
INTRODUCTION
TO COMPUTER
PROGRAMMING
WITH PYTHON

Harris Wang

Introduction
to

Computer
Programming

with
Python

This page intentionally left blank

Introduction
to

Computer
Programming

with
Python

Harris Wang

Copyright © 2023 Athabasca University
1 University Drive, Athabasca, AB Canada
DOI: https://doi.org/10.15215/remix/9781998944088.01

Published by Remix, an imprint of Athabasca University
Press. For more information, please visit aupress.ca or
email OERpublishing@athabascau.ca.

Cover design by Lisa Mentz
Images that appear in this text are created by the author.

Library and Archives Canada Cataloguing in Publication

Title: Introduction to computer programming with Python
/ Harris Wang.
Names: Wang, Harris, author.
Identifiers: Canadiana (print) 20230509916 | Canadiana
(ebook) 20230509924 | ISBN 9781998944071 (softcover) |
ISBN 9781998944088 (PDF) | ISBN 9781998944095 (EPUB)
Subjects: LCSH: Python (Computer program language)—
Textbooks. | LCGFT: Textbooks.
Classification: LCC QA76.73.P98 W36 2023 | DDC
005.13/3—dc23

Introduction to Computer Programming with Python
by Harris Wang is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License, except where otherwise noted. This license
allows users to copy and redistribute the material in
any medium or format and to remix, transform, and
build upon the material as long as the original source is
properly credited, the work is not used for commercial
purposes, and the new creation is licensed under the
same terms.

Remix name, Remix logo, and Remix book covers are not
subject to the Creative Commons license and may not be
reproduced without the prior and express written consent
of Athabasca University.

https://doi.org/10.15215/remix/9781998944088.01
mailto:OERpublishing@athabascau.ca

Contents

	Chapter 1	 Introduction	 1

		 Learning Objectives	 1
	1.1	 A Brief History of Computers	 1
	1.2	 Fundamentals of Computing and Modern Computers	 5

Number Systems and the Foundation of Computing	 6
Computability and Computational Complexity	 9
The Construction of Modern Computers	 11

Analog Computers	 11
Digital Computers	 12
Mechanic-Based Components	 13
Vacuum Tube–Based Components	 14
Transistors	 14
Integrated Circuits and Very Large-Scale Integrated Circuits	 14

	1.3	 Programming and Programming Languages	 15
	1.4	 Python Programming Language	 17

The Development and Implementation of Python	 17
Advantages of Python	 18
Resources for Python and Python Education	 19

	1.5	 Getting Ready to Learn Programming in Python	 20
Installing and Setting Up the Python Programming Environment	 21

Installing Python	 21
Setting Up a Virtual Environment for a Python Project	 24
Installing Jupyter Notebook	 26
Installing Visual Studio Code	 27

Additional Tools Supporting Software Development in Python	 27
Buildbot	 27
Trac	 28
Roundup	 28

	 vi	 Contents

	1.6	 Getting a Taste of Programming with Python	 28
Program Interactively with Python Interactive Shell	 28
Program with VS Code IDE	 30
Use Jupyter Notebook Within VS Code to Program Interactively	 32
Write Documentation in Markdown	 33

Headings	 33
Paragraphs	 34
New Lines	 34
Italic, Bold, and Strikethrough Texts	 34
Horizontal Rules	 35
Keyboard Keys	 35
Unordered Lists	 35
Ordered Lists	 36
Definition Lists	 36
Links	 37
Links to Internal Sections	 37
Images	 38
Blockquotes	 38
Tables	 39
Inline Program / Script Code	 39
Code Block	 40
Mathematical Formulas and Expressions	 40
To-Do List	 42
Escape Sequence for Special Characters	 42

Programming Interactively with Jupyter Notebook
Within VS Code	 42

Run Python Programs Outside IDE	 48
Make the Python Program File Executable	 50
Errors in Programs	 52

	1.7	 Essentials of Problem Solving and Software Development	 54
Design Algorithms to Solve Problems	 54
Phases of Software System Development	 56

Phase 1. Understand the Project	 57
Phase 2. Analyze the Requirements to Identify

Computer-Solvable Problems and Tasks	 57
Phase 3. Design the System	 58
Phase 4. Implement the System	 58
Phase 5. Test the System	 58
Phase 6. Maintain the System	 58

	 Contents	 vii

	1.8	 Manage Your Working Files for Software Development
Projects	 58

Set Up Git on Your Computer and Version-Control Locally	 59
Set Up an Account on GitHub and Version-Control with Remote

Repositories	 62
		 Chapter Summary	 67
		 Exercises	 69
		 Projects	 71

	Chapter 2	 Essential Building Blocks of Computer
Programs	 73

		 Learning Objectives	 73
	2.1	 Primary Constructs of Computer Programs in Python	 74

Vocabulary of the Programming Language	 74
Rules of Naming Identifiers	 76
Python Naming Conventions	 79
Names with Leading and/or Trailing Underscores	 79
Rules of Scope Resolution for Identifiers	 81

Simple Data Types	 82
Signed Integers (int)	 83
Float (float)	 87
Boolean (bool)	 88
Complex (complex)	 89

Compound Data Types	 89
String (str)	 90
List	 95
Tuple	 97
Set	 98
Dictionary	 99
Object	 99

Variables and Constants	 101
Variables	 101
Built-In Constants	 104

Operators	 106
Arithmetic Operators	 106
Comparison Operators	 108
Logical Operators	 109
Bitwise Operators	 111
Assignment Operators	 112
Identity Operators	 115

	 viii	 Contents

Sequence Operators	 115
Membership Operator	 116

Built-In Functions	 117
Expressions	 135

	2.2	 Higher-Level Constructs of Python Programs	 137
Structure of Python Programs	 137
Documentation and Comments	 139
Simple Statements	 141

Expression Statement	 141
Assignment Statement	 143
print Statement	 146
input Statement	 149
assert Statement	 150
pass Statement	 151
del Statement	 151
return Statement	 152
open Statement	 152
yield Statement	 153
raise Statement	 154
break Statement	 155
continue Statement	 155
import Statement	 156
global Statement	 156
nonlocal Statement	 157
help Statement	 158

Compound Statements	 159
Code Blocks	 159
Rules of Indentation	 160
Rules of Spacing	 160
if Statement	 161
if-else Statement	 162
if-elif Statement	 163
if-elif-else Statement	 165
while Statement	 165
for Statement	 166
def Statement	 167
class Statement	 168
try-except Statement	 168
with Statement	 169

		 Chapter Summary	 170

	 Contents	 ix

		 Exercises	 171
		 Projects	 172

	Chapter 3	 Flow Control of Statements	 175

		 Learning Objectives	 175
	3.1	 Selective with the if Statement	 175
	3.2	 Single-branch selective with if Statement	 176
	3.3	 Multiple-Branch Selective with if-elif-… and if-elif-…-else

Statements	 177
	3.4	 Iterate with for Statement	 180

Using break and continue Statements and an else Clause
Within Loops	 184

Common Coding Mistakes with the for Loop	 185
	3.5	 Iterate with the while Statement	 185

Common Coding Mistakes with a while Loop	 190
	3.6	 Iterate with for Versus while	 190
		 Chapter Summary	 195
		 Exercises	 195
		 Projects	 196

	Chapter 4	 Handle Errors and Exceptions in
Programs	 201

		 Learning Objectives	 201
	4.1	 Errors in Your Programs	 202

Exception	 203
ArithmeticError	 204
OverflowError	 204
ZeroDivisionError	 204
FloatingPointError	 205
AssertionError	 205
AttributeError	 205
BufferError	 206
EOFError	 206
GeneratorExit	 206
ImportError	 206
IndexError	 207
KeyError	 207
KeyboardInterrupt	 207
MemoryError	 207

	 x	 Contents

ModuleNotFoundError	 207
NameError	 208
NotImplementedError	 208
OSError	 208
BlockingIOError	 208
ChildProcessError	 208
ConnectionError	 208
BrokenPipeError	 209
ConnectionAbortedError	 209
ConnectionRefusedError	 209
ConnectionResetError	 209
FileExistsError	 209
FileNotFoundError	 209
IsADirectoryError	 209
NotADirectoryError	 209
PermissionError	 209
ProcessLookupError	 210
TimeoutError	 210
RecursionError	 210
ReferenceError	 210
RuntimeError	 210
StopIteration	 210
StopAsyncIteration	 210
SyntaxError	 210
IndentationError	 211
TabError	 211
SystemError	 211
SystemExit	 211
TypeError	 211
UnboundLocalError	 212
UnicodeError	 212
UnicodeEncodeError	 212
UnicodeDecodeError	 212
UnicodeTranslateError	 212
ValueError	 212

	4.2	 Handling Runtime Errors and Exceptions	 216
		 Chapter Summary	 219
		 Exercises	 220

	 Contents	 xi

	Chapter 5	 Use Sequences, Sets, Dictionaries, and
Text Files	 221

		 Learning Objectives	 221
	5.1	 Strings� 222

Methods of Built-In Class str	 222
Built-In Functions and Operators for Strings	 232
Constructing and Formatting Strings	 234
Regular Expressions	 242

	5.2	 Lists� 251
	5.3	 Tuples� 258
	5.4	 Sets� 261
	5.5	 Dictionaries	 266
	5.6	 List, Set, and Dictionary Comprehension	 271

List Comprehension	 272
Set Comprehension	 273
Dictionary Comprehension	 274

	5.7	 Text Files	 274
Opening and Closing a File	 275
Write or Append to a File	 278
Reading from a File	 280
Update Existing Content of a Text File	 284
Deleting Portion of a Text File	 286

		 Chapter Summary	 289
		 Exercises	 291
		 Projects	 292

	Chapter 6	 Define and Use Functions	 295

		 Learning Objectives	 295
	6.1	 Defining and Using Functions in Python	 296
	6.2	 Parameters and Arguments in Functions	 299
	6.3	 Recursive Functions	 304
	6.4	 Anonymous Functions: lambda Expressions	 308
	6.5	 Special Functions: Mapping, Filtering, and Reducing	 310

Mapping	 310
Filtering	 311
Reducing	 312

	6.6	 Generators: Turning a Function into a Generator of Iterables	 312
	6.7	 Closures: Turning a Function into a Closure	 316
	6.8	 Decorators: Using Function as a Decorator in Python	 317

	 xii	 Contents

	6.9	 Properties of Functions	 320
		 Chapter Summary	 322
		 Exercises	 322
		 Projects	 323

	Chapter 7	 Object-Oriented Programming with
Python	 325

		 Learning Objectives	 325
	7.1	 Introduction to Object-Oriented Programming (OOP)	 326

Abstraction	 326
Information Hiding or Data Encapsulation	 326
Inheritance	 327

	7.2	 Defining and Using Classes in Python	 327
Inheritance: Subclass and Superclass	 333
Public, Private, and Protected Members of a Class	 334
Class Methods	 336
Static Methods	 337
Class Attributes	 338

	7.3	 Advanced Topics in OOP with Python	 340
Dunder Methods in Class Definition	 340
Using Class as Decorator	 346
Built-In Property() Function and Property Decorator	 348
Creating a New Class Dynamically and Modify a Defined

Class or Instance	 352
Keeping Objects in Permanent Storage	 356

		 Chapter Summary	 358
		 Exercises	 359
		 Project� 361

	Chapter 8	 Modules and Packages	 363

		 Learning Objectives	 363
	8.1	 Creating Modules and Packages	 364
	8.2	 Using Modules and Packages	 367
	8.3	 Install and Learn About Modules Developed by Others	 369
	8.4	 Module for Generating Random Numbers	 377

Functions for Bookkeeping	 379
Functions for Generating Random Integers	 379
Functions for Randomly Generating Float Numbers	 380
Functions for Randomly Selected Item(s) from Sequences	 382

	8.5	 Module for Mathematical Operations	 385

	 Contents	 xiii

	8.6	 Modules for Time, Date, and Calendar	 395
The Datetime Module	 395
The Time Module	 405
The Calendar Module	 410

	8.7	 Modules for Data Representation and Exchange	 415
	8.8	 Modules for Interfacing Operating Systems and Python

Interpreter	 418
OS Module for Interacting with the Operating System	 418
The path Submodule from os for Manipulating File Paths	 423
The sys Module for Interaction Between the Python and

Python Interpreter or Python Virtual Machine (PVM)	 426
	8.9	 Module for Logging Events During Program Runtime	 434
	8.10	Modules for Playing and Manipulating Audio and

Video Files	 436
winsound	 436
PyGame	 439

	8.11	Modules for Creating and Manipulating Graphics and
Images	 442

Create Graphics with Tkinter	 443
Manipulate Images with Pillow	 448

	8.12	Modules for Data Analytics	 451
		 Chapter Summary	 455
		 Exercises	 456
		 Projects	 457

	Chapter 9	 Develop GUI-Based Applications	 459

		 Learning Objectives	 459
	9.1	 Terminal-Based Applications Versus GUI-Based

Applications	 460
	9.2	 Designing and Developing GUI-Based Applications

in Python	 461
Tkinter Module	 463
tkinter.ttk—Tk-Themed Widgets	 475

		 Chapter Summary	 482
		 Exercises	 483
		 Projects	 484

This page intentionally left blank

 https://doi.org/10.15215/remix/9781998944088.01

Chapter 1

Introduction

This chapter prepares you to learn how to program with Python. Preparation
includes a brief introduction to computers and computing, programming,
and programming languages, as well as the installation of Python and Python
interactive programming and integrated development environments (IDEs),
including Jupyter Notebook for interactive programming and VS Code as a
required IDE.

Learning Objectives
After completing this chapter, you should be able to

•	 talk about the history of computers.
•	 describe the basic components of modern computers and their roles.
•	 explain the basic principles of modern computers.
•	 discuss the basics of computability and computational complexity.
•	 explain how the construction of modern computers has evolved.
•	 explain what computer systems are made of.
•	 discuss computer programming languages.
•	 describe Python and discuss its development, features, and advantages.
•	 install Python and required Python IDEs on the computer.
•	 get Python and Python IDEs running for the learning activities included

in this textbook.

1.1 A Brief History of Computers
The history of human tools, devices, or instruments to help us count, compute,
and think can be traced back to the Stone Age, when our ancestors used knots
on ropes, marks on bark, stones, and balls of clay. One of the most well-known

	 2	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

and widely used devices for computing in human history is the abacus, shown
in Figure 1-1.

The exact origin of the abacus is unknown, but before the adoption of the
written Hindu-Arabic numeral system, the abacus had already been widely
used in many countries, including China, Russia, and some European coun-
tries. Abacuses continued to be widely used by almost all accountants in China
before the adoption of modern computers and calculators.

Today, although abacuses are rarely used in real applications such as
accounting, their working principles are still used to train people to do men-
tal math, such as in programs like the Universal Concept of Mental Arithmetic
System (UCMAS; see ucmas​.ca). UCMAS holds annual competitions worldwide,
including in Canada.

The invention and development of today’s modern computers can be
attributed to the invention and development of all previous relevant concepts,
principles, and technologies. The concept of a digital, programmable computer
originated with Charles Babbage, an English mathematician, philosopher,
inventor, and machine engineer. In 1822, he designed a steam-driven calcu-
lating machine for automatically computing tables of numbers. Although his
government-funded project failed, the many ideas he developed and used in
his analytical engine were adopted and used in the world’s first modern pro-
grammable computer, built a century later. That is why Charles Babbage is
considered to be one of the “fathers of computers.”

In 1847, George Boole, an English mathematician introduced Boolean logic,
propositional calculus, and Boolean algebra as the laws of thinking, which later
became the foundation of modern electronic computers and digital devices in gen-
eral. For that reason, George Boole is regarded as a founder of computer science.

In 1890, Herman Hollerith successfully designed and built a punch-card-
based system for the US government to calculate its 1890 census. It saved the
US government US$5 million by finishing the calculation in one year instead
of 10 years it would have taken using traditional methods, as in the previous
census. In 1896, Herman Hollerith established a company called the Tabulating
Machine Company to make the machines. This company ultimately became IBM.

Figure 1-1: A traditional abacus

http://ucmas.ca

	 Introduction	 3

 https://doi.org/10.15215/remix/9781998944088.01

The central concept and theory of modern computers were conceived in
1936 by English mathematician Alan Turing in his “universal machine,” which
became known as the Turing machine in his honour. He successfully proved
that his universal machine could calculate anything that is computable. Alan
Turing is also considered by some to be “a father of computers”—or more
precisely, “a father of computing”—for his seminal paper on the theory of
computation. In the eyes of the general public, Alan Turing is more famous
for his role in cracking the so-called unbreakable codes used by the German
army during World War II, as presented in The Imitation Game, a well-known
Hollywood movie.

Until 1937, all computing machines or computers were mechanically based,
using gears, cams, belts, or shafts. John Vincent Atanasoff, an American math-
ematician and physician at Iowa State University, attempted in 1937 to build the
first electronic computer. He and Clifford Berry, one of his graduate students at
the time, designed and built a special-purpose digital computer, ABC. For that
reason, he is considered to be “the father of the modern computer.” It was in
the ABC machine that binary math and Boolean logic were successfully used
for the first time.

In 1943, across the Atlantic Ocean in England, Colossus Mark I, a prototype
of a special-purpose computer, was built. A year later, in 1944, Colossus Mark II
was built and used to break the encrypted radiotelegraphy messages transmitted
by the German army at the end of World War II.

In 1946, the first general-purpose digital computer, the Electronic Num-
erical Integrator and Computer (ENIAC), was built by two professors at the
University of Pennsylvania: John Mauchly and J. Presper Eckert. The computer
had over 18,000 vacuum tubes and weighed 30 tons. A rumour at the time said
that whenever the computer was turned on, the lights in some districts of
Philadelphia would dim.

During the same time, the same group of people at the University of Pennsyl-
vania also designed and built EDVAC (the Electronic Discrete Variable Automatic
Computer, completed in 1949), BINAC (the Binary Automatic Computer, also
completed in 1949), and UNIVAC I (the Universal Automatic Computer I, com-
pleted in 1950), which were the first commercial computers made in the US.
Although the computing power of these computers was not even comparable
to that of today’s smartphone, their contributions to the development of today’s
modern computers are enormous. These contributions include the concepts,
principles, and technology of stored programs, subroutines, and programming
languages.

Around the same time that ENIAC was built, the Harvard Mark I auto-
matic sequence-controlled calculator was also built at Harvard University. It is

	 4	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

believed that John von Neumann, a mathematician and physicist working at the
Los Alamos National Laboratory, was the first user of the Harvard Mark I, which
he used to run programs on the machine to calculate for the Manhattan Project.

In 1944, Von Neumann had an opportunity to join a discussion with J. Pres-
per Eckert and John Mauchly, who were developing ENIAC and EDVAC machines
at the time. He wrote up a report on the EDVAC, First Draft of a Report, in which
he described a computer architecture later known as Von Neumann architec-
ture (see Figure 1-2). The key idea behind the architecture is a stored-program
computer that includes the following components:

•	 a processing unit that contains an arithmetic logic unit and processor
registers

•	 a control unit that contains an instruction register and program counter
•	 internal memory that stores data and instructions
•	 external mass storage
•	 input and output mechanisms

The unpublished report was widely circulated. It had great impact on the
later development of modern computers, although to many people, Turing was
the originator of this key idea and architecture, and many others, including J.
Presper Eckert and John Mauchly, made significant contributions to its evo-
lution as well. Regardless, it is Von Neumann architecture that has guided the
design of modern computers. All computers we use today are essentially still
Von Neumann computers.

Modern computers can be categorized into three generations based on the
core hardware technology used. The first generation of computers (1937–46)
used vacuum tubes, the second generation (1947–62) used transistors, and the
third generation (1963–present) used integrated circuits (IC).

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory

Input Output

Storage

Figure 1-2: Von Neumann architecture

	 Introduction	 5

 https://doi.org/10.15215/remix/9781998944088.01

Both hardware and software play important roles in computers. On the hard-
ware front, in the first generation of modern computers, magnetic tapes and disks
were developed and used for storage, and printers appeared and were used for
output. On the software side, simple operating systems (OSs) were developed and
used, and over 100 high-level programming languages were developed.

During the second generation of computers, the Universal Automatic Com-
puter (UNIVAC I), the first computer for commercial use, was introduced to
the public (1951). The International Business Machines Corporation (IBM) also
brought their IBM650 and IBM700 series computers to the computer world
(1953).

