = @(t,h) [-1/h -1/2 ; -2 -1/h];

Cii = @(t,h) [1/h -1/2 ; -2 1/h];

Baa = [1 0];

Bab = [0 0];

Bbb = [1 0];

yc = [1 ; exp(1)];

N = 100;

[t,w] = linearFDM(F,Ci,Cii,Baa,Bab,Bbb,yc,N,0,1)

14.3. Finite Difference Methods 489

♣
Unfortunately, the trapezoidal method cannot be used to numerically solve the boundary

value problem of Example 14.2.8. The matrix A generated by this method is singular. Other
finite difference schemes must be used. We will not develop finite difference methods with
more than one-step. This is left to the adventurous readers.

14.3.3 Finite Difference Methods for Non-Linear Boundary Value
Problems

We consider finite difference methods of the form (14.3.2) that may be used to approximate
the solution of a boundary value problem of the form (14.3.1).

In this subsection, we first study the stability of finite difference methods like (14.3.2) for
boundary value problems like (14.3.1). At the end, we will give a constructive proof of the
existence of a numerical approximation to the solution of (14.3.1).

Consider the following linear boundary value problem obtained from the linearisation of
(14.3.1).

L[y](u(t)) = u′(t) −Dyf(t,y(t))u(t) = 0 , a ≤ t ≤ b
Dy1g(y(a),y(b))u(a) +Dy2g(y(a),y(b))u(b) = 0

(14.3.21)

where y is the solution of the boundary value problem (14.3.1).

We also consider the finite difference method obtained from the linearisation of (14.3.2);
namely,

L
[W]
i,h (U) =

N

∑
k=0

Ci,k(W)uk = 0 , 0 ≤ i < N

Ba(W)u0 +Bb(W)un = 0
(14.3.22)

where

Ci,k(W) = Dyk
Pi,h(Y)∣

Y=W
, Ba(W) = Dy1g(y0,yN)∣

Y=W
,

Bb[W) = Dy2g(y0,yN)∣
Y=W

, W =
⎛
⎜⎜⎜
⎝

w0

w1

⋮
wN

⎞
⎟⎟⎟
⎠
∈ (Rn)N+1 and U =

⎛
⎜⎜⎜
⎝

u0

u1

⋮
uN

⎞
⎟⎟⎟
⎠
∈ (Rn)N+1 .

let

A(Z) =
⎛
⎜⎜⎜
⎝

Ba(Z) 0 . . . Bb(Z)
C0,0(Z) C1,1(Z) . . . C0,N(Z)
⋮ ⋮ ⋱ ⋮

CN−1,0(Z) CN,1(Z) . . . CN−1,N(Z)

⎞
⎟⎟⎟
⎠

with Z =
⎛
⎜⎜⎜
⎝

z0
z1
⋮
zN

⎞
⎟⎟⎟
⎠
∈ (Rn)N+1 .

490 14. Boundary Value Problems

Theorem 14.3.21

Suppose that y is an isolate solution of (14.3.1). Let {ti}Ni=0 be a partition of [a, b]

satisfying our standard conditions, and let Y =
⎛
⎜⎜⎜
⎝

y0

y1

⋮
yN

⎞
⎟⎟⎟
⎠
, where yi = y(ti) for 0 ≤ i ≤ N .

Suppose that the finite difference method

L
[Y]
i,h (U) = 0 , 0 ≤ i < N

u0 = yc ∈ Rn
(14.3.23)

is stable and consistent for the initial value problem

L[y](u(t)) = 0 , a ≤ t ≤ b
u(a) = yc ∈ Rn

(14.3.24)

Suppose that L
[W]
i,h is Lipschitz continuous with respect to W in a neighbourhood of

Y; namely, there exist constants δ > 0, KL > 0 and h0 > 0 such that

∥L[W]i,h −L
[W̃]
i,h ∥∞ ≤KL∥W − W̃∥∞ (14.3.25)

for all W and W̃ in

Sδ(Y) = {Z ∈ (Rn)N+1 ∶ ∥zi − yi∥∞ < δ for 0 ≤ i ≤ N}

and all h < h0. Moreover, in this context, suppose that

max{∥Ba(W) −Ba(W̃)∥∞, ∥Bb(W) −Bb(W̃)∥∞}

≤ KL

2
max{∥w0 − w̃0∥∞, ∥wN − w̃N∥∞}

(14.3.26)

for all W,W̃ ∈ Sδ(Y) and all h < h0. Then, if δ is small enough, Ah(Z) has a uniformly
bounded inverse for all Z ∈ Sδ(Y) and h small enough.
Moreover, 14.3.22 is stable for the linear boundary value problem 14.3.21 2.

Proof.
Since (14.3.23) is stable and consistent for (14.3.24), we get from Corollary 14.3.16 that
(14.3.22) is stable and consistent for (14.3.21). It follows from Proposition 14.3.13 that there
exist h1 > 0 and K > 0 such that (A(Y))−1 exists and ∥ (A(Y))−1 ∥ ≤K for h < h1. We may
assume that h0 < h1 by shrinking h0 if necessary.

Hence, if Z is closed enough to Y, (14.3.25) and (14.3.26) imply that A(Z) is as closed
as we want of the invertible matrix A(Y) independently of h < h0. If we choose δ0 small

2It can be shown that this implies that (14.3.2) is stable for the nonlinear boundary value problem (14.3.1).

14.3. Finite Difference Methods 491

enough to have ∥A(Y) −A(Z)∥∞ ∥(A(Y))−1∥∞ < 1/2 for δ < δ0, then it follows from the

Banach Lemma that (A(Z))−1 exists. Moreover, from

∥ (A(Z))−1 ∥∞ − ∥ (A(Y))−1 ∥∞ ≤ ∥ (A(Z))−1 − (A(Y))−1 ∥∞
= ∥ (A(Y))−1 (A(Y) −A(Z)) (A(Z))−1 ∥∞
≤ ∥ (A(Y))−1 ∥∞ ∥ (A(Y) −A(Z)) ∥∞
´¹¹¹¸¹¹¹¶

<1/2

∥ (A(Z))−1 ∥∞ ,

we get

∥ (A(Z))−1 ∥∞ ≤
∥ (A(Y))−1 ∥∞

1 − ∥ (A(Y))−1 ∥∞ ∥A(Y) −A(Z)∥∞
≤ 2∥ (A(Y))−1 ∥∞

for all Z ∈ Sδ(Y) with h < h0 and δ < δ0. We could have used Corollary 3.2.7 to directly
draw the previous conclusion. So (A(Z))−1 is uniformly bounded for h and δ small enough.

Let

Ψ(W) =
⎛
⎜⎜⎜
⎝

g(w0,wN)
P0,h(W)
⋮

PN−1,h(W)

⎞
⎟⎟⎟
⎠
. (14.3.27)

Then
Ψ(Z) −Ψ(Z̃) = A(Z, Z̃) (Z − Z̃) , (14.3.28)

where

A(Z, Z̃) ≡ ∫
1

0
A(sZ + (1 − s)Z̃) ds

since Pi,h and g are assumed to be continuously differentiable, and A(W) = DZΨ(Z)∣Z=W.

Moreover, from (14.3.25) and (14.3.26), we get

∥A(Z, Z̃) −A(Y)∥∞
≤max{Ba(W) −Ba(W̃)∥∞ + ∥Bb(W) −Bb(W̃)∥∞,max

0≤i<N
∥L[W]i,h −L

[W̃]
i,h ∥∞} ≤KLδ

for Z and Z̃ in Sδ(Y) and h < h0. Thus, if δ is small enough to have

∥A(Z, Z̃) −A(Y)∥∞ ∥(A(Y))−1∥∞ ≤ δKLK < 1 ,

then it follows from the Banach Lemma that (A(Z, Z̃))−1 exists and, as we have shown above

for (A(Z))−1,

∥ (A(Z, Z̃))−1 ∥∞ ≤
∥ (A(Y))−1 ∥∞

1 − ∥ (A(Y))−1 ∥∞ ∥A(Y) −A(Z, Z̃)∥∞
≤ K

1 − δKLK

for Z and Z̃ in Sδ(Y) with δ and h small enough.

The stability of (14.3.2) follows from

(Z − Z̃) = (A(Z, Z̃))−1 (Ψ(Z) −Ψ(Z̃))

492 14. Boundary Value Problems

by taking the norm on both sides and using the uniform upper bound on (A(Z, Z̃))−1 for Z

and Z̃ in Sδ(Y) with δ and h small enough.

We now show how we can use the Newton Method to find an approximation of the solution
of (14.3.1) if Z[0] ∈ Sδ(Y) is chosen appropriately, where δ is given in the previous theorem.
More precisely, we show that if h and δ0 < δ are small enough and Z[0] ∈ Sδ0(Y), then the
sequence {Z[k]}∞k=0 defined by

A(Z[k]) (Z[k+1] −Z[k]) = −Ψ(Z[k]) , k = 0,1,2, . . . (14.3.29)

stays in Sδ0(Y) and converges toward a solution W of (14.3.2).

We can rewrite (14.3.29) as

L
[Z[k]]
i,h (Z[k+1] −Z[k]) = −Pi,h(Z[k]) , 0 ≤ i < N

Ba(Z[k]) (z[k+1]0 − z[k]0) +Bb(Z[k]) (z[k+1]N − z[k]N) = −g(z
[k]
0 ,z

[k]
N)

for k = 0, 1, 2, . . .
The following theorem will be useful shortly. A proof of this theorem can be found in

[25].

Theorem 14.3.22 (Newton-Kantorovich)

Suppose that ϕ ∶ Rn → Rn is a sufficiently differentiable function and let Q(x) =
Dxϕ(x). Suppose that there exists γ such that

∥Q(x) −Q(x̃)∥∞ ≤ γ∥x − x̃∥∞ (14.3.30)

for all x, x̃ in an open convex set D ⊂ Rn. Suppose also that, for some x0 ∈ D, there
exist constants α and β such that

∥Q−1(x0)∥∞ ≤ β , (14.3.31)

∥Q−1(x0)ϕ(x0)∥∞ ≤ α , (14.3.32)

and

αβγ < 1

2
. (14.3.33)

let

δ± =
1 ±
√
1 − 2αβγ
βγ

.

If Sδ−(x0) = {x ∶ ∥x − x0∥∞ < δ−} ⊂D, then, the sequence {xk}∞k=0 generated by

Q(xk) (xk+1 − xk) = −ϕ(xk) , k = 0,1,2, . . .

remains in Sδ−(x0) for all k and converges quadratically to the unique root of ϕ in
Sδ+(x0) ∩D.

14.3. Finite Difference Methods 493

If D is very large so that Sδ−(x0) ⊂ D is “almost” always satisfied, then the previous
theorem does not require the explicit knowledge of the exact root of ϕ to determine conditions
to get a converging sequence {x[k]}∞k=0 to a root of ϕ.

Theorem 14.3.23

Suppose that all the hypothesis of Theorem 14.3.21 are satisfied. Suppose that the
local truncation error of (14.3.2) with respect to (14.3.1) is of order p > 0. Then, there
exist 0 < δ0 < δ (δ given Theorem 14.3.21) and h0 > 0 such that (14.3.2) has a solution
W in Sδ(Y) if h ≤ h0. The Newton Method (14.3.29) with Z[0] such that Z[0] ∈ Sδ0(Y)
can be used to approximate this solution. The convergence is quadratic.

Proof.
We prove that the hypotheses of Newton-Kantorovich Theorem are satisfied. We replace xk

by Z[k], ϕ by Ψ, Q(Z) by A(Z) = DWΨ(W)∣
W=Z and D by Sδ(Y) = {Z ∶ ∥Z −Y∥∞ < δ} in

Newton-Kantorovich Theorem, where Y and δ are given Theorem 14.3.21.

From (14.3.25) and (14.3.26), we have that

∥A(W) −A(W̃)∥ ≤KL∥W − W̃∥∞

for all W and W̃ in Sδ(Y) for δ given in the statement of Theorem 14.3.21. So (14.3.30) is
satisfied with with γ =KL.

Suppose that δ0 < δ. We will precise the value of δ0 later. Let Z[0] be any element in
Sδ0(Y).

Proceeding as in the proof of Theorem 14.3.21, we have that ∥A−1h (Z, Z̃)∥∞ ≤ K/(1 −
δ0KLK) for Z, Z̃ ∈ Sδ0(Y) if h is small enough and δ0 < δ. Recall that δKLK < 1. If
we take Z = Z̃ = Z[0], we get that (14.3.31) is satisfies with β = K/(1 − δ0KLK); namely,
∥A−1(Z[0])∥∞ ≤ β.

Since
A−1(Z[0])A(Z[0],Y) = Id +A−1(Z[0]) (A(Z[0],Y) −A(Z[0])) ,

we get

∥A−1(Z[0])A(Z[0],Z)∥∞ ≤ 1 + (
K

1 − δ0KLK
)KLδ0

for Z[0] ∈ Sδ0(Y). Moreover, from (14.3.28), we get

A−1(Z[0])Ψ(Z[0]) = A−1(Z[0]) (Ψ(Y) +A(Z[0],Y) (Z[0] −Y)) .

Thus,

∥A−1(Z[0])Ψ(Z[0])∥∞ ≤ (
K

1 − δ0KLK
)K0h

p + (1 + (K

1 − δ0KLK
)KLδ0) δ0

for some constant K0 and h small enough. The factor K0hp comes from the assumption

that the method is of order p. Thus (14.3.32) is satisfied with α = (K

1 − δ0KLK
)K0h

p +

(1 + (K

1 − δ0KLK
)KLδ0) δ0.

494 14. Boundary Value Problems

We need to choose δ0 and h small enough to satisfy (14.3.33); namely,

αβγ = ((K

1 − δ0KLK
)K0h

p + (1 + (K

1 − δ0KLK
)KLδ0) δ0)(

K

1 − δ0KLK
)KL <

1

2

We also need to choose δ0 small enough to have Sδ−(Z[0]) ⊂ Bδ(Y) to be able to apply
Newton-Kantorovich Theorem.

First, we may assume that KKL is large enough to have 1/(KKL) < δ/4. Hence,

δ− < δ+ =
1 +
√
1 − 2αβγ
βγ

< 2

βγ
< 2

KKL

< δ
2
. (14.3.34)

Moreover, we may assume that δ0 is small enough to have δ0KLK < 1/2. Then, we select
h such that

(K

1 − δδKLK
)
2

KLK0h
p < 4K2KLK0h

p < 1

4
. (14.3.35)

We choose δo small enough to have

δ0 (1 + (
K

1 − δ0KLK
)KLδ0)(

K

1 − δ0KLK
)KL < 2δ0 (1 + 2KKlδ0)KKL <

1

4
.

Combine with (14.3.35), this implies that (14.3.33) is satisfied.

Finally, we choose δ0 small enough to have

2δ0KKL < 1 −
√
1 − 2K2KLK0h

p .

We then have that

δ0 <
1 −
√
1 − 2K2KLK0h

p

2KKL

≤ 1 −
√
1 − 2αβγ
βγ

= δ− .

If follow from (14.3.34) that δ0 < δ− < δ/2. Thus for any Z[0] ∈ Sδ0(Y), we have Sδ− (Z[0]) ⊂
Sδ(Y) as required.

14.3.4 Collocation and Implicit Runge-Kutta

We consider a simple case to illustrate how collocation and Runge-Kutta methods can be
use to develop method to solve boundary value problems.

In this subsection, we consider the partition a = t0 < t1 < . . . < tN = b of the interval [a, b]
with ti+1− ti = hi for i = 0, 1,. . . ,N −1. Let 0 ≤ θ0 < θ1 < . . . < θJ−1 < θJ ≤ 1. We subdivide each
interval [ti, ti+1] with a partition ti ≤ ti,0 < ti,1 < . . . < ti,J−1 < ti,J ≤ ti+1 where ti,j = ti + θjhi for
j = 0, 1, . . . , J .

From now on, we assume that θ0 = 0 and θJ = 1 to simplify the presentation.

14.3. Finite Difference Methods 495

We approximate the solution y of (14.3.1) on [ti, ti+1] by a polynomial mapping pi(t) of
degree J + 1 such that

p′i(ti,j) = f(ti,j,pi(ti,j)) , 0 ≤ i < N and 0 ≤ j ≤ J (14.3.36)

0 = g(p0(t0,0),pN−1(tN−1,J)) (14.3.37)

pi(ti,0) = pi−1(ti−1,J) , 0 < i < N (14.3.38)

Condition (14.3.38) implies that p ∶ [a, b] → Rn defined by p(t) = pi(t) for ti ≤ t ≤ ti+1 is
a piecewise continuous polynomial mapping.

(14.3.36) and (14.3.38) are exactly the conditions that we have used with the collocation
method to derive implicit Runge-Kutta Method in Section 13.4.1.

If we use Proposition 13.4.11, in particular (13.4.4), we get

p(ti,j) = p(ti,0) + hi
J

∑
m=0

βj,mKi,m , 0 ≤ i ≤ N and 0 ≤ j ≤ J ,

where
Ki,m = f(ti,m,p(ti,m)) , 0 ≤ i ≤ N and 0 ≤m ≤ J ,

and

βj,m = ∫
θj

θ0
ℓm(θ)dθ = ∫

θj

θ0

⎛
⎜
⎝

J

∏
k=0
k≠m

θ − θk
θm − θk

⎞
⎟
⎠
dθ , 0 ≤ j,m ≤ J .

The solution y of (14.3.1) may therefore be approximated by the scheme

wi,j =wi,0 + hi
J

∑
m=0

βj,mf(ti,m,wi,m) , 0 ≤ i < N and 0 ≤ j ≤ J (14.3.39)

0 = g(w0,0,wN−1,J) (14.3.40)

We hope that wi,j ≈ y(ti,j) for all i and j.
Remark 14.3.24

1. Note that (14.3.39) is one step method, from ti to ti+1, of an implicit Runge-Kutta
method. Since we assume that θ0 = 0, we have that β0,m = 0 for all m. Since we assume
that θJ = 1, we have that βJ,m = γm for all m. Thus (14.3.39) with j = J yields (13.4.6).

2. The Runge-Kutta method (14.3.39) is stable for the initial value problem

y′(t) = f(t,y(t))
y(a) = yc ∈ Rn

3. The local truncation error of the Runge-Kutta method (14.3.39) is at least of order J .

♠

496 14. Boundary Value Problems

Theorem 14.3.25

1. Suppose that the polynomial mappings pi satisfy (14.3.36), (14.3.37) and
(14.3.38). Then, wi,j = p(ti,j) satisfy (14.3.39) and (14.3.40).

2. Suppose that the wi,j satisfy (14.3.39) and (14.3.40). For 0 ≤ i < N , let pi be the
unique interpolating polynomial mapping of degree J +1 at the points (ti,j,wi,j)
for 0 ≤ j ≤ J that satisfies p′i(ti,0) = f(ti,0,pi(ti,0)). Then, the pi satisfy (14.3.36),
(14.3.37) and (14.3.38).

Proof.
1) Since pi is a polynomial mapping of degree J + 1, p′i is a polynomial mapping of degree
J . Since the quadrature formula

∫
θj

θ0
q(θ)dθ =

J

∑
m=0

βj,mq(θm) (14.3.41)

with 0 ≤m ≤ J is true for polynomial q of degree up to at least J by construction, we have

pi(ti,j) = pi(ti,0) + ∫
ti,j

ti,0
p′i(t)dt = pi(ti,0) + hi∫

θj

θ0
p′i(ti + θhi)dθ

= pi(ti,0) + hi
J

∑
m=0

βj,m p′i(ti,m)

= pi(ti,0) + hi
J

∑
m=0

βj,m f(ti,m,pi(ti,m)) , 0 ≤ j ≤ J ,

where the last equality comes from (14.3.36). So, we get (14.3.39) with wi,j = pi(ti,j) for all
0 ≤ i < N and 0 ≤ j ≤ J . Obviously, (14.3.37) implies (14.3.40).

2) Again, since pi is a polynomial of degree J + 1, p′i is a polynomial of degree J . Since
(14.3.41) is true for polynomial q of degree up to at least J by construction, we get

wi,j −wi,0 = p(ti,j) − p(ti,0) = ∫
ti,j

ti,0
p′i(t)dt

= hi∫
θj

θ0
p′i(ti + θhi)dθ = hi

J

∑
m=0

βj,mp
′
i(ti,m) , 0 ≤ j ≤ J .

Moreover, from (14.3.39), we have that

wi,j −wi,0 = hi
J

∑
k=0

βj,k f(ti,k,wi,k) = hi
J

∑
m=0

βj,m f(ti,m,pi(ti,m)) , 0 ≤ j ≤ J .

Thus,
J

∑
m=0

βj,m (p′i(ti,m) − f(ti,m,pi(ti,m))) = 0 , 0 ≤ j ≤ J .

Since we assume that
p′i(ti,0) = f(ti,0,pi(ti,0)) , 0 ≤ i < N ,

14.4. Analytic Eigenvalue Problems 497

namely that (14.3.36) with j = 0 is satisfied, we have

J

∑
m=1

βj,m (p′i(ti,m) − f(ti,m,p(ti,m))) = 0 , 1 ≤ j ≤ J .

This can be rewritten as a linear system of the form BX = 0, where

B =
⎛
⎜⎜⎜
⎝

β1,1 β1,2 . . . β1,J
β2,1 β2,2 . . . β2,J
⋮ ⋮ ⋱ ⋮

βJ,1 βJ,2 . . . βJ,J

⎞
⎟⎟⎟
⎠

and X =
⎛
⎜⎜⎜
⎝

p′i(ti,1) − f(ti,1,p(ti,1))
p′i(ti,2) − f(ti,2,p(ti,2))

⋮
p′i(ti,J) − f(ti,J ,p(ti,J))

⎞
⎟⎟⎟
⎠
.

Since B is an invertible matrix3, the only solution is X = 0. Thus (14.3.36) with 1 ≤ j ≤ J
must also be satisfied.

(14.3.38) is satisfied because pi(ti,0) = wi,0 = wi−1,J = pi−1(ti−1,J) for 1 < i < N . Finally,
(14.3.37) is satisfied because g(p0(t0,0),p(tN−1,J)) = g(w0,0,wN−1,J) = 0.

Remark 14.3.26
There exist collocation methods with smoother polynomial mappings than the piecewise
continuous polynomial mappings that we have considered here. These methods are more
efficient. ♠

14.4 Analytic Eigenvalue Problems

This section is based on Keller’s lectures [22] and Ascher et al.’s book [2].

Eigenvalue problems are the major source of boundary value problems. It is therefore
important to say a few words about eigenvalues problems.

We consider the generalised eigenvalue problem

y′(t) −A(t, λ)y(t) = 0 , a ≤ t ≤ b
Ba(λ)y(a) +Bb(λ)y(b) = 0

(14.4.1)

where Ba(λ) and Bb(λ) are analytic in λ, and A(t, λ) is analytic in λ uniformly in t ∈ [a, b].
Moreover, we assume that rank (Ba(λ) Bb(λ)) = n for all λ. This is a necessary condition
for the existence of a solution for (14.4.1).

Remark 14.4.1
The eigenvalue problem (14.4.1) has partially separated boundary conditions if

Ba(λ) = (
B
[a]
a (λ)

B
[b]
a (λ)

) and Bb(λ) = (
0

B
[b]
b (λ)

) ,

where B
[a]
a (λ) is a (n − q) × n matrix, and B

[b]
a (λ) and B[b]b (λ) are q × n matrices. ♠

3Use (14.3.41) with q(θ) = θm for 1 ≤m ≤ J to show that B is an invertible Vandermonde matrix.

498 14. Boundary Value Problems

The fundamental solution associated to (14.4.1) is the solution of

Y ′(t, λ) −A(t, λ)Y (t, λ) = 0 , a ≤ t ≤ b
Y (a, λ) = Id

for all λ. It can be shown that Y (t, λ) is analytic in λ uniformly in t ∈ [a, b].
Every solution of (14.4.1) is of the form

y(t, λ) = Y (t, λ)yc ,

where yc is a solution of

Q(λ)yc ≡ (Ba(λ) +Bb(λ)Y (b, λ))yc = 0 . (14.4.2)

Theorem 14.4.2

For the generalised eigenvalue problem (14.4.1), only one of the following two cases is
possible.

1. Every λ is an eigenvalue of (14.4.1).

2. There are at most a countable number of distinct eigenvalues λk with no accu-
mulation point.

In the second case, λk has geometric multiplicity

rk = dim ker(Q(λk)) ≤ n .

If we have partially separated boundary conditions as in Remark 14.4.1, then rk ≤ q.

Proof.
λ is an eigenvalue of (14.4.1) if (14.4.2) has a non-trivial solution, and (14.4.2) has a non-
trivial solution if and only if det(Q(λ)) = 0. Thus, the geometric multiplicity of λ is the
dimension of the solution space of (14.4.2); namely, the dimension of the kernal of Q(λ).

Since det(Q(λ)) is an analytic function of λ, det(Q(λ)) = 0 for all λ if and only if there is
an accumulation point for the zeros of det(Q(λ)); namely, the eigenvalues of (14.4.1). Thus,
we have either (1) or (2).

For the partially separated boundary conditions case

Q(λk)yc = (
B
[a]
a (λk)

B
[b]
a (λk) +B[b]b (λk)Y (b, λk)

)yc = 0 ,

where B
[a]
a (λk) has full rank n − q. Thus rk = dim ker(Q(λk)) ≤ q.

14.5. Exercises 499

14.5 Exercises

Question 14.1
Show that the midpoint scheme of Example 14.3.9 is consistent and stable for the linear
boundary value problem (14.3.4), and therefore convergent.

500 14. Boundary Value Problems

Chapter 15

Finite Difference Methods

Compare to solving partial differential equations numerically, solving ordinary differential
equations is very simple. All the numerical methods behave similarly with all types of ordi-
nary differential equations. The only exception is with stiff ordinary differential equations.

The situation for partial differential equations is a lot more complex. There are no nu-
merical methods that can be used for all types of partial differential equations to generate an
accurate numerical solution. This is even true for the three types of linear partial differential
equations of order two with constant coefficients; namely the parabolic, elliptic and hyper-
bolic equations. In fact, as we will show, hyperbolic partial differential equations cannot be
solved accurately with finite difference schemes without imposing strict constrains on the
step sizes. Some other methods, like finite element methods, need to be used with such
partial differential equations.

Suppose that u is the solution of a partial differential equation

P (u, ∂u
∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂x∂y
, . . .) = F (x, y)

on a domain
R = [a, b] × [c, d] = {(x, y) ∶ a ≤ x ≤ b and c ≤ y ≤ d} ,

where P and F are “nice” functions. Choose N and M , two positive integers, and let
∆x = (b − a)/N and ∆y = (d − c)/M . The set

R∆ = {(xi, yj) ∶ xi = a + i∆x for 0 ≤ i ≤ N and yj = c + j∆y for 0 ≤ j ≤M}

forms a grid of the domain D. Each point (xi, yj) is called a mesh point. The step sizes
are the values of ∆x and ∆y 1. A numerical solution of the partial differential equation
is a set

{wi,j ∶ 0 ≤ i ≤ N and 0 ≤ j ≤M}
such that wi,j ≈ u(xi, yj) for 0 ≤ i ≤ N and 0 ≤ j ≤M .

1In our presentation, we assume that the distance between the xi and the distance between the yj are
constant. Finite difference schemes could be developed for non-constant step sizes but this is for a more
advanced text.

501

502 15. Finite Difference Methods

The goal of this chapter is to develop some finite difference schemes or methods;
namely, some finite difference equations to compute the values wi,j. The finite difference
equations are obtained from the partial differential equations by substituting the partial
derivatives in the partial differential equations by finite difference formulae approximating
these partial derivatives.

The reader should not expect a complete listing of methods to solve partial differential
equations. Only some basic partial differential equations and finite difference schemes are
considered. There is however enough material to get a good understanding of the complexity
and procedure to numerically solve partial differential equations.

15.1 Finite Difference Formulae

To develop finite difference schemes, we need to use finite difference formulae to approximate
the partial derivatives of sufficiently differentiable functions. Let u ∶ R2 → R be a sufficiently
differentiable function. We use Taylor expansions of u at (xi, yj) to derive finite difference
formulae of the partial derivatives of u at (xi, yj). We provide below a few examples of the
derivation of finite difference formulae. More finite difference formulae will be introduced
later on.

15.1.1 First Order Derivatives

We begin by deriving a finite difference formula for
∂u

∂x
at the mesh point (xi, yj). If we

assume that u is of class C2, we have

u(xi+1, yj) = u(xi, yj) +
∂u

∂x
(xi, yj)∆x +

1

2

∂2u

∂x2
(ζi,j, yj) (∆x)2

for some ζi,j ∈]xi, xi+1[. So

∂u

∂x
(xi, yj) =

u(xi+1, yj) − u(xi, yj)
∆x

− 1

2

∂2u

∂x2
(ζi,j, yj)∆x . (15.1.1)

Since
∂2u

∂x2
is continuous on the close set R, there exists a constant K > 0 such that

∣1
2

∂2u

∂x2
(x, y)∣ <K

for (x, y) ∈ R. Hence,

∣1
2

∂2u

∂x2
(ζi,j, yj)∆x∣ <K∆x

because ζi,j ∈]xi, xi+1[and therefore (ζi,j, yj) ∈ R. We have shown that

∂u

∂x
(xi, yj) ≈

u(xi+1, yj) − u(xi, yj)
∆x

(15.1.2)

15.1. Finite Difference Formulae 503

and the truncation error
1

2

∂2u

∂x2
(ζi,j, yj)∆x satisfies

1

2

∂2u

∂x2
(ζi,j, yj)∆x = O(∆x)

for ∆x near 0. The truncation error converges to zero as ∆x converges to zero.

Instead of using the points (xi, yj) and (xi+1, yj) to derive a finite difference formula for
∂u

∂x
at the mesh point (xi, yj), we could use (xi, yj) and (xi−1, yj).

If we assume that u is of class C2, we have

u(xi−1, yj) = u(xi, yj) −
∂u

∂x
(xi, yj)∆x +

1

2

∂2u

∂x2
(ζi,j, yj) (∆x)2

for some ζi,j ∈]xi−1, xi[. So

∂u

∂x
(xi, yj) =

u(xi, yj) − u(xi−1, yj)
∆x

+ 1

2

∂2u

∂x2
(ζi,j, yj)∆x . (15.1.3)

As we did above, if
∂2u

∂x2
is continuous on the close set R, we may assume that there exists a

constant K > 0 such that

∣1
2

∂2u

∂x2
(ζi,j, yj)∆x∣ <K∆x .

Hence,
∂u

∂x
(xi, yj) ≈

u(xi, yj) − u(xi−1, yj)
∆x

(15.1.4)

and the truncation error
1

2

∂2u

∂x2
(ζi,j, yj)∆x satisfies

1

2

∂2u

∂x2
(ζi,j, yj)∆x = O(∆x)

for ∆x near 0.

To derive finite difference formulae which are “more accurate” than (15.1.2) (i.e. with
a smaller truncation error when ∆x approach 0), we need to consider Taylor expansion of
order higher than two. For instance, if we assume that u is of class C3, we have that

u(xi+1, yj) = u(xi, yj) +
∂u

∂x
(xi, yj)∆x +

1

2

∂2u

∂x2
(xi, yj) (∆x)2 +

1

3!

∂3u

∂x3
(ζi,j, yj) (∆x)3

and

u(xi−1, yj) = u(xi, yj) −
∂u

∂x
(xi, yj)∆x +

1

2

∂2u

∂x2
(xi, yj) (∆x)2 −

1

3!

∂3u

∂x3
(ηi,j, yj) (∆x)3

for ζi,j ∈]xi, xi+1[and ηi,j ∈]xi−1, xi[. If we subtract the second equation from the first
equation, we get

u(xi+1, yj) − u(xi−1, yj) = 2
∂u

∂x
(xi, yj)∆x +

1

3!
(∂

3u

∂x3
(ζi,j, yj) +

∂3u

∂x3
(ηi,j, yj)) (∆x)3 .

504 15. Finite Difference Methods

Hence

∂u

∂x
(xi, yj) =

u(xi+1, yj) − u(xi−1, yj)
2∆x

− 1

12
(∂

3u

∂x3
(ζi,j, yj) +

∂3u

∂x3
(ηi,j, yj)) (∆x)2 . (15.1.5)

We have found that
∂u

∂x
(xi, yj) ≈

u(xi+1, yj) − u(xi−1, yj)
2∆x

and, because
∂3u

∂x3
is continuous, we can show as we did for the previous finite difference

formulae that the truncation error
1

12
(∂

3u

∂x3
(ζi,j, yj) +

∂3u

∂x3
(ηi,j, yj)) (∆x)2 satisfies

1

12
(∂

3u

∂x3
(ζi,j, yj) +

∂3u

∂x3
(ηi,j, yj)) (∆x)2 = O ((∆x)2)

for ∆x near 0.

15.1.2 Second Order Derivatives

Using the Taylor Expansion Theorem, we may also derive finite difference formulae for second
order derivatives. If u is of class C4, we have

u(xi+1, yj) = u(xi, yj) +
∂u

∂x
(xi, yj)∆x +

1

2

∂2u

∂x2
(xi, yj) (∆x)2 +

1

3!

∂3u

∂x3
(x1, yj) (∆x)3

+ 1

4!

∂4u

∂x4
(ζi,j, yj) (∆x)4

and

u(xi−1, yj) = u(xi, yj) −
∂u

∂x
(xi, yj)∆x +

1

2

∂2u

∂x2
(xi, yj) (∆x)2 −

1

3!

∂3u

∂x3
(xi, yj) (∆x)3

+ 1

4!

∂4u

∂x4
(ηi,j, yj) (∆x)4

for ζi,j ∈]xi, xi+1[, and ηi,j ∈]xi−1, xi[. If we add these two equations, we get

u(xi+1, yj) + u(xi−1, yj)

= 2u(xi, yj) +
∂2u

∂x2
(xi, yj) (∆x)2 +

1

4!
(∂

4u

∂x4
(ζi,j, yj) +

∂4u

∂x4
(ηi,j, yj)) (∆x)4 .

Solving for
∂2u

∂x2
(xi, yj), we get

∂2u

∂x2
(xi, yj) =

u(xi+1, yj) − 2u(xi, yj) + u(xi−1, yj)
(∆x)2

− 1

4!
(∂

4u

∂x4
(ζi,j, yj) +

∂4u

∂x4
(ηi,j, yj)) (∆x)2 .

(15.1.6)

15.2. Explicit and Implicit Schemes 505

We have found that

∂2u

∂x2
(xi, yj) ≈

u(xi+1, yj) − 2u(xi, yj) + u(xi−1, yj)
(∆x)2

(15.1.7)

and, because
∂4u

∂x4
is continuous, we can show as we did before that the truncation error

1

4!
(∂

4u

∂x4
(ζi,j, yj) +

∂4u

∂x4
(ηi,j, yj)) (∆x)2 satisfies

1

4!
(∂

4u

∂x4
(ζi,j, yj) +

∂4u

∂x4
(ηi,j, yj)) (∆x)2 = O ((∆x)2)

for ∆x near 0.

We can proceed likewise to find other finite difference formulae.

15.2 Explicit and Implicit Schemes

We develop finite difference schemes for the three types of linear partial differential equations
of order two with constant coefficients. More precisely, we develop finite difference schemes
for one representative of each of these types of partial differential equations. This will be
enough to understand the peculiarities of each type.

1. For the parabolic equations, we consider the heat equation
∂u

∂t
= c2∂

2u

∂x2
.

2. For the elliptic equations, we consider the Dirichlet equation
∂2u

∂x2
+ ∂

2u

∂y2
= f .

3. For the hyperbolic equation, we consider the wave equation
∂2u

∂t2
= c2∂

2u

∂x2
.

15.2.1 Parabolic Equations

15.2.1.1 An Explicit Scheme

We consider the heat equation with forcing

∂u

∂t
− c2∂

2u

∂x2
= f(x, t) , 0 < x < L and 0 < t < T , (15.2.1)

with the boundary conditions

u(0, t) = h0(t) and u(L, t) = hL(t) , 0 ≤ t ≤ T , (15.2.2)

and the initial condition
u(x,0) = g(x) , 0 ≤ x ≤ L , (15.2.3)

506 15. Finite Difference Methods

where g(0) = h0(0) and g(L) = hL(0). The forcing is provided by the function f .

We develop a finite difference scheme for the heat equation with forcing given in (15.2.1),
(15.2.2) and (15.2.3).

Given two integers N ≥ 2 and M ≥ 1, we set ∆x = L/N ∆t = T /M , xi = i∆x, tj = j∆t and
ui,j = u (xi, tj) for 0 ≤ i ≤ N and 0 ≤ j ≤M . From (15.1.1) and (15.1.6), we get

ui,j+1 − ui,j
∆t

− 1

2

∂2u

∂t2
(xi, ρi,j)∆t − c2

ui+1,j − 2ui,j + ui−1,j
(∆x)2

+ c
2

4!
(∂

4u

∂x4
(ζi,j, tj) +

∂4u

∂x4
(ηi,j, tj)) (∆x)2 = f(xi, tj)

(15.2.4)

for ρi,j ∈]tj, tj+1[, ζi,j ∈]xi−1, xi+1[and ηi,j ∈]xi−1, xi+1[. For ∆t and ∆x small, we have

ui,j+1 − ui,j
∆t

− c2
ui+1,j − 2ui,j + ui−1,j

(∆x)2
≈ f(xi, tj) .

This suggests the following finite difference equation.

wi,j+1 −wi,j

∆t
− c2

wi+1,j − 2wi,j +wi−1,j

(∆x)2
= f(xi, tj) (15.2.5)

for 0 < i < N and 0 ≤ j <M . The boundary conditions impose w0,j = h0(tj) and wN,j = hL(tj)
for 0 ≤ j ≤M . The initial condition imposes wi,0 = g(xi) for 0 ≤ i ≤ N .

Following some simple algebra, we get the following finite difference scheme to approxi-
mate the solution of the heat equation with forcing in (15.2.1).

Algorithm 15.2.1

wi,j+1 −wi,j − α (wi+1,j − 2wi,j +wi−1,j) = f(xi, tj)∆t

for 1 < i < N and 0 ≤ j < M , where α = c2∆t

(∆x)2
, w0,j = h0(tj) and wN,j = hL(tj) for

0 ≤ j ≤M , and wi,0 = g(xi) for 0 ≤ i ≤ N .

This scheme is illustrated in Figure 15.1. It can be expressed as a linear system Aw = B.
The (column) vector w is defined by

w =
⎛
⎜⎜⎜
⎝

w1

w2

⋮
wM

⎞
⎟⎟⎟
⎠

with wj =
⎛
⎜⎜⎜
⎝

w1,j

w2,j

⋮
wN−1,j

⎞
⎟⎟⎟
⎠

for 0 < j ≤M . The matrix A is a (N − 1)M × (N − 1)M matrix of the form

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Id 0 0 . . . 0 0
K Id 0 . . . 0 0
0 K Id . . . 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 . . . K Id

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

15.2. Explicit and Implicit Schemes 507

x

xN−1

xNx4x2 x3x1x0
t0

t1

t2

tM

t

tM−1

Figure 15.1: Schematic representation of the finite difference scheme given in Al-
gorithm 15.2.1.

where Id is the (N − 1) × (N − 1) identity matrix and

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 + 2α −α 0 0 0 . . . 0 0
−α −1 + 2α −α 0 0 . . . 0 0
0 −α −1 + 2α −α 0 . . . 0 0
0 0 −α −1 + 2α −α . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 ⋯ −α −1 + 2α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(15.2.6)

is a (N − 1) × (N − 1) matrix. The (column) vector B is defined by

B =
⎛
⎜⎜⎜
⎝

B1

B2

⋮
BM

⎞
⎟⎟⎟
⎠
, where B1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

w1,0 + α (w0,0 − 2w1,0 +w2,0) + f(x1, t0)∆t
w2,0 + α (w1,0 − 2w2,0 +w3,0) + f(x2, t0)∆t
w3,0 + α (w2,0 − 2w3,0 +w4,0) + f(x3, t0)∆t

⋮
wN−1,0 + α (wN−2,0 − 2wN−1,0 +wN,0) + f(xN−1, t0)∆t

⎞
⎟⎟⎟⎟⎟⎟
⎠

and

Bj =

⎛
⎜⎜⎜⎜⎜⎜
⎝

αw0,j−1 + f(x1, tj−1)∆t
f(x2, tj−1)∆t

⋮
f(xN−2, tj−1)∆t

αwN,j−1 + f(xN−1, tj−1)∆t

⎞
⎟⎟⎟⎟⎟⎟
⎠

for 2 ≤ j ≤M .

15.2.1.2 An Implicit Scheme, Crank-Nicolson Scheme

We will see in Section 15.3 that the finite difference scheme in Algorithm 15.2.1 is not really
good. Another scheme often used to numerically solve the heat equation with forcing is due
to Crank and Nicolson. Before introducing this scheme, we need to introduce the following
finite difference scheme.

508 15. Finite Difference Methods

Using (15.1.4) and (15.1.7) at (xi, tj+1), we may write

ui,j+1 − ui,j
∆t

+ 1

2

∂2u

∂t2
(xi, ρi,j)∆t − c2

ui+1,j+1 − 2ui,j+1 + ui−1,j+1
(∆x)2

+ c
2

4!
(∂

4u

∂x4
(ζi,j, tj+1) +

∂4u

∂x4
(ηi,j, tj+1)) (∆x)2 = f(xi, tj+1)

for ρi,j ∈]tj, tj+1[, ζi,j ∈]xi−1, xi+1[and ηi,j ∈]xi−1, xi+1[. For ∆t and ∆x small, we have

ui,j+1 − ui,j
∆t

− c2
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

(∆x)2
≈ f(xi, tj+1) .

This suggests the following finite difference equation.

wi,j+1 −wi,j

∆t
− c2

wi+1,j+1 − 2wi,j+1 +wi−1,j+1

(∆x)2
= f(xi, tj+1) (15.2.7)

for 0 < i < N and 0 ≤ j <M .

The Crank-Nicolson scheme comes from adding 1/2 times (15.2.5) and 1/2 times (15.2.7)
to get the finite difference equation2

wi,j+1 −wi,j

∆t
− c

2

2
(
wi+1,j − 2wi,j +wi−1,j

(∆x)2
+
wi+1,j+1 − 2wi,j+1 +wi−1,j+1

(∆x)2
)

= 1

2
(f(xi, tj) + f(xi, tj+1))

(15.2.8)

for 0 < i < N and 0 ≤ j < M . The boundary conditions and initial condition still give
w0,j = h0(tj) and wN,j = hL(tj) for 0 ≤ j ≤M , and wi,0 = g(xi) for 0 ≤ i ≤ N respectively.

Following some simple algebra, we find the following finite difference scheme for the heat
equation with forcing in (15.2.1).

Algorithm 15.2.2 (Crank-Nicholson)

wi,j+1 −wi,j − α (wi+1,j − 2wi,j +wi−1,j +wi+1,j+1 − 2wi,j+1 +wi−1,j+1)

= 1

2
(f(xi, tj) + f(xi, tj+1))∆t

for 0 < i < N and 0 ≤ j < M , where α = c2∆t

2(∆x)2
, w0,j = h0(tj) and wN,j = hL(tj) for

0 ≤ j ≤M , and wi,0 = g(xi) for 0 ≤ i ≤ N .

This scheme is illustrated in Figure 15.2. This is an implicit scheme because the value of
u at (xi, tj+1) is approximated using values of u at (xi−1, tj+1) and (xi+1, tj+1), two values for
t = tj+1 that are not explicitly known.

2more generally, we could have added λ times (15.2.5) and 1 − λ times (15.2.7) to get a family of finite
difference scheme for 0 ≤ λ ≤ 1.

15.2. Explicit and Implicit Schemes 509

x

xN−1

xNx4x2 x3x1x0
t0

t1

t2

tM

tM−1

t

Figure 15.2: Schematic representation of the Crank-Nicolson scheme given in Al-
gorithm 15.2.2.

As with the finite difference scheme in Algorithm 15.2.1, the Crank-Nicolson scheme can
be expressed as a linear system Aw = B. The (column) vector w is again defined by

w =
⎛
⎜⎜⎜
⎝

w1

w2

⋮
wM

⎞
⎟⎟⎟
⎠

with wj =
⎛
⎜⎜⎜
⎝

w1,j

w2,j

⋮
wN−1,j

⎞
⎟⎟⎟
⎠

for 0 < j ≤M . The matrix A is a (N − 1)M × (N − 1)M matrix of the form

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

J 0 0 . . . 0 0
K J 0 . . . 0 0
0 K J . . . 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 . . . K J

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 + 2α −α 0 0 0 . . . 0 0
−α 1 + 2α −α 0 0 . . . 0 0
0 −α 1 + 2α −α 0 . . . 0 0
0 0 −α 1 + 2α −α . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 ⋯ −α 1 + 2α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(15.2.9)

is a (N − 1) × (N − 1) matrix and K is defined in (15.2.6). The (column) vector B is the
column matrix defined by

B =
⎛
⎜⎜⎜
⎝

B1

B2

⋮
BM

⎞
⎟⎟⎟
⎠
,

510 15. Finite Difference Methods

where

B1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

w1,0 + α (w0,0 − 2w1,0 +w2,0 +w0,1) + (f(x1, t0) + f(x1, t1))∆t/2
w2,0 + α (w1,0 − 2w2,0 +w3,0) + (f(x2, t0) + f(x2, t1))∆t/2
w3,0 + α (w2,0 − 2w3,0 +w4,0) + (f(x3, t0) + f(x3, t1))∆t/2

⋮
wN−1,0 + α (wN−2,0 − 2wN−1,0 +wN,0 +wN,1) + (f(xN−1, t0) + f(xN−1, t1))∆t/2

⎞
⎟⎟⎟⎟⎟⎟
⎠

and

Bj =

⎛
⎜⎜⎜⎜⎜⎜
⎝

α (w0,j−1 +w0,j) + (f(x1, tj−1) + f(x1, tj)∆t/2
(f(x2, tj−1) + f(x2, tj))∆t/2

⋮
(f(xN−2, tj−1) + f(xN−2, tj))∆t/2

α (wN,j−1 +wN,j) + (f(xN−1, tj−1) + f(xN−1, tj))∆t/2

⎞
⎟⎟⎟⎟⎟⎟
⎠

for 2 ≤ j ≤M .

Code 15.2.3 (Crank-Nicholson)

To approximate the solution of the heat equation with forcing

∂u

∂t
= c2∂

2u

∂y2
+ f(x, y)

on the region R = [a, b]× [t1, t2] with the initial condition u(x, t1) = gb(x) for a ≤ x ≤ b,
and the boundary conditions u(a, t) = gl(t) and u(b, t) = gr(t) for t1 ≤ t ≤ t2.
Input: The right hand side f .
The initial condition gb(x) when t = t1.
The boundary condition gl(t) when x = a.
The boundary condition gr(t) when x = b.
The number of partitions N of [a, b] with ∆x = (b − a)/N .
The number of partitions M of [t1, t2] with ∆t = (t2 − t1)/M .
The endpoints a < b of the x-interval for the domain R.
The endpoints t1 < t2 of the t-interval for the domain R.
Output: X contains the x-coordinates x0, x1, . . . , xN of the mesh points in the
domain R.
T contains the t-coordinates t0, t1, . . . , tM of the mesh points in the domain R.
U contains the approximations of u at the mesh points. Ui,j ≈ u(xi−1, tj−1) for 1 ≤ i ≤
N + 1 and 1 ≤ j ≤M + 1.

function [X,T,U] = crank_nicolson(f,gb,gl,gr,c,N,M,a,b,t1,t2)

np1 = N + 1;

mp1 = M + 1;

U = repmat(NaN,np1,mp1);

X = linspace(a,b,np1);

T = linspace(t1,t2,mp1);

% Initial condition

for i=1:1:np1

15.2. Explicit and Implicit Schemes 511

U(i,1) = gb(X(i));

end

% Boundary conditions

for j=1:1:mp1

U(1,j) = gl(T(j));

U(np1,j) = gr(T(j));

end

deltax = (b-a)/N;

deltat = (t2-t1)/M;

alpha = deltat*(c/deltax)^2/2;

nm1 = N - 1;

J = repmat(0,nm1,nm1);

K = repmat(0,nm1,nm1);

for i=1:1:nm1

for j=i-1:1:i+1

if (i == j)

K(i,j) = -1 + 2 * alpha;

J(i,j) = 1 + 2 * alpha;

elseif (j > 0 && j < N)

K(i,j) = -alpha;

J(i,j) = -alpha;

end

end

end

% We use the fact that the matrix Q is block lower triangular,

% and only the diagonal and lower diagonal contain non-trivial blocks.

nm2 = N - 2;

B = repmat(NaN,nm1,1);

B(1,1) = U(2,1) + alpha*(U(1,1) -2*U(2,1) + U(3,1) + U(1,2)) ...

+ (f(X(2),T(1)) + f(X(2),T(2)))*deltat/2;

for k=2:1:nm2

B(k,1) = U(k+1,1) + alpha*(U(k,1) -2*U(k+1,1) + U(k+2,1)) ...

+ (f(X(k),T(1)) + f(X(k),T(2)))*deltat/2;

end

B(nm1,1) = U(N,1) + alpha*(U(nm1,1) -2*U(N,1) + U(np1,1) +U(np1,2)) ...

+ (f(X(N),T(1)) + f(X(N),T(2)))*deltat/2;

% Solve the system J U_2 = B_1 with matlab library

U(2:N,2) = linsolve(J,B);

% Solve the system J U_2 = B_1 with gauss()

% U(2:N,2) = gauss(J,B,1);

for j=2:1:M

jp1 = j + 1;

512 15. Finite Difference Methods

B(1,1) = alpha*(U(1,j) + U(1,jp1)) ...

+ (f(X(2),T(j)) + f(X(2),T(jp1)))*deltat/2;

for k=2:1:nm2

B(k,1) = (f(X(k),T(j)) + f(X(k),T(jp1)))*deltat/2;

end

B(nm1,1) = alpha*(U(np1,j) + U(np1,jp1)) ...

+ (f(X(N),T(j)) + f(X(N),T(jp1)))*deltat/2;

% Solve the system J U_{j+1} = B_j - K U_j with matlab library

U(2:N,jp1) = linsolve(J,B-K*U(2:N,j));

% Solve the system J U_{j+1} = B_j - K U_j with gauss()

% U(2:N,jp1) = gauss(J,B-K*U(2:N,j),1);

end

end

The comment in Remark 15.2.8 below is very relevant for the previous code because the
matrix J can still be large.

Example 15.2.4
Use the Crank-Nicolson scheme to approximate the solution to the following heat equation
with forcing.

∂u

∂t
= 0.52∂u

∂x
2 + xy;

on the domain R = [0,2] × [0,4] with the initial condition u(x,0) = x(2 − x) for 0 ≤ x ≤ 2,
and the boundary conditions u(0, t) = t(4 − t) and u(2, t) = t(4 − t)2 for 0 ≤ t ≤ 4.

With the matlab code below, we got the following graph for the approximation of the
solution u.

Code 15.2.5

f = @(x,y) x.*y;

gb = @(x) x.*(2-x);

gl = @(y) y.*(4-y);

gr = @(y) y.*(4-y).^2;

c = 0.5;

15.2. Explicit and Implicit Schemes 513

a = 0;

b = 2;

t1 = 0;

t2 = 4;

N = 20;

M = 40;

[X,T,U] = crank_nicolson(f,gb,gl,gr,c,N,M,a,b,t1,t2);

[XX,TT] = meshgrid(X,T);

% We need to transpose the matrix U because meshgrid()

% transposes the coordinates.

surf(XX,TT,U’);

xlabel(’x’)

ylabel(’t’)

zlabel(’u’)

♣

15.2.2 Elliptic Equations

We consider the Dirichlet equation

∆u ≡ ∂
2u

∂x2
+ ∂

2u

∂y2
= f (15.2.10)

on the set R = {(x, y) ∶ 0 ≤ x ≤ a , 0 ≤ y ≤ b} with the boundary conditions

u∣
∂R
= g .

We assume that f ∶ R → R and g ∶ ∂R → R are continuous functions.

Given two integers N ≥ 2 and M ≥ 2, we set ∆x = a/N , ∆y = b/M , xi = i∆x, yj = j∆y
and ui,j = u (xi, yj) for 0 ≤ i ≤ N and 0 ≤ j ≤M . From (15.1.6) in terms of x and y, we get

ui+1,j − 2ui,j + ui−1,j
(∆x)2

− 1

4!
(∂

4u

∂x4
(ζi,j, yj) +

∂4u

∂x4
(ηi,j, yj)) (∆x)2

+
ui,j+1 − 2ui,j + ui,j−1

(∆y)2
− 1

4!
(∂

4u

∂y4
(xi, µi,j) +

∂4u

∂y4
(xi, νi,j)) (∆y)2 = f(xi, yj)

(15.2.11)

for ζi,j, ηi,j ∈]xi−1, xi+1[and µi,j, νi,j ∈]yj−1, yj+1[. For ∆x and ∆y small, we have

ui+1,j − 2ui,j + ui−1,j
(∆x)2

+
ui,j+1 − 2ui,j + ui,j−1

(∆y)2
≈ f(xi, yj) .

This suggests the following finite difference equation.

wi+1,j − 2wi,j +wi−1,j

(∆x)2
+
wi,j+1 − 2wi,j +wi,j−1

(∆y)2
= f(xi, yj) (15.2.12)

514 15. Finite Difference Methods

for 0 < i < N and 0 < j <M . The boundary conditions impose

wi,0 = g(xi, c) and wi,M = g(xi, d) for 0 ≤ i ≤ N ,

and

w0,j = g(a, yj) and wa,j = g(b, yj) for 0 ≤ j ≤M .

We get the following finite difference scheme for the Dirichlet equation (15.2.10).

Algorithm 15.2.6

wi,j+1 − 2wi,j +wi,j−1 + α (wi+1,j − 2wi,j +wi−1,j) = f(xi, yj)(∆y)2

for 0 < i < N and 0 < j < M , where α = (∆y)
2

(∆x)2
, wi,0 = g(xi, c) and wi,M = g(xi, d) for

0 ≤ i ≤ N , and w0,j = g(a, xj) and wN,j = g(b, xj) for 0 ≤ j ≤M .

x

w3,−1 = w3,1

w4,2

xN−1

x2 xNx4x3x0 x1
y0

y1

y2

yM

y

yM−1

Figure 15.3: Schematic representation of the finite difference scheme given in Al-
gorithm 15.2.6.

This finite difference scheme is illustrated in Figure 15.3.

It can be expressed as a linear system Aw = B. The (column) vector w is defined by

w =
⎛
⎜⎜⎜
⎝

w1

w2

⋮
wM−1

⎞
⎟⎟⎟
⎠

with wj =
⎛
⎜⎜⎜
⎝

w1,j

w2,j

⋮
wN−1,j

⎞
⎟⎟⎟
⎠

15.2. Explicit and Implicit Schemes 515

for 0 < j <M . The matrix A is a (N − 1)(M − 1) × (N − 1)(M − 1) matrix of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

J Id 0 0 . . . 0 0 0
Id J Id 0 . . . 0 0 0
0 Id J Id . . . 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 . . . Id J Id
0 0 0 0 . . . 0 Id J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where Id is the (N − 1) × (N − 1) identity matrix and

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 − 2α α 0 0 0 . . . 0 0
α −2 − 2α α 0 0 . . . 0 0
0 α −2 − 2α α 0 . . . 0 0
0 0 α −2 − 2α α . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 ⋯ α −2 − 2α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(15.2.13)

is a (N − 1) × (N − 1) matrix. The vector B is defined by

B =
⎛
⎜⎜⎜
⎝

B1

B2

⋮
BM−1

⎞
⎟⎟⎟
⎠
,where B1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−w1,0 − αw0,1 + f(x1, y1)(∆y)2
−w2,0 + f(x2, y1)(∆y)2
−w3,0 + f(x3, y1)(∆y)2

⋮
−wN−1,0 − αwN,1 + f(xN−1, y1)(∆y)2

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

Bj =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−αw0,j + f(x1, yj)(∆y)2
f(x2, yj)(∆y)2
f(x3, yj)(∆y)2

⋮
−αwN,j + f(xN−1, yj)(∆y)2

⎞
⎟⎟⎟⎟⎟⎟
⎠

for 1 < j <M − 1, and

BM−1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−w1,M − αw0,M−1 + f(x1, yM−1)(∆y)2
−w2,M + f(x2, yM−1)(∆y)2
−w3,M + f(x3, yM−1)(∆y)2

⋮
−wN−1,M − αwN,M−1 + f(xN−1, yM−1)(∆y)2

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Code 15.2.7

To approximate the solution of the Dirichlet equation

∂2u

∂x2
+ ∂

2u

∂y2
= f(x, y)

on the region R = [a, b] × [c, d] with the boundary conditions u(x, c) = gb(x) and

516 15. Finite Difference Methods

u(x, d) = gt(x) for a ≤ x ≤ b, and u(a, y) = gl(y) and u(b, y) = gr(y) for c ≤ y ≤ d.
Input: The right hand side f .
The boundary condition gb(x) when y = c.
The boundary condition gt(x) when y = d.
The boundary condition gl(y) when x = a.
The boundary condition gr(y) when x = b.
The number of partitions N of [a, b] with ∆x = (b − a)/N .
The number of partitions M of [c, d] with ∆y = (d − c)/M .
The endpoints a < b of the x-interval for the domain R.
The endpoints c < d of the y-interval for the domain R.
Output: X contains the x-coordinates x0, x1, . . . , xN of the mesh points in the
domain R.
Y contains the y-coordinates y0, y1, . . . , yM of the mesh points in the domain R.
U contains the approximations of u at the mesh points. Ui,j ≈ u(xi−1, yj−1) for 1 ≤ i ≤
N + 1 and 1 ≤ j ≤M + 1.

function [X,Y,U] = dirichletS1(f,gb,gt,gl,gr,N,M,a,b,c,d)

np1 = N + 1;

mp1 = M + 1;

U = repmat(NaN,np1,mp1);

X = linspace(a,b,np1);

Y = linspace(c,d,mp1);

% Boundary conditions

for i=1:1:np1

U(i,1) = gb(X(i));

U(i,mp1) = gt(X(i));

end

for j=1:1:mp1

U(1,j) = gl(Y(j));

U(np1,j) = gr(Y(j));

end

deltax = (b-a)/N;

deltay = (d-c)/M;

alpha = (deltay/deltax)^2;

nm1 = N - 1;

J = repmat(0,nm1,nm1);

for i=1:1:nm1

for j=i-1:1:i+1

if (i == j)

J(i,j) = -2 -2 * alpha;

elseif (j > 0 && j < N)

J(i,j) = alpha;

end

end

15.2. Explicit and Implicit Schemes 517

end

mm1 = M - 1;

nm2 = N - 2;

MNm1 = mm1*nm1;

deltay2 = deltay^2;

Q = repmat(0,MNm1,MNm1);

B = repmat(NaN,MNm1,1);

for i=1:1:mm1

for j=i-1:1:i+1

if (i == j)

Q((j-1)*nm1+1:j*nm1,(i-1)*nm1+1:i*nm1) = J;

elseif (j > 0 && j < M)

Q((j-1)*nm1+1:j*nm1,(i-1)*nm1+1:i*nm1) = eye(nm1);

end

end

im1 = i - 1;

ip1 = i + 1;

if (i == 1)

B(im1*nm1+1,1) = -U(2,1) -alpha*U(1,ip1) +f(X(2),Y(ip1))*deltay2;

for k=2:1:nm2

B(im1*nm1+k,1) = -U(k+1,1) + f(X(k+1),Y(ip1))*deltay2;

end

B(i*nm1,1) = -U(N,1) -alpha*U(np1,ip1) +f(X(N),Y(ip1))*deltay2;

elseif (i == mm1)

B(im1*nm1+1,1) = -U(2,mp1) -alpha*U(1,ip1) +f(X(2),Y(ip1))*deltay2;

for k=2:1:nm2

B(im1*nm1+k,1) = -U(k+1,mp1) + f(X(k+1),Y(ip1))*deltay2;

end

B(i*nm1,1) = -U(N,mp1) -alpha*U(np1,ip1) +f(X(N),Y(ip1))*deltay2;

else

B(im1*nm1+1,1) = -alpha*U(1,ip1) +f(X(2),Y(ip1))*deltay2;

for k=2:1:nm2

B(im1*nm1+k,1) = f(X(k+1),Y(ip1))*deltay2;

end

B(i*nm1,1) = -alpha*U(np1,ip1) +f(X(N),Y(ip1))*deltay2;

end

end

% Solve the system Q UU = B with matlab library

UU = linsolve(Q,B);

% Solve the system Q UU = B with gauss()

% UU = gauss(Q,B,1);

% Transfer UU to U

for i=1:1:mm1

518 15. Finite Difference Methods

im1 = i - 1;

ip1 = i + 1;

U(2:N,ip1) = UU(im1*nm1+1:i*nm1,1);

end

end

Remark 15.2.8
There is one issue with the code above when the mesh sizes are really small. The matrix Q
may be very large. So, simple Gauss elimination is not recommended to solve QU = B. The
matrix Q is block tridiagonal as are the matrices J and K. It is therefore really important
to develop efficient and economical methods to solve very large linear system of this form.
This is outside the scope of this manuscript. A good starting reference is [13]. ♠
Example 15.2.9
Use the previous finite difference scheme to approximate the solution to the following Dirich-
let equation.