Since 1963, the beginning of the third generation of modern computers,
advances in hardware have made computers smaller and smaller but much
more powerful, with a higher speed of CPU and a bigger memory with faster
throughput.

In 1980, Microsoft developed MS-DOS, short for Microsoft Disk Operating
System, and in 1981, IBM introduced the first personal computer (PC) for home
and office use. In 1984, Apple brought its Macintosh computer with its icon-
driven interface to the world, and in the 1990s, Microsoft brought the world the
Windows operating system. Billions of computer users around the world have
enjoyed both Microsoft Windows and Apple’s macOS.

More information about the history of computers can be found on the inter-
net by searching for “history of computers,” including the following articles:

https://​en​.wikipedia​.org/​wiki/​Computer
https://​www​.computerhistory​.org/​timeline/​computers/
https://​www​.explainthatstuff​.com/​historyofcomputers​.html
https://​www​.britannica​.com/​technology/​computer/​History​-of​

-computing

1.2 Fundamentals of Computing and Modern
Computers
The development of modern computers is the result of the collective efforts of
many great mathematicians, scientists, and engineers and advances in both
theories and technologies. This section looks at the theoretical and technical
fundamentals of computing and modern computers in order to show how
modern computers work internally.

https://en.wikipedia.org/wiki/Computer
https://www.computerhistory.org/timeline/computers/
https://www.explainthatstuff.com/historyofcomputers.html
https://www.britannica.com/technology/computer/History-of-computing
https://www.britannica.com/technology/computer/History-of-computing

	 6	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Number Systems and the Foundation of Computing
Initially, computers and computing devices were developed to deal with num-
bers. They later made their way into the realm of text handling and information
processing. This is done through encoding. When properly coded, all text can be
represented as numbers—codes—and all ways of manipulating text can be accom-
plished through operations on those codes. Number systems and operations on
numbers are really a basic foundation of computing and modern computers.

We all know numbers, and the number system we have known since child-
hood is base-10, which is represented using 10 digits from 0 to 9. A base-10
number such as 2539867 can be written as

2 * 106 + 5 * 105 + 3 * 104 + 9 * 103 + 8 * 102 + 6 * 101 + 7 * 100

In general, an n-digit number dn−1dn−2…d1d0 (where n is any positive integer
and each d ∈ [0, 1, 2, …, 9], where 0 < i < n) in a base-10 number system can
be rewritten as

dn−1 * 10n−1 + dn−2 * 10n−2 + … + d1 * 101 + d0 * 100

In fact, a number system can be based on any whole number other than
0 and 1. There is a base-7 system for weeks, a base-12 system for the Chinese
zodiac and imperial foot and inch, and a base-24 number system for the 24-hour
clock. A long list of different numbering systems that have appeared since pre-
history can be found at https://​en​.wikipedia​.org/​wiki/​List​_of​_numeral​_systems.

In general, a base-Q number system will require Q unique symbols repre-
senting 0, 1, … Q−1, respectively. The base-10 equivalence of an n-digit base-Q
number dn−1dn−2…d1d0 can be represented as

dn−1 * Qn−1 + dn−2 * Q−2 + … + d1 * Q1 + d0 * Q0

The evaluation of the expression above will result in its base-10 equivalence.
This is how we convert a number from base-Q to base-10.

For Q = 2, the numbers 0 and 1 are used to represent digits; for Q = 3, the
numbers 0, 1, and 2 are used; for Q = 8, the numbers 0, 1, 2, 3, 4, 5, 6, and 7 are
used; for Q = 16, the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a/A, b/B, c/C, d/D, e/E,
and f/F are used.

The expression above also shows how to convert a number from base-10
to base-Q: divide the number by Q repeatedly, and the remainders will be the
digits. The details of these conversions can be found on the internet.

For a number dn−1dn−2…d1 d0 in a base-Q number system, it is often necessary
to add Q as a subscription of the sequence, as shown below:

dn−1dn−2…d1d0Q or (dn−1dn−2…d1d0)Q

https://en.wikipedia.org/wiki/List_of_numeral_systems

	 Introduction	 7

 https://doi.org/10.15215/remix/9781998944088.01

This explicitly indicates that the number is in a base-Q number system. For
example, number 657 in a base-8 number system will be written as 6578 or
(657)8, especially if the context does not indicate which number system the
number is in.

All number systems have the same operations that we are already familiar
with in a base-10 system, such as addition, subtraction, multiplication, and
division. The only difference is that in a base-Q number system, a 1 carried to
or borrowed from a higher digit is equal to Q instead of 10.

For example, in a base-2 number system, 101 can be written as 1 * 22 + 0
* 21 + 1 * 20, and its 10-base equivalence is 1 * 4 + 0 + 1 = 5, and for 101 + 110,
the operation is

101
+ 110______
1011

110
− 101______

001

Given the four basic mathematical operations—addition, subtraction, multi-
plication, and division—it is very simple to prove that multiplication can be done
by repeated addition, whereas division can be done by repeated subtraction.
Therefore, if you know how to do addition and subtraction and are able to
count, you will be able to do multiplication and division as well.

More importantly, because a − b can be rewritten as a + (−b), you may be
able to eliminate subtraction if you can represent −b without the minus sign.
In a base-Q number system, (a − b) can be conveniently handled through a +
b′, in which b′ is the Q-complement of b representing (−b).

Given a negative number, −N, in which N is called the magnitude of −N, how
do you get N′, the Q’s complement to N? It turns out to be very easy.

For a number N written as dndn−1…d0 in a base-Q number system, its
Q-complement N′ is a number, also in a base-Q number system, such that N +
N′ = Qn, and N′ can be easily calculated in the following two steps:

	 1.	 For each di in dn−1dn−2…d0, find ti such that di + ti = Q−1, to
get tn−1tn−2…t0

	 2.	 Add 1 to tn−1tn−2…t0 to get N’s complement cn−1cn−2…c0

For b in a − b, if b has fewer digits than a, add 0s to the left of b to make up the
missing digits before working on the above steps. For example, for 768 − 31,
do 768 + (−31) or 768 + the 10’s complement of 31.

	 8	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

To get 10’s complement of 31, first add one 0 to the front of 3 to get 031,
then find out the 10’s complement of 031, which is 968 + 1 = 969. Then do 768
+ 969 to get 1737, and ignore the last carried digit, 1, to get 737, which is the
result of 768 − 31.

It is easy to see that if C is N’s complement, then N is C’s complement as
well. Using the notation given above, this can be written as (N′)′ = N.

What about floating-point numbers—that is, numbers with fractions, such
as 3.1415926?

In a base-Q number system, a floating-point number can be represented
much like integers, as shown below:

dn−1 * Qn−1 + dn−2 * Qn−2 + … + d1Q
1 + d−1 * Q−1 + d−2 * Q−2 + … + d−mQ−m

This may give us a hint that a floating-point number can be represented by
two sequences of digits: one for the integer portion and the other for the frac-
tion portion. If floating-point numbers are represented this way in computers,
addition and subtraction could be performed on the two portions separately,
but with a mechanism to deal with carrying from the fraction to the integer in
the case of addition, and a mechanism to deal with borrowing from the integer
to the fraction in the case of subtraction. This would be rather clumsy, and it
would be even more clumsy when doing multiplication and division.

In reality, floating-point numbers are represented in scientific notation,
such as 1.3 * 102 in a base-10 or decimal system, where 1.3 is called the frac-
tion, 2 is called the exponent, and 10 is the radix. In a base-2 system, the radix
would be 2.

In scientific notation, arithmetic operations on floating-point numbers
can be easily done, especially if the fractions of all floating-point numbers are
normalized—that is, if the number of digits before the radix point is fixed for
all floating-point numbers. For example, to perform the addition or subtrac-
tion of two floating-point numbers, all you need to do is shift the digits of one
floating-point number based on the difference of the two exponents, then per-
form addition or subtraction in the same way as on integers. More surprisingly,
multiplying and dividing floating-point numbers in scientific notation is much
easier than adding and subtracting. There is no need to shift the digits because

a * rm * b * rn = a * b * rm+n

and

a * rm / b * rn = a / b * rm−n

All you need to build a computer capable of adding, subtracting, multiply-
ing, and dividing in a base-Q number system is the ability to add and count,

	 Introduction	 9

 https://doi.org/10.15215/remix/9781998944088.01

which is needed for multiplication and division. Moreover, counting itself can
be done by addition when counting up or subtraction when counting down.
This is very encouraging.

The following discoveries are even more encouraging:

•	 Many mathematical and scientific problems can be represented and
reformulated based on the basic mathematical operations discussed
above.

•	 If we can build a computing device capable of doing basic mathematical
operations, the machine can solve many computing and information
processing problems.

The remaining question is how to make such a machine work faster. On a
computing machine with only an addition and counting unit, if each step of an
operation has to be enabled by a human, the computation would be very slow
because it would have to wait for the human to input instructions and data. To
speed things up, the entire problem solving process needs to be automated. This
requirement has led to the introduction of memory to computing machines to
store both the operating instructions (the program) and data needed during the
computation. For the central processing unit (CPU) and memory (RAM) to com-
municate and work together, a communication channel and control unit need to
be added. For human users to communicate with the computing machine, input
and output units are also needed. Together these include everything described in
Von Neumann’s architecture for modern computers.

Computability and Computational Complexity
Now comes the question of how powerful the computing machine described
above can be. In particular, we should ask,

•	 What problems can or cannot be computed with a computing machine?
•	 How difficult is it to solve a given problem with a computing machine,

assuming that the machine can take as many steps and use as much
memory as needed to solve the problem?

Answering the first problem is the study of computability. Answering the second
question is the study of computational complexity.

A well-known computability problem was raised by David Hilbert, a very
famous German mathematician in the 19th century. The 10th problem in his list
of 23 important mathematical problems he published in 1900 is the decidability
problem, which is about finding an algorithm that can determine whether a

	 10	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Diophantine equation such as xn + yn = zn, where n is an integer and greater
than 2, has integer solutions. It was proved in 1970 that such an algorithm
doesn’t exist, meaning that the problem of deciding whether a Diophantine
equation has integer solutions is unsolvable, or incomputable.

Between the 1930s and 1940s, before the existence of modern computers,
Alan Turing invented a simple yet powerful abstract machine called the Tur-
ing machine. He proved that the abstract machine could simulate the logic of
any given algorithm and further determine whether an algorithm is comput-
able. The operation of the machine will halt if the algorithm is incomputable.
During the same time, computability was also well studied by Alonzo Church
based on lambda calculus. The two works later intertwined in a formal theory
of computation known as the Church-Turing thesis.

In computer science, the computational complexity of an algorithm devised
to solve a problem is about the number of resources—CPU time and memory,
in particular—needed to run the algorithm on a computer. A problem may be
solved in different ways using different algorithms with different computational
complexities. Sometimes it is necessary to find a better algorithm that runs
faster and/or uses less memory.

The time required to run an algorithm is also related to the size of the
problem to be solved. For example, finding someone in a classroom would be
much easier than finding someone in a city. If you denote the size of a problem
with n, then in computer science, O(f(n))—called the big O of f(n)—is used to
describe asymptotically the upper bound of running time: the time complexity
of an algorithm for solving the problem.

For example, assume you want to sort the numbers in a list. The size of the
problem will be the number of numbers in the list. One algorithm is called
selection sort, which begins with selecting the smallest number from the
list, then selecting the smallest number from the remaining of the list, and
so on. Assume the size of the list is n. The first time it will need to do n − 1
comparisons. The second time it will need n − 2 comparisons. When these are
only two numbers left in the list, only one comparison is needed to finish. So
the complexity of the algorithm in terms of the total number of comparisons
needed will be

(n − 1) + (n − 2) + (n − 3) … + 2 + 1 = (n − 1 + 1) / 2 * (n − 1) = n * (n − 1) / 2
= (n2 − n) / 2 = O(n2)

You may have noted in the big-O notation that we have kept only the highest-
order term and have removed the constant ½ as well. This is because, with the
big-O asymptotic notation, only the scale of complexity increased when the size
of the problem increases is of interest.

	 Introduction	 11

 https://doi.org/10.15215/remix/9781998944088.01

In computer science, problems can be classified as P (for polynomial),
NP (for nondeterministic polynomial), NP-complete, or NP-hard problems. A
problem is said to be in P if it can be solved using a deterministic algorithm in
polynomial time—that is, if the complexity is a big O of a polynomial. A prob-
lem is said to be in NP if it can be solved with a nondeterministic algorithm in
polynomial time. A problem is NP-complete if a possible solution can be quickly
verified but there is no known algorithm to find a solution in polynomial time.
A problem is NP-hard if every NP problem can be transformed or reduced to
it within polynomial time.

In the above, a deterministic algorithm refers to the one in which, given the
same input, the output would always be the same, whereas a nondeterministic
algorithm may give different outputs even for the very same input.

The complexity of algorithms, which is closely related to the response and
processing speed of programs and computer systems, is the concern of good
programmers, especially when dealing with resource-intensive applications.
It is also an important topic to be studied in senior or graduate courses in
computing and computer science. When writing a program or just a function
for assignments or an application, always think about the time and space com-
plexity and ask yourself, Is there a better way to get the job done?

The Construction of Modern Computers
In general, computers can be categorized into two types: analog computers and
digital computers. The computers in use today are almost all digital computers.
But analog computers do have their advantages.

ANALOG COMPUTERS
As a computing machine, an analog computer uses the properties of certain
objects or phenomena to directly analogize the values of variables (such as
the speed of a vehicle) of a problem to be solved. Examples of the properties
include the voltage and amperage of electricity, the number of teeth of a gear,
or even the length of a wood or metal stick.

Analog computing machines were often built for some special purpose, with
a very wide range of difficulties and complexities. A simple analog computer
could be built with three gears for addition and subtraction. For addition, using
both operands to drive the third gear in the same direction will yield the sum
of the two operands on the third gear, whereas for subtraction, the difference
can be calculated by driving the two gears in two different directions.

Historically, even as early as 100 BC, complicated analog computing
machines were built for various applications, from astronomy in ancient Greece
to the differential machine for solving differential equations in the late 1800s

	 12	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

and early 1900s. Some of the most complicated analog computing machines in
modern history include those for flight simulation and gunfire control. Analog
computing machines continued well into the early age of modern digital com-
puters because the special applications analog computers were developed for
were still too hard for digital computers in the 1960s or even 1970s.

DIGITAL COMPUTERS
Different from analog computers, digital computers use sequences of digits
to represent the values of variables involved in the problems to be solved. In
digital computers, the machine representation of a problem is often abstract,
with no analogy to the original problem.

Theoretically, in accordance with the earlier discussion about general num-
ber systems, digital computers’ digits can be in any base, from 2 up. Hence a
digital computer could be base-2, base-3, … base-10, base-16, and so on. The
digital computers we are using today are all base-2, or binary, computers,
although it has been proved that base-3 computers would be even more effi-
cient than base-2 computers.

This is because it is more convenient and cheaper to build components
with the two easily distinguishable states needed to represent base-2 numbers.

Also, in a binary system, signed numbers can be naturally represented
using the highest sign bit: 0 for positive numbers and 1 for negative numbers,
for example. Moreover, the addition and subtraction of signed binary numbers
can be easily done by using 2’s complements to represent negative numbers.

For example, to do −2−3, we would do

(−2) + (−3)

or

(−00000010)b + (−00000011)b

Next, we need to convert (−00000010)b and (−00000011)b into their 2’s comple-
ment representations. According to the two steps we described in the section
above, “Number Systems and the Foundation of Computing,” with Q = 2, you
first get 1’s complement of the magnitude of each negative number above by
flipping each bit, then adding 1 to 1’s complement, as shown below:

(00000010)b (1’s complement by flipping each bit) → (11111101)b
(then + 1) → (11111110)b

(00000011)b (1’s complement by flipping each bit) → (11111100)b
(then + 1) → (11111101)b

	 Introduction	 13

 https://doi.org/10.15215/remix/9781998944088.01

The addition above will become

(11111110)b + (11111101)b

which is equal to

(11111011)b

The 1 on the highest bit of the result means that the result is 2’s comple-
ment representation of a negative number. Interestingly, the magnitude of the
negative number is the complement of (11111011)b, which is

(11111011)b (1’s complement by flipping each bit) → (00000100)b
(then + 1) → (000000101)b,

which is 5, meaning that the result of −2−3 is −5.
It is very easy to calculate the 2’s complement of a binary number. Adding a

negative number can be done by adding its 2’s complement. That is the advan-
tage that the binary system has offered for the construction and development
of modern digital computers.

As such, in principle, the key component needed in our modern digital
computers for computing and information processing is a unit to add two
binary numbers, since the three other basic arithmetic operations can be done
based on addition, using respective algorithms or routines such as the ones
mentioned above. In the real implementation and construction of digital com-
puters, all basic arithmetic operations, including bitwise operations on integer
binary numbers such as the operations needed to find 2’s complements, are
hardwired into a unit called the arithmetic logic unit (ALU), which is the core
of the central processing unit (CPU) that you have heard about often.

A digital computer also needs to compute real or floating-point numbers as
well as process graphics. To get these two jobs done more efficiently, modern
computers also have a floating-point unit (FPU) for floating-point numbers,
and a graphics processing unit (GPU) for graphics.

MECHANIC-BASED COMPONENTS
Mechanical components such as levels, gears, and wheels can be used to build
analog computers. In fact, digital computers can also be built with mechanical
components. The earliest special-purpose mechanic-based digital computer
was the difference engine designed by Charles Babbage. A general-purpose
mechanic-based digital computer, called the analytical engine, was also first
proposed by Charles Babbage. In the design, the machine has memory and
CPU. It would have been programmable and, therefore, would have become a
general-purpose digital computer, if ever actually built.

	 14	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

VACUUM TUBE–BASED COMPONENTS
Invented in 1904 by John Ambrose Fleming of England, a vacuum tube is a
tube made of glass with gas/air removed, with at least two electrodes inserted
for allowing or controlling the flow of electrons. Vacuum tubes can be made
to be switches or amplifiers. As switches, the two states of on and off can be
used to represent the 0 and 1 of binary arithmetic or Boolean logic. When
the state of output can be controlled by input or inputs, the switch is made to
be a gate to perform different logical operations. That’s how vacuum tubes could be
used to implement modern computers; as amplifiers, they found their uses in
many electronic devices and equipment such as radio, radar, television, and
telephone systems. It was the vacuum tube that made electronic computers
and other electronic devices possible for the first time. Vacuum tubes played
very important roles in the development and construction of all electronic
devices and systems in the first half of the 20th century.

However, vacuum tubes disappeared from computers and most other elec-
tronic devices soon after transistors were developed at the Bell Laboratories
by John Bardeen, Walter Brattain, and William Shockley in 1947 because, com-
pared to transistors, vacuum tubes were too big, too heavy, too unreliable and
consumed too much power to operate. That limited the construction and uses
of vacuum tube–based computers and devices.

TRANSISTORS
Recall that in the construction of computers, the ALU or CPU requires two-state
switches to represent 0 and 1 and logical gates to perform additions and sub-
tractions of binary number systems. Vacuum tubes could be made to construct
electronic computers, but the computers became too bulky and too heavy to
be more useful.

INTEGRATED CIRCUITS AND VERY LARGE-SCALE INTEGRATED
CIRCUITS
Integrated circuits (ICs) are chips with many electronic circuits built in, while
very large-scale integrated (VLSI) circuits are those with millions and even bil-
lions of electronic circuits built into very small semiconductor chips. According
to Moore’s law (attributed to Gordon Moore, the cofounder and former CEO of
Intel), the number of transistors in a dense integrated circuit doubles about
every two years. This has been the case over the last few decades since 1975,
though advancement in VLSI technology has slowed since 2010.

Today, computers are all using VLSI chips. That is why computers have
become smaller and smaller, while computing power has increased expo-
nentially in accordance with Moore’s law.

	 Introduction	 15

 https://doi.org/10.15215/remix/9781998944088.01

1.3 Programming and Programming Languages
One of the key principles of modern computers is using stored programs, which
are sequences of instructions telling computers what to do. The task of writing
programs for computers is called programming.

During the first generation of computers, machine languages and assembly
languages were used to write programs. Machine languages use sequences of
0 and 1 to code instructions for computers. Programs in a machine language
can be directly understood by the CPU of the target computer. The following
is an example of machine language for the Intel 8088 CPU:

00000011 00000100
10001000 11000011

As you can see, although machine language is friendly to computers, it is
not friendly to people, because the instruction itself does not tell us what it
does in a human-readable language. To solve this problem, assembly language
was invented. The two instructions above are written in assembly language as
follows:

ADD AX, [SI]
MOV BL, AL

The instruction in assembly language is much more friendly to people
because one can more easily tell what each instruction does. However, assembly
language is not as friendly to computers. For computers to understand programs
in assembly language, an assembler is needed to translate the programs into
code in machine language.