∂2u

∂x2
+ ∂

2u

∂y2
= xy;

on the domain R = [0,2]×[0,4] with the boundary conditions u(x,0) = x(2−x) and u(x,4) =
x(2 − x)2 for 0 ≤ x ≤ 2, and u(0, y) = y(4 − y) and u(2, y) = y(4 − y)2 for 0 ≤ y ≤ 4.

With the matlab code below, we got the following graph for the approximation of the
solution u.

Code 15.2.10

f = @(x,y) x.*y;

gb = @(x) x.*(2-x);

gt = @(x) x.*(2-x).^2;

gl = @(y) y.*(4-y);

gr = @(y) y.*(4-y).^2;

a = 0;

b = 2;

c = 0;

d = 4;

15.2. Explicit and Implicit Schemes 519

N = 10;

M = 20;

[X,Y,U] = dirichletS1(f,gb,gt,gl,gr,N,M,a,b,c,d);

[XX,YY] = meshgrid(X,Y);

% We need to transpose the matrix U because meshgrid()

% transposes the coordinates.

surf(XX,YY,U’)

xlabel(’x’)

ylabel(’y’)

zlabel(’u’)

♣

15.2.3 Hyperbolic Equations

We consider the wave equation

∂2u

∂t2
= c2∂

2u

∂x2
, 0 < x < L and 0 < t < T , (15.2.14)

with the boundary conditions

u(0, t) = h0(t) and u(L, t) = hL(t) , 0 ≤ t ≤ T , (15.2.15)

and the initial conditions

u(x,0) = g(x) and ∂u

∂t
(x,0) = f(x) , 0 ≤ x ≤ L , (15.2.16)

where g ∶ [0, L] → R is a continuous function satisfying g(0) = h0(0) and g(L) = hL(0), and
f ∶ [0, L]→ R is also continuous.

We develop a finite difference scheme for the wave equation given in (15.2.14), (15.2.15)
and (15.2.16).

Given two integers N ≥ 2 and M ≥ 1, we set ∆x = L/N , ∆t = T /M , xi = i∆x, tj = j∆t
and ui,j = u (xi, tj) for 0 ≤ i ≤ N and 0 ≤ j ≤M . From (15.1.6) for x and t, we get

ui,j+1 − 2ui,j + ui,j−1
(∆t)2

− 1

4!
(∂

4u

∂t4
(xi, ζi,j) +

∂4u

∂t4
(xi, ηi,j)) (∆t)2

= c2
ui+1,j − 2ui,j + ui−1,j

(∆x)2
− c

2

4!
(∂

4u

∂x4
(µi,j, tj) +

∂4u

∂x4
(νi,j, tj)) (∆x)2

(15.2.17)

for ζi,j, ηi,j ∈]tj−1, tj+1[and µi,j, νi,j ∈]xi−1, xi+1[. For ∆t and ∆x small, we have

ui,j+1 − 2ui,j + ui,j−1
(∆t)2

≈ c2
ui+1,j − 2ui,j + ui−1,j

(∆x)2
.

520 15. Finite Difference Methods

This suggests the following finite difference equation.

wi,j+1 − 2wi,j +wi,j−1

(∆t)2
= c2

wi+1,j − 2wi,j +wi−1,j

(∆x)2
(15.2.18)

for 0 < i < N and 0 < j <M .

Since wi,−1 is not defined for 0 < i < N , (15.2.12) cannot be used for j = 0. Thus, the value

of wi,1 for 0 < i < N cannot be computed with (15.2.12). The initial condition of
∂u

∂t
is useful

here. The initial condition of
∂u

∂t
may be evaluated with the formula (15.1.5). If we assume

that u is defined for t < 0, we may write

∂u

∂t
(xi,0) =

ui,1 − ui,−1
2∆t

− 1

12
(∂

3u

∂t3
(xi, ζ̃i) +

∂3u

∂t3
(xi, η̃i)) (∆t)2

for some ζ̃i, η̃i ∈]t−1, t1[. We choose this finite difference formula to approximate
∂u

∂t
because,

for ∆t near 0, its local truncation error

− 1

12
(∂

3u

∂t3
(xi, ζ̃i) +

∂3u

∂t3
(xi, η̃i)) (∆t)2 = O ((∆t)2)

is comparable to the local truncation error

− 1
4!
(∂

4u

∂t4
(xi, ζi,j) +

∂4u

∂t4
(xi, ηi,j)) (∆x)2 = O ((∆t)2)

of the finite difference formula that has been used to approximate
∂2u

∂t2
. We have for ∆t

small enough that
∂u

∂t
(xi,0) ≈

ui,1 − ui,−1
2∆t

, 0 ≤ i ≤ N .

Thus

ui,−1 ≈ ui,1 − 2
∂u

∂t
(xi,0)∆t , 0 ≤ i ≤ N .

This suggests the following formula for wi,−1.

wi,−1 = wi,1 − 2w′i,0∆t , 0 ≤ i ≤ N ,

where

w′i,0 =
∂u

∂t
(xi,0) = f(xi) , 0 ≤ i ≤ N .

The initial condition on u imposes wi,0 = g(xi) for 0 ≤ i ≤ N . The boundary conditions
impose w0,j = h0(tj) and wN,j = hL(tj) for 0 ≤ j ≤M .

We finally get the following finite difference scheme.

15.2. Explicit and Implicit Schemes 521

Algorithm 15.2.11

wi,j+1 − 2wi,j +wi,j−1 − α (wi+1,j − 2wi,j +wi−1,j) = 0

for 0 < i < N and 0 ≤ j < M , where α = c
2(∆t)2
(∆x)2

, w0,j = h0(tj) and wN,j = hL(tj) for

0 ≤ j ≤M , wi,0 = g(xi) for 0 ≤ i ≤ N , and wi,−1 = wi,1 − 2 f(xi)∆t for 0 ≤ i ≤ N .

x
x2

w3,−1 = w3,1 − f(x3)∆t

xN−1

w4,2

t0

t1

t2

xNx4x3x0 x1

tM

tM−1

t

Figure 15.4: Schematic representation of the finite difference scheme given in Al-
gorithm 15.2.11.

This scheme is illustrated in Figure 15.4.

As the previous schemes, it can be expressed as a linear system of the form Aw = B. The
(column) vector w is defined by

w =
⎛
⎜⎜⎜
⎝

w1

w2

⋮
wM

⎞
⎟⎟⎟
⎠

with wj =
⎛
⎜⎜⎜
⎝

w1,j

w2,j

⋮
wN−1,j

⎞
⎟⎟⎟
⎠

for 0 < j ≤M . The matrix A is a (N − 1)M × (N − 1)M matrix of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Id 0 0 0 . . . 0 0 0
J Id 0 0 . . . 0 0 0
Id J Id 0 . . . 0 0 0
0 Id J Id . . . 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 . . . Id J Id

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

522 15. Finite Difference Methods

where Id is the (N − 1) × (N − 1) identity matrix and

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 + 2α −α 0 0 0 . . . 0 0
−α −2 + 2α −α 0 0 . . . 0 0
0 −α −2 + 2α −α 0 . . . 0 0
0 0 −α −2 + 2α −α . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 ⋯ −α −2 + 2α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is a (N − 1) × (N − 1) matrix. The vector B is defined by

B =
⎛
⎜⎜⎜
⎝

B1

B2

⋮
BM

⎞
⎟⎟⎟
⎠
, where B1 =

1

2

⎛
⎜⎜⎜⎜⎜⎜
⎝

(2 − 2α)w1,0 + αw0,0 + αw2,0 + 2w′1,0∆t
(2 − 2α)w2,0 + αw1,0 + αw3,0 + 2w′2,0∆t
(2 − 2α)w3,0 + αw2,0 + αw4,0 + 2w′3,0∆t

⋮
(2 − 2α)wN−1,0 + αwN−2,0 + αwN,0 + 2w′N−1,0∆t

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

B2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−w1,0 + αw0,1

−w2,0

−w3,0

⋮
−wN−1,0 + αwN,1

⎞
⎟⎟⎟⎟⎟⎟
⎠

and Bj =

⎛
⎜⎜⎜⎜⎜⎜
⎝

αw0,j−1
0
0
⋮

αwN,j−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

for 3 ≤ j ≤M .

15.3 Convergence, Consistency and Stability

The presentation in this section is based on [20, 18, 19].

There are three questions that come to mind when using a finite difference scheme to
numerically solve a partial differential equation.

1. Is there a solution to the system Aw = B associated to a finite difference scheme and,
if so, is this solution unique?

2. Since computations cannot be performed exactly on computers (round off errors), and
since the boundary and initial conditions are often approximations of the true values
(experimental values) or cannot be entered exactly on computer (round off errors), is
the finite difference scheme “stable?” Namely, if the computed value at one step of the
finite difference scheme is slightly modified, will the computed value at the following
step be close to the value that should have been found if the previous value had not
been modified. If the method is not stable, we cannot hope to get reliable results.

3. Is the solution to the finite difference scheme close to the solution of the partial differ-
ential equation from which we have developed the finite difference scheme?

15.3. Convergence, Consistency and Stability 523

The first question is easy to answer positively because the matrices A obtained from the
finite difference schemes that we have presented are invertible. As we will see when studying
the stability of the finite difference scheme, the matrices A have non-zero eigenvalues and so
a non-zero determinant. Hence there exists a unique solution to Aw = B.

15.3.1 Uniform Theory

We assume that the domain for the partial differential equation is R = {(x, y) ∶ a ≤ x ≤
b and x ≤ y ≤ d}. The boundary of R, denoted ∂R, is the set of points (x, y) where
conditions are imposed on u. The interior of R is defined as the set Ro = R∖∂R. Be aware
that the definition of boundary and interior of a set given here may not coincide with the
normal definition of border and interior of a set in topology.

Once the step sizes ∆x = (b− a)/N and ∆y = (d− c)/M have been selected, we define the
domain for the finite difference scheme as

R∆ = {(xi, yj) ∶ xi = i∆x for 0 ≤ i ≤ N, and yj = j∆y for 1 ≤ j ≤M} . (15.3.1)

The boundary of R∆, denoted ∂R∆, is the set of mesh points (xi, yj) ∈ ∂R. The interior
of R∆ is defined as the set Ro

∆ = R∆ ∖ ∂R.
Example 15.3.1
For the heat and wave equations, y is replaced by t and the boundary of R is defined as the
set ∂R = {(x,0) ∶ 0 ≤ x ≤ L} ∪ {(x, t) ∶ x = 0 or L, and 0 ≤ t ≤ T}. The boundary of R∆ is
defined as the set

∂R∆ = {(xi,0) ∶ xi = i∆x for 0 ≤ i ≤ N} ∪ {(x, tj) ∶ x = 0 or L, and tj = j∆t for 1 ≤ j ≤M} .

For the Dirichlet equation, the boundaries of R and Rδ have the expected definition: ∂R =
{(x, y) ∶ y = c or d, and a ≤ x ≤ b} ∪ {(x, y) ∶ x = a or b, and c ≤ y ≤ d} and

∂R∆ = {(xi, y) ∶ y = c or d, and xi = i∆x for 0 ≤ i ≤ N}
∪ {(x, yj) ∶ x = a or b, and yj = j∆y for 1 ≤ j ≤M} .

♣
The partial differential equations that we are considering are of the form

P (u(x, y), ∂u
∂x
(x, y), ∂u

∂y
(x, y), ∂

2u

∂x2
(x, y), . . .) = F (x, y) , (15.3.2)

where P is a linear mapping and F ∶ R → R is a given function. The finite difference schemes
that we have deduced to numerically solve these partial differential equations are based on
finite difference equations of the form

P∆ (wi,j,wi,j+1,wi+1,j, . . .) = F (xi, yj) (15.3.3)

for all (i, j) such that (xi, yj) ∈ Ro
∆, where P∆ is also a linear mapping. These schemes were

deduced in Section 15.2 from the expressions that we got after substituting finite difference
formulae for the partial derivatives at (xi, yj) into the heat, Dirichlet and wave equations.

524 15. Finite Difference Methods

Example 15.3.2
For the finite difference scheme in Algorithm 15.2.1, we have

P (u(x, y), ∂u
∂x
(x, y), ∂u

∂y
(x, y), ∂

2u

∂x2
(x, y), . . .) = ∂u

∂t
− c2∂

2u

∂x2

and

P∆ (wi,j,wi,j+1,wi+1,j, . . .) =
wi,j+1 −wi,j

∆t
− c2

wi+1,j − 2wi,j +wi−1,j

(∆x)2
. (15.3.4)

♣
In the definition of P∆ given in (15.3.3), we are referring to (xi, yj) ∈ Ro

∆. This is not
really correct. As for the finite difference scheme in (15.3.4) above, the formula (15.3.3) is
used to approximate the value of u(xi, yj+1). It is (xi, yj+1) which is really in Ro

∆. The point
(xi, yj) may be on the boundary as it is the case in (15.3.4) for j = 0. Nevertheless, we prefer
to use the formulation above because it expresses more clearly that formula (15.3.3) is used
to approximate a value of u at an interior point.

As we had to do for the wave equation, we may also have to approximate the boundary
and/or initial conditions of u on ∂R∆. These conditions are given by a formula of the form

B (u(x, y), ∂u
∂x
(x, y), ∂u

∂y
(x, y), . . .) = G(x, y) (15.3.5)

evaluated on ∂R. where B is a linear mapping and G ∶ ∂R → R is a given function. The
approximation of the boundary or initial condition at each mesh points (xi, yj) of ∂R∆ is
given by a formula of the form

B∆(wi,j,wi,j+1,wi+1,j, . . .) = G(xi, yj) (15.3.6)

for all (i, j) such that (xi, yj) ∈ ∂R∆, where B∆ is a linear mapping. This formula is also
deduced from the expressions that we got after substituting finite difference formulae for the
partial derivatives at (xi, yj) ∈ ∂R∆ into the boundary and initial conditions.

Example 15.3.3
For the heat equation with forcing, we have

B (u(x, t), ∂u
∂x
(x, t), ∂u

∂t
(x, t), . . .) = u(x, t)

for all (x, t) ∈ ∂R, B∆(wi,j,wi,j+1,wi+1,j, . . .) = wi,j for all (i.j) such that (xi, tj) ∈ ∂R∆, and

G(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h0(t) for x = 0 and 0 ≤ t ≤ T
hL(t) for x = L and 0 ≤ t ≤ T
g(x) for t = 0 and 0 ≤ x ≤ L

for all (x, t) ∈ ∂R.
For the Dirichlet equation, we have

B (u(x, y), ∂u
∂x
(x, y), ∂u

∂y
(x, y), . . .) = u(x, y)

15.3. Convergence, Consistency and Stability 525

for all (x, y) ∈ ∂R, B∆(wi,j,wi,j+1,wi+1,j, . . .) = wi,j for all (i.j) such that (xi, yj) ∈ ∂R∆, and
G(x, y) = g(x, y) for all (x, y) ∈ ∂R.

For the wave equation, we may choose

B (u(x, t), ∂u
∂x
(x, t), ∂u

∂t
(x, t), . . .) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
u(x, t)
u(x, t)

⎞
⎠

for x = 0 or x = L, and 0 ≤ t ≤ T

⎛
⎜
⎝

u(x, t)
∂u

∂t
(x, t)

⎞
⎟
⎠

for t = 0 and 0 ≤ x ≤ L

for all (x, t) ∈ ∂R,

B∆(wi,j,wi,j+1,wi+1,j, . . .)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
wi,j

wi,j

⎞
⎠

for i = 0 or i = N,
and 0 ≤ j ≤M

⎛
⎝

0 1 0

−1/(2∆t) 0 1/(2∆t)
⎞
⎠

⎛
⎜⎜
⎝

wi,−1

wi,0

wi,1

⎞
⎟⎟
⎠

for j = 0 and 0 ≤ i ≤ N

for all (i.j) such that (xi, yj) ∈ ∂R∆, and

G(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
h0(t)
h0(t)

⎞
⎠

for x = 0 and 0 < t ≤ T

⎛
⎝
hL(t)
hL(t)

⎞
⎠

for x = L and 0 < t ≤ T

⎛
⎝
g(x)
f(x)

⎞
⎠

for t = 0 , and 0 ≤ x ≤ L

for all (x, t) ∈ ∂R. ♣
To answer the third question in the introduction of this section, we have to show that the

following definition is satisfied.

Definition 15.3.4

The solution of a finite difference scheme associated to a finite difference equation
P∆ = F with conditions B∆ = G as in (15.3.3) and (15.3.6) converges toward the
solution of the partial differential equation given by P = F with conditions B = G as
in (15.3.2) and (15.3.5) if

max{∣wi,j − ui,j ∣ ∶ 0 ≤ i ≤ N and 0 ≤ j ≤M}→ 0 as min{N,M}→∞ ,

where {wi,j ∶ 0 ≤ i ≤ N and 0 ≤ j ≤ M} is the solution of the finite difference scheme
and u is the solution of the partial differential equation. As before ui,j = u (xi, yj) for
0 ≤ i ≤ N and 0 ≤ j ≤M .

526 15. Finite Difference Methods

Remark 15.3.5
Be aware that the previous definition of convergence does not consider any round off error
or perturbation. Therefore, a method may theoretically converge according to the previous
definition but not give good results in practice. Nevertheless, we must at least verify that
a method converges according to the previous definition before using it. To keep the pre-
sentation to a reasonable level of sophistication, we will not consider round off error in our
presentation of the finite difference schemes except in some special cases like when we will
discuss stability of finite difference schemes. ♠

Unfortunately, convergence is sometime difficult to prove. However, it may not be neces-
sary to prove convergence directly to prove that a finite difference scheme is convergent as
we will see later. To justify this approach, we will need the following concepts.

Definition 15.3.6

Given any sufficiently differentiable function q ∶ R → R, the local truncation error
of the linear mapping P∆ in (15.3.3) is the expression

τi,j(∆x,∆y, q) = P∆ (q(xi, yj), q(xi, yj+1), q(xi+1, yj), . . .)

− P (q(xi, yj),
∂q

∂x
(xi, yj),

∂q

∂y
(xi, yj),

∂2q

∂x2
(xi, yj), . . .)

for all (i, j) such that (xi, yj) ∈ Ro
∆.

We also define the local error for the linear mapping B∆ in (15.3.6) as

σi,j(∆x.∆y, q) = B∆ (q(xi, yj), q(xi, yj+1), q(xi+1, yj), . . .)

−B (q(xi, yj),
∂q

∂x
(xi, yj),

∂q

∂y
(xi, yj), . . .) .

for all (i, j) such that (xi, yj) ∈ ∂R.
A finite difference scheme determined by the linear mappings P∆ and B∆ as in (15.3.3)
and (15.3.6) is consistent if

max
(i,j) such that
(xi,yj)∈Ro

∆

∣τi,j(∆x,∆y, q)∣→ 0 as min{N,M}→∞

and
max

(i,j) such that
(xi,yj)∈∂R∆

∥σi,j(∆x,∆y, q)∥→ 0 as min{N,M}→∞

for all sufficiently differentiable function q ∶ R → R. If there are constraints on the
grids used in the two previous limits, namely on ∆x and ∆y, then the finite difference
scheme is said to be conditionally consistent.

As mentioned previously, we are using the imprecise reference to τi,j for (xi, yj) ∈ Ro
∆

though (xi, yj) may not be in Ro
∆. The formula (15.3.3) is used to approximate the value of

u(xi, yj+1). It is (xi, yj+1) which is really in Ro
∆. The point (xi, yj) may be on the boundary.

15.3. Convergence, Consistency and Stability 527

Remark 15.3.7 (Warning)

The expression P (q(xi, yj),
∂q

∂x
(xi, yj),

∂q

∂y
(xi, yj), . . .) in the definition of τi,j(∆x,∆y, q)may

in fact be a linear mapping of the form

P (q(xi, yj),
∂q

∂x
(xi, yj),

∂q

∂y
(xi, yj), . . . , q(xi, yj+1),

∂q

∂x
(xi, yj+1),

∂q

∂y
(xi, yj+1), . . .) .

The Crank-Nicolson scheme is an example of this situation. For this reason, the expression

P (q(xi, yj),
∂q

∂x
(xi, yj),

∂q

∂y
(xi, yj), . . .) should not be interpreted literally. For simplicity, we

prefer to use the expression of the form P (q(xi, yj),
∂q

∂x
(xi, yj),

∂q

∂y
(xi, yj), . . .) to clearly refer

to the interior point (xi, yj) where we try to approximate the value of the solution u. ♠

Definition 15.3.8

A finite difference scheme determined by the linear mappings P∆ and B∆ as in (15.3.3)
and (15.3.6) is stable if, for all function v ∶ R∆ → R, there exists a constant Cα such
that

max
0≤i≤N
0≤j≤M

∣vi,j ∣ ≤ Cα(max
(i,j) such that
(xi,yj)∈Ro

∆

∣P∆ (vi,j, vi,j+1, vi+1,j, . . .)∣

+ max
(i,j) such that
(xi,yj)∈∂R∆

∥B∆ (vi,j, vi,j+1, vi+1,j, . . .)∥) ,
(15.3.7)

where vi,j = v(xi, yj) for all i and j.
The index α for Cα is to indicate that there may be a constraining relation on ∆x
and ∆y that must be satisfied for (15.3.7) to be satisfied. If there is no constraining
relation on ∆x and ∆y used in (15.3.7), then the finite difference scheme is said to be
unconditionally stable. If there is a constraining relation, then the finite difference
scheme is said to be conditionally stable.

We have used the norm notation for ∥σi,j∥ and ∥B∆(vi,j, vi,j+1, vi+1,j, . . .)∥ in the previous
two definitions because, as we have seen in the previous example, B∆(vi,j, vi,j+1, vi+1,j, . . .)
may be a vector.

To satisfy the notion of stability introduced in the second question in the introduction
to this section, our finite difference schemes will need to satisfy the previous definition. To
understand why, we have to consider round off errors. Suppose that vi,j is the computed
approximation of wi,j for all i and j. We may assume that {vi,j ∶ 0 ≤ i ≤ N and 0 ≤ j ≤M} is
the exact solution of

P∆ (vi,j, vi,j+1, vi+1,j, . . .) = F (xi, yj) + δi,j(∆x,∆y)

for all (i, j) such that (xi, yj) ∈ Ro
∆, and

B∆(vi,j, vi,j+1, vi+1,j, . . .) = G(xi, yj) + δ̃i,j(∆x,∆y)

528 15. Finite Difference Methods

for all (i, j) such that (xi, yj) ∈ ∂R∆, where the δi,j(∆x,∆y) and δ̃i,j(∆x,∆y) represent
round off errors. Thus {vi,j −wi,j ∶ 0 ≤ i ≤ N and 0 ≤ j ≤M} satisfies

P∆ (vi,j −wi,j, vi,j+1 −wi,j+1, vi+1,j −wi+1.j, . . .) = δi,j(∆x,∆y)

for all (i, j) such that (xi, yj) ∈ Ro
∆, and

B∆(vi,j −wi,j, vi,j+1 −wi,j+1, vi+1,j −wi+1,k, . . .) = δ̃i,j(∆x,∆y)

for all (i, j) such that (xi, yj) ∈ ∂R∆. If the finite difference scheme is stable, there exists a
constant Cα such that

max
0≤i≤N
0≤j≤M

∣vi,j −wi,j ∣ ≤ Cα(max
(i,j) such that
(xi,yj)∈Ro

∆

∣δi,j(∆x,∆y)∣ + max
(i,j) such that
(xi,yj)∈∂R∆

∥δ̃i,j(∆x,∆y)∥)

for all (i, j) such that (xi, yj) ∈ R∆. The error ∣vi,j − wi,j ∣ is proportional to the round off
errors in our computations.

The following theorem is quite useful to prove the convergence of a finite difference scheme.

Theorem 15.3.9

Consider finite difference scheme determined by the linear mappings P∆ and B∆ as in
(15.3.3) and (15.3.6). If this finite difference scheme is stable and consistent, then it
is convergent.

Proof.
For every (xi, yj) ∈ Ro

∆, we have

0 = F (xi, yj) − F (xi, yj)

= P∆ (wi,j,wi,j+1,wi+1,j, . . .) − P (u(xi, yj),
∂u

∂x
(xi, yj),

∂u

∂y
(xi, yj),

∂2u

∂x2
(xi, yj), . . .)

= P∆ (wi,j,wi,j+1,wi+1,j, . . .) − P∆ (u(xi, yj), u(xi, yj+1), u(xi+1, yj), . . .)
+ P∆ (u(xi, yj), u(xi, yj+1), u(xi+1, yj), . . .)

− P (u(xi, yj),
∂u

∂x
(xi, yj),

∂u

∂y
(xi, yj),

∂2u

∂x2
(xi, yj), . . .)

= P∆ (wi,j,wi,j+1,wi+1,j, . . .) − P∆ (u(xi, yj), u(xi, yj+1), u(xi+1, yj), . . .) + τi,j(∆x,∆y, u) .

It follows from the linearity of P∆ and the definition of the local truncation error that

P∆ (wi,j − u(xi, yj),wi,j+1 − u(xi, yj+1),wi+1,j − u(xi+1, yj), . . .)
= P∆ (wi,j,wi,j+1,wi+1,j, . . .) − P∆ (u(xi, yj), u(xi, yj+1), u(xi+1, yj), . . .) = −τi,j(∆x,∆y, u)

for all (i, j) such that (xi, yj) ∈ Ro
∆. Similarly, we have

B∆ (wi,j − u(xi, yj),wi,j+1 − u(xi, yj+1),wi+1,j − u(xi+1, yj), . . .)

15.3. Convergence, Consistency and Stability 529

= B∆ (wi,j,wi,j+1,wi+1,j, . . .) −B∆ (u(xi, yj), u(xi, yj+1), u(xi+1, yj), . . .) = −σi,j(∆x,∆y, u)

for all (i, j) such that (xi, yj) ∈ ∂R∆. Since the finite difference is stable, there exists a
constant Cα such that

max
0≤i≤N
0≤j≤M

∣wi,j − u(xi, yj)∣

≤ Cα(max
(i,j) such that
(xi,yj)∈Ro

∆

∣P∆ (wi,j − u(xi, yj),wi,j+1 − u(xi, yj+1),wi+1,j − u(xi+1, yj), . . .)∣

+ max
(i,j) such that
(xi,yj)∈∂R∆

∥B∆(wi,j − u(xi, yj),wi,j+1 − u(xi, yj+1),wi+1,j − u(xi+1, yj), . . .)∥)

≤ Cα(max
(i,j) such that
(xi,yj)∈Ro

∆

∣τi,j(∆x,∆y, u)∣ + max
(i,j) such that
(xi,yj)∈∂R∆

∥σi,j(∆x,∆y, u)∥) .

Finally, since the finite difference scheme is consistent,

max
(i,j) such that
(xi,yj)∈Ro

∆

∣τi,j(∆x,∆y, u)∣→ 0 and max
(i,j) such that
(xi,yj)∈∂R∆

∥σi,j(∆x,∆y, u)∥→ 0

as min{N,M}→∞ imply that

max
0≤i≤N
0≤j≤M

∣wi,j − u(xi, yj)∣→ 0

as min{N,M}→∞.

Since it is generally easier to prove stability and consistency, the previous theorem gives
us a method to prove convergence without having to prove it from the definition. This is the
approach that we generally use later to prove convergence for some of the finite difference
schemes that we have presented in the previous section.

Remark 15.3.10

1. Be aware that some finite difference schemes may not converge for all possible functions
F and G but may be converging for some sub-classes of functions F and G.

2. There are finite difference scheme that may be converging but note stable according
to the definition that we have given. This is because the definition of stability that we
have given is more restrictive that is often necessary. Consult [20] for more information.

♠
We can give a more precise analysis of the effect of round off error on the numerical

approximation of the solution. As before, suppose that vi,j is the computed approximation
of wi,j for all i and j. We may assume that {vi,j ∶ 0 ≤ i ≤ N and 0 ≤ j ≤ M} is the exact
solution of

P∆ (vi,j, vi,j+1, vi+1,j, . . .) = F (xi, yj) + δi,j(∆x,∆y) (15.3.8)

530 15. Finite Difference Methods

for all (i, j) such that (xi, yj) ∈ Ro
∆, and

B∆(vi,j, vi,j+1, vi+1,j, . . .) = G(xi, yj) + δ̃i,j(∆x,∆y)

for all (i, j) such that (xi, yj) ∈ ∂R∆, where the δi,j(∆x,∆y) and δ̃i,j(∆x,∆y) represent round
off errors. Let us assume that there exists δ ∶ R → R such that ∣δi,j(∆x,∆y)∣ ≤ δ(∆x,∆y)
and ∣δ̃i,j(∆x,∆y)∣ ≤ δ(∆x,∆y) for all i and j. So δ(∆x,∆y) is a bound on the round off
errors. Proceeding as in the proof of Theorem 15.3.9 and using (15.3.8), we have that

0 = F (xi, yj) − F (xi, yj) = P∆ (vi,j, vi,j+1, vi+1,j, . . .)

− P (u(xi, yj),
∂u

∂x
(xi, yj),

∂u

∂y
(xi, yj),

∂2u

∂x2
(xi, yj), . . .) − δi,j(∆x,∆y)

= P∆ (vi,j, vi,j+1, vi+1,j, . . .) − P∆ (u(xi, yj), u(xi, yj+1), u(xi+1, yj), . . .)
+ P∆ (u(xi, yj), u(xi, yj+1), u(xi+1, yj), . . .)

− P (u(xi, yj),
∂u

∂x
(xi, yj),

∂u

∂y
(xi, yj),

∂2u

∂x2
(xi, yj), . . .) − δi,j(∆x,∆y)

= P∆ (vi,j, vi,j+1, vi+1,j, . . .) − P∆ (u(xi, yj), u(xi, yj+1), u(xi+1, yj), . . .)
+ τi,j(∆x,∆y, u) − δi,j(∆x,∆y)

for all (i, j) such that (xi, yj) ∈ Ro
∆. It follows from the linearity of P∆ that

P∆ (vi,j − u(xi, yj), vi,j+1 − u(xi, yj+1), vi+1,j − u(xi+1, yj), . . .)
= P∆ (vi,j, vi,j+1, vi+1,j, . . .) − P∆ (u(xi, yj), u(xi, yj+1), u(xi+1, yj), . . .)
= −τi,j(∆x,∆y, u) + δi,j(∆x,∆y)

for all (i, j) such that (xi, yj) ∈ Ro
∆. Similarly, we have

B∆ (vi,j − u(xi, yj), vi,j+1 − u(xi, yj+1), vi+1,j − u(xi+1, yj), . . .)
= B∆ (vi,j, vi,j+1, vi+1,j, . . .) −B∆ (u(xi, yj), u(xi, yj+1), u(xi+1, yj), . . .)
= −σi,j(∆x,∆y, u) + δ̃i,j(∆x,∆y)

for all (i, j) such that (xi, yj) ∈ ∂R∆. Since the finite difference is stable, there exist a
constant Cα such that

max
0≤i≤N
0≤j≤M

∣vi,j − u(xi, yj)∣

≤ Cα(max
(i,j) such that
(xi,yj)∈Ro

∆

∣P∆ (vi,j − u(xi, yj), vi,j+1 − u(xi, yj+1), vi+1,j − u(xi+1, yj), . . .)∣

+ max
(i,j) such that
(xi,yj)∈∂R∆

∥B∆(vi,j − u(xi, yj), vi,j+1 − u(xi, yj+1), vi+1,j − u(xi+1, yj), . . .)∥)

≤ Cα(max
(i,j) such that
(xi,yj)∈Ro

∆

∣τi,j(∆x,∆y, u)∣ + max
(i,j) such that
(xi,yj)∈∂R∆

∥σi,j(∆x,∆y, u)∥ + 2δ(∆x,∆y)) .

15.3. Convergence, Consistency and Stability 531

If the finite difference scheme is consistent, we have that

max
(i,j) such that
(xi,yj)∈Ro

∆

∣τi,j ∣→ 0 and max
(i,j) such that
(xi,yj)∈∂R∆

∥σi,j∥→ 0

as min{N,M} → ∞. Hence, the precision of the finite difference scheme is proportional to
the round off error.

Note that there is no reason for round off errors to decrease as min{N,M}→∞; namely,
as max{∆x,∆y}→ 0. In fact, round off errors may start to increase for max{∆x,∆y} small
if the computation involve divisions by small numbers.

15.3.2 ℓ2 Theory

The definitions of convergence, consistency and stability that we have presented in the previ-
ous section are the strongest ones to be given because they require uniform convergence on all
the domain of the boundary value problem. Unfortunately, these definitions are too restric-
tive for many of the interesting finite difference schemes. Weaker definitions of convergence,
consistency and stability are required.

The discussion in this section is basically for the heat and wave equation. For the Dirichlet
equation, the previous notion of convergence, consistency and stability are fine. We prove
in Section 15.6, using totally different techniques than those presented in this section, that
Algorithm 15.2.6 for the Dirichlet equation satisfies the previous definitions of convergence,
consistency and stability.

We only touch the subject of stability and convergence for finite difference schemes to
solve partial differential equations. A good reference on the subject and one of the principal
source of information for this section is [18].

The universal idea about that stability is to ensure that the errors in our computed values
do not increase as the step sizes decrease, at least that the errors are bounded by a small
value as the step sizes decrease.

We consider a partial differential equation

P (u(x, t), ∂u
∂x
(x, t), ∂u

∂t
(x, t), ∂

2u

∂x2
(x, t), . . .) = 0

on the domain R× [0, T] and assume that the initial conditions are periodic with period 2π.
More precisely, we assume that u(x,0) = g(x) for a periodic function g ∶ R→ R of period 2π.

For hyperbolic equation like the wave equation, we also assume that
∂u

∂t
(x,0) = h(x) for a

periodic function h ∶ R → R of period 2π. Instead of boundary conditions, we assume that
the solution u(x, t) of the partial differential equation is periodic of period 2π with respect
to x.

A problem given by a partial differential equation with only initial conditions like the
problem above is called a Cauchy problem.

532 15. Finite Difference Methods

Suppose that we have a finite difference scheme of the form P∆(wi,j,wi,j+1,wi+1,j, . . .) =
F (xi, tj) for all (i, j) such that

(xi, tj) ∈ Ro
∆ = {(xi, tj) ∶ xi = i∆x for i ∈ Z and tj = j∆t for 0 < j ≤M}

and wi,j ≈ ui,j.
We consider the space ℓ2(Z) of all functions g ∶ Z→ C such that

∥g∥22 =∑
k∈Z
∣g(k)∣2 <∞ .

We assume that we can express this finite difference scheme as gj+1 = Qα(gj) for j ≥ 0, where
gj ∶ Z → R for j ≥ 0 is defined by gj(i) = wi,j for all i and j, and Qα ∶ ℓ2(Z) → ℓ2(Z) is
a bounded linear mapping. The index α in Qα is to indicate that the linear operator may
depend on a relation between ∆x and ∆t.

Example 15.3.11
For the heat equation without forcing, the Crank-Nicolson scheme given in Algorithm 15.2.2
is of the form gj+1 = Qα(gj); namely,

gj+1(i) = Qα(gj)(i) =∑
s∈Z
qi,s gj(s) ,

where qi,s is the (i, s) component of the infinite matrix Qα = −J−1K, where

Jr,s =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 + 2α if r = s
−α if s = r + 1 or s = r − 1
0 otherwise

and

Kr,s =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 + 2α if r = s
−α if s = r + 1 or s = r − 1
0 otherwise

for r, s ∈ Z. Recall that α = c∆t/(2(∆x)2).
As we will see later, we do not have to worry about computing the inverse of the “infi-

nite dimensional” matrix J . Note that the (r, s) component of the product of two infinite
dimensional matrices A and B is defined by ∑

k∈Z
Ar,kBk,s. ♣

We need new definitions for convergence, consistency and stability.

Definition 15.3.12

A finite difference scheme of the form gj+1 = Qα(gj) with gj ∈ ℓ2(Z) for all j ≥ 0 is
ℓ2-convergent if, for all t ∈ [0, T],

∥gj − ut∥2 → 0 as M →∞ and j∆t→ t ,

where ut(i) = u(i∆x, t) for all i ∈ Z.

The previous definition is more general than what we may have expected. It does not
only consider t = j∆t but j∆t→ t.

15.3. Convergence, Consistency and Stability 533

Definition 15.3.13

Given any sufficiently differentiable function q ∶ R × [0, T]→ R, the local truncation
error of the finite difference scheme gj+1 = Qα(gj) is the expression

τt(∆x,∆t, q) =
1

∆t
(qt+∆t −Qα(qt))

where qt(i) = q(i∆x, t) for all i ∈ Z.
The finite difference scheme gj+1 = Qα(gj) is consistent if, for all t,

sup
0≤t≤T−∆t

∥τt(∆x,∆t, q)∥2 → 0 as M →∞

for all sufficiently differentiable function q ∶ R × [0, T]→ R.

We also have a new definition of stability.

Definition 15.3.14

A finite difference scheme of the form gj+1 = Qα(gj) with gj ∈ ℓ2(Z) for all j ≥ 0 is
ℓ2-stable if there exists a constant Cα such that ∥Qj

α∥2 ≤ C for 0 ≤ j ≤M and all M .
The index α for Cα is to indicate that there may be a constraining relation on ∆x and
∆y that must be satisfied for ∥Qj

α∥2 ≤ C to be satisfied for 0 ≤ j ≤ M and all M . If
no constraining relation on ∆x and ∆y is imposed, then the finite difference scheme is
said to be unconditionally stable. If there is a constraining relation, then the finite
difference scheme is said to be conditionally stable.

This definition of stability ensures that the error of a computed value does not increase
in ℓ2 norm. This can be heuristically justified as it follows. Suppose that g̃j is the computed
value obtained using the finite difference scheme. We may assume that

g̃j+1 = Qα(g̃j) +∆t δj , (15.3.9)

where δj ∈ ℓ2(Z) represents the round off error. Let rj = g̃j − gj for j ≥ 0. We have

rj+1 = g̃j+1 − gj+1 = (Qα(g̃j) +∆t δj) −Qα(gj) = Qα (g̃j − gj) +∆t δj = Qα (rj) +∆t δj

for j ≥ 0. We get by induction that

rj = Qj
α(r0) +∆t

j−1
∑
k=0

Qk
α (δj−1−k)

for j ≥ 1. If we assume that ∥δj∥2 ≤ δ for all j, we get

∥rj∥2 ≤ ∥Qj
α∥2 ∥r0∥2 +∆t

j−1
∑
k=0
∥Qk

α∥2 ∥δj−1−k∥2 ≤ ∥Q
j
α∥2 ∥r0∥2 + δ∆t

j−1
∑
k=0
∥Qk

α∥2

≤ C∥r0∥2 + δC(j∆t) ≤ C∥r0∥2 + δCT

534 15. Finite Difference Methods

for 0 < j ≤M . The error is bounded in ℓ2 norm. In particular, if r0 = 0, the error is bounded
by a multiple of the round off error. This is the ideal case.

Remark 15.3.15
The reader certainly wanders why we may assume that the error in (15.3.9) is of the form
∆t δj. This can be motivated by the following example. If we consider the finite difference
equation (15.2.5), then the approximate values vi,j of wi,j are given by the exact solution of

vi,j+1 − vi,j
∆t

− c2
vi+1,j − 2vi,j + vi−1,j

(∆x)2
= f(xi, tj) + δi,j .

Thus
vi,j+1 = vi,j + α (vi+1,j − 2vi,j + vi−1,j) =∆t f(xi, tj) +∆t δi,j .

The function δj ∈ ℓ2(Z) is defined by δj(i) = δi,j for i ∈ Z. We can reach a similar conclusion
with other finite difference schemes. ♠

As the reader may know, ℓ2(Z) is a Hilbert space. The linear operator Qα is therefore a
linear operator from a Hilbert space into itself. The operators that we consider behave very
like linear mapping on Rn. Let E be a Hilbert space with the norm ∥ ⋅ ∥ defined by a scalar
product ⟨⋅, ⋅⟩, and let P ∶ E → E be a bounded linear mapping. As in finite dimension, we
have that ∥P j∥ ≤ ∥P ∥j and ρ(P) ≤ ∥P ∥, where ρ(P) is the spectral radius of P . Moreover,
we have that ρ(P) = lim

k→∞
∥P k∥1/k as in finite dimension. The adjoint of P is the bounded

linear mapping P ∗ such that ⟨Px, y⟩ = ⟨x,P ∗y⟩ for all x, y ∈ E. The operator P ∗ is the
equivalent of the transpose of a n × n matrix. A bounded linear operator P is normal if
PP ∗ = P ∗P 3. Again, as in finite dimension, if P is a normal operator, then ρ(P) = ∥P ∥.

The following criteria will be useful to determine if a finite difference scheme is stable.

Proposition 15.3.16 (Lax)

Consider a finite difference scheme of the form gj+1 = Qα(gj) with gj ∈ ℓ2(Z) for all
j ≥ 0. If there exists a constant Cα such that ∥Qα∥2 ≤ 1 + Cα∆t for all ∆t. then the
finite difference scheme is ℓ2-stable.

Proof.
We have

∥Qj
α∥2 ≤ ∥Qα∥j2 ≤ (1 +Cα∆t)j ≤ ejCα∆t ≤ eTCα

for 0 < j ≤M and all M > 0. We have used the relation ex ≥ 1 + x for all x ∈ R.

Proposition 15.3.17 (von Neumann)

If a finite difference scheme of the form gj+1 = Qα(gj) with gj ∈ ℓ2(Z) for all j ≥ 0 is
ℓ2-stable, then there exists a constant Cα such that ρ(Qα) ≤ 1 +Cα/M for all M .

3Symmetric operator (i.e. P = P ∗) are obviously normal operators.

15.3. Convergence, Consistency and Stability 535

Proof.
Since the finite difference scheme is ℓ2-stable, we have ∥Qj

α∥2 ≤ Cα for 0 ≤ j ≤M . Hence,

ρj(Qα) = ρ(Qj
α) ≤ ∥Qj

α∥2 ≤ Cα

for 0 ≤ j ≤M . For j =M , we get

ρ(Qα) ≤ C1/M
α ≤ 1 + Cα

M
.

The last inequality comes from the following observation. Consider f(x) = ex lnCα − 1 −Cαx
for 0 ≤ x ≤ 1. Since f ′(x) = ln(Cα)ex lnCα −Cα ≤ 0 for 0 < Cα ≤ e, we have f(x) ≤ f(0) = 0 for
0 ≤ x ≤ 1. Since f reaches it absolute maximum at x̃ = (ln(Cα) − ln(ln(Cα)))/ ln(Cα) ∈ [0,1]
for Cα ≥ e, we have f(x) ≤ f(x̃) = −1 − Cα + Cα/ ln(Cα) + Cα ln(ln(Cα))/ ln(Cα) ≤ 0 for
0 ≤ x ≤ 1.

Remark 15.3.18
The conclusion of the previous proposition is often stated as there exists a constant Dα such
that ρ(Qα) ≤ 1 +Dα∆t for all ∆t. The constant Dα is Cα/T in the proposition above. ♠

If Qα is a normal operator, we have a strong criteria for ℓ2 stability.

Proposition 15.3.19 (Lax)

Consider a finite difference scheme of the form gj+1 = Qα(gj) with gj ∈ ℓ2(Z) for all
j ≥ 0. If Qα is a normal operator, then the finite difference scheme is ℓ2-stable if and
only if there exists a constant Cα such that ρ(Qα) ≤ 1 +Cα/M for all M .

Proof.
Since Qα is normal, we have that ∥Q2

α∥2 = ∥Qα∥2. The reader is asked to prove this result in

Exercise 15.3. By induction, we have ∥Q2k

α ∥
2
= ∥Qα∥2

k

for all k ≥ 0.

From ρ (Qα) = lim
k→∞
∥Qk

α∥1/k, we get

ρ (Qα) = lim
k→∞
∥Q2k

α ∥
1/2k

lim
k→∞
(∥Qα∥2

k

)
1/2k
= ∥Qα∥2

It follows from Proposition 15.3.16 that ρ (Qα) ≤ 1 + Cα/M for a constant Cα and all M
is a sufficient condition for the ℓ2 stability of the finite difference scheme. It follows from
Proposition 15.3.17 that ρ (Qα) ≤ 1 + Cα/M for a constant Cα and all M is a necessary
condition for the ℓ2 stability of the finite difference scheme.

The main result of this section is the following.

536 15. Finite Difference Methods

Theorem 15.3.20

Consider a finite difference scheme of the form gj+1 = Qα(gj) where gj ∈ ℓ2. If this
finite difference scheme is ℓ2-stable and consistent, then it is ℓ2-convergent.

A proof of this result is given in [18] (Theorem 6.22). They also prove that ℓ2-convergence
implies ℓ2-stability. They provide many more criteria to determine if a finite difference scheme
is ℓ2-stable.

15.3.3 Stability Analysis with Fourier Transforms (von Neumann’s
Method)

We first review some concepts of functional analysis that will be useful to justify the von
Neumann’s method.

We consider the space L2([0,2π]) of all integrable functions f ∶ [2, π]→ C such that

∥f∥22 =
1

2π ∫
2π

0
∣f(x)∣2 dx <∞ .

We have used the same notation for the norm in ℓ2(Z) and the norm in L2([0,2π]). The
reader should be able by the context to determine which norm is used.

It is well know in functional analysis that there is an isometry4 between these two spaces
defined by

Φ ∶ L2[0,2π]→ ℓ2(Z)
f ↦ f̂

where

f̂(k) = 1

2π ∫
2π

0
f(x)e−kx i dx

for k ∈ Z and i ∈ C is such that i2 = −1. The function f̂ is the Fourier transform of f . We
could have considered only real value functions but then cos(kπ) and sin(kπ) would have
to be used to define Φ and the notation becomes messy. We will therefore stick to complex
valued functions for a while. The equation ∥f∥2 = ∥f̂∥2 is known as Parseval equality.

The inverse Fourier transform is define by

Φ−1 ∶ ℓ2(Z)→ L2[0,2π]
g ↦ ǧ

where
ǧ(x) =∑

k∈Z
g(k)ekx i

4An isometry between two normed spaces X and Y is a one-to-one and onto mapping F ∶ X → Y such
that the norm of x is equal to the norm of F (x) for all x ∈X.

15.3. Convergence, Consistency and Stability 537

for x ∈ [0,2π]. We also have that ∥g∥2 = ∥ǧ∥2.
If we apply the inverse Fourier transform on both sides of gj+1 = Qα(gj), we get

Φ−1(gj+1) = Φ−1(Qα(gj)) = (Φ−1 ○Qα ○Φ)(Φ−1(gj)) .

If we set Q̌α = Φ−1 ○Qα ○Φ, we get ǧj+1 = Q̌α (ǧj) with Q̌α ∶ L2([0,2π])→ L2([0,2π]) a linear
mapping.

Since Φ ∶ L2([0,2π])→ ℓ2(Z) is an isometry with inverse Φ−1, we have that they are both
of induced norm 1. Hence,

∥Q̌j
α∥2 = ∥(Φ

−1 ○Qα ○Φ)
j∥

2
= ∥Φ−1 ○Qj

α ○Φ∥2 = ∥Q
j
α∥2

for all j > 0. We have proved that the finite difference scheme of the form gj+1 = Qα(gj) for
j ≥ 0 is ℓ2-stable if there exists a constant C such that ∥Q̌j

α∥2 ≤ C for all j ≥ 0.
To determine if a finite difference scheme of the form gj+1 = Qα(gj) with gj ∈ ℓ2(Z) is ℓ2-

stable, we have to prove that there exists a constant Cα such that ∥Qj
α∥2 ≤ Cα or ∥Q̌j

α∥2 ≤ Cα

for all j. This may not be easy to do. Even if Qα is normal, proving that the eigenvalues of
Qα are less or equal to 1 in absolute value may not be trivial.

We need a detailed description of the action of Qα and Q̌α to be able to determine the
ℓ2 stability of the finite difference scheme. As we have seen in a previous example, we can
express gj+1 = Qα(gj) as

gj+1(k) = Qα(gj)(k) =∑
s∈Z
qk,s gj(s) ,

where qk,s is the (k, s) component of the matrix Qα. We first observe that for all our finite
difference schemes, we have that qk,s = qk−1,s−1. Thus

gj+1(k) = Qα(gj)(k) =∑
s∈Z
qk,s gj(s) =∑

s∈Z
q0,s−k gj(s) =∑

s∈Z
q0,s gj(s + k)

for all k ∈ Z. So, for the rest of the discussion, we will assume that gj+1 = Qα(gj) is given by

gj+1(k) =∑
s∈Z
qs gj(s + k) (15.3.10)

for all k ∈ Z, where qs = q0,s. We also observe that for all our finite difference schemes, the
sum in (15.3.10) is finite. There is only a finite number of qs that are non-null.

We have that

ǧj+1(x) = Φ−1 (Qα(gj)) (x) =∑
k∈Z
(∑
s∈Z
qs gj(s + k)) ekxi =∑

s∈Z
qs (∑

k∈Z
gj(s + k)ekxi)

=∑
s∈Z
qs (∑

r∈Z
gj(r)e(r−s)xi) =∑

s∈Z
qs (∑

r∈Z
gj(r)erxi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ǧj(x)

e−sxi = (∑
s∈Z
qse
−sxi) ǧj(x) .

538 15. Finite Difference Methods

Let Q̃α(x) = ∑
s∈Z
qse
−sxi for x ∈ R. The action of Q̌α on a function in f ∈ L2([0,2π]) is just

the product Q̃α f .

Hence,
∥Q̌α∥2 = sup

f∈L2([0,2π])
∥f∥2=1

∥Q̌α(f)∥2 = sup
f∈L2([0,2π])
∥f∥2=1

∥Q̃α f∥2 = ∥Q̃α∥2 ,

where the last norm is just the L2-norm of the function Q̃α.

To use Proposition 15.3.16 to show that a finite difference scheme is ℓ2-stable, we may
simply show that

∥Q̃α∥2 ≤ ∥Q̃α∥∞ ≤ 1 +Cα∆t

for some constant Cα.

Example 15.3.21
For the finite difference scheme presented in Algorithm 15.2.1, we have (15.3.10) with q−1 = α,

q0 = 1 − 2α, q1 = α and qs = 0 otherwise, where α = c2∆t

(∆x)2
. Thus

Q̃α(x) = αe−xi + (1 − 2α) + αexi = 1 − 2α(1 − cos(x))

Since
∥Q̃α(x)∥∞ = sup

x∈[0,2π]
∣1 − 2α(1 − cos(x))∣ ≤ 1

for 2α ≤ 1, we have that the finite difference scheme in Algorithm 15.2.1 is ℓ2-stable for
c2∆t

(∆x)2
≤ 1

2
. ♣

It could be trickier to use the theory developed above to prove that an implicit finite
difference scheme is ℓ2-stable because we may not have an explicit formulation for Qα. For
instance, the matrix Qα for the Crank-Nicolson finite difference scheme is given by Qα =
−J−1K, where J and K are defined in Example 15.3.11.

We do not need to know Qα to find Q̌α. Consider an implicit finite difference scheme of
the form Aα(gj+1) = Bα(gj) for gj ∈ ℓ2(Z), where Aα,Bα ∶ ℓ2(Z) → ℓ2(Z) are two bounded
linear mapping. This relation can be rewritten explicitly as

∑
s∈Z
ak,sgj+1(s) =∑

s∈Z
bk,s gj(s) (15.3.11)

for all k ∈ Z, where ak,s is the (k, s) component of the infinite matrix Aα and bk,s is the (k, s)
component of the infinite matrix Bα. For our finite difference schemes, we have ak,s = ak−1,s−1
and bk,s = bk−1,s−1 for all k and s. As we did above for Qα, we can rewrite (15.3.11) as

∑
s∈Z
asgj+1(s + k) =∑

s∈Z
bs gj(s + k) (15.3.12)

for all k ∈ Z, where as = a0,s and bs = b0,s.

15.3. Convergence, Consistency and Stability 539

Hence, proceeding as we have done for Qα, we have

Φ−1 (Aα(gj+1)) = Φ−1 (Bα(gj))⇒∑
k∈Z
(∑
s∈Z
as gj+1(s + k)) ekxi =∑

k∈Z
(∑
s∈Z
bs gj(s + k)) ekxi

⇒∑
s∈Z
as (∑

r∈Z
gj+1(r)erxi)

´¹¹¸¹¹¹¶
=ǧj+1(x)

e−sxi =∑
s∈Z
bs (∑

r∈Z
gj(r)erxi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ǧj(x)

e−sxi

⇒ (∑
s∈Z
ase

−sxi) ǧj+1(x) = (∑
s∈Z
bse
−sxi) ǧj(x)

for x ∈ R. Hence,

ǧj+1(x) = (∑
s∈Z
ase

−sxi)
−1

(∑
s∈Z
bse
−sxi) ǧj(x)

Let

Q̃α(x) = (∑
s∈Z
ase

−sxi)
−1

(∑
s∈Z
bse
−sxi)

for x ∈ R. The action of Q̌α on a function in f ∈ L2([0,2π]) is just the product Q̃α f .

Remark 15.3.22
The ℓ2 theory above can be expanded to finite difference scheme that are more then one-step
schemes.

Suppose that we have a finite difference scheme of the form

∑
s∈Z
ak,sgj+1(s) =∑

s∈Z
bk,s gj(s) +∑

s∈Z
ck,s gj−1(s) (15.3.13)

for all k ∈ Z. Suppose that we assume, as we did before, that ak,s = ak−1,s−1, bk,s = bk−1,s−1
and ck,s = ck−1,s−1 for all k and s. Then (15.3.13) can be written as

∑
s∈Z
asgj+1(s + k) =∑

s∈Z
bs gj(s + k) +∑

s∈Z
cs gj−1(s + k) (15.3.14)

for all k ∈ Z, where as = a0,s, bs = b0,s and cs = c0,s.
Using the inverse Fourier transform as we did before, we get

(∑
s∈Z
ase

−sxi) ǧj+1(x) = (∑
s∈Z
bse
−sxi) ǧj(x) + (∑

s∈Z
cse
−sxi) ǧj−1(x)

for x ∈ R. This is a finite difference equation for ǧj. The characteristic polynomial of this
finite difference equation is

R(x)(λ(x))2 + S(x)λ(x) + T (x) = 0 , (15.3.15)

where R(x) =∑
s∈Z
ase

−sxi, S(x) =∑
s∈Z
bse
−sxi and T (x) =∑

s∈Z
cse
−sxi. The solution of this finite

difference equation is of the form

ǧj(x) = C1(x)(λ1(x))
j +C2(x)(λ2(x))

j

540 15. Finite Difference Methods

if the characteristic polynomial at x has two distinct roots λ1(x) and λ2(x), or of the form

ǧj(x) = C1(x)(λ1(x))
j +C2(x)j(λ1(x))

j

if λ1(x) = λ2(x).
Doing a stability analysis using this approach seems to be a formidable task. However, it

is often very simple in practice as it is illustrated in Item 4 of Remark 15.7.4 for the finite
difference scheme in Algorithm 15.2.11 used to numerically solve the wave equation. ♠
Example 15.3.23
For the Crank-Nicolson scheme presented in Algorithm 15.2.2, we have (15.3.12) with a−1 =
−α, a0 = 1 + 2α, a1 = −α, b−1 = α, b0 = 1 − 2α, b1 = α, and as = bs = 0 otherwise, where

α = c2∆t

2(∆x)2
. Thus

Q̃α(x) =
αe−xi + (1 − 2α) + αexi
−αe−xi + (1 + 2α) − αexi

= 1 − 2α(1 − cos(x))
1 + 2α(1 − cos(x))

.

for all x. Since ∥Q̃α(x)∥∞ ≤ 1 independently of the value of α, we have that the Crank-
Nicolson scheme is unconstrained ℓ2-stable. ♣

15.3.4 L2 Stability

There is another approach to the theory of convergence, consistency and stability that we
present briefly in this section. It is often presented as the von Neumann’s method in many
books. The L2 notation in this section is not widely used but we use it to distinguish the
definition of stability presented in this section from the definition of stability presented in
other sections.

We still consider the Cauchy problem presented in Section 15.3.2. The main difference
with the previous approach is that we now assume that the approximations wi,j of ui,j =
u(xi, tj) are given by functions hj ∈ L2([0,2π]) for 0 ≤ j ≤M . So, wk,j = hj(xk) for 0 ≤ k ≤ N
and 0 ≤ j ≤M .

We now define the stability as it follows.