With assembly language, programming is still a difficult task because
instructions in an assembly language are mostly direct mapping of their
machine-language equivalent and only describe fine and tiny steps of CPU
operations. It is difficult to program in assembly language to solve real-world
problems.

The idea of using a high-level, more human-friendly programming lan-
guage was attributed to Konrad Zuse for his work between 1942 and 1945.
He developed a high-level programming language called Plankalkül for a
non–Von Neumann computer called Z4 that he made during the same period
of time. The language was not implemented and used on Z4 or any other real
computer during that time, but Konrad Zuse did write a computer chess pro-
gram in the language.

	 16	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The first high-level programming language for our modern computers
(Von Neumann machines) is ALGOL 58, but it was soon surpassed by ALGOL
60, a structured programming language.

During the second generation of modern computers, more than 100 high-
level programming languages were developed. The most popular programming
languages include COBOL, for programming business systems; Fortran (an
imperative procedural programming language), for scientific calculation; ADA,
used by the military and National Defense in the US; Lisp (a functional pro-
gramming language), used for symbolic or information processing; and Prolog
(a logic programming language), for logic programming, especially during the
first revival of artificial intelligence in the 1980s. There have been thousands of
programming languages since the invention of the modern computer, according
to the list at https://​en​.wikipedia​.org/​wiki/​List​_of​_programming​_languages.

However, most of these programming languages have never been used
in real application development. The most popular programming languages
used today include Python, Kotlin (for Android applications), Java, R (for data
analysis and machine learning), JavaScript, C++, C#, PHP, Swift (for iOS appli-
cations), Go, and C, which has been a popular language for more than half of
the century and is considered a foundational language of many other popular
programming languages.

High-level programming languages are friendly to people but not friendly
to computers. For computers to understand and execute programs written in
a high-level programming language, they must be translated into machine lan-
guage. Based on how programs in high-level languages are translated into target
machine language, high-level programming languages are either compiled or
interpreted. A program written in a compiled programming language such as
C or C++ needs to be compiled into its target machine’s codes and linked with
copies of code in static libraries, or linked with references to code in dynamic
or shared libraries, so that the resulting object can then be executed by the
target computer.

Programs written in an interpreted programming language can be executed
directly by the interpreter of the programming language, in view of program-
mers and users. Behind the scenes, however, to speed up the execution of
programs written in an interpreted programming language, the programs are
often translated first into some intermediate codes, often called bytecodes.
The bytecodes are then executed within a so-called virtual machine built
into the interpreter of the programming language.

More readings about the history of computer programming languages can
be found on the internet by searching for “history of computer programming.”
The following are some of the articles:

https://en.wikipedia.org/wiki/List_of_programming_languages

	 Introduction	 17

 https://doi.org/10.15215/remix/9781998944088.01

https://​en​.wikipedia​.org/​wiki/​History​_of​_programming​_languages
http://​www​.softschools​.com/​inventions/​history/​computer​

_programming​_history/​369/
https://​www​.datarecoverylabs​.com/​company/​resources/​history​

-computer​-programming​-languages
https://​www​.computerhistory​.org/​timeline/​software​-languages/
https://​www​.thecoderschool​.com/​blog/​the​-history​-of​-coding​-and​

-computer​-programming/

A good overview of programming languages can be found at https://​en​
.wikipedia​.org/​wiki/​Programming​_language.

It is worth noting that although well-formed computer programming lan-
guages only came into existence in the late 1940s, Ada Lovelace, an English
mathematician who lived between 1815 and 1852, is considered the first com-
puter programmer. When she was commissioned to translate an article based
on Charles Babbage’s speech about his analytical engine, she wrote extensive
notes alongside the translation to explain the principles and mechanism of the
analytical engine. Those notes were later considered to be the first computer
programs in history. For example, one set of those notes would calculate a
sequence of Bernoulli numbers if executed on the analytical engine.

1.4 Python Programming Language
Python is an interpreted, high-level, general-purpose programming language.
It is one of the most popular programming languages in the world, second only
to Java. The 2023 rankings for programming language popularity can be found
at https://​www​.hackerrank​.com/​blog/​most​-popular​-languages​-2023/.

The Development and Implementation of Python
Python was originally conceived and developed in the Netherlands by Guido
van Rossum in the late 1980s. Its first release was Python 0.9.0 in 1991. Python 2.0
was released in 2000, nine years after the release of Python 0.9.0.

Most of the development of Python was accomplished between 2005 and
2013, when Guido van Rossum was working at Google, where he spent half of
his time on the development of the programming language. The latest Python 2
release is Python 2.7.16, whereas the latest release of Python 3 is Python 3.9.0,
at the time of writing.

Python is an interpreted programming language rather than a compiled
programming language. Programs written in Python don’t need to be com-
piled into target machine code. Instead, they only need to be translated into

https://en.wikipedia.org/wiki/History_of_programming_languages
http://www.softschools.com/inventions/history/computer_programming_history/369/
http://www.softschools.com/inventions/history/computer_programming_history/369/
https://www.datarecoverylabs.com/company/resources/history-computer-programming-languages
https://www.datarecoverylabs.com/company/resources/history-computer-programming-languages
https://www.computerhistory.org/timeline/software-languages/
https://www.thecoderschool.com/blog/the-history-of-coding-and-computer-programming/
https://www.thecoderschool.com/blog/the-history-of-coding-and-computer-programming/
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://www.hackerrank.com/blog/most-popular-languages-2023/

	 18	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

bytecodes, then executed by a Python Virtual Machine (PVM), which is built
into the Python interpreter.

Python language has different implementations with different names.
CPython, written in C and known simply as Python, is what we will be using,
and it is the implementation you will get from Python standard distribution at
python​.org by default. In addition to CPython, the following are some alterna-
tive implementations of Python:

	 1.	 JPython or Jython, and implementation for running on Java Virtual
Machine (JVM)

	 2.	 IronPython, an implementation for running on .NET
	 3.	 PyPy, an implementation for working with a just-in-time (JIT)

compiler
	 4.	 Stackless Python, an implementation of a branch of CPython

supporting microthreads
	 5.	 MicroPython, an implementation for running on microcontrollers

These implementations may be of interest only for some special applications.

Advantages of Python
Python was designed with the principle of “programming for everyone.” Programs
written in Python are clean and easy to read. Yet Python is a general-purpose
programming language and very powerful to code in. Programming in Python
has the least overhead, especially when compared to Java. Let’s take the famous
“Hello World!” application as an example. In Java, to create this application, you
need to write a class with a main method like the following:

class first {
 public static void main(String args[]){
 System.out.println("Hello World!");
 }
}

Then save it to a file and compile the file into Java bytecode by running the
following command, provided you have a JDK correctly installed:

javac myhelloworld.java

This command will generate a file named first.class. You can then run
command java first to have “Hello World!” spoken out.

http://python.org

	 Introduction	 19

 https://doi.org/10.15215/remix/9781998944088.01

In Python, however, you only need to write the following code and save to
a file, say, myhelloworld​.py:

print("Hello World!")

Then run the following command:

python myhelloworld​.py

More importantly, Python supports different programming paradigms,
including structured programming, imperative programming, object-oriented
programming, functional programming, and procedural programming.
Logic programming is probably the only exception; it is not supported by Python.

Python is very powerful for two reasons. The first reason, as you will see
later, is that Python has many powerful language constructs and statements to
represent data and operations on various data. The second reason is that there
are thousands of third-party packages/libraries/modules available for all kinds
of programming needs in addition to the large standard libraries included
with every release of Python. For example, Python is widely used for data
analytics and machine learning with the support of the NumPy, SciPy, Pandas,
Matplotlib, and TensorFlow libraries.

Resources for Python and Python Education
The ultimate resource for Python and API libraries is the official website of the
Python software foundation at https://​www​.python​.org/. From that website, you
will be able to access all the releases of Python and other packages and libraries
that you may be interested in, in addition to the standard libraries that come
with the official release of Python.

At the time of writing, the latest release of Python is 3.11.1, but you can
always check and locate the latest release for your platform at https://​www​
.python​.org/​downloads/. However, for your convenience and for your future
study and use of Python, we will use a package management system called
Anaconda to install and manage Python and all tools and libraries that you will
need for this textbook, as detailed later.

There are plenty of resources on the internet for eager learners to learn
almost anything, including programming in Python. To learn effectively on the
internet, however, a learner must be able to choose the right materials from
thousands—even millions—of choices, and that has proved to be a very difficult
task. That’s probably one of the reasons why universities and professors are

https://www.python.org/
https://www.python.org/downloads/
https://www.python.org/downloads/

	 20	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

still needed: to set the right learning paths and to select the right resources
for learners.

On the internet, the most authoritative learning source about the Python
language is the documentation (https://​docs​.python​.org/​3/), including language
references (https://​docs​.python​.org/​3/​reference/​index​.html) and library refer-
ences (https://​docs​.python​.org/​3/​library/​index​.html), although they may not be
articulated for beginners.

For learners who prefer to learn by reading, the following are some of the
best resources on the web:

•	 https://​docs​.python​.org/​3/: This resource is from the official Python
website, so the terms and jargons used should be deemed official at
least within the Python community. It is a comprehensive section as
well.

•	 https://​www​.w3schools​.com/​python/: This is a very popular site that
offers resources covering many different languages.

•	 https://​www​.learnpython​.org/: This is another good site for learning
Python. it has many resources on specific topics.

For learners who love to watch videos and lectures, the following are
recommended:

•	 Python Crash Course for Beginners, at https://​www​.youtube​.com/​watch​
?v​=​JJmcL1N2KQs, by Traversy Media. This video uses VS Code IDE to
illustrate the program examples so that you can follow along once you
have the required programming environment set up.

•	 Learn Python—Full Course for Beginners, at https://​www​.youtube​.com/​
watch​?v​=​rfscVS0vtbw, by freeCodeCamp​.org and narrated by Mike
Dane. This video is one of the best. Please note that the video lecture
recommends the installation and use of PyCharm IDE. However, the
installation and use of VS Code IDE is required in this book.

1.5 Getting Ready to Learn Programming in Python
To learn the content covered in the rest of this book, you first need to have the
following installed on your computer:

	 1.	 A newer version of Python from https://​www​.python​.org/. The
latest version, at the time of writing, is Python 3.11.1. The standard

https://docs.python.org/3/
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/
https://www.w3schools.com/python/
https://www.learnpython.org/
https://www.youtube.com/watch?v=JJmcL1N2KQs
https://www.youtube.com/watch?v=JJmcL1N2KQs
https://www.youtube.com/watch?v=rfscVS0vtbw
https://www.youtube.com/watch?v=rfscVS0vtbw
http://freeCodeCamp.org
https://www.python.org/

	 Introduction	 21

 https://doi.org/10.15215/remix/9781998944088.01

distribution includes everything you need to interpret and execute
Python programs, which are also called Python scripts.

	 2.	 A newer version of Jupyter Notebook, from https://​jupyter​.org/.
Jupyter Notebook is a powerful interactive programming
environment supporting up to 40 programming languages, including
Python.

	 3.	 A newer version of Visual Studio Code (VS Code) from https://​
code​.visualstudio​.com/. VS Code is a free and open-source code
editor developed by Microsoft, and it will be used as an integrated
development environment (IDE) and to host Jupyter Notebook for
interactive programming.

In this section, we will learn how to install Python, Jupyter Notebook, and
Visual Studio Code IDE on our computer. A standard distribution of Python
includes a large volume of libraries for general programming needs. Special
applications such as those in data science and machine learning will require
special libraries to be installed. We will learn about that in later units when
we need them.

Installing and Setting Up the Python Programming Environment
There are different ways of setting up your Python programming environ-
ment. The method we present below is believed to be more reliable and less
subject to future changes.

INSTALLING PYTHON
The first package we need to install is Python. The steps are as follows:

	 1.	 To ensure a clean installation of Python, uninstall all old versions of
Python that may have previously been installed on your computer
and check the value of the PATH environment variable to delete all
those, and only those, related to Python. To ensure that all have been
deleted properly, open a shell terminal such as CMD or PowerShell on
Windows and check if a Python installation still exists by trying to run
it. You should be told that Python is not recognized.

	 2.	 Go to https://​www​.python​.org/​downloads/ and look for the newest
release of Python for your platform. For example, if you want to install
Python on your Windows machine, download the latest release for
Windows. Normally, the website should be able to detect the type of
system you are using to access the website and show you the right

https://jupyter.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.python.org/downloads/

	 22	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Python package for you to download. You should, however, be aware
of what you will be getting from the website.

	 3.	 Run the installer to install it. If installing Python on a Windows
platform, all you need to do to start the installation is to double-click
the downloaded file or press the run button if it does not start the
installation automatically.

After the installation has started, a window will pop up, as shown
here:

Python 3.11.1 (64-bit) Setup

Install Python 3.11.1 (64-bit)
Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

→ Install Now
C:\Users\james\AppData\Local\Programs\Python\Python311

Includes IDLE, pip and documentation
Creates shortcuts and file associations

→ Customize installation
Choose location and features

☑ Use admin privileges when installing py.exe
☑ Add gython.exe to PATH!

Cancel

You can either let it install Python automatically for you by clicking
“Install Now” or choose “Customize installation.” When you choose
“Customize installation,” you have the opportunity to choose where
Python will be installed on your computer and what optional modules
and features will be installed.

In either case, you must check the box to add Python to the PATH
environment variable. Choose yes to add Python to the system
PATH environment variable so that Python and other related
commands can be found.

Do a customized installation so that you will see what is to be installed
and where. When doing customized installation, remember to check

	 Introduction	 23

 https://doi.org/10.15215/remix/9781998944088.01

the box to install pip, Python package manager, and other components
within the distribution, as shown here:

Python 3.11.1 (64-bit) Setup

Optional Features

☑ Documentation
Installs the Python documentation files.

☑ pip
Installs pip, which can download and install other Python packages.

☑ td/tk and IDLE
Installs tkinter and the IDLE development environment.

☑ Python test suite
Installs the standard library test suite.

☑ py launcher ☑ for all users (requires admin privileges)
Use Programs and Features to remove the 'py' launcher.

Back Next Cancel

Check the following advanced options, as shown here:

Python 3.11.1 (64-bit) Setup

Advanced Options

❑ Install Python 3.11 for all users
☑ Associate files with Python (requires the 'py' launcher)
☑ Create shortcuts for installed applications
☑ Add Python to environment variables
❑ Precompile standard library
❑ Download debugging symbols
❑ Download debug binaries (requires VS 2017 or later)

Customize install location
d:\Programs\Python\Python311
You will require write permissions for the selected location.

Back Install Cancel

	 24	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

To check whether Python has been installed successfully on your
computer, open a shell terminal and run the following command:

$ python --version

If the installation was successful, the version of Python will be
displayed and should be the same as the one you have downloaded
from python​.org.

SETTING UP A VIRTUAL ENVIRONMENT FOR A PYTHON PROJECT
When programming in Python, you will need a Python interpreter and any
additional libraries required for the project. Libraries required for one project
are different from those for other projects. To ensure that each project has the
right programming environment without interfering with others, Python uses a
technology called a virtual (programming) environment, which can be created
and activated for each project. When you work in a virtual environment for a
specific project, all installations of additional libraries will be used only for
that specific project.

To create and use a virtual environment, take the following steps:

	 1.	 Check whether you have a tool called pipenv installed with your
Python installation by running the following command on Windows:

where.exe pipenv

or the following command on Linux or Mac:

which pipenv

If it is installed, the command will tell you where it is located on your
computer, and you can go to step 3.

	 2.	 If the command cannot be located on your system, you will need to
install it by running the following command on a shell terminal:

pip install pipenv

If you are running the shell terminal as a regular user, pipenv will be
installed under your home directory, so that you will have to add the
location to the environment variable PATH. It is better to start a shell

http://python.org

	 Introduction	 25

 https://doi.org/10.15215/remix/9781998944088.01

terminal as an administrator, then run the above command as root/
administrator to ensure that pipenv will be installed globally and be
accessible for all users with the already set value for PATH.

	 3.	 Once you are sure that pipenv is installed, create a directory for your
new project and change the work directory to that directory, say c:\
dev\testproject as an example, by running the following commands in
sequence:

c:\dev> mkdir testproject
c:\dev> cd testproject

	 4.	 Within the testproject directory, run the following command:

c:\dev\testproject> pipenv install

This will create a virtual environment for your project rooted at c:\de\
firstproject.

	 5.	 To work on the project with the virtual programming environment,
you need to activate the virtual environment for the project by
running the following command within the project directory:

c:\dev\testproject> pipenv shell

Once the virtual environment has been activated, the prompt of the
shell terminal will become something similar to the following:

(testproject-UCP5-sdH)c:\dev\testproject>

Please note the text within the parentheses. It contains the name
of the project directory. It means that you are now working in a
subshell terminal invoked by pipenv.

	 6.	 From now on, any package installed by running the pip command on
this subshell terminal will be only part of this virtual environment,
without interfering with installations elsewhere for other projects.

	 7.	 To get out of the virtual environment, simply type “exit” to close the
subshell, as shown below:

(testproject-UCP5-sdH)c:\dev\testproject>exit

	 26	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The prompt will become

c:\dev\testproject>

	 8.	 If you want to remove the virtual environment created for a project,
run the following command within the subshell on the root of the
project directory:

(testproject-UCP5-sdH)c:\dev\testproject> pipenv
-- rm

INSTALLING JUPYTER NOTEBOOK
The second package that needs to be installed is Jupyter Notebook. The steps
are as follows:

	 1.	 After you have successfully installed Python, install Jupyter
Notebook with pip, the Python package manager that comes with
the Python installation, by running the following command at a
shell terminal:

pip install Jupyter

or use the following command if pip itself is not recognized as a
command, but only installed as a module of Python:

python -m pip install jupyter

To see if it has been successfully installed, run the following command
from a shell terminal:

jupyter-notebook

The command will start a web service on your computer, then launch
Jupyter Notebook Service within your default web browser.

Start a new notebook by clicking “New” and “Choose Python 3.” You
can then start the program interactively within the notebook, as
shown in Figure 1-3.

	 Introduction	 27

 https://doi.org/10.15215/remix/9781998944088.01

INSTALLING VISUAL STUDIO CODE
The last package to be installed is Visual Studio Code, a free and open-source
IDE developed by Microsoft that can be used for Python programming. The
steps are as follows:

	 1.	 Go to https://​code​.visualstudio​.com/, click “Download,” and download
the installer for your platform.

If you want to see other download options, such as a version for a
platform other than the one identified by the VS Code website, you can
scroll down further to check.

	 2.	 Double-click “Downloaded Installer” for your platform to run and
install Visual Studio Code.

To run Visual Studio Code on Windows, click the Start menu, scroll down to
find Visual Studio Code, and click.

Additional Tools Supporting Software Development in Python
To make software development more efficient, the Python community has
made the following frameworks or systems available for Python developers.

BUILDBOT
Buildbot is a framework intended to automate all aspects of software develop-
ment. It supports parallel and distributed job execution across multiple

Figure 1-3: Jupyter Notebook in browser

https://code.visualstudio.com/

	 28	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

platforms, with version control and job status reporting and automated job
scheduling when required resources become available. It is hosted at https://​
buildbot​.net/. An introductory section can be found at http://​docs​.buildbot​.net/​
current/​tutorial/​firstrun​.html.

TRAC
Compared to Buildbot, Trac is a simpler web-based software project manage-
ment system that can track issues and bugs. It requires access to a database
such as SQLite or MySQL. Trac is hosted at https://​trac​.edgewall​.org/, but
the latest release can be found at https://​pypi​.org/​project/​Trac/.

ROUNDUP
Compared to Trac, Roundup is an even simpler tool to track issues in a software
development project. You can do so via the command line, the web, or email.
The system can be found at https://​pypi​.org/​project/​roundup/.

1.6 Getting a Taste of Programming with Python
In this section, you will see how to solve simple problems or do simple tasks
with Python. At this time, you do not need to understand every piece of code
because you will learn all those details later.