Definition 15.3.24

A finite difference scheme is L2-stable if there exists a constant Cα such that ∥hj∥2 ≤
Cα∥h0∥2 for 0 ≤ j ≤M and all M .

To motivate the previous definition, we go back to our general form for a finite difference
scheme

∑
r∈Z
arwk+r,j+1 =∑

r∈Z
brwk+r,j (15.3.16)

where m is a non-negative integer. Do not forget that ar and br may depend on a relation
between ∆x and ∆t. Also, the two summations above are in fact finite for the finite difference
schemes that we consider.

15.3. Convergence, Consistency and Stability 541

Example 15.3.25
As we have seen, the Crank-Nicholson scheme is of this form (15.3.16) with a−1 = −α, a0 =
1 + 2α, a1 = −α, b−1 = α, b0 = 1 − 2α, b1 = α and ak = bk = 0 otherwise. ♣

We may express each hj using Fourier series to get hj(x) = ∑
k∈Z

Ak,je
kxi, where i is the

complex number such that i2 = −1. We have that g(x) = h0(x) = ∑
k∈Z

Ak,0e
kxi with Ak,0 =

1

2π ∫
2π

0
g(x)e−kxi dx.

We expand (15.3.16) to the finite difference equation

∑
r∈Z
arhj+1(x + r∆x) =∑

r∈Z
brhj(x + r∆x) . (15.3.17)

Using the Fourier series of hj, we get

∑
r∈Z
ar (∑

k∈Z
Ak,j+1e

k(x+r∆x)i) =∑
r∈Z
br (∑

k∈Z
Ak,je

k(x+r∆x)i)

⇒∑
k∈Z
(Ak,j+1∑

r∈Z
are

kr∆x i) ekx i =∑
k∈Z
(Ak,j∑

r∈Z
bre

kr∆x i) ekx i

⇒∑
k∈Z
(Ak,j+1∑

r∈Z
are

kr∆x i −Ak,j∑
r∈Z
bre

kr∆x i) ekx i = 0 .

Thus, for all k,
Ak,j+1αk −Ak,jβk = 0 (15.3.18)

for 0 ≤ j <M , where
αk =∑

r∈Z
are

kr∆x i and βk =∑
r∈Z
bre

kr∆x i .

We therefore have that

Ak,j = (
βk
αk

)
j

Ak,0

for j ≥ 0.
Since αk+N = αk and βk+N = βk for all k because ∆x = 2π/N , there is only a finite number

of ratios λk = βk/αk to determine. We only need to compute λk for 0 ≤ k < N .

If there exists a constant Cα such that ∣λk∣j ≤ Cα for 0 ≤ j ≤ M and 0 ≤ k < N , then
∣Ak,j ∣2 ≤ C2

α∣Ak,0∣2 for 0 ≤ j ≤M and k ∈ Z. We get from Parseval equality that

∥hj∥22 = ∥ĥj∥
2

2
=∑

k∈Z
∣Ak,j ∣2 ≤ C2

α∑
k∈Z
∣Ak,0∣2 = C2

α∥ĥ0∥22 = C2
α∥h0∥22

for 0 ≤ j ≤M . We have shown that ∥hj∥2 ≤ Cα∥h0∥2 if ∣λk∣j ≤ C for 0 ≤ j ≤M and 0 ≤ k < N .
This last condition is satisfied if and only if ∣λk∣ ≤ 1 for 0 ≤ k < N because M can be as large
as we want. Do not forget that there may be a restriction on N and M because ∣λk∣j ≤ C
may be true only if a relation between ∆x and ∆t is satisfied; a relation that is inherited
from the dependence of ar and br on the parameter α that we have defined for the finite
difference schemes presented in Section 15.2.

542 15. Finite Difference Methods

Remark 15.3.26
We have considered one-step finite difference schemes in the previous discussion but this
method can be generalized to two or more step schemes. If instead of (15.3.16) we have

∑
r∈Z
arwi+r,j+1 =∑

r∈Z
brwi+r,j +∑

r∈Z
crwi+r,j−1 , (15.3.19)

then instead of (15.3.17) we get

∑
r∈Z
arhj+1(x + r∆x) =∑

r∈Z
brhj(x + r∆x) +∑

r∈Z
crhj−1(x + r∆x) (15.3.20)

for j ≥ 0. We have that h0(x) = g(x) and we may assume that h−1(x) is a given periodic
function of period 2π. For instance, in the case of the wave equation in Section 15.2.3, we
will have h−1(x) = h1(x) − 2f(x)∆t.

Using the Fourier series of the hj, (15.3.20) yields

∑
r∈Z
ar (∑

k∈Z
Ak,j+1e

k(x+r∆x)i) =∑
r∈Z
br (∑

k∈Z
Ak,je

k(x+r∆x)i) +∑
r∈Z
cr (∑

k∈Z
Ak,j−1e

k(x+r∆x) i)

⇒∑
k∈Z
(Ak,j+1∑

r∈Z
are

kr∆x i −Ak,j∑
r∈Z
bre

kr∆x i −Ak,j−1∑
r∈Z
cre

kr∆x i) ekx i = 0 .

Thus, for all k,
Ak,j+1αk −Ak,jβk −Ak,j−1γk = 0 (15.3.21)

for 0 ≤ j <M , where

αk =∑
r∈Z
are

kr∆x i , βk =∑
r∈Z
bre

kr∆x i and γk =∑
r∈Z
cre

kr∆x i . (15.3.22)

If the characteristic polynomial αkλ2 −βkλ−γk has two distinct roots λk,1 and λk,2, then the
general solution of (15.3.21) is of the form

Ak,j = Ck,1λ
j
k,1 +Ck,2λ

j
k,2

for 0 ≤ j <M and some constants Ck,1 and Ck,2. If λk,1 = λk,2, then

Ak,j = Ck,1λ
j
k,1 +Ck,2jλ

j
k,1

for 0 ≤ j <M and some constants Ck,1 and Ck,2.

Since αk+N = αk, βk+N = βk and γk+N = γk for all k because ∆x = 2π/N , there is only a
finite number of roots to determine. We only need to compute λk,1 and λk,2 for 0 ≤ k < N .
We could show that the finite difference scheme is “stable” when ∣λk,1∣ ≤ 1 and ∣λk,2∣ ≤ 1. If
∣λk,1∣ = ∣λk,2∣ = 1, then we also need λk,1 ≠ λk,2.

This technique is illustrated in Item 1 of Remark 15.7.4 for the finite difference scheme
in Algorithm 15.2.11 used to numerically solve the wave equation.

We will not pursue on this subject. The generalization to higher dimension in the rest
of this section can instead be used to handle finite difference schemes that are more than
one-step schemes. ♠

15.3. Convergence, Consistency and Stability 543

Proceeding exactly as we have just done, the previous discussion can be generalized to
the finite difference scheme of the form

∑
r∈Z
Jrwj+1 =∑

r∈Z
Krwj , (15.3.23)

where Jr and Kr are n × n matrices, and wj ∈ Rn for j ≥ 0.
Example 15.3.27
The Crank-Nicolson scheme is of the form (15.3.16) with J0 = −J and K0 = K with K and
J defined in (15.2.6) and (15.2.9) respectively, and Jr =Kr = 0 otherwise. We also have that
n = N − 1. ♣

If we assume that wj = hj(xk) for hj ∈ L2([0,2π],Rn) 5, we may expand (15.3.23) to the
finite difference equation

∑
r∈Z
Jrhj+1(x + r∆x) =∑

r∈Z
Krhj(x + r∆x) . (15.3.24)

If we substitute the Fourier series hj(x) = ∑
k∈Z

Ak,je
kx i, where Ak,j ∈ Rn, in the previous

equation, we find that
Ak,j+1 = QkAk,j , (15.3.25)

where

Qk = (
m

∑
r=−m

Kre
kr∆x i)

−1

(
m

∑
r=−m

Jre
kr∆x i) .

By induction, we get from (15.3.25) that

Ak,j = Qj
kAk,0 , j ≥ 0 . (15.3.26)

If there exists Cα such that ∥Qj
k∥2 ≤ Cα for 0 ≤ j ≤ M and k ∈ Z, we get from Parseval

equality that

∥hj∥22 = ∥ĥj∥22 =∑
k∈Z
∥Ak,j∥22 ≤ C2

α∑
k∈Z
∥Ak,0∥22 = C2

α∥ĥ0∥22 = C2
α∥h0∥22

for 0 ≤ j ≤M . We have shown that ∥hj∥2 ≤ Cα∥h0∥2 if there exists Cα such that ∥Qj
k∥2 ≤ Cα

for 0 ≤ j ≤M and k ∈ Z. Again, because of the periodicity of Qk, we only have to consider
0 ≤ k < N . We have the more precise result that follows.

Proposition 15.3.28

A finite difference scheme of the form (15.3.23) is L2-stable if and only if there exists
Cα such that ∥Qj

k∥2 ≤ Cα for 0 ≤ j ≤M , k ∈ Z and N > 0.

Proof.
We have proved above that the condition ∥Qj

k∥2 ≤ C for 0 ≤ j ≤M and k ∈ Z was sufficient.

5The functions h ∶ [0,2π]→ Rn such that each component is in L2([0,2π]).

544 15. Finite Difference Methods

We now prove that it is necessary. Suppose that ∥Qj0
k0
∥2 > Cα for some k0 and j0. Choose

w ∈ Rn such that ∥Qj0
k0
w∥2 > Cα∥w∥2. If we consider a boundary value problem such that

g(x) =wek0x i, then h0(x) =Ak0,0e
k0x i with Ak0,0 =w. From (15.3.26), we have Ak0,j = Q

j
k0
w.

Thus

∥hj0∥22 = ∥ĥj0∥22 ≥ ∥Ak0,j0∥22 = ∥Q
j0
k0
w∥22 > C2

α∥w∥22 = C2
α∥Ak0,0∥22 = C2

α∥ĥ0∥22 = C2
α∥h0∥22 .

This contradicts ∥hj∥2 ≤ Cα∥h0∥2 for 0 ≤ j ≤M and all M .

We have a version of the von Neumann criteria, Proposition 15.3.17, in the present context.

Proposition 15.3.29 (von Neumann)

If a finite difference scheme of the form (15.3.23) is L2-stable, then there exists a
constant Cα such that ρ(Qk) ≤ 1 +Cα/M for all k ∈ Z, N and M .

Proof.
Since the finite difference scheme is L2-stable, we get from Proposition 15.3.28 that ∥Qj

k∥2 ≤
Cα for 0 ≤ j ≤M and k ∈ Z. Hence, from Remark 3.1.12, we get

ρj(Qk) = ρ(Qj
k) ≤ ∥Q

j
k∥2 ≤ Cα

for 0 ≤ j ≤M and k ∈ Z. As in the proof of Proposition 15.3.17, we get for j =M that

ρ(Qk) ≤ C1/M
α ≤ 1 + Cα

M
.

We can deduce from Proposition 15.3.28 a sufficient condition to determine L2 stability.

Proposition 15.3.30

If the matrix Qk is normal, then the finite difference scheme of the form (15.3.23) is
L2-stable if ρ(Qk) ≤ 1 for all k ∈ Z, N and M .

Proof.
Since the matrix Qk is normal, we have ρ(Qk) = ∥Qk∥2. Hence, ∥Qj

k∥2 ≤ ∥Qk∥j2 = ρj(Qk) ≤ 1
for 0 ≤ j ≤M , k ∈ Z and N > 0.

15.3.5 Matrix Method

There is yet another approach to determine the convergence and stability of a finite differ-
ence scheme. The method presented in this section is called the Matrix Method because
it is based on the matrix representation of the finite difference schemes as presented in
Section 15.2. We are back in finite dimension.

We only give a brief description of this method though it is widely used in engineering
for historical reasons. We focus our discussion on explicit one-step finite difference schemes.

15.3. Convergence, Consistency and Stability 545

Suppose that P∆(wi,j,wi,j+1,wi+1,j, . . .) = F (xi, tj) for all (i, j) such that (xi, tj) ∈ Ro
∆ can

be expressed in vector form as wj+1 = Qαwj +Bj for 0 ≤ j <M , where

1. Qα is a (N − 1) × (N − 1) matrix,

2. wj = (w1,j w2,j w3,j . . . wN−1,j)
⊺
and

3. Bj ≡ Bj (F,{wr,s ∶ xr,s ∈ ∂R}) ∈ RN−1; namely, Bj is a vector valued function of F
evaluated at the mesh points and the values wi,j on the boundary of the domain R
which, for the purpose of this section, we assume are the values of the solution u on
the boundary. Note that boundary also includes the initial values.

The vectors wj for 0 < j ≤M represent all the values wi,j for (i, j) such that (xi, tj) ∈ Ro
∆.

As we have done before, the index α in Qα is to indicate that the linear operator may
depend on a relation between ∆x and ∆t.

Example 15.3.31
For the heat equation with forcing for instance, the finite difference scheme given in Algo-
rithm 15.2.1 can be expressed in the form wj+1 = Qαwj +Bj where Qα = −K for K given in
(15.2.6) and

Bj =

⎛
⎜⎜⎜⎜⎜⎜
⎝

αw0,j + f(x1, tj)∆t
f(x2, tj)∆t

⋮
f(xN−2, tj)∆t

αwN,j + f(xN−1, tj)∆t

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The Crank-Nicolson scheme given in Algorithm 15.2.2 can be expressed in the form wj+1 =
Qαwj +Bj where Qα = −J−1K for K given in (15.2.6), J given in (15.2.9) and

Bj = J−1

⎛
⎜⎜⎜⎜⎜⎜
⎝

α (w0,j+1 +w0,j) + (f(x1, tj) + f(x1, tj+1))∆t/2
(f(x2, tj) + f(x2, tj+1))∆t/2

⋮
(f(xN−2, tj) + f(xN−2, tj+1))∆t/2

α (wN,j+1 +wN,j) + (f(xN−1, tj) + f(xN−1, tj+1))∆t/2

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

♣
We consider the norm on RN−1 defined by

∥y∥N = (
N−1
∑
i=1

y2i ∆x)
1/2

for y ∈ RN−1. If yi = g(xi) for all i, where g ∶ [0, L] → R is a continuous function, then

∥y∥N → (∫
L

0
g2(x)dx)

1/2
as N →∞ by definition of the Riemann integral.

We can give new, and not so new, definitions of convergence, consistency and stability.

546 15. Finite Difference Methods

Definition 15.3.32

A finite difference scheme of the form wj+1 = Qαwj + Bj with wj ∈ RN−1 is ℓ2-
convergent if

sup
0≤j≤M

∥wj − uj∥N → 0 as min{N,M}→∞ ,

where uj = (u1,j u2,j u3,j . . . uN−1,j)
⊺
.

Definition 15.3.33

Given any sufficiently differentiable function q ∶ R → R, the local truncation error
of the finite difference scheme of the form wj+1 = Qαwj +Bj is the expression

τj(∆x,∆t, q) =
1

∆t
(qj+1 −Qαqj −Bj(F,{q(xr, ts) ∶ xr,s ∈ ∂R}))

for j ≥ 0, where qi,j = q(i∆x.j∆t) for 0 ≤ i ≤ N and 0 ≤ j ≤M .
A finite difference scheme of the form wj+1 = Qwj+Bj with wj ∈ RN−1 is ℓ2-consistent
if

∥τj(∆x,∆t, q)∥N → 0 as max{N,M}→∞ ,

for all function q ∶ R → R.

Remark 15.3.34
It should be pointed out that consistency according to Definition 15.3.6 automatically implies
consistency according to the previous definition because the ith component of τj(∆x,∆t, q)
is τi,j(∆x,∆t, q) as defined in Definition 15.3.6. Hence

∥τj(∆x,∆t, q)∥2N =∆x
N−1
∑
i=1
(τi,j(∆x,∆t, q))2 ≤ (N − 1)∆xmax

0<i<N
∣τi,j(∆x,∆t, q)∣2

≤ L max
(i,j) such that
(xiyj)∈Ro

∣τi,j(∆x,∆t, q)∣2 .

♠

Definition 15.3.35

A finite difference scheme of the form wj+1 = Qαwj +Bj with wj ∈ RN−1 is ℓ2-stable
if there exists a constant Cα such that ∥Qj

α∥N ≤ Cα for all N > 0 and j ≥ 0.

A word of caution about the previous definitions of convergence and stability. Because of
the dependence of Qα on α, a relation between ∆x and ∆t may need to be satisfied to ensure
convergence and stability. So, N and M may not be totally independent of each other.

Definition 15.3.35 is a weaker definition of stability than Definition 15.3.8 in the sense
that it ensures that round off errors do not increase in ℓ2-norm instead of in the uniform
norm as M increases.

15.3. Convergence, Consistency and Stability 547

It follows from Theorem 3.1.11 that ρ(Qα) ≤ ∥Qα∥N for all norms on the space of (N − 1)×
(N − 1) matrices where ρ(Qα) is the spectral radius of Qα. So, if ∥Qα∥N ≤ 1, then ρ(Qα) ≤ 1;
namely, all the eigenvalues of Qα are less than or equal to 1 in absolute value. We have a
partial converse to this statement. If Qα is a normal matrix (i.e. QαQ⊺α = Q⊺αQα) and the
induced norm on the (N − 1) × (N − 1) matrices is the Euclidean norm ∥ ⋅ ∥2 on RN−1, then
∥Qα∥2 = ρ(Qα). This is also true if the Euclidean norm is replaced by a multiple of the
Euclidean norm as we have for ∥ ⋅ ∥N . So, ∥Qα∥N = ρ(Qα). Thus ρ(Qα) ≤ 1 if and only if
∥Qα∥N ≤ 1. We also get that ∥Qj

α∥N ≤ ∥Qα∥jN ≤ 1.
We get the following result.

Proposition 15.3.36

A finite difference scheme of the form wj+1 = Qαwj +Bj, where wj ∈ RN−1 and Qα is
normal, is ℓ2-stable according to Definition 15.3.35 if all the eigenvalues of Qα are less
than or equal to 1 in absolute value, independently of the value of N .

Remark 15.3.37
As we saw in Section 15.2, we may represent the finite difference scheme formed of (15.3.3)
and (15.3.6) as a linear system Aw = B.

There is yet another definition of stability that is frequently used in this situation. A
linear system of the form Aw = B is stable if there exists a constant Kα such that ∥w∥ ≤
Kα∥Aw∥ for all w. This definition is reminiscent of the property that well-conditioned linear
systems of equations have. If w1 and w2 are two solutions of Aw = B, then ∥w1 −w2∥ ≤
Kα ∥A (w1 −w2)∥. So, if the difference between Aw1 and Aw2 is small, then the difference
between w1 and w2 should also be proportionally small. This is the property that we have
associated to well-conditioned systems in Section 4.4. We will not treat this subject. ♠
Remark 15.3.38
There is a link between definition of stability given in Definition 15.3.24 and Definition 15.3.35.

Suppose that wk,j = gj(k∆x) for a continuous function gj ∶ [0,2π]→ R for all j. Then

∥wj∥2N =
N−1
∑
k=1
∣wk,j ∣2∆x =

N−1
∑
k=1
∣gj(k∆x)∣2∆x→ ∫

2π

0
∣gj ∣2 dx = ∥gj∥22

as N →∞ and so ∆x→ 0.

Given two real numbers 0 < S1 < 1 < S2, there exists NM large enough such that

S1 ≤
∥wj∥N
∥gj∥2

≤ S2

for 0 ≤ j ≤ M and N ≥ NM . We assume that ∥gj∥2 > 0 for 0 ≤ j ≤ M and leave the case
∥gj∥2 = 0 for some j to the reader. Hence,

∥wj∥N ≤
CαS2

S1

∥w0∥N ⇐⇒ ∥gj∥2 ≤ Cα∥g0∥2

for 0 ≤ j ≤M and N ≥ NM . ♠

548 15. Finite Difference Methods

15.3.6 Conclusion

We have seen several definitions of convergence and stability. Some of them were based on a
Cauchy problem and so were ignoring the boundary conditions that some partial differential
equations may have to satisfied. Which definitions should we use? This depends on the
problem and on what we want to achieve.

Uniform approximation of the solution seems to be the ultimate goal to achieve but this
is not possible for all finite difference schemes. Some finite difference schemes may have very
desirable features other than uniform convergence. So ℓ2 convergence and stability may be
preferable.

There is also the issue of proving stability. Proving stability for uniform approximation is
far from trivial when possible. Using Definition 15.3.35 to determine ℓ2 stability may seem
to be the next reasonable option but that requires a nice matrix (usually “near” diagonal)
to be able to determine the eigenvalues of Qα. Using Definitions 15.3.8 and 15.3.14 may be
the best options. They may not be considering partial differential equation with boundary
conditions but may be good enough to ensure stability. That is our ultimate goal to avoid
propagation of round off errors.

The reader may have noticed that we did not mention consistency in this conclusion.
The reason is simple. Must of the finite difference schemes (at least those that we have
presented) are developed from finite difference formulae as those in Section 15.1 to ensure
that the local truncation error is of order greater than one in ∆x and ∆t. This is enough to
ensure consistency.

15.4 Preliminaries of Linear Algebra

We take a little pause to review some notions of linear algebra that will be needed later on.

Proposition 15.4.1

Consider the tri-diagonal matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b 0 0 0 . . . 0 0
c a b 0 0 . . . 0 0
0 c a b 0 . . . 0 0
0 0 c a b . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 ⋯ c a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

of dimension n × n . The eigenvalues of Q are

λk = a + 2b
√
c

b
cos(kπ

n + 1
) , 0 < k < n + 1 .

15.4. Preliminaries of Linear Algebra 549

A possible eigenvector associated to λk is

vk =

⎛
⎜⎜⎜⎜
⎝

(c/b)1/2 sin (kπ/(n + 1))
(c/b)2/2 sin (2kπ/(n + 1))

⋮
(c/b)n/2 sin (nkπ/(n + 1))

⎞
⎟⎟⎟⎟
⎠

.

Proof.
Let v be an eigenvector of Q associated to the eigenvalue λ. If we set v0 = vn+1 = 0, the
equation Av = λv can be written as

cvj−1 + (a − λ)vj + bvj+1 = 0 , 1 ≤ j ≤ n . (15.4.1)

To find the solution of this difference equation, we have to find the roots of the characteristic
equation

bρ2 + (a − λ)ρ + c = 0 . (15.4.2)

Let ρ1 and ρ2 be the roots of (15.4.2). Since ρ1ρ2 = c/b ≠ 0, none of the roots is null.

If ρ1 = ρ2, the solution of (15.4.1) is of the form vj = αρj1 + βjρ
j
1 for 0 ≤ j ≤ n + 1. Since

v0 = 0 implies α = 0, we get that vn+1 = 0 implies β(n + 1)ρn+11 = 0. It follows that β = 0. We
find vj = 0 for all j which is not possible for an eigenvector.

We may assume that ρ1 and ρ2 are two distinct and non null roots. In this case, the
solution of (15.4.1) is of the form

vj = αρj1 + βρ
j
2 , 0 ≤ j ≤ n + 1 . (15.4.3)

From v0 = 0, we get 0 = α + β. Hence β = −α. From vn+1 = 0, we get

0 = αρn+11 + βρn+12 = α (ρn+11 − ρn+12) .

Thus (ρ1/ρ2)n+1 = 1. It follows that ρ1/ρ2 is a (n + 1) root of the unity; namely,

ρ1
ρ2
= e2kπ i/(n+1) , 0 ≤ k < n + 1 . (15.4.4)

Hence,
c

b
= ρ1ρ2 = (ρ2e2kπ i/(n+1))ρ2 = ρ22e2kπ i/(n+1)

yields

ρ2 =
√
c

b
e−kπ i/(n+1) , 0 ≤ k < n + 1 .

We also get from (15.4.4) that

ρ1 =
√
c

b
ekπ i/(n+1) , 0 ≤ k < n + 1 .

550 15. Finite Difference Methods

We have to ignore k = 0 because this gives ρ1 = ρ2 =
√
c/b which is impossible as we have

shown before.

Finally,

−a − λ
b
= ρ1 + ρ2 =

√
c

b
ekπ i/(n+1) +

√
c

b
e−kπ i/(n+1) = 2

√
c

b
cos(kπ

n + 1
) , 0 < k < n + 1 .

Thus, the eigenvalues of Q are

λk = a + 2b
√
c

b
cos(kπ

n + 1
) , 0 < k < n + 1 .

Since β = α in (15.4.3), the eigenvectors vk of Q associated to the eigenvalue λk will have
the components

vj,k = α((
c

b
)
j/2
ejkπ i/(n+1) − (c

b
)
j/2
e−jkπ i/(n+1)) = 2α i(c

b
)
j/2

sin(jkπ
n + 1

) , 0 < j < n + 1 .

Since α can be any non-null complex number, we may take α = −i/2 to get real eigenvectors

vk =

⎛
⎜⎜⎜⎜
⎝

(c/b)1/2 sin (kπ/(n + 1))
(c/b)2/2 sin (2kπ/(n + 1))

⋮
(c/b)n/2 sin (nkπ/(n + 1))

⎞
⎟⎟⎟⎟
⎠

.

Proposition 15.4.2

Consider the matrix

Q =
⎛
⎜⎜⎜
⎝

Q1,1 Q1,2 . . . Q1,s

Q2,1 Q2,2 . . . Q2,s

⋮ ⋮ ⋱ ⋮
Qs,1 Qs,2 . . . Qs,s

⎞
⎟⎟⎟
⎠
,

where each sub-matrix Qi,j is a matrix of dimension n × n . Suppose that v1, v2, . . . ,
vn in Rn are n linearly independent eigenvectors for each matrix Qi,j. Let λi,j,k be the
eigenvalue of Qi,j associated to the eigenvector vk for 1 ≤ i, j ≤ s and 1 ≤ k ≤ n. Then
the eigenvalues of the s × s matrices

Pk =
⎛
⎜⎜⎜
⎝

λ1,1,k λ1,2,k . . . λ1,s,k
λ2,1,k λ2,2,k . . . λ2,s,k
⋮ ⋮ ⋱ ⋮

λs,1,k λs,2,k . . . λs,s,k

⎞
⎟⎟⎟
⎠

for 1 ≤ k ≤ n are eigenvalues of Q.

Proof.
Suppose that λ is an eigenvalue of Pk for some k fixed. We will show that there exist a1, a2,

15.5. Heat Equation 551

. . . , as in R such that

v =
⎛
⎜⎜⎜
⎝

a1vk

a2vk

⋮
asvk

⎞
⎟⎟⎟
⎠

is an eigenvector of Q associated to the eigenvalue λ.

The following statement about λ and the vector v above are equivalent:

i. v is an eigenvector of Q associated to the eigenvalue λ; namely, Qv = λv.

ii.
s

∑
j=1
ajQi,jvk =

s

∑
j=1
ajλi,j,kvk = λai vk , 1 ≤ i ≤ s .

iii.
s

∑
j=1
j≠i

ajλi,j,kvk + ai (λi,i,k − λ)vk = 0 , 1 ≤ i ≤ s .

iv. Ra = 0, where

R =
⎛
⎜⎜⎜
⎝

λ1,1,k − λ λ1,2,k . . . λ1,s,k
λ2,1,k λ2,2.k − λ . . . λ2,s,k
⋮ ⋮ ⋱ ⋮

λs,1,k λs,2,k . . . λs,s,k − λ

⎞
⎟⎟⎟
⎠
, a =

⎛
⎜⎜⎜
⎝

a1
a2
⋮
as

⎞
⎟⎟⎟
⎠

and 0 =
⎛
⎜⎜⎜
⎝

0
0
⋮
0

⎞
⎟⎟⎟
⎠
.

Since λ is an eigenvalue of Pk. The matrix R is not invertible and, therefore, there exists
a non-trivial solution a of Ra = 0. This solution yields the eigenvector v of Q associated to
λ.

15.5 Heat Equation

15.5.1 Algorithm 15.2.1

We study the uniform convergence of Algorithm 15.2.1 which is used to approximate the
solution of the heat equation with forcing.

Proposition 15.5.1

The scheme in Algorithm 15.2.1 is consistent.

Proof.
Using the notation introduced in Section 15.3, we have that

P (u(x, t), ∂u
∂x
(x, t), ∂u

∂y
(x, t), ∂

2u

∂x2
(x, t), . . .) = ∂u

∂t
(x, t) − c2∂

2u

∂x2
(x, t)

552 15. Finite Difference Methods

and

P∆ (wi,j,wi,j+1,wi+1,j, . . .) =
wi,j+1 −wi,j

∆t
− c2

wi+1,j − 2wi,j +wi−1,j

(∆x)2

for the finite difference scheme in Algorithm 15.2.1.

The local truncation error of the finite difference scheme in Algorithm 15.2.1 is deduced
from (15.2.4) with the function u replaced by the function q. We have

τi,j(∆x,∆t, q) = P (q(xi, tj),
∂q

∂x
(xi, tj),

∂q

∂y
(xi, tj),

∂2q

∂x2
(xi, tj), . . .)

− P∆ (q(xi, tj), q(xi, yj+1), q(xi+1, tj), . . .)

= −1
2

∂2q

∂t2
(xi, ρi,j)∆t +

c2

4!
(∂

4q

∂x4
(ζi,j, tj) +

∂4q

∂x4
(ηi,j, tj)) (∆x)2

for some ρi,j ∈]tj, tj+1[, and ζi,j, ηi,j ∈]xi−1, xi+1[. If the partial derivatives of order up to four
of q are continuous on the compact set

R = {(x, t) ∶ 0 ≤ x ≤ L and 0 ≤ t ≤ T} , (15.5.1)

then there exists H such that

max
(x,t)∈R

∣∂
2q

∂t2
(x, t)∣ ≤H and max

(x,t)∈R
∣∂

4q

∂x4
(x, t)∣ ≤H .

Hence,

∣τi,j(∆x,∆t, q)∣ ≤
H

2
∆t + c

2H

12
(∆x)2 (15.5.2)

for i and j. We conclude that

max{∣τi,j(∆x,∆t, q)∣ ∶ 0 < i < N and 0 ≤ j <M}→ 0 as min{N,M}→∞ (15.5.3)

since ∆x = L/N and ∆t = T /M converge to 0 as min{N,N} converges to infinity.

Since B (u(x, y), . . .) = u(x, y), B∆(wi,j, . . .) = wi,j and wi,j = u(xi, tj) for (i, j) such that
(xi, tj) ∈ ∂R∆, we get from (15.5.3) that Definition 15.3.6 is satisfied.

Proposition 15.5.2

The finite difference scheme in Algorithm 15.2.1 is stable as defined in Definition 15.3.8
if

c2∆t

(∆x)2
≤ 1

2
.

Proof.
Consider a function v ∶ R∆ → R. Let vi,j = v(xi, tj) for all (xi, tj) ∈ R∆ and let f(xi, tj) =
P∆(vi,j, vi,j+1, vi+1,j, . . .).

We have

vi,j+1 = vi,j + α (vi+1,j − 2vi,j + vi−1,j) + f(xi, tj)∆t

15.5. Heat Equation 553

= (1 − 2α)vi,j + αvi+1,j + αvi−1,j + f(xi, tj)∆t

for 0 < i < N and 0 ≤ j <M , where α = c2∆t

(∆x)2
.

Let

vj =max{max
0≤i≤N

∣vi,j ∣, max
i=0,N and
0≤j≤M

∣vi,j ∣}

and F = max
0<i<N
0≤j<M

∣f(xi, yj)∣.

If α < 1/2, we get

∣vi,j+1∣ ≤ (1 − 2α)∣vi,j ∣ + α∣vi+1,j ∣ + α∣vi−1,j ∣ + ∣f(xi, yi)∣∆t
≤ (1 − 2α)vj + αvj + αvj + F∆t = vj + F∆t

for 0 < i < N and 0 ≤ j <M . Thus vj+1 ≤ vj + F∆t for 0 ≤ j <M . By induction, we get

vj ≤ v0 + (j∆t)F ≤ v0 + TF

for 0 ≤ j ≤M . Hence,
∣vi,j ∣ ≤ vj ≤ v0 + TF

for 0 ≤ j ≤ M and 0 ≤ i ≤ N . Since f(xi, yj) = P∆(vi,j, vi,j+1, vi+1,j, . . .) for (i, j) such that
(xi, tj) ∈ Ro

∆ and B∆(vi,j, vi,j+1, vi+1,j, . . .) = vi,j for the (i, j) such that (xi, tj) ∈ ∂R∆. We can
rewrite the previous inequality as

∣vi,j ∣ ≤ C{ max
(i,j) such that
(xi,tj)∈∂R∆

∣B∆(vi,0, vi,1, vi+1,0, . . .)∣ + max
(i,j) such that
(xi,tj)∈Ro

∆

∣P∆(vi,j, vi,j+1, vi+1,j, . . .)∣}

for 0 ≤ j ≤M and 0 ≤ i ≤ N , and C =max{1, T}. We get (15.3.7).

In Question 15.3 of the exercise section below, the reader is asked to prove that the finite
difference scheme in Algorithm 15.2.1 is ℓ2-stable if c2∆t/(∆x)2 ≤ 1/2.

The next proposition follows from Theorem 15.3.9.

Proposition 15.5.3

The finite difference scheme in Algorithm 15.2.1 is convergent if
c2∆t

(∆x)2
≤ 1

2
.

This scheme is fairly restrictive because ∆t is forced to be very small if ∆x is small.
If ∆x < 10−2, then ∆t < 10−4/(2c2). Thus, a lot of computations are required to advance
moderately in time. For this reason, this finite difference scheme is not recommended.

Though we have proved Proposition 15.5.3 about the convergence of the finite differ-
ence scheme in Algorithm 15.2.1. it is instructive to prove it again from the definition of
convergence.

554 15. Finite Difference Methods

Proof.
Let ri,j = wi,j − u(xi, tj) for 0 ≤ i ≤ N and 0 ≤ j ≤M , where u is the solution of (15.2.1) with
the associated boundary and initial conditions given in (15.2.2) and (15.2.2) respectively. If
we subtract

u(xi, tj+1) − u(xi, tj)
∆t

− c2
u(xi+1, tj) − 2u(xi, tj) + u(xi−1, tj)

(∆x)2
= f(xi, tj) − τi,j(∆x,∆t, u) ,

from
wi,j+1 −wi,j

∆t
− c2

wi+1,j − 2wi,j +wi−1,j

(∆x)2
= f(xi, tj) ,

we get
ri,j+1 − ri,j − α (ri+1,j − 2ri,j + ri−1,j) = τi,j(∆x,∆t, u)∆t .

where α = c2∆t

(∆x)2
, Let Rj = max

0<i<N
∣ri,j ∣. Since we assume that wi,j = u(xi, tj) for i = 0 and

i = N , we have in fact that Rj = max
0≤i≤N

∣ri,j ∣.

If we assume that 1 − 2α > 0 and use (15.5.2), we get

∣ri,j+1∣ = ∣(1 − 2α)ri,j + αri+1,j + αri−1,j + τi,j(∆x,∆t, u)∆t∣
≤ (1 − 2α)∣ri,j ∣ + α∣ri+1,j ∣ + α∣ri−1,j ∣ + ∣τi,j(∆x,∆t, u)∣∆t

≤ Rj + (
H

2
∆t + c

2H

12
(∆x)2)∆t

for 0 < i < N . Thus,

Rj+1 ≤ Rj + (
H

2
∆t + c

2H

12
(∆x)2)∆t .

It follows by induction that

Rj ≤ R0 + (
H

2
∆t + c

2H

12
(∆x)2) j∆t = R0 + (

H

2
∆t + c

2H

12
(∆x)2) tj

for 0 ≤ j ≤M . Since we assume that wi,0 = u(xi,0) = g(xi) for 0 ≤ i ≤ N , we have that R0 = 0.
Thus,

max
0≤i≤N
0≤j<M

∣wi,j − u(xi, tj)∣ ≤ max
0≤j≤M

Rj ≤ (
H

2
∆t + c

2H

12
(∆x)2)L→ 0

as min(N,M)→∞ as long as

α = c2∆t

(∆x)2
≤ 1

2
. (15.5.4)

We have proved Proposition 15.5.3.

In fact, the condition (15.5.4) is necessary as can be seen from the following example.

Example 15.5.4
This example comes from [20]. We consider the heat equation

∂u

∂t
= c2∂

2u

∂x2
, −∞ < x <∞ and 0 < t < T ,

15.5. Heat Equation 555

with the initial condition

u(x,0) = g(x) =
∞
∑
m=0

βm cos(2
mπx

L
)

for 0 ≤ x ≤ L. where we assume that
∞
∑
m=1
∣βm∣ and

∞
∑
m=1

β2
m converge. This ensure that g(x) is

a differentiable function which satisfy g(0) = g(L).
Since the initial condition is a periodic function of period L, we may assume that the

solution u(x, t) is periodic of period L with respect to x.

We consider the finite difference scheme

wi,j+1 −wi,j

∆t
− c2

wi+1,j − 2wi,j +wi−1,j

(∆x)2
= 0 (15.5.5)

with ∆x = L/N and ∆t = T /M . The domain of the finite difference scheme is

R∆ = {(xi, yj) ∶ xi = i∆x for i ∈ Z, and yj = j∆y for 1 ≤ j ≤M}

with
∂R∆ = {(xi,0) ∶ xi = i∆x for i ∈ Z} .

As is done to solve the heat equation using separation of variables, we seek solutions of
(15.5.5) of the form wi,j = eatj cos(bxi) for 0 ≤ i ≤ N and 0 ≤ j ≤ M , and some constants a
and b to be determined. If we substitute this expression of wi,j in (15.5.5), we get

0 = e
atj+1 cos(bxi) − eatj cos(bxi)

∆t
− c2 e

atj cos(bxi+1) − 2eatj cos(bxi) + eatj cos(bxi−1)
(∆x)2

= e
atjea∆t cos(bxi) − eatj cos(bxi)

∆t

− c2 e
atj cos(bxi) cos(b∆x) − 2eatj cos(bxi) + eatj cos(bxi) cos(b∆x)

(∆x)2

= e
atj cos(bxi)

∆t
(ea∆t − 1 + 2α(1 − cos(b∆x))) = e

atj cos(bxi)
∆t

(ea∆t − 1 + 4α sin2 (b∆x
2
))

for all i and j, where α is defined in (15.5.4). Thus, we must have that

ea∆t = 1 − 4α sin2 (b∆x
2
) .

We have found that

wi,j = eatj cos(bxi) = cos(bxi)(ea∆t)tj/∆t = cos(bxi) (1 − 4α sin2 (b∆x
2
))

tj/∆t

.

Since the solution u(x, t) is periodic of period L with respect to x, we must have that
wi+N,j = wi,j for all i. This is certainly true for j = 0 because we have that

wi+N,0 = g(xi+N) = g(xi +N∆x) = g(xi +L) = g(xi)

556 15. Finite Difference Methods

for all i. For this periodic condition to be satisfied, we must have that b = bn = 2nπ/L for an
integer n that we may assume positive.

Let

w
[n]
i,j = eatj cos(bnxi) = cos(bnxi)(ea∆t)tj/∆t = cos(bnxi) (1 − 4α sin2 (bn∆x

2
))

tj/∆t

for n > 0. We seek a solution wi,j of the form

wi,j =
∞
∑
n=0

γnw
[n]
i,j

for i ∈ Z and 0 ≤ j ≤M . The periodicity with respect to i is still satisfied.

The initial condition wi,0 = g(xi) for all i yields

∞
∑
n=0

γn cos(bnxi) =
∞
∑
m=0

βm cos(2
mπxi
L
) .

Thus,

γn =
⎧⎪⎪⎨⎪⎪⎩

βm for n = 2m−1

0 otherwise

We have just matched the coefficients of two Fourier cosine series. We get

wi,j =
∞
∑
m=1

βm cos(2
mπxi
L
)(1 − 4α sin2 (2

mπ∆x

2L
))

tj/∆t

.

We choose a positive integer S such that c2T /L2 ≤ S < 2c2T /L2, where we assume that
2c2T /L2 > 1. If N = 2k and M = 22kS for k > 0 arbitrary, then ∆x = L/2k and ∆t = T /(S22k).
We have that

α = c2∆t

(∆x)2
= c

2T /(S22k)
L2/22k

= Tc
2

SL2

with
1

2
< Tc

2

SL2
≤ 1. We get

wi,j =
∞
∑
m=1

βm cos(2
miπ

2k
)(1 − 4α sin2 (2

mπ

2k+1
))

22kStj/T
.

For m > k, we have sin2 (2
mπ

2k+1
) = sin2 (2m−k−1π) = 0 because m − k − 1 ≥ 0. Thus

1 − 4α sin2 (2
mπ

2k+1
) = 1

for m > k.

15.5. Heat Equation 557

For m = k, we have sin2 (2
mπ

2k+1
) = sin2 (π

2
) = 1. Thus

−3 ≤ 1 − 4α = 1 − 4α sin2 (2
mπ

2k+1
) < −1

for m = k.

For m = k − 1, we have sin2 (2
mπ

2k+1
) = sin2 (π

4
) = 1

2
. Thus

−1 ≤ 1 − 2α = 1 − 4α sin2 (2
mπ

2k+1
) < 0

for m = k − 1.

For m < k − 1, we have sin2 (π

2k+1−m
) ≤ 1

4
because 0 ≤ 2mπ

2k+1
= π

2k+1−m
≤ π
8
for k −m + 1 > 2.

Thus

0 ≤ 1 − α ≤ 1 − 4α sin2 (2
mπ

2k+1
) < 1

for m < k − 1.
We have that

∣wi,j ∣ ≥ ∣βk∣ ∣1 − 4α∣2
2kStj/T −

k−1
∑
m=0
∣βm∣ ∣cos(

2miπ

2k
)∣ ∣1 − 4α sin2 (2

mπ

2k+1
)∣

22kStj/T
−

∞
∑

m=k+1
∣βm∣

≥ ∣βk∣ ∣1 − 4α∣2
2kStj/T −

k−1
∑
m=0
∣βm∣ −

∞
∑

m=k+1
∣βm∣ ≥ ∣βk∣ ∣1 − 4α∣2

2kStj/T −
∞
∑
m=0
∣βm∣ .

Let us now be a little more specific and assume for instance that βm = e−2
m > 0 6. We

have that
∞
∑
m=1
∣βm∣ and

∞
∑
m=1

β2
m converge as required.

Hence

∣wi,j ∣ ≥ e−2
k ∣1 − 4α∣2

2kStj/T −
∞
∑
m=0

βm = e−2
k+22kStj ln ∣1−4α∣/T − g(0) ≥ e−2k+22kStj/T − g(0)→∞

as k →∞ because ∣1 − 4α∣ > 1. Thus wi,j cannot approach u(xi, yj) as min{N,M}→∞. ♣

15.5.2 Crank-Nicolson Scheme

We study the ℓ2 convergence according to Definition 15.3.32 of Algorithm 15.2.2 which is
used to approximate the solution of the heat equation with forcing.

As was mentioned in Remark 15.3.34, we will get ℓ2 consistency according to Defini-
tion 15.3.33 if we prove consistency according to Definition 15.3.6. This is what we now
do.

6Any sequence {βm}∞m=0 that preserves the convergence of
∞
∑
m=1
∣βm∣ and

∞
∑
m=1

β2
m, and such that

∣βk ∣e2
2kStj/T →∞ as k →∞ can be used.

558 15. Finite Difference Methods

Proposition 15.5.5

The Crank-Nicolson scheme in Algorithm 15.2.2 is consistent.

Proof.
Using the notation introduced in Section 15.3, we have that

P (u(x, t), ∂u
∂x
(x, t), ∂u

∂y
(x, t), ∂

2u

∂x2
(x, t), . . .) = ∂u

∂t
(x, t) − c2∂

2u

∂x2
(x, t)

and

P∆ (wi,j,wi,j+1,wi+1,j, . . .) =
wi,j+1 −wi,j

∆t

− c2 (
wi+1,j − 2wi,j +wi−1,j

(∆x)2
+
wi+1,j+1 − 2wi,j+1 +wi−1,j+1

(∆x)2
)

for the Crank-Nicolson scheme. For this scheme, the local truncation is

τi,j(∆x,∆t, q) = P∆ (q(xi, tj), q(xi, tj+1), q(xi+1, tj), . . .)

− 1

2
(P (q(xi, tj),

∂q

∂x
(xi, tj),

∂q

∂y
(xi, tj),

∂2q

∂x2
(xi, tj), . . .)

+P (q(xi, tj+1),
∂q

∂x
(xi, tj+1),

∂q

∂y
(xi, tj+1),

∂2q

∂x2
(xi, tj+1), . . .)) .

To find the local truncation error of the Crank-Nicolson scheme, we note that

q(xi, tj+1) − q(xi, tj)
∆t

− 1

2
(∂q
∂t
(xi, tj) +

∂q

∂t
(xi, tj+1))

= 1

2
(
q(xi, tj+1) − q(xi, tj)

∆t
− ∂q
∂t
(xi, tj)) +

1

2
(
q(xi, tj+1) − q(xi, tj)

∆t
− ∂q
∂t
(xi, tj+1))

= 1

2
(1
2

∂2q

∂t2
(xi, tj)∆t +

1

6

∂3q

∂t3
(xi, ξi,j)(∆t)2) +

1

2
(−1

2

∂2q

∂t2
(xi, tj+1)∆t +

1

6

∂3q

∂t3
(xi, ξ̃i,j)(∆t)2)

= 1

4
(∂

2q

∂t2
(xi, tj)∆t −

∂2q

∂t2
(xi, tj+1)∆t) +

1

12

∂3q

∂t3
(xi, ξi,j)(∆t)2 +

1

12

∂3q

∂t3
(xi, ξ̃i,j)(∆t)2

= −1
4

∂3q

∂t3
(xi, ξ̆j)(∆t)2 +

1

12

∂3q

∂t3
(xi, ξi,j)(∆t)2 +

1

12

∂3q

∂t3
(xi, ξ̃i,j)(∆t)2

= (−1
4

∂3q

∂t3
(xi, ξ̆j) +

1

12

∂3q

∂t3
(xi, ξi,j) +

1

12

∂3q

∂t3
(xi, ξ̃i,j)) (∆t)2

for some ξi,j, ξ̃i,j, ξ̆i,j ∈]ti, ti+1[, and

1

2
(
q(xi+1, tj) − 2q(xi, tj) + q(xi−1, tj)

(∆x)2
+
q(xi+1, tj+1) − 2q(xi, tj+1) + q(xi−1, tj+1)

(∆x)2
)

− 1

2
(∂

2q

∂x2
(xi, tj) +

∂2q

∂x2
(xi, tj+1))

15.5. Heat Equation 559

= 1

2
(
q(xi+1, tj) − 2q(xi, tj) + q(xi−1, tj)

(∆x)2
− ∂

2q

∂x2
(xi, tj))

+ 1

2
(
q(xi+1, tj+1) − 2q(xi, tj+1) + q(xi−1, tj+1)

(∆x)2
− ∂

2q

∂x2
(xi, tj+1))

= 1

2
(1
4!
(∂

4q

∂x4
(ζi,j, tj) +

∂4q

∂x4
(ηi,j, tj)) (∆x)2)

+ 1

2
(1
4!
(∂

4q

∂x4
(νi,j, tj+1) +

∂4q

∂x4
(µi,j, tj+1)) (∆x)2)

= 1

48
(∂

4q

∂x4
(ζi,j, tj) +

∂4q

∂x4
(ηi,j, tj) +

∂4q

∂x4
(νi,j, tj+1) +

∂4q

∂x4
(µi,j, tj+1)) (∆x)2

for ζi,j, ηi,j, νi,j, µi,j ∈]xi−1, xi+1[. Thus, the local truncation error of the finite difference
equation (15.2.8) is

τi,j(∆x,∆t, q) = P∆ (q(xi, tj), q(xi, tj+1), q(xi+1, tj), . . .)

− 1

2
(P (q(xi, tj),

∂q

∂x
(xi, tj),

∂q

∂y
(xi, tj),

∂2q

∂x2
(xi, tj), . . .)

+P (q(xi, tj+1),
∂q

∂x
(xi, tj+1),

∂q

∂y
(xi, tj+1),

∂2q

∂x2
(xi, tj+1), . . .))

= (−1
4

∂3q

∂t3
(xi, ξ̆j) +

1

12

∂3q

∂t3
(xi, ξi,j) +

1

12

∂3q

∂t3
(xi, ξ̃i,j)) (∆t)2

− c
2

48
(∂

4q

∂x4
(ζi,j, tj) +

∂4q

∂x4
(ηi,j, tj) +

∂4q

∂x4
(νi,j, tj+1) +

∂4q

∂x4
(µi,j, tj+1)) (∆x)2

for some ξi,j, ξ̃i,j, ξ̆i,j ∈]ti, ti+1[and ζi,j, ηi,j, νi,j, µi,j ∈]xi−1, xi+1[. If the partial derivatives of
order up to four of q are continuous on the compact set R defined in (15.5.1), then there
exists H such that

max
(x,t)∈R

∣∂
3q

∂t3
(x, t)∣ ≤H and max

(x,t)∈R
∣∂

4q

∂x4
(x, t)∣ ≤H .

Hence,

∣τi,j(∆x,∆t, q)∣ ≤
5H

12
(∆t)2 + c

2H

12
(∆x)2 (15.5.6)

for i and j. We conclude that

max{∣τi,j(∆x,∆t, q)∣ ∶ 0 < i < N and 0 ≤ j <M}→ 0 as min{N,M}→∞ (15.5.7)

since ∆x = L/N and ∆t = T /M converge to 0 as N and M converge to infinity.

Since B (u(x, y), . . .) = u(x, y), B∆(wi,j, . . .) = wi,j and wi,j = u(xi, tj) for (i, j) such that
(xi, tj) ∈ ∂R∆, we get from (15.5.7) that Definition 15.3.6 is satisfied.

A direct proof that the Crank-Nicolson scheme satisfies the stability condition in Defini-
tion 15.3.8 is not simple. The reader is asked to proof a limited version of this stability in
Question 15.1 at the end of this chapter.

560 15. Finite Difference Methods

We have proved in Example 15.3.23 that the Crank-Nicolson scheme is ℓ2-stable according
to Definition 15.3.14. Hence, it follows from Theorem 15.3.20, that the Crank-Nicolson
scheme is ℓ2-convergent according to Definition 15.3.12.

We could stop here but, since we want to demonstrate how to use several definition of
stability, we will prove that the Crank-Nicolson scheme is ℓ2-stable according to Defini-
tion 15.3.35.

Proposition 15.5.6

The Crank-Nicolson scheme in Algorithm 15.2.2 is ℓ2-stable without constraints on ∆t
and ∆x.

Proof.
As we have seen in Section 15.3.5, the finite difference scheme given by Algorithm 15.2.1 can
be expressed as Uj+1 = QβUj +Bj for j ≥ 0, where Qβ = −J−1K for K given in (15.2.6) and
J given in (15.2.9), and

Bj = J−1

⎛
⎜⎜⎜⎜⎜⎜
⎝

α (w0,j+1 +w0,j) + (f(x1, tj) + f(x1, tj+1))∆t/2
(f(x2, tj) + f(x2, tj+1))∆t/2

⋮
(f(xN−2, tj) + f(xN−2, tj+1))∆t/2

α (wN,j+1 +wN,j) + (f(xN−1, tj) + f(xN−1, tj+1))∆t/2

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The matrix K can be written as K = Id+αA, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 1 0 0 0 . . . 0 0
1 −2 1 0 0 . . . 0 0
0 1 −2 1 0 . . . 0 0
0 0 1 −2 1 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 ⋯ 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is a (N − 1) × (N − 1) matrix. It follows from Proposition 15.4.1 that the eigenvalues of A
are

λk = −2 + 2 cos (k π/N) = −4 sin2 (k π/(2N))
for 0 < k < N . Thus, the eigenvalues of K are

1 + αλk = 1 − 4α sin2 (k π/(2N))

for 0 < k < N . Proceeding as we did for K, we find that the eigenvalues of J are 1 +
4α sin2 (k π/(2N)) for 0 < k < N .

It follows from Proposition 15.4.1 that the eigenvectors of J associated to the eigen-
value 1 + 4α sin2 (k π/(2N)) are also the eigenvectors of K associated to the eigenvalue
1 − 4α sin2 (k π/(2N)). Thus the eigenvalues of J−1K are

1 − 4α sin2 (k π/(2N))
1 + 4α sin2 (k π/(2N))

15.5. Heat Equation 561

for 0 < k < N . These values are all smaller than one in absolute value for every α > 0. We
have shown that ∥Qβ∥N < 1 for all N .

Since we have not stated a theorem equivalent to Theorem 15.3.9 for ℓ2-convergence
according to Definition 15.3.32, though one exists 7, we will prove the following proposition.

Proposition 15.5.7

The Crank-Nicolson scheme given in Algorithm 15.2.2 is ℓ2-convergent according to
Definition 15.3.32 without any constrain on ∆x and ∆t.

Proof.
Let u be the solution of the partial differential equation

P (u(x, t), ∂u
∂x
(x, t), ∂u

∂t
(x, t), . . .) = ∂u

∂t
(x, t) − c2∂

2u

∂x2
(x, t) = f(x, t)

on R = [0, L]× [0, T] with u(x,0) = g(x) for 0 ≤ x ≤ L, and u(0, t) = h0(t) and u(L, t) = hL(t)
for 0 ≤ t ≤ T .

Suppose that the scheme wj+1 = Qwj + Bj is the matrix representation of the Crank-
Nicolson scheme given in Algorithm 15.2.2. We have that Q = −J−1K for K given in (15.2.6)
and J given in (15.2.9), and

Bj = J−1

⎛
⎜⎜⎜⎜⎜⎜
⎝

α(w0,j+1 +w0,j) + (f(x1, tj) + f(x1, tj+1))∆t/2
(f(x2, tj) + f(x2, tj+1))∆t/2

⋮
(f(xN−2, tj) + f(xN−2, tj+1))∆t/2

α(wN,j+1 +wN,j) + (f(xN−1, tj) + f(xN−1, tj+1))∆t/2

⎞
⎟⎟⎟⎟⎟⎟
⎠

for j ≥ 0.
In vector form, we get from

τi,j(∆x,∆t, u) = P∆ (u(xi, tj), q(ui, tj+1), u(xi+1, tj), . . .)

− 1

2
(P (u(xi, tj),

∂u

∂x
(xi, tj),

∂u

∂y
(xi, tj),

∂2u

∂x2
(xi, tj), . . .)

−P (u(xi, tj+1),
∂u

∂x
(xi, tj+1),

∂u

∂y
(xi, tj+1),

∂2u

∂x2
(xi, tj+1), . . .))

that uj+1 = Quj + bj +∆t J−1τj(∆x,∆t, u), where

uj =
⎛
⎜⎜⎜
⎝

u(x1, tj)
u(x2, tj)
⋮

u(xN−1, tj)

⎞
⎟⎟⎟
⎠
, τj(∆x,∆t, u) =

⎛
⎜⎜⎜
⎝

τ1,j(∆x,∆t, u)
τ2,j(∆x,∆t, u)

⋮
τN−1,j(∆x,∆t, u)

⎞
⎟⎟⎟
⎠

7The proof of Proposition 15.5.7 can be slightly modified to prove this result for a large class of finite
difference schemes. The requirement is that the linear operator in front of τj be uniformly bounded for all
N as it is the case for J−1 in the proof of Proposition 15.5.7

562 15. Finite Difference Methods

and

bj = J−1

⎛
⎜⎜⎜⎜⎜⎜
⎝

α(u(x0, tj+1) + u(x0, tj)) + (f(x1, tj) + f(x1, tj+1))∆t/2
(f(x2, tj) + f(x2, tj+1))∆t/2

⋮
(f(xN−2, tj) + f(xN−2, tj+1))∆t/2

α(u(xN , tj+1) + u(xN , tj)) + (f(xN−1, tj) + f(xN−1, tj+1))∆t/2

⎞
⎟⎟⎟⎟⎟⎟
⎠

for j ≥ 0. Since we assume that w0,j = u(0, tj) and wN,j = u(L, tj) for all j, we have that
Bj = bj for all j.

We have that wj+1 = Qwj +Bj satisfies Definition 15.3.14 with C = 1 because ∥Q∥N < 1 as
we have shown in the proof of the previous proposition. Moreover, we have also shown that

∥J−1∥N = ρ(J−1) = max
0<k<N

{1/(1 + 4α sin2 (k π/(2N))) } < 1 .

Since

wj+1 − uj+1 = (Qwj +Bj) − (Quj + bj +∆t J−1τj) = Q (wj − uj) −∆t J−1τj
for 0 ≤ j <M , we get by induction that

wj − uj = Qj (w0 − u0) −∆t
j−1
∑
s=0
QsJ−1τj−1−s

for 0 < j ≤M . Hence

∥wj − uj∥N ≤ ∥Qj∥N ∥w0 − u0∥N +∆t ∥J−1∥N
j−1
∑
k=0
∥Qs∥N ∥τj−1−s∥N

≤ ∥w0 − u0∥N + j∆tL1/2 τ(∆x,∆t, u)
≤ ∥w0 − u0∥N + T L1/2 τ(∆x,∆t, u) (15.5.8)

for 0 < j ≤M , where

τ(∆x,∆t, u) ≡ max
(i,j) such that
(xi,yj)∈Ro

∆

∣τi,j(∆x,∆t, u)∣ ≤
5H

12
(∆t)2 + c

2H

12
(∆x)2

because of (15.5.6). It is here that the choice of the norm ∥ ⋅∥N is important because we have

∥τj∥N = (
N−1
∑
i=1
(τi,j(∆x,∆t, u))2 ∆x)

1/2

≤ (
N−1
∑
i=1

τ 2(∆x,∆t, u)∆x)
1/2

= τ(∆x,∆t, u) ((N − 1)(L/N))1/2 ≤ L1/2 τ(∆x,∆t, u) .

Since the Crank-Nicolson scheme is consistent, we get from (15.5.8) that

max
0<j≤M

∥wj − uj∥N ≤ T L1/2 τ(∆x,∆t, u)→ 0

as min{N,M}→∞ since we assume that wi,j = u(xi, tj) for all (i, j) such that (xi, tj) ∈ ∂R∆.
This implies that w0 = u0.

Crank-Nicolson is a really good scheme because there is no constrains on ∆x and ∆t, and
the convergence is quadratic; namely, order two in ∆x and ∆t.

15.6. Dirichlet Equation 563

15.6 Dirichlet Equation

We could study the consistence, stability and convergence of the finite difference scheme in
Algorithm 15.2.6 as we did for the previous finite difference schemes for the heat equation
with forcing. However, we will not do so. There is a more elegant approach to study the
consistence, stability and convergence of the finite difference schemes to numerically solve
elliptic equations.

We first consider the Dirichlet problem (15.2.10) with f(x, y) = 0 for all (x, y) ∈ R. In
that particular case, it is called the Laplace equation. Our first result will be a maximum
principle 8 for the following finite difference scheme used to numerically solve the Laplace
equation.

Q∆(wi,j) ≡
wi,j+1 − 2wi,j +wi,j−1

(∆x)2
+
wi+1,j − 2wi,j +wi−1,j

(∆y)2
= 0

for 0 < i < N and 0 < j < M , where wi,0 = g(xi,0) and wi,M = g(xi, b) for 0 ≤ i ≤ N , and
w0,j = g(0, yj) and wN,j = g(a, yj) for 0 ≤ j ≤M .

As we did in Section 15.3, we have

R = {(x, y) ∶ 0 ≤ x ≤ a and 0 ≤ y ≤ b}

and
R∆ = {(xi, yj) ∶ xi = i∆x for 0 ≤ i ≤ N, and yj = j∆y for 1 ≤ j ≤M} ,

where ∆x = a/N and ∆y = b/M . We also define

∂R∆ = {(xi, y) ∶ xi = i∆x for 0 ≤ i ≤ N, and y = y0 = 0 or y = yM = b}
∪ {(x, yj) ∶ yj = j∆y for 0 ≤ i ≤M, and x = x0 = 0 or x = xN = a}

and Ro
∆ = R∆ ∖ ∂R∆.

Theorem 15.6.1

Suppose that vi,j = v(xi, yj) for all i and j, where v ∶ R∆ → R. If Q∆(vi,j) ≥ 0 for all
(i, j) with (xi, yj) ∈ Ro

∆, then

max
(xi,yj)∈Ro

∆

vi,j ≤ max
(xi,yj)∈∂R∆

vi,j .

Proof.
The proof is by contradiction. Suppose that there exist (xi0 , yj0) ∈ Ro

∆, (i.e. 0 < i0 <M and
0 < j0 < N) such that vi0,j0 ≥ vi,j for all (i, j) with (xi, yj) ∈ Ro

∆, and vi0,j0 > vi,j for all (i, j)
with (xi, yj) ∈ ∂R∆. We get from

Q∆ (vi0,j0) ≡
vi0,j0+1 − 2vi0,j0 + vi0,j0−1

(∆x)2
+
vi0+1,j0 − 2vi0,j0 + vi0−1,j0

(∆y)2
≥ 0

8It is a well know result that the solution of the Laplace equation reach it maximum on the boundary of
the domain R. The solution of Q∆(w) = 0 has the same property.

564 15. Finite Difference Methods

that

2(1

(∆x)2
+ 1

(∆y)2
) vi0,j0 ≤

1

(∆x)2
(vi0,j0+1 + vi0,j0−1)

1

(∆x)2
(vi0+1,j0 + vi0−1,j0) .

Since vi,j ≤ vi0,j0 for all (i, j), the only way to satisfy this inequality is if vi0,j0+1 = vi0,j0−1 =
vi0+1,j0 = vi0−1,j0 = vi0,j0 .

We can then repeat the same procedure with vi0,j0+1, vi0,j0−1, vi0+1,j0 and vi0−1,j0 . Moving
that way horizontally and vertically, we find that vi,j = vi0,j0 for all (i, j) 9, even those
for (xi, yj) ∈ ∂R∆. This contradicts our assumption that vi0,j0 > vi,j for all (i, j) with
(xi, yj) ∈ ∂R∆.

Using an argument like the one in the proof of the previous theorem or simply applying
the previous theorem to −vi,j instead of vi,j, we get the following result.

Theorem 15.6.2

Suppose that vi,j = v(xi, yj) for all i and j, where v ∶ R∆ → R. If Q∆(vi,j) ≤ 0 for all
(i, j) with (xi, yj) ∈ Ro

∆, then

min
(xi,yj)∈Ro

∆

vi,j ≥ min
(xi,yj)∈∂R∆

vi,j .

It follows from the previous two theorems that the finite difference scheme in Algo-
rithm 15.2.6 has a unique solution. Suppose that {w[k]i,j ∶ 0 ≤ i ≤ N and 0 ≤ j ≤ M} for
k = 1 and 2 are two solutions of the finite difference scheme in Algorithm 15.2.6. We then
have that {wi,j ∶ 0 ≤ i ≤ N and 0 ≤ j ≤ M} with wi,j = w[1]i,j − w

[2]
i,j for all i and j is a solu-

tion of ∆∆wi,j = 0 for all (i, j) such that (xi, yj) ∈ Ro
∆, and wi,j = 0 for all (i, j) such that

(xi, yj) ∈ ∂R∆. It follows from Theorems 15.6.1 and 15.6.2 that

0 = min
(xi,yj)∈∂R∆

wi,j ≤ min
(xi,yj)∈Ro

∆

wi,j ≤ max
(xi,yj)∈Ro

∆

wi,j ≤ max
(xi,yj)∈∂R∆

wi,j = 0 .

Thus w
[1]
i,j −w

[2]
i,j = 0 for 0 ≤ i ≤ N and 0 ≤ j ≤M .

15.6.1 Algorithm 15.2.6

Proposition 15.6.3

The finite difference scheme in Algorithm 15.2.6 is consistent.

Proof.
Using the notation introduced in Section 15.3, we have that

P (u(x, y), ∂u
∂x
(x, y), ∂u

∂y
(x, y), ∂

2u

∂x2
(x, y), . . .) = ∂

2u

∂x2
+ ∂

2u

∂y2

9To be exact, we are missing the four corner points of R∆

15.6. Dirichlet Equation 565

and

P∆ (wi,j,wi,j+1,wi+1,j, . . .) =
wi+1,j − 2wi,j +wi−1,j

(∆x)2
+
wi,j+1 − 2wi,j +wi,j−1

(∆y)2

for the finite difference scheme in Algorithm 15.2.6.

To find the local truncation error of the finite difference scheme in Algorithm 15.2.6, we
need to use the formula in (15.1.6) twice, for the second other partial derivative of u with
respect to x and the second other partial derivative of u with respect to y.

Given any sufficiently differentiable function q ∶ R → R, let qi,j = q(xi, yj) for all (xi, yj) ∈
R∆. We have

∂2q

∂x2
(xi, yj) =

qi+1,j − 2qi,j + qi−1,j
(∆x)2

− 1

4!
(∂

4q

∂x4
(ζi,j, yj) +

∂4q

∂x4
(ηi,j, yj)) (∆x)2

and
∂2q

∂y2
(xi, yj) =

qi,j+1 − 2qi,j + qi,j−1
(∆y)2

− 1

4!
(∂

4q

∂y4
(xi, µi,j) +

∂4q

∂y4
(xi, νi,j)) (∆y)2

for ζi,j, ηi,j ∈]xi−1, xi+1[and µi,j, νi,j ∈]yj−1, yj+1[. Hence

τi,j(∆x,∆y, q) = P (q(xi, tj),
∂q

∂x
(xi, tj),

∂q

∂y
(xi, tj),

∂2q

∂x2
(xi, tj), . . .)

− P∆ (q(xi, tj), q(xi, yj+1), q(xi+1, tj), . . .)

= − 1
4!
(∂

4q

∂x4
(ζi,j, yj) +

∂4q

∂x4
(ηi,j, yj)) (∆x)2 −

1

4!
(∂

4q

∂y4
(xi, µi,j) +

∂4q

∂y4
(xi, νi,j)) (∆y)2

for ζi,j, ηi,j ∈]xi−1, xi+1[and µi,j, νi,j ∈]yj−1, yj+1[.
If the partial derivatives of order up to four of q are continuous on the compact set R,

then there exists H such that

max
(x,y)∈R

∣∂
4q

∂x4
(x, t)∣ ≤H and max

(x,y)∈R
∣∂

4q

∂y4
(x, t)∣ ≤H .

Hence,

∣τi,j(∆x,∆y, q)∣ ≤
H

12
((∆x)2 + (∆y)2) (15.6.1)

for i and j. We conclude that

max{∣τi,j(∆x,∆y, q)∣ ∶ 0 < i < N and 0 < j <M}→ 0 as min{N,M}→∞ (15.6.2)

since ∆x = L/N and ∆t = T /M converge to 0 as N and M converge to infinity.

Since B (u(x, y), . . .) = u(x, y), B∆(wi,j, . . .) = wi,j and wi,j = u(xi, tj) for (i, j) such that
(xi, tj) ∈ ∂R∆, we get from (15.6.2) that Definition 15.3.6 is satisfied.

The stability of the finite difference scheme in Algorithm 15.2.6 will be a consequence of
the next theorem.

566 15. Finite Difference Methods

Theorem 15.6.4

Suppose that vi,j = v(xi, yj) for all i and j, where v ∶ R∆ → R. Then

max
(xi,yj)∈R∆

∣vi,j ∣ ≤ max
(xi,yj)∈∂R∆

∣vi,j ∣ +
a2

2
max

(xi,yj)∈Ro
∆

∣Q∆(vi,j)∣ .

Proof.
We need to define some real-valued functions on R∆ to prove this result. First

h ∶ R∆ → R
(xi, yj)↦ x2i /2

We obviously have that 0 ≤ h(xi, yj) ≤ a2/2 for all (xi, yj) ∈ R∆. Moreover, if we let hi,j =
h(xi, yj) for all i and j, we have

Q∆(hi,j) =
hi+1,j − 2hi,j + hi−1,j

(∆x)2
+
hi,j+1 − 2hi,j + hi,j−1

(∆y)2

=
(xi +∆x)2 − 2x2i + (xi −∆x)2

2(∆x)2
+
x2i − 2x2i + x2i

2(∆y)2
= (∆x)

2 + (∆x)2
2(∆x)2

= 1

for all (i, j) such that (xi, yj) ∈ Ro
∆.

let K = max
(xi,yj)∈Ro

∆

∣Q∆(vi,j)∣. We define two additional functions.

g± ∶ R∆ → R
(xi, yj)↦ ±v(xi, yj) +Kh(xi, yj) = ±vi,j +Khi,j

Let g±i,j = g±(xi, yj) = ±vi,j +Khi,j for all i and j. By linearity of the operator Q∆, we have
that

Q∆ (g±i,j) = ±Q∆(vi,j) +KQ∆(hi,j) = ±Q∆(vi,j) +K ≥ 0

for all (i, j) such that (xi, yj) ∈ Ro
∆. Therefore, we may apply Theorem 15.6.1 to g±. For g+,

we get

vi,j ≤ max
(xi,yj)∈Ro

∆

vi,j ≤ max
(xi,yj)∈Ro

∆

g+i,j ≤ max
(xi,yj)∈∂R∆

g+i,j ≤ max
(xi,yj)∈∂R∆

vi,j +K max
(xi,yj)∈∂R∆

hi,j

≤ max
(xi,yj)∈∂R∆

∣vi,j ∣ +
Ka2

2

for all (i, j) such that (xi, yj) ∈ Ro
∆. For g

−, we also get

−vi,j ≤ max
(xi,yj)∈Ro

∆

−vi,j ≤ max
(xi,yj)∈Ro

∆

g−i,j ≤ max
(xi,yj)∈∂R∆

g−i,j ≤ max
(xi,yj)∈∂R∆

−vi,j +K max
(xi,yj)∈∂R∆

hi,j

≤ max
(xi,yj)∈∂R∆

∣vi,j ∣ +
Ka2

2

15.6. Dirichlet Equation 567

for all (i, j) such that (xi, yj) ∈ Ro
∆. Thus

∣vi,j ∣ ≤ max
(xi,yj)∈∂R∆

∣vi,j ∣ +
Ka2

2

for all (i, j) such that (xi, yj) ∈ Ro
∆. This gives the conclusion of the theorem.

Proposition 15.6.5

The finite difference scheme in Algorithm 15.2.6 is stable without constraints on ∆x
and ∆y.

Proof.
For the finite difference scheme in Algorithm 15.2.6, we have that P∆(wi,j, . . .) = ∆∆wi,j for
all (i, j) such that (xi, yj) ∈ Ro

∆, and B∆(wi,j, . . .) = wi,j for all (i, j) such that (xi, yj) ∈ ∂R∆.
It then follows from the previous theorem that the condition (15.3.7) for the definition of
stability in Definition 15.3.8 is satisfied with C =max{1, a2/2}.

The following result is a consequence of Proposition 15.6.3, Proposition 15.6.5 and The-
orem 15.3.9.

Proposition 15.6.6

The finite difference scheme in Algorithm 15.2.6 is convergent without any constrains
on ∆x and ∆t.

We can also prove this proposition using Theorem 15.6.4.

Proof.
Suppose that {wi,j ∶ 0 ≤ i ≤ N and 0 ≤ j ≤ M} is the solution of Q∆(wi,j) = f(xi, yj) for all
(i, j) such that (xi, yj) ∈ Ro

∆, and wi,j = g(xi, yj) for all (i, j) such that (xi, yj) ∈ Ro
∆.

Suppose that u is the solution of the Dirichlet equation introduced in Section 15.2.2;
namely, u is the solution of ∆u(x, y) = f(x, y) for (x, y) ∈ R ∖ ∂R and u(x, y) = g(x, y) for
(x, y) ∈ ∂R.

We have from

τi,j(∆x,∆y, u) = P (u(xi, yj),
∂u

∂x
(xi, yj), . . .) − P∆ (u(xi, yj), u(xi+1, yj), . . .)

that

u(xi+1, yj) − 2u(xi, yj) + u(xi−1, yj)
(∆x)2

+
u(xi, yj+1) − 2u(xi, yj) + u(xi, yj−1)

(∆y)2

= f(xi, yj) − τi,j(∆x,∆y, u)
(15.6.3)

for all (i, j) such that (xi, yj) ∈ Ro
∆, where τi,j(∆x,∆y, u) is defined in the proof of Proposi-

tion 15.6.3.

568 15. Finite Difference Methods

Let ri,j = wi,j − u(xi, tj) for 0 ≤ i ≤ N and 0 ≤ j ≤ M . If we subtract (15.6.3) from
Q∆(wi,j) = f(xi, yj), we get

Q∆(ri,j) =
ri+1,j − 2ri,j + ri−1,j

(∆x)2
+
ri,j+1 − 2ri,j + ri,j−1

(∆y)2
= τi,j(∆x,∆y, u) .

for all (i, j) such that (xi, yj) ∈ Ro
∆.

Because wi,j = u(xi, yj) = g(xi, yj) for (i, j) such that (xi, yj) ∈ ∂R∆, we have that ri,j = 0
for (i, j) such that (xi, yj) ∈ ∂R∆. Hence, if we apply Theorem 15.6.4 to the function

r ∶ R∆ → R
(xi, yj)↦ ri,j

we get

max
(xi,yj)∈R∆

∣ri,j ∣ ≤
a2

2
max

(xi,yj)∈Ro
∆

∣Q∆(ri,j)∣ =
a2

2
max

(xi,yj)∈Ro
∆

∣τi,j(∆x,∆y, u)∣ .

It follows from (15.6.1) that

max
(xi,yj)∈R∆

∣wi,j − u(xi, yj)∣ ≤
a2H

24
((∆x)2 + (∆y)2)→ 0 as min{N,M}→∞ .

15.7 Wave Equation

The finite difference scheme in Algorithm 15.2.11 was developed to numerically solve the
wave equation

∂2u

∂t2
= c2∂

2u

∂x2
, 0 < x < L and 0 < t < T (15.7.1)

with the boundary conditions

u(0, t) = u(L, t) = 0 , 0 < t < T , (15.7.2)

and the initial conditions

u(x,0) = g(x) and ∂u

∂t
(x,0) = f(x) , 0 ≤ x ≤ L . (15.7.3)

As we will show below for the special case of the wave equation above, finite difference
scheme are not ideal to numerically solve hyperbolic differential equations. Strict conditions
on the step sizes are required to get convergent finite difference schemes. We will address
this issue in the next section before studying the stability, consistency and convergence of
the finite difference scheme in Algorithm 15.2.11.

15.7. Wave Equation 569

15.7.1 The Role of the Domain of Dependence

This section uses some of the basic techniques to solve partial differential equations.

Let us start with the wave equation on the real line.

∂2u

∂t2
= c2∂

2u

∂x2
, −∞ < x <∞ and t > 0 (15.7.4)

with the initial conditions

u(x,0) = g(x) and ∂u

∂t
(x,0) = f(x) , −∞ < x <∞ . (15.7.5)

If we use the substitution ξ = x + ct and η = x − ct, we get

∂u

∂t
= ∂u
∂ξ

∂ξ

∂t
+ ∂u
∂η

∂η

∂t
= c∂u

∂ξ
− c∂u

∂η

and

∂2u

∂t2
= ∂

∂t
(∂u
∂t
) = ∂

∂ξ
(c∂u
∂ξ
− c∂u

∂η
) ∂ξ
∂t
+ ∂

∂η
(c∂u
∂ξ
− c∂u

∂η
) ∂η
∂t

= c(c∂
2u

∂ξ2
− c ∂

2u

∂ξ∂η
) − c(c ∂

2u

∂η∂ξ
− c∂

2u

∂η2
) = c2 (∂

2u

∂ξ2
− 2 ∂2u

∂η∂ξ
+ ∂

2u

∂η2
) . (15.7.6)

Similarly,
∂u

∂x
= ∂u
∂ξ

∂ξ

∂x
+ ∂u
∂η

∂η

∂x
= ∂u
∂ξ
+ ∂u
∂η

and
∂2u

∂x2
= ∂

∂x
(∂u
∂x
) = ∂

2u

∂ξ2
+ 2 ∂2u

∂η∂ξ
+ ∂

2u

∂η2
. (15.7.7)

If we substitute (15.7.6) and (15.7.6) in (15.7.4), and simplify the result, we get

∂2u

∂η∂ξ
= 0 . (15.7.8)

Integrating this equation with respect to ξ yields
∂u

∂η
= H(η) for some function H ∶ R → R.

Integrating
∂u

∂η
=H(η) with respect to η yields u(η, ξ) = ∫ H(η)dη+G(ξ) for some function

G ∶ R→ R. If we define F (η) = ∫ H(η)dη, we get the solution

u(η, ξ) = F (η) +G(ξ)

for (15.7.8). In terms of x and t, we get the solution

u(x, t) = F (x − ct) +G(x + ct)

570 15. Finite Difference Methods

for (15.7.4). We now consider the initial conditions in (15.7.5). We have that f and g satisfy
the equations f(x) = F (x)+G(x) and g(x) = −cF ′(x)+cG′(x). If we assume that g is locally
integrable, we may write

∫
x

0
g(s)ds = −cF (x) + cG(x) + cF (0) − cG(0) .

We end up with two linearly independent equations for F and G.

F (x) +G(x) = f(x) (15.7.9)

F (x) −G(x) = F (0) −G(0) − 1

c ∫
x

0
g(s)ds . (15.7.10)

Adding (15.7.9) and (15.7.10) and dividing by 2 yield

F (x) = 1

2
f(x) − 1

2c ∫
x

0
g(s)ds + 1

2
(F (0) −G(0)) .

Subtracting (15.7.10) from (15.7.9) and dividing by 2 yield

G(x) = 1

2
f(x) + 1

2c ∫
x

0
g(s)ds − 1

2
(F (0) −G(0)) .

We finally get the solution

u(x, t) = F (x − ct) +G(x + ct) = 1

2
(f(x − ct) + f(x + ct)) + 1

2c ∫
x+ct

x−ct
g(s)ds (15.7.11)

for (15.7.4) and (15.7.5). The domain of dependence for u(x̃, t̃) is the set {(x, t) ∶ 0 ≤
t ≤ t̃ and ct + x̃ − ct̃ ≤ x ≤ −ct + x̃ + ct̃}. This is the set of all points (x, t) where f(x − ct),
f(x + ct) and g(s) in (15.7.11) are evaluated to get the value of u at (x̃, t̃). The domain of
dependence for u(x̃, t̃) is displayed in figure (15.5). The domain of dependence will play an
important role in our analysis of finite difference schemes used to numerically solve the wave
equation and hyperbolic equations in general.

(x̃, t̃)
x = ct + x̃ − ct̃

x

x = −ct + x̃ + ct̃
domain of dependency

t

x̃ − ct̃ x̃ + ct̃

Figure 15.5: Domain of dependence for u(x̃, t̃), the value of the solution u of the
wave equation at (x̃, t̃).

We now solve the wave equation (15.7.1) with the boundary conditions (15.7.2) and the
initial conditions (15.7.3). To do so, we will use the method of separation of variables. The

15.7. Wave Equation 571

presentation will be a little more formal than usual. However, all the theoretical details
could be filled in by the reader who has some knowledge of L2-spaces and Fourier series.

If we substitute u(x, t) = F (x)G(t) in (15.7.1), we get

F (x) d
2G

dt2
(t) = c2d

2F

dx2
(x)G(t) .

Thus, after dividing both sides by c2F (x)G(t), we get

1

c2G(t)
d2G

dt2
(t) = 1

F (x)
d2F

dx2
(x) , t > 0 and 0 < x < L .

Since the right hand side is independent of t and the left hand side is independent of x, we
get

1

c2G(t)
d2G

dt2
(t) = 1

F (x)
d2F

dx2
(x) = k , t > 0 and 0 < x < L

for some constant k. We end up with two ordinary differential equations.

d2F

dx2
(x) − kF (x) = 0 and

d2G

dt2
(t) − c2 kG(t)) = 0 . (15.7.12)

From u(0, t) = 0, we get F (0)G(t) = 0. Since we assume that G is not trivial, we get
F (0) = 0. Similarly, from u(L, t) = 0, we get F (L)G(t) = 0. Again, since we assume that G
is not trivial, we get F (L) = 0. The boundary conditions for the first ordinary differential
equation in (15.7.12) are F (0) = F (L) = 0.

We consider the boundary value problem

d2F

dx2
(x) − kF (x) = 0 with F (0) = F (L) = 0 . (15.7.13)

The form of the general solution of (15.7.13) is determined by the roots of the characteristic
equation λ2 − k = 0.

If k > 0, the roots of the characteristic equation are ±
√
k. Since the roots are real, the

general solution of the ordinary differential equation is of the form

F (x) = Ae
√
k x +Be−

√
k x .

However, F (0) = 0 implies that A+B = 0 and F (L) = 0 implies AeL
√
k+Be−L

√
k = 0. The only

solution for these two equations is A = B = 0 because eL
√
k − e−L

√
k = eL

√
k (1 − e−2L

√
k) ≠ 0

for k ≠ 0. Therefore, the trivial solution is the only solution of the boundary value problem
(15.7.13) for k > 0.

If k = 0, the general solution of the ordinary differential equation is F (x) = Bx + A.
However, F (0) = 0 implies that A = 0. Hence F (L) = 0 implies that BL = 0. Thus A = B = 0.
Again, the trivial solution is the only solution of the boundary value problem (15.7.13) for
k = 0.

572 15. Finite Difference Methods

If k < 0, the roots of the characteristic equation are ±i
√
−k. Since the roots are complex,

the general solution of the ordinary differential equation is of the form

F (x) = A cos (
√
−k x) +B sin (

√
−k x) .

However, F (0) = 0 implies that A = 0. Hence F (L) = 0 implies that B sin (L
√
−k) = 0. If we

take B = 0, we get the trivial solution. We must therefore have sin (L
√
−k) = 0 with k ≠ 0.

This implies that k = kn = − (nπ/L)2 for n a positive integer. The boundary value problem
(15.7.13) has non-trivial solutions only for k = kn = − (nπ/L)2 < 0 with n a positive integer,
and the solutions associated to kn are of the form

F (x) = Fn(x) = Bn sin(
nπx

L
) .

We only need to consider the second ordinary differential equation in (15.7.12) with
k = kn = − (nπ/L)2; namely,

d2G

dt2
(t) + (cnπ

L
)
2

G(t) = 0 ,

where n is a positive integer. For each n, this is a second order ordinary differential equation
with the characteristic equation λ2 + (cnπ/L)2 = 0. The two roots of this equation are the
complex numbers λ± = ±(cnπ/L)i. The general solution is therefore

G(t) = Gn(t) = Cn cos(
cnπt

L
) +Dn sin(

cnπt

L
) .

We have found that the functions

un(x, t) = Fn(x)Gn(t) = (an cos(
cnπt

L
) + bn sin(

cnπt

L
)) sin(nπ x

L
)

for n > 0 satisfy the wave equation (15.7.1) and the boundary conditions (15.7.2). The
constant an is the product of the constants Bn and Cn, and bn is the product of Bn and Dn.

To satisfy the initial conditions, we seek a solution of the form

u(x, t) =
∞
∑
n=1

un(x, t) =
∞
∑
n=1
(an cos(

cnπt

L
) + bn sin(

cnπt

L
)) sin(nπ x

L
) .

From u(x,0) = f(x), we get

f(x) =
∞
∑
n=1

an sin(nπx
L
) , 0 < x < L .

This is the Fourier sine series of f . The coefficients of this series are given by

an =
2

L ∫
L

0
f(x) sin(nπx

L
) dx .

15.7. Wave Equation 573

From
∂u

∂t
(x,0) = g(x), we get

g(x) =
∞
∑
n=1

cnπbn
L

sin(nπx
L
) , 0 < x < L .

This is the Fourier sine series of g. The formula to compute the coefficients of this Fourier
series yields

bn =
2

cnπ ∫
L

0
g(x) sin(nπx

L
) dx .

The solution of the wave equation (15.7.1) with the boundary conditions (15.7.2) and the
initial conditions (15.7.3) is therefore

u(x, t) =
∞
∑
n=1

an cos(
cnπt

L
) sin(nπx

L
) +

∞
∑
n=1

bn sin(
cnπt

L
) sin(nπx

L
)

=
∞
∑
n=1

an
2
(sin(nπ

L
(x + ct)) + sin(nπ

L
(x − ct)))

+
∞
∑
n=1

bn
2
(cos(nπ

L
(x − ct)) − cos(nπ

L
(x + ct))) .

The solution is of the form

u(x, t) = 1

2
(f(x + ct) + f(x − ct)) + 1

2c ∫
x+ct

x−ct
g(s)ds

because ∞
∑
n=1

an sin(
nπs

L
) = f(s)

and
d

ds
(
∞
∑
n=1

bn cos(
nπs

L
)) = −

∞
∑
n=1

nπbn
L

sin(nπs
L
) = −1

c
g(s) .

In the discussion above, it is obviously assumed that f and g, initially defined on the interval
[0, L], are extended to even and periodic functions of period 2L on the real line.

The domain of dependence of u(x̃, t̃) in the region R = {(x, t) ∶ 0 ≤ x ≤ L and t ≥ 0} is
a little more complex than for the wave equation on the real line but still depends on the
two characteristic lines x = ct + x̃ − ct̃ and x = −ct + x̃ + ct̃ (if we consider all the possible
reflections of these two lines through the lines x = 0 and x = L). This two characteristic lines
play a crucial role in the convergence of finite difference schemes to numerically solve the
wave equation.

If we consider the finite difference scheme in Algorithm 15.2.11, we may define the nu-
merical domain of dependence of wi,j as the set of values {wr,s ∶ 0 ≤ s ≤ j and s + i − j ≤
r ≤ −s + i + j}. This region is illustrated in Figure 15.6.

Suppose that g and f in the definition of the initial conditions for the wave equation
change drastically at a point a ∈]0, L[. For instance, g(x) = f(x) = 0 for x < a and increase
exponentially for x > a. Suppose that (x̃, t̃) is such that x̃ < a < x̃ + ct̃. Let us consider grids

574 15. Finite Difference Methods

numerical domain of dependence

x

t1

t2

t3

t0
x4x2 x3x0 x1

t4

t

x5 x6 x7

Figure 15.6: Domain of dependence for w4,3 associated to the finite difference
scheme in Algorithm 15.2.11.

such that ρ = ∆x/∆t is constant and satisfies ρ < c, and such that (x̃, t̃) = (xr, ts) for some
r and s. Namely, (x̃, t̃) is part of all the grids that we consider. We assume that ρ is small
enough (or alternatively, that a is large enough) to have xr+s = (r + s)∆x < a. This situation
is completely summarized in Figure 15.7.

(x̃, t̃) = (xr, ts)

x = −ρt + xr+s

a
xr+s x̃ + ct̃

x = −ct + x̃ + ct̃

domain of dependence
numerical domain of dependence

x

ts

t

xr

Figure 15.7: Comparison between the domain of dependence for the wave equation
and the finite difference scheme in Algorithm 15.2.11 for ∆x/∆t < c.

It is clear that wr,s, the numerical approximation of u(x̃, t̃), will never take into consid-
eration the values of f(x) and g(x) for x > a as (∆x,∆t) → 0 with ∆x/∆t < c 10. But, the
domain of dependence of u(x̃, t̃) tells us that the value of u(x̃, t̃) depends on the values of
g(x) and f(x) for x > a. Thus, wr,s will generally not converge to u(x̃, t̃).

In conclusion, a necessary condition for our finite difference scheme to converge for the
wave equation is that ∆x/∆t ≥ c. Thus, the numerical domain of dependence of the finite
difference scheme in Algorithm 15.2.11 must include the domain of dependence of the wave
equation. We will give a more rigorous justification later.

The reader may wonder if the conclusion that we have just stated is particular to the wave
equation, and if our finite difference scheme may behave more nicely with other hyperbolic

10r and s will increase as ∆x and ∆t converge to 0 but we always assume that xr = x̃ and ts = t̃

15.7. Wave Equation 575

differential equations. To add more strength to our argument, we will consider hyperbolic
systems of linear first order partial differential equations.

Definition 15.7.1

A system of linear first order partial differential equations of the form vt + Avx = 0,
where v ∶ R2 → Rn and A is a n × n real matrix, is an hyperbolic system if A is a
n×n real symmetric matrix11. The system of partial differential equations is strictly
hyperbolic if all the real eigenvalues of A are distinct.

The wave equation
∂2u

∂t2
− c2∂

2u

∂x2
= 0

can be reduced to a strictly hyperbolic system of first order partial differential equations.
Let

v = (ux
ut/c
) and A = (0 c

c 0
) .

Then

vt −Avx = (
uxt
utt/c
) − (0 c

c 0
)(uxx
uxt/c

) = (uxt − uxt
utt/c − cuxx

) = (0
0
) ,

where the eigenvalues of A are ±c.
One of the reasons to study hyperbolic systems of first order partial differential equations

is that one can use the method of characteristic12 to understand the dangers of solving
numerically hyperbolic differential equations with finite difference schemes.

Consider the simple advection equation

c
∂u

∂x
+ ∂u
∂y
= 0 , −∞ < x <∞ and y > 0 (15.7.14)

with the initial condition u(x,0) = g(x) for x ∈ R. The characteristic equations for this
partial differential equation are

x′(t) = c , y′(t) = 1 and u′(t) = 0

with the initial conditions

x(0) = s , y(0) = 0 and u(0) = g(s) .

The equation x′(t) = c with x(0) = s yields x = ct + s, the equation y′(t) = 1 with y(0) = 0
yields y = t and the equation u′(t) = 0 with u(0) = g(s) yields u = g(s). We can solve x = ct+s
and y = t in terms of s and t to get t = y and s = x − cy. If we substitute this value of s in
the expression for u, we get the solution u = u(x, y) = g (x − cy). The function u is constant

11It is shown in linear algebra courses that real symmetric matrices have only real eigenvalues.
12The reader may consult an introductory book on partial differential equations like [32] to learn more

about the method of characteristic to solve some partial differential equations.

576 15. Finite Difference Methods

along the characteristic lines x − cy = a for a ∈ R. The value of u at (x, y) is the value of u
at the points below and to the left of x along the line x − cy = a.

Consider the following finite difference scheme to numerically solve (15.7.14) with u(x,0) =
g(x) for x ∈ R. Let xi = i∆x for i ∈ Z and yj = j∆y for j ≥ 0. An approximation wi,j of
u(xi, yj) is provided by the solution of the finite difference equation

c
wi+1,j −wi,j

∆x
+
wi,j+1 −wi,j

∆y
= 0 (15.7.15)

for i ∈ Z and j ≥ 0, where wi,0 = g(xi) for all i. This scheme is illustrated in Figure 15.8.

x
x2 x3 x4 x5

w2,3

y1

x−1x−2

y3

y2

y

numerical domain
of dependence

x − cy = a

x0 x1

Figure 15.8: Schematic representation of the finite difference scheme given in
(15.7.15) and the numerical domain of dependence for w2,3.

We get

wi,j+1 = wi,j −
c∆y

∆x
(wi+1,j −wi,j) .

Thus wi,j+1 depends on the values wi,j and wi+1,j. The first value is at the point (xi, yj)
straight below (xi, yj+1) and the other value is at the point (xi+1, yj) below and to the right
of (xi, yj+1). The numerical domain of dependence for w2,3 is illustrated in Figure 15.8.
The numerical domain of dependence of wi,j+1 does not contain the characteristic line x −
cy = a through (xi, yj+1) that defines u(xi, yj+1). The finite difference scheme in (15.7.15)
will generally not converge to the solution of the advection equation whatever the relation
between ∆y and ∆x.

Let us try another finite difference scheme to numerically solve (15.7.14) with u(x,0) =
g(x) for x ∈ R. Let xi = i∆x for i ∈ Z and yj = j∆y for j ≥ 0 as before. An approximation
wi,j of u(xi, yj) is provided by the solution of the finite difference equation

c
wi,j −wi−1,j

∆x
+
wi,j+1 −wi,j

∆y
= 0 (15.7.16)

for i ∈ Z and j ≥ 0, where wi,0 = g(xi) for all i. This scheme is illustrated in Figure 15.9.

We get

wi,j+1 = wi,j −
c∆y

∆x
(wi,j −wi−1,j) .

15.7. Wave Equation 577

x
x2 x3 x4 x5

w2,3

x−1x−2

y3

y2

y

numerical domain
of dependence

x − cy = a

x0 x1

y1

Figure 15.9: Schematic representation of the finite difference scheme given in
(15.7.16) and the numerical domain of dependence for w2,3 for ∆y/∆x > 1/c.

Now, wi,j+1 depends on the values wi−1,j and wi,j. The first value is at the point (xi−1, yj)
below and to the right of (xi, yj+1) and the other value is at the point (xi, yj) straight below
the point (xi, yj+1). The numerical domain of dependence for w2,3 is illustrated in Figure 15.9.

If we assume that ∆y/∆x > 1/c, then the numerical domain of dependence of wi,j+1 does
not contain the characteristic line x− cy = a through (xi, yj+1) that defines u(xi, yj+1) as can
be seen in Figure 15.9. The finite difference scheme in (15.7.15) will generally not converge
to the solution of the advection equation. We must therefore assume that ∆y/∆x ≤ 1/c if we
hope to get a converging finite difference scheme. Under this condition, the characteristic
line x−cy = a through (xi, yj+1) is contained in the numerical domain of dependence of wi,j+1
for the finite difference scheme given in (15.7.16) as shown in Figure 15.10.

x
x2 x3 x4 x5

w2,3

x−1x−2

y

numerical domain
of dependence

x − cy = a

x0 x1

y1

y2

y3

Figure 15.10: The numerical domain of dependence for w2,3 associated to the finite
difference scheme given in (15.7.16) for ∆y/∆x ≤ 1/c.

In conclusion, given a difference scheme associated to an hyperbolic differential equation,
we may say that a necessary condition for this scheme to converge is that its numerical
domain of dependence contains the domain of dependence of the associated hyperbolic dif-
ferential equation. This is known as the Courant-Friedrichs-Lewy (CFL) condition.
This may be a very restrictive condition as we have seen in the few examples above. For
this reason, finite difference schemes are not generally recommended to numerically solve
hyperbolic differential equation. Instead, one may use the method of characteristics or finite

578 15. Finite Difference Methods

element methods to numerically solve hyperbolic differential equations.

The issue associated to the domain of dependence when finite difference schemes are used
to numerically solve hyperbolic differential equations is not present for elliptic or parabolic
differential equations. We were able to find stable, consistent and convergent finite differ-
ence schemes for the heat equation with forcing (a parabolic differential equation) and the
Dirichlet equation (an elliptic differential equation) that had no constraint on the step sizes.

Nevertheless, we will study the stability, consistency and convergence of the finite differ-
ence scheme given in Algorithm 15.2.11. This will provide a rigorous justification for the
restriction ∆t/∆x ≤ 1/c which is required to get a stable finite difference scheme.

15.7.2 Algorithm 15.2.11

We study the ℓ2 convergence according to Definition 15.3.32 of Algorithm 15.2.11 which is
used to approximate the solution of the wave equation.

As was mentioned in Remark 15.3.34, we will get ℓ2 consistency according to Defini-
tion 15.3.33 if we prove consistency according to Definition 15.3.6.

Proposition 15.7.2

The scheme in Algorithm 15.2.11 is consistent according to Definition 15.3.6.

Proof.
Using the notation introduced in Section 15.3, we have that

P (u(x, t), ∂u
∂x
(x, t), ∂u

∂y
(x, t), ∂

2u

∂x2
(x, t), . . .) = ∂

2u

∂t2
(x, t) − c2∂

2u

∂x2
(x, t)

and

P∆ (wi,j,wi,j+1,wi+1,j, . . .) =
wi,j+1 − 2wi,j +wi,j−1

(∆t)2
− c2

wi+1,j − 2wi,j +wi−1,j

(∆x)2

for the finite difference scheme in Algorithm 15.2.11.

The procedure to deduce the local truncation error for the finite difference equation in
Algorithm 15.2.11 is almost identical to the procedure to deduce the local truncation error
for the finite difference equation in Algorithm 15.2.6 given in the proof of Proposition 15.6.3.
We find

τi,j(∆x,∆t, q) = P (q(xi, tj),
∂q

∂x
(xi, tj),

∂q

∂y
(xi, tj),

∂2q

∂x2
(xi, tj), . . .)

− P∆ (q(xi, tj), q(xi, yj+1), q(xi+1, tj), . . .)

= − 1
4!
(∂

4q

∂t4
(xi, ζi,j) +

∂4q

∂t4
(xi, ηi,j)) (∆t)2 +

c2

4!
(∂

4q

∂x4
(µi,j, tj) +

∂4q

∂x4
(νi,j, tj)) (∆x)2

for ζi,j, ηi,j ∈]tj−1, tj+1[and µi,j, νi,j ∈]xi−1, xi+1[. If the partial derivatives of order up to four
are continuous on the compact set R = {(x, t) ∶ 0 ≤ x ≤ L and 0 ≤ t ≤ T}, then there exists H

15.7. Wave Equation 579

such that

max
(x,t)∈R

∣∂
4q

∂x4
(x, t)∣ ≤H and max

(x,t)∈R
∣∂

4q

∂t4
(x, t)∣ ≤H .

Hence

max{τi,j ∶ 0 < i < N and 0 < j <M} ≤ H
12
(∆t)2 + c

2H

12
(∆x)2 → 0

as min{N,M}→∞
(15.7.17)

since ∆x = L/N and ∆t = T /M converge to 0 as N and M converge to infinity.

Since B (u(x, y), . . .) = u(x, y), B∆(wi,j, . . .) = wi,j and wi,j = u(xi, tj) for (i, j) such that
(xi, tj) ∈ ∂R∆, we get from (15.7.17) that Definition 15.3.6 is satisfied.

Proposition 15.7.3

The finite difference scheme in Algorithm 15.2.11 is ℓ2-stable when

∆t

∆x
≤ 1

c
.

Proof.
Since the definition of stability that we have presented were for one-step finite difference
schemes, we have to use a little trick to prove ℓ2 stability for Algorithm 15.2.11.

To use Definition 15.3.35, we have to rewrite the finite difference schemes in the vj+1 =
Q̃αvj + B̃j, where

vj = (
wj−1
wj
) .

Namely,

(wj

wj+1
) = (0 Id

Id J
)(wj−1

wj
) + (0

Bj
)

for 0 ≤ j <M , where J and Bj are defined at the end of Section 15.2.3.

Since the matrix Q̃k ≡ (
0 Id
Id J

) is symmetric, we may use Proposition 15.3.36. We need

to find all the eigenvalues of Q̃α. From Proposition 15.4.1, we have that the eigenvalues of
J are

λk = −2 + 2α − 2α cos(
kπ

N
) = −2 + 4α sin2 (kπ

2N
) , 0 < k < N .

Since the eigenvectors of J associated to λk are obviously also eigenvectors of Id and 0,

we may use Proposition 15.4.2 to claim that the eigenvalues of (0 1
1 λi

) for 0 < k < N

are eigenvalues of Q̃α. Namely, the 2N − 2 distinct eigenvalues of Q̃α are the roots of the
characteristic polynomials

pk(λ) = λ2 − λkλ − 1 = λ2 − 2(1 − 2α sin2 (kπ
2N
))λ − 1

580 15. Finite Difference Methods

for 0 < k < N . Let

δk = 1 − 2α sin2 (kπ
2N
)

for 0 < k < N . We have that pk(λ) = λ2 − 2δkλ + 1 = 0 for

λ± = δk ±
√
δ2k − 1 .

We have δk < 1 because α > 0 and 0 < k < N . When δk < −1, we have Reλ− < −1 and
thus ∣λ−∣ > 1. Hence, we only need to consider −1 ≤ δk < 1. When −1 < δk < 1, we get

λ± = δk ± i
√
1 − δ2k ∈ C ∖ R and ∣λ−∣2 = ∣λ+∣2 = δ2k + (1 − δ2k) = 1. When δk = −1, we get

λ− = λ+ = −1. Thus ∣λ−∣ = ∣λ+∣ ≤ 1 only when −1 ≤ δk < 1.
We have shown that

−1 ≤ δk = 1 − 2α sin2 (kπ
2N
) < 1

implies ∣λ±∣ ≤ 1. Since α > 0, the second inequality is always true. From the first inequality,
we get

α sin2 (kπ
2N
) ≤ 1 .

This can be true for any k and N only if α ≤ 1; namely,

α = (c∆t
∆x
)
2

≤ 1 .

Since we have ℓ2 consistency and ℓ2 stability, we may conclude that the finite difference
scheme in Algorithm 15.2.11 is ℓ2-convergent if (and only if) ∆t/∆x ≤ 1/c. This condition
says that the numerical domain of dependence of the finite difference scheme must include
the domain of dependence of the wave equation as we have seen in Section 15.7.1. This is
called a Courant-Friedrichs-Lewy (CFL) condition .

Remark 15.7.4

1. We may also determine the L2 stability as defined in Section 15.3.4 of the finite differ-
ence scheme in Algorithm (15.2.11). To use the formulae in Remark 15.3.26, we first
have to use the substitute z = 2πx/L to obtain a partial differential equation defined
for 0 ≤ z ≤ 2π and 0 ≤ t ≤ T . With this substitution, the wave equation becomes

∂2u

∂t2
− (2πc

L
)
2 ∂2u

∂z2
= 0

The only difference with the original partial differential equation is that c is replaced
by 2πc/L.

We now have α = (2πc∆t
L∆z

)
2

in the finite difference scheme in Algorithm 15.2.11. We

also have ∆z = 2π/N and ∆t = T /M .

15.7. Wave Equation 581

We have (15.3.19) with a0 = 1, b−1 = b1 = α, b0 = 2(1 − α), c0 = −1 and all the other ar,
br and cr null. Hence

αk = 1 , βk = αe−k∆z i + 2(1 − α) + αek∆z i and γk = −1 .

We have to find the roots of the characteristics polynomials

pk(λ) = αkλ
2 − βkλ − γk = λ2 − (αe−k∆z i + 2(1 − α) + αek∆z i)λ + 1

= λ2 − (2 − 2α(1 + cos(k∆z)))λ + 1 = λ2 − (2 − 4α sin2 (k∆z
2
))λ + 1 (15.7.18)

for 0 ≤ k < N . Let

δk = 1 − 2α sin2 (k∆z
2
) .

We get pk(λ) = λ2 − 2δkλ + 1 as in the proof of Proposition 15.7.3. Proceeding as was
done in that proof, we get

α = (2πc∆t
L∆z

)
2

= (c∆t
∆x
)
2

< 1 .

We have a strict inequality because α = 1 is associated to a root of absolute value 1
but multiplicity 2 for pk.

2. We did not really need to use the substitution z = 2πx/L to reduce the problem
to the interval [0,2π] as we have done above. We could have done all the work in
Section 15.3.4 assuming periodic function of period L. The space L2([0,2π]) is replaced

by L2([0, L]) with the norm ∥f∥2 = (
1

L ∫
L

0
∣f(x)∣2 dx)

1/2
. The Fourier transform of f

is defined by

f̂(k) = 1

L ∫
L

0
f(x)e−(2πkx/L)i dx

for k ∈ Z. We seek a solution of (15.3.20) of the form

wj =∑
k∈Z

Ak,je
(2πkx/L)i

for some Ak,j ∈ R. We get (15.3.21) with

αk =
m

∑
r=−m

are
(2πkr∆x/L)i , βk =

m

∑
r=−m

bre
(2πkr∆x/L)i and γk =

m

∑
r=−m

cre
(2πkr∆x/L)i .

The values of αk, βk and γk above are the same values defined in (15.3.22) because
2πkr∆x

L
= 2πkr

N
= kr∆z, where z = 2πx/L is the substitution above.

3. We do not need to remember the formulae for αk, βk and γk to find the characteristic
polynomials αkλ2 − βkλ − γk. These characteristic polynomials are given by the coef-
ficients of e(2πkx/L)i after we substitute the expression of wj above in (15.3.20). So, it

582 15. Finite Difference Methods

suffices to substitute wn,j = λje(2πkxn/L)i in (15.3.19) to get, after some simplifications,
the characteristic polynomial associated to k.

For instance, for the finite difference scheme in Algorithm 15.2.11 which is considered
in the present section, if we substitute ws,j = λje(2πkxs/L)i in (15.2.11) 13, we get

0 = λj+1e(2πkxs/L)i − 2λje(2πkxs/L)i + λj−1e(2πkxs/L)i

− α (λje(2πk(xs+∆x)/L)i − 2λje(2πkxs/L)i + λje(2π(xs−∆x)/L)i) .

If we divide by λj−1e(2πkxs/L)i, we get

0 = λ2 − 2λ + 1 − α (e(2πk∆x/L)i − 2 + e−(2πk∆x/L)i)λ

= λ2 − 2(1 − 2α sin2 (πk∆x
L
))λ + 1 . (15.7.19)

This is pk(λ) = 0 with pk defined in (15.7.18) because the substitution z = 2πx/L yields
∆z = 2π∆x/L.

4. Finally, we may study the ℓ2 stability as presented in Section 15.3.2. More precisely,
we may use the content of Remark 15.3.22. The finite difference scheme in Algo-
rithm 15.2.11 is of the form (15.3.14) with a0 = 1, b−1 = b1 = −α, b0 = −2(1 − α), c0 = 1
and the other ar, br and cr are null.

Note that we assume that we are in the context of Item 1 with α = (2πc∆t
L∆z

)
2

because

the formulae in Remark 15.3.22 are for 2π periodic functions in their space variable.
The characteristic polynomial in (15.3.15) is therefore

(λ(z))2 − (αe−zi + 2(1 − α) + αezi)λ(z) + 1 = (λ(z))2 − 2(1 − 2α sin2(z))λ(z) + 1 .

Let γ(z) = 1 − 2α sin2(z). We find

λ±(z) = γ(z) ±
√
γ2(z) − 1

for z ∈ [0,2p]. To have stability, we need to have ∣λ±(z)∣ ≤ 1 for all z. This is possible
only if α ≤ 1. We again get

α = (2πc∆t
L∆z

)
2

= (c∆t
∆x
)
2

< 1 .
♠

15.8 Exercises

Question 15.1
Proof that the Crank-Nicolson scheme in Algorithm 15.2.2 is stable according to Defini-

tion 15.3.8 if we assume that
c2∆t

2(∆x)2
≤ 1. This condition is not required but the proof is

easier with it.
13Where the index i is replaced by s because i is presently used as the complex number such that i2 = −1.

15.8. Exercises 583

Question 15.2
Let E be a Hilbert space with the norm ∥⋅∥ defined by a scalar product ⟨⋅, ⋅⟩, and let P ∶ E → E
be a normal operator.
a) Prove that ∥P 2∥ = ∥PP ∗∥.
b) Use (a) to prove that ∥P 2∥ = ∥P ∥2.
Question 15.3
Prove that the finite difference scheme in Algorithm 15.2.1 is ℓ2-stable according to Defini-
tion 15.3.35.
Hint: Proposition 15.3.36.

584 15. Finite Difference Methods

Chapter 16

Solutions to Selected Exercises

Chapter 1 : Computer Arithmetic

Question 1.1
The exact value is 139/660.

Three-digit chopping arithmetic:

(1
3
− 3

11
) + 3

20
= (0.333 − 0.272) + 0.150 = 0.0610 + 0.150 = 0.211 .

The relative error is
∣0.211 − 139/660∣

139/660
≈ 0.00187.

Three-digit rounding arithmetic:

(1
3
− 3

11
) + 3

20
= (0.333 − 0.273) + 0.150 = 0.0600 + 0.150 = 0.210 .

The relative error is
∣0.210 − 139/660∣

139/660
≈ 0.00288.

Question 1.2
The exact answer for the sum is 1.549767731166541 . . .

If we sum for i = 1 to i = 10, we have

10

∑
i=1

1

i2
= ((((((((1 + 1

4
) + 1

9
) + 1

16
) + 1

25
) + 1

36
) + 1

49
) + 1

64
) + 1

81
) + 1

100

= ((((((((1 + 0.25) + 0.111) + 0.0625) + 0.04) + 0.0277) + 0.0204) + 0.0156)
+ 0.0123) + 0.01

= (((((((1.25 + 0.111) + 0.0625) + 0.04) + 0.0277) + 0.0204) + 0.0156) + 0.0123) + 0.01
= ((((((1.36 + 0.0625) + 0.04) + 0.0277) + 0.0204) + 0.0156) + 0.0123) + 0.01
= (((((1.42 + 0.04) + 0.0277) + 0.0204) + 0.0156) + 0.0123) + 0.01

585

586 16. Solutions to Selected Exercises

= ((((1.46 + 0.0277) + 0.0204) + 0.0156) + 0.0123) + 0.01
= (((1.48 + 0.0204) + 0.0156) + 0.0123) + 0.01
= ((1.50 + 0.0156) + 0.0123) + 0.01 = (1.51 + 0.0123) + 0.01 = 1.52 + 0.01 = 1.53 .

The relative error is about
∣1.53 − 1.549767731166541∣

1.549767731166541
≈ 0.012755 .

If we sum for i = 10 to i = 1, we have

10

∑
i=1

1

i2
= 1 + (1

4
+ (1

9
+ (1

16
+ (1

25
+ (1

36
+ (1

49
+ (1

64
+ (1

81
+ 1

100
))))))))

= 1 + (0.25 + (0.111 + (0.0625 + (0.04 + (0.0277 + (0.0204 + (0.0156
+ (0.0123 + 0.01))))))))

= 1 + (0.25 + (0.111 + (0.0625 + (0.04 + (0.0277 + (0.0204 + (0.0156 + 0.0223)))))))
= 1 + (0.25 + (0.111 + (0.0625 + (0.04 + (0.0277 + (0.0204 + 0.0379))))))
= 1 + (0.25 + (0.111 + (0.0625 + (0.04 + (0.0277 + 0.0583)))))
= 1 + (0.25 + (0.111 + (0.0625 + (0.04 + 0.0860))))
= 1 + (0.25 + (0.111 + (0.0625 + 0.126)))
= 1 + (0.25 + (0.111 + 0.188)) = 1 + (0.25 + 0.299) = 1 + 0.549 = 1.54 .

The relative error is about
∣1.54 − 1.549767731166541∣

1.549767731166541
≈ 0.0063027 .

It is more accurate to compute the sum by starting with the smallest terms to avoid as
much as possible the lost of significant digits associated to the addition of a (very) large
number with a (very) small number.

Question 1.3
The numbers should be summed from the smallest to the largest. We do not want to add a
large number to a small number. So we compute

((((1
5!
+ 1

4!
) + 1

3!
) + 1

2!
) + 1

1!
) + 1

0!
= ((((1

120
+ 1

24
) + 1

6
) + 1

2
) + 1) + 1

= ((((0.008333 + 0.04167) + 0.1667) + 0.5) + 1) + 1 = (((0.05000 + 0.1667) + 0.5) + 1) + 1
= ((0.2167 + 0.5) + 1) + 1 = (0.7167 + 1) + 1 = 1.717 + 1 = 2.717 .

The absolute error is ∣e − 2.717∣ ≈ 0.128183 × 10−2 and the relative error is
∣e − 2.717∣

e
≈

0.4715583× 10−3. Since 4 is the largest value of r such that the relative error is smaller than
5 × 10−r, there are 4 significant digits.

Question 1.4
Suppose that the mantissa of the normalized representation of the numbers has ten digits.
Then, the ten-digit representation of cos(0.25) is 0.9689124217. Using 10-digit rounding
arithmetic, we have that 1 − cos(0.25) ≈ 0.310875783 × 10−1. The mantissa of the result has
only nine digits, a lost of one digit.

This illustrates the importance of not subtracting two numbers that are almost equal.

587

Question 1.5
We have that 0.22345 ≤ x < 0.22355 and 0.321445 ≤ y < 0.321455. Hence,

0.695120623415408 ≈ 0.22345

0.321455
< x
y
< 0.22355

0.321445
≈ 0.695453343495777 .

Question 1.6
We have that

∣x − π∣
∣π∣

< 5 × 10−4⇒ ∣x − π∣ < 5π × 10−4⇒ −5π × 10−4 < x − π < 5π × 10−4 .

The interval is

3.140021857262998 ≈ π + −5π × 10−4 < x < π + 5π × 10−4 ≈ 3.143163449916588 .

Question 1.7
a) There are two possible formulae to compute the smallest root of the polynomial ax2+bx+c,

either x− =
−b −
√
b2 − 4ac
2a

or x− =
2c

−b +
√
b2 − 4ac

. For the polynomial given in the question,

since b < 0 and
√
b2 − 4ac ≈ b, the operation −b −

√
b2 − 4ac is not suggested because we will

subtract two numbers which are almost equal. We risk to lose a lot of significant digits.

Therefore, to avoid this problem, we should choose x− =
2c

−b +
√
b2 − 4ac

.

b) Using 4-digit rounding arithmetic, we have b2 = 55230, 4ac = 12, b2 − 4ac = 55220,√
b2 − 4ac = 235, −b +

√
b2 − 4ac = 470, 2c = 6 and finally

x̃− =
2c

−b +
√
b2 − 4ac

= 6

470
= 0.01277 .

c) Using x− = 0.012766651010 . . ., we get the absolute error ϵ = ∣x̃−−x−∣ = 0.334899×10−5 and
the relative error ϵr =

ϵ

∣x−∣
= 0.262323 × 10−3. The number of significant digits is 4 because it

is the largest value of r such that ϵr < 5 × 10−r.
Question 1.8
If x and y are very large, x2 + y2 can produce an overflow. To avoid overflow, we use one of
the following equivalent expressions for

√
x2 + y2.

√
x2 + y2 = x

√
1 + (y

x
)
2

or
√
x2 + y2 = y

¿
ÁÁÀ(x

y
)
2

+ 1 .

Hopefully, one of x/y or y/x will be small.

Question 1.9
There is a loss of significant digits because we subtract two almost equal numbers. We should
use the relation

ln(1 + x) − ln(x) = ln(1 + x
x
)

588 16. Solutions to Selected Exercises

when x is large.

Question 1.10
The problem with 1 − cos(x) for x near 0 is the subtraction of almost equal numbers. One
way to eliminate this subtraction of almost equal numbers is with the formula

1 − cos(x) = (1 − cos(x))(1 + cos(x)
1 + cos(x)

) = 1 − cos2(x)
1 + cos(x)

= sin2(x)
1 + cos(x)

.

Note that we have not introduce any division by a really small number because 1+cos(x) ≈ 2
for x near 0.

Question 1.11
The problem with

√
x4 + 4 − 2 for x near 0 is the subtraction of almost equal numbers. If

x is closed to 0, then x4 is closer to 0 and
√
x4 + 4 ≈

√
4 = 2. One way to eliminate this

subtraction of almost equal numbers is with the formula

√
x4 + 4 − 2 = (

√
x4 + 4 − 2)(

√
x4 + 4 + 2√
x4 + 4 + 2

) = x4√
x4 + 4 + 2

.

Note that
√
x4 + 4 + 2 ≈ 4 for x near 0 and so there is no risk of division by a really small

number.

Question 1.12

x̃ x absolute error relative error significant
∣x̃ − x∣ ∣x̃ − x∣/∣x∣ digits

18.66600092909 18.6666519729 . . . 0.65104387 . . . × 10−3 0.34877378 . . . × 10−4 5
0.333329 0.3333332888 . . . 0.42888888 . . . × 10−5 0.12866668 × 10−4 5
1.33382 1.33382044913 . . . 0.44913624 × 10−6 0.33672916 × 10−6 7

Question 1.13
We seek a solution of the form xn = λn. If we substitute this value of xn into (1.7.1), we get

λn = 2λn−1 + λn−2 .

If λ ≠ 0, we can divide by λn−2 on both sides of the equality to get λ2 = 2λ + 1; namely,
λ2 − 2λ − 1 = 0. The roots of this polynomial are λ± = 1 ±

√
2.

The general solution of (1.7.1) is

xn = α1 (1 +
√
2)n + α2 (1 −

√
2)n

Since 1+
√
2 > 1 > ∣1−

√
2∣, the term (1+

√
2)n will dominate as n increase. Thus, because

of rounding errors, the formula for the solution of (1.7.1) will always eventually produce a
sequence {xn}∞n=0 that will converge to ∞ in absolute value as n increase, even if the initials
conditions are x0 = c and x1 = c(1 −

√
2) for some constant c.

589

Chapter 2 : Iterative Methods for Nonlinear Equations

of One Variable

Question 2.1
We will roughly sketch the graph of f(x) = 4x2−ex. This is not easy because even the critical
points are hard to find. However, it is easier to determine the intervals of concavity of the
function. Since f ′′(x) = 8− ex, a potential point of inflection is x = ln(8). Since f ′′(x) > 0 for
x < ln(8) and f ′′(x) < 0 for x > ln(8), we have that ln(8) is a point of inflection, f is concave
up for x < ln(8) and concave down for x > ln(8). To sketch the graph of f below, we have
computed the sign of f at −1, 0, 1, 4 and 5.

y

−1 1
5

ln(8) 4
x

There is a unique root in each of the intervals [−1,0], [0,1] and [4,5]. There is no other
root.

Question 2.2
3
√
25 is the unique root of f(x) = x3 − 25.
Since f is a continuous function and f(2) = −17 < 0 < 2 = f(3), it follows from the

Intermediate Value Theorem that 3
√
25, the only root of f , is between 2 and 3.

According to Corollary 2.2.3, to get an approximation of 3
√
25 with an accuracy of 10−4,

we need to select the number of iterations n such that

3 − 2
2n
< 10−4⇒ 104 < 2n⇒ 4 ln(10) < n ln(2)⇒ 4 ln(10)

ln(2)
= 13.28771237 . . . < n .

Since n is an integer, we may take n = 14.