Program Interactively with Python Interactive Shell
Programming for computers is writing instructions for computers to execute.
Interactive programming is programming in an environment in which you
can interact with a computer, the interpreter of the programming language,
more precisely, instruction by instruction. The opposite of interactive pro-
gramming is batch programming, in which you will need to write a complete
program and then feed the entire program to a language engine such as an
interpreter, language runtime, or virtual machine in order to execute it. In
interactive programming, a piece can be a single statement or a group of
statements, but not a complete program. One of the advantages of inter-
active programming is immediate feedback on the code pieces from the
interpreter.

The simplest interactive programming environment for Python is the Python
interactive shell. It can be quickly started by running command Python at a
command prompt such as within a Windows PowerShell, as shown here:

PS S:\Dev> python

https://buildbot.net/
https://buildbot.net/
http://docs.buildbot.net/current/tutorial/firstrun.html
http://docs.buildbot.net/current/tutorial/firstrun.html
https://trac.edgewall.org/
https://pypi.org/project/Trac/
https://pypi.org/project/roundup/

	 Introduction	 29

 https://doi.org/10.15215/remix/9781998944088.01

The started interactive Python programming environment should look
like this:

PS S:\Dev> python
Python 3.11.1 (tags/v3.11.1:a7a450f, Dec 6 2022,
19:50:39) [M.06 v.1934 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more
information.
>>>

Here, >>> is the prompt of the Python interactive shell, waiting for your
input, which will then be evaluated by the interpreter. This is how you program
interactively within this environment.

As the de facto standard, our first program in the interactive Python pro-
gramming environment is to say “Hello World!” as shown here:

PS S:\Dev> python
Python 3.11.1 (tags/v3.11.1:a7a450f, Dec 6 2022,
19:58:39) [MSC v.1934 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more
information.
>>> print("Hello World!")
Hello World!
>>>

As can be seen above, this program in Python needs only one statement
made of one line of code, whereas in C/C++ or Java, it would need a dozen
lines of code.

Please note that in the previous example, the characters behind the Python
prompt >>> are Python statements you need to type, and the rest are output
from Python interpreter or Python Virtual Machine (PVM).

Our next sample program within the Python interactive shell is to assign
8 to variable x and assign 9 to variable y, then print out the sum of x and y, as
shown here:

PS S:\Dev> python
Python 3.11.1 (tags/v3.11.1:a7a450f, Dec 6 2022,
19:58:39) [MSC v.1934 64 bit (AMD64)] on win32
Type .help., "copyright", "credits" or "license" for more
information.

	 30	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> print("Hello World!")
Hello World!
>>> x = 8 # assign 8 to variable x
>>> y = 9 # assign 9 to variable y
>>> print(f'{x} + {y} = {x+y}')
8 + 9 = 17
>>>

Within this interactive programming environment, you can type any Python
expression directly behind >>>, and it will then be evaluated. An example is
shown here:

PS S:\Dev> python
Python 3.11.1 (tags/v3.11.1:a7a450f, Dec 6 2022,
19:58:39) [MSC v.1934 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more
information.
>>> 1350-789*3/26
1258.9615384615386
>>>

You may have realized that the interactive Python programming environ-
ment can be used as a powerful scientific or financial calculator, with all the
functions you need, as long as you know where to find the functions and how
to import and use them to write formulas.

Throughout the textbook, we will occasionally give examples in Python
interactive shell when it is more convenient and proper in context. However,
our preferred interactive programming environment is Jupyter Notebook within
VS Code IDE, as you will see later in this section.

Program with VS Code IDE
Interactive programming environments like Python Shell and Jupyter
Notebook are good for testing Python statements, code blocks, and some
real programming tasks such as data analytics, where interactive program-
ming is more suitable. However, writing programs that contain thousands
of lines of code in a Python interactive shell or Jupyter Notebook is
inconvenient.

As previously mentioned, we will be using VS Code as our IDE. Our first
small project is to write a program that takes an integer from the user input

	 Introduction	 31

 https://doi.org/10.15215/remix/9781998944088.01

and tells whether it is a prime number or not. The first step to do this is to start
VS Code from the Windows Start menu or desktop. In Windows or iOS, you may
type “VS Code” in the search bar to launch the application.

To create a Python program file within VS Code, choose “New File” from
File, and then save the file as xyz​.py, where xyz is your preferred name
for the small project. Here, we use “primetest​.py.” VS Code will ask you to
choose a folder for the program, and you may create one and then select it
to open after the file is created. The program in VS Code will look like the
one in Figure 1-4.

At this time, you are not required to fully understand the program, but if you
are interested, you may type the code line by line into your VS Code and run it
by clicking the play button at the top-right corner of the VS Code window, just
to get a taste of programming in VS Code with Python.

Please note that if you have multiple Python program files open in VS Code
and want to run a particular one within the IDE, you will need to click the
file to make it active; then, within the editing area, click the right button of
the mouse to pop up a menu and select run for your particular program. This
is even more important if you have multiple editing tabs open for different
programs.

Figure 1-4: Python program in VS Code

	 32	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Use Jupyter Notebook Within VS Code to Program Interactively
You may recall that Jupyter Notebook can be launched and run in a web browser,
but for the purposes of this text, Jupyter Notebook will be run and used within
VS Code to program interactively to allow you to benefit from many of the
features that VS Code has.

Because Jupyter Notebook is natively supported within Visual Studio Code
(as long as Jupyter Notebook is installed in your Python environment), all you
need to do to get Jupyter Notebook running within VS Code is to open or create
a notebook file, with extension ipynb in VS Code.

There are two ways to create a Jupyter Notebook file. One is to press
Ctrl+Shift+P to search for the command “create new blank Jupyter Notebook,”
then click the command. A new blank Jupyter Notebook will be created within
VS Code.

Alternatively, we can also simply create a new text file, and then save the
file as xyz.ipynb, where xyz is a name you prefer and ipynb is the file’s exten-
sion. Please note that to ensure the file type is ipynb, you have to select Jupyter
(.ipynb) or all files (*.*) from the “Save as Type” list.

In either case, you may be asked to install an extension for Jupyter Notebook
support. Click yes when you are asked to. You may also be asked to install Python
if you have not done so yet or if the installation path has not been added to the
environment variable. Click yes too to make sure you have Python properly
installed on your computer.

Once a new Jupyter Notebook is created, you can then use it to program
interactively within VS Code and enjoy many of the smart features of VS Code,
such as those offered by IntelliCode.

Another advantage of using Jupyter Notebook within VS Code is that you
can export a notebook as an HTML, PDF, or Python Script file. If you use Mark-
down cells to document your coding in code cells, you can produce a very nice
document as a PDF or in HTML.

Later on, you will be required to create a Jupyter Notebook for each chapter or
section, if there are many coding examples to work on in a section. You will use
the Jupyter Notebook to interactively program all sample codes in that chapter
or section or to test your own code to reinforce your learning. For chapter x,
the Jupyter Notebook should be named chapter-x.ipynb, and for section x.y, the
notebook should be named section-x.y.ipynb.

In the next section, we will provide a brief introduction to Markdown lan-
guage that you can use to document your work either within Markdown cells of
Jupyter Notebook or within a Markdown file, a file with md as the file extension.

	 Introduction	 33

 https://doi.org/10.15215/remix/9781998944088.01

Write Documentation in Markdown
Markdown is a simple and straightforward markup language with a plaintext-
formatting syntax. It was created by John Gruber and Aaron Swartz in 2004.
With Markdown, you can write a document in an easy-to-write and easy-to-read
format, then convert it to HTML. Within VS Code IDE, a Markdown file, with
md as the extension, can be converted to PDF as well as HTML. Moreover,
documentation written in Markdown cells of a Jupyter Notebook can be auto-
matically converted into docstrings when the Jupyter Notebook is exported
into a Python script file, and when the notebook is exported into PDF, scripts
in code cells will be nicely embedded into documentation written in Mark-
down cells. Together with markup syntax for program code, Markdown cells
within Jupyter Notebook running in VS Code provide a much more user-friendly
way to include program code in rich and formatted documents.

The Markdown language has been extended since its initial release by John
Gruber. You will be introduced to both the basic syntax and some extended
syntax (but only those supported by Jupyter Notebook within VS Code) to serve
our purposes in this book.

HEADINGS
In Markdown documents, headings are simply led by one or more hash symbols.
As we have seen in previous sections, a Level 1 heading is led by a single hash
symbol, a Level 2 heading is led by two hash symbols, and a Level 3 heading
is led by three hash symbols. You can have up to six levels of headings in a
document, as shown below:

This is a Level 1 heading

This is a Level 1 heading
This is a Level 2 heading

This is a Level 2 heading
This is a Level 3 heading

This is a Level 3 heading

This is a Level 4 heading

This is a Level 4 heading

This is a Level 5 heading

This is a Level 5 heading

	 34	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

This is a Level 6 heading

This is a Level 6 heading

Please note the space between the formatting symbol or symbols and the text to
be formatted. A single space should be placed between the formatting symbol
and the text being formatted in Markdown.

PARAGRAPHS
In Markdown, paragraphs are separated with one or more blank lines.

This is a paragraph.

This is another paragraph.

This is a paragraph.

This is another paragraph.

NEW LINES
In Markdown, to break a line like you would with
 in HTML, use more
than one single space to break the line.

This line will break. This line starts on a new line.

This line will break.
This line starts on a new line.

ITALIC, BOLD, AND STRIKETHROUGH TEXTS
To format text to be italic in Markdown, simply lead it with a * or underscore
_ and use another * or _ to indicate the end of the text; to make text bold, use
** or __; to make text both bold and italic, use ***; to have a line strikethrough
the text, use ~~. The following are examples:

_ Italic_

Italic

** Bold **

Bold

	 Introduction	 35

 https://doi.org/10.15215/remix/9781998944088.01

*** both italic and bold ***

Italic and bold

~~ strikethrough ~~

Strikethrough

HORIZONTAL RULES

To add a horizontal line within a document, like <hr /> in HTML, use three

hyphens ---. Most of the time, this has the same effect in Word.

KEYBOARD KEYS

In computing documentation, we often need to explain what key is used on the

keyboard. To represent a key on the keyboard, we use HTML kbd tags directly,

as shown below:

<kbd> Ctrl </kbd> <kbd> A </kbd>

Ctrl+A

<kbd> Ctrl+Shift+F3 </kbd>

Ctrl+Shift+F3

UNORDERED LISTS

With Markdown, writing an unordered list is rather straightforward, as shown

below:

* first list item

* second list item

 * first item of sublist

 * second item of sublist

* third list item

The rendered result will be the following:

	 36	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

	 •	 first list item
	 •	 second list item

	 -	first item of sublist
	 -	second item of sublist

	 •	 third list item

We can also use - in place of *.

ORDERED LISTS
To write an ordered list in Markdown is straightforward too, as shown below:

1. first list item
2. second list item
 * first item of sublist
 * second item of sublist
3. third list item

The rendered result will be

	 1.	 first list item
	 2.	 second list item

	 -	 first item of sublist
	 -	 second item of sublist

	 3.	 third list item

DEFINITION LISTS
The simple Markdown syntax for a definition list does not work in Jupyter
Notebook within VS Code. However, we can use HTML <dl> tags directly to
make such a list, as shown below:

<dl>
<dt> Python </dt>
<dd> It is a popular programming language, widely used in
AI and Data Science. </dd>
<dt> AI </dt>
<dd> Short for Artificial Intelligence.
It is the study of how to design and develop smart
artifacts.</dd>
</dl>

	 Introduction	 37

 https://doi.org/10.15215/remix/9781998944088.01

The rendered result will be:

Python
It is a popular programming language, widely used in AI and Data

Science.
AI
Short for Artificial Intelligence. It is the study of how to design and

develop smart artifacts.

LINKS
To add a link with Markdown, put the anchor name in a square bracket, and
put the URL in a pair of parentheses, as shown below:

[Markdown Home]​(https://​www​.markdownguide​.org/)

The rendered result will be the following text, which will take the user to
https://​www​.markdownguide​.org/ when clicked:

Markdown Home

As in Word and some other editors, legitimate URLs are usually automatically
linked without any markup tags. In Markdown, if you don’t want a URL to be
automatically linked, you can enclose it with a pair of backticks, just treating
it as program code, as shown below:

`https://​www​.markdownguide​.org/`

LINKS TO INTERNAL SECTIONS
A specific ID can be added to each header. Such IDs can be used as internal
anchors in a link, as shown below:

[Assignment 1] (#assignment_1)

Assignment 1

https://www.markdownguide.org/

	 38	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

IMAGES
To add an image to your documentation, use a syntax similar to that used for
adding links, but with an exclamation mark at the front of the open square
bracket, as shown below:

![Markdown logo](AU_and_50_logo.png)

The image will be rendered as

BLOCKQUOTES
To include a blockquote in your documentation, use an angle bracket at the
start of each line, as shown in the following example:

> COVID-19 UPDATES
>
> EXAMS
>
> HELP & SUPPORT
>
> FACULTY OF BUSINESS STUDENTS
>
> FACULTY OF SCIENCE STUDENTS

COVID-19 UPDATES
EXAMS
HELP & SUPPORT
FACULTY OF BUSINESS STUDENTS
FACULTY OF SCIENCE STUDENTS

	 Introduction	 39

 https://doi.org/10.15215/remix/9781998944088.01

TABLES
To create a table in Markdown, use the pipe character | to divide columns and a
sequence of dashes/hyphens to separate the header of a table, as shown below:

 | Markdown symbol | Description | HTML equivalent |

 | :----------------| :-----------: | -----------: |

 | # | Level 1 heading | h1 |

 | ## | Level 2 heading | h2 |

The table will be rendered as

Markdown symbol Description HTML equivalent

Level 1 heading h1

Level 2 heading h2

Please note the colons used in the formatting syntax. A single colon to the
left of dashes means to align all the text in the column to the left, a single colon
to the right of dashes means to align all the text in the column to the right, and
adding a colon to both sides means to align the text at centre. You can also use
other Markdown syntax on the text in the table, such as italic, bold, and so on.

INLINE PROGRAM / SCRIPT CODE
When writing a report on a software project, you may need to include code
samples in the report. To include a code sample within a single sentence,
enclose the code within a pair of backticks `, as shown below:

The ` range(start, end, step) ` function is used to
produce a sequence of integer numbers.

The rendered result will be:

The range(start, end, step) function is used to produce a sequence of
integer numbers.

	 40	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

CODE BLOCK
In Markdown, a block of program code can be marked up using a pair of triple
backticks ```, as shown below:

```Python
for i in range(1, 10):
for j in range(1, i + 1):
print(f'{i} * {j} = {i * k}')
```

The rendered result will be:

for i in range(1, 10):
 for j in range(1, i + 1):
 print(f'{i} * {j} = {i * k}')

Please note that the name of the programming language right behind the
opening triple backticks is optional, though with the name, the code will be
automatically highlighted in a way specific for the language.

MATHEMATICAL FORMULAS AND EXPRESSIONS
With Markdown in Jupyter Notebook, you can embed LaTeX representation
mathematical formulas directly within your text. LaTeX is a typesetting system
used for scientific publications. It would take you some time to learn the com-
plete system. The following examples show you how to represent mathematical
formulas in your documentation.

1. $\hat{Y} = \hat{\beta}_{0} + \sum \limits _{j=1} ^{p}
X_{j}\hat{\beta}_{j} $
2. $\frac{n!}{k!(n-k)!}$
3. $\binom{n}{k}$
4. $\frac{\frac{x}{1}}{x - y}$
5. \sqrt{k}
6. $\sqrt[n]{k}$
7. $\sum_{i = 1}^{10} t_i$
8. $\int_0^\infty \mathrm{e}^{-x},\mathrm{d}x$
9. $f(x) = x^2 + 2, if\ x = 2$
10. $\oint_C x^3\, dx + 4y^2\, dy$
11. $2 = \left(
\frac{\left(3 - x\right) \times 2}{3 - x}

	 Introduction	 41

 https://doi.org/10.15215/remix/9781998944088.01

\right)$
12. $\sum_{m = 1}^\infty\sum_{n = 1}^\infty\frac{m^2\, n}
{3^m\left(m\, 3^n + n\, 3^m\right)}$
13. $\phi_n(\kappa) =
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R}
\frac{\partial}{\partial R}
\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR$

The rendered result of the above Markdown code is shown in Figure 1-5. You
can get the same result if you export the notebook file to PDF or HTML format.

Figure 1-5: Rendered result of the Markdown code

	 42	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

TO-DO LIST
You may wish to have a to-do list in your learning notebook. With Markdown, you
can get that accomplished as follows:

- [] a bigger project
 - [x] first subtask
 - [x] follow-up subtask
 - [] final subtask
- [] a separate task

The rendered result will look like this:

•	 ☐ a bigger project
–	 ☑ first subtask
–	 ☑ follow-up subtask
–	 ☐ final subtask

•	 ☐ a separate task

ESCAPE SEQUENCE FOR SPECIAL CHARACTERS
Because, as we have seen, some characters have special meaning in Mark-
down syntax, we need to use the backslash to allow these characters to keep
their normal meaning. These characters include the backslash \, backtick `,
asterisk *, underscore _, the pound hash symbol #, plus sign +, hyphen/
dash -, period ., and exclamation mark !, as well as curly braces {}, square
brackets [], and parentheses (). For example, if we want to have * in our
documentation, we need to use * instead of a simple *. This is especially
necessary since confusion may arise from using these symbols without the
backslash. Otherwise, you can use a special character directly, such as in
the following example:

A heading with a plus sign \+

This will be rendered as:

A heading with a plus sign +

Programming Interactively with Jupyter Notebook Within
VS Code
Earlier in this section, we learned how to program interactively within a
Python Shell launched within a CMD or PowerShell window, and how to

	 Introduction	 43

 https://doi.org/10.15215/remix/9781998944088.01

start Jupyter Notebook within VS Code. In this section, we will find out how
to use Jupyter Notebook within VS Code to program interactively as well as
how to document your work and learning journey in both code cells and
Markdown cells of Jupyter Notebook within VS Code.

Compared to the Python interactive shell, Jupyter Notebook is a much
better and more powerful environment for interactive programming and has
the following advantages:

	 1.	 Everything you typed and the output from the Python interpreter are
kept in a notebook file so that you can go back and review your work
whenever needed. In the Python interactive shell, however, everything
within the shell will be lost as soon as you exit from it.

	 2.	 Within a programming cell of Jupyter Notebook, you can write and
edit as many Python statements as you want, and the interpreter
will wait until you hit Shift+Enter to run all the statements within
the active cell, whereas the simplest interactive programming
environments run only one statement at a time.

	 3.	 You can go back to a previous programming cell and edit the code
in it, and then rerun the code as you wish, which you cannot do in a
Python Shell.

Again, our first example to program interactively in Jupyter Notebook is to
say Hello World! But before we begin, we need to create a new Jupyter Note-
book named section-1.6.ipynb for this section. If you are using this book for
a course, we recommend that on your desktop, you create a folder using the
course name or number, and then create this and all the Jupyter Notebook files
within this folder or subfolders to better organize all the files for the course.
For the purposes of this textbook, we will give this folder the name “comp218.”
In the example shown here, the notebook file section-1.6.ipynb is under a
subfolder named “VS Code.”

With Jupyter Notebook in VS Code, you can use Markdown cells to present
your ideas and thoughts about the program you are to write, and use code cells
to write program code and Python documentation on your code. In this first
example, we first write the following in a Markdown cell:

First program in Jupyter Notebook within VS Code
As is tradition in teaching computer programming, our
first program in Jupyter Notebook is to say Hello World!.

	 44	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

How to start a program
As always, a program should begin with a brief
description of the program, including what it does,
who wrote it and when, and how it works and/or should
be used. This is especially necessary for independent
program files such as the Python script files you will
be developing using VS Code IDE. Within a code cell of
Jupyter Notebook, brief documentation is still needed
if the code within the cell is complicated either
grammatically or logically. You do not need to document
if the code is only a scribble for testing.

In Python, brief documentation at the beginning of a
program file is enclosed with a pair of triple single/
double quotation marks, such as

"""
brief documentation
"""

or

'''
brief documentation
'''
This is called a docstring. Different from comments made
on program code using a single hash symbol #, docstrings
are meant to be formal documentation of the code that can
be retrieved from an object.

We then write the following in a code cell:

 """
 This simple program is just to say Hello world!
 Everything between the two triple quotation marks is
 treated as documentation about the program.
 """

 print('Hello world!') # a single statement of the
program - inline comment

	 Introduction	 45

 https://doi.org/10.15215/remix/9781998944088.01

This results in the notebook printing, outside of the code cell, the following:

Hello world!