590 16. Solutions to Selected Exercises

We get the following results from the Bisection Method

n xn an bn sign of f(xn) sign of f(an−1)
0 2 3
1 2.5 2.5 3 − −
2 2.75 2.75 3 − −
3 2.875 2.875 3 − −
4 2.9375 2.875 2.9375 + −
5 2.90625 2.90625 2.9375 − −
6 2.921875 2.921875 2.9375 − −
7 2.9296875 2.921875 2.9296875 + −
8 2.9257812 2.921875 2.9257812 + −
9 2.9238281 2.9238281 2.9257812 − −
10 2.9248047 2.9238281 2.9248047 + −
11 2.9243164 2.9238281 2.9243164 + −
12 2.9240723 2.9238281 2.9240723 + −
13 2.9239502 2.9239502 2.9240723 − −
14 2.9240112 2.9240112 2.9240723 − −

After 14 iterations, we find 3
√
25 ≈ 2.9240112 .

Question 2.3
We have seen in Corollary 2.2.3 that

∣xn − r∣ < ∣bn − an∣ =
b0 − a0
2n

.

Hence, the relative error satisfies

∣xn − r∣
∣r∣

< (b0 − a0)
2n ∣r∣

(16.1)

If n satisfies (2.11.1), we have that

ln(2n) = n ln(2) ≥ ln(b0 − a0) − ln(ϵ) − ln(a0) = ln(
b0 − a0
ϵ a0

)⇒ 2n ≥ b0 − a0
ϵ a0

⇒ ϵ a0 ≥
b0 − a0
2n

.

Hence, from (16.1), we get
∣xn − r∣
∣r∣

< ϵ a0
∣r∣
≤ ϵ

for n satisfying (2.11.1) because r > a0 > 0 implies that a0/r < 1.
Question 2.4
Since xn+1 is the middle point of the interval [an, bn], where one of the endpoints is xn, we
get

∣xn+1 − xn∣ =
1

2
(bn − an) =

1

2
(b0 − a0

2n
) = b0 − a0

2n+1
,

where we have used the property that the length of the interval [an, bn] is (b0 − a0)/2n.
Question 2.5
As it is given, the bisection algorithm can never have a sequence a0 < a1 < a2 <

591

Let r be the root in [a0, b0] approximated by the bisection algorithm. We suppose that
a0 < a1 < a2 < . . . and prove by contradiction that this is not possible.

Since we have an infinite sequence of distinct values {an}∞n=0, none of an or bn for n ≥ 0
can be a root of f because of (2) and (4) in Algorithm 2.2.1. Moreover, since only an varies,
we must have bn = b0 and an < r for all n. But then bn − an ≥ b0 − r for all n. So {bn − an∥∞n=0
cannot converge to 0. This is our contradiction.

Question 2.8
We first find all points r > 0 such that

−r = r − f(r)
f ′(r)

= r − (1 + r2)arctan(r) ;

namely, such that

arctan(r) = 2r

1 + r2
.

In the figure below, we draw the curves y = arctan(x) (in black) and y = 2x/(1+x2) (in blue)
on the same coordinate system. Note that the two functions are odd. There is only one
intersection for x > 0 between these two curves. The x-coordinate of this point is the value
of interest.

−r r x

π/2

−π/2

y

For 0 < x0 < r, we have −r < x0 − f(x0)/f ′(x0) < 0 and the Newton’s method will converge to
the root 0 of arctan(x).

For x0 > r, we have x0 − f(x0)/f ′(x0) < −r and the Newton’s method will not converge to
the root 0 of arctan(x).

For x0 = r, we have x1 = x0−f(x0)/f ′(x0) = −r, x2 = x1−f(x1)/f ′(x1) = r = x0, and so on.

We may use Newton’s method to approximate r. Let

g(x) = arctan(x) − 2x

1 + x2
.

Then

g′(x) = 1

1 + x2
− 2

1 + x2
+ 4x2

(1 + x2)2
= −1 + 3x

2

(1 + x2)2
.

592 16. Solutions to Selected Exercises

With x0 = 1, the formula

xn+1 = xn −
g(xn)
g′(xn)

yields r ≈ 1.3917452002707 after 5 iterations with an accuracy of at least 10−12.

Question 2.9
We seek a function f such that

2xn −Cx2n = xn −
f(xn)
f ′(xn)

.

Thus,
f(x)
f ′(x)

= −x +Cx2 .

This is the separable differential equation

f ′(x)
f(x)

= 1

−x +Cx2
.

If we integrate both sides with respect to x, we get

ln ∣f(x)∣ = ∫
f ′(x)
f(x)

dx = ∫
1

−x +Cx2
dx = ∫

1

x(Cx − 1)
dx

= ∫ (−
1

x
+ C

Cx − 1
) dx = − ln ∣x∣ + ln ∣Cx − 1∣ +D = ln(∣Cx − 1∣

∣x∣
) +D .

Taking the exponential on both sides yields

∣f(x)∣ = eD ∣Cx − 1∣
∣x∣

⇒ f(x) = E Cx − 1
x

for E ≠ 0 in R.
Question 2.10
This is the formula for the Newton’s method applied to f(x) = tan(x) − 1. Since x0 = 0,
the limit of the sequence above is a root of f between −π/2 and π/2. The easiest way to
convince us that this is true is to use the graphical interpretation of the Newton’s method
as the intersection of the tangent line to the graph of f at (xn, f(xn)) with the x-axis to get
xn+1.

All tangents to the graph of f at (x, f(x)) for −π/2 < x < π/2 intersect the x-axis between
−π/2 and π/2 because:

1. f ′(x) = sec2(x) > 1 for −π/2 < x < π/2 with x ≠ 0, and f ′(0) = 1:

2. f ′′(x) = 2 sec2(x) tan(x) ≥ 0 for 0 ≤ x < π/2, and f ′′(x) ≤ 0 for −π/2 < x ≤ 0;

3. lim
x→−pi/2−

f(x) = −∞ and lim
x→pi/2+

f(x) =∞.

593

Using curve sketching as seen in calculus, we get the following graph.

y

−π/2 x1 π/2 x

−1

x2

y = f(x)

The solution of f(x) = 0 between −π/2 and π/2 is the value x between −π/2 and π/2 such
that tan(x) = 1; namely, x = π/4. The limit of the sequence above is therefore π/4.
Question 2.11
The formula for the Newton’s method is

xn+1 = xn −
tan(xn)
sec2(xn)

= xn − sin(xn) cos(xn)

for n = 0, 1, 2, . . . We get

n xn−1 xn ∣xn − xn−1∣
1 5.000000000000 5.272010555445 0.272010555445 /< 10−8
2 5.272010555445 5.721895774546 0.449885219101 /< 10−8
3 5.721895774546 6.172506324972 0.450610550427 /< 10−8
4 6.172506324972 6.282283652706 0.109777327733 /< 10−8
5 6.282283652706 6.283185306691 0.000901653985 /< 10−8
6 6.283185306691 6.283185307180 0.000000000489 < 10−8

Starting with x0 = 5, it took 6 iterations to get the approximation x6 = 6.283185307180 of
the root of f with the requested accuracy.

Question 2.12
The formula for the secant method is

xn+1 = xn −
exn − tan(xn)

((exn − tan(xn)) − (exn−1 − tan(xn−1)))/(xn − xn−1)

for n = 1, 2, 3, . . . We have

n xn xn+1 ∣xn+1 − xn∣
0 1.300000000000 1.350000000000 0.050000000000 /< 10−8
1 1.350000000000 1.305052269533 0.044947730467 /< 10−8
2 1.305052269533 1.306071050733 0.001018781201 /< 10−8
3 1.306071050733 1.306328498317 0.000257447584 /< 10−8
4 1.306328498317 1.306326938521 0.000001559796 /< 10−8
5 1.306326938521 1.306326940423 0.000000001902 < 10−8

594 16. Solutions to Selected Exercises

The secant algorithm must be started with x0 and x1 really close to the first positive root of
f , the root that we want to approximate, otherwise the secant algorithm will likely converge
to a totally different root of f . The first positive root of f is the first intersection of tan(x)
(in black) and ex (in blue) in the following figure.

Starting with x0 = 1.3 and x1 = 1.35, it took 5 iterations to get the approximation x6 =
1.306326940423 of the root of f with the requested accuracy.

To illustrate how unpredictable Newton’s method can be, if we start with x0 = 4 and
x1 = 5, it takes 13 iterations to get the approximation x14 = −3.096412304914 of the first
negative root of f instead of the first positive root.

Question 2.13
a) The Taylor polynomial of f of degree one about xn is p(x) = f(xn)+ f ′(xn)(x−xn). We

have that f(x) = p(x) + 1

2
f ′′(ξn)(x − xn)2 for some ξn between xn and x. If x = r, the root

of f in the interval [0,1], we get

0 = f(xn) + f ′(xn)(r − xn) +
1

2
f ′′(ξn)(r − xn)2

⇒ −f(xn) = f ′(xn)(r − xn) +
1

2
f ′′(ξn)(r − xn)2⇒ −

f(xn)
f ′(xn)

= r − xn +
f ′′(ξn)
2f ′(xn)

(r − xn)2

⇒ xn −
f(xn)
f ′(xn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=xn+1

= r + f ′′(ξn)
2f ′(xn)

(r − xn)2⇒ xn+1 − r
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=en+1

= f ′′(ξn)
2f ′(xn)

(r − xn)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=e2n

.

Thus,

en+1 =
f ′′(ξn)
2f ′(xn)

e2n (16.2)

for some ξn between xn and x.

b) You may assume that xn ≥ 0 for all n if x0 ≥ 0, because

xn+1 = xn −
f(xn)
f ′(xn)

= xn −
xn − e−xn

1 + exn
= (xn + 1)e

xn

1 + exn
> 0

595

for n = 1, 2, 3, . . . by induction. Moreover, we have f ′(x) = 1+e−x and f ′′(x) = −e−x. Hence,

∣f
′′(ξn)
f ′(xn)

∣ = e−ξn

1 + e−xn
≤ 1

for all non-negative numbers ξn and xn.

We use induction to prove (2.11.2). From (16.2) with n = 0, we get

∣e1∣ = ∣
f ′′(ξ0)
2f ′(x0)

∣ e20 ≤
e20
2
.

This is (2.11.2) for n = 1. Suppose that (2.11.2) is true for n = k. Then,

∣ek+1∣ = ∣
f ′′(ξk)
2f ′(kn)

∣ e2k ≤
e2k
2
≤ 1

2
(2(x0

2
)
2k

)
2

= 2(x0
2
)
2k+1

.

The first equality comes from (16.2) with n = k and the second inequality comes from the
hypothesis of induction. We get that (2.11.2) is true for n = k + 1. This complete the proof
by induction.

c) According to (b), we need to find n such that

∣en∣ ≤ 2(
1 − r
2
)
2n

< 10−5 .

We do not know r but we know that r is between 0 and 1, so ∣1−r∣ < 1. It is therefore enough
to find n such that 2 (1/2)2

n

< 10−5. Thus, n satisfies

22
n−1 > 105⇒ (2n − 1) ln(2) > 5 ln(10)⇒ n > 1

ln(2)
ln(5 ln(10)

ln(2)
+ 1) ≈ 4.1383 .

We choose n = 5.
Question 2.16
a) Let f(x) = g(x)−x. A fixed point of g is a root of f and vice-versa. Since f is continuous
and f(0) = 1 > 0 > −1/2 = f(1), it follows from the Mean Value Theorem that f(x) = 0 for
some x ∈]0,1[. Since f ′(x) = g′(x) − 1 = −2x/(1 + x2)2 − 1 < 0 for x ≥ 0, the function f is
strictly decreasing on [0,1]. Thus, f(x) = 0 for a unique value of x ∈ [0,1] and, therefore,
g(x) = x for a unique value of x ∈ [0,1].
b) We show that the hypotheses of the Fixed Point Theorem are satisfied; namely, we show
that g([0,1]) ⊂ [0,1] and ∣g(x) − g(y)∣ ≤K ∣x − y∣ for some K < 1 and all x, y ∈ [0,1].

Since g′(x) = −2x/(1 + x2)2 < 0 for x > 0, the function g is strictly decreasing on]0,∞[.
Hence, 1 = g(0) ≥ g(x) ≥ g(1) = 1/2 for all x ∈ [0,1]. Thus, g ∶ [0,1]→ [0,1/2] ⊂ [0,1]..

To prove that there exists a positive constant K < 1 such that ∣g(x) − g(y)∣ ≤K ∣x − y∣ for
x, y ∈ [0,1], we show that the maximum of G(x) = ∣g′(x)∣ = 2x/(1+x2)2 on [0,1] is less than
1 and use this maximum as our constant K as explained in Remark 2.4.4.

596 16. Solutions to Selected Exercises

We use the maximum principle to find the maximum of G on [0,1]. Namely, since G is
differentiable on [0,1], the maximum of G is either at the endpoints of the interval or at
one of the critical points of G in [0,1] if there is one. The critical points of G are given by
G′(x) = 2(1−3x2)/(1+x2)3 = 0. There is only one critical point in [0,1]. It is x = 1/

√
3. Since

G(0) = 0, G(1) = 1/2 and G(1/
√
3) = 3

√
3/8 < 1, we have that G(x) = ∣g′(x)∣ ≤K = 3

√
3/8 < 1

for all x ∈ [0,1].
c) Let p be the fixed point of g in [0,1]. Since p > 0 and g′(x) ≠ 0 for x > 0, we get that
g′(p) ≠ 0. Hence, we have only linear convergence according to Theorem 2.7.2.

Question 2.17
a) We show that g satisfies all the hypothesis of the Fixed Point Theorem on the interval
[1/3,1]. Hence, from the Fixed Point Theorem, we will have that the sequence {xn}∞n=0
generated by xn+1 = g(xn) for n ≥ 0 and x0 ∈ [1/3,1] converges to the unique fixed point p of
g in the interval [1/3,1].

1. Since g′(x) = −2−x ln(2) < 0 for all x, the function g is strictly decreasing on [1/3,1].
Thus,

1 > 2−1/3 = g(1/3) ≥ g(x) ≥ g(1) = 0.5

for all x ∈ [1/3,1]. Hence, g ∶ [1/3,1]→ [1/3,1].

2. Since ∣g′(x)∣ = 2−x ln(2) < 2−1/3 ln(2) for x ∈ [1/3,1]. We have that ∣g(x)−g(y)∣ ≤K ∣x−y∣
for all x, y ∈ [1/3,1] with K = 2−1/3 ln(2) < 1 according to Remark 2.4.4.

b) Since ∣xn − p∣ ≤
Kn

1 −K
∣x1 − x0∣, we need to find n such that

Kn

1 −K
∣x1 − x0∣ < 10−4 ;

namely,
1

− ln(K)
ln(10

4∣x1 − x0∣
1 −K

) < n .

If x0 = 0.5, we have x1 = 1/
√
2. Thus, n must satisfy

n > 1

− ln(2−1/3 ln(2))
ln(10

4∣1/2 − 1/
√
2∣

1 − 2−1/3 ln(2)
) ≈ 14.115 .

Hence, n = 15 iterations is enough to reach the accuracy requested.

c) Starting with x0 = 0.5, we compute xn+1 = g(xn) until ∣xn+1 − xn∣ < 10−4. The first time
that this happen is for n = 10. We get x11 ≈ 0.64120525 as an approximation of the fixed
point of g in the interval [1/3,1].
Question 2.18
a) For x ≠ 0, we have

g(x) = 12 − 20

x
= x ⇐⇒ x2 − 12x + 20 = (x − 10)(x − 2) = 0 ⇐⇒ x = 2 or x = 10 .

597

b) We show that g satisfies all the hypothesis of the Fixed Point Theorem on the interval
[9.5,11.5]. Hence, from the Fixed Point Theorem, we will have that the sequence {xn}∞n=0
generated by xn+1 = g(xn) for n ≥ 0 and x0 ∈ [9.5,11.5] converges to the unique fixed point
of g in the interval [9.5,11.5].

1. Since g′(x) = 20/x2 > 0 for all x ∈ [9.5,11.5], the function g is strictly increasing. Thus,

9.5 < 188

19
= g(9.5) ≤ g(x) ≤ g(11.5) = 236

23
< 10.5

for all x ∈ [9.5,10.5]. Hence, g ∶ [9.5,11.5]→ [9.5,11.5].

2. Since ∣g′(x)∣ = 20/x2 < 20/9.52 = 80/361 for x ∈ [9.5,11.5]. We have that ∣g(x) − g(y)∣ ≤
K ∣x − y∣ for all x, y ∈ [9.5,11.5] with K = 80/361 < 1 according to Remark 2.4.4.

c) Since ∣xn − p∣ ≤
Kn

1 −K
∣x1 − x0∣, we need to find n such that

Kn

1 −K
∣x1 − x0∣ < 10−7 ;

namely,
1

− ln(K)
ln(10

7∣x1 − x0∣
1 −K

) < n .

If x0 = 9.5, we have x1 = 188/19. Thus, n must satisfy

n > 1

− ln(80/361)
ln(10

7∣9.5 − 188/19∣
1 − 80/361

) ≈ 10.2459 .

Hence, n = 11 iterations is enough to reach the accuracy requested.

d) Since g′(x) = 20/x2 > 0 for x ∈ [9.5,11.5], we have that g′(p) ≠ 0 at the fixed point
p ∈ [9.5,11.5]. Thus, the method is of order one; the order of the first non-null derivative of
g at p.

e) We use the Steffensen’s algorithm given in Algorithm 2.8.1. Let x̂−1 = x0 = 9.5 and

x̂n+1 = x̂n −
(g(x̂n) − x̂n)2

g(g(x̂n)) − 2g(x̂n) + x̂n

for n = −1, 0, 1, . . . until ∣x̂n+1 − x̂n∣ < 10−7. We get ∣x̂n+1 − x̂n∣ < 10−7 for the first time with
n = 1. We have x̂2 = 10 to 16 significant digits.

The Steffensen’s Algorithm converge faster than the simple Fixed Point Method applied
to g because it is of order two.

Question 2.19
a) Since f is a continuous function and f(1) = e − 3 < 0 < f(2) = e2 − 5, it follows from the
Intermediate Value Theorem that f has at least one root in the interval [1,2]. To prove
that it is unique, we note that f ′(x) = ex − 2 > 0 for all x ∈ [1,2]. So the function is strictly
increasing and can therefore cross the x-axis only once.

598 16. Solutions to Selected Exercises

b) We have

f(x) = 0 ⇐⇒ ex − 2x − 1 = 0 ⇐⇒ ex = 2x + 1 ⇐⇒ x = ln(2x + 1) = g(x)

for x > −1/2.
c) We show that g satisfies all the hypothesis of the Fixed Point Theorem on the interval
[1,2]. Hence, from the Fixed Point Theorem, we will have that the sequence {xn}∞n=0 gener-
ated by xn+1 = g(xn) for n ≥ 0 and x0 ∈ [1,2] converges to the unique fixed point of g in the
interval [1,2].

1. Since g′(x) = 2/(1+ 2x) > 0 for all x ∈ [1,2], the function g is strictly increasing. Thus,

1 < ln(3) = g(1) ≤ g(x) ≤ g(2) = ln(5) < 2

for all x ∈ [1,2]. Hence, g ∶ [1,2]→ [1,2].

2. Since ∣g′(x)∣ = 2/(2x + 1) < 2/3 for x ∈ [1,2]. We have that ∣g(x) − g(y)∣ ≤ K ∣x − y∣ for
all x, y ∈ [1,2] with K = 2/3 < 1 according to Remark 2.4.4.

d) Since g′(x) ≥ g′(2) = 2/5 for x ∈ [1,2], we certainly have that g′(p) ≠ 0 at the fixed point
p. So the method is of order one; the order of the first non-null derivative of g at p.

Question 2.20
a) 3
√
25 is obviously the unique root of f(x) = x3 − 25 because

x3 − 25 = 0 ⇐⇒ x3 = 25 ⇐⇒ x = 3
√
25 .

b) If p > 0, we have

f(p) = p3 − 25 = 0 ⇐⇒ p3 = 25 ⇐⇒ p2 = 25

p
⇐⇒ p = 5

√
p
= g(p) .

Since 3
√
25 is the only (positive) root of f , it is the fixed point p > 0 of g.

c) The graph of g (in blue) between 1 and 4 is sketched in the figure below. We have also
included the line y = x (in red).

599

The fixed point of g is given by the point of intersection of the graph of g with the line y = x.
The fixed point p = 3

√
25 is closed to 3.

We consider the interval [2,4] that contains p. We show that g satisfies all the hypothesis
of the Fixed Point Theorem on the interval [2,4]. Hence, from the Fixed Point Theorem,
we will have that the sequence {xn}∞n=0 generated by xn+1 = g(xn) for n ≥ 0 and x0 ∈ [2,4]
converges to the unique fixed point p = 3

√
25 of g in the interval [2,4].

1. Since
√
x is strictly increasing and positive for x > 0, we have that g is strictly decreasing

for x > 0. Thus,
4 > 5/

√
2 = g(2) ≥ g(x) ≥ g(4) = 5/2 > 2

for x ∈ [2,4]. Hence, g ∶ [2,4]→ [2,4].

2. Since ∣g′(x)∣ = 5

2x3/2
≤ 5

25/2
for x ∈ [2,4]. We have that ∣g(x) − g(y)∣ ≤ K ∣x − y∣ for all

x, y ∈ [1,2] with K = 5

25/2
< 1 according to Remark 2.4.4.

d) Since ∣xn − p∣ ≤
Kn

1 −K
∣x1 − x0∣, we need to find n such that

Kn

1 −K
∣x1 − x0∣ < 10−5 ;

namely,
1

− ln(K)
ln(10

5∣x1 − x0∣
1 −K

) < n .

If x0 = 3, we have x1 = 5/
√
3 ≈ 2.8867513. Thus, n must satisfy

n > 1

− ln(5/25/2)
ln(10

5∣3 − 5/
√
3∣

1 − 5/25/2
) ≈ 105.6598 .

Hence, n = 106 iterations is enough to reach the accuracy requested.

e) Starting with x0 = 3, we compute xn = g(xn−1) until ∣xn−xn−1∣ < 10−5. The first time that
this happen is for n = 15. We get x15 ≈ 2.924015 as an approximation of the fixed point of g
in the interval [2,4].

As we can see, the value of n estimated in (d) is a very large overestimation of the number
of iterations needed to reach an accuracy of 10−5 if we start with x0 = 3. The formula used
in (d) to estimate n will generally give a large overestimation. However, we have to keep in
mind that the value n obtained in (d) is valid for all x0, not just for x0 = 3.
Question 2.22
a) The figure below shows the graph of tan(x) and g (red curve in the graph on the right).

600 16. Solutions to Selected Exercises

y
y = x

3π/2 x

3π/2

π

y

p = π + arctan(p)

x
p

y = x

π

p

arctan(p)

b) We have g′(x) = 1/(1 + x2). Hence g is strictly increasing on [π,3π/2] and ∣g′(x)∣ ≤
g′(π) = 1/(1 + π2) < 1 on [π,3π/2]. We can then say that:

1. g ∶ [π,3π/2]→ [π,3π/2] because

π < π + arctan(π) = g(π) ≤ g(x) ≤ g(3π/2) = π + arctan(3π/2) < 3π/2

for all x ∈ [π,3π/2] since g is increasing. We have used the fact that 0 < arctan(x) < π/2
for all x > 0.

2. With K = 1/(1 + π2), we have
∣g′(x)∣ ≤K < 1

for all x ∈ [π.3π/2]. Thus, ∣g(x) − g(y)∣ ≤ K ∣x − y∣ for all x, y ∈ [π,3π/2] according to
Remark 2.4.4.

c) From the Fixed Point Theorem, we have that the sequence {xi}∞i=0 defined by x0 ∈ [π,3π/2]
and xi+1 = g(xi) converges to p. Since

∣xn − p∣ ≤
Kn

1 −K
∣x1 − x0∣ =

1

π2(1 + π2)n−1
∣x1 − x0∣ ,

we need to find n such that

1

π2(1 + π2)n−1
∣x1 − x0∣ < 10−5 ;

namely,
ln (105∣x1 − x0∣/π2)

ln(1 + π2)
< n − 1 .

601

If x0 = 4, we have x1 = g(x0) = π + arctan(4). Thus, n must satisfy

n > ln (105∣π + arctan(4) − 4∣/π2)
ln(1 + π2)

+ 1 ≈ 4.54695 .

Hence, n = 5 iterations is enough to reach the accuracy requested.

Question 2.23
a) If p > 0 is the fixed point of g, then

p = p
2
+ a

2p
.

If we multiply both sides of the equality by 2 and subtract p from both sides, we get p = a/p.
Thus p2 = a or p =

√
a since we assume that a > 0.

b) Suppose that x > 0. Since (x −
√
a)2 > 0, we get x2 − 2

√
ax + a > 0. Thus x2 + a > 2

√
ax

and, after division by 2x on both side of the inequality, we have

g(x) = x
2
+ a

2x
>
√
a .

Therefore, xi = g(x0) ≥
√
a if x0 > 0. We may assume that x0 ≥

√
a.

Since

g′(x) = 1

2
− a

2x2
> 0

for x >
√
a, we have that g is strictly increasing on]

√
a,∞[.

We now show that g satisfies all the hypothesis of the Fixed Point Theorem on [
√
a,m]

for m >
√
a arbitrary.

1. We have g ∶ [
√
a,m] → [

√
a,m]. Since g is strictly increasing and m >

√
a, we have

that √
a = g(

√
a) ≤ g(x) ≤ g(m) = m

2
+ a

2m2
≤ m

2
+ m

2
=m

for all x ∈ [
√
a,m].

2. For all x ∈ [
√
a,m], we have that

∣g′(x)∣ = ∣1
2
− a

2x2
∣ = 1

2
− a

2x2
≤ 1

2

because x2 ≥ a. Hence, ∣f(x) − f(y) ≤ K ∣x − y∣ for all x, y ∈ [
√
a,m] with K = 1/2 < 1

according to Remark 2.4.4.

For any m >
√
a, we have from the Fixed Point Theorem that the function g has an

unique fixed point in [
√
a,m] and the sequence {xn}∞n=0 converge to this fixed point for any

x0 ∈ [
√
a,m]. Thus, since

√
a is a unique fixed point for x > 0, the sequence {xn}∞n=0 converges

to the fixed point
√
a whatever x0 ≥

√
a.

602 16. Solutions to Selected Exercises

Since x1 = g(x0) ≥
√
a for all x0 > 0, the sequence {xn}∞n=0 converges to the fixed point

√
a

whatever x0 > 0 because the sequences {xn}∞n=0 and {xn}∞n=1 have the same limit.

Question 2.24
a) The function f is continuous on [a, b] because it is differentiable on [a, b]. Moreover, f
has opposite signs at a and b because f(a)f(b) < 0. It follows from the Intermediate Value
Theorem that f must be null at a point in the interval [a, b].

Since f ′(x) > 0 for all x ∈ [a, b], we have that f is a strictly increasing function on [a, b].
Thus, f(a) < 0 < f(b) and f cannot intersect the x axis more than once.

b) Since f ′ is continuous on the closed interval [a, b], it reaches its absolute maximum and
absolute minimum at some points of the interval [a, b]. Let xM and xm in [a, b] be such that

M = f(xM) =max{f ′(x) ∶ a ≤ x ≤ b} and m = f(xm) =min{f ′(x) ∶ a ≤ x ≤ b} .

We have that 0 <m <M since f ′(x) > 0 for all x ∈ [a, b].
We claim that the function F (x) = x + λf(x) with λ = −1/M satisfies the Fixed Point

Theorem on [a, b].

1. Since

F ′(x) = 1 + λf ′(x) = 1 − f
′(x)
M

≥ 0

for all x ∈ [a, b], we have that F is never decreasing on [a, b]. Thus

a < a − f(a)/M = F (a) ≤ F (x) ≤ F (b) = b − f(b)/M < b

for all x ∈ [a, b]. Hence, F ∶ [a, b]→ [a, b]. Recall that f(a) < 0 < f(b).

2. Since

0 ≤ F ′(x) = 1 + λf ′(x) = 1 − f
′(x)
M

≤ 1 − m
M

for all x ∈ [a, b], we have that ∣F ′(x)∣ ≤ K = 1 −m/M < 1 for all x ∈ [a, b]. It follows
that ∣F (x) − F (y)∣ ≤K ∣x − y∣ for all x ∈ [a, b] with K < 1 according to Remark 2.4.4.

The hypotheses of the Fixed Point Theorem are satisfied by F on [a, b]. Obviously, if
F (p) = p, then p + λf(p) = p. Hence, f(p) = 0.
Question 2.25
We prove that g satisfies the hypothesis of the Fixed Point Theorem on [a, b].

1. Choose any x ∈ [a, b]. From the Mean Value Theorem, there exists ξ between x and m
(and so in [a, b]) such that g(x) − g(m) = g′(ξ)(x −m). Since ∣g′(ξ)∣ < 1, we have

∣g(x) −m∣ = ∣g(x) − g(m)∣ = ∣g′(ξ)(x −m)∣ = ∣g′(ξ)∣ ∣x −m∣ < ∣x −m∣

for all x ∈ [a, b]. From ∣x −m∣ ≤ (b − a)/2, we get ∣g(x) −m∣ ≤ (b − a)/2 for all x ∈ [a, b].
This proves that g(x) ∈ [a, b] for all x ∈ [a, b].

603

2. Since ∣g′∣ is a continuous function on the closed set [a, b], ∣g′∣ reaches its absolute
maximum at a point ν ∈ [a, b]. Hence K = ∣g′(ν)∣ < 1 will satisfies ∣g′(x)∣ ≤ K < 1 for
all x ∈ [a, b]. Therefore, ∣g(x)− g(y)∣ ≤K ∣x− y∣ for all x, y ∈ [a, b] with K < 1 according
to Remark 2.4.4.

Question 2.26
It is clear that if {xn}∞n=0 is a sequence defined by xn+1 = g(xn) for n ≥ 0 such that xN = p for
some N , then xn = p for all n ≥ N because g(p) = p. Thus, {xn}∞n=0 converges to p in a finite
number of iterations.

Are there other sequences {xn}∞n=0 that converge to p? To show that there are no other
sequence converging to p requires a little bit of work.

Choose K between 1 and ∣g′(p)∣. Since ∣g′∣ is continuous and ∣g′(p)∣ >K, there exists δ > 0
such that 1 <K ≤ ∣g′(x)∣ for all x ∈ [p − δ, p + δ].

Since g is a continuous function and ∣g′(x)∣ > 1 for x ∈ [p − δ, p + δ], then p is the unique
fixed point of g in [p − δ, p + δ]

Given any x ∈ [p − δ, p[∪]p, p + δ], it follows from the Mean Value Theorem that there
exists ξ between p and x, and so in [p − δ, p + δ], such that

∣g(x) − p∣ = ∣g(x) − g(p)∣ = ∣g′(ξ)(x − p)∣ = ∣g′(ξ)∣ ∣x − p∣ ≥K ∣x − p∣ > ∣x − p∣ .

Suppose that {xn}∞n=0 is a sequence defined by xn+1 = g(xn) for n ≥ 0 such that xn ≠ p for
all n. Suppose also that this sequence also converges to the fixed point p of g. By definition of
convergence, there exists N > 0 such that ∣xn−p∣ < δ for all n > N . However, xn ∈ [p− δ, p+ δ]
for all n > N implies that

∣xn+1 − p∣ = ∣g(xn) − p∣ > ∣xn − p∣

for all n > N as we have shown above. It follows by induction that ∣xn − p∣ ≥ ∣xN+1 − p∣ > 0
for n > N . The distance between xn and p does not go to zero. This is a contradiction that
{xn}∞n=0 is a sequence converging to the fixed point p.

Question 2.27
We already have one of the two hypotheses required by the Fixed Point Theorem; namely,
∣g′(x)∣ ≤ λ < 1 for all x ∈ [x0−ρ, x0+ρ]. It is left to show that g ∶ [x0−ρ, x0+ρ]→ [x0−ρ, x0+ρ].

Choose x ∈ [x0 − ρ, x0 + ρ]. Then,

∣g(x) − x0∣ = ∣g(x) − g(x0) + g(x0) − x0∣ ≤ ∣g(x) − g(x0)∣ + ∣g(x0) − x0∣
= ∣g′(µ)(x − x0)∣ + (1 − λ)ρ ,

where we have used the Mean Value Theorem to find µ between x and x0 such that g(x) −
g(x0) = g′(µ)(x − x0). We have also used the definition of ρ. Hence, since ∣g′(x)∣ ≤ λ < 1 for
all x ∈ [x0 − ρ, x0 + ρ], we have

∣g(x) − x0∣ ≤ λ∣x − x0∣ + (1 − λ)ρ ≤ λρ + (1 − λ)ρ = ρ

for all x ∈ [x0 − ρ, x0 + ρ]. Hence, g(x) ∈ [x0 − ρ, x0 + ρ] for all x ∈ [x0 − ρ, x0 + ρ].

604 16. Solutions to Selected Exercises

Question 2.28
If [a, b] = [0,1] and f(x) = 0.5x+ 1, then f ′(x) = 0.5 < 1 for all x ∈ [0,1] but there is no fixed
point of f in [a, b].

A contraction satisfies all hypothesis of the Fixed Point Theorem but one. The condition
f ∶ [a, b]→ [a, b] is not required for a contraction. The function F of the previous paragraph
satisfies f ∶ [0,1] → [1,1.5]. The interval [0,1] has been contracted but not mapped into
itself.

f(x) = 0.5x + 1 for x ∈ [1,3] does satisfy all the hypotheses of the Fixed Point Theorem
(verify this). The fixed point is 2 ∈ [1,3].
Question 2.29
⇐) From Taylor’s Theorem, Theorem 2.1.6, we have that f(x) = pm−1(x)+ rm−1(x), where

pm−1(x) =
m−1
∑
j=0

1

j!
f (j)(p) (x − p)j and rm−1(x) =

1

m!
f (m)(ξ) (x − p)m

for ξ(x) in the interval with endpoints x and p. Since, f (j)(p) = 0 for 0 ≤ j < m, we have

that pm−1(x) = 0 for all x. Thus f(x) = rm−1(x) = q(x) (x − p)m with q(x) = 1

m!
f (m)(ξ(x)).

Since ξ(x) is between x and p, we have that lim
x→p

ξ(x) = p. Therefore, since f (m) is

continuous, we have

lim
x→p

q(x) = 1

m!
f (m)(p) ≠ 0 .

Note that q is a continuous function on R ∖ {p} because q(x) = f(x)
(x − p)m

for x ≠ p, where f

and (x − p)m are continuous functions of x. The function q is also continuous at p because

lim
x→p

f(x)
(x − p)m

= 1

m!
f (m)(p) = q(p) according to l’Hospital Rule.

⇒) From f(x) = (x − p)mq(x), we have by induction that

f (k)(x) =
k

∑
j=0
(k
j
)Cj(x − p)m−jq(k−j)(x) (16.3)

for 0 ≤ k ≤m, where

Cj =
⎧⎪⎪⎨⎪⎪⎩

1 if j = 0
m(m − 1) . . . (m − j + 1) if j > 0

Hence, f (k)(p) = 0 for 0 ≤ k <m because each term in (16.3) has a factor (x − p). For k =m,
we get

f (m)(p) = (m
m
)Cmq(p) =m! q(p) ≠ 0 .

Question 2.30
According to Theorem 2.7.2, to get a convergence of order three, we need F (r) = r, F ′(r) =
F ′′(r) = 0 and F ′′′(r) ≠ 0.

605

Since f(r) = 0, we get F (r) = r − f(r)f ′(r) = r.
From F ′(r) = 0, we get

0 = 1 − (f ′(r))2 − f(r)f ′′(r) = 1 − (f ′(r))2

because f(r) = 0. Hence f ′(r) = ±1. From F ′′(r) = 0, we get

0 = −3f ′(r)f ′′(r) − f(r)f ′′′(r) = −3f ′(r)f ′′(r)

because f(r) = 0. Since f ′(r) ≠ 0, we get f ′′(r) = 0. From F ′′′(r) ≠ 0, we get

0 ≠ −3(f ′′(r))2 − 4f ′(r)f ′′′(r) − f(r)f (4)(r) = −4f ′(r)f ′′′(r)

because f(r) = f ′′(r) = 0. Since f ′(r) ≠ 0, we get f ′′′(r) ≠ 0.
The conditions on f are f(r) = f ′′(r) = 0, ∣f ′(r)∣ = 1 and f ′′′(r) ≠ 0.

Question 2.31
To get a convergence of order exactly three, we need F (r) = r, F ′(r) = F ′′(r) = 0 and
F ′′′(r) ≠ 0.

Since f(r) = 0, we get F (r) = r + f(r)g(r) = r.
From F ′(r) = 0, we get

0 = 1 + f ′(r)g(r) + f(r)g′(r) = 1 + f ′(r)g(r)

because f(r) = 0. Hence g(r) = − 1

f ′(r)
. From F ′′(r) = 0, we get

0 = f ′′(r)g(r) + 2f ′(r)g′(r) + f(r)g′′(r) = −f
′′(r)
f ′(r)

+ 2f ′(r)g′(r)

because f(r) = 0 and g(r) = − 1

f ′(r)
. Hence g′(r) = f ′′(r)

2(f ′(r))2
. From F ′′′(r) ≠ 0, we get

0 ≠ f ′′′(r)g(r) + 3f ′′(r)g′(r) + 3f ′(r)g′′(r) + f(r)g′′′(r)

= −f
′′′(x)
f ′(r)

+ 3(f ′′(r))2
2(f ′(r))2

+ 3f ′(r)g′′(r)

because f(r) = 0, g(r) = − 1

f ′(r)
and g′(r) = f ′′(r)

2(f ′(r))2
. Hence g′′(r) ≠ f ′′′(x)

3(f ′(r))2
− (f

′′(r))2
2(f ′(r))3

.

The conditions on g are g(r) = − 1

f ′(r)
, g′(r) = f ′′(r)

2(f ′(r))2
and g′′(r) ≠ f ′′′(x)

3(f ′(r))2
−

(f ′′(r))2
2(f ′(r))3

.

Question 2.32
We have to find for which sequence {xn} above the following statement is true.

lim
n→∞
∣xn+1∣
∣xn∣2

= λ ≠ 0 or ∞ .

606 16. Solutions to Selected Exercises

Note that all sequences converge to 0. Therefore, the error en is en = ∣xn − 0∣ = ∣xn∣ for all n.
We have:

a)

lim
n→∞

1/(n + 1)2
(1/n2)2

= lim
n→∞

n4

(n + 1)2
= lim

n→∞
n4

n2 + 2n + 1
= lim

n→∞
n2

1 + 2/n + 1/n2
=∞ .

b)

lim
n→∞

1/22(n+1)

(1/22n)2
= lim

n→∞
22
(n+1)

22(n+1)
= 1 .

c)

lim
n→∞

1/
√
n + 1

(1/
√
n)2
= lim

n→∞
n√
n + 1

=∞

because
n√
n + 1

≥ n√
2n
=
√
n√
2
→∞

as n→∞.
d)

lim
n→∞

1/(en+1)
(1/en)2

= lim
n→∞

e2n

en+1
= lim

n→∞
en−1 =∞ .

e) We have

lim
n→∞

1/(n + 1)n+1
(1/nn)2

= lim
n→∞

n2n

(n + 1)n+1
=∞

because
n2n

(n + 1)n+1
≥ n2n

(2n)n+1
= n

n−1

2n+1
= 1

22
(n
2
)
n−1
→∞

as n→∞.

Only the sequence in (b) converges quadratically.

Question 2.33
a) Let en = 10−k

n − 0. We have

∣en+1∣
∣en∣α

= 10−k
n+1

(10−kn)α
= 10−kn+1+αkn = 10(α−k)kn .

Hence,

lim
n→∞
∣en+1∣
∣en∣α

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if α = k
+∞ if α > k
0 if α < k

The order of convergence is α = k.
b) Let en = 10−n

k − 0. We have

∣en+1∣
∣en∣α

= 10−(n+1)
k

(10−nk)α
= 10−(n+1)k+αnk = 10(α−1)nk−knk−1− l.o.t. ,

607

where l.o.t. stands for the terms in nj with 0 ≤ j < n − 1. Hence,

lim
n→∞
∣en+1∣
∣en∣α

=
⎧⎪⎪⎨⎪⎪⎩

0 if α ≤ 1
∞ if α > 1

There is nothing in between. Recall that according to the binomial theorem,

(n + 1)k =
k

∑
i=0
(k
i
)ni = nk + k nk−1 + . . . + 1 , where (k

i
) = k!

(k − i)! i!
.

Question 2.35
All the results of the computations below will be displayed using 15-digit rounding accuracy
to compare with the exact solutions at the end.

Using Newton’s Method with Horner’s Algorithm, Code 2.9.3, with x0 = 1 and a tolerance
of 10−10, we find r0 = 0.333333333308985 as an approximation of a root of p.

The deflated polynomial q1 such that p(x) = (x − r0)q1(x) is
q1(x) = x2 − 5.641592653691014x + 7.853981634573692 .

Using Newton’s Method with Horner’s Algorithm, Code 2.9.3, with x0 = 1 and a tolerance
of 10−10, we find r1 = 2.500000000539526 as an approximation of a root of q1.

Using Newton’s Method with Horner’s Algorithm, Code 2.9.3, with x0 = r1 and a tolerance
of 10−10, we find c1 = 2.500000000539525 as an approximation of a root of p.

The deflated polynomial q2 such that q1(x) = (x − r1)q2(x) is
q2(x) = x − 3.141592653151490 .

we have that r2 = 3.141592653151490 as an approximation of a root of q2.

Finally, using Newton’s Method with Horner’s Algorithm, Code 2.9.3, with x0 = r2 and a
tolerance of 10−10, we find c2 = 3.141592653151491 as an approximation of a root of p.

If c0 = r0, the approximations of the roots of p are ci for i = 0, 1 and 2. If we use 10-digit
rounding accuracy for the ci, we have that all the 10 digits of c0 are correct, only the last
digit of c1 and c2 is wrong.

Question 2.36
All the results of the computations below will be displayed using 15-digit rounding accuracy
to compare with the exact solutions at the end.

Using Newton’s Method with Horner’s Algorithm, Code 2.9.3, with x0 = 1 and a tolerance
of 10−9, we find r0 = −3.548232897979703 as an approximation of a root of p.

The deflated polynomial q1 such that p(x) = (x − r0)q1(x) is
q1(x) = x3 − 5.548232897979703x2 + 7.686422494264843x − 11.273217161921718 .

Using Newton’s Method with Horner’s Algorithm, Code 2.9.3, with x0 = 1 and a tolerance
of 10−9, we find r1 = 4.381113440995944 as an approximation of a root of q1.

Using Newton’s Method with Horner’s Algorithm, Code 2.9.3, with x0 = r1 and a tolerance
of 10−9, we find c1 = 4.381113440995943 as an approximation of a root of p.

608 16. Solutions to Selected Exercises

The deflated polynomial q2 such that q1(x) = (x − r1)q2(x) is
q2(x) = x2 − 1.167119456983760x + 2.573139754025407 .

The polynomial q2 has two complex roots that can be found with the formula to find the
roots of a quadratic polynomial. They are r2 = 0.583559728491880 + 1.494188006011255 i
and r3 = 0.583559728491880 − 1.494188006011255 i. Using Newton’s Method with Horner’s
Algorithm, Code 2.9.3, with x0 = r2 and a tolerance of 10−9, we find c2 = 0.583559728491880+
1.494188006011255 i as an approximation of a root of p. Similarly, with x0 = r3, we find
c3 = 0.583559728491880−1.494188006011255 i as an approximation of a root of p as expected
since complex roots of a polynomial with real coefficients come in pairs of complex conjugate
values.

If c0 = r0, the approximations of the roots of p are ci for 0 ≤ i ≤ 3. If we use 9-digit
rounding accuracy for the ci, we have that all the 9 digits are right.

Chapter 3 : Iterative Methods for Systems of Linear

Equations

Question 3.1
We have four conditions to verify.

1. We obviously have that ∥x∥ =
n

∑
i=1

2−i∣xi∣ ≥ 0 for all x. The sum of non-negative terms is

non-negative.

2. If ∥x∥ = 0 then
n

∑
i=1

2−i∣xi∣ = 0. Since a sum of non-negative terms is null if and only if

each term is null, 2−i∣xi∣ = 0 for all i and therefore xi = 0 for all i.

3. For λ ∈ R, we have

∥λx∥ = ∥ (λx1 λx2 . . . λxn)
⊺ ∥ =

n

∑
i=1

2−i∣λxi∣ =
n

∑
i=1

2−i∣λ∣ ∣xi∣ = ∣λ∣
n

∑
i=1

2−i∣xi∣ = ∣λ∣ ∥x∥ .

4. For any x and y in Rn, we have

∥x + y∥ = ∥ (x1 + y1 x2 + y2 . . . xn + yn)
⊺ ∥ =

n

∑
i=1

2−i∣xi + yi∣

≤
n

∑
i=1

2−i (∣xi∣ + ∣yi∣) =
n

∑
i=1

2−i∣xi∣ +
n

∑
i=1

2−i∣yi∣ = ∥x∥ + ∥y∥ .

Question 3.2
Since x = x−y+y, we get ∥x∥ = ∥x−y+y∥ ≤ ∥x−y∥+∥y∥ from the triangle inequality. Thus,

∥x∥ − ∥y∥ ≤ ∥x − y∥ . (16.4)

609

Similarly, since y = y − x + x, we get ∥y∥ = ∥y − x + x∥ ≤ ∥y − x∥ + ∥x∥ from the triangle
inequality. Thus,

∥x∥ − ∥y∥ ≥ −∥y − x∥ . (16.5)

We get (3.6.1) from (16.4) and (16.5).

Question 3.3
Since {x ∶ ∥x∥ = 1} ⊂ {x ∶ x ≠ 0}, we have

∥A∥ =max
∥x∥=1
∥Ax∥ =max

∥x∥=1

∥Ax∥
∥x∥

≤max
x≠0

∥Ax∥
∥x∥

.

To prove the converse inequality, let x be any non-zero vector. Since y = ∥x∥−1 x is a
vector of norm 1, we have ∥Ay∥ ≤max

∥x∥=1
∥Ax∥ = ∥A∥. Thus

∥A∥ ≥ ∥Ay∥ = ∥A(1

∥x∥
x)∥ = ∥Ax∥

∥x∥

for all x ≠ 0. Hence,
∥A∥ ≥ sup

x≠0

∥Ax∥
∥x∥

.

Question 3.4

Let x be a vector of ℓ1-norm 1; namely, ∥x∥1 =
n

∑
i=1
∣xi∣ = 1. Then,

∥Ax∥1 =
n

∑
i=1
∣
n

∑
j=1
ai,jxj∣ ≤

n

∑
i=1
(

n

∑
j=1
∣ai,j ∣∣xj ∣) =

n

∑
j=1
(

n

∑
i=1
∣ai,j ∣) ∣xj ∣

≤
n

∑
j=1
(max
0≤j≤n

{
n

∑
i=0
∣ai,j ∣}) ∣xj ∣ = max

0≤j≤n
{

n

∑
i=0
∣ai,j ∣}

n

∑
j=1
∣xj ∣ = max

0≤j≤n
{

n

∑
i=0
∣ai,j ∣} .

Since this is true for any vector x such that ∥x∥1 = 1, we have

∥A∥1 = max
∥x∥1=1

∥Ax∥1 ≤ max
0≤j≤n

{
n

∑
i=0
∣ai,j ∣} .

To prove that

∥A∥1 ≥ max
0≤j≤n

{
n

∑
i=0
∣ai,j ∣} , (16.6)

we prove that there exists x ∈ Rn of ℓ1-norm 1 such that ∥Ax∥1 = max
0≤j≤n

{
n

∑
i=0
∣ai,j ∣}. Let k be

the index of the column of A such that

n

∑
i=0
∣ai,k∣ = max

0≤j≤n
{

n

∑
i=0
∣ai,j ∣}

610 16. Solutions to Selected Exercises

and let x be the vector defined by

xi =
⎧⎪⎪⎨⎪⎪⎩

1 if i = k
0 if i ≠ k

Then ∥x∥1 = 1 and

∥Ax∥1 =
n

∑
i=1
∣

n

∑
j=1
ai,jxj ∣ =

n

∑
i=1
∣ai,k∣ = max

0≤j≤n
{

n

∑
i=0
∣ai,j ∣}

Thus, (16.6) is true.

Question 3.5
We have that

∥A∥∞ =max{∣4∣ + ∣ − 3∣ + ∣2∣, ∣ − 1∣ + ∣0∣ + ∣5∣, ∣2∣ + ∣6∣ + ∣ − 2∣} = 10

Hence, it follows from Theorem 3.1.8 that ∥A∥∞, the maximum value of ∥Ax∥∞ for ∥x∥∞ = 1,
is 10. Moreover, in the proof of Theorem 3.1.8, we have seen that the maximum is reached
for the vector x defined by

xj =
⎧⎪⎪⎨⎪⎪⎩

1 if ak,j ≥ 0
−1 if ak,j < 0

where k = 3 because the third row of A gives the value of max
0≤i≤n
{

n

∑
j=0
∣ai,j ∣}. Hence, x =

(1 1 −1)⊺ gives ∥Ax∥∞ = ∥A∥∞.
Question 3.6

Let A = (1 −1
1 1

) and B = (1 0
−1 3

). Since AB = (2 −3
0 3

) and BA = (1 −1
2 4

), we get

∥AB∥∞ = 5 but ∥BA∥∞ = 6. So, it is not true that ∥AB∥∞ = ∥BA∥∞ for all matrices A and
B. There is nothing special about the ℓ∞-norm.

Question 3.7
Given x ≠ 0, let y = ∥x∥−1x. By definition of the norm of A, we have that ∥Ay∥ ≤ ∥A∥ since
∥y∥ = 1. Thus,

∥x∥−1 ∥Ax∥ = ∥A (∥x∥−1x)∥ = ∥Ay∥ ≤ ∥A∥⇒ ∥Ax∥ ≤ ∥A∥ ∥x∥ .

∥Ax∥ ≤ ∥A∥ ∥x∥ is obviously true for x = 0.
Suppose that there exists C < ∥A∥ such that ∥Ax∥ ≤ C ∥x∥ for all x ∈ Rn. Since ∥Ax∥ ≤ C

for all x ∈ Rn such that ∥x∥ = 1, we get that max
∥x∥=1
∥Ax∥ ≤ C < ∥A∥. This is a contradiction of

the definition of ∥A∥.
Question 3.8
a) We first interchange the second and third row of the system of linear equations. This
will give us a linear equation Ax = b, where A is strictly diagonally dominant. We have

3x1 − x2 + x3 = 1

611

x1 + 3x2 − x3 = 1
2x1 + x2 − 4x3 = 0

This is equivalent to Ax = b, where A =
⎛
⎜
⎝

3 −1 1
1 3 −1
2 1 −4

⎞
⎟
⎠

and b =
⎛
⎜
⎝

1
1
0

⎞
⎟
⎠
. Since A is strictly

diagonally dominant, the Gauss-Seigel Iterative Method will converge.

b) The Gauss-Seidel Iterative Method is given by the iterative system

xn+1,1 =
xn,2 − xn,3 + 1

3

xn+1,2 =
−xn+1,1 + xn,3 + 1

3

xn+1,3 =
2xn,1 + xn,2

4

for n = 0, 1, 2, . . . If we start with x0 = 0, the first time that we have ∥xn−xn−1∥ < 10−5 is for

n = 10. We get x10 ≈
⎛
⎜
⎝

0.35000
0.30000
0.25000

⎞
⎟
⎠
, where the values have been rounded to 5 significant digits.

This is in fact the exact answer.

Question 3.9
Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
√
2/2 1 0 0 0

0 1 0
√
2/2 0 0 0 0

0 0 1 0 0 0 −1/2 0

0 0 0 −
√
2/2 0 −1 1/2 0

0 0 0 0 −1 0 0 1
0 0 0 0 0 1 0 0

0 0 0 −
√
2/2 0 0

√
3/2 0

0 0 0 0 0 0 −
√
3/2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
0

10000
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

F1

F2

F3

f1
f2
f3
f4
f5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Note that we have reordered the equations to get non-null elements on the diagonal. However,
it was impossible to get a diagonally dominant matrix. Nevertheless, if we consider the form
xn+1 = Txn + c for each of the respective iterative methods, we can use Theorem 3.2.8 to
show that these three methods converge.

1. For the Jacobi iterative method, T =D−1(L +U) and the eigenvalues of T are 0 (with
multiplicity 6) and ±0.75983568565 . . . Hence, the spectral radius of T is rJ = ρ(T) =
0.7598356856 . . . < 1.

2. For the Gauss-Seidel iterative method, T = (D − L)−1U and the eigenvalues of T are
0 (with multiplicity 7) and 0.5773502691 . . . Hence, the spectral radius of T is rGS =
ρ(T) = 0.5773502691 . . . < 1.

612 16. Solutions to Selected Exercises

3. For the relaxation iterative method with ω = 1.2, T = (D − ωL)−1((1 − ω)D + ωU) and
the eignevalues of T are −0.2 (with multiplicity 6), 0.2964580434 . . . and 0.134926344 . . .
The spectral radius of T is rR = ρ(T) = 0.2964580434 . . . < 1.

Since rR < rGS < rJ , we expect that the relaxation method will be the method that converges
the fastest to the equilibrium, followed by the Gauss-Seidel iterative method. The slowest
method should be the Jacobi Iterative Method.

We start all three iterations with the vector x0 = (1 1 1 1 1 1 1 1)⊺.
a) The solution (rounded to seven significant digits) found with the Jacobi Iterative Method
is

F ≈ (10000 −13660.25 13660.25 19318.52 −23660.25 0 27320.51 −23660.25)⊺

after 64 iterations.

b) The solution (rounded to seven significant digits) found with the Gauss-Seidel Iterative
Method is

F ≈ (10000 −13660.25 13660.25 19318.52 −23660.25 0 27320.51 −23660.25)⊺

after 33 iterations.

c) For the relaxation iterative method, we use ω = 1.2 which is between 0 and 2 as required.
The solution (rounded to seven significant digits) found with the relaxation iterative method
is

F ≈ (10000 −13660.25 13660.25 19318.52 −23660.25 0 27320.50 −23660.25)⊺

after 17 iterations.

Question 3.10
a) Since A is strictly diagonally dominant, it follows from Theorem 3.2.12 that both iterative
methods converge.

For (b), (c) and (d), we use x0 = (1 1 1 1)⊺.
b) The iterative system associated to the Jacobi iterative method is

xn+1,1 =
1

4
(5 − xn,2 + xn,3 − xn,4)

xn+1,2 =
1

5
(2 − xn,1 − xn,3 + xn,4)

xn+1,3 =
1

6
(−14 − 2xn,1 + xn,2 − 2xn,4)

xn+1,4 =
1

5
(25 + xn,1 − xn,2 + 2xn,3)

After 25 iterations, the Jacobi Iterative Method yields the following approximation of the
solution of Ax = b with an accuracy of 10−5.

x ≈ (−0.755414 1.796178 −2.892990 3.332482)⊺ .

613

c) The iterative system associated to the Gauss-Seidel iterative method is

xn+1,1 =
1

4
(5 − xn,2 + xn,3 − xn,4)

xn+1,2 =
1

5
(2 − xn+1,1 − xn,3 + xn,4)

xn+1,3 =
1

6
(−14 − 2xn+1,1 + xn+1,2 − 2xn,4)

xn+1,4 =
1

5
(25 + xn+1,1 − xn+1,2 + 2xn+1,3)

After 10 iterations, the Gauss-Seidel iterative method yields the following approximation of
the solution of Ax = b with an accuracy of 10−5.

x ≈ (−0.755414 1.796178 −2.892994 3.332484) .

d) The iterative system associated to the relaxation method is

xn+1,1 = xn,1 +
ω

4
(5 − 4xn,1 − xn,2 + xn,3 − xn,4)

xn+1,2 = xn,2 +
ω

5
(2 − xn+1,1 − 5xn,2 − xn,3 + xn,4)

xn+1,3 = xn,3 +
ω

6
(−14 − 2xn+1,1 + xn+1,2 − 6xn,3 − 2xn,4)

xn+1,4 = xn,1 +
ω

5
(25 + xn+1,1 − xn+1,2 + 2xn+1,3 − 5xn,4)

To prove that this iterative method converge for 0 < ω < 2, we use the form xn+1 = Txn+c,
where T = (D − ωL)−1((1 − ω)D + ωU) and c = ω(D − ωL)−1b with

U =
⎛
⎜⎜⎜
⎝

0 −1 1 −1
0 0 −1 1
0 0 0 −2
0 0 0 0

⎞
⎟⎟⎟
⎠

, L =
⎛
⎜⎜⎜
⎝

0 0 0 0
−1 0 0 0
−2 1 0 0
1 −1 2 0

⎞
⎟⎟⎟
⎠

and D =
⎛
⎜⎜⎜
⎝

4 0 0 0
0 5 0 0
0 0 6 0
0 0 0 5

⎞
⎟⎟⎟
⎠
.

If ω = 9.6, we have

T =
⎛
⎜⎜⎜
⎝

0.04 −0.24 0.24 −0.24
−0.00768 0.08608 −0.23808 0.23808
−0.0140288 0.0905728 −0.0748928 −0.2051072
0.0037675008 −0.0278274048 0.0630325248 −0.1305525248

⎞
⎟⎟⎟
⎠
.

The eigenvalues of T (rounded to five significant digits) are −0.022692±0.16947 i, −0.031173
and −0.0028092. Since they are all smaller than 1 in absolute value, it follows from Theo-
rem 3.2.8 that the relaxation iterative method with ω = 9.6 converges because ρ(T) < 1. The
general case for 0 < ω < 2 is left to the reader interested in very long algebraic computations.

The value of ω for which the convergence of the Relaxation Method seems to be the fastest
is ω between 0.96 and 0.97 approximately. With ω = 9.6, only 9 iterations are necessary to
get the following approximation of the solution of Ax = b with an accuracy of 10−5.

x ≈ (−0.755412 1.796177 −2.892995 3.332484) .

614 16. Solutions to Selected Exercises

Question 3.11
Suppose that p is a solution of x = Tx − c. Since ρ(T) ≥ 1, there is at least one eigenvalue,
say λ, such that ∣λ∣ ≥ 1. Let u be an eigenvector associated to λ, and let x0 = u + p. We
prove by induction that

xk − p = λku (16.7)

for k ≥ 0. It is obvious that (16.7) is true for k = 0. Let’s suppose that (16.7) is true for k,
then

xk+1 − p = (Txk + c) − (Tp + c) = T (xk − p) = T (λku) = λkTu = λk+1u .

Thus (16.7) is true for k replaced by k + 1.
However, {λku}∞k=0 does not converge to 0. If ∣λ∣ > 1, we have that ∥λku∥ = ∣λ∣k∥u∥ →∞

as k →∞. If ∣λ∣ = 1, we have that ∥λku∥ = ∥u∥ > 0 for all k. Again, ∥λku∥ /→ 0 as k →∞. If
follows from (16.7) that {xk}∞k=0 does not converge to p for x0 = u + p. That such a vector
x0 exists was predicted by Theorem 3.2.8.

It is interesting to note that if there is no p such that p = Tp − c, then {xk}∞k=0 defined
by xk+1 = Txk + c does not converge at all for all choices of x0. If {xk}∞k=0 was to converge to
a vector q, then we would get

q = lim
k→∞

xk+1 = lim
k→∞
(Txk + c) = T (lim

k→∞
xk) + c = Tq + c

by continuity. This would be a contradiction of our assumption that there is no p such that
p = Tp − c. Thus, {xk}∞k=0 doesn’t converge for all x0.

Question 3.12
a) Jacobi Iterative Method is of the form xk+1 = Txk + c, where c = D−1b and T = D−1(L +
U) = D−1U is a strictly upper-triangular matrix (only 0 on the diagonal). Since the only
eigenvalues of T is 0, the spectral radius of T is ρ(T) = 0 < 1. Hence, the iterative method
converges according to Theorem 3.2.8.

b) For this particular choice of A, we have D = Id3, L = 0 and U =
⎛
⎜
⎝

0 −3 −5
0 0 −5
0 0 0

⎞
⎟
⎠
. Thus

T = U . With x0 = (1 0 0)⊺, we get

x1 =
⎛
⎜
⎝

0 −3 −5
0 0 −5
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

1
1
1

⎞
⎟
⎠
=
⎛
⎜
⎝

1
1
1

⎞
⎟
⎠
, x2 =

⎛
⎜
⎝

0 −3 −5
0 0 −5
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

1
1
1

⎞
⎟
⎠
+
⎛
⎜
⎝

1
1
1

⎞
⎟
⎠
=
⎛
⎜
⎝

−7
−4
1

⎞
⎟
⎠
,

x3 =
⎛
⎜
⎝

0 −3 −5
0 0 −5
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

−7
−4
1

⎞
⎟
⎠
+
⎛
⎜
⎝

1
1
1

⎞
⎟
⎠
=
⎛
⎜
⎝

8
−4
1

⎞
⎟
⎠
, x4 =

⎛
⎜
⎝

0 −3 −5
0 0 −5
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

8
−4
1

⎞
⎟
⎠
+
⎛
⎜
⎝

1
1
1

⎞
⎟
⎠
=
⎛
⎜
⎝

8
−4
1

⎞
⎟
⎠
.

The solution is (8 −4 1)⊺.
c) We have seen, in the context of the proof of Theorem 3.2.8, that

xk = T kx0 +
k−1
∑
i=0
T ic

615

for k > 0. However, it is easy to show that any n×n strictly upper-triangular matrix satisfies
T n = 0. Thus

xk =
n−1
∑
i=0
T ic

for k ≥ n. Thus, the Jacobi iterative method converges in n iterations to its limit.

Question 3.13
Since A is upper-triangular, the Gauss-Seidel iterative method is of the form xk+1 = Txk + c,
where c = (D − L)−1b = D−1b and T = (D − L)−1U = D−1U is a strictly upper-triangular
matrix (only 0 on the diagonal). Since the only eigenvalues of T is 0, the spectral radius
of T is ρ(T) = 0 < 1. Hence, the Gauss-Seidel iterative method converges according to
Theorem 3.2.8.

We have seen, in the context of the proof of Theorem 3.2.8, that

xk = T kx0 +
k−1
∑
i=0
T ic

for k > 0. However, it is easy to show that any n×n strictly upper-triangular matrix satisfies
T n = 0. Thus

xk =
n−1
∑
i=0
T ic

for k ≥ n. Thus, the Gauss-Seidel iterative method converges in n iterations to its limit.

Question 3.14
a) The relaxation method to approximate the solution p of Ax = b is of the form xk+1 =
Txk + c, where T = (D − ωL)−1 ((1 − ω)D + ωU) and c = ω(D − ωL)−1b. Since

T = (D − ωL)−1 ((1 − ω)D + ωU) = (1 0
−2ω 3

)
−1

(1 − ω 0
0 3(1 − ω))

= (1 0
2ω/3 1/3) (

1 − ω 0
0 3(1 − ω)) = (

1 − ω 0
2ω(1 − ω)/3 1 − ω)

1 − ω is an eigenvalue of T of algebraic multiplicity two.

It follows from Theorem 3.2.8 that the sequence {xk}∞k=0 generated by the relaxation
method will converge for any x0 to the fixed point p of F (x) = Tx + c (and so the solution
of Ax = b) if and only if ρ(T), the spectral radius of T , is smaller than 1. Therefore, the
relaxation method will converge to the fixed point p if and only if ω ∈]0,2[.
b) The optimal value of ω is the value for which ρ(T) is the smallest. This happen for ω = 1
when we get ρ(T) = 0. The relaxation method is then the Gauss-Seidel Iterative Method.

c) It is shown in the answer to Question 3.11 that the sequence {xk}∞k=0 does not converge
for all x0 if there is no solution to x = Tx+c. Moreover, if there is a solution p to x = Tx+c,
then the sequence {xk}∞k=0 does not converge to p if x0 = p+u for u an eigenvector associated
to the eigenvalue 1 − ω.

616 16. Solutions to Selected Exercises

Question 3.15
a) The gradient of g is

∇ g(x) = (A +A⊺)x − 2b .

Since A is symmetric,
∇ g(xk) = 2Axk − 2b = −2uk

by definition of uk for this version of the steepest descent method.

b) Since uk = b −Axk and xk+1 = x + tkuk, we get

tk =
⟨uk,b −Axk⟩
⟨uk,Auk⟩

= ⟨uk,uk⟩
⟨uk,Auk⟩

and

⟨uk+1,uk⟩ = ⟨b −Axk+1,uk⟩ = ⟨b −Axk − tkAuk,uk⟩ = ⟨uk,uk⟩ − tk ⟨Auk,uk⟩ = 0 .

c) The following figure contains some level curves of g and illustrates this version of the
steepest descent method.

p
tkuk

tk+1uk+1
xk

xk+1

xk+2

Question 3.17
Since A is strictly positive definite, We have that

⟨r,e⟩ = ⟨b −Ax,A−1b − x⟩ = ⟨A(A−1b − x),A−1b − x⟩ > 0

as long as A−1b − x ≠ 0; namely, as long as, b −Ax ≠ 0.

Chapter 4 : Algebraic Methods for Systems of Linear

Equations

Question 4.4
From Id = AA−1, we get 1 = ∥ Id ∥ = ∥AA−1∥ ≤ ∥A∥ ∥A−1∥ =K(A).
Question 4.5
To system of equations Ax = bp gives the equations

x1 + 2x2 = 3.00001
1.00001x1 + 2x2 = 3.00003

617

If we subtract 1.00001 times the first equation from the second equation, we get −0.00002x2 =
−0.00001. Hence x2 = 0.5. If we substitute this value of x2 in the first equation, we get

x1 = 2.00001.. The solution of the perturbed system is xp = (2.00001 0.5)⊺.
The relative error is

∥xs − xp∥∞
∥xs∥∞

= 1.00001 .

This is very large (an error of about 100%).

Since

A−1 = (−10
5 105

50,000.5 −50,000) .

We find that the condition number is K(A) = ∥A∥∞ ∥A−1∥∞ = 3.00001×2×105 = 6.00002×105.
The matrix A is ill-conditioned.

Question 4.6
The norm ∥A∥∞ is given by the sum in absolute value of all the elements of the last row of
A. Thus ∥A∥∞ = n.

The inverse of A is given by the matrix B defined by

bi,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if j > i
1 if j = i
2i−j−1 if j < i

because AB = Idn yields b1,j = δ1,j for 1 ≤ j ≤ n, and −
k−1
∑
i=1
bi,j + bk,j = δk,j for 1 ≤ j ≤ n and

2 ≤ k ≤ n; namely, bk,j = δk,j +
k−1
∑
i=1
bi,j for 1 ≤ j ≤ n and 2 ≤ k ≤ n. In plain English, the first

row of B is the first row of the identity matrix Idn and the kth row of B is the sum of the
kth row of Idn with the previous k − 1 rows of B for 2 ≤ k ≤ n.

Again, the norm ∥B∥∞ is given by the sum in absolute value of all the elements of the
last row of B. Thus

∥B∥∞ = 1 +
n−2
∑
i=0

2i = 1 + 1 − 2n−1
1 − 2

= 2n−1 .

The sum in the previous expression is given by the formula
k

∑
i=1
ri = 1 − rk+1

1 − r
with r = 2 and

k = n − 2.
Hence, K(A) = n2n−1. For large matrices A (i.e. n large), the matrix is not well condi-

tioned.

Question 4.7

We use the relation ∥q − p∥1 ≤K(A)
∥b −Aq∥1
∥A∥1

to get ∥q − p∥1
∥A∥1

∥b −Aq∥1
≤K(A).

618 16. Solutions to Selected Exercises

Since ∥A∥1 =
3

∑
i=1
∣ai,3∣ = 4.21, ∥q − p∥1 = ∥ (0.03 0.02 0.07)⊺ ∥1 = 0.12 and ∥b − Aq∥1 =

∥ (0.0007 0.002 0.35)⊺ ∥1 = 0.3527, we get K(A) ≥ 0.12 × 4.21/0.3527 ≈ 1.43237879. This is
an indication that the system may be well conditioned. It does not prove that the system is
well conditioned because the inequality is in the wrong direction.

The real condition number is about 169.3678. So, the matrix is ill conditioned.

Chapter 5 : Iterative Methods for Systems of Nonlinear

Equations

Question 5.2
a) We have

f(x) = 0 ⇐⇒ x31 + 12x1 − x2 − 3 = 0 and 2x1 + x32 − 12x2 + 2 = 0
⇐⇒ 12x1 = x2 − x31 + 3 and 12x2 = 2x1 + x32 + 2

⇐⇒ x1 =
x2 − x31 + 3

12
and x2 =

2x1 + x32 + 2
12

⇐⇒ x = g(x) .

b) In the figure below, the level curve f1(x) = 0 is in blue and the level curve f2(x) = 0 is
in red.

It follows from the figure above that there are at least three solutions of f(x) = 0 corre-
sponding to the points of intersection of the two level curves. We will focus on the solution
in the set S given in (c).

c) We very the two hypotheses of the Fixed Point Theorem.

1. Since 0 < 1/6 = g1(1,0) ≤ g1(x, y) ≤ g1(0,1) = 1/3 < 1 and 0 < 1/6 = g2(0,0) ≤ g2(x, y) ≤
g2(1,1) = 5/12 < 1, we have that g(S) ⊂ S.

2. We have that

Jg(x) = (
−x21/4 1/12
1/6 x22/4

) .

619

Let
K = ∥Jg(x∥∞ = max

0≤x1,x2≤1
{∣ − x2/4∣ + 1/12,1/6 + ∣y2/4∣} = 5/12 .

We get from Remark 5.1.2 that ∥g(x)− g(y)∥∞ ≤K∥x−y∥∞ for all x and y in S with
K < 1.

d) If we start with x0 = 0 and compute xn+1 = g(xn) for n ≥ 0, we find that ∥xn−xn−1∥∞ < 10−5
for the first time when n = 6. We get x6 ≈ (0.266078 0.211797)⊺, where we have rounded
the values to 6 significant digits.

e) We use the formula

∥xn − p∥ ≤
Kn

1 −K
∥x1 − x0∥ < 10−5

to determine the value of n. If x0 = 0, we get x1 = (1/4 1/6)⊺. Hence, with K = 5/12, we
have

Kn

1 −K
∥x1 − x0∥∞ < 10−5⇒

(5/12)n
7/12

(1
4
) < 10−5⇒ (5/12)n < 10−5 (7

3
)

⇒ n > −5 ln(10) + ln(7/3)
ln(5/12)

≈ 12.18276 .

So, n = 13 will be sufficient.

Question 5.3
We rewrite f(x) = 0 as g(x) = x with

g(x) = ((x2 + 5)/4
(1 +√x1)1/3 − 1

) .

Let S = {x ∶ 1 ≤ x1 ≤ 2 and 1/4 ≤ x2 ≤ 3/4}. We have that g ∶ R2 → R2 satisfies the two
hypotheses of the Fixed Point Theorem, Theorem 5.1.1.

1. Since (x2 + 5)/4 ≤ ((3/4) + 5)/4 = 23/16 < 2, (x2 + 5)/4 ≥ ((1/4) + 5)/4 = 21/16 > 1,

(1+
√
x1)1/3−1 ≤ (1+

√
2)1/3−1 = 0.3415 . . . < 3/4 and (1+

√
x1)1/3−1 ≥ (1+

√
1)1/3−1 =

0.2599 . . . > 1/4, we have g(S) ⊂ S.

2. Instead of proving directly that there exists 0 <K < 1 such that ∥g(x)−g(y)∥∞ ≤K∥x−
y∥∞ for all x and y in S, we show that the Jacobian Jg of g satisfies max

x∈S
∥Jg(x)∥∞ < 1

and use Remark 5.1.2. Since

Jg(x) =
⎛
⎜⎜⎜
⎝

∂g1
∂x1
(x) ∂g1

∂x2
(x)

∂g2
∂x1
(x) ∂g2

∂x2
(x)

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0
1

4
1

6
√
x1 (1 +

√
x1)2/3

0

⎞
⎟⎟⎟
⎠
,

we get

max
x∈S
∥Jg(x)∥∞ =max{1

4
,

1

6 (22/3)
} = 1

4
< 1 .

Hence ∥g(x) − g(y)∥∞ ≤K∥x − y∥∞ for all x and y in S with K =max
x∈S
∥Jg(x)∥∞ < 1.

620 16. Solutions to Selected Exercises

Starting with x0 = (1.5 0.5)⊺, we compute xk+1 = g(xk) until ∥xk+1 − xk∥∞ < 10−5. It

takes 7 iterations to get the first approximation x7 ≈ (1.32266994 0.29067777)⊺ of the fixed
point in S that satisfies the required accuracy.

Question 5.6
To use Newton’s Method, we first need to compute the Jacobian of f .

Jf(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂f1
∂x1
(x) ∂f1

∂x2
(x) ∂f1

∂x3
(x)

∂f2
∂x1
(x) ∂f2

∂x2
(x) ∂f2

∂x3
(x)

∂f3
∂x1
(x) ∂f3

∂x2
(x) ∂f3

∂x3
(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜
⎝

3x21 + 2x1x2 − x3 x21 −x1
ex1 ex2 −1
−2x3 2x2 −2x1

⎞
⎟
⎠
.

Starting with x0 = (1 1 1)⊺, we compute

xk+1 = xk − (Jf(xk))−1 f(xk)

until ∥xk+1 − xk∥ < 10−6. It takes 12 iterations to get the first approximation

x12 ≈ (−1.95629521 −0.131795995 1.017901033)⊺ of a solution of f(x) = 0 that satisfies
the required accuracy.

Chapter 6 : Polynomial Interpolation

Question 6.1
Let

q(x) =
n

∑
j=0
ℓj(x)

for all x. We first show that q(x) = 1 for all x. The polynomial q(x)− 1 is of degree at most
n and has n + 1 distinct roots at x0, x1, . . . , xn because

ℓj(xi) =
⎧⎪⎪⎨⎪⎪⎩

1 if i = j
0 if i ≠ j

Since polynomial of degree n cannot have more than n roots, q(x) − 1 = 0 for all x.

Hence

n

∑
j=0
(f(x) − p(xj)) ℓj(x) = f(x)

n

∑
j=0
ℓj(x) −

n

∑
j=0
p(xj) ℓj(x) = f(x) − p(x)

because p(x) =
n

∑
j=0
p(xj) ℓj(x).

Question 6.2
Our theory of interpolation does not apply here because p(ξ) is not fixed. We have to find

621

the coefficients of the polynomial p(x) = a+bx+cx2 such that p(0) = a = α, p(1) = a+b+c = β
and p′(ξ) = b+ 2c ξ = γ. The first equation gives the value for a which is substituted into the
other equations to give b + c = β − α and b + 2c ξ = γ. If we subtract the first equation from
the second equation, we get the system b + c = β − α and (2ξ − 1) c = γ − β + α.

If ξ ≠ 1/2, then this system has a unique solution

c = γ − β + α
2ξ − 1

, b = (β − α) − γ − β + α
2ξ − 1

= −γ + 2ξ β − 2ξ α
2ξ − 1

and a = α .

If ξ = 1/2 and γ = β −α, then c is free, b = β −α− c and a = α. There is an infinite number
of solutions, and thus an infinite number of interpolating polynomial of degree at most 2.
Note that p′(1/2) = b + c = β − α = γ. Several interpolating polynomial are drawn in the
following figure.

y

11/2 x

p0(x) = α + γ x

Line of slope γ = β − αα

β

Line of slope γ = β − α

pc(x) = α + (β − α − c)x + cx2
for c > 0

pc(x) = α + (β − α − c)x + cx2
for c < 0

If ξ = 1/2 and γ ≠ β − α, there is no solution and thus no interpolating polynomial of degree
at most 2.

Question 6.3
The polynomial r is of degree at most n because p and q are polynomial of degree at most
n − 1. Moreover, r(x0) = p(x0) = f(x0), r(xn) = q(xn) = f(xn) and

r(xj) =
xj − xn
x0 − xn

p(xj) +
xj − x0
xn − x0

q(xj) =
xj − xn
x0 − xn

f(xj) +
xj − x0
xn − x0

f(xj)

= (
xj − xn
x0 − xn

+
xj − x0
xn − x0

) f(xj) = f(xj)

for 0 < j < n. Hence, r is the interpolating polynomial of degree at most n at x0, x1, . . . , xn
since this polynomial is unique.

Question 6.4
The Lagrange’s form of the polynomial p is

p(x) =
n

∑
i=0
f(xi)

n

∏
j=0
i≠j

(
x − xj
xi − xj

) .

622 16. Solutions to Selected Exercises

The coefficient of xn in f(xi)
n

∏
j=0
i≠j

(
x − xj
xi − xj

) is f(xi)
n

∏
j=0
i≠j

(1

xi − xj
) = f(xi)ℓi. The sum of these

coefficients gives the coefficient of xn in p.

If f is a polynomial of degree less than n, the interpolating polynomial p of f of degree at
most n at x0, x1, . . . , xn is f itself by uniqueness. The coefficient of xn in p = f is therefore

0. Since the coefficient of xn is
n

∑
i=0
f(xi)ℓi, we have that

n

∑
i=0
f(xi)ℓi = 0.

Question 6.5
a) For k ∈ {0,1,2, . . . , n},

n

∏
j=0
i≠j

(xk − xj) = (xk − x0)(xk − x1) . . . (xk − xk−1)
´¹¹¹¸¹¹¹¶

k positive factors

(xk − xk+1) . . . (xk − xn)
´¹¹¹¸¹¹¹¶

n−k negative factors

.

Hence sgn(ℓk) = (−1)n−k.
b) To prove (6.4.2), we consider f(x) = xn. Since the interpolating polynomial p of f(x) = xn
of degree at most n at the points x0, x1, . . . , xn is f itself by uniqueness, the coefficient of

xn in f(x) = p(x) = xn is f[x0, x1, . . . , xn] =
n

∑
j=0
xni ℓj = 1 according to (6.4.1).

To prove (6.4.3), we consider f(x) = 1 for all x. The interpolating polynomial p of f of
degree at most n at the points x0, x1, . . . , xn is p(x) = f(x) = 1 for all x by uniqueness.
Hence, the coefficient of xn in f(x) = p(x) = 1 is

f[x0, x1, . . . , xn] =
n

∑
j=0
ℓj =
⎧⎪⎪⎨⎪⎪⎩

1 if n = 0
0 if n > 0

according to (6.4.1).

Question 6.6

The proof is by induction. (6.4.4) is true when m = 0 because
1

0!

0

∑
j=0
(−1)0−j(0

j
)f(j) = f(0)

and f[0] = f(0).
We assume that (6.4.4) is true for m = k and show that it is then true for m = k + 1.
Let g(n) = f(n+1) for all n. We claim that f[n,n+1, . . . , n+r] = g[n−1, n, . . . , n+r−1] for

all n and r ≥ 0. The proof of this claim is by induction on r. For r = 0, we have f[n] = f(n)
and g[n − 1] = g(n − 1) = f(n) for all n. Thus f[n] = g[n − 1] for all n. Suppose that
f[n,n + 1, . . . , n + r] = g[n − 1, n, . . . , n + r − 1] is true for all n and some r ≥ 0. Then

f[n,n + 1, . . . , n + r + 1] = f[n + 1, n + 2, . . . , n + r + 1] − f[n,n + 1, . . . , n + r]
(n + r + 1) − n

= g[n,n + 1, . . . , n + r] − g[n − 1, n, . . . , n + r − 1]
(n + r) − (n − 1)

= g[n − 1, n, . . . , n + r]

623

for all n, where the hypothesis of induction has been used for the second equality. Hence,
f[n,n + 1, . . . , n + r] = g[n − 1, n, . . . , n + r − 1] is true for all n and r replaced by r + 1.

We now go back to our main proof by induction. We have

f[0,1,2, . . . , k + 1] = f[1,2, . . . , k + 1] − f[0,1, . . . , k]
k + 1

= g[0,1, . . . , k] − f[0,1, . . . , k]
k + 1

= 1

k + 1
(1
k!

k

∑
j=0
(−1)k−j(k

j
)g(j) − 1

k!

k

∑
j=0
(−1)k−j(k

j
)f(j))

= 1

k + 1
(1
k!

k

∑
j=0
(−1)k−j(k

j
)f(j + 1) − 1

k!

k

∑
j=0
(−1)k−j(k

j
)f(j))

The third equality is a consequence of the hypothesis of induction; namely, (6.4.4) with m = k
for both f and g.

If we replace j by j − 1 in the first sum, we get

f[0,1,2, . . . , k + 1] = 1

k + 1
(1
k!

k+1
∑
j=1
(−1)k−j+1(k

j − 1
)f(j) − 1

k!

k

∑
j=0
(−1)k−j(k

j
)f(j))

= 1

(k + 1)!

k+1
∑
j=0
(−1)k−j+1 ((k

j − 1
) + (k

j
)) f(j)

where we have made used of the fact that (k
−1
) = 0 and (k

k + 1
) = 0. Using the hint, we get

f[0,1,2, . . . , k + 1] = 1

(k + 1)!

k+1
∑
j=0
(−1)k−j+1(k + 1

j
)f(j)

which is (6.4.4) with m = k + 1. This prove that (6.4.4) is true for all m by induction.

Question 6.7
The table of divided differences is

xi f[⋅] f[⋅, ⋅] f[⋅, ⋅, ⋅]
1 1 −0.951625820 0.438432783
1.1 0.904837418 −0.820095985 0.383714117
1.3 0.740818221 −0.704981750 0.324799000
1.4 0.670320046 −0.607542050 0.275321725
1.6 0.548811636 −0.497413360
1.8 0.449328964

f[⋅, ⋅, ⋅, ⋅] f[⋅, ⋅, ⋅, ⋅, ⋅] f[⋅, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅]
−0.136796667 0.0316107222 −0.00580682540
−0.1178302333 0.0269652619
−0.0989545500

The interpolating polynomial is

p(x) ≈ 1 − 0.951625820 (x − 1) + 0.438432783 (x − 1)(x − 1.1)

624 16. Solutions to Selected Exercises

− 0.136796667 (x − 1)(x − 1.1)(x − 1.3)
+ 0.0316107222 (x − 1)(x − 1.1)(x − 1.3)(x − 1.4)
− 0.00580682540 (x − 1)(x − 1.1)(x − 1.3)(x − 1.4)(x − 1.6) ,

where we have rounded the coefficients to 9 digits. The nested form of this polynomial is

p(x) ≈ 1 + (x − 1)(− 0.951625820 + (x − 1.1)(0.438432783 + (x − 1.3)(− 0.136796667
+ (x − 1.4)(0.0316107222 − 0.00580682540 (x − 1.6))))) .

Hence,

f(1.35) ≈ p(1.35) ≈ 1 + 0.35(− 0.951625820 + 0.25(0.438432783 + 0.05(− 0.136796667
− 0.05(0.0316107222 − 0.00580682540 × (−0.25))))) ≈ 0.704688114 .

Question 6.8
a) We have f(x) = ex/2, f ′(x) = ex/2/2 and f ′′(x) = ex/2/4. The table of divided differences
is

x f[⋅] f[⋅, ⋅] f[⋅, ⋅, ⋅] f[⋅, ⋅, ⋅, ⋅]
0 1 (e − 1)/2 1/4 (e − 2)/16
2 e e/2 e/8
2 e e/2
2 e

The interpolating polynomial is

p(x) = 1 + (e − 1
2
)x + 1

4
x(x − 2) + (e − 2

16
)x(x − 2)2

= 1 + x(e − 1
2
+ (x − 2) (1

4
+ (e − 2

16
) (x − 2)))

≈ 1 + x (0.8591409142 + (x − 2) (0.25 + 0.04489261428 (x − 2))) .

b)
f(1) ≈ p(1) = 1 + (0.8591409142 − (0.25 − 0.04489261428)) ≈ 1.65403352848 .

c) It follows from Theorems 6.2.5 and 6.2.7 that, for each x ∈ [0,2], there exists ξ = ξ(x) ∈
[0,2] such that

∣f(x) − p(x)∣ = ∣ 1
4!
f (4)(ξ)x(x − 2)3∣ .

Moreover

∣f (4)(x)∣ = ∣e
x/2

24
∣ ≤ e

24

for all x ∈ [0,2]. Hence,

∣f(x) − p(x)∣ ≤ e

24 4!
∣x(x − 2)3∣ ≤ e

4!
≈ 0.113261743 .

We have use the upper bound 24 for ∣x(x − 2)3∣. A better (i.e. smaller) bound could be
found by maximizing g(x) = ∣x(x − 2)3∣ = x(2 − x)3 on the interval [0,2]. Since g′(x) =

625

(2 − x)2(2 − 4x) = 0, the critical points of g on [0,2] are x = 1/2 and x = 2. It follows from
the Extremum Theorem, Theorem 2.1.4, that the maximum of g on [0,2] is the maximum
of g(0) = 0, g(2) = 0 and g(1/2) = 33/24. Hence,

∣f(x) − p(x)∣ ≤ e

24 4!
∣x(x − 2)3∣ ≤ 33 e

28 4!
≈ 0.01194557444 .

It is a better upper bound than the previous one. However, we do not usually maximize
the polynomial part of the truncation error as we have just done because the roots of its
derivative may be too difficult to find if the degree of this polynomial is high.

Question 6.9
a) The table of divided differences is

xi f[⋅] f[⋅, ⋅] f[⋅, ⋅, ⋅] f[⋅, ⋅, ⋅, ⋅] f[⋅, ⋅, ⋅, ⋅, ⋅]
0 e 1 − e e − 2 5/2 − e (e + e−1 − 3)/2
1 1 −1 1/2 e−1 − 1/2
1 1 −1 e−1

1 1 e−1 − 1
2 e−1

The interpolating polynomial is

p(x) = e + (1 − e)x + (e − 2)x(x − 1) + (5
2
− e)x(x − 1)2 + (e + e

−1 − 3
2

)x(x − 1)3

= e + x((1 − e) + (x − 1)((e − 2) + (x − 1)((5
2
− e) + (e + 1/e − 3

2
) (x − 1)))) .

b)

f(1.1) ≈ e + 1.1((1 − e) + 0.1((e − 2) + 0.1((5
2
− e) + 0.1(e + 1/e − 3

2
)))) ≈ 0.9048291 .

c) It follows from Theorems 6.2.5 and 6.2.7 that, for each x ∈ [0,2], there exists ξ = ξ(x) ∈
[0,2] such that

∣f(x) − p(x)∣ = ∣f
(5)(ξ)
5!

x(x − 1)3(x − 2)∣ .

Hence
∣f(x) − p(x)∣ ≤ e

5!
∣x(x − 1)3(x − 2)∣ ≤ e

30

for 0 ≤ x ≤ 2. We have use the conservative upper bound ∣x(x − 1)3(x − 2)∣ ≤ 4 for 0 ≤ x ≤ 2
provided by ∣x∣ ≤ 2, ∣(x − 1)3∣ ≤ 1 and ∣x − 2∣ ≤ 2 for 0 ≤ x ≤ 2.
Question 6.10

626 16. Solutions to Selected Exercises

The table of divided differences is

xi f[⋅] f[⋅, ⋅] f[⋅, ⋅, ⋅]
1 1.7165256995 −1.4444065708 0.14399171305
1 1.7165256995 −1.4444065708 0.36837390975
1 1.7165256995 −1.1497074430 0.44217113417
1.8 0.79675974510 −0.53066785517 0.34592323664
2.4 0.47835903200 −0.32311391318
2.4 0.47835903200

f[⋅, ⋅, ⋅, ⋅] f[⋅, ⋅, ⋅, ⋅, ⋅] f[⋅, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅]
0.28047774588 −0.16268960195 0.054237061909
0.052712303155 −0.086757715275
−0.06874849823

The interpolating polynomial is

p(x) ≈ 1.7165256995 − 1.4444065708 (x − 1) + 0.14399171305 (x − 1)2

+ 0.28047774588 (x − 1)3 − 0.16268960195 (x − 1)3(x − 1.8)
+ 0.054237061909 (x − 1)3(x − 1.8)(x − 2.4) ,

where we have rounded the coefficients to 11 digits. The nested form of this polynomial is

p(x) ≈ 1.7165256995 + (x − 1)(− 1.4444065708 + (x − 1)(14399171305
+ (x − 1)(0.28047774588 + (x − 1.8)(− 0.16268960195 + 0.054237061909 (x − 2.4))))) .

Hence,

f(1.75) ≈ p(1.75) ≈ 1.7165256995 + 0.75(− 1.4444065708 + 0.75(0.14399171305
+ 0.75(0.28047774588 − 0.05(− 0.16268960195 + 0.054237061909 (−0.65)))))
≈ 0.83671803379 .

The absolute error is

∣f(1.75) − p(1.75)∣ ≈ ∣0.83673651441075 − 0.83671803379∣ ≈ 0.0000184806 .

The relative error is

∣f(1.75) − p(1.75)∣
∣f(1.75)∣

≈ ∣0.83673651441075 − 0.8367180338∣
0.83673651441075

≈ 0.0000220865 .

Since k = 5 is the largest positive integer such that 0.0000220865 < 5 × 10−k, there are 5
significant digits.

Question 6.12
If the divided differences of order three are always egal to 1, then the divided differences of
order fourth and higher are 0. Thus p is a polynomial of degree 3.

627

A table of divided differences of p at 0, 1, 2 and 3 (any other value greater than 2 would
have been fine) will have the following table.

xi p[xi] p[xi, xj] p[xi, xj , xk] p[xi, xj , xk, xl]
0 2 −1 2 1
1 1 3 c1
2 4 c2
3 c3

where c1, c2, and c3 are constants. Since p is a polynomial of degree 3, we have

p(x) = 2 − x + 2x(x − 1) + x(x − 1)(x − 2) = 2 − x − x2 + x3 .

Question 6.13

a) We have f(x) = cos(π
2
− x), f ′(x) = sin(π

2
− x) and f ′′(x) = − cos(π

2
− x).

The table of divided differences is

xi f[⋅] f[⋅, ⋅] f[⋅, ⋅, ⋅] f[⋅, ⋅, ⋅, ⋅] f[⋅, ⋅, ⋅, ⋅, ⋅]
0 0 0.90031632 −0.24600202 −0.13693866 0.02886361

0.78539816 0.70710678 0.70710678 −0.35355339 −0.09159981
0.78539816 0.70710678 0.70710678 −0.42549571
0.78539816 0.70710678 0.37292323
1.57079633 1.00000000

To save some space, we have only printed the numbers to 8 decimal places in the table
above. However, computations were done with full Matlab accuracy.

The interpolating polynomial is

p(x) ≈ 0.900316316157x − 0.2460020203444x(x − π/4)
− 0.136938657691x(x − π/4)2 + 0.0288636058864x(x − π/4)3 ,

where we have rounded the coefficients to 12 digits.

b) The nested form of this polynomial is

p(x) ≈ (0.900316316157 + (− 0.2460020203444+

(− 0.136938657691 + 0.0288636058864 (x − π
4
))(x − π

4
))(x − π

4
))x .

Hence,

f(π/8) ≈ p(1.75) ≈ (0.900316316157 + (− 0.2460020203444+

(− 0.136938657691 + 0.0288636058864 (−π
8
))(−π

8
))(−π

8
))(π

8
)

628 16. Solutions to Selected Exercises

≈ 0.382510687216 .

c) It follows from Theorems 6.2.5 and 6.2.7 that, for each x ∈ [0, π/2], there exists ξ = ξ(x) ∈
[0, π/2] such that

∣f(x) − p(x)∣ = ∣ 1
5!
f (5)(ξ)x(x − π

4
)
3

(x − π
2
)∣ .

However

∣f (5)(x)∣ = ∣sin(π
2
− x)∣ ≤ 1

for all x. Hence,

∣f(x) − p(x)∣ ≤ 1

5!
∣x(x − π

4
)
3

(x − π
2
)∣ ≤ 1

5!
(π
4
)
5

≈ 0.0025

because ∣x(x − π/2)∣ ≤ (π/4)2 (the maximum is reached at x = π/4) and ∣x − π/4∣ ≤ π/4 for
x ∈ [0, π/2].
d) The following figure contains the graph of p in blue and the graph of f in red. The graph
of p was drawn first and is almost completely covered by the graph of f . The two graphs
are basically indistinguishable at the level of the graph accuracy.

Chapter 7 : Splines

Question 7.1
We have

pi(x) = ((αi(x − xi) + βi) (x − xi) + γi) (x − xi) + δi
on [xi, xi+1], where x0 = 0, x1 = 1, x2 = 3. x3 = 4, x4 = 5 and x5 = 5.5.

The solution of Az = b, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2∆x0 ∆x0 0 0 0 0
∆x0 2(∆x1 −∆x0) ∆x1 0 0 0
0 ∆x1 2(∆x2 −∆x1) ∆x2 0 0
0 0 ∆x2 2(∆x3 −∆x2) ∆x3 0
0 0 0 ∆x3 2(∆x4 −∆x3) ∆x4
0 0 0 0 ∆x4 2∆x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

629

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1 0 0 0 0
1 6 2 0 0 0
0 2 6 1 0 0
0 0 1 4 1 0
0 0 0 1 3 0.5
0 0 0 0 0.5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−6f ′(x0) + 6
f(x1) − f(x0)

x1 − x0

6
f(x2) − f(x1)

x2 − x1
− 6 f(x1) − f(x0)

x1 − x0

6
f(x3) − f(x2)

x3 − x2
− 6 f(x3) − f(x1)

x2 − x1

6
f(x4) − f(x3)

x4 − x3
− 6 f(x3) − f(x2)

x3 − x2

6
f(x5) − f(x4)

x5 − x4
− 6 f(x4) − f(x3)

x4 − x3

6f ′(x5) − 6
f(x5) − f(x4)

x5 − x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

6
−6
−6
6
−12
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

is

z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3.615279672578445
−1.230559345156889
−1.115961800818554
3.156889495225103
−5.511596180081855
2.755798090040928

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The coefficients of pi are given by

δi = f(xi) , γi = −
zi∆xi
3
− zi+1∆xi

6
+ f(xi+1) − f(xi)

∆xi
, βi =

zi
2

and αi =
zi+1 − zi
6∆xi

for i = 0, 2, . . . , 5.
The following table lists the values of the coefficients of pi.

i αi βi γi δi
0 −0.807639836289222 1.807639836289222 0 2
1 0.009549795361528 −0.615279672578445 1.192360163710777 3
2 0.712141882673943 −0.557980900409277 −1.154160982264666 3
3 −1.444747612551160 1.578444747612551 −0.133697135061392 2
4 2.755798090040928 −2.755798090040928 −1.311050477489768 2

The graph of the clamped cubic spline polynomial is given below.

630 16. Solutions to Selected Exercises

Question 7.2
The MATLAB code to generate the system Az = b for the natural cubic spline interpolation
is given in Code 16.0.1.

The MATLAB code used to produce the figure below is given in Code 16.0.2.

Code 16.0.1 (Natural Cubic Spline Interpolant - System)

This program computes the tridiagonal matrix A and the right hand side column
vector b associated to the natural cubic spline interpolation.
Input: The nodes xi for 0 ≤ i ≤ n (x(i+1) in the code below).
The values f(xi) for 0 ≤ i ≤ n (f(i+1) in the code below).
Output: The lower diagonal L, the diagonal D and the upper diagonal U of the
tridiagonal matrix A.
The right hand side b of Ax = b.
% [L,D,U,b] = naturalsplinematrix(f,p)

function [L,D,U,b] = naturalsplinematrix(f,fp,p)

N = length(p);

L = repmat(NaN,1,N-3);

U = repmat(NaN,1,N-3);

D = repmat(NaN,1,N-2);

b = repmat(NaN,1,N-2);

631

dp = p(2)-p(1);

if (dp == 0)

return;

end

ratio = (f(2)-f(1))/dp;

for n=1:N-2

prevdp = dp;

dp = p(n+2)-p(n+1);

if (dp == 0)

return;

end

prevratio = ratio;

ratio = (f(n+2)-f(n+1))/dp;

D(n) = 2*(dp+prevdp);

if (n < N - 2)

U(n) = dp;

L(n) = dp;

end

b(n) = 6*(ratio - prevratio);

end

end

Code 16.0.2 (Code for Question 7.2)

p = [0 , 1 , 3 , 4 , 5 , 5.5];

f = [2 , 3 , 3 , 2 , 2 , 1];

[L,D,U,b] = naturalsplinematrix(f,p)

z = tridmatrix(L,D,U,b);

z = [0,z,0]

x = 0:0.01:5.5;

[y,coeffs] = splinepoly(z,f,p,x);

coeffs

plot(x,y,’b’)

grid on

xlabel(’x’)

ylabel(’y’)

Chapter 8 : Least Square Approximation (in L2)

Question 8.1
Suppose that {P [i]k }∞k=0 for i = 1 and 2 are two orthogonal families of monic polynomials

632 16. Solutions to Selected Exercises

such that ⟨p,P [i]k ⟩ = 0 for all polynomial p of degree less than k. Given k > 0, we have that

P
[1]
k − P

[2]
k is a polynomial of degree k − 1 because both polynomials are monic, such that

⟨p,P [1]k − P
[2]
k ⟩ = ⟨p,P

[1]
k ⟩ − ⟨p,P

[2]
k ⟩ = 0

for all polynomial p of degree less than k. In particular,

⟨P [1]k − P
[2]
k , P

[1]
k − P

[2]
k ⟩ = ∫

b

a
(P [1]k − P

[2]
k)

2w(x)dx = 0 .

Since P
[1]
k − P

[2]
k is continuous on [a, b], we get that P

[1]
k (x) = P

[2]
k (x) for all x ∈ [a, b].

Question 8.2
We have from Theorem 8.2.3 that (8.4.1) is true for some constants Ak, Bk and Ck. We only
have to prove that they have the form suggested in the question. We also have from this

theorem that Ak =
ak+1,k+1
ak,k

for k ≥ 0 and Ck =
Ak

Ak−1
=
ak+1,k+1ak−1,k−1

a2k,k
for k > 0. Because of

our choice for a−1,−1, we also have C0 = 0 as required. Note that Ak =
ak+1,k+1
ak,k

can be easily

proved by comparing the coefficient of xk+1 on both sides of (8.4.1).

It remains only to prove that

Bk = ∫
b

a
xP 2

k (x)w(x)dx =
ak,k−1
ak,k

−
ak+1,k
ak+1,k+1

.

Since

xPk(x) =
ak,k

ak+1,k+1
Pk+1(x) +

1

ak,k
(ak,k−1 −

ak,kak+1,k
ak+1,k+1

)Pk(x) + q(x)

=
ak,k

ak+1,k+1
Pk+1(x) + (

ak,k−1
ak,k

−
ak+1,k
ak+1,k+1

)Pk(x) + q(x) ,

where q is a polynomial of degree at most k − 1, we have

Bk = ∫
b

a
xP 2

k (x)w(x)dx

= ∫
b

a
(

ak,k
ak+1,k+1

Pk+1(x) + (
ak,k−1
ak,k

−
ak+1,k
ak+1,k+1

)Pk(x) + q(x))Pk(x)w(x)dx

=
ak,k

ak+1,k+1
∫

b

a
Pk+1(x)Pk(x)w(x)dx

´¹¹¸¹¹¹¶
=0

+(
ak,k−1
ak,k

−
ak+1,k
ak+1,k+1

)∫
b

a
P 2
k (x)w(x)dx

´¹¹¹¸¹¹¹¶
=1

+ ∫
b

a
q(x)Pk(x)w(x)dx

´¹¹¹¸¹¹¹¶
=0

= (
ak,k−1
ak,k

−
ak+1,k
ak+1,k+1

) .

633

Chapter 9 : Uniform Approximation

Question 9.1
The Taylor polynomial of f of degree 2n + 1 about the origin is

p(x) = x −
n

∑
j=0

(−1)j
(2j + 1)!

x2j+1 ,

where

f(x) − p(x) = − 1

(2n + 2)!
f (2n+2)(ξ)x2n+2

for some ξ between 0 and x.

Since f (2n+2)(ξ) is either cos(ξ) or sin(ξ), we have ∣f (2n+2)(ξ)∣ ≤ 1. We need to find n such
that

∣ 1

(2n + 2)!
f (2n+2)(ξ)x2n+2∣ ≤ 1

(2n + 2)!
< 10−9

for ∣x∣ < 1. We have 1/(2n + 2)! = 1/14! < 10−9 for n = 6 and 1/(2n + 2)! = 1/12! > 10−9 for
n = 5. Thus

f(x) ≈ x −
6

∑
j=0

(−1)j
(2j + 1)!

x2j+1 =
6

∑
j=1

(−1)j+1
(2j + 1)!

x2j+1

with an accuracy of at least 10−9 for ∣x∣ < 1.
Question 9.3
We note that f ′(x) = (cos(x) − sin(x))ex, f ′′(x) = −2 sin(x)ex and f (3)(x) = −2(sin(x) +
cos(x))ex.

The Taylor polynomial of f of degree two about the origin is

p2(x) = f(0) + f ′(0)x +
f ′′(0)
2

x2 = 1 + x

because f ′′(0) = 0. So, there is no term in x2. The truncation error is given by

f(x) − p2(x) =
f (3)(ξ)

3!
x3

for ξ ∈ [0, x].
Hence, f(1/2) ≈ p2(1/2) = 3/2. Moreover, we have

∣f(1/2) − p2(1/2)∣ =
∣f (3)(ξ)∣

3!
(1
2
)
3

for ξ ∈ [0,1/2]. Since f (4)(x) = −4 cos(x)ex < 0 for 0 ≤ x ≤ 1/2, we have that f (3) is decreasing
on [0,1/2]. Thus, ∣f (3)(x)∣ reaches its maximum value at one of the endpoints 0 or 1/2.
Since ∣f (3)(0)∣ = 2 and ∣f (3)(1/2)∣ ≈ 4.47465624 (rounded up after 8 digits), we have that
∣f (3)(ξ)∣ ≤ ∣f (3)(1/2)∣ ≤ 4.47465624. Hence

∣f(1/2) − p2(1/2)∣ ≤
4.47465624

3!
(1
2
)
3

≈ 0.093222 .

634 16. Solutions to Selected Exercises

This is an overestimate of the error which is

∣f(1/2) − p2(1/2)∣ = ∣cos(1/2)e1/2 −
3

2
∣ ≈ 0.05311096 .

Chapter 12 : Numerical Differentiation and Integration

Question 12.1
The polynomial interpolation of degree at most 2 at the points x0, x1 and x2 is

f(x) = f[x0] + f[x0, x1] (x − x0) + f[x0, x1, x2] (x − x0)(x − x1)
+ f[x0, x1, x2, x] (x − x0)(x − x1)(x − x2) .

If we derive, we get

f ′(x) = f[x0, x1] + f[x0, x1, x2] ((x − x0) + (x − x1))
+ f[x0, x1, x2, x] ((x − x1)(x − x2) + (x − x0)(x − x2) + (x − x0)(x − x1))
+ f[x0, x1, x2, x, x] (x − x0)(x − x1)(x − x2) ,

where we have used the formula
d

dx
f[x0, x1, x2, x] = f[x0, x1, x2, x, x]. Since f[x0, x1, x2, x] =

1

3!

d3f

dx3
(ξ) and f[x0, x1, x2, x, x] =

1

4!

d4f

dx4
(η) for some ξ and η in the smallest interval con-

taining x0, x1, x2 and x, we get

f ′(x) = f[x0, x1] + f[x0, x1, x2] ((x − x0) + (x − x1))

+ 1

3!

d3f

dx3
(ξ) ((x − x1)(x − x2) + (x − x0)(x − x2) + (x − x0)(x − x1))

+ 1

4!

d4f

dx4
(η) (x − x0)(x − x1)(x − x2) .

Each of the xi must be replaced by one of a, a + h and a + 2h but there is no obligation to
have x0 < x1 < x2. We take x0 = a + 2h, x1 = a + h and x2 = a. Hence, for x = a, the previous
equation becomes

f ′(a) = f[a + 2h, a + h] + f[a + 2h, a + h, a] ((−2h) + (−h)) + 1

3!

d3f

dx3
(ξ) ((−2h)(−h))

= f(a + h) − f(a + 2h)
−h

+
⎛
⎜⎜⎜
⎝

f(a) − f(a + h)
−h

− f(a + h) − f(a + 2h)
−h

−2h

⎞
⎟⎟⎟
⎠
(−3h)

+ 1

3

d3f

dx3
(ξ)h2

= −f(a + 2h) + 4f(a + h) − 3f(a)
2h

+ 1

3

d3f

dx3
(ξ)h2 .

635

We get (12.9.1) with the truncation error
1

3

d3f

dx3
(ξ)h2.

Question 12.2
The polynomial interpolation of degree at most 2 of f at the three points x0, x1 and x2 is

f(x) = f[x0] + f[x0, x1] (x − x0) + f[x0, x1, x2] (x − x0)(x − x1)
+ f[x0, x1, x2, x] (x − x0)(x − x1)(x − x2) .

If we derive once, we get

f ′(x) = f[x0, x1] + f[x0, x1, x2] ((x − x0) + (x − x1))
+ f[x0, x1, x2, x] ((x − x1)(x − x2) + (x − x0)(x − x2) + (x − x0)(x − x1))
+ f[x0, x1, x2, x, x] (x − x0)(x − x1)(x − x2) ,

where we have used the formula

d

dx
f[x0, x1, x2, x] = f[x0, x1, x2, x, x] . (16.8)

If we derive a second time, we get

f ′′(x) = 2 f[x0, x1, x2] + 2 f[x0, x1, x2, x] ((x − x0) + (x − x1) + (x − x2))
+ 2 f[x0, x1, x2, x, x] ((x − x1)(x − x2) + (x − x0)(x − x2) + (x − x0)(x − x1))
+ 2 f[x0, x1, x2, x, x, x] (x − x0)(x − x1)(x − x2) ,

where we have used (16.8) and the formula
d

dx
f[x0, x1, x2, x, x] = 2 f[x0, x1, x2, x, x, x]. Since

f[x0, x1, x2, x] =
1

3!

d3f

dx3
(ξ), f[x0, x1, x2, x, x] =

1

4!

d4f

dx4
(η) and f[x0, x1, x2, x, x, x] =

1

5!

d5f

dx5
(ν)

for some ξ, η and ν in the smallest interval containing x0, x1, x2 and x, we get

f ′′(x) = 2 f[x0, x1, x2] +
2

3!

d3f

dx3
(ξ) ((x − x0) + (x − x1) + (x − x2))

+ 2

4!

d4f

dx4
(η) ((x − x1)(x − x2) + (x − x0)(x − x2) + (x − x0)(x − x1))

+ 2

5!

d5f

dx5
(ν) (x − x0)(x − x1)(x − x2) .

We take x0 = a, x1 = a + h and x2 = a + 2h. Hence, for x = a, we get

f ′′(a) = 2 f[a, a + h, a + 2h] + 2

3!

d3f

dx3
(ξ) ((−h) + (−2h)) + 2

4!

d4f

dx4
(η) (−h)(−2h)

= 2
⎛
⎜⎜⎜
⎝

f(a + 2h) − f(a + h)
h

− f(a + h) − f(a)
h

2h

⎞
⎟⎟⎟
⎠
− d3f

dx3
(ξ)h + 1

3!

d4f

dx4
(η)h2

= f(a) − 2f(a + h) + f(a + 2h)
h2

− d3f

dx3
(ξ)h + 1

3!

d4f

dx4
(η)h2 .

636 16. Solutions to Selected Exercises

We get (12.9.2) with the truncation error −d
3f

dx3
(ξ)h + 1

3!

d4f

dx4
(η)h2.

Question 12.3
Let L0

h(f) = Lh(f). We prove by induction on n that

L(f) = Ln
h/2k(f) +

∞
∑

j=n+1

(22n−1 − 22j−1) . . . (23 − 22j−1)(2 − 22j−1)
(22n−1 − 1) . . . (23 − 1)(2 − 1)

aj (
h

2k
)
2j−1

, (16.9)

where

Ln
h/2k(f) =

22n−1Ln−1
h/2k(f) −L

n−1
h/2k−1(f)

22n−1 − 1
and k ≥ n > 0.
n = 1) If we replace h by h/2 in (12.9.3), we get

L(f) = Lh/2(f) +
∞
∑
j=1
aj (

h

2
)
2j−1

. (16.10)

If we subtract (12.9.3) from 2 times (16.10) and divide by 2 − 1, we get

L(f) = L1
h/2(f) + 2

∞
∑
j=1
aj (

h

2
)
2j−1
−
∞
∑
j=1
aj h

2j−1

= L1
h/2(f) +

∞
∑
j=1
(2aj (

h

2
)
2j−1
− 22j−1aj (

h

2
)
2j−1
) = L1

h/2(f) +
∞
∑
j=2

2 − 22j−1
2 − 1

aj (
h

2
)
2j−1

,

where

L1
h/2(f) =

2Lh/2(f) −Lh(f)
2 − 1

.

So (16.9) is true for n = 1 and k = 1. Replacing h by h/2 as many times as we want, we get
that (16.9) is true for n = 1 and k ≥ 1.
n =m) We suppose that (16.9) is true for n =m.

n =m + 1) By induction, we have

L(f) = Lm
h/2k(f) +

∞
∑

j=m+1

(22m−1 − 22j−1) . . . (23 − 22j−1)(2 − 22j−1)
(22m−1 − 1) . . . (23 − 1)(2 − 1)

aj (
h

2k
)
2j−1

(16.11)

and

L(f) = Lm
h/2k+1(f) +

∞
∑

j=m+1

(22m−1 − 22j−1) . . . (23 − 22j−1)(2 − 22j−1)
(22m−1 − 1) . . . (23 − 1)(2 − 1)

aj (
h

2k+1
)
2j−1

(16.12)

for k ≥m.

If we subtract (16.11) from 22m+1 times (16.12) and divide by 22m+1 − 1, we get

L(f) = Lm+1
h/2k+1(f)

637

+ 1

22m+1 − 1
(22m+1

∞
∑

j=m+1

(22m−1 − 22j−1) . . . (23 − 22j−1)(2 − 22j−1)
(22m−1 − 1) . . . (23 − 1)(2 − 1)

aj (
h

2k+1
)
2j−1

−
∞
∑

j=m+1

(22m−1 − 22j−1) . . . (23 − 22j−1)(2 − 22j−1)
(22m−1 − 1) . . . (23 − 1)(2 − 1)

aj (
h

2k
)
2j−1
)

= Lm+1
h/2k+1(f) +

1

22m+1 − 1
(22m+1

∞
∑

j=m+1

(22m−1 − 22j−1) . . . (23 − 22j−1)(2 − 22j−1)
(22m−1 − 1) . . . (23 − 1)(2 − 1)

aj (
h

2k+1
)
2j−1

−
∞
∑

j=m+1
22j−1

(22m−1 − 22j−1) . . . (23 − 22j−1)(2 − 22j−1)
(22m−1 − 1) . . . (23 − 1)(2 − 1)

aj (
h

2k+1
)
2j−1
)

= Lm+1
h/2k+1(f) +

∞
∑

j=m+1

(22m+1 − 22j−1)(22m−1 − 22j−1) . . . (23 − 22j−1)(2 − 22j−1)
(22m+1 − 1)(22m−1 − 1) . . . (23 − 1)(2 − 1)

aj (
h

2k+1
)
2j−1

= Lm+1
h/2k+1(f) +

∞
∑

j=m+2

(22m+1 − 22j−1)(22m−1 − 22j−1) . . . (23 − 22j−1)(2 − 22j−1)
(22m+1 − 1)(22m−1 − 1) . . . (23 − 1)(2 − 1)

aj (
h

2k+1
)
2j−1

,

where

Lm+1
h/2k+1(f) =

22m+1Lm
h/2k+1(f) −L

m
h/2k(f)

22m+1 − 1
.

This is (16.9) for n =m + 1 if we substitute k ≥ n by k ≥m.

The general formula is

Ln
h/2k(f) =

22n−1Ln−1
h/2k(f) −L

n−1
h/2k−1(f)

22n−1 − 1

for k ≥ n > 0 with a truncation error of O(h2n+1).
Question 12.4
Let L0

h(f) = Lh(f). We prove by induction on n that

L(f) = Ln
h/2k(f) +

∞
∑

j=n+1

(23n − 23j) . . . (26 − 23)(23 − 23j)
(23n − 1) . . . (26 − 1)(23 − 1)

aj (
h

2k
)
3j

, (16.13)

where

Ln
h/2k(f) =

23nLn−1
h/2k(f) −L

n−1
h/2k−1(f)

23n − 1
and k ≥ n > 0.
n = 1) If we replace h by h/2 in (12.9.4), we get

L(f) = Lh/2(f) +
∞
∑
j=1
aj (

h

2
)
3j

. (16.14)

If we subtract (12.9.4) from 23 times (16.14) and divide by 23 − 1, we get

L(f) = L1
h/2(f) +

1

23 − 1
(23

∞
∑
j=1
aj (

h

2
)
3j

−
∞
∑
j=1
aj h

3j)

638 16. Solutions to Selected Exercises

= L1
h/2(f) +

1

23 − 1

∞
∑
j=1
(23aj (

h

2
)
3j

− 23jaj (
h

2
)
3j

) = L1
h/2(f) +

∞
∑
j=2

23 − 23j
23 − 1

aj (
h

2
)
3j

,

where

L1
h/2(f) =

23Lh/2(f) −Lh(f)
23 − 1

.

So (16.13) is true for n = 1 and k = 1. Replacing h by h/2 as many times as we want, we get
that (16.13) is true for n = 1 and k ≥ 1.
n =m) We suppose that (16.13) is true for n =m.

n =m + 1) By induction, we have

L(f) = Lm
h/2k(f) +

∞
∑

j=m+1

(22m − 23j) . . . (26 − 23j)(23 − 23j)
(23m − 1) . . . (26 − 1)(23 − 1)

aj (
h

2k
)
3j

(16.15)

and

L(f) = Lm
h/2k+1(f) +

∞
∑

j=m+1

(23m − 23j) . . . (26 − 23j)(23 − 23j)
(23m − 1) . . . (26 − 1)(23 − 1)

aj (
h

2k+1
)
3j

(16.16)

for k ≥m.

If we subtract (16.15) from 23m+3 times (16.16) and divide by 23m+3 − 1, we get

L(f) = Lm+1
h/2k+1(f)

+ 1

23m+3 − 1
(23m+3

∞
∑

j=m+1

(23m − 23j) . . . (26 − 23j)(23 − 23j)
(23m − 1) . . . (26 − 1)(23 − 1)

aj (
h

2k+1
)
3j

−
∞
∑

j=m+1

(23m − 23j) . . . (26 − 23j)(23 − 23j)
(23m − 1) . . . (26 − 1)(23 − 1)

aj (
h

2k
)
3j

)

= Lm+1
h/2k+1(f) +

1

23m+3 − 1
(23m+3

∞
∑

j=m+1

(23m − 23j) . . . (26 − 23j)(23 − 23j)
(23m − 1) . . . (26 − 1)(23 − 1)

aj (
h

2k+1
)
3j

−
∞
∑

j=m+1
23j
(23m − 23j) . . . (26 − 23j)(23 − 23j)
(23m − 1) . . . (26 − 1)(23 − 1)

aj (
h

2k+1
)
3j

)

= Lm+1
h/2k+1(f) +

∞
∑

j=m+1

(23m+3 − 23j)(23m − 23j) . . . (26 − 23j)(23 − 23j)
(23m+3 − 1)(23m − 1) . . . (26 − 1)(23 − 1)

aj (
h

2k+1
)
3j

= Lm+1
h/2k+1(f) +

∞
∑

j=m+2

(23m+3 − 23j)(23m − 23j) . . . (26 − 23j)(23 − 23j)
(23m+3 − 1)(23m − 1) . . . (26 − 1)(23 − 1)

aj (
h

2k+1
)
3j

,

where

Lm+1
h/2k+1(f) =

23m+3Lm
h/2k+1(f) −L

m
h/2k(f)

23m+3 − 1
.

This is (16.13) for n =m + 1 if we substitute k ≥ n by k ≥m.

639

The general formula is

Ln
h/2k(f) =

23nLn−1
h/2k(f) −L

n−1
h/2k−1(f)

23n − 1
for k ≥ n > 0 with a truncation error of O(h3n+3).
Question 12.5
With Lh(f) = (f(3 + h) − f(3 − h))/(2h), we get the following table.

h Lh(f) L1
h(f) L2

h(f)
0.8 0.16441388

0.4 0.15472628 4.13687170 0.15149708

0.2 0.15238451 4.03339716 0.15160392 16.53008728 0.15161104

0.1 0.15180391 4.00829909 0.15161038 16.13017524 0.15161081
0.05 0.15165906 0.15161078 0.15161081

L3
h(f) L4

h(f) ∣Li
h(f) −Li−1

2h (f)∣

−0.0129169
0.11396344 × 10−03

65.68377022 0.15161081 −0.23203700 × 10−06
0.15161081 0.15161081 0.93304309 × 10−10

All the values in the table have been rounded. We stop the procedure as soon as ∣Li
h(f) −

Li−1
2h (f)∣ gets smaller than 10−7 and take Li

h(f) as our approximation of f ′(3). We have also
included the ratios defined in (12.2.10) to ensure that the approximating values Li

h(h) can
be trusted. We have that f ′(3) ≈ L4

0.05(f) ≈ 0.15161081 meets our criterion of accuracy.

Question 12.7
Let a = 1, b = 3, h = (b − a)/2m = 1/m and xi = 1 + i h for i = 0, 1, 2, . . . , n = 2m.

The local truncation error for the composite midpoint rule is −f
′′(ξ)(b − a)

6
h2 for some

ξ ∈ [a, b]. We seek a small m for which this truncation error will be smaller in absolute value
than 10−5. We have

f ′′(x) = 1

x
+ x
4
− 10 .