In Jupyter Notebook, there are two types of cells for input. One is the code
cell for you to write actual program code in. The other is the Markdown cell for
you to write more detailed notes or reports about your work within the notebook
using the Markdown language we have introduced in the previous section.

When a new cell is created in a Jupyter Notebook within VS Code, by click-
ing the plus sign + on the left side of the notebook window, you will get a code
cell by default. To change a code cell to a Markdown cell, click the M↓ button
at the top of the cell; to change a Markdown cell back to code cell, click the {}
button at the top of the cell.

Please note that when using Jupyter Notebook within a web browser, to
switch a code cell to Markdown cell you will need to click “Code” at the top of
the cell, and then choose “Markdown” from the pop-up menu.

In the Jupyter Notebook example above, two cells are used. The first is a
Markdown cell, in which we explain in more detail what we are going to do for
our first Python program and how we will do it, whereas the second cell is a
code cell, in which actual Python code is written, together with docstring and
inline comments, for the program.

In the simple program above, a pair of triple quotation marks is used to
enclose some string literals, called docstrings, as the formal documentation
for the program or module. In addition to each program file or each module
file, a docstring is also recommended, and even required, for each func-
tion, class, and method. Docstrings should be placed at the very beginning
of a program file, module file, or right after the header of the definition of
a class, function, or method. The docstrings will be retrieved and stored as
the __doc__ attribute of that respective object and can be displayed when help
is called on that object. Python also has a utility program called pydoc that
can be used to generate documentation from Python modules by retrieving
all the docstrings.

Right after the docstring is a print statement that will print out Hello World!
when the program is executed by pressing Shift+Enter while the cell is still
active. A cell is active if there is a vertical blue bar on the left side of the cell.
To execute statements inside an active cell, we can also click the play button
(the thick right-facing arrow) at the top of the cell.

Our next sample program is to assign integers to two variables and then print
the sum, difference, product, quotient, integer quotient, remainder, power, and
root. The Python statements to accomplish these operations are as follows:

	 46	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

#Operators and expressions in Python
In the next cell we will show the use of operators and
expressions in Python.

#Operators
+ operator for addition
- operator for subtraction
* operator for multiplication
/ operator for division
% operator for modulus
** operator for exponentiation
// operator for floor division

We then write the following in a code cell:

i = 5 # assign 5 to variable i. Everything behind the
hash mark is comment
j = 3 # assign 3 to variable j
print(f"{i} + {j} = {i + j}") # print i + j
print(f"{i} - {j} = {i - j}") # print i - j
print(f"{i} x {j} = {i * j}") # print i * j
print(f"{i} / {j} = {i / j}") # print i / j (/ is division)
print(f"{i} // {j} = {i // j}") # print i // j (// is
quotient)
print(f"{i} % {j} = {i % j}") # print i % j (% is modulus)
print(f"{i} ** {j} = {i ** j}") # print the result of i
power of j
print(f"root {j} of {i} = {i ** (1/j)}") # print the
result of root j of i

This prints the following:

5 + 3 = 8
5 − 3 = 2
5 x 3 = 15
5 / 3 = 1.6666666666666667
5 // 3 = 1
5 % 3 = 2
5 ** 3 = 125
root 3 of 5 = 1.7099759466766968

	 Introduction	 47

 https://doi.org/10.15215/remix/9781998944088.01

As you can see, in this interactive programming environment, you can write
and edit many Python statements within a single cell. You may simply write some
statements to accomplish certain calculation or data analysis tasks that cannot
be done even on an advanced scientific finance calculator.

This next example in Jupyter Notebook within VS Code calculates the sum
and the product of 1, 2, 3, … 100:

"""
This is to calculate the sum of 1,2,…,100.
"""

s=0
for i in range(100):
 s+=i+1
print(f"Sum of 1,2…,100 is {s})

"""
This is to calculate the product of 1,2,…,100
"""

p=1
for i in range(100):
 p*=i+1
print(f"The product of 1,2,…,100 is {p}")

This prints the following:

Sum of 1,2,…,100 is 5050
The product of 1,2,…,100 is 9332621544394415268169923885626670

049071596826438162146859296389521759999322991560894146
397615651828625369792082722375825118521091686400000000
0000000000000000

Our next sample program in Jupyter Notebook within VS Code creates a
simple data visualization to showcase how Python can be used for that purpose.

The data for x-axis are a list of letter grade in a grading system; the data for
y-axis contain a list of numbers representing how many students received each
corresponding grade in a class. The purpose of visualization is to see how the
grades are distributed within the class.

	 48	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

import matplotlib.pyplot as plt

x = ['D','C-','C','C+','B-','B','B+','A','A','A+']
y = [6,9,12,19,23,28,15,13,7,5]
plt.bar(x,y)
plt.title('A showcase')
plt.xlabel('Letter Grade')
plt.ylabel('# of Students')
plt.show()

Here we use a module called Matplotlib to visualize the data by plotting
graphs. The result of the program as shown in Figure 1-6.

D C- C C+ B- B B+ A A+
0

5

10

15

20

25

Letter Grade

A Showcase

 #
 o

f s
tu

de
nt

s

Figure 1-6: Graph produced by a Python script in Jupyter Notebook

As you can see, with only 11 lines of code, you can produce a nice graph to
visualize the data in Python.

Run Python Programs Outside IDE
The VS Code IDE we used in previous sections is good for developing programs
or applications, but it is impractical to start an IDE each time you need to run
a Python program.

So how can we run a Python program or scripts stored in a file? In a previous
section, we wrote a program called primetest​.py. To run the program without
invoking VS Code, we need to take the following steps:

	 1.	 Start Windows PowerShell or Windows Command Prompt by typing
“terminal” in the search field on the Windows taskbar if you are on

	 Introduction	 49

 https://doi.org/10.15215/remix/9781998944088.01

other platforms such as Linux. A shell terminal will come up; type the
following:

PS S:\Dev\Learn_Python>

	 2.	 Within the terminal, go to the directory where the Python program
file is located.

	 3.	 Change the working directory to that folder by typing the following
PowerShell command:

cd S:\Dev\Learn_Python\samples\

	 4.	 Run the Python program file by typing the following command at the
PowerShell prompt:

python .\primetest​.py

the result is shown below:

PS S:\Dev\Learn_Python> cd .\samples\

PS S:\Dev\Learn_Python\samples> python .\primetest​

.py

give me an integer that is greater then 1, and I

will tell you if it is a prime: 23

23 is a prime

PS S:\Dev\Learn_Python\samples>

Note that to run a Python program from a terminal, two conditions must be met:
(1) The location of the Python interpreter (python.exe) must be in the PATH
system variable, so that Windows is able to find it. (2) The Python program
file should be in the current working directory of the terminal. If that is not
the case, you must either change your current working directory to where the
Python program file is located or specify the path to the program file. Assume
we change the current working directory from the one shown at the end of
the list above to the one shown here using the command cd:

PS S:\Dev\Learn_Python>

	 50	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Because now the primetest​.py program is one-level down from the cur-
rent working directory at .\samples, where the leading dot (.) refers to the
current directory, to run the program, you will have to specify the path to
the program, as shown here:

PS S:\Dev\Learn_Python> python .\samples\primetest​.py
give me an integer that is greater than 1, and I will
tell you if it is a prime: 91
91 is divisible by 7, so that 91 is not a prime
PS S:\Dev\Learn_Python> python .\semples\primetest​.py
give me an integer that is greater than 1, and I will
tell you if it is a prime: 23
23 is a prime
PS S:\Dev\Learn_Python>

Make the Python Program File Executable
Sometimes, we may still consider it inconvenient to run a Python program file
from a terminal by feeding the file to the Python interpreter and rather prefer to
make the program executable on its own so that it can be run by clicking the file
within Windows File Explorer. Luckily, a tool called pyinstaller can be installed
and used to do that. To install it, you need to run PowerShell or another shell
terminal as an administrator. Within the terminal, run the command shown
here to install pyinstaller using the pip tool:

PS S:\Dev\Learn_Python> pip install pyinstaller
Requirement already satisfied: pyinstaller in s:\python\
python311\lib\site-packages (5.7.0)
Requirement already satisfied: setuptools>=42.0.0 in s:\
python\python311\lib\site-packages (from pyinstaller)
(67.4.0)
Requirement already satisfied: altgraph in s:\python\
python311\lib\site-packages (from pyinstaller) (0.17.3)
Requirement already satisfied: pyinstaller-hooks-
contrib>=2021.4 in s:\python\python311\lib\site-packages
(from pyinstaller) (2022.15)
Requirement already satisfied: pefile>=2022.5.30 in s:\
python\python311\lib\site-packages (from pyinstaller)
(2023.2.7)

	 Introduction	 51

 https://doi.org/10.15215/remix/9781998944088.01

Requirement already satisfied: pywin32-ctypes>=0.2.0 in
s:\python\python311\lib\site-packages (from pyinstaller)
(0.2.0)
PS S:\Dev\Learn_Python>

Before you can use the pyinstaller tool to make the conversion, you will
need to copy the Python library into Windows’ system32 directory, as shown
below:

PS C:\WINDOWS\system32> cp S:\Python\Python311\python311.
dll .
PS C:\WINDOWS\system32>

Now you can simply run the command pyinstaller <Python program file
name> to make the conversion, as shown here.

PS S:\Dev\Learn_Python\samples> pyinstaller
.\primetest​.py
1435 INFO: PyInstaller: 5.7.0
1435 INFO: Python: 3.11.1
1445 INFO: Platform: Windows-10-10.0.22621-SPO
1445 INFO: wrote S:\Dev\Learn_Python\samples\primetest.
spec
1460 INFO: UPX is not available.
1460 INFO: Extending PYTHONPATH with paths ['S:\\Dev\\\
Learn_Python\\samples']
pygame 2.3.0 (SDL 2.24.2, Python 3.11.1)
Hello from the pygame community. https://​www​.pygame​.org/​
contribute​.html
5243 INFO: checking Analysis
5254 INFO: Building because inputs changed
5254 INFO: Initializing module dependency graph…
5254 INFO: Caching module graph hooks…
5285 WARNING: Several hooks defined for module 'numpy'.

The created executable is under .\build\primetest, named primetest.exe.
Please note, however, that the executable file requires the Python DLL

library in order to run, so that you can either (1) make the DLL library
searchable and accessible by Windows OS or whatever OS you are using,
if you have many executables generated from Python program files, or

	 52	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

(2) copy the Python DLL to where the executable file is located. In this case,
since we are using Python3.11, the library is named python311.dll—which is
located within the installation directory of Python3.11, which is s:\python\
python311—we can simply copy the DLL file to .\build\primetest for a test,
as shown below:

-a--- 2022-12-06 8:12 PM 1463681 NEWS.txt
-a--- 2022-12-06 8:10 PM 101752 python.exe
-a--- 2022-12-06 8:10 PM 65912 python3.dll
-a--- 2022-12-06 8:10 PM 5761912 python311.dll
-a--- 2022-12-06 8:10 PM 100216 pythonw.exe
-a--- 2022-12-06 8:10 PM
 49488 vcruntime140_1.dll
-a--- 2022-12-06 8:10 PM
 109392 vcruntime140_1.dll

PS S:\Dev\Learn_Python\samples> cp S:\Python\Python311\
python3.dll .\build\primetest\
PS S:\Dev\Learn_Python\samples>

Once you have done all the steps above, you can run the program like all
other apps on your computer, as shown here:

PS S:\Dev\Learn_Python\samples> .\build\primetest\
primetest.exe
give me an integer that is greater than 1, and I will
tell you if it is a prime: 31
31 is a prime
PS S:\Dev\Learn_Python\samples>

Errors in Programs
Errors in programs are hardly avoidable, and you should be prepared to see
a lot of errors in your programs, especially at the beginning. The nice thing
about programming within an IDE such as Visual Studio Code is that the IDE can
point out many syntax errors and coach you to code along the way by showing
you a list of allowable words or statements that you may want to use in that
context, although you will have to decide which one to use for your program
by highlighting the words that are problematic.

	 Introduction	 53

 https://doi.org/10.15215/remix/9781998944088.01

Syntax errors often include the following:

	 1.	 Missing, misspelled, or misplaced keywords such as for, while, if,
elif, else, with, class, def, and so on. Remember that Python language
is case-sensitive so for and For are totally different words to Python
Virtual Machine (PVM).

	 2.	 Missing or misspelled operators such as >=, <=, +=, -=, *=, /=, and
so on.

	 3.	 Missing symbols, such as a colon, comma, square or curly bracket, or
parenthesis.

	 4.	 Mismatched parentheses, double quotation marks, single quotation
marks, curly brackets, and square brackets.

	 5.	 Incorrect indentation because Python uses indentation to form code
blocks.

	 6.	 Empty code blocks. If you do not know what to write in a code block,
you can simply use a pass statement as a placeholder, as shown in the
following examples.

"""
This function will find the best student in a class based
on their over performance, but at this time we don't know
how.
"""

def findBest():
 pass # the pass statement is used to hold the place
for a code block

The second type of errors you may encounter are runtime errors. While syntax
errors may be easily avoided when programming within VS Code IDE, run
time errors can only be found during runtime. Examples of runtime errors
include dividing a number with 0 and using a variable that has not been
defined or that has no value before it is used. The discussion of error and
exception handling, covered in Chapter 4, is mostly about runtime errors.

The following are some common runtime errors in Python programs:

	 1.	 ZeroDivisionError, when dividing something by 0.
	 2.	 TypeError, when an operation is performed on incompatible data

types.

	 54	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

	 3.	 ValueError, when an incorrect value is used in a function call or
expression.

	 4.	 NameError, when an identifier is used that has not been defined. In
Python, define means that it has been assigned a value, even if the
value is None.

	 5.	 IndexError, when the index used to access a sequence is out of
boundary.

	 6.	 KeyError, when an incorrect key is used to access a dictionary value.
	 7.	 AttributeError, when an object attribute is sued that does not exist.
	 8.	 FileNotFoundError, when a file that one is trying to open to read

does not exist. It is OK to open a file to write that does not exist. The
operation will create a new file in that case.

In addition to syntax and runtime errors, you can also have logical errors in
your programs. These errors can be found only by you or users of the program.
An example of logical errors is when you are supposed to add two numbers,
but you subtract one from the other instead.

Throughout the text, you will learn and gradually gain the ability to make
your programs logically correct and to identify logical errors in your programs.

1.7 Essentials of Problem Solving and Software
Development
Before you learn how to program in Python, you need to gain a basic under-
standing of the steps taken by computers to solve a problem and the steps taken
by programmers to develop a software system for real-world application. The
former, steps taken by computers to solve a problem, is called an algorithm.
The latter, steps taken by programmers to develop an information system for
real-world application, is in the area of system analysis and design.

Design Algorithms to Solve Problems
An algorithm is a sequence of instructions showing steps to solve a problem or
get something done. The recipe for cooking a dish is an example of an algorithm
from our everyday lives. Unlike algorithms for people to follow, algorithms for
computers must show definitive steps of explicit operation.

Consider a very simple task for a computer to complete: give a computer
two numbers and ask the computer to find the sum and print out the result.
The algorithm can be described as follows:

	 Introduction	 55

 https://doi.org/10.15215/remix/9781998944088.01

[algorithm 1] Get two numbers from user, calculate, and print out
the sum.

Step 1. Get the first number to n1.
Step 2. Get the second number to n2.
Step 3. Calculate the sum of n1 and n2, and store the result to s.
Step 4. Print out s.
[end of algorithm 1]

Describing the steps of operations as shown above is just one way to present
algorithms. In computing and software development, algorithms can also be,
and more often are, presented using pseudocode or a flowchart.

Pseudocode is a language that is easier for humans to understand but that
is written like a computer program. There is no widely standard vocabulary
and grammar for pseudocode. However, within an organization or even a
class, the same pseudocode language should be used for collaboration and
communication.

The above algorithm can be described in pseudocode as follows:

Start
Input from user → n1 # get an input from user and
assign it to n1

Input from user → n2 # get another input from user
and assign it to n2

n1 + n2 → s # n1 + n2 and assign the sum to s
print(s)
End

This simple algorithm can also be described using a flowchart, as in Figure 1-7.
In problem solving and computing, conditional operations and repetitive

operations are often needed. An example is to calculate the sum of number 1,
2,…10000. One might think that the sum could be calculated by writing
1 + 2 + 3 + … + 10000, but that is wrong because that mathematical expression
cannot be precisely understood by computers. The correct algorithm should be:

[algorithm 2] Calculate the sum of all positive integers that are no
greater than 10000.

Step 1. 1 → i, 0 → s
Step 2. s + i → s, i +1 → i
Step 3. If i <= 10000 go to step 2 # loop back and make repetition

under condition

	 56	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Step 4. Print s
[end of algorithm 2]

In pseudocode, the algorithm can be described as follows:

Start
Initialization: i = 1, s = 0
Repeat
 s = s + i
 i = i + 1
Until i > 10000
End

The algorithm can be depicted using a flowchart, as in Figure 1-8.
When programming to solve a problem, first develop an algorithm describ-

ing the steps of how the problem can be solved using computers, even if it is
not explicitly and formally formulated as above.

Phases of Software System Development
Algorithm design and representation are essential when programming for
computers to solve a problem or complete a task, but it is only part of software

Start

Input n1

Input n2

S = n1 + n2

Print s

Stop

Figure 1-7: Flowchart of a simple algorithm

	 Introduction	 57

 https://doi.org/10.15215/remix/9781998944088.01

system development. Developing a software system to satisfy the requirements
of a client requires several phases.

PHASE 1. UNDERSTAND THE PROJECT
When developing a software system at the request of a client or customer, the
first thing to do is to understand what the client really needs so that you can get
a clear definition of the problems to be solved and the tasks to be completed
by the software system.

PHASE 2. ANALYZE THE REQUIREMENTS TO IDENTIFY
COMPUTER-SOLVABLE PROBLEMS AND TASKS
This phase is very important in turning people problems into computer problems,
problems that can be solved by computers. Your clients and customers often have
limited knowledge of what computers can do, and their requirements may be
clear for humans, but not directly doable for computers. Requirement analysis
will turn client’s requirements into problems and tasks suitable for computers to
solve or complete. This often involves a strategy called divide and conquer, which
means dividing big problems or tasks into smaller ones to solve. This strategy is
widely used not only in computing but also in other disciplines and practices. Your
understanding of the application domain and your knowledge of all aspects of
computing are very important during this phase of software system development.

Start

i = 1
s = 0

s = s + i
i = i + 1

i <= 10000

Print s

Stop

yes

Figure 1-8: Flowchart of an algorithm

	 58	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

PHASE 3. DESIGN THE SYSTEM
System design involves the identification of modules and their connections.
Module identification can be based on an understanding of the project and
analysis of the requirements. The problems and tasks identified in phase 2
should be clustered into different modules of the system, though the same
problem or task may exist in different modules. The next important thing
at the system design phase is to design algorithms for each of the identified
problems and tasks. Your knowledge and skill in system design, problem
solving, and mathematical and logical thinking play important roles at this
phase.

PHASE 4. IMPLEMENT THE SYSTEM
System implementation is programming, which turns the algorithms into
computer programs. Your knowledge of the language chosen to implement
the system is vital. Implementation involves programming to solve the prob-
lems and complete the tasks identified at phase 2, based on the structure
of the system and algorithms designed at phase 3, as well as integration of all
the subsystems and modules to make them work together.

PHASE 5. TEST THE SYSTEM
The system implemented at phase 4 may not correctly reflect what the client
wants and may have errors and bugs. A thorough test is needed to find the
bugs and close up the gaps between what has been implemented and what
the client really wants.

PHASE 6. MAINTAIN THE SYSTEM
After the system has been fully tested and accepted by the client, the system
will be delivered to the client. But that is not the end of the project. Maintaining
the system is often an even bigger task after the release and delivery of the
software because there is no guarantee that all bugs were found during the test,
no guarantee that the implementation genuinely reflects the needs of the
client, and no guarantee that the client will not come up with a “better” idea
or requirements after the fact.

1.8 Manage Your Working Files for Software
Development Projects
When working on a software development project, you need to deal with many
files and make many changes to the files. Later, you might realize that some
changes to a file are incorrect or do not improve the file, so you might want to

	 Introduction	 59

 https://doi.org/10.15215/remix/9781998944088.01

go back and use a previous version of the file. It may not be a big issue if you
are only dealing with one or just several files, but it will be very difficult when
many files are involved in a project. That is why a version-control system is
needed. Use a version-control system called Git to manage all your working
files on the exercises and projects included in this text.

Originally developed by Linus Torvalds, Git is an open-source-distributed
version-control system for tracking changes in any set of files, including Jupyter
Notebook files with the extension ipynb.

In this section, you will learn

	 1.	 how to install and set up Git on your computer and use it to version-
control your project files locally.

	 2.	 how to set up an account at GitHub and version-control your project
files using Git and remote repositories on GitHub.

	 3.	 how to use Git and GitHub within VS Code to version-control your
project files.

Set Up Git on Your Computer and Version-Control Locally
Git can be freely downloaded from https://​git​-scm​.com/​downloads and installed
on your computer. After installing Git, you can create a local Git repository on
your computer by running the git init command within a shell window such
as CMD or PowerShell on Windows. A preferred one is Git-Bash shell, which
comes with Git. It can be started within Windows File Explorer.

For example, if you want to start a project called Learn_Python, you can
create a folder called Learn_Python on your desktop within Windows File
Explorer, then right-click the folder icon, and choose from the pop-up menu.
A Git-Bash window will open with Learn_Python as the current working dir-
ectory, as shown here:

james@trustshop MINGW64 /s/Dev/Learn_Python
$

Within this Git-Bash shell window, you can run the following command to
initialize:

$ git init

You have to run this Git command once to create a local repository for a
project. It will create an empty Git repository on your local computer, which is
a directory named .git with specific subdirectories and files that Git will use to

https://git-scm.com/downloads

	 60	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

version-control your project files. It will also create a master/main branch for
the project. Other branches can be created if the project is divided into smaller
ones to be worked on in parallel and then later merged.

Before running the command, you can set up an environment variable
called $GIT_DIR to determine where the local repository will be placed on
your computer. If $GIT_DIR is not set, the local Git repository—that is, the
.git subdirectory—will be created right under the current working directory;
if $GIT_DIR is set in a different location of your choosing, .git will be created
right under $GIT_DIR. The common location of .git for a project is right under
the project directory.

For the system to know who has made changes to the files and how to
communicate with them, the following two commands need to run to config
the Git that you installed on your computer:

$ git config -global user​.name "Jon Doe"
$ git config -global user.email "Jon​.Doe​@gmail​.com"

These commands will configure the user’s name and email address. Please
keep in mind that this username is different from the username that you will
use to sign up for your account with GitHub later in this section.

When changes have been made to a file and you want Git to manage the
changes to the file, the first step is to stage the file by running the following
command:

$ git add <file/files>

This is called “staging changes to the file,” which is the first step Git takes
to version-control files.

For example, if you want to stage changes to all Python program files under
the current project directory, run the following command:

$ git add *.py

To stage changes to all files and even subdirectories under the current
working directory, run the following command:

$ git add .

The next step Git will take to version-control your project files is called
commit. It is done by running the following command:

	 Introduction	 61

 https://doi.org/10.15215/remix/9781998944088.01

$ git commit -m "A brief message about this commitment"

Now changes to the files have been committed to the local repository.
Please note that the stuff inside the quotation marks behind option -m are the
comments or notes about the changes. If you run Git commit without option
-m, a text editor will pop up to let you enter comments.

You can check the status of your Git system by running the following
command:

$ git status
On branch master
No commits yet
Changes to be committed:
(use "git rm --cached <file>…" to unstage)
 new file: start​.py

This shows that the file start​.py has been staged but not committed yet. You
can still use the git rm command to unstage the file (remove it from the staged
list).

In the above, we basically described a process of making changes to a file,
staging the files for the changes, and committing the changes to the repository.
You may, and most likely want to, reverse the process to undo some changes.

To a file that has been staged but not committed, use the following com-
mand to unstage it:

$ git rm -cached <file>

or

$ git reset HEAD <file>

To a file that has not been staged, use the following command to discard
the changes to the file:

$ git checkout -- file

To revert a commit that has been made, run the following command:

$ git revert HEAD

	 62	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

To restore a file to one that is n versions back in the master branch of the
repository, run the following command:

$ git restore -source master~n <file>

There are some other Git commands available for various needs of version
control, and each has many options providing powerful functionalities. A list of
these commands can be found at https://​git​-scm​.com/​docs/​git​#​_git​_commands.
You can also get the GitHub-Git cheat sheet at https://​training​.github​.com/​
downloads/​github​-git​-cheat​-sheet/.

For Git, files that have been staged or committed for changes are called
tracked, and those that have not been staged or committed are called untracked.
In software development, some files, such as those objects and executable
files derived from code files, do not need to be tracked for changes, so they
should be ignored by Git. To tell Git what files under a project directory can be
ignored, especially when running the command to stage all, you can add the
file names or ignore patterns to a special file called .gitignore right under
the project directory. You need to manage the list in the .gitignore file by edi-
ting the file using a text editor. Details of ignored file patterns can be found
from Git documentation at https://​git​-scm​.com/​docs/​gitignore. For our pur-
poses, it may be sufficient to just describe the files based on what you already
know, such as a file name or file names with a wildcard such as *.log.

Note that unlike other version-control systems, Git does not work with files
for different versions, but works only with the changes that led to the current
version of the file. For each file, Git will only keep one copy of the file for its
current version in its repository and keep only the changes that led to the cur-
rent version for all older versions.

Set Up an Account on GitHub and Version-Control with Remote
Repositories
With Git, you can also use remote repositories on GitHub, which is a web-based
system that you can use to create, access, and manage your remote repositories
on a GitHub server. The benefits of working on a remote repository like GitHub
for a software development project are twofold: the first is that you do not need
to worry about the possible loss of your computer or the corruption of the file
system; the second is that a team of programmers can work on a project at the
same time efficiently and globally.

To use the remote repository on GitHub, first create an account with GitHub​
.com. GitHub offers students use of their repositories free of charge but also
provides a pack of paid professional tools for software development.

https://git-scm.com/docs/git#_git_commands
https://training.github.com/downloads/github-git-cheat-sheet/
https://training.github.com/downloads/github-git-cheat-sheet/
https://git-scm.com/docs/gitignore
http://GitHub.com
http://GitHub.com

	 Introduction	 63

 https://doi.org/10.15215/remix/9781998944088.01

Once you have signed into GitHub​.com, you can create a repository for
each of your projects under your account. Once created, each repository
will have a unique URL where project files can be synchronized between the
local repository and the remote repository, which can be cloned/downloaded.
A repository on GitHub can be either public or private. A private repository can
be accessed only by the owner, whereas a public repository can be accessed by
everyone on the internet. Because you will be using the remote repository for
your assignment projects, you should choose private so that your assignment
work will not be shared with any others. You can create public repositories for
projects that are substantially different from projects in the assignments and
interesting enough for others to collaborate with you on the projects.

Now you know how to create both a local repository and a remote repository,
and you’ve learned how to use Git commands to move project files to and from
the local repository.

To continue work on a remote repository for the version-control of project
files, you need to tell the computer where the remote repository is by using
the following Git command:

$ git remote add <remote repository name> URL

Git supports several network protocols to communicate between your local
computer and remote repository servers such as GitHub, including SSH and
HTTPS. Because using SSH requires additional setup on your computer, we rec-
ommend HTTPS. The following is an example of adding the remote repository
previously created for Jupyter Notebooks to our local notebook repository for
Jupyter Notebooks:

$ git remote add notebooks https://​github​.com/​jamesatau/​
comp218​-notebooks​.git

You can also use the following to delete a remote repository:

$ git remote remove <remote repository name>

And you can use

$ git remote rename <remote repository old name> <remote
repository new name>

to rename a remote repository.

http://GitHub.com

	 64	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

You can also make changes to the URL of an existing repository, as shown
in the following example:

$ git remote set-url origin https://​github​.com/​jamesatau/​
allgitcases​.git

To view which remote repository is configured for the current project, use
the following Git command:

$ git remote -v

The command below initializes a git repository and adds remote notebooks:

$ git init
Initialized empty Git repository in S:/Dev/Learn_Python/.
git/

james@trustshop MINGW64 /s/Dev/Learn_Python (master)
$ git remote add notebooks https://​github​.com/​jamesatau/​
comp218​-notebooks​.git

james@trustshop MINGW64 /s/Dev/Learn_Python (master)

The text below shows a git command to display the remote connections
configured after running the commands above:

$ git remote -v
notebooks https://​github​.com/​jamesatau/​comp218​
-notebooks​.git (fetch)
notebooks https://​github​.com/​jamesatau/​comp218​
-notebooks​.git (posh)

james@trustshop MINGW64 /s/Dev/Learn_Python (master)
$

Between the local repository and the remote repository, project files can
go in two directions. Moving files from the local to the remote repository is
referred to as a push; moving files from the remote to the local repository is a
pull or fetch. Between pull and fetch, pull is the default mode of moving files

	 Introduction	 65

 https://doi.org/10.15215/remix/9781998944088.01

from remote to local, and fetch provides additional power, such as is needed
when moving files from several repositories at the same time.

Please note that pull or push operations are not just transferring files. Key
points of the operation are merging the changes to files in the target repository
and versioning. Git has special commands for those key operations, but those
operations often run behind the scenes without anyone noticing.

After you have added a remote repository to your project, you can push
the already committed changes to the local repository by running the git
push command in a shell terminal within the project directory, as shown
here:

$ git push --set-upstream notebooks master
Enumerating objects: 3, done.
Counting objects: 100% (3/3), done.
Delta compression using up to 6 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 545 bytes | 272.00 KiB/s,
done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
remote:
remote: Create a pull request for 'master' on GitHub by
visiting:
remote: https://​github​.com/​jamesatau/​comp21B​-notebooks/​
pull/​new/​master
remote:
To https://​github​.com/​jamesatau/​comp218​-notebooks​.git
* [new branch] master -> master
branch 'master' set up to track 'notebooks/master'.

james@trustshop MINGW64 /s/Dev/Learn_Python (master)
$ git push notebooks
Everything up-to-date

james@trustshop MINGW64 /s/Dev/Learn_Python (master)
$

Sometimes you might be interested in a project in a repository and would
like to make a local copy of the entire project. The operation of copying an
entire project in a remote repository onto a local computer is called cloning.
For example, say there is a repository called learn-python3 in GitHub containing

	 66	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

sample code, and you want to download all the code to play with it. You can do
that by doing the following:

	 1.	 Open a terminal on a file folder in which the project is to be
placed—say, the desktop.

	 2.	 From GitHub​.com, copy the HTTPS URL from the “Code” dropdown menu
of the learn-python3 repository and run the following Git command:

$ git clone https://​github​.com/​michaelliao/​learn​-
python3​.git

You will then have all the code samples on your computer.

To work with Git and GitHub, you can use Git GUI, a GUI-based system, by
invoking Git GUI on the project folder within Windows File Explorer.

Another way, our preferred way to use Git and GitHub for versioning on
both local and remote repositories, is to operate within VS Code, which has
native support for Git and GitHub, as long as Git is properly installed on the
local computer, as shown earlier in this section.

	 1.	 Create a new folder on your local drive for a project.
	 2.	 Open the folder from VS Code. The new folder can also be created

when you open the file folder in VS Code.
	 3.	 Initialize the local repository for the project by running git initialize

in VS Code command palette by pressing Ctrl+Shift+P. Type “git” and
click “git initialize.” You will be asked to do the following:

	 a.	 Choose a local workspace folder to initialize.
	 b.	 Set the email address of the programmer/developer/author.
	 c.	 Set the name of the programmer/developer/author.

Now the local repository is ready for versioning your project files
locally.

	 4.	 Create or copy project files under the project folder.
	 5.	 Click the source control icon on the left navigation bar, type a brief

message about the changes to the files or project, and press Ctrl+Enter
or click the commit icon above.

	 6.	 To push the changes to the project files and the project to the remote
repository in GitHub, click the Git Sync icon at the bottom-left of the
VS Code window.

http://GitHub.com

	 Introduction	 67

 https://doi.org/10.15215/remix/9781998944088.01

	 a.	 If this is the first time you are pushing the project to your GitHub
account, the command palette dialogue will pop up and ask you
to choose whether to publish the project into a public repository
or private repository under your account. The project folder name
will be used as the repository name by default, but you can use a
different name.

	 b.	 You may be asked to sign into your GitHub account if you have not
accessed GitHub from VS Code before.

	 c.	 You may also be asked to either use the existing username
and email associated with your GitHub account or provide a
different email and/or username to identify yourself as the author
of the project being pushed.

If you have already created a repository for the project on GitHub, you can
copy the URL of the repository and add the remote repository to the project
in VS Code by running git add remote in the command palette. You will also
be asked to provide a name for the remote repository after entering the URL.

Chapter Summary
•	 The first chapter has introduced you to computers and programming

languages and guided you in setting up the programming environment.
•	 The introduction to modern computers included a brief history as well

as a description of the fundamental architecture of modern computers.
Knowing who made significant contributions to the development of
computers, what contributions they made, and how they made those
contributions can be very inspiring.

•	 The computers we use today are called Von Neumann machines
because they are based on Von Neumann architecture, which consists
of a control unit, an arithmetic logic unit (ALU), registers, and a
memory unit (collectively called CPU) plus inputs and outputs. That’s
why Von Neumann is often credited as one of the fathers of modern
computers.

•	 The key features of modern computers are that they are digital,
programmable, and automatic, with stored programs, although these
features were already in the design of the analytical engine by British
mathematician Charles Baggage in the 1800s. Hence Charles Babbage is
also credited as a father of modern computers, although his machines
were not electronic.

	 68	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

•	 Binary or Boolean algebra is one of the important theories behind
today’s modern computers. It can be proved that computing with a
ternary number system would be more efficient, but it would be more
costly to make computing components to build computing machines
based on a ternary number system than on a binary number system.

•	 Signed numbers, including both integers and real numbers, need to
and can be represented by a sequence of digits, using the highest bit to
represent the sign (0 for positive, 1 for negative). A certain number of
digits are assigned for decimals.

•	 To apply arithmetic operations more easily and efficiently on
computers, 2’s complements are used to represent signed numbers.
With 2’s complements, the addition of signed numbers can be easily
done.

•	 How do you know what modern computers are and are not capable of?
Alan Turing, independently from Alonzo Church, laid the foundational
work on computability with his Turing machine. Because of that, Alan
Turing is credited as a father of modern computing.

•	 There is also the question of how difficult it is to solve a problem
with computers, which is the study of computational complexity. The
computational complexity of a problem is often measured in terms
of the total number of basic computations, such as addition and
multiplication, which can be converted into the time needed to solve
the problem on specific computers. The space required to solve a
problem can be a concern as well, but most of the time, when people
are talking about computational complexity, they are talking about the
steps or time required to solve the problem.

•	 Problems to be solved on computers are often divided into three classes
of problems: P, NP-complete, and NP, in which P is short for polynomial
and NP is short for nondeterministic polynomial.

•	 If, on a deterministic and sequential machine like a computer, for
a problem of size n, if the time or number of steps needed to find
the solution is a polynomial function of n, the problem is said to be
in the P class. If a problem can be solved in polynomial time on a
nondeterministic machine, the problem is in the NP class. A problem
is said to be NP-complete if proposed answers can be verified in
polynomial time, and if an algorithm can solve it in polynomial time,
the algorithm can also be used to solve all other NP problems.

•	 Programs are the computers’ soul. The task of writing programs for
computers is called programming. Languages in which programs can
be written for computers are programming languages.

	 Introduction	 69

 https://doi.org/10.15215/remix/9781998944088.01

•	 Programming languages play important roles in building soul into
computers. Programming languages can be machine languages,
assembly languages, and high-level languages.

•	 Ada Lovelace, who wrote code for Charles Babbage’s analytical engine,
was credited as the first programmer of modern computers. The Ada
programming language was named in her honour.

•	 An algorithm describes the steps a computer needs to take to solve a
problem or complete a task.

•	 Pseudocode and flowcharts are two ways of describing algorithms.
•	 System analysis and design are the steps taken to design and develop an

information system for real-world application.
•	 The official website for the Python programming language is at www​

.python​.org. Use the Anaconda package to install Python, Jupyter
Notebook, Visual Studio Code IDE, and other tools for your study of
programming with Python.

•	 Python interactive shell and Jupyter Notebook are recommended for
learning Python programming interactively.

•	 Create a Jupyter Notebook for each chapter and/or section, and
work through all the examples within that part of the course in that
notebook to keep a record of your learning activities for review and
evaluation.

•	 Visual Studio Code (VS Code) is the IDE recommended for you to
complete the projects and programming projects in the assignments.

Exercises
	 1.	 Convert the following numbers in their respective bases into their

binary equivalence:

(78)10 (1F)16 (27)8

(121)10 (3E)16 (33)8

(29)10 (CD)16 (52)8

	 2.	 Complete the following binary operations:

10111 + 1101 1101010 − 101101 10101 + 1110

10101 − 1111 1101 * 101 111011 / 11

http://www.python.org
http://www.python.org

	 70	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

	 3.	 Complete a thorough review of computer history by reading library
books and online articles. Compile a table showing the significant
developments of theories and technologies of modern computers in
Europe and a similar table for America. For each development, the
table should show the time, a description of the development, the
key players/contributors, and its impact on the later development of
modern computers.

	 4.	 Investigate the classification and development of computer
programming languages and explain the features of the
following programming languages:

	 a.	 Machine code
	 b.	 Assembly languages
	 c.	 High-level programming languages
	 d.	 Procedural programming languages
	 e.	 Structured programming languages
	 f.	 Imperative programming languages
	 g.	 Functional programming languages
	 h.	 Logic programming languages
	 i.	 Object-oriented programming languages

	 5.	 Create a new folder called comp218, open it with VS Code, then create
a new file and rename it comp218start.ipynb, which is recognized by
VS Code as Jupyter Notebook. Start working in the cells and use it as
a calculator to see what expressions and statements you can perform
correctly with Python, based on what you have learned so far. Please
note that you may wish to choose a Python interpreter in order to run
the code or make sure the notebook is working properly.

	 6.	 In a cell of a newly created notebook comp218start.ipynb, type the
following code and then press Shift+Enter to run it to see what you
will get:

In []: first_name = 'John'
last_name = 'Doe'
full_name = first_name + ' ' +last_name
print(full_name)

	 7.	 In a new cell of notebook comp218start.ipynb, type the following code
and then press Shift+Enter to run the code to see what you will get.

In []: for i in range(11):
 p = (2**i)
 print(f'{bin(p)}')

	 Introduction	 71

 https://doi.org/10.15215/remix/9781998944088.01

	 8.	 Write an algorithm in pseudocode describing the steps to make a pizza.
	 9.	 Write an algorithm in pseudocode describing the steps to cook rice.
	 10.	 Write an algorithm in a flowchart describing the steps you usually take in

the morning, from getting up until leaving home to go to work or school.

Projects
	 1.	 Research the history of computers online, then write a summary

about each of the following:
	 a.	 The computing machines designed and developed in history that

are significant to the development of today’s computers
	 b.	 The people in history who have made significant contributions to

the development of computers
	 c.	 The concepts, theories, designs, and technologies in history that

are important to the development of modern computers
	 2.	 Research the history of programming languages online, then write a

summary for each of the following:
	 a.	 Machine languages that have been important to the development

of computer systems
	 b.	 The differences between machine languages, assembly languages,

and high-level programming languages
	 c.	 The essence (what defines it and differentiates it from others)

of structural programming, the pros and cons of structural
programming, and some well-known programming languages that
support structural programming

	 d.	 The essence of imperative programming, the pros and cons of
imperative programming, and some well-known programming
languages that support imperative programming

	 e.	 The essence of declarative programming, the pros and cons of
declarative programming, and some well-known programming
languages that support declarative programming

	 f.	 The essence of functional programming, the pros and cons of
functional programming, and some well-known programming
languages that support functional programming

	 g.	 The essence of logical programming, the pros and cons of logical
programming, and some well-known programming languages that
support logical programming

	 h.	 The essence of object-oriented programming, the pros and cons of
object-oriented programming, and some well-known programming
languages that support object-oriented programming

This page intentionally left blank

 https://doi.org/10.15215/remix/9781998944088.01

Chapter 2

Essential Building Blocks
of Computer Programs

This chapter introduces the fundamental elements and building blocks of com-
puter programs in the Python language. These fundamental building blocks
include the words, keywords, and reserved words that can be used in Python
programs. You will also learn the primary data types and data models, the
operators, and some built-in functions that can be applied to the data and data
models in Python, as well as some important statements or sentences that can
be used to instruct computers.