We use the Extremum Theorem to find the maximum of f ′′(x)∣ on [1,3]. We have that
x = 2 is the only critical point of f (3)(x) = −1/x2 + 1/4 in the interval [1,3]. Since f ′′(2) =
−9 < f ′′(3) = −107/12 < f ′′(1) = −35/4, we have that −9 ≤ f ′′(x) ≤ −35/4 for 1 ≤ x ≤ 3. Thus,
∣f ′′(x)∣ ≤ 9 for 1 ≤ x ≤ 3. Hence,

∣−f
′′(ξ)(b − a)

6
h2∣ = ∣f

′′(ξ)∣
3m2

≤ 3

m2

because 1 ≤ ξ ≤ 3. We chose m that satisfies
3

m2
< 10−5; namely, m >

√
3 × 105 ≈ 547.72.

With m = 548, we get

∫
3

1
(x ln(x) + x

3

24
− 5x2) dx ≈ 1

274

548

∑
i=1
(x2i−1 ln(x2i−1) +

x32i−1
24
− 5x22i−1) ≈ −39.5562347658 .

640 16. Solutions to Selected Exercises

Question 12.8
Let a = 2, b = 4, h = (b − a)/2m = 1/m and xi = 2 + i h for i = 0, 1, 2, . . . , n = 2m.

The local truncation error for the composite Simpson rule is −h
4(b − a)
180

f (4)(ξ) for some

ξ ∈ [a, b]. We seek a small m for which this truncation error will be smaller in absolute value
than 10−5. We have

f (4)(x) = −80
81
(x + 1)−11/3 .

Hence,

∣h
4(b − a)
180

f (4)(ξ)∣ = (1

90m4
)(80

81
) (ξ + 1)−11/3 ≤ 8

36m4
3−11/3 = 8

329/3m4

because 2 ≤ ξ ≤ 4. We chose m that satisfies
8

329/3m4
< 10−5; namely, m > (8

329/3
105)

1/4
≈

2.102468339 .

With m = 3, we get

∫
4

2
(x + 2)1/3 dx ≈ 1

9
((3)1/3 + 2

2

∑
i=1
(1 + (2 + 2i

3
))

1/3
+ 4

2

∑
i=0
(1 + (2 + 2i + 1

3
))

1/3
+ (5)1/3)

≈ 3.16734727452 .

Question 12.9
Before answering this question, we note that f ′(x) = 2x ln(x)+x, f ′′(x) = 2 ln(x)+3, f (3)(x) =
2/x and f (4)(x) = −2/x2.

Moreover, a simple integration by parts gives

∫
3

1
x2 ln(x)dx = 9 ln(3) − 26

9
≈ 6.99862170912 .

We have a = 1 and b = 3 in the formulae for the truncation errors of the composite
methods.

a) For the midpoint rule, we choose n = 2m and h = (b−a)/n = 1/m such that the truncation

error ∣f
′′(η)(b − a)

6
h2∣ for some η ∈ [1,3] satisfies

∣f
′′(η)(b − a)

6
h2∣ = 1

3
(1
m
)
2

∣2 ln(η) + 3∣ ≤ 1

3m2
∣2 ln(3) + 3∣ < 10−5 .

Thus,

m > (10
5

3
(2 ln(3) + 3))

1/2
≈ 416.22 .

We take m = 417. It follows that h = 1/417 and

∫
3

1
x2 ln(x)dx ≈ 2

417

417

∑
j=1
f(x2j−1) ≈ 6.99861347 ,

641

where xj = 1 + j h = 1 + j/417. The absolute error is about 0.82348266 × 10−5.
b) For the trapezoidal rule, we choose n and h = (b − a)/n = 2/n such that the truncation

error ∣f
′′(η)(b − a)

12
h2∣ for some η ∈ [1,3] satisfies

∣f
′′(η)(b − a)

12
h2∣ = 1

6
(2
n
)
2

∣2 ln(η) + 3∣ ≤ 2

3n2
∣2 ln(3) + 3∣ < 10−5 .

Thus,

n > (2 × 10
5

3
(2 ln(3) + 3))

1/2
≈ 588.6269 .

We take n = 589. It follows that h = 2/589 and

∫
3

1
x2 ln(x)dx ≈ 1

589
(f(x0) + 2

588

∑
j=1
f(xj) + f(x589)) ≈ 6.99862996 ,

where xj = 1 + j h = 1 + 2j/589. The absolute error is about 0.82551686 × 10−5.
c) For the Simpson rule, we choose n = 2m and h = (b−a)/n = 1/m such that the truncation

error ∣f
(4)(η)(b − a)

180
h4∣ for some η ∈ [1,3] satisfies

∣f
(4)(η)(b − a)

180
h4∣ = 1

90
(1
m
)
4

∣−2
η2
∣ ≤ 1

45m4
< 10−5 .

Thus,

m > (10
5

45
)
1/4
≈ 6.86589 .

We take m = 7. It follows that h = 1/7 and

∫
3

1
x2 ln(x)dx ≈ 1

21
(f(x0) + 2

6

∑
j=1
f(x2j) + 4

6

∑
j=0
f(x2j+1) + f(x14)) ≈ 6.99861865 ,

where xj = 1 + j h = 1 + j/7. The absolute error is about 0.30640240 × 10−5.
Question 12.10
There are two ways to answer this question. We could use the formula

∫
b

a
f(x)dx = f(a) + 4f((a + b)/2) + f(b)

6
(b − a) − f

(4)(ξ) (b − a)5
2880

for some ξ between a and b. The truncation error will be 0 for all polynomials of degree less
than 4 becuase f (4)(x) = 0 for all polynomials f of degree less than 4.

The other way to answer the question is to proceed directly. By linearity of the integral,
it is enough to show that Simpson’s rule is exact for xi with i = 0, 1, 2 and 3. For f(x) = xi,
Simpson’s rule becomes

∫
b

a
xi dx ≈ b − a

6
(ai + 4(a + b

2
)
i

+ bi) . (16.17)

642 16. Solutions to Selected Exercises

For i = 0, the right hand side of (16.17) is

b − a
6
(1 + 4 + 1) = b − a = ∫

b

a
dx .

For i = 1, the right hand side of (16.17) is

b − a
6
(a + 4(a + b

2
) + b) = b − a

6
(3a + 3b) = 1

2
(b2 − a2) = ∫

b

a
xdx .

For i = 2, the right hand side of (16.17) is

b − a
6
(a2 + 4(a + b

2
)
2

+ b2) = b − a
6
(2a2 + 2ab + 2b2) = 1

3
(b3 − a3) = ∫

b

a
x2 dx .

Finally, for i = 3, the right hand side of (16.17) is

b − a
6
(a3 + 4(a + b

2
)
3

+ b3) = b − a
6
(a3 + 1

2
(a3 + 3a2b + 3ab3 + b3) + b3)

= b − a
12
(3a3 + 3a2b + 3ab2 + 3b3) = 1

4
(b4 − a4) = ∫

b

a
x3 dx .

Thus, Simpson’s rule is exact for polynomial of degree up to three.

However, for i = 4, the right hand side of (16.17) is

b − a
6
(a4 + 4(a + b

2
)
4

+ b4) = b − a
6
(a4 + 1

4
(a4 + 4a3b + 6a2b2 + 4ab4 + b4) + b4)

= b − a
24
(5a4 + 4a3b + 6a2b2 + 4ab3 + 5b4)

= 1

24
(5b5 − ab4 + 2a2b3 − 2a3b2 + a4b − 5a5)

≠ 1

5
(b5 − a5) = ∫

b

a
x4 dx

for almost all values of a and b.

Question 12.11
We use the composite trapezoidal rule to generate the first column of the table for Romberg
integration.

For n = 2, we have h = (4 − 2)/2 = 1 and xj = 2 + j h = 2 + j for 0 ≤ j ≤ 2. Hence,

∫
4

2
(1 + x)1/3 dx ≈ 1

2
(31/3 + 2 (41/3) + 51/3) ≈ 3.163513810460252 .

For n = 4, we have h = (4 − 2)/4 = 1/2 and xj = 2 + j h = 2 + j/2 for 0 ≤ j ≤ 4. Hence,

∫
4

2
(1 + x)1/3 dx ≈ 1

4
(31/3 + 2 (3.51/3 + 41/3 + 4.51/3) + 51/3) ≈ 3.166385960422699 .

643

For n = 8, we have h = (4 − 2)/8 = 1/4 and xj = 2 + j h = 2 + j/4 for 0 ≤ j ≤ 8. Hence,

∫
4

2
(1 + x)1/3 dx ≈ 1

8
(31/3 + 2

7

∑
j=1
(1 + 2 + j/4)1/3 + 51/3) ≈ 3.167107453016058 .

All values in the table below have been rounded to nine digits.

n h L0
h(f) L1

h(f) L2
h(f)

2 1 3.16351381

4 1/2 3.16638596 3.98084469 3.16734334
8 1/4 3.16710745 3.16734795 3.16734826

Note that L1
1/2(f) = (4L0

1/2(f) − L0
1(f))/(4 − 1), L1

1/4(f) = (4L0
1/4(f) − L0

1/2(f))/(4 − 1) and
L2
1/4(f) = (42L1

1/4(f) −L1
1/2(f))/(42 − 1).

The requested approximation is 3.16734826 because ∣L1
1/2(f) −L0

1(f)∣ ≈ 0.0038295 > 10−5

and ∣L2
1/4(f) −L1

1/2(f)∣ ≈ 0,49139 × 10−5 < 10−5.

Question 12.12
We have used the composite trapezoidal rule to generate the first column of the table for
Romberg integration; namely, we have used

L0
h(f) =

h

2
(f(x0) + 2

n−1
∑
j=1

f(xj) + f(xn)) ,

where xi = 1 + ih and h = 2/n.

h L0
h(f) L1

h(f) L2
h(f)

2 2.31607401
1 2.34724412 3.69506105 2.35763416
0.5 2.35567974 3.88972370 2.35849161 10.75596733 2.35854877

0.25 2.35784843 3.96766871 2.35857133 13.53301479 2.35857664
0.125 2.35839502 2.35857722 2.35857761

L3
h(f) L4

h(f) ∣Li
h(f) −Li−1

2h (f)∣

0.0415601
0.914612 × 10−3

28.76692226 2.35857708 0.283121 × 10−4
2.35857762 2.35857763 0.543938 × 10−6

All the values in the table have been rounded.

We stopped the procedure when ∣Li
h(f) −Li−1

2h (f)∣ got smaller than 10−5 and took Li
h(f)

as our approximation of the integral. We have that

∫
5

3
(x − 2)1/4 dx ≈ L4

0.125 ≈ 2.35857763

644 16. Solutions to Selected Exercises

with the required accuracy.

We have also included the ratios defined in (12.2.10) to check if the values of Li
h(h) can

be trusted. However, we have ignored this information.

Question 12.13
The first column of table used for Romberg integration is produced by the composite trape-
zoidal rule

L0
h(f) =

h

2
(f(x0) + 2

n−1
∑
j=1

f(xj) + f(xn)) ,

where xi = 1 + ih and h = 2/n. The table is given below.

h L0
h(f) L1

h(f) L2
h(f)

2 9.88751060

1 7.71634402 4.03101596 6.99262183

0.5 7.17772879 4.00899805 6.99819039 13.81887982 6.99856162

0.25 7.04337721 4.00237347 6.99859335 15.17336693 6.99862022
0.125 7.00980924 6.99861991 6.99862168

L3
h(f) L4

h(f) ∣Li
h(f) −Li−1

2h (f)∣

2.8948888
0.005939793

40.03582483 6.99862115 0.59524745 × 10−4
6.99862170 6.99862171 0.55889607 × 10−5

All the values in the table have been rounded. We stopped the procedure when ∣Li
h(f) −

Li−1
2h (f)∣ got smaller than 10−7 and took Li

h(f) as our approximation of the integral. We
have that

∫
3

1
x2 ln(x)dx ≈ L4

0.125 ≈ 6.99862171

meet our criteria of accuracy.

In question 12.9, we found that

∫
3

1
x2 ln(x)dx = 9 ln(3) − 26

9
= 6.99862170912 . . .

So, the absolute error of our approximation 6.99862171 is about −0.88× 10−9. This is better
than expected.

We have also included the ratios defined in (12.2.10) to check if the values of Li
h(h) can

be trusted. However, we have ignored this information. The approximation of the value of
the integral suggested by the ratios defined in (12.2.10) is L2

0.25(f) ≈ 6.99862022 associated
to the ratio 15.17336693. The absolute error for this approximation is about 0.14891× 10−5.
Despite the fact that the ratios were not respecting the rule of 4i, we did the right thing by
proceeding with the computations. The problem with the computations of the ratios defined
in (12.2.10) is that they have to be done with very high precision because we are dividing
by values closed to zero.

645

Question 12.14
The first column of the table associated to Romberg integration is given by the composite
trapezoidal rule

Lh(f) =
h

2
(f(x0) + 2

n−1
∑
j=1

f(xj) + f(xn)) ,

where h = (b − a)/n and xi = a + i h for i = 1, 2, 3, . . . , n.
The second column of this table is

L1
h/2(f) =

4Lh/2(f) −Lh(f)
4 − 1

= 1

3
(h (f(x0) + 2

n−1
∑
j=1

f(xj) + 2
n−1
∑
j=0

f(xj + h/2) + f(xn))

− h
2
(f(x0) + 2

n−1
∑
j=1

f(xj) + f(xn)))

= h
6
(f(x0) + 2

n−1
∑
j=1

f(xj) + 4
n−1
∑
j=0

f(xj + h/2) + f(xn))

= h̃
3
(f(x̃0) + 2

n−1
∑
j=1

f(x̃2j) + 4
n−1
∑
j=0

f(x̃2j+1) + f(x̃n)) ,

where h̃ = (b − a)/(2n) and x̃j = a + jh̃ for 0 ≤ j ≤ 2n. This is the composite Simpson rule
with m replaced by n, h by h̃ and xj by x̃j.

Question 12.15
Use the adaptive quadrature method presented in Section 12.6 to approximate

∫
5

3
(x − 2)1/4 dx

with an accuracy of 10−5. For this purpose and to simplify the discussion, let S(a, b, h) be the

result of the composite Simpson’s Rule, Theorems 12.3.4 and 12.4.4, for ∫
b

a
(x−2)1/4 dx with

m = (b − a)/(2h). The values displayed in the following computations have been rounded to
12 significant digits though the computations have been done with as many digits as possible.

level 0:
i 1 2 3 4 5
xi 3 7/2 4 9/2 5

h = 1, T = 10−5, S[3,5] = S(3,5,1) ≈ 2.35763415765,
S1 = S(3,4,0.5) ≈ 1.10265579897, S2 = S(4,5,0.5) ≈ 1.25583580778,
S̃[3,5] = S(3,5,0.5) ≈ S1 + S2 = 2.35849160675 and

R̃[3,5] ≈
1

15
∣S̃[3,5] − S[3,5]∣ ≈ 0.571633 × 10−4 /< 10−5.

Level 1:
i 1 2 3 4 5
xi 3 13/4 7/2 15/4 4

h = 0.5, T = 0.5 × 10−5 (store for [4,5]), S[3,4] = S(3,4,0.5) ≈ 1.10265579897,
S1 = S(3,3.5,0.25) ≈ 0.528013914455, S2 = S(3.5,4,0.25) ≈ 0.574711858524,

646 16. Solutions to Selected Exercises

S̃[3,4] = S(3,4,0.25) = S1 + S2 ≈ 1.10272577298 and

R̃[3,4] ≈
1

15
∣S̃[3,4] − S[3,4]∣ ≈ 0.466493 × 10−5 < 0.5 × 10−5.

We accept S̃[3,4] ≈ 1.10272577298 as an approximation of ∫
4

3
(x − 2)1/4 dx.

Level 1:
i 1 2 3 4 5
xi 4 17/4 9/2 19/4 5

h = 0.5, T = 0.5 × 10−5, S[4,5] = S(4,5,0.5) ≈ 1.25583580778,
S1 = S(4,4.5,0.25) ≈ 0.612135002521, S2 = S(4.5,5,0.25) ≈ 0.643710549703,
S̃[4,5] = S(4,5,0.25) = S1 + S2 ≈ 1.25584555222 and

R̃[4,5] ≈
1

15
∣S̃[4,5] − S[4,5]∣ ≈ 0.649630 × 10−6 < 0.5 × 10−5.

We accept S̃[4,5] ≈ 1.25584555222 as an approximation of ∫
5

4
(x − 2)1/4 dx.

Level 0: We are done. We have found that

∫
5

3
(x − 2)1/4 dx = ∫

4

3
(x − 2)1/4 + ∫

5

4
(x − 2)1/4

≈ 1.10272577298 + 1.25584555222 = 2.35857132520 .

This approximation is meeting the required accuracy.

Question 12.16
Since (12.9.5) is a linear functional with respect to f and since all polynomial of degree at
most 4 are linear combinations of the monomials xi for 0 ≤ i ≤ 4, it is enough to show that
(12.9.5) is true for f(x) = xi with 0 ≤ i ≤ 4 to prove that (12.9.5) is true for all polynomials
of degree less than or equal to 4. For instance, for i = 4, we get

∫
1

0
x4 dx = x

5

5
∣
1

x=0
= 1

5

and
1

90
(7(04) + 32(1

4
)
4

+ 12(1
2
)
4

+ 32(3
4
)
4

+ 7(14)) = 1

5
.

We leave to the reader the task of verifying the equality for the other monomials.

If we substitute y = (b − a)x + a in ∫
b

a
f(y)dy, we get

∫
b

a
f(y)dy = ∫

1

0
f((b − a)x + a) (b − a)dx

= b − a
90
(7 f(a) + 32 f (3a + b

4
) + 12 f (a + b

2
) + 32 f (a + 3b

4
) + 7 f(b)) .

Question 12.17
For f(x) = xi, the formula is

∫
1

0
xi dx ≈ A (xi0 + xi1) .

647

For i = 0, we have 1 = ∫
1

0
dx = 2A. Thus, A = 1/2. For i = 1, we have

1

2
= ∫

1

0
xdx =

A (x0 + x1) =
1

2
(x0 − x1). Thus

1 = x0 + x1 . (16.18)

For i = 2, we have
1

3
= ∫

1

0
x2 dx = A (x20 + x21) =

1

2
(x20 + x21). Thus,

2

3
= x20 + x21 . (16.19)

If we solve the system of equations given by (16.18) and (16.19) for x0 and x1, we get two

solutions x0 =
1

2
+ 1

2
√
3
and x1 =

1

2
− 1

2
√
3
, and x0 =

1

2
− 1

2
√
3
and x1 =

1

2
+ 1

2
√
3
. Hence, we

find that the formula

∫
1

0
xi dx ≈ 1

2
(f (1

2
+ 1

2
√
3
) + f (1

2
− 1

2
√
3
))

is exact for polynomials of degree less or equal to 2.

Question 12.18
For f(x) = xi, the formula is

∫
2

0
xi+1 dx ≈ Axi∣

x=0 +B x
i∣
x=1 +C x

i∣
x=2

for i ≥ 0. For i = 0, we get

2 = ∫
2

0
xdx = A +B +C . (16.20)

For i = 1, we get
8

3
= ∫

2

0
x2 dx = B + 2C . (16.21)

For i = 2, we get

4 = ∫
2

0
x3 dx = B + 4C . (16.22)

The system of linear equations formed of (16.20), (16.21) and (16.22) has a unique solution
given by A = 0, B = 4/3 and C = 2/3.

For i = 3, we have
32

5
= ∫

2

0
x4 dx = B + 8C .

Since this equation is not satisfied with B = 4/3 and C = 2/3, the formula is not valid for
i = 3. Therefore, we can get a formula which is exact for polynomials of degree up to two
with A = 0, B = 4/3 and C = 2/3. It is not possible to do better.

Question 12.19

We get A + B = ∫
2π

0
dx = 2π when k = 0 and A cos(0) + B cos(π) = ∫

2π

0
cos(x)dx =

648 16. Solutions to Selected Exercises

sin(x)∣
2π

x=0
= 0 when k = 1. Thus A+B = 2π and A−B = 0. We find A = B = π. The requested

formula is

∫
2π

0
f(x)dx ≈ π f(0) + π f(π) . (16.23)

Since

∫
2π

0
cos((2k + 1)x)dx = 1

2k + 1
sin((2k + 1)x)∣

2π

x=0
= 0

and

π cos((2k + 1)x)∣
x=0
+ π cos((2k + 1)x)∣

x=π
= π + π cos((2k − 1)π) = π − π = 0

for all k ≥ 0, (16.23) is exact for f(x) = cos((2k + 1)x) with k ≥ 0. Moreover, since

∫
2π

0
sin(kx)dx = −1

k
cos(kx)∣

2π

x=0
= −1

k
(cos(2πk) − 1) = 0

and

π sin(kx)∣
x=0
+ π sin(kx)∣

x=π
= 0 + π sin(kπ) = 0 − 0 = 0

for k > 0, (16.23) is exact for f(x) = sin(kx) with k > 0. It is also true for f(x) = sin(kx)
with k = 0 because f(x) = 0 for all x in this case.

By linearity of the integral, (16.23) is exact for expressions of the form (12.9.6). It is not
a really interesting relation because the integral of (12.9.6) in (16.23) is null and therefore
does not require the formula πf(0) + πf(π) to be computed.

Note: Formula (16.23) is not true for f(x) = cos(2k x) with k ≥ 1. This can be shown
directly. Another way to prove this is by contradiction. Suppose that the formula is true for
f(x) = cos(2k x) with k ≥ 1. Since all continuous functions on [0,2π] can be expressed as a
Fourier series of cos(kx) and sin(kx) for k ≥ 0, (16.23) will then be true for all continuous
functions on [0,2π]. But the formula is not true for f(x) = x.
Question 12.20
The polynomial interpolation of f at the points x0 = a + (b − a)/3 = (2a + b)/3 and x1 =
a + 2(b − a)/3 = (a + 2b)/3 is given by

f(x) = f[x0] + f[x0, x1] (x − x0) + f[x0, x1, x] (x − x0) (x − x1) .

Hence,

∫
b

a
f(x)dx = ∫

b

a
(f[x0] + f[x0, x1] (x − x0)) dx + ∫

b

a
f[x0, x1, x] (x − x0) (x − x1) dx .

Since f[x0] = f(x0) = f (
2a + b
2
) and

f[x0, x1] =
f((a + 2b)/3) − f((2a + b)/3)
(a + 2b)/3 − (2a + b)/3

= 3

b − a
(f (a + 2b

3
) − f (2a + b

3
)) ,

649

we get the formula

∫
b

a
f(x)dx ≈ ∫

b

a
(f[x0] + f[x0, x1] (x − x0)) dx = (f(x0)x +

1

2
f[x), x1] (x − x0)2) ∣

b

x=a

= f (2a + b
3
) (b − a) + 3

2(b − a)
(f (a + 2b

3
) − f (2a + b

3
))((b − 2a + b

3
)
2

− (a − 2a + b
3
)
2

)

= b − a
2
(f (a + 2b

3
) + f (2a + b

3
)) .

We choose A = B = (b − a)/2.
For each x ∈ [a, b], there exists ξ ∈ [a, b] such that

∣f[x0, x1, x]∣ = ∣
1

2
f ′′(ξ)∣ < M

2
.

Thus,

∣∫
b

a
f[x0, x1, x] (x − x0) (x − x1) dx∣ ≤ ∫

b

a
∣f[x0, x1, x]∣ ∣(x − x0) (x − x1)∣ dx

≤ M
2 ∫

b

a
∣(x − x0) (x − x1)∣ dx .

To compute this integral, we split the interval of integration in three subintervals such that
the sign of the integrand is constant on each subinterval. We can then eliminate the absolute
value. To simplify the computation, we use integration by parts to get

∫ (x − x0)(x − x1)dx =
(x − x0)(x − x1)2

2
− (x − x1)

3

6
+C1

and

∫ (x − x0)(x − x1)dx =
(x − x1)(x − x0)2

2
− (x − x0)

3

6
+C2

for some constants C1 and C2. It is interesting to note that if we subtract the second integral
from the first integral, we find that C2 −C1 = (x1 − x0)3/6.

∫
b

a
∣(x − x0) (x − x1)∣ dx

= ∫
x0

a
(x − x0) (x − x1) dx − ∫

x1

x0

(x − x0) (x − x1) dx + ∫
b

x1

(x − x0) (x − x1) dx

= ((x − x1)(x − x0)
2

2
− (x − x0)

3

6
) ∣

x0

x=a
− ((x − x1)(x − x0)

2

2
− (x − x0)

3

6
) ∣

x1

x=x0

+ ((x − x0)(x − x1)
2

2
− (x − x1)

3

6
) ∣

b

x=x1

= −((a − x1)(a − x0)
2

2
− (a − x0)

3

6
) + (x1 − x0)

3

6
+ ((b − x0)(b − x1)

2

2
− (b − x1)

3

6
)

650 16. Solutions to Selected Exercises

= −1
2
(2(a − b)

3
)(a − b

3
)
2

+ 1

6
(a − b

3
)
3

+ 1

6
(b − a

3
)
3

+ 1

2
(2(b − a)

3
)(b − a

3
)
2

− 1

6
(b − a

3
)
3

= 11(b − a)3
162

.

Hence,

∣∫
b

a
f[x0, x1, x] (x − x0) (x − x1) dx∣ ≤

11M(b − a)3
162

.

Question 12.21
The polynomial interpolation of f (of degree at most 2) at the points x0 = a + (b − a)/4 =
(3a + b)/4, x1 = a + (b − a)/2 = (a + b)/2 and x2 = a + 3(b − a)/4 = (a + 3b)/4 is given by

f(x) = f[x0] + f[x0, x1] (x − x0) + f[x0, x1, x2] (x − x0)(x − x1)
+ f[x0, x1, x2, x] (x − x0)(x − x1)(x − x2) .

Hence,

∫
b

a
f(x)dx = ∫

b

a
(f[x0] + f[x0, x1] (x − x0) + f[x0, x1, x2] (x − x0)(x − x1)) dx

+ ∫
b

a
f[x0, x1, x2, x] (x − x0)(x − x1)(x − x2)dx .

(16.24)

The integration formula is given by the first integral on the right side of (16.24). Since

f[x0] = f (
3a + b
4
) ,

f[x0, x1] =
f(x1) − f(x0)

x1 − x0
= (1

(b + a)/2 − (3a + b)/4
)(f (b + a

2
) − f (3a + b

4
))

= 4

b − a
(f (b + a

2
) − f (3a + b

4
)) ,

f[x1, x2] =
f(x2) − f(x1)

x2 − x1
= (1

(a + 3b)/4 − (b + a)/2
)(f (a + 3b

4
) − f (b + a

2
))

= 4

b − a
(f (a + 3b

4
) − f (b + a

2
))

and

f[x0, x1, x2] =
f[x1, x2] − f[x0, x1]

x2 − x0

= (1

(a + 3b)/4 − (3a + b)/4
)(4

b − a
(f (a + 3b

4
) − f (b + a

2
))

− 4

b − a
(f (b + a

2
) − f (3a + b

4
)))

= 8

(b − a)2
(f (a + 3b

4
) − 2 f (b + a

2
) + f (3a + b

4
)) ,

651

we get

∫
b

a
f(x)dx ≈ ∫

b

a
(f[x0] + f[x0, x1] (x − x0) + f[x0, x1, x2] (x − x0)(x − x1))dx

= f (3a + b
4
)∫

b

a
dx + 4

b − a
(f (b + a

2
) − f (3a + b

4
))∫

b

a
(x − 3a + b

4
) dx

+ 8

(b − a)2
(f (a + 3b

4
) − 2 f (b + a

2
) + f (3a + b

4
))∫

b

a
(x − 3a + b

4
)(x − a + b

2
) dx .

Moreover, since

∫
b

a
(x − 3a + b

4
) dx = 1

2
(x − 3a + b

4
)
2

∣
b

x=a
= 1

4
(b − a)2

and

∫
b

a
(x − 3a + b

4
)(x − a + b

2
) dx = ∫

b

a
(x2 − 5a + 3b

4
x + 3a2 + 4ab + b2

8
) dx

= (x
3

3
− 5a + 3b

8
x2 + 3a2 + 4ab + b2

8
x) ∣

b

x=a
= 1

12
(b − a)3 ,

we finally get

∫
b

a
f(x)dx ≈ ∫

b

a
(f[x0] + f[x0, x1] (x − x0) + f[x0, x1, x2] (x − x0)(x − x1))dx

= f (3a + b
4
) (b − a) + (f (b + a

2
) − f (3a + b

4
)) (b − a)

+ 2

3
(f (a + 3b

4
) − 2 f (b + a

2
) + f (3a + b

4
)) (b − a)

= (2
3
f (a + 3b

4
) − 1

3
f (b + a

2
) + 2

3
f (3a + b

4
)) (b − a) .

The truncation error is given by the second integral on the right hand side of (16.24).
Since, for each x ∈ [a, b] there exists ξ ∈ [a, b] such that

∣f[x0, x1, x2, x]∣ = ∣
1

3!
f (3)(ξ)∣ < M

3!
,

we get

∣∫
b

a
(f[x0, x1, x2, x] (x − x0)(x − x1)(x − x2)) dx∣

≤ ∫
b

a
∣f[x0, x1, x2, x]∣ ∣(x − x0)(x − x1)(x − x2)∣ dx ≤

M

6 ∫
b

a
∣(x − x0)(x − x1)(x − x2)∣ dx .

Because of the symmetry of the graph of p(x) = ∣(x−x0)(x−x1)(x−x2)∣ with respect to the
vertical line x = (a + b)/2, we have

∫
b

a
∣(x − x0)(x − x1)(x − x2)∣ dx = 2∫

b

x1

∣(x − x0)(x − x1)(x − x2)∣ dx

652 16. Solutions to Selected Exercises

= −2∫
x2

x1

(x − x0)(x − x1)(x − x2)dx + 2∫
b

x2

(x − x0)(x − x1)(x − x2)dx .

Using integration by parts with u(x) = (x − x0)(x − x1) and v′(x) = x − x2, we get u′(x) =
(x − x0) + (x − x1), v(x) = (x − x2)2/2 and

∫ (x − x0)(x − x1)(x − x2)dx = u(x)v(x) − ∫ u′(x)v(x)dx

= 1

2
(x − x0)(x − x1)(x − x2)2 −

1

2 ∫
(x − x0)(x − x2)2 dx −

1

2 ∫
(x − x1)(x − x2)2 dx .

Again, using integration by parts with u(x) = (x−x0) and v′(x) = (x−x2)2 for the first integral
on the right hand side of the equation above, and u(x) = (x − x0) and v′(x) = (x − x2)2 for
the second integral on the right hand side of the equation above, we get

∫ (x − x0)(x − x1)(x − x2)dx

= 1

2
(x − x0)(x − x1)(x − x2)2 −

1

2
(1
3
(x − x0)(x − x2)3 −

1

12
(x − x2)4)

− 1

2
(1
3
(x − x1)(x − x2)3 −

1

12
(x − x2)4) +C

= 1

2
(x − x0)(x − x1)(x − x2)2 −

1

6
(x − x0)(x − x2)3 −

1

6
(x − x1)(x − x2)3 +

1

12
(x − x2)4 +C .

Hence

∫
b

a
∣(x − x0)(x − x1)(x − x2)∣ dx = −2(

1

2
(x − x0)(x − x1)(x − x2)2 −

1

6
(x − x0)(x − x2)3

− 1

6
(x − x1)(x − x2)3 +

1

12
(x − x2)4)∣

x2

x=x1

+ 2(1
2
(x − x0)(x − x1)(x − x2)2

− 1

6
(x − x0)(x − x2)3 −

1

6
(x − x1)(x − x2)3 +

1

12
(x − x2)4)∣

b

x=x2

= 2(− 1

6
(x1 − x0)(x1 − x2)3 +

1

12
(x1 − x2)4) + 2(

1

2
(b − x0)(b − x1)(b − x2)2

− 1

6
(b − x0)(b − x2)3 −

1

6
(b − x1)(b − x2)3 +

1

12
(b − x2)4)

= 2(1
4
(b − a

4
)
4

) + 2(9
4
(b − a

4
)
4

) = 5(b − a
4
)
4

.

Therefore,

∣∫
b

a
(f[x0, x1, x2, x] (x − x0)(x − x1)(x − x2)) dx∣ ≤

5M

6
(b − a

4
)
4

.

Question 12.22
a) The polynomial interpolation of f at the points x0 = −2h, x1 = −h and x2 = 0 is given by

f(x) = f[x0] + f[x0, x1](x − x0) + f[x0, x1, x2](x − x0)(x − x1)

653

+ f[x0, x1, x2, x](x − x0)(x − x1)(x − x2) .

Hence,

∫
h

0
f(x)dx = ∫

h

0
(f[x0] + f[x0, x1](x − x0) + f[x0, x1, x2](x − x0)(x − x1))dx

+ ∫
h

0
f[x0, x1, x2, x](x − x0)(x − x1)(x − x2)dx

= ∫
h

0
(f[−2h] + f[−2h,−h](x + 2h) + f[−2h,−h,0](x + 2h)(x + h))dx

+ ∫
h

0
f[−2h,−h,0, x](x + 2h)(x + h)xdx

= f[−2h]x∣
h

0

+ f[−2h,−h] (x
2

2
+ 2hx) ∣

h

0

+ f[−2h,−h,0] (x
3

3
+ 3hx2

2
+ 2h2x) ∣

h

0

+ ∫
h

0
f[−2h,−h,0, x](x + 2h)(x + h)xdx

= f[−2h]h + 5

2
f[−2h,−h]h2 + 23

6
f[−2h,−h,0]h3

+ ∫
h

0
f[−2h,−h,0, x](x + 2h)(x + h)xdx .

The formula to approximate the integral is

∫
1

0
f(x)dx ≈ f[−2h]h + 5

2
f[−2h,−h]h2 + 23

6
f[−2h,−h,0]h3

= f(−2h)h + 5

2
(f(−h) − f(−2h)
−h − (−2h)

)h2 + 23

6

⎛
⎜⎜⎜⎜
⎝

f(0) − f(−h)
0 − (−h)

− f(−h) − f(−2h)
−h − (−2h)

0 − (−2h)

⎞
⎟⎟⎟⎟
⎠

h3

= (23
12
f(0) − 4

3
f(−h) + 5

12
f(−2h))h .

Since (x + 2h)(x + h)x ≥ 0 for all x ∈ [0, h], we may use the Mean Value Theorem for
Integrals to get η ∈ [0, h] such that

∫
h

0
f[−2,−1,0, x](x + 2h)(x + h)xdx = f[−2h,−h,0, η]∫

h

0
(x + 2h)(x + h)xdx .

Moreover, from the theory on divided difference formulas, there exists ξ ∈ [−2h,h] such that

f[−2h,−h,0, η]∫
h

0
(x + 2h)(x + h)xdx = 1

3!
f (3)(ξ)∫

h

0
(x + 2h) (x + h)xdx

= 1

3!
f (3)(ξ) (9

4
) h4 = 3

8
f (3)(ξ)h4 .

Hence

∫
h

0
f(x)dx = (23

12
f(0) − 4

3
f(−h) + 5

12
f(−2h)) h + 3

8
f (3)(ξ)h4 (16.25)

654 16. Solutions to Selected Exercises

for some ξ ∈ [−2h,h].

b) To obtain a formula for ∫
b

a
f(x)dx from (16.25), we use the substitution x = a + t with

h = b − a to get

∫
b

a
f(x)dx = ∫

h

0
f(a + t)dt = (23

12
f(a) − 4

3
f(a − h) + 5

12
f(a − 2h)) h + 3

8

d3

dt3
f(a + t)∣

t=ξ
h4

= (23
12
f(a) − 4

3
f(a − h) + 5

12
f(a − 2h)) + 3

8
f (3)(a + ξ)h4 .

c) The formula in (b) can be used to approximate the solution of the initial value problem
given. If y(a), y(a−h) and y(a−2h) are known, we can used them to approximate y(a+h).
We have

∫
a+h

a
y′(x)dx = y(x)∣

a+h

x=a
= y(a + h) − y(a) .

We also have

∫
a+h

a
y′(x)dx = ∫

a+h

a
f(x, y(x))dx

≈ (23
12
f(a, y(a)) − 4

3
f(a − h, y(a − h)) + 5

12
f(a − 2h, y(a − 2h))) .

Hence,

y(a + h) ≈ y(a) + h(23
12
f(a, y(a)) − 4

3
f(a − h, y(a − h)) + 5

12
f(a − 2h, y(a − 2y))) .

Question 12.23
a) The polynomial interpolating of f at the points x0 = −2h, x1 = −h and x2 = 0 is

f(x) = f[x0] + f[x0, x1](x − x0) + f[x0, x1, x2](x − x0)(x − x1)
+ f[x0, x1, x2, x](x − x0)(x − x1)(x − x2) .

Hence,

∫
h

−h
f(x)dx = ∫

h

−h
(f[x0] + f[x0, x1](x − x0) + f[x0, x1, x2](x − x0)(x − x1))dx

+ ∫
h

−h
f[x0, x1, x2, x](x − x0)(x − x1)(x − x2)dx

= ∫
h

−h
(f[−2h] + f[−2h,−h](x + 2h) + f[−2h,−h,0](x + 2h)(x + h))dx

+ ∫
h

−h
f[−2h,−h,0, x](x + 2h)(x + h)xdx

= f[−2h]x∣
h

−h
+ f[−2h,−h] (x

2

2
+ 2hx) ∣

h

−h
+ f[−2h,−h,0] (x

3

3
+ 3hx2

2
+ 2h2x) ∣

h

−h

+ ∫
h

−h
f[−2h,−h,0, x](x + 2h)(x + h)xdx

655

= 2 f[−2h]h + 4f[−2h,−h]h2 + 14

3
f[−2h,−h,0]h3

+ ∫
h

−h
f[−2h,−h,0, x](x + 2h)(x + h)xdx .

The formula to approximate the integral is

∫
h

−h
f(x)dx ≈ 2 f[−2h]h + 4f[−2h,−h]h2 + 14

3
f[−2h,−h,0]h3

= 2 f(−2h)h + 4(f(−h) − f(−2h)
−h − (−2h)

)h2 + 14

3

⎛
⎜⎜⎜⎜
⎝

f(0) − f(−h)
0 − (−h)

− f(−h) − f(−2h)
−h − (−2h)

0 − (−2h)

⎞
⎟⎟⎟⎟
⎠

h3

= (7
3
f(0) − 2

3
f(−h) + 1

3
f(−2h))h .

Since (x + 2h)(x + h)x changes sign at x = 0 on the interval [−h,h], we may not directly
use the Mean Value Theorem for Integrals to simplify the truncation error. However, from

f[x0, x1, x2, x2, x] =
f[x0, x1, x2, x] − f[x0, x1, x2, x2]

x − x2
,

we get
f[−2h,−h,0, x] = f[−2h,−h,0,0, x]x + f[−2h,−h,0,0] .

Hence,

∫
h

−h
f[−2h,−h,0, x](x + 2h)(x + h)xdx

= ∫
h

−h
(f[−2h,−h,0,0, x]x + f[−2h,−h,0,0]) (x + 2h)(x + h)xdx

= ∫
h

−h
f[−2h,−h,0,0, x](x + 2h)(x + h)x2 dx + f[−2h,−h,0,0]∫

h

−h
(x + 2h)(x + h)xdx .

The second integral can be easily computed. For the first integral, Since (x+2h)(x+h)x2 is
non-negative on the interval [−h,h], we may use the Mean Value Theorem for Integrals to
get η ∈ [−h,h] such that

∫
h

−h
f[−2h,−h,0,0, x](x + 2h)(x + h)x2 dx = f[−2h,−h,0,0, η]∫

h

−h
(x + 2h)(x + h)x2 dx .

Hence,

∫
h

−h
f[−2h,−h,0, x](x + 2h)(x + h)xdx

= f[−2h,−h,0,0, η]∫
h

−h
(x + 2h)(x + h)x2 dx + f[−2h,−h,0,0]∫

h

−h
(x + 2h)(x + h)xdx

= 26

15
f[−2h,−h,0,0, η]h5 + 2f[−2h,−h,0,0]h4 .

656 16. Solutions to Selected Exercises

Moreover, from the theory on divided difference formulas, there exists ξ1, ξ2 ∈ [−2h,h] such
that f[−2h,−h,0,0, η] = 1

4!
f (4)(ξ1) and f[−2h,−h,0,0] =

1

3!
f (3)(ξ2). The truncation error is

therefore

∫
h

−h
f[−2h,−h,0, x](x + 2h)(x + h)xdx = (26

15
) 1

4!
f (4)(ξ1)h5 + 2

1

3!
f (3)(ξ2)h4

= 13

180
f (4)(ξ1)h5 +

1

3
f (3)(ξ2)h4 .

Hence,

∫
h

−h
f(x)dx = (7

3
f(0) − 2

3
f(−h) + 1

3
f(−2h)) h + 13

180
f (4)(ξ1)h5 +

1

3
f (3)(ξ2)h4 . (16.26)

b) To obtain a formula for ∫
b

a
f(x)dx from (16.26), we use the substitution x = b + a

2
+ t

with h = b − a
2

to get

∫
b

a
f(x)dx = ∫

h

−h
f (b + a

2
+ t) dt

= (7
3
f (a + b

2
) − 2

3
f(a) + 1

3
f (3a − b

2
))(b − a

2
)

+ 13

180

d4

dt4
f (b + a

2
+ t)∣

t=ξ1
(b − a

2
)
5

+ 1

3

d3

dt3
f (b + a

2
+ t)∣

t=ξ2
(b − a

2
)
4

= (7
6
f (b + a

3
) − 1

3
f(a) + 1

6
f (3a − b

2
)) (b − a)

+ 13

5960
f (4) (b + a

2
+ ξ1) (b − a)5 +

1

48
f (3) (b + a

2
+ ξ2) (b − a)4 .

Question 12.24
It suffices to show that there exist c1, c2, . . . , ck such that (12.9.7) is true for p(x) = xm with
0 ≤m < k. Namely,

∫
b

a
xmw(x)dx =

k

∑
j=1

cj x
m
j

for 0 ≤m < k. This can be rewritten as the system of linear equations Ac = d, where

A =
⎛
⎜⎜⎜
⎝

1 1 . . . 1
x1 x2 . . . xk
⋮ ⋮ ⋱ ⋮

xk−11 xk−12 . . . xk−1k

⎞
⎟⎟⎟
⎠
, c =

⎛
⎜⎜⎜
⎝

c1
c2
. . .
ck

⎞
⎟⎟⎟
⎠

and d =

⎛
⎜⎜⎜⎜⎜
⎝

∫
b

a w(x)dx

∫
b

a xw(t)dx
⋮

∫
b

a x
k−1w(x)dx

⎞
⎟⎟⎟⎟⎟
⎠

.

This system has a unique solution because A is an invertible Vandermonde matrix. In fact,
one can show that the determinant of the matrix A above is ∏

0<i<j≤k
(xj − xi).

657

Question 12.25
Let p be a polynomial of degree less than k +m. By the Euclidean division algorithm, we
get p = Pq + r, where q and r are polynomials of degree less than m. Hence,

∫
b

a
p(x)w(x)dx = ∫

b

a
P (x) q(x)w(x)dx + ∫

b

a
r(x)w(x)dx = ∫

b

a
r(x)w(x)dx (16.27)

because ⟨P, q⟩ = 0 since q is of degree less than m. Moreover,

k

∑
j=1
cj p(xj) =

k

∑
j=1
cj P (xj) q(xj) +

k

∑
j=1
cj r(xj) =

k

∑
j=1
cj r(xj) (16.28)

because x1, x2, . . . , xk are the roots of P by hypothesis. Finally, because (12.9.7) is true for
polynomials of degree less than k if the coefficients ci are defined by (12.7.2), we have

∫
b

a
r(x)w(x)dx =

k

∑
j=1
cj r(xj) (16.29)

since r is of degree less than m ≤ k. It follows from (16.27), (16.28) and (16.29) that

∫
b

a
p(t)w(t)dx =

k

∑
j=1
cj p(xj)

for any polynomial of degree less than k +m.

We now prove that the quadrature formula is not true for all polynomial of degree k +m.
Let p(x) = xmP (x) + r(x), where r is a polynomial of degree less than m. The equations
(16.28) and (16.29) are still true if we replace q(x) by xm. So

∫
b

a
r(x)w(x)dx =

k

∑
j=1
cj p(xj) .

However,

∫
b

a
p(x)w(x)dx = ∫

b

a
xmP (x)w(x)dx

´¹¹¸¹¹¶
≠0

+∫
b

a
r(x)w(x)dx ≠ ∫

b

a
r(x)w(x)dx =

k

∑
j=1
cj p(xj) .

Question 12.26
If f is q-time continuously differentiable on an open interval containing [a, b], it follows from
Taylor’s Theorem, Theorem 2.1.6, that f(x) = p(x) + r(x), where

p(x) =
q−1
∑
j=0

f (j)(a)
j!

(x − a)j and r(x) = f
(q)(ξ(x))
q!

(x − a)q

for some ξ(x) between a in x. Thus,

∫
b

a
f(x)w(x)dx = ∫

b

a
p(x)w(x)dx + ∫

b

a
r(x)w(x)dx =

k

∑
j=1
bjp(xj) + ∫

b

a
r(x)w(x)dx

658 16. Solutions to Selected Exercises

because p is a polynomial of degree at most q − 1. Moreover

∫
b

a
r(x)w(x)dx = 1

q! ∫
b

a
f (q)(ξ(x)) (x − a)qw(x)dx = 1

q!
f (q)(ξ(c))∫

b

a
(x − a)qw(x)dx

= 1

q!
f (q)(ξ(c)) (b − a)q+1∫

1

0
sqw(a + (b − a)s)ds

for c ∈ [a, b], where we have used the Mean Value Theorem for Integrals, Theorem 12.3.1, to
get the second equality and the substitution x = a + (b − a)s to get the last one. Finally, we
also have

k

∑
j=1

bj f(cj) =
k

∑
j=1

bj p(cj) +
k

∑
j=1

bj r(cj) =
k

∑
j=1

bj p(cj) +
1

q!

k

∑
j=1

bj f
(q)(ξ(cj)) (cj − a)q .

Therefore,

∣∫
b

a
f(x)w(x)dx −

k

∑
j=1

bj f(cj)∣

= ∣ 1
q!
f (q)(ψ(x)) (b − a)q+1∫

1

0
sqw(a + (b − a)s)ds − 1

q!

k

∑
j=1

bj f
(q)(ξ(cj)) (cj − a)q∣

≤ 1

q!
max
a≤x≤b
∣f (q)(x)∣ (b − a)q+1∫

1

0
sqw(a + (b − a)s)ds + 1

q!
max
a≤x≤b
∣f (q)(x)∣ (b − a)q

k

∑
j=1
∣bj ∣

=K(b − a)q max
a≤x≤b
∣f (q)(x)∣ ,

where

K = 1

q!
((b − a)∫

1

0
sqw(a + (b − a)s)ds +

k

∑
j=1
∣bj ∣) .

Question 12.28
To use Gauss-Legendre quadrature, we need to transform the intergral between 1 and 3 into
an integral between −1 and 1. For this purpose, we use the change of variable y = (x−M)/L,
where M = 2 is the middle of the interval [1,3] and L = 1 is half the length of the interval
[1,3]. Thus y = x − 2 and, if we solve for x, we get x = y + 2. The integral (12.9.8) becomes

∫
3

1
x2 ln(x)dx = ∫

1

−1
(y + 2)2 ln(y + 2)dy ≈

5

∑
j=1

cj(yj + 2)2 ln(yj + 2) ≈ 2.4040942246 ,

where yi and ci are given in the following table.

n roots yj coefficients cj
5 −0.9061798459 0.2369268851
−0.5384693101 0.4786286705

0.0 0.5688888889
0.5384693101 0.4786286705
0.9061798459 0.2369268851

659

Question 12.29
Because of the factor

√
(x − 2)(3 − x) in the denominator of the integrand, Gauss-Chebyshev

quadrature is a possible choice.

To transform the integral from an integral between 2 and 3 to an integral between −1 and
1, we use the substitution t = (x − 5/2)/(1/2). So x = t/2 + 5/2, dx = (1/2)dt and

∫
3

2

sin(x)√
(x − 2)(3 − x)

dx = ∫
1

−1

sin(t/2 + 5/2)√
1 − t2

dt ≈ π
3

3

∑
j=1

sin(1
2
cos((2j − 1)π

6
) + 5

2
)

≈ 1.7644706129 .

Question 12.32
Because of the factor

√
x(1 − x) in the denominator of the integrand, Gauss-Chebyshev

quadrature is a possible choice.

To transform the integral from an integral between 0 and 1 to an integral between −1 and
1, we use the substitution x = (t + 1)/2. We get

∫
1

0

ex√
x(1 − x)

dx = ∫
1

−1

e(t+1)/2√
1 − t2

dt ≈ π
3

3

∑
i=1

e(cos((2i−1)π/6)+1)/2 ≈ 5.50842622975 .

Question 12.34
Because of the factor

√
(1 − x)(3 + x) in the denominator of the integrand, Gauss-Chebyshev

quadrature is a possible choice.

Since we want the exact answer and the numerator of the integrand is a polynomial of
degree 4, we have to take n equal to at least 3 as suggested by Theorem 12.7.5.

To transform the integral from an integral between −3 and 1 to an integral between −1
and 1, we use the substitution t = (x + 1)/2. We get x = 2t − 1 and

∫
1

−3

(1 + x)4√
(1 − x)(3 + x)

dx = 2∫
1

−1

(2t)4√
(2 − 2t)(2 + 2t)

dx = 16 ∫
1

−1

t4√
1 − t2

dx

= 16π

3

3

∑
j=1

cos4 ((2j − 1)π
6

) = 16π

3

⎛
⎝
(−
√
2

3
)
4

+ (
√
2

3
)
4⎞
⎠
= 128π

243
.

Question 12.36
We have to find polynomials Pk of degree exactly k such that the set {P0, P1, P2, . . .} is an
orthogonal set with respect to the scalar product

⟨g, h⟩ = ∫
1

0
g(x)h(x)xdx .

To generate the family of orthogonal polynomials, we use Theorem 8.2.3 with αk,k = 1 for all

k and w(x) = x for 0 ≤ x ≤ 1. Let P0(x) = 1 for all x. Since A0 = 1 and B0 = ∫
1

0 x
2 dx

∫
1

0 xdx
= 2

3
,

we get

P1(x) = (x −B0)P0(x) = x −
2

3
.

660 16. Solutions to Selected Exercises

Since A1 = 1, B1 = ∫
1

0 x
2(x − 2/3)2 dx

∫
1

0 x(x − 2/3)2 dx
= 8

15
and C1 = ∫

1

0 x(x − 2/3)2 dx

∫
1

0 xdx
= 1

18
, we get

P2(x) = (x −B1)P1(x) −C1P0(x) = (x −
8

15
)(x − 2

3
) − 1

18
= x2 − 6

5
x + 3

10
.

According to Theorem 12.7.5, we do not need higher degree polynomials since we want a
Gaussian quadrature formula which is exact for polynomials of degree up to 3 only.

The roots of P2 are x1 = (6 −
√
6)/10 and x2 = (6 +

√
6)/10.

The coefficients of (12.9.9) are

A = ∫
1

0
(x − x2
x1 − x2

)xdx = x
3/3 − x2x2/2
x1 − x2

∣
1

x=0
= 9 −

√
6

36

and

B = ∫
1

0
(x − x1
x2 − x1

)xdx = x
3/3 − x1x2/2
x2 − x1

∣
1

x=0
= 9 +

√
6

36
.

It follows from Theorem 12.7.5 that (12.9.9) with the choice of x1, x2, A and B above is
exact for polynomials of degree up to 3.

Question 12.37
We have to find polynomials Pk of degree exactly k such that the set {P0, P1, P2, . . .} is an
orthogonal set with respect to the scalar product

⟨g, h⟩ = ∫
1

0
g(x)h(x)x2 dx.

To generate the family of orthogonal polynomials, we use Theorem 8.2.3 with αk,k = 1 for all

k and w(x) = x2 for 0 ≤ x ≤ 1. Let P0(x) = 1 for all x. Since A0 = 1 and B0 = ∫
1

−1 x
3 dx

∫
1

−1 x
2 dx

= 0,

we get
P1(x) = (x −B0)P0(x) = x .

Since A1 = 1, B1 = ∫
1

−1 x
5 dx

∫
1

−1 x
4 dx
= 0 and C1 = ∫

1

−1 x
4 dx

∫
1

−1 x
2 dx
= 3

5
, we get

P2(x) = (x −B1)P1(x) −C1P0(x) = x2 −
3

5
.

According to Theorem 12.7.5, we do not need higher degree polynomials since we want a
Gaussian quadrature formula which is exact for polynomials of degree up to 3 only.

The roots of P2 are x1 = −
√
3/5 and x2 =

√
3/5.

The coefficients of (12.9.10) are

A = ∫
1

−1

x − x2
x1 − x2

x2 dx = x
4/4 − x2x3/3
x1 − x2

∣
1

x=−1
= 1

3

661

and

B = ∫
1

−1

x − x1
x2 − x1

x2 dx = x
4/4 − x1x3/3
x2 − x1

∣
1

x=−1
= 1

3
.

It follows from Theorem 12.7.5 that (12.9.9) with the choice of x1, x2, A and B above is
exact for polynomials of degree up to 3.

Question 12.38
Recall that the Gauss-Chebyshev quadrature with n > 0 is given by the the formula

∫
b

a
f(x)dx ≈ ∫

b

a
p(x)dx , (16.30)

where p is the interpolating polynomial of degree n of f at the n+1 Chebishev points adjusted
to the interval [a, b]; namely, at the points

xj =
a + b
2
+ b − a

2
cos((2j − 1)π

2(n + 1)
)

for j = 1, 2, . . . , n + 1.

If we substitute x = a + b
2
+ b − a

2
t in the integrals in (16.30), we get

∫
b

a
f(x)dx = b − a

2 ∫
1

−1
f (a + b

2
+ b − a

2
t) dt

and

∫
b

a
p(x)dx = b − a

2 ∫
1

−1
p(a + b

2
+ b − a

2
t) dt .

p(a + b
2
+ b − a

2
t) is the interpolating polynomial of f (a + b

2
+ b − a

2
t) at the Chebyshev

points ti = cos(
(2i − 1)π
2(n + 1)

) for 1 ≤ i ≤ n + 1. From Proposition 9.2.6, we have that

∣f (a + b
2
+ b − a

2
t) − p(a + b

2
+ b − a

2
t)∣ ≤ 1

2n(n + 1)!
max
−1≤t≤1

∣ d
(n+1)

dt(n+1)
f (a + b

2
+ b − a

2
t)∣

≤ 1

2n(n + 1)!
max
−1≤t≤1

∣f (n+1) (a + b
2
+ b − a

2
t)∣ (b − a

2
)
n+1

≤ 1

2n(n + 1)!
max
a≤x≤b
∣f (n+1)(x)∣ (b − a

2
)
n+1
≤ M(b − a)

n+1

22n+1(n + 1)!

for −1 ≤ x ≤ 1. Hence

∣∫
b

a
f(x)dx − ∫

b

a
p(x)dx∣ = ∣b − a

2 ∫
1

−1
(f (a + b

2
+ b − a

2
t) − p(a + b

2
+ b − a

2
t)) dt∣

662 16. Solutions to Selected Exercises

≤ b − a
2 ∫

1

−1
∣f (a + b

2
+ b − a

2
t) − p(a + b

2
+ b − a

2
t)∣ dt

≤ b − a
2 ∫

1

−1

M(b − a)n+1
22n+1(n + 1)!

dt = M(b − a)
n+2

22n+1(n + 1)!
dt .

Question 12.39

Let q be any polynomial of degree less than n, then f(x) = q(x)
n

∏
j=1
(x − xj) is a polynomial

of degree less than 2n. By hypothesis, we then have

∫
b

a
f(x)w(x)dx =

n

∑
i=1
ai f(xi) =

n

∑
i=1

⎛
⎜⎜
⎝
ai q(xi)

n

∏
j=1
(xi − xj)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 for j=i

⎞
⎟⎟
⎠
= 0 .

Question 12.40

Consider the polynomial of degree 2n defined by f(x) =
n

∏
i=1
(x−xi)2. If (12.9.11) is exact for

polynomials of degree 2n, we must have

∫
b

a
f(x)w(x)dx =

n

∑
j=1
cj f(xj) =

n

∑
j=1

⎛
⎜⎜
⎝
cj

n

∏
i=1
(xj − xi)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 for j=i

⎞
⎟⎟
⎠
= 0 .

But this is not possible because the integral cannot be null since f is a continuous function
such that f(x) > 0 for all x ∈ [a, b] ∖ {x1, x2, . . . , xn} and w(x) > 0 almost everywhere.

Chapter 13 : Initial Value Problems for Ordinary Dif-

ferential Equations

Question 13.1
a) Let f(t, y) = t2 sin(y) + y. The function f is obviously continuous.

According to the Mean Value Theorem, given any y1, y2 ∈ R, there exists ξ between y1
and y2 such that

f(t, y1) − f(t, y2) =
∂f

∂y
(t, ξ) (y1 − y2) = (t2 cos(ξ) + 1) (y1 − y2) .

Since ∣t2 cos(y) + 1∣ ≤ 2 for all (t, y) ∈D = {(t, y) ∶ 0 ≤ t ≤ 1 and y ∈ R}, we get

∣f(t, y1) − f(t, y2)∣ ≤ 2∣y1 − y2∣

for all (t, y) ∈D. Thus, f satisfies a Lipschitz condition with respect to y on D with Lipschitz
constant L = 2.

It follows from Theorem 13.1.3 that the initial value problem is well posed.

663

Question 13.3
a) Let f(t, y) = (y + t)/t = 1 + y/t. The function f is obviously a continuous function for
(t, y) ∈ D = {(t, y) ∶ 1 ≤ t ≤ 2 and y ∈ R}. Moreover, f satisfies a Lipschitz condition with
respect to y on D with Lipschitz constant L = 1 because

∣f(t, y1) − f(t, y2)∣ = ∣
y1 − y2
t
∣ ≤ ∣y1 − y2∣

for (t, y) ∈D. It follows from Theorem 13.1.3 that the initial value problem is well posed.

b) Let ui be the computed value for wi, where wi is the approximation of y(ti) given by the
Euler Method (Definition 13.2.1). Let ei = y(ti) − ui. It follows from (13.2.6) that

∣ei∣ ≤
1

L
(Mh

2
+ δ
h
) (eL(ti−t0) − 1) + ∣δ0∣ eL(ti−t0) ≤ (

Mh

2
+ 10−8

h
) (eti−t0 − 1) + 10−8 eti−t0 ,

where M ≥ ∣y′′(t)∣ for 1 ≤ t ≤ 2. To minimize the right side of this inequality with respect to

h, we have to minimize g(h) = Mh

2
+ 10−8

h
.