Learning Objectives
After completing this chapter, you should be able to

•	 make and use names correctly to identify various items in your Python
programs.

•	 use different types of data and data models correctly.
•	 use the proper operators for different types of data and data models.
•	 correctly compose expressions using variables, data, operators, and the

built-in functions of Python.
•	 write an assignment statement to assign values to variables.
•	 write augmented assignment statements.
•	 write input statements correctly to get input from users.
•	 write correct statements using print.

	 74	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

2.1 Primary Constructs of Computer Programs in
Python
Computer programs tell computers how to complete specific tasks. These
specific tasks may be as small as what you would do on a calculator or as big
as mission control for space exploration. Believe it or not, computer programs
for all these different tasks are composed of the same types of statements on
the same types of primary data. The difference is in how the data are struc-
tured and how the statements are organized. In computing, the study of the
first “how” is the subject of data structures, whereas the study of the second
“how” is the subject of algorithms. In computing, there are dedicated courses
providing in-depth coverage on data structures and algorithms. While studying
introductory computer programming, keep in mind the importance of data and
algorithms in solving problems and try to identify the data involved and describe
the algorithms needed to solve a problem using the methods introduced in 1.7.

Vocabulary of the Programming Language
Vocabulary is the foundation of any language. In computer languages, identifi-
ers are an important part of the vocabulary used to write computer programs.
As in all programming languages, identifiers in Python are used to identify
variables, functions and methods, classes, objects, and modules. They are
called identifiers because, for computers, the only purpose of these names is
to identify specific locations of computer memory that hold or can be used to
hold specific data or code blocks.

Figure 2-1 illustrates how a variable named “grade” is identified as the mem-
ory location that holds the integer 98. Please note that we use 98 in the diagram
for illustration purposes, although, in fact, both data and program codes are
stored as sequences of binary (0s and 1s).

grade 98

Figure 2-1: The variable “grade” and its memory location

Although an identifier in computer programs does not need to be mean-
ingful to humans, it must be unique in a given context, which is often called
namespace. In Python, a namespace is a mapping from names to objects and
is implemented as a Python dictionary.

	 Essential Building Blocks of Computer Programs	 75

 https://doi.org/10.15215/remix/9781998944088.01

In a program, different identifiers may be used to refer to the same memory
location and hold the same data or program code, as shown in Figure 2-2. This
is accomplished through the following Python code:

In []: x = 'John'
y = x

Out []: John

To check what x and y hold, we use the print statement as follows:

In []: print('x holds ', x, ', y holds', y)

Out []: x holds John, y holds John

X

Y

‘John’

Figure 2-2: X and Y point to the same memory location

If we change one identifier to refer to something else, the value referred
to by the other identifier will remain the same, as shown in Figure 2-3. This is
done with the following code:

In []: x = 'Smith'
print('x holds ', x, ', y holds ', y)

Out []: x holds Smith, y holds John

X

Y

‘Smith’

‘John’

Figure 2-3: Now X and Y point to different memory locations

	 76	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Please note that in the examples above and other examples in the remainder
of the textbook, the box behind In [] represents a code cell in Jupyter Notebook,
whereas everything behind Out [] is the output from the code contained in the
code cell when you press Shift+Enter or click the play button.

RULES OF NAMING IDENTIFIERS
In addition to uniqueness, identifiers used in Python programs must be named
according to the following rules:

	 1.	 An identifier can be a combination of letters (a–z, or A–Z), numbers
(0–9), and underscores (_).

	 2.	 It must begin with a letter (a–z or A–Z) or underscore (_).
	 3.	 In Python, identifiers are case-sensitive, so x and X are different

identifiers.
	 4.	 Identifiers can be of any length.
	 5.	 User-defined identifiers cannot be the same as words reserved by the

Python language.

According to these rules, the following are legitimate user-defined identifiers
in Python:

AB, zf, cd, hz, d_2, c5E, falling, to_be

Whereas the following are not:

1d, d/, f-, g.d

In Python, identifiers shown in Table 2-1 are reserved and hence called
reserved words or keywords, with predefined special meaning in the language,
which means that you must not use them to name your variables, functions/
methods, classes, or modules.

Table 2-1: Reserved words in the Python programming language
Reserved
word

Special meaning Reserved
word

Special meaning

and logical and if conditional statement

as used together with import
and with to create new
alia

import to import modules

	 Essential Building Blocks of Computer Programs	 77

 https://doi.org/10.15215/remix/9781998944088.01

Reserved
word

Special meaning Reserved
word

Special meaning

assert to make an assertion for
handling possible errors

in membership test

break to get out of some code
blocks such as during
iteration

is identity test

class to define class lambda to create a lambda function

continue to omit the rest of the code
block and continue the
loop

not logic negation

def to define functions or logical or

del to delete an object pass to pass the code block

elif used together with if to
create a conditional
statement

print to output

else used together with if to
create a conditional
statement

raise to raise an exception
intentionally

except used together with try to
handle errors

return to return values from a
function in function
definition

exec to execute some
dynamically generated
code in a string or object

try used for exception handling

finally used together with try and
except to handle errors

while to make loop/iteration
statements

for to create a loop with to introduce context for a
code block

from used together with import yield used in place of return,
to turn a function into a
generator

global to access a global variable
from inside of a function

In addition to the reserved words in Table 2-1, you should also avoid using
names that have been used by Python for built-in types and built-in functions,

Table 2-1: Reserved words in the Python programming language
(continued)

	 78	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

classes, and modules. These names are collectively called built-in names. It is
grammatically fine to use built-in names as user-defined identifiers, but using
them may cause confusion.

Furthermore, Python also uses the underscore _ as an identifier for a very
special variable to hold the result of the last evaluation when Python is running
in interactive mode, as shown in the following example:

>>> sum ([1,2,3,4,5,6])
21
>>> sum (list(range(1000)))
499500
>>> _
499500
>>> |

This use of _ as a special variable can also be seen in Jupyter Notebook, as
shown in the following example:

In []: pow(9, 3)

Out []: 729

In []: _

Out []: 729

When Python is not running in interactive mode, _ has no predefined meaning,
however. Even within Jupyter Notebook, the value of _ is often unpredictable
unless explicitly assigned.

Syntactically, the special variable _ can be used in the same way as others,
especially when the value is to be thrown away and not used, as shown below:

In []: p, n = 1, 10 # assign 1 to variable p, and assign 10
to variable n

for _ in range(n): # note that _ is not used
elsewhere

 p *= 2
print(f'2^{n} = {p}') # format the output with
f-string

Out []: 2^10 = 1024

	 Essential Building Blocks of Computer Programs	 79

 https://doi.org/10.15215/remix/9781998944088.01

PYTHON NAMING CONVENTIONS
Although identifiers used in Python programs don’t have to be meaningful
to humans, you should always try to use more meaningful identifiers in your
programs because it is not only easy for you to tell what the identifiers are used
for but also easier for other programmers to understand your programs when
you work in a team or want to share your code with others.

For the same reason, you should also follow common practices and widely
accepted coding conventions when programming. In terms of composing
identifiers these conventions include:

	 1.	 Lower case identifiers are usually used for variables and function
names.

	 2.	 Capitalized identifiers are used for class names.
	 3.	 Upper case identifiers are used for constants, such as PI = 3.1415926,

E = 2.7182, and so on.
	 4.	 When an identifier has multiple words, the underscore _ is used to

separate the words. So we use your_name instead of yourname, use to_
be instead of tobe. Some programmers prefer not to use an underscore,
but to capitalize each word, except for the first word, when an
identifier is used as a variable or the name of a function or method.

Along with the programming technologies, these practices and conventions
have developed over the years and may further evolve in the future. A good
Python programmer should follow the developments and trends of the Python
programming community.

NAMES WITH LEADING AND/OR TRAILING UNDERSCORES
As mentioned above, identifiers for variables, function/method names,
and class names may begin and/or end with a single underscore, double
underscores, or even triple underscores, and those names may have special
meanings.

When a name has both leading and trailing double underscores, such as
__init__, it is called a dunder (double-underscore) name. Some dunder names
have been given special meanings in Python Virtual Machine (PVM) or a Python
interpreter. They are either reserved as special variables holding special data
or as special function/method names.

The following are some special dunder names used as special values or
special variables holding special data.

	 80	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

__MAIN__
Used as a special value. When a Python program/script file runs as the main
program other than a module, the special variable __name__ will be assigned
special value __main__.

__NAME__
Used as a special variable in a Python program to hold special value indicating
how the program file is called or used. If the program file is used as the main
program, __name__ will hold __main__. If it is used as a module, __name__
will hold the name of the module.

__PACKAGE__
Used as a special variable to hold the package’s name if a module imported is
a package. Otherwise, __package__ will hold an empty string.

__SPEC__
Used as a special variable to hold the module specification used when the
module is imported. If the Python program file is not used as a module, it will
hold the special value None.

__PATH__
Used as a special variable to hold the path to the module in a package. If the
module is not within a package, __path__ is not defined.

__FILE__
Used as a special variable to hold the name of a Python program file.

__CACHED__
A special variable often used together with the special variable __file__, refer-
ring to a precompiled bytecode. If the precompiled bytecode is not from a
program file, __file__ is not defined.

__LOADER__
Used as a special variable to hold the object that loads or imports the module
so that you would know who is using the module.

__DOC__
Used as a special variable to hold the documentation of a module or Python
program if it is used as the main program, documentation of a class, or function
or method of a class.

	 Essential Building Blocks of Computer Programs	 81

 https://doi.org/10.15215/remix/9781998944088.01

Dunder names used for special functions and methods will be discussed in
Chapter 6 and Chapter 7.

RULES OF SCOPE RESOLUTION FOR IDENTIFIERS
Big programs for complicated applications often use hundreds or even thou-
sands of identifiers to name variables, functions, classes, and other objects.
When so many names are used, it is unavoidable that some names will be
used more than once. How can we ensure in a program that each name can
be mapped to an object without confusion and ambiguity? The answer is to
follow the LEGB rule, in which L, E, G, and B refer to different scopes from
small to big: L is for local, referring to the inside of a function or class; E is
for enclosed, referring to the inside of a function enclosing another function;
G is for global, referring to the space outside of all classes and function in a
Python program file; and B is for built-in, referring to all the names defined
within Python’s built-in module. The relationships of LEGB scopes are illus-
trated in Figure 2-4.

Built-in names

Global names

Enclosed names: Inside an
enclosure

Local names: Inside a
function or class

Figure 2-4: LEGB rules for scope resolution for names

The illustration above should be viewed in reference to a name used within
a function or class. To resolve the name or to link it to a specific object, apply
the following LEGB rules:

	 1.	 Look at the names defined locally (L) within the function/method or
class. If not defined, proceed to the next rule.

	 2.	 Check whether the name has been defined in the enclosure (E)
function (note that enclosures are not often used, so this is just for
discussion right now). If not, proceed to the next rule.

	 3.	 Check whether it has been defined globally (G).
	 4.	 Check whether it is a built-in (B) name of Python.

The following sample shows how matching local and global names are resolved:

	 82	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: g_name = 'John' # global name g_name
l_name = 'Smith' # global name l_name
def display_names(): # define a function
 l_name = input('What is your name:') # get input
 print(f'Local name is {l_name}') # l_name is
defined again

 print(f'Global name is {g_name}') # g_name is
global

display_names()

Out []: What is your name: Kevin
local name is Kevin
Global name is John

You may have noted in the example above that variable l_name is defined
both locally in definition of the function display_names() and globally. When it
is used within the function, its local definition is used; variable g_name, on the
other hand, is only defined globally, and when it is used within the function,
it is resolved to its global definition.

In addition to the LEGB rules, please keep in mind the following:

	 1.	 A local name defined in a function will not be seen anywhere outside
the function.

	 2.	 A local name defined in a class can be seen outside the class or its
objects if the name is not a private member of the class, with an
explicit reference to the name with dot notation. For example, a
name X defined in class C can be accessed using C.X, or O.X if O
is an object of C.

	 3.	 A name Nx globally defined in a Python script file named M1​.py can
be seen inside another Python script file by either importing the
name explicitly from M or by importing M1 as a whole and using dot
notation M1.Nx to access Nx.

Simple Data Types
Computers solve problems and accomplish various tasks by processing infor-
mation. This information is represented in the form of data. It is important to
know what data we can use or process and what operations we can apply
to different types of data. In Python, there are simple data types and compound
data types. The latter are also called models of data.

Simple data types include numbers, strings, and Boolean values. Numbers
are used to represent numerical information, strings are used to represent

	 Essential Building Blocks of Computer Programs	 83

 https://doi.org/10.15215/remix/9781998944088.01

literal information, and Boolean values are used to represent the result of tests,
either True or False.

In Python, numbers can be signed integers, float numbers, and complex
numbers. They all can be values of variables, as we shall see in the next section.

Although a string can be used conveniently as simple data, it has all the
properties and supported operations of a compound data type. As such, it will
be discussed in full detail later in this section.

SIGNED INTEGERS (INT)
Signed integers in Python are …−2, −1, 0, 1, 2…, as examples. In Python 3,
signed integers can be of arbitrary size, at least theoretically, as long as com-
puter memory is not exhausted. In implementation, however, the biggest
integer is defined by sys.maxsize, a variable named maxsize in a module called
sys, which specifies the maximum number of bytes that can be used to rep-
resent an integer number. The notation of sys.maxsize here means maxsize,
defined in module sys.

Operations on integer numbers include the following:

addition (x + y)
subtraction (x − y)
multiplication (x * y)
division (x / y)
negation (−x)
exponentiation (x ** y)
modular (x % y)
integer division (x // y)

You should be able to use the above operations, which you should already
be familiar with, as well as the following bitwise operations you may never
have heard about:

bitwise or (x | y)
>>> 1 | 4
5
bitwise exclusive or, often called XOR (x ^ y)
>>> 1 ^ 2
3
bitwise and (x & y)
>>> 1 & 5
1

	 84	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

shifted left (x << n)
>>> 2 << 3
16
shifted right (x >> n)
>>> 256 >> 5
8
invert (~x)
>>> ~128
-129

The following are a few more samples from the Python interactive shell
that show how these operators are used:

>>> 12 + 23
35
>>> 35 - 12
23
>>> -123
-123
>>> 123 * 567
69741
>>> 69741/123 # the result is a real or float-point
number
567.0
>>> 69741//123 # get the quotient of two integers
567
>>> 69741%12 # operation % will get the remainder
9

The next few examples are about bitwise operations. The first two operations
on the first line show the binary form of the two numbers. In Python, you can
have two or multiple statements on a single line, but you are not encouraged
to do so.

>>> bin(123); bin(567) # how to have two or more
statements on one line
'0b1111011'
'0b1000110111'
>>> bin(123 | 567) # it will be 0001111011 | 1000110111
'0b1001111111'

	 Essential Building Blocks of Computer Programs	 85

 https://doi.org/10.15215/remix/9781998944088.01

>>> bin(123 ^ 567) # it will be 0001111011 ^ 1000110111
'0b1001001100'
>>> bin(123 & 567) # it will be 0001111011 & 1000110111
'0b110011'
>>> bin(123 << 5) # it will be 1111011 << 5
'0b111101100000'
>>> bin(123 >> 5) # it will be 1111011 >> 5
'0b11'
>>> bin(~123)
'-0b1111100'

There are also many built-in functions available for operations on integers.
All the built-in functions of Python will be discussed in detail below.

In addition, the following methods are also available to use for operations
on integer objects.

N.BIT_LENGTH()
This returns the number of necessary bits representing the integer in binary,
excluding the sign and leading zeros.

>>> n = -29
>>> print(f'Binary string of {n} is {bin(n)}')
binary string of -29 is -0b11101
>>> print(f'# of significant bits of {bin(n)} is
{n.bit_length()}')
of significant bits of -0b11101 is 5

N.TO_BYTES(LENGTH, BYTEORDER, *, SIGNED=FALSE)
This returns an array of bytes representing an integer, where length is the
length of bytes used to represent the number. byteorder can take Big-Endian
or Little-Endian byte order, depending on whether higher-order bytes (also
called most significant) bytes come first or lower-order bytes come first, and
an optional signed argument is used to tell whether 2’s complement should be
used to represent the integer.

>>> n = 256
>>> n.to_bytes(2, byteorder = 'big') # big means higher
bytes first
b'\x01\x00'

	 86	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Recall that modern computers use 2’s complements to represent negative
numbers. So if the integer n is negative while signed remains False, an Over-
flowError will be raised, as shown below:

>>> n = -23567
>>> n.to_bytes(3, 'big')

OverflowError Traceback (most recent call last)
<ipython-input-4-66989275e22d> in <module>
1 n = -23567
----> 2 n.to_bytes(3, 'big')
OverflowError: can't convert negative int to unsigned

So a correct call of the method would be

>>> n = -23567
>>> n.to_bytes(3, 'big', signed = True)

b'\xff\xa3\xf1'

INT.FROM_BYTES(BYTES, BYTEORDER, *, SIGNED = FALSE)
This classmethod returns the integer represented by the given array of bytes.

>>> n = 256
>>> bin(n)
'0b100000000'
>>> # convert '0b100000000' in Big Endian to int
>>> int.from_bytes(n.to_bytes(2, byteorder = 'big'),
'big')
256
>>> # convert '0b100000000' in Little Endian to int
>>> n.from_bytes(n.to_bytes(2, byteorder = 'big'),
'little')
1

Note that when two bytes are used to represent integer 256, 0b100000000 will
be expanded to 00000001 00000000. In Big Endian, it represents 256, but in Little
Endian, 00000001 becomes the less significant byte, while 00000000 becomes the
most significant byte, and the corresponding number for 256 becomes 00000000
00000001.

	 Essential Building Blocks of Computer Programs	 87

 https://doi.org/10.15215/remix/9781998944088.01

For more advanced operations on integers, there are some special modules
such as the standard math module, math; the free open-source mathematics
software system SAGE; (https://​www​.sagemath​.org/); SymPy (https://​www​
.sympy​.org/​en/​index​.html); and, for operations in number theory, eulerlib
(https://​pypi​.org/​project/​eulerlib/).

FLOAT (FLOAT)
Float numbers are numbers with decimals, in the form of 12.5 in decimal
notation or 1.25e1 in scientific notation, for example. Operations on float
numbers include addition (+), subtraction (−), multiplication (*), division (/),
and exponentiation (**), as shown below:

In []: x = 12.5 * 32.7 / 23.9 - 53.6 + 28.9 ** 2.7
print(f"x = {x}") # prefix f tells to format the
string

Out []: x = 8762.31728619258

In the example above, the equal sign (=) is an assignment operator in Python
(and almost all other programming languages as well). We will explain all
operators fully later in this section.

Python can handle very big integers and floating-point numbers. When a
number is too big, it becomes difficult to count and check for accuracy. To solve
that problem, Python allows using the underscore to separate the numbers,
in the similar way that accounting and finance use a comma. The following
is an example:

>>> 123_456_789_987.56+234_456_678_789
357913468776.56

Using an underscore to separate the digits has made it much easier to tell
how big the number is.

R.AS_INTEGER_RATIO()
This returns a pair of integers whose ratio is exactly equal to the original float
r and with a positive denominator. It will raise OverflowError on infinities and
a ValueError on NaNs.

>>> r.as_integer_ratio()
(7093169413108531, 562949953421312)

https://www.sagemath.org/
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html
https://pypi.org/project/eulerlib/

	 88	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

R.IS_INTEGER()
This returns True if r is finite with integral value, and False otherwise.

>>> r.is_integer()
False

R.HEX()
This returns a representation of a floating-point number as a hexadecimal
string. For finite floating-point numbers, this representation will always include
a leading 0x and a trailing p and exponent.

>>> r.hex()
'0x1.9333333333333p+3'

FLOAT.FROMHEX(S)
This returns the float represented by a hexadecimal string s. The string s may
have leading and trailing whitespace.

>>> float.fromhex('0x1.9333333333333p+3')
12.6

BOOLEAN (BOOL)
Boolean data have only two values: True and False. They are used to repre-
sent the result of a test or an evaluation of logical expressions, as we will see.
Technically, Python does not need a special Boolean data type, since it treats
0 and None as Boolean False, and treats everything else as Boolean True, as
shown below:

In []: b = None # assign None to variable b. None in Python
represents 'no value'

print(f"b = {b}") # print out what b holds
if not b: # if (not b) is True then print
 print("Print this out when b is None!")