In general, it is not easy to find a possible value for M . Fortunately, for the present
problem, we can. y′ = 1+y/t is a linear ordinary differential equation of the form y′ +p(t)y =
q(t) with p(t) = −1/t and q(t) = 1. Its general solution is

y(t) = e− ∫ p(t)dt (∫ q(t) e∫ p(t)dt dt +C) = e− ∫ (−1/t)dt (∫ e∫ (−1/t)dt dt +C)

= t (∫
1

t
dt +C) = t (ln(t) +C) .

The initial condition y(1) = 0 implies that C = 0. We get y(t) = t ln(t). For 1 ≤ t ≤ 2, we
have ∣y′′(t)∣ = ∣1/t∣ ≤ 1. Thus, we may take M = 1.

We have to minimize g(h) = h
2
+ 10

−8

h
for h > 0. We deduce from the following information

about g that it has a global minimum for h > 0 at h =
√
2/104.

h 0 < h <
√
2/104

√
2/104

√
2/104 < h

g′(h) − 0 +
decreases global min. increases

Thus, h =
√
2/104 minimizes the error bound for the Euler Method.

c) We use the Euler Method with t0 = 1, tf = 2, y0 = 0 and f(t, y) = 1 + y/t. Since
(tf − t0)/h = 104/

√
2 ≈ 7071.0678 is an irrational number, we round up to the next integer to

get N = 7072. Hence, h = 1/7072 and ti = t0 + ih for 0 ≤ i ≤ 7072. The approximation wi of
yi = y(ti) is given by

w0 = 0
wi+1 = wi + h(1 +wi/ti)

for i = 0, 1, . . . , 7071. The graph of the computed solution is basically indistinguishable
from the graph of the solution.

664 16. Solutions to Selected Exercises

The graph of the computed solution is in blue and the graph of the exact solution (drawn
after the graph of the computed solution) is in red. The graph of the exact solution basically
covers the graph of the computed solution.

d) The predicted error bound at t = 2 is given by

∣ei∣ ≤ (
h

2
+ 10−8

h
) (eti−t0 − 1) + 10−8 eti−t0

with i = 7072 and h = 1/7072. Hence ti = t7072 = 2, t0 = 1 and

∣e7072∣ ≤ (
1

14144
+ 7072

108
) (e − 1) + e

108
≈ 2.4303 × 10−4 .

Since u7072 ≈ 1.3862237 and y7072 = y(2) ≈ 1.3862944, the actual error is ∣e7072∣ = ∣u7072 −
y7072∣ ≈ 0.707 × 10−4. Our predicted error bound is fairly conservative.

Question 13.4
Here is a need trick to solve (13.8.1). If u = t − y, the initial value problem (13.8.1) becomes

u′ = −u2 , 2 ≤ t ≤ 3
u(2) = 1

This is a separable equation whose solution is u(t) = 1

t − 1
for t ≠ 1. Thus, the solution of

(13.8.1) is y(t) = t − 1

t − 1
for t ≠ 1.

We have t0 = 2, tf = t10 = 3, y0 = 1 and f(t, y) = 1+(t−y)2. Since h = (tf−t0)/N = 1/N = 0.1,
we get N = 10. Thus tj = t0 + hi = 1 + 0.1i for 0 ≤ i ≤ 10. The approximations wi of

yi = y(ti) are given by wi+1 = wi +
h

6
(K1 + 2K2 + 2K3 +K4) for i ≥ 0 with w0 = 1, where

K1 = 1+(ti−wi)2, K2 = 1+((ti+0.05)−(wi+0.05K1))
2
, K3 = 1+((ti+0.05)−(wi+0.05K2))

2

and K4 = 1 + (ti+1 − (wi + 0.1K3))
2
.

665

The results are listed in the table below.

i ti wi yi absolute relative
error error

0 2 1 1 0 0
1 2.1 1.1909088 1.1909091 0.27724131 × 10−6 0.23279805 × 10−6
2 2.2 1.3666663 1.3666667 0.39550974 × 10−6 0.28939737 × 10−6
3 2.3 1.5307688 1.5307692 0.43652252 × 10−6 0.28516546 × 10−6
4 2.4 1.6857138 1.6857143 0.43960705 × 10−6 0.26078384 × 10−6
5 2.5 1.8333329 1.8333333 0.42439920 × 10−6 0.23149047 × 10−6
6 2.6 1.9749996 1.9750000 0.40094917 × 10−6 0.20301224 × 10−6
7 2.7 2.1117643 2.1117647 0.37446319 × 10−6 0.17732240 × 10−6
8 2.8 2.2444441 2.2444444 0.34762766 × 10−6 0.15488361 × 10−6
9 2.9 2.3736839 2.3736842 0.32179057 × 10−6 0.13556587 × 10−6
10 3 2.4999997 2.5 0.29758023 × 10−6 0.11903209 × 10−6

Question 13.6
a) The Butcher array is

α1 = β β1,1 = β β1,2 = 0
α2 = 1 + β β2,1 = 1 β2,2 = β

γ1 = β + 1/2 γ2 = −β + 1/2

b) We answer this question using Tables 13.1 and 13.3.

i) Tree of order one: τ = r
γ(τ) = 1 and Ψ(τ) =

2

∑
j=1
γj = 1. So Ψ(τ) = 1/γ(τ).

ii) Tree of order two: τ = r
r

γ(τ) = 2 and Ψ(τ) =
2

∑
j=1
γjαj = (β +

1

2
)β + (−β + 1

2
) (1 + β) = 1

2
. So Ψ(τ) = 1/γ(τ).

iii) Trees of order three: τ1 = r
r r
❆
❆
❆

✁
✁
✁

γ(τ1) = 3 and Ψ(τ1) =
2

∑
j=1
γjα

2
j = (β +

1

2
)β2 + (−β + 1

2
) (1 + β)2 = 1

2
− β2. So Ψ(τ1) =

1/γ(τ1) only if
1

2
− β2 = 1

3
; namely, only if β = ± 1√

6
.

τ2 = r
r

r

❆
❆
❆
✁
✁
✁

666 16. Solutions to Selected Exercises

γ(τ2) = 6 and Ψ(τ2) =
2

∑
j1=1
(γj1 (

2

∑
j2=1

βj1,j2αj2)) = (β +
1

2
)β2 + (−β + 1

2
) (β + β(1 + β)) =

β − β2. So Ψ(τ2) = 1/γ(τ2) only if β − β2 = 1

6
; namely, only if β = 1

2
(1 ± 1√

3
).

Since no value of β can simultaneously satisfy Ψ(τj) = 1/γ(τj) for j = 1 and j = 2, it
follows from Theorem 13.4.32 that the method is of order two. We note that the condition
Ψ(τ) = 1/γ(τ) for the trees of order one and two does not depend on β.

c) According to (13.4.13), the local truncation error is

τi+1(h) =
h2

3!
∑

r(τ)=3
α(τ) (1 − γ(τ)Ψ(τ))F (τ) +O(h3)

= h
2

6
((1 − 3(1

2
− β2)){f f} + (1 − 6(β − β2)) {{f}}) +O(h3) ,

where the derivatives of f are evaluated at y(ti).
d) For the initial value problem (13.8.2), we have that f(y) = Ay is a linear mapping. Thus
{f f} = 0 and the local truncation error is now

τi+1(h) =
h2

6
(1 − 6(β − β2)) {{f}} +O(h3) .

It suffices to take one of the two possibles value for β = 1

2
(1 ± 1√

3
) to get a method of order

(at least) three for this initial value problem.

e) We have

K1 = A(wi + βhK1) = Awi + βhAK1⇒ (Id−βhA)K1 = Awi⇒K1 = (Id−βhA)−1Awi

and

K2 = A(wi + hK1 + βhK2) = Awi + hAK1 + βhAK2⇒ (Id−βhA)K2 = Awi + hAK1

⇒K2 = (Id−βhA)−1 (Awi + +hAK1) = (Id−βhA)−1 (Awi + hA(Id−βhA)−1Awi)
= (Id−βhA)−1 (A + hA2(Id−βhA)−1)wi

because (Id−βhA)−1A = A(Id−βhA)−1. Thus

wi+1 =wi + h(
1

2
+ β) (Id−βhA)−1Awi + h(

1

2
− β) (Id−βhA)−1 (A + hA2(Id−βhA)−1)wi

= R(hA,β)wi ,

where

R(Z,β) = 1 + (1
2
+ β) (Id−βZ)−1Z + (1

2
− β) (Id−βZ)−1 (Z +Z2(Id−βZ)−1) .

667

Question 13.7
We assume that f(t, y) is twice continuously differentiable. So y′′′(t) is continuous. The
local truncation error is given by

τi+1(h) =
y(ti+1) − y(ti)

h
− 1

2
(f(ti, y(ti)) + f(ti+1, y(ti+1))) .

Since y(ti+1) = y(ti)+y′(ti)h+y′′(ti)
h2

2
+y′′′(ξi)

h3

3!
, f(ti, y(ti)) = y′(ti) and f(ti+1, y(ti+1)) =

y′(ti+1) = y′(ti) + y′′(ti)h + y′′′(ηi)
h2

2
for some ξi and ηi, we get

τi+1(h) =
1

h
(y(ti) + y′(ti)h + y′′(ti)

h2

2
+ y′′′(ξi)

h3

3!
− y(ti))

− 1

2
(y′(ti) + y′(ti) + y′′(ti)h + y′′′(ηi)

h2

2
) = y′′′(ξi)

h2

3!
− y′′′(ηi)

h2

4
.

If M = max
t0≤t≤tf

∣y′′′(t)∣, we get

∣τi+1(h)∣ ≤ ∣y′′′(ξi)∣
h2

3!
+ ∣y′′′(ηi)∣

h2

4
≤ 5

12
Mh2

for 0 ≤ i ≤ N = (tf − t0)/h. The method is of order 2 because τi+1(h) = O(h2). The method
is consistent because

max
0≤i≤N

∣τi+1(h)∣ ≤
5

12
Mh2 → 0

as h→ 0.

Question 13.8
We have

w2i+2 = w2i+1 +
h

2
(f(t2i+1,w2i+1) + f(t2i+2,w2i+2))

= (w2i +
h

2
(f(t2i,w2i) + f(t2i+1,w2i+1))) +

h

2
(f(t2i+1,w2i+1) + f(t2i+2,w2i+2))

= w2i +
h

2
(f(t2i,w2i) + 2f(t2i+1,w2i+1) + f(t2i+2,w2i+2)) .

Let h̃ = 2h, t̃i = t2i and w̃i = w2i. We get

w̃i+1 = w̃i +
h̃

4
(K1 + 2K2 +K3) , (16.31)

where

K1 = f(t̃i, w̃i) , K2 = f(t2i+1,w2i+1) = f (t̃i +
h̃

2
, w̃i +

h̃

4
(K1 +K2))

and

K3 = f(t̃i+1, w̃i+1) = f (t̃i + h̃, w̃i +
h̃

4
(K1 + 2K2 +K3)) .

668 16. Solutions to Selected Exercises

Note that

w2i+1 = w2i +
h

2
(f(t2i,w2i) + f(t2i+1,w2i+1)) = w̃i +

h̃

4
(K1 +K2)

and w2i+2 = w̃i+1.

The Butcher array of this Runge-Kutta Method is

0 0
1/2 1/4 1/4
1 1/4 1/2 1/4

1/4 1/2 1/4

Since the trapezoidal method is of order two, we have

y2i+1 − y2i
h

− 1

2
(f(t2i, y2i) + f(t2i+1, y2i+1)) = O(h2)

and
y2i+2 − y2i+1

h
− 1

2
(f(t2i+1, y2i+1) + f(t2i+2, y2i+2)) = O(h2) .

The sum of these two equations yields

y2i+2 − y2i
h

− 1

2
(f(t2i, y2i) + 2f(t2i+1, y2i+1) + f(t2i+2, y2i+2)) = O(h2) .

With ỹi = y(t̃i) = y(t2i) = y2i, the previous equation becomes

ỹi+2 − ỹi
h̃

− 1

4
(K̃1 + 2K̃2 + K̃3) = O(h2) ,

where K̃1 = f(t̃i, ỹi), K̃2 = f(t2i+1, y2i+1) = f (t̃i +
h̃

2
, ỹ1 +

h̃

4
(K̃1 + K̃2)) and

K̃3 = f(t2i+2, y2i+2) = f (t̃i + h̃, ỹi +
h̃

4
(K̃1 + 2K̃2 + K̃3)). This is (16.31) where w̃i has been

replaced by ỹi. Hence, the Runge-Kutta Method (16.31) is of order at least two.

Using the Taylor polynomial expansion (Theorem 2.1.6) of y(ti+2), y′(ti+1) = f(ti+1, yi+1)
and y′(ti+2) = f(ti+2, yi+2) about ti, we can show that the order is in fact two.

Question 13.9
We use Theorem 13.4.11 to find the elements of the Butcher array of this 2-stage Runge-
Kutta Method.

β1,1 = ∫
1/3

0

t − 2/3
1/3 − 2/3

dt = −3∫
1/3

0
(t − 2

3
) dt = 1

2
,

β1,2 = ∫
1/3

0

t − 1/3
2/3 − 1/3

dt = 3∫
1/3

0
(t − 1

3
) dt = −1

6
,

β2,1 = ∫
2/3

0

t − 2/3
1/3 − 2/3

dt = −3∫
2/3

0
(t − 2

3
) dt = 2

3
,

669

β2,2 = ∫
2/3

0

t − 1/3
2/3 − 1/3

dt = 3∫
2/3

0
(t − 1

3
) dt = 0 ,

γ1 = ∫
1

0

t − 2/3
1/3 − 2/3

dt = −3∫
1

0
(t − 2

3
) dt = 1

2

and

γ2 = ∫
1

0

t − 1/3
2/3 − 1/3

dt = 3∫
1

0
(t − 1

3
) dt = 1

2
.

Hence, the Butcher array is
1/3 1/2 −1/6
2/3 2/3 0

1/2 1/2

Let

q(t) = (t − 1

3
)(t − 2

3
) .

Since

∫
1

0
q(t)dt = (t

3

3
− t

2

2
+ 2t

9
) ∣

1

t=0
= 1

18
≠ 0 ,

it follows from Theorem 13.4.15 that the Runge-Kutta Method given by the Butcher array
above is of order two.

If α1 and α2 are the roots of the Legendre polynomial t2− t+1/6, then the 2-stage Runge-
Kutta Method given by the collocation method is of order 4. More details are given in
Examples 13.4.17 and 13.4.34.

Question 13.10
i) Let’s suppose that the method is given by a collocation method. It follows from Re-
mark 13.4.12 that

∫
αi

0
q(t)dt =

k

∑
j=1
βi,j q(aj) and ∫

1

0
q(t)dt =

k

∑
j=1
γj q(aj) (16.32)

for all polynomial of degree less than k and 1 ≤ i ≤ k. If q(t) = tn−1 with 1 ≤ n ≤ k, then
(16.32) yields

k

∑
j=1
βi,j a

n−1
j = ∫

αi

0
tn−1 dt =

αn
i

n
and

k

∑
j=1
γj a

n−1
j = ∫

1

0
tn−1 dt = 1

n

for 1 ≤ i ≤ k. Thus, we get (13.8.3).

ii) Let’s suppose that (13.8.3) is satisfied. If q(t) =
k−1
∑
m=0

amt
m, then

∫
αi

0
q(t)dt =

k−1
∑
m=0

am∫
αi

0
tm dt =

k−1
∑
m=0

am (
αm+1
i

m + 1
) =

k−1
∑
m=0

am (
k

∑
j=1

βi,jα
m
j)

670 16. Solutions to Selected Exercises

=
k

∑
j=1

βi,j (
k−1
∑
m=0

amα
m
j) =

k

∑
j=1

βi,jq(αj)

for 1 ≤ i ≤ k and

∫
1

0
q(t)dt =

k−1
∑
m=0

am∫
1

0
tm dt =

k−1
∑
m=0

am (
1

m + 1
) =

k−1
∑
m=0

am (
k

∑
j=1

γjα
m
j)

=
k

∑
j=1

γj (
k−1
∑
m=0

amα
m
j) =

k

∑
j=1

γjq(αj) .

Thus, (16.32) is satisfied.

Since αi ≠ αj for i ≠ j, any polynomial q of degree less than k has a unique representation

of the form q(t) =
k

∑
j=1
q(αj) ℓj(t), where ℓj(t) is defined in Theorem 13.4.11. Hence,

∫
αi

0
q(t)dt =

k

∑
j=1
q(αj)∫

αi

0
ℓj(t)dt and ∫

1

0
q(t)dt =

k

∑
j=1
q(αj)∫

1

0
ℓj(t)dt (16.33)

for all polynomial of degree less than k and 1 ≤ i ≤ k.
Combining (16.32) and (16.33), we get

k

∑
j=1
q(αj) (βi,j − ∫

αi

0
ℓj(t)dt) = 0 , 1 ≤ i ≤ k , (16.34)

and

k

∑
j=1
q(αj) (γj − ∫

1

0
ℓj(t)dt) = 0 (16.35)

for all polynomial of degree less than k.

Let A be the k × k matrix with the components an+1,j = αn
j for 0 ≤ n < k and 1 ≤ j ≤ k.

Since the αj are distinct, A is a non-singular matrix. In fact, A is a invertible Vandermonde

matrix. For 1 ≤ i ≤ k, Let w[i] be the vector with components w
[i]
j = βi,j − ∫

αi

0
ℓj(t)dt for

1 ≤ j ≤ k. Moreover, let w[k+1] be the vector with the components w
[k+1]
j = γj − ∫

1

0
ℓj(t)dt

for 1 ≤ j ≤ k.
We have that (16.34) with q(t) = tn for 0 ≤ n < k yields the linear equations Aw[i] = 0

for 0 ≤ i ≤ k. Similarly, (16.35) with q(t) = tn for 0 ≤ n < k yields the linear equations
Aw[k+1] = 0. Since A is non-singular, the only solution of Aw = 0 is w = 0. Thus, we get

βi,j = ∫
αi

0
ℓj(t)dt and γj = ∫

1

0
ℓj(t)dt

for 1 ≤ i, j ≤ k.

671

Question 13.11
In the proof of Lemma 13.6.35, we showed that

r(z) = 1 + zc⊺(Id−zB)−1u ,

where

B =
⎛
⎜⎜⎜
⎝

β1,1 β1,2 . . . β1,s
β2,1 β2,2 . . . β2,s
⋮ ⋮ ⋱ ⋮
βs,1 βs,2 . . . βs,s

⎞
⎟⎟⎟
⎠
, c =

⎛
⎜⎜⎜
⎝

γ1
γ2
⋮
γs

⎞
⎟⎟⎟
⎠

and u =
⎛
⎜⎜⎜
⎝

1
1
⋮
1

⎞
⎟⎟⎟
⎠
.

Since

(Id−zB)−1 = 1

det(Id−zB)
adj(Id−zB) ,

we have that c⊺(Id−zA)−1u is the quotient of two polynomials. The numerator is a polyno-
mial of degree k − 1 given by a linear combination of the components of adj(Id−zB). The
denominator is det(Id−zB), a polynomial of degree k. Since B is lower-triangular, we have

that det(Id−zB) =
k

∏
j=1
(1 − zβj,j).

Question 13.12
The Runge-Kutta method of this question is given by the collocation method associated to
the nodes α1 = (3−

√
3)/6 and α2 = (3+

√
3)/6 which are the roots of the Legendre polynomial

q(t) = t2 − t+ 1/6. See Example 13.4.17. It follows from Theorem 13.6.43 that the method is
A-stable.

However, the question states that we cannot use this approach. According to Corol-
lary 13.6.36, we have to prove that

{z ∈ C ∶ ∣r(z)∣ < 1} ⊃ {z ∈ C ∶ Im z < 0} ,

where r(z) = 1 + zc⊺(Id−zB)−1u with

B = (1/4 (3 − 2
√
3)/12

(3 + 2
√
3)/12 1/4) , c = (1/2

1/2) and u = (1
1
) .

We have

Id−zB = (1 − z/4 −z(3 − 2
√
3)/12

−z(3 + 2
√
3)/12 1 − z/4)

and so

(Id−zB)−1 = 1

1 − z/2 + z2/12
(1 − z/4 z(3 − 2

√
3)/12

z(3 + 2
√
3)/12 1 − z/4) .

Thus

r(z) = 1 + z

1 − z/2 + z2/12
(1/2 1/2)(1 − z/4 z(3 − 2

√
3)/12

z(3 + 2
√
3)/12 1 − z/4)(1

1
)

= 1 + z

1 − z/2 + z2/12
= 12 + 6z + z2
12 − 6z + z2

.

672 16. Solutions to Selected Exercises

The poles of r(z) are the roots of the denominator 12 − 6z + z2; namely, z± = 3 ±
√
3 i.

Thus, there is no pole in the region {z ∈ C ∶ Re z ≤ 0}. Moreover, if z = si, we get

∣r(si)∣ = ∣12 + 6si − s
2

12 − 6si − s2
∣ = ∣12 + 6si − s

2

12 + 6si − s2
∣ = 1

for all s ∈ R. Thus, ∣r(z)∣ = 1 ≤ 1 on the imaginary axis. It follows from Lemma 13.6.40 that
the Runge-Kutta Method is A-stable.

Question 13.16
a) The difference equation is

wi+1 = wi +
h2

12
(4(i + 1) + 9i − (i − 1)) = wi +

h2

12
(12i + 5)

for i ∈ N.
b) First, we find the general solution of the linear difference equation wi+1 = wi for i ∈ N.
If we substitute wi = ri, we get ri+1 = ri. The nontrivial solution is r = 1. Thus, the general
solution of the linear difference equation is wi = C, a constant, for all i.

We now seek a particular solution of the form wi = Ai2 +Bi for the difference equation in
(a). We get

A(i + 1)2 +B(i + 1) = Ai2 +Bi + h
2

12
(12i + 5)⇒ (2A − h2)i + (A +B − 5h2

12
) = 0

for all i. Thus, 2A − h2 = 0 and A +B − 5h2/12 = 0. Solving for A and B, we find A = h2/2

and B = −h2/12. Hence, wi =
h2i2

2
− h

2i

12
for all i.

The general solution of (a) is wi =
h2i2

2
− h

2i

12
+C for all i.

c) With w0 = 0, we get C = 0. Thus, wi =
h2i2

2
− h

2i

12
for all i.

d) Since ti = hi, we find wi =
t2i
2
− hti
12

.

The solution of the initial value problem (13.8.7) is y(t) = t2/2. Hence,

lim
h→0

max
0≤i≤N

∣yi −wi∣ = lim
h→0

max
0≤i≤N

∣y(t)) −wi∣ = lim
h→0

max
0≤i≤N

∣hti
12
∣ ≤ lim

h→0
∣5h
12
∣ = 0 .

This is not quite the definition of convergence as stated in Definition 13.6.1 since we have
considered wi instead of ui, but it is the definition of convergence as given in Remark 13.6.3.
See also (f) below.

e) The characteristic polynomial is p(w) = λ2 −λ. It has two roots, λ = 0 and λ = 1 with the
root λ = 1 being simple. So, the root condition is satisfied.

f) The local truncation error is given by

τi+1(h) =
y(ti+1) − y(ti)

h
− 1

12
(4f(ti+1, y(ti+1)) + 9f(ti, y(ti)) − f(ti−1, y(ti−1))) .

673

Since y(ti+1) = y(ti) + y′(ti)h + y′′(ξi)h2/2, f(ti, y(ti)) = y′(ti), f(ti+1, y(ti+1)) = y′(ti+1) =
y′(ti) + y′′(ηi)h and f(ti−1, y(ti−1)) = y′(ti−1) = y′(ti) − y′′(νi)h for some ξi, ηi and νi, we get

τi+1(h) =
1

h
(y(ti) + y′(ti)h + y′′(ξi)

h2

2
− y(ti))

− 1

12
(4y′(ti) + 4y′′(ηi)h + 9y′(ti) − y′(ti) + y′′(νi)h) = (

y′′(ξi)
2
− y

′′(ηi)
3
− y

′′(νi)
12
)h .

If M =max
0≤t≤5
∣y′′(t)∣, we get

∣τi+1(h)∣ ≤
1

12
Mh .

The method is of order 1 because τi+1(h) = O(h). The method is consistent because

max
0≤i≤n
∣τi+1(h)∣ ≤

5

12
Mh→ 0

as h→ 0.

Since the multistep method (13.8.8) is consistent and satisfies the root condition, we may
affirm that it is convergent according to Theorem 13.6.26. See Remark 13.6.28.

Question 13.17
We use the method presented in Section 13.5.3 to answer this question.

a) We consider p(w) = w3 − 1 and set m = 3. Using the substitution w = v + 1, we get

p(w)
ln(w)

= w
3 − 1

ln(w)
= (v + 1)

3 − 1
ln(v + 1)

= (v2 + 3v + 3) v

ln(1 + v)

= (v2 + 3v + 3) (1 + v
2
− v

2

12
+O(v3)) = 3 + 9v

2
+ 9v2

4
+O(v3) = 3

4
+ 9w2

4
+O((w − 1)3) .

Thus q(w) = 3

4
+ 9w2

4
. The multistep method is

wi+1 = wi−2 + h(
3

4
f(ti−2,wi−2) +

9

4
f(ti,wi)) for i = 2,3, . . . ,N − 1

wi = yi for i = 0,1,2

b) We consider p(w) = w3 − 1 and set m = 3. Using the substitution w = v + 1, we get

p(w)
ln(w)

= w
3 − 1

ln(w)
= (v + 1)

3 − 1
ln(v + 1)

= (v2 + 3v + 3) v

ln(1 + v)

= (v2 + 3v + 3) (1 + v
2
− v

2

12
+ v

3

24
+O(v4)) = 3 + 9v

2
+ 9v2

4
+ 3v3

8
+O(v4)

= 3

8
+ 9w

8
+ 9w2

8
+ 3w3

8
+O((w − 1)3) .

Thus q(w) = 3

8
+ 9w

8
+ 9w2

8
+ 3w3

8
. The multistep method is

wi+1 = wi−2 + h(
3

8
f(ti−2,wi−2) +

9

8
f(ti−1,wi−1) +

9

8
f(ti,wi) +

3

8
f(ti+1,wi+1))

674 16. Solutions to Selected Exercises

for i = 3,4, . . . ,N − 1
wi = yi for i = 0,1,2,3

Question 13.18
We first prove by induction that

pk(w) = 1 − (−1)k−1
m

∑
j=0
jk−1ajw

j (16.36)

for all k > 0. This result is obviously true for k = 1. We assume that (16.36) is true for k.
Then

pk+1(w) = 1 −wp′k(w) = 1 −w (−(−1)k−1
m

∑
j=0
jkajw

j−1) = 1 − (−1)k
m

∑
j=0
jkajw

j .

This is (16.36) with k replaced by k + 1.
Similarly, we have by induction that

qk(w) = (−1)k−1
m

∑
j=−1

jk−1bjw
j (16.37)

for all k > 0. This result is obviously true for k = 1. We assume that (16.37) is true for k.
Then

qk+1(w) = −wq′k(w) = −w ((−1)k−1
m

∑
j=−1

jkbjw
j−1) = (−1)k

m

∑
j=−1

jkbjw
j .

This is (16.37) with k replaced by k + 1.
It follows from (16.36) that

pk(1) = 1 − (−1)k−1
m

∑
j=0
jk−1aj

for all k > 0. It also follows from (16.37) that

qk(1) = (−1)k−1
m

∑
j=−1

jk−1bj

for all k. Hence, it follows from (13.5.13) and (13.5.14) that the multistep method is of order
r if and only if p1(1) = 0, pk+1(1) − kqk(1) = 0 for 1 ≤ k ≤ r, and pr+2(1) − (r + 1)qr+1(1) ≠ 0.
Question 13.19
a) The local truncation error is given by

τi+1(h) =
y(ti+1) − a0y(ti) − a1y(ti−1)

h
− (b0f(ti, y(ti)) + b1f(ti−1, y(ti−1))) .

675

Since there exist ξi, ηi and νi such that y(ti+1) =
5

∑
k=0

1

k!
y(k)(ti)hk +

1

6!
y(6)(ξi)h6,

y(ti−1) =
5

∑
k=0

(−1)k
k!

y(k)(ti)hk +
1

6!
y(6)(ηi)h6, f(ti, y(ti)) = y′(ti) and

f(ti−1, y(ti−1)) = y′(ti−1) =
4

∑
k=0

(−1)k
k!

y(k+1)(ti)hk −
1

5!
y(6)(µi)h5, we get

τi+1(h) =
1

h

⎛
⎝

5

∑
k=0

1

k!
y(k)(ti)hk +

1

6!
y(6)(ξi)h6 − a0y(ti)

− a1 (
5

∑
k=0

(−1)k
k!

y(k)(ti)hk +
1

6!
y(6)(ηi)h6)

⎞
⎠

− (b0y′(ti) + b1 (
4

∑
k=0

(−1)k
k!

y(k+1)(ti)hk −
1

5!
y(6)(µi)h5))

= (1 − a0 − a1)y(ti)h−1 + (1 + a1 − b0 − b1)y′(ti)

+
5

∑
k=2
(1
k!
− (−1)

ka1
k!

− (−1)
k−1b1

(k − 1)!
) y(k)(ti)hk−1 +O(h5)

if we assume that the derivatives of y(t) are bounded on the interval [t0, tN].
We get a0 = 1 − a1 from 1 − a0 − a1 = 0 (we set the coefficient of y(ti)h−1 to 0). We get

b0 = 1+a1 − b1 from 1+a1 − b0 − b1 = 0 (we set the coefficient of y(ti) to 0). We get b1 =
a1
2
− 1
2

from
1

2
− a1

2
+ b1 = 0 (we set the coefficient of y′′(ti)h to 0). If we substitute this expression

for b1 in
1

6
+ a1

6
− b1

2
= 0 (we set the coefficient of (y(3)(ti)h2 to 0), we get a1 = 5.

We have found that all the terms in hk for k < 3 vanish if a0 = −4, a1 = 5. b0 = 4 and

b1 = 2. With these values of a1 and b1, we have that
1

24
− a1
24
+ b1

6
= 1

6
≠ 0 (the coefficient of

y(4)h3). Hence,

τi+1(h) =
1

6
y(4)(ti)h3 +O(h4) . (16.38)

The method of highest order is

wi+1 = −4wi + 5wi−1 + h (4f(ti,wi) + 2f(ti−1,wi−1)) .

b) We have from (16.38) that τi+1(h) = O(h3). So, the method is of order 3.

c) It follows from Dahlquist Second Barrier, Theorem 13.6.62, that this method cannot be
A-stable.

Question 13.20
The stability polynomial for this multistep method is p(λ) − z q(λ), where p(λ) = −λm+1 +
m

∑
j=0

aj λ
m−j is the characteristic polynomial and q(λ) =

m

∑
j=−1

bj λ
m−j.

676 16. Solutions to Selected Exercises

Since the method is convergent, it satisfies the root condition according to Proposi-
tion 13.6.23; namely, all the roots of its characteristic polynomial have absolute values less
than or equal to one and those equal to one are simple roots.

So, for z = 0, all the roots of the stability polynomial have absolute values less than or equal
to one and those equal to one are simple roots since they are the roots of the characteristic
polynomial. Thus, z = 0 is in the region of absolute stability or on its boundary.

It follows from Proposition 13.6.11 that p(1) = 0. So λ = 1 is a root of the stability
polynomial when z = 0. Hence, z = 0 is on the boundary of the region of absolute stability.

Chapter 15 : Finite Difference Methods

Question 15.1
Consider a function v ∶ R∆ → R. Let vi,j = v(xi, tj) for all (xi, tj) ∈ R∆ and let
1

2
(f(xi, yj) + f(xi, yj+1)) = P∆(vi,j, vi,j+1, vi+1,j, . . .).

We have

vi,j+1 − vi,j
∆t

− c
2

2
(
vi+1,j − 2vi,j + vi−1,j

(∆x)2
+
vi+1,j+1 − 2vi,j+1 + vi−1,j+1

(∆x)2
) = 1

2
(f(xi, yj) + f(xi, yj+1))

for 0 < i < N and 0 ≤ j <M . Thus

(1+α)vi,j+1 = (1−α)vi,j+
α

2
(vi+1,j + vi−1,j)+

α

2
(vi+1,j+1 + vi−1,j+1)+

1

2
(f(xi, yj) + f(xi, yj+1))∆t

for 0 < i < N and 0 ≤ j <M , where α = c2∆t

(∆x)2
.

Let vj = max
0<i<N

∣vi,j ∣ and F = max
0<i<N
0≤j<N

1

2
∣f(xi, yj) + f(xi, yj+1)∣. If α ≤ 1, we get

(1 + α)∣vi,j+1∣ ≤ (1 − α)∣vi,j ∣ +
α

2
(∣vi+1,j ∣ + ∣vi−1,j ∣) +

α

2
(∣vi+1,j+1∣ + ∣vi−1,j+1∣)

+ 1

2
∣f(xi, yj) + f(xi, yj+1)∣∆t

≤ (1 − α)vj + vj + vj+1 + F∆t ≤ vj + vj+1 + F∆t

for 0 < i < N and 0 ≤ j <M . Thus

(1 + α)∣vj+1∣ ≤ vj + vj+1 + F∆t⇒ vj+1 ≤ vj + F∆t

for 0 ≤ j <M . By induction, we get

vj ≤ v0 + (j∆t)F ≤ v0 + TF

for 0 ≤ j ≤M . Hence,
∣vi,j ∣ ≤ vj ≤ v0 + TF

677

for 0 ≤ j ≤ M and 0 < i < N . Since
1

2
(f(xi, yj) + f(xi, yj+1)) = P∆(vi,j, vi,j+1, vi+1,j, . . .) for

(i, j) such that (xi, tj) ∈ Ro
∆ and B∆(vi,j, vi,j+1, vi+1,j, . . .) = vi,j for (i, j) such that (xi, tj) ∈

∂R∆. We can rewrite the previous inequality as

∣vi,j ∣ ≤ max
0<i<N

∣B∆(vi,0, vi,1, vi+1,0, . . .)∣ + T max
0<i<N
0<j≤M

∣P∆(vi,j, vi,j+1, vi+1,j, . . .)∣

≤ max
(i,j) such that
(xi,tj)∈∂R∆

∣B∆(vi,0, vi,1, vi+1,0, . . .)∣ + T max
(i,j) such that
(xi,tj)∈Ro

∆

∣P∆(vi,j, vi,j+1, vi+1,j, . . .)∣

for 0 ≤ j ≤ M and 0 < i < N . Since B∆(vi,j, vi,j+1, vi+1,j, . . .) = vi,j for (i, j) such that
(xi, tj) ∈ ∂R∆, we get (15.3.7) with C =max{1, T}.
Question 15.2
a) Since PP ∗ = P ∗P , we have that

⟨P 2x,P 2x⟩ = ⟨Px,P ∗PPx⟩ = ⟨Px,PP ∗Px⟩ = ⟨P ∗Px,P ∗Px⟩ .

Thus

∥P 2∥ = sup
∥x∣=1
∥P 2x∥ = sup

∥x∣=1

√
⟨P 2x,P 2x⟩ = sup

∥x∣=1

√
⟨P ∗Px,P ∗Px⟩ = sup

∥x∣=1
∥P ∗Px∥ = ∥P ∗P ∥ .

b) We first prove that
∥P ∗P ∥ = sup

∥x∣=∥y∥=1
⟨x,P ∗Py⟩ . (16.39)

Using Schwartz’s inequality, we have

⟨x,P ∗Py⟩ ≤ ∥x∥ ∥P ∗Py∥ ≤ ∥x∥ ∥P ∗P ∥ ∥y∥ = ∥P ∗P ∥

for all x and y such that ∥x∣ = ∥y∥ = 1. Thus

sup
∥x∣=∥y∥=1

⟨x,P ∗Py⟩ ≤ ∥P ∗P ∥ . (16.40)

Moreover

sup
∥x∣=∥y∥=1

⟨x,P ∗Py⟩ ≥ sup
∥y∥=1

x=∥P ∗Py∥−1P ∗Py

⟨x,P ∗Py⟩ == sup
∥y∥=1
∥P ∗Py∥ = ∥P ∗P ∥ . (16.41)

because ∥x∥ = 1 for x = ∥P ∗Py∥−1P ∗Py. Thus (16.39) follows from (16.40) and (16.41).

We have that

∥P ∗P ∥ = sup
∥x∣=∥y∥=1

⟨x,P ∗Py⟩ = sup
∥x∣=∥y∥=1

⟨Px,Py⟩ ≥ sup
∥y∥=1
⟨Py,Py⟩ = ∥P ∥2 .

We get from (a) that ∥P 2∥ ≥ ∥P ∥2. But we already know that ∥P 2∥ ≤ ∥P ∥2 by a property of

bounded linear operators. Thus ∥P 2∥ = ∥P ∥2.

678 16. Solutions to Selected Exercises

Question 15.3
We use Proposition 15.3.36 to answer this question.

As we have seen in Example 15.3.31, the finite difference scheme given by Algorithm 15.2.1
can be expressed as wj+1 = Qwj +Bj for j ≥ 0, where Q = −K for K given in (15.2.6) and

Bj =

⎛
⎜⎜⎜⎜⎜⎜
⎝

αw0,j + f(x1, tj)∆t
f(x2, tj)∆t

⋮
f(xN−2, tj)∆t

αwN,j + f(xN−1, tj)∆t

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The matrix Q can be written as Q = Id+αA, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 1 0 0 0 . . . 0 0
1 −2 1 0 0 . . . 0 0
0 1 −2 1 0 . . . 0 0
0 0 1 −2 1 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 ⋯ 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is a (N − 1) × (N − 1) matrix. It follows from Proposition 15.4.1 that the eigenvalues of A
are

λi = −2 + 2 cos (k π/N) = −4 sin2 (k π/(2N)) , 0 < k < N .

Thus, the eigenvalues of Q are 1 + αλk for 0 < k < N . To get eigenvalues that are smaller or
equal to 1 in absolute value, we need to have ∣1 + αλk∣ ≤ 1 for 0 < k < N ; namely, we need to
have

−1 ≤ 1 − 4α sin2 (k π/(2N)) ≤ 1 , 0 < k < N .

The second inequality is always satisfied, so α must satisfy

−1 ≤ 1 − 4α sin2 (k π/(2N)) , 0 < k < N .

This is equivalent to

0 < α ≤ 1

2 sin2 (k π/(2N))
, 0 < k < N .

However,
1

2 sin2 (k π/(2N))
> 1

2

for 0 < k < N and converges to 1/2 for k = N − 1 and N →∞.

Thus, the finite difference scheme is ℓ2-stable if 0 < α ≤ 1/2.

Bibliography

[1] L. Ammerall, Computer Graphics for Java Programmers, John Wiley & Sons,
1998.

[2] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of Bound-
ary Value Problems for Ordinary Differential Equations, SIAM, 1995.

[3] D. Assaf, IV, and S. Gadbois, Definitions of Chaos, The American Mathematical
Monthly, 99, No. 9, p. 865.

[4] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Deveney’s Definition of
Chaos, The American Mathematical Monthly, 99, No. 4, pp. 332-334.

[5] R. G. Bartle, The Elements of Real Analysis, 2nd Edition, John Wiley & Sons,
1976.

[6] J. L. Buchanan and P. R. Turner, Numerical Methods and Analysis, McGraw-Hill,
Inc., 1992.

[7] R. L. Burden and J. D. Faires, Numerical Analysis, 5th ed., PWS-KENT Publ.
Comp., 1993.

[8] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations:
Runge-Kutta and General Linear Methods, Wiley, 1987.

[9] S. D. Conte, The numerical solution of linear boundary value problems, SIAM Review,
8, 1966, pp. 309–321.

[10] S. D. Conte and C. de Boor, Elementary Numerical Analysis, McGraw-Hill, 1980.

[11] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex
Fourier series, Math. Comp., vol. 19, 1965, pp. 297–301.

[12] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, The Ben-
jamin/Cummings Publ. Co. Inc., 1986.

[13] G. H. Golub and C. F. van Loan, Matrix Computation, 3rd ed., John Hopkins Univ.
Press, 1996

679

680 BIBLIOGRAPHY

[14] E. Hairer, S. P. Norsett and G. Wanner, Solving Ordinary Differential Equations
I: Nonstiff Problems, Springer-Verlag, 1991.

[15] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, Springer-Verlag, 1996.

[16] P. Henrici, Fast Fourier methods in computational complex analysis, SIAM Review, 21,
1979, pp. 481–527.

[17] Morris W. Hirsch and Stephen Smale, Differential Equations, Dynamical Systems,
and Linear Algebra, Academic Press, 1974.

[18] Wolfgang Hackbusch, The Concept of Stability in Numerical Mathematics,
Springer-Verlag, 2014.

[19] A. Iserles, A First Course in the Numerical Analysis of Differential Equations,
Cambridge Univ. Press, 1996.

[20] E. Issacson and H. B. Keller, Analysis of Numerical Methods, Dover Publ. Inc.,
1994.

[21] D. Kincaid and W. Cheney, Numerical Analysis, Mathematics of Scientific Com-
puting, 3th ed., Brookes/Cole, 2002.

[22] H. B. Keller, Numerical Methods for Two-Point Boundary-Value Problems,
Dover Publ. Inc., 1992

[23] J. D. Lambert, Computational Methods in Ordinary Differential Equations,
Wiley, 1973.

[24] J. D. Lambert, Numerical Methods for Ordinary Differential Systems, Wiley,
1991.

[25] J. M. Ortega, (1968). ”The Newton-Kantorovich Theorem”, The American Mathe-
matical Monthly, 99, No. 4, pp. 658–660.

[26] H.-O. Peitgen, J. Hartmut and S. Dietmar, Chaos and Fractals: New Frontiers of
Science, Springer-Verlag, 1992.

[27] Walter Rudin, Principle of Mathematical Analysis, 3rd Edition, McGraw-Hill,
1978.

[28] L. F. Shampine, Numerical Solution of Ordinary Differential Equations, Chap-
man & Hill, 1994.

[29] G. F. Simmons, Differential Equations with Applications and Historical Notes,
McGraw-Hill, 1972.

[30] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press,
1986.

BIBLIOGRAPHY 681

[31] G. D. Smith, Numerical Solution of Partial Differential Equations, 2nd Edition,
Oxford University Press, 1978.

[32] W. A. Strauss, Partial Differential Equations: an Introduction, John-Wiley &
Sons, 1992.

[33] A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis,
Cambridge Univ. Press, 1996.

682 BIBLIOGRAPHY

Index

L2-Spaces
Classical Fourier Series, 192
Complete Orthogonal Set, 188
Complete Orthonormal Set, 188
Complex Fourier Series, 190
Fourier Series, 188
Linearly Independent, 187
Orthogonal Basis, 188
Orthogonal Set, 188
Orthonormal, 188
Orthonormal Basis, 188
Weight Function, 190

kth Divided Difference, 128

Absolute Error, 10
Aitken’s ∆2 process, 37
Asymptotically Stable, 46
Attracting, 47

B-Splines
Modulus of Continuity, 182
Spline Interpolant, 181

B-Splines of Degree 0, 176
B-Splines of Degree k > 0, 176
Backward Asymptotic, 45
Backward Difference, 365
Backward Difference Formula, 273
Backward Euler’s Method, 363
Backward Substitution, 98
Banach Lemma, 75
Bernoulli Polynomials, 307
Bernstein Polynomial, 174
Bifurcation Diagram, 54
Bifurcation Point, 48
Boundary Conditions, 441

Partially Separable, 450
Separable, 450

Boundary Value Problem, 441, 442

Boundary Value Problems
Family of Solutions, 470

Bézier Curves
Control Points, 171
Cubic Bézier Curves, 171
Parametric Representation, 170

Cantor Set, 58
Chaotic, 58
Characteristic Polynomial, 399, 417
Chebyshev Points, 139
Cobweb, 44
Condition Number, 17
Conditioning, 16
Conjugate Gradient, 88
Conjugate-Linear Isomorphism, 232
Consistent Method, 390
convergence, 66
Convergent Method, 388

Deflated Polynomial, 41
Differentiation

Truncation Error, 274
Discrete Fourier Transform, 221
Distance, 66
Dual, 232

Equations
Equivalent, 27, 117

Extrapolation, 84
Extrapolation to the limit, 276

Family of Boundary Value Problems, 470
Fast Fourier Transform, 222
Feigenbaum Constant, 56
Feigenbaum Point, 55
Finite Difference

Stable, 16
Unstable, 16

683

684 INDEX

Finite Difference Equations, 394
Fundamental Set of Solutions, 395
Homogeneous, 395
Order, 394
Solution, 394

Finite Difference Methods, 502
ℓ2-Consistent, 546
ℓ2-Convergent, 532, 546
ℓ2-Stable, 533, 546
Boundary of the Domain, 523
Centred Euler Scheme, 475
CFL Condition, 577, 580
Conditionally Consistent, 526
Conditionally Stable, 527, 533
Consistency, 474, 526, 533
Convergence, 473, 525
Courant-Friedrichs-Lewy Condition, 577,

580
Domain, 523
Fundamental Solution, 498
Grid, 501
Interior of the Domain, 523
Local Truncation Error, 474, 526, 533,

546
Matrix Method, 544
Mesh Point, 501
Midpoint Scheme, 475
Numerical Domain of Dependence, 573
Numerical Solution, 501
Orde, 474
Stability, 527
Stable, 474, 547
Step Sizes, 501
Trapezoidal Scheme, 473
Unconditionally Stable, 527, 533
von Neumann’s Stable or L2-Stable, 540

Finite Difference Schemes, see also Finite Dif-
ference Methods

Fixed Point, 44
Floating Point Representation, 9
Forward Asymptotic, 45
Forward Asymptotic to a Point, 45
Forward Difference Formula, 273
Forward Substitution, 104
Fractal, 58

Frechet Derivative, 344
Function Interpolation

Newton Form, 134
Newton-Cotes Form, 134

Functions
Agree at the Points, 128
Contraction, 28
Fixed Point, 27, 117
Hermite’s Interpolating Polynomial, 136
Interpolating Polynomial, 128
Interpolatory Points, 128
Lagrange Interpolating Polynomial, 127
Multiplicity of Zeros, 35
Order of Zero, 142
Polynomial Extrapolation, 127
Polynomial Interpolation, 127
Root, 21, 117
Zero, 21, 117

Gerschgorin’s Circles, 236
Golden Ratio, 36, 140

Hilbert Matrix, 200, 209
Hilbert Space, 187, 534
Hyperbolic Fixed Point, 47
Hyperbolic Period Point, 48
Hyperbolic Set

Attracting, 59
Repelling, 59

Ill Conditioned, 17
Initial Value Problem

Mesh Points, 15
Step Size, 15

Initial Value Problems
Approximate the Solution, 324
Local Discretization Error, 325, 331
Local Truncation Error, 329
Mesh Points, 324
Order of a Method, 329
Perturbation, 322
Well Posed, 322

Integration
Closed Newton-Cotes Formulae, 283
Gauss-Chebyshev Quadrature, 305
Gauss-Legendre Quadrature, 304

INDEX 685

Gaussian Quadrature, 301
Gauus-Hermite Quadrature, 319
Nodes, 301
Open Newton-Cotes Formulae, 283
Step Size, 296
Weights, 301

Invariant Set, 59
Iterative Refinement, 114

k-digit Chopping Representation, 5
k-digit Rounding Representation, 5

Linear Functional, 232
Linear Mapping

Spectral Radius, 534
Linear Mappings

Adjoint, 233
Hermitian, 81, 233
Induced Matrix Norm, 66
Natural Matrix Norm, 66
Orthogonal, 234
Orthogonal Projection, 230
Real Unitary, 234
Self-Adjoint, 233
Spectral Radius, 68
Strictly Positive Definite, 81
Symmetric, 233
Transpose, 233
Unitary, 233

Linear Spaces
Pseudo Scalar Product, 211

Lipschitz Condition, 323
Lipschitz Constant, 323
Lipschitz Continuous, 323
Local Truncation Error, 390
Logistic Map, 44

Matrices
Augmented Matrix, 97
Condition Number, 112
Converges, 263
Hessemberg Form, 246
Householder, 242
Ill-Conditioned, 112
Positive Definite, 235
Principal Subdiagonal, 242

Principal Submatrices, 236
Similar, 234
Strictly Positive Definite, 235
Strictly Row Diagonally Dominant, 78
Tridiagonal Matrices, 115, 242
Unitary Similar, 234
Well-Conditioned, 112

Monic Chebyshev Polynomials, 204
Multistep Method

A-Stable, 418
Absolutely Stable, 418
Region of Absolute Stability, 418

Multistep Methods
A(α)-Stable, 430
Adams Methods, 374
Adams-Bashforth Methods, 374
Adams-Moulton Methods, 374
Backward Difference Formula, 375
Characteristic Polynomial, 371, 396
Closed, 362
Cumulative Error, 386
Error Control per Step, 386
Error Control per Unit Step, 386
Explicit, 362
Implicit, 362
Local Truncation Error, 362
Milne Methods, 374
Nystron Methods, 374
One-Step Methods, 361
Open, 362
Order of a Method, 362
Principal Root, 418

NaN, 8
Newton Backward Difference Formula, 365
Newton Backward Divided Difference Formula,

364
Newton-Raphson’s Algorithm, 30
Norm, 65
Normalized Binary Numbers, 6
Normalized Floating Point Form, 6
Normalized Mantissa, 8
Normalized QR Decomposition, 260
Normalized Scientific Notation, 5
Norms

686 INDEX

ℓ1, 66
Euclidean or ℓ2, 66
Maximum or ℓ∞, 66

Orbit, 44
Backward, 44
Forward, 44

Over-Relaxation Method, 79
Overflow, 9

Partial Differential Equations
Advection Equation, 575
Cauchy Problems, 531
Characteristic Equation, 575
Hyperbolic System, 575
Strictly Hyperbolic System, 575

Period, 44
Period Doubling Cascade, 55
Periodic Orbit, 44
Periodic Point, 44
Phase Portrait, 44
Piecewise Linear Function, 133
Pivoting

Maximal Column Pivoting, 100
Partial Pivoting, 100
Scaled Column Pivoting, 100
Total Pivoting, 100

Polynomial Approximations
Aliasing, 217
Sampling Frequency, 215
Sampling Interval, 215
Sampling Points, 215
Sampling Values, 215

Quadratic Form, 235
Indefinite, 235
Positive Definite, 235
Strictly Positive Definite, 235

Rayleigh Quotient, 240
Reduced Polynomial, 41
Relative Error, 10
Relaxation Methods, 79
Repelling, 47
Residual Vector, 112
Root Conditon, 399

Rooted Tree, 345
Density, 346
Order, 346
Symmetry, 346

Rounding, 5
Rounding Error, 9
Runge-Kutta

s-stage Method, 332
A-Stable, 410
Butcher array, 332
Classical Method, 335
Elementary Differentials, 344
Explicit Method, 332
Implicit Method, 332
Order of Elementary Differentials, 344
Region of Absolute Stability, 410
Semi-Implicit Method, 332
Stages, 332
Step-Size, 357

Runge-Kutta-Fehlberg Method, 357

Sensitive Dependence on Initial Conditions,
58

Sequences
Linear Convergence, 34
Order of Convergence, 34
Quadratic Convergence, 34

Sign Agreements, 254
Significant Digits, 12
Sink, 47
source, 47
Splines

Clamped Spline Interpolant, 156
Free or Natural Spline Interpolant, 155
Nodes, 155
Piecewise Cubic Hermite Interpolant, 156
Piecewise Cubic Polynomial, 155

Stability Polynomial, 417
Stable, 46
Staircase Diagram, 44
Steepest Descent, 124
Stiff Differential Equation, 432
Stiff Differential Equations, 431
Stiffness Ratio, 432
Strongly Stable, 399

INDEX 687

Subcritical, 50, 51
Successive Over-Relaxation (SOR) Method,

79
Supercritical, 51

Theta Method, 363
Topologically Transitive, 58
triangular factorization, 115

Under-Relaxation Method, 79
Underflow, 9
Unnormalized QR Decomposition, 260
Unstable, 46, 399

Vectors
Orthogonal, 229
Orthogonal Basis, 232
Orthonormal Basis, 232
Span, 230

Wave Equation
Characteristic Lines, 573
Domain of Dependence, 570

Weakly Stable, 399
Well Conditioned, 16, 17

Zero-Stable Method, 392

	Preface
	Computer Arithmetic
	Rounding
	Binary Number
	Computer Numbers
	Controlling Errors
	Stability
	Conditioning
	Exercises

	Iterative Methods to Solve Nonlinear Equations
	Real Analysis Background
	Bisection Method
	Interruption criteria
	Fixed Point Method
	Newton's Method
	Secant Method
	Order of Convergence
	Aitken's 2 Process and Steffensen's Algorithm
	Real Roots of Polynomials
	Appendix
	Elementary Concepts of Discrete Dynamical Systems
	Qualitative Study
	Bifurcation
	Logistic Map
	Chaos

	Exercises

	Iterative Methods to Solve Systems of Linear Equations
	Norm and Convergence of Matrices
	Iterative Methods
	Jacobi Iterative Method
	Gauss-Seidel Iterative Method
	Convergence of Iterative Methods

	Relaxation Methods
	Extrapolation
	Steepest Descent and Conjugate Gradient
	Steepest Descent
	Conjugate Gradient
	Preconditioned Conjugate Gradient

	Exercises

	Algebraic Methods to Solve Systems of Linear Equations
	Gaussian Elimination with Backward Substitution
	LU Factorization
	Cholesky Factorization
	Error estimates
	Exercises

	Iterative Methods to Solve Systems of Nonlinear Equations
	Fixed Point Method
	Newton's Method
	Quasi-Newton Methods
	Steepest Descent for Nonlinear Systems
	Exercises

	Polynomial Interpolation
	Lagrange Interpolation
	Newton Interpolation
	Linear Interpolation
	Quadratic Interpolation
	General Interpolation

	Proofs of Theorems 6.2.2, 6.2.5 and 6.2.7
	Exercises

	Splines
	Cubic Spline Interpolation
	Natural Spline
	Clamped Spline
	Existence of Interpolants
	Another Approach

	Parametric Curves: Bézier Curves
	B-Spline Interpolation
	Other Spline Methods
	Exercises

	Least Square Approximation (in L2)
	L2 spaces
	Bases of Polynomial
	Orthogonal Polynomials and Least Square Approximation
	Exercises

	Uniform Approximation
	Stone-Weierstrass Theorem
	Chebyshev Polynomials
	How to reduce the Degree of an Interpolating Polynomial with a Minimal Loss of Accuracy

	Exercises

	Least Square Approximation (in 2)
	Linear Modeling
	Nonlinear Modelling
	Trigonometric Polynomial Approximation (Real Case)
	Trigonometric Polynomial Approximation (Complex Case)
	Fast Fourier Transform

	Iterative Methods to Approximate Eigenvalues
	Background in Linear Algebra
	Orthogonality
	Self-adjoint and Unitary Operators
	Symmetric and Orthogonal Operators
	Triangular and Diagonal Matrices
	Definite Positive Matrices
	Gerschgorin's Theorem

	Power Method
	Rayleigh Quotient for Symmetric Matrices
	Inverse Power Method
	Householder's Matrices and Hessemberg Forms
	Finding the vector wi
	Computing Gi Ai-1 Gi

	QR Algorithm
	Gram-Schmidt Orthogonalization Process
	Normalized QR Decomposition
	General QR Algorithm
	QR Factorization for Symmetric Tridiagonal Matrices
	Shifting Technique

	Numerical Differentiation and Integration
	Numerical Differentiation
	Richardson Extrapolation
	Closed and Open Newton-Cotes Formulae
	Composite Numerical Integration
	Composite Trapezoidal Rule
	Composite Simpson's Rule
	Composite Midpoint Rule

	Romberg Integration
	Adaptive Quadrature Methods
	Gaussian Quadrature
	Gauss-Legendre quadrature
	Gauss-Chebyshev quadrature
	Convergence and accuracy

	Bernoulli Polynomials
	Exercises

	Initial Value Problems
	Introduction to Ordinary Differential Equations
	Euler's Method
	Higher-Order Taylor Methods
	Runge-Kutta Methods
	Derivation of Runge-Kutta Methods – Collocation Method
	Derivation of Runge-Kutta Methods – Rooted Trees
	Variable Step-Size Methods

	Multistep Methods
	Classical Methods
	General Approach
	Another Approach to Multistep Methods
	Backward Difference Formulae
	Predictor-Corrector Methods
	Variable Step-Size Multistep methods

	Convergence, Consistency and Stability
	Consistency
	Finite Difference Equations
	Convergence
	Absolute Stability and A-Stability
	Conclusion

	Stiff Systems and Stability
	Exercises

	Boundary Value Problems
	Introduction
	Shooting Methods
	Shooting Method for Linear Boundary Value Problems
	Numerical Aspect of the Shooting Method
	Separated and Partially Separated Boundary Conditions
	Parallel Shooting for Linear Boundary Value Problems
	The Choice of Fi and yc,i
	Shooting Method for Non-Linear Boundary Value Problems
	Error Analysis
	Parallel Shooting for Non-Linear Boundary Value Problems
	Family of Solutions

	Finite Difference Methods
	Finite Difference Methods for Linear Boundary Value Problems
	Numerical Aspect of the One-Step Finite Difference Method for Linear Boundary Value Problems
	Finite Difference Methods for Non-Linear Boundary Value Problems
	Collocation and Implicit Runge-Kutta

	Analytic Eigenvalue Problems
	Exercises

	Finite Difference Methods
	Finite Difference Formulae
	First Order Derivatives
	Second Order Derivatives

	Explicit and Implicit Schemes
	Parabolic Equations
	Elliptic Equations
	Hyperbolic Equations

	Convergence, Consistency and Stability
	Uniform Theory
	2 Theory
	von Neumann's Method
	L2 Stability
	Matrix Method
	Conclusion

	Preliminaries of Linear Algebra
	Heat Equation
	Algorithm 15.2.1
	Crank-Nicolson Scheme

	Dirichlet Equation
	Algorithm 15.2.6

	Wave Equation
	The Role of the Domain of Dependence
	Algorithm 15.2.11

	Exercises

	Solutions to Selected Exercises
	Chapter 1 : Computer Arithmetic
	Chapter 2 : Iterative Methods for Nonlinear Equations of One Variable
	Chapter 3 : Iterative Methods for Systems of Linear Equations
	Chapter 4 : Algebraic Methods for Systems of Linear Equations
	Chapter 5 : Iterative Methods for Systems of Nonlinear Equations
	Chapter 6 : Polynomial Interpolation
	Chapter 7 : Splines
	Chapter 8 : Least Square Approximation (in L2)
	Chapter 9 : Uniform Approximation
	Chapter 12 : Numerical Differentiation and Integration
	Chapter 13 : Initial Value Problems for Ordinary Differential Equations
	Chapter 15 : Finite Difference Methods

	Bibliography
	Index