Out []: b = None
Print this out when b is None!

However, having a Boolean data type with two Boolean values of True and
False does clearly remind Python programmers, especially beginners, that
there are special types of data and expressions called Boolean data and Bool-
ean expressions.

	 Essential Building Blocks of Computer Programs	 89

 https://doi.org/10.15215/remix/9781998944088.01

COMPLEX (COMPLEX)
If you have never heard about complex numbers, quickly search the internet
for complex numbers and read some articles or watch some videos.

Briefly, a complex number is a representation of a point on a plane with
X and Y axes that take the form of x + yj, in which x and y are float numbers
that represent and define the location of a point on the plane. Examples of
complex numbers are 1 + 1j, 3 − 6j, 2.5 − 8.9j, and so on.

The same operations on float numbers can also be applied to complex
numbers, as shown below:

In []: x = 3.5 + 6.7j # assign a complex number to x
y = 12.3 - 23.9j # assign another complex number to y
z = x + y # assign the sum of x and y to z
print(x, '+', y, '=', z) # print out the value of the
variable

print(x, '-', y, '=', x - y) # the difference between
x and y

print(x, '*', y, '=', x * y) # the product of x and y
print(x, '/', y, '=', x / y) # the result of x
divided by y

Out []: (3.5 + 6.7j) + (12.3 - 23.9j) = (15.8 - 17.2j) (3.5 + 6.7j) - (12.3 - 23.9j)
= (-8.8 + 30.599999999999998j) (3.5 + 6.7j) * (12.3 - 23.9j) =
(203.18 - 1.2399999999999807j) (3.5 + 6.7j) / (12.3 - 23.9j) =
(-0.16204844290657439 + 0.229840830449827j)

Compound Data Types
In previous sections, we saw data in pieces. Sometimes it is more convenient,
more effective, and even necessary to use some data together to represent
certain kinds of information. Examples are when we refer to the days of the
week, months of the year, and so on. Courses in universities are often iden-
tified using compound data, a tuple made of a course number and course
title or name.

In Python, compound data types provide means of structuring data. They
are also referred to as data structures.

Compound data types in Python can be categorized into sequence and nonse-
quence data types. Items in sequence compound data are ordered and indexed.
Sequence compound data types include string, list, and tuple. Items in a nonse-
quence compound data are not ordered. Nonsequence compound data include
set and dictionary.

	 90	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

STRING (STR)
Sequences are a group of data in order, and a string is a good example of a sequence.

Like numbers, strings are very important in all programming languages. It
is hard to imagine what a number means without its context. For that reason,
in most programming languages, strings are also considered a primary data
type in terms of their importance and the role that they play.

In Python, strings are sequences of characters, symbols, and numbers
enclosed in a pair of double quotation marks or a pair of single quotation marks.
Table 2-2 is a list of ASCII characters that can be used in strings. The following
are some examples of strings:

In []: s1 = "this is my first string in double quotes"
s2 = 'string in single quotes'
print('s1 = ', s1) # print out s1 = the value of
variable s1

print('s2 = ', s2) # print out s2 = the value of
variable s2

Out []: s1 = this is my first string in double quotes
s2 = string in single quotes

When a string is too long and needs to span more than one line, a pair of
triple quotation marks can be used, as shown in the following example:

In []: long_string = """ASCII stands for American Standard
Code for Information Interchange.

Computers can only understand numbers, so an ASCII code
is the numerical representation of a character such
as "a" or "@" or an action of some sort.

ASCII was developed a long time ago, and now the
nonprinting characters are rarely used for their
original purpose. Below is the ASCII character table.
The first 32 characters are nonprinting characters.
ASCII was designed for use with teletypes, so the
descriptions in ASCII are somewhat obscure.

If someone says they want your CV in ASCII format,
all this means is they want "plain" text with no
formatting such as tabs, bold or underscoring—the raw
format that any computer can understand.

This is usually so they can easily import the file into
their own applications without issues. Notepad.exe
creates ASCII text, and MS Word lets you save a file
as "text only."

"""
print('long_string =', long_string)

	 Essential Building Blocks of Computer Programs	 91

 https://doi.org/10.15215/remix/9781998944088.01

Out []: long_string = ASCII stands for American Standard Code for Information
Interchange. Computers can only understand numbers, so an ASCII code
is the numerical representation of a character such as "a" or "@" or an
action of some sort. ASCII was developed a long time ago and now the
nonprinting characters are rarely used for their original purpose. Below
is the ASCII character table. The first 32 characters are nonprinting
characters. ASCII was designed for use with teletypes and so the
descriptions in ASCII are somewhat obscure. If someone says they want
your CV in ASCII format, all this means is they want "plain" text with no
formatting such as tabs, bold or underscoring—the raw format that any
computer can understand. This is usually so they can easily import the
file into their own applications without issues. Notepad.exe creates
ASCII text, and MS Word lets you save a file as "text only."

This can be very useful in cases such as when you want to print out instruc-
tions for users to use with an application you developed.

Otherwise, you would need to use backslash at the end of each line except
the last one to escape the invisible newline ASCII character, as shown below:

In []: s0 = 'Demo only. This string is not too long \
to be put on one line.'

print(f's0 = {s0}')

Out []: s0 = Demo only. This string is not too long to be put on one line.

This is OK if the string only spans across two or three lines. It will look
clumsy if the string spans across a dozen lines.

In the example above, we use backslash \ to escape or cancel the invisible
newline ASCII character. In Python and almost all programming languages,
some characters have special meanings, or we may want to assign special
meaning to a character. To include such a character in a string, you need to
use a backslash to escape from its original meaning. The following are some
examples:

In []: print("This string will be put \n on two lines")
\n will start a new line
print("This string will add \t a tab - a big space")
\t will add a tab - big space

Out []: This string will be put
on two lines
This string will add a tab - a big space

	 92	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In the examples above, putting a backslash in front of n assigns the com-

bination \n a special meaning, which is to add a new line to the string; putting

a backslash in front of t assigns the combination \t a special meaning, which

is to add a tab (a number of whitespaces) to the string. The next example uses

backslash to escape the quotation from its original meaning defined in Python.

In []: print("This is \"President\" quoted")
\" puts quotation marks in a string

Out []: This is "President" quoted

Table 2-2: ASCII table showing the codes of characters

Dec Char Dec Char Dec Char Dec Char

0 NUL (null) 32 SPACE 64 @ 96 `

1 SOH (start of heading) 33 ! 65 A 97 a

2 STX (start of text) 34 " 66 B 98 b

3 ETX (end of text) 35 # 67 C 99 c

4 EOT (end of
transmission)

36 $ 68 D 100 d

5 ENQ (enquiry) 37 % 69 E 101 e

6 ACK (acknowledge) 38 & 70 F 102 f

7 BEL (bell) 39 ' 71 G 103 g

8 BS (backspace) 40 (72 v 104 h

9 TAB (horizontal tab) 41) 73 I 105 i

10 LF (NL line feed, new
line)

42 * 74 J 106 j

11 VT (vertical tab) 43 + 75 K 107 k

12 FF (NP form feed, new
page)

44 , 76 L 108 l

13 CR (carriage return) 45 - 77 M 109 m

14 SO (shift out) 46 . 78 N 110 n

	 Essential Building Blocks of Computer Programs	 93

 https://doi.org/10.15215/remix/9781998944088.01

Dec Char Dec Char Dec Char Dec Char

15 SI (shift in) 47 / 79 O 111 o

16 DLE (data link escape) 48 0 80 P 112 p

17 DC1 (device control 1) 49 1 81 Q 113 q

18 DC2 (device control 2) 50 2 82 R 114 r

19 DC3 (device control 3) 51 3 83 S 115 s

20 DC4 (device control 4) 52 4 84 T 116 t

21 NAK (negative
acknowledge)

53 5 85 U 117 u

22 SYN (synchronous
idle)

54 6 86 V 118 v

23 ETB (end of trans.
block)

55 7 87 W 119 w

24 CAN (cancel) 56 8 88 X 120 x

25 EM (end of medium) 57 9 89 Y 121 y

26 SUB (substitute) 58 : 90 Z 122 z

27 ESC (escape) 59 ; 91 [123 {

28 FS (file separator) 60 < 92 \ 124 |

29 GS (group separator) 61 = 93] 125 }

30 RS (record separator) 62 > 94 ^ 126 ~

31 US (unit separator) 63 ? 95 _ 127 DEL

These 128 ASCII characters, including both printable and unprintable ones,
are defined for communication in English between humans and machines.
There is an extended set of ASCII characters defined for communication in
other Western languages such as German, French, and others.

To enable communication between human and machines in languages
such as Chinese, Unicode was designed. Details about Unicode can be found at
https://​unicode​.org/. For information on how Unicode is used in Python, read
the article at https://​docs​.python​.org/​3/​howto/​unicode​.html.

Table 2-2: ASCII table showing the codes of characters (continued)

https://unicode.org/
https://docs.python.org/3/howto/unicode.html

	 94	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In earlier versions of Python, if you want to use a non-ASCII character
encoded in Unicode in a string, you need to know the code, assuming it is
NNNN, and use escape sequence \uNNNN within the string to represent
the non-ASCII character. You can also use built-in function chr(M) to get
a one-character string encoded in Unicode, where M is code of the char-
acter in the Unicode table. The reverse built-in function order(Unicode
character) is used to get the code of the Unicode character in the Unicode
table.

In Python 3.0, however, the default encoding of Python programs was
changed to UTF-8, which includes Unicode, so you can simply include any
Unicode character in a string and PVM will recognize and handle it correctly,
as shown in the following example:

In []: print("秦时明月汉时关 can be directly included in a
string")

print(f"though you can still use chr(31206) for
{chr(31206)}, chr(27721) for {chr(27721)}")

Out []: 秦时明月汉时关 can be directly included in a string
though you can still use chr(31206) for 秦, chr(27721) for 汉

When representing strings, some prefixes or flags can be put in front
of the opening quotation mark. These flags are also called prefixes, used before
the opening quote of a string. These prefixes are listed in Table 2-3 with their
meaning and some coding samples.

Table 2-3: Prefixes used for string formatting and construction

Flag What it does Code sample in Jupyter Notebook

F, f F/f for formatting. Causes the
evaluation of expressions
enclosed within {}.

In:
name="John"
s0 = f"Your name is {name}."
print(s0)
Out:
Your name is John.

R, r R/r for raw string. Nothing in
the string is evaluated, not
even \".

In:
name = "John"
s0 = r"Your name is\t {name}
\""

print(s0)
Out:
Your name is \t {name} \"

	 Essential Building Blocks of Computer Programs	 95

 https://doi.org/10.15215/remix/9781998944088.01

Flag What it does Code sample in Jupyter Notebook

U, u U/u for Unicode, indicating
Unicode literals in a string.
It has no effect in Python
3 since Python 3’s default
coding is UTF-8, which
includes Unicode.

In:
print(u"秦时明月汉时关", end=":")
print("秦时明月汉时关")
Out:
秦时明月汉时关:秦时明月汉时关

B, b B/b for byte. Literals in the
string become byte literals,
and anything outside of
ASCII table must be escaped
with backslash.

In:
print(b"2005-05-26-10458.68")
Out:
b"2005-05-26-10458.68"

LIST
List is a very useful compound data type built into Python. A list of elements,
which can be different types of data, is enclosed in square brackets. The fol-
lowing are some examples of lists:

[1, 2, 3, 4, 5]
['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

In Python, an element in a list can be any type of data or object, to use
a more common computer-science term. So an element can be a list too,
such as,

[[1,2,3],[4, 5, 6]]

Assume that

week = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday']

The term week[0] refers to the first element of the list, and week[1] refers to the
second element of the list, where 0 and 1 are called index. An index can be
negative as well, meaning an item counted from the end of the list. For example,
week[-1] will be Sunday, the first item from the end; week[-2] will be Saturday,
the second item from the end.

Table 2-3: Prefixes used for string formatting and construction
(continued)

	 96	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

To get a sublist of a list L we use notation L[s: e], where s is the starting point
in the list, e is the ending point within the list, and the sublist will include all
items from s till e but excluding the item at e. For example, to get all weekdays
from the list week, we use week[0,5], as shown below:

In []: week = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday']

week[0:5]

Out []: ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

Negative indexing becomes convenient when a list, or any sequence, is too
long to count from the beginning. In the example above, it is much easier to
count from the end to find out that the weekdays stop right before Saturday,
whose index is −2, as shown below:

In []: week = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday']

week[0:-2]

Out []: ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

Within the notation of L[s:e], s or e or both may be missing. When s is
missed, it means the sublist is indexed from the beginning of the list; when e
is missed, it means the sublist is indexed from the end of the list. So week[:]
will include all the items of the list week, as shown below:

In []: week[:]

Out []: ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']

Multiple lists can be joined together with operator +. Assume we have the
following two lists:

weekdays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',

'Friday']

weekend = ['Saturday', 'Sunday']

We can then combine weekdays and weekend into one list and assign the
new list to week using operator +, as shown below:

	 Essential Building Blocks of Computer Programs	 97

 https://doi.org/10.15215/remix/9781998944088.01

In []: weekdays = ['Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday']

weekend = ['Saturday', 'Sunday']
week = weekdays + weekend
print(week)

Out []: ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']

A copy of a list can be easily made by sublisting all its members, as shown below:

week0 = week[:]

We can create a list from a string using the built-in function list():

In []: l0 = list("How are you?")
print(l0)

Out []: ['H', 'o', 'w', ' ', 'a', 'r', 'e', ' ', 'y', 'o', 'u', '?']

We can also create a list using the built-in function list() and range():

In []: l1 = list(range(10))
l2 = list(range(10, 20))
print(l1, l2)

Out []: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

We can use the built-in function len() to find out how many elements are
in the list:

In []: print(len(week))

Out []: 4

TUPLE
Tuple is another type of sequence, but members of a tuple are enclosed in
parentheses. The following are some sample tuples:

(12, 35)

('Canada', 'Ottawa')

('China', 'Beijing')

	 98	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

You can create a tuple from a list by using the tuple() function. For example,

TPL = TUPLE(WEEK)
This will create a tuple, as shown below:

('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
'Saturday', 'Sunday')

Similarly, you can create a list from a tuple, as shown below:

week = list(tpl)

Members of a tuple can be accessed in the same way as lists because the
members are also indexed. For example, tpl[0] refers to Monday.

Moreover, most of the operations used on lists can be applied to tuples,
except those that make changes to the member items, because tuples are
immutable.

Why are tuples immutable? You may consider it like this: A tuple is used
to represent a specific object, such as a point on a line, or even a shape. If any
member of the tuple is changed, it will refer to a different object. This is the
same for numbers and strings, which are also immutable. If you change any digit
of a number, or any character of a string, the number or string will be different.

SET
In Python, a set is a collection of elements or objects enclosed in a pair of
curly brackets. Like sets in mathematics, members in a set are unordered and
unindexed. The following are two examples of sets:

grades = {'A', 'A+', 'A−', 'B', 'B+', 'B−', 'C', 'C+',
'C−', 'D', 'D+', 'D−'}
My_friends = {'John', 'Jack', 'Jim', 'Jerry', 'Jeromy'}

You can use built-in function set() to build a set from a list or tuple:

week_set = set(('Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday', 'Sunday'))

Built-in functions set(), list(), tuple(), float(), int(), str() are also called con-
structors or converters, because they are used to construct or convert to one
respective type of data from another type.

	 Essential Building Blocks of Computer Programs	 99

 https://doi.org/10.15215/remix/9781998944088.01

You can use membership operator in to test if an object is a member of a
set. For example,

'John' in My_friends

will give you a True value because John is a member of set My_friends con-
structed above.

You can use built-in function len() to get the size of a set—that is, how many
members are in the set. So len(grades) will be 12.

DICTIONARY
In Python, a dictionary is a collection of comma-separated key-value pairs
enclosed in curly brackets and separated by a colon :. The members of a dic-
tionary are unordered and unindexed. The following is an example:

In []: weekday = {'Mon':'Monday', 'Tue':'Tuesday',
'Wed':'Wednesday', 'Thu':'Thursday', 'Fri':'Friday'}

print(weekday['Mon'], ' of ', weekday)

Out []: Monday of {'Mon': 'Monday', 'Tue': 'Tuesday', 'Wed': 'Wednesday', 'Thu':
'Thursday', 'Fri': 'Friday'}

Because the keys are used to retrieve the values, each key must be unique
within a dictionary. For example, we use Weekday['Mon'] to retrieve its corres-
ponding value, Monday.

In this case, you can also use integer numbers as keys, as shown below:

In []: weekday = {1:'Monday', 2:'Tuesday', 3:'Wednesday',
4:'Thursday', 5:'Friday'}

print(weekday[1], ' of ', weekday)

Out []: Monday of {1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5:
'Friday'}

OBJECT
Although you can code almost any application in Python without object-oriented
thinking, you should be aware that Python fully supports object-oriented pro-
gramming. In fact, Python treats everything as an object, including classes,
functions, and modules. For example, numbers are treated as objects in the
following statements:

	100	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: print((2.35).hex())
print((23).bit_length())

Out []: 0x1.2cccccccccccdp+1
5

There are some special types of objects in Python, as shown in Table 2-4.

Table 2-4: Types of objects in Python

Name Meaning Example of usage

type Because in Python everything
is an object, so are classes,
whose class is type, which is
again an object as well as a
special object.

It has no real usage in
programming but is rather a
philosophical and ideological
concept.

None An object representing “no
value.” It is the only object of
data type NoneType. For a
logical expression, None is the
same as 0, null, empty string,
and False.

In:
if not None:
 print('there is no
value')

Out:
There is no value

file A file object can be created
by calling the file() or open()
methods, which allow us to
use, access, and manipulate
all accessible files.

f = open("resume.xml", "r")

function In Python, functions are first-
class objects and can be
passed as arguments in
another function call.

sort(method, data_list)

module A special type of object that all
modules belong to.

It is more a philosophical and
ideological concept.

class A type of all classes. It is more a philosophical and
ideological concept.

class Instance An individual object of a given
class.

It is more a philosophical and
ideological concept.

method A method of a given class. It is more a philosophical and
ideological concept.

code A code object is the internal
representation of a piece of
runnable Python code.

It is used in internal Python
program running.

	 Essential Building Blocks of Computer Programs	 101

 https://doi.org/10.15215/remix/9781998944088.01

Name Meaning Example of usage

frame A table containing all the local
variables.

It is used in function calling.

traceback A special object for exception
handling.

It provides an interface to
extract, format, and print stack
traces of Python programs,
especially when an exception
is raised.

ellipsis A single object called ellipsis, a
built-in name in Python 3.

It is rarely used except in slicing.

Variables and Constants
Data values, variables, and constants are important constructs of any pro-
gramming language. We have presented all standard simple or primary data
types and compound data types and their values in the previous section. In the
following section, we will study variables and constants.

VARIABLES
A variable is a name that identifies a location in computer memory to store
data. A variable must conform to the rules of naming discussed earlier in this
section, and it also must not be used for other purposes within the same con-
text of the program. For example, you cannot use reserved words or keywords
as variables.

An important operation on a variable is to assign a value to it or put a value
into the memory location identified by the variable. In Python, this is done by
using the assignment operator =.

For example, the following statement assigns COMP 218 to the variable course,
assigns Smith to the variable student, and assigns 99 to the variable grade:

In []: course = 'COMP 218'
student = 'Smith'
grade = 99
print("course is {}, student is {}, grade is {}".
format(course, student, grade))

Out []: course is COMP 218, student is Smith, grade is 99

Table 2-4: Types of objects in Python (continued)

	102	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Unlike other programming languages, in Python, there is no need to declare
its type before a variable is introduced and used in your program for the first
time. Its type is determined by the value assigned to it. In the above example,
the type of grade is integer, because 99 is an integer.

In []: type(grade)

Out []: int

You may convert the value of a variable into another type using specific
built-in functions, such as int(), float(), str(), etc.

In []: marks = 90.8 # assign float mark to variable marks
int_mark = int(marks) # convert into integer mark and
assign it to variable int_mark

print(int_mark)

Out []: 90

CODING PRACTICE

Task 1
In a Jupyter Notebook cell, type the following code and run it by hitting
Shift+Enter to see what you will get:

pi = 3.1415

r = 6

area = pi * r ** 2

print(F"The type of pi is {type(pi)}, and its value is

{pi}")

print("The type of r is ", type(r), ", its value is ", r)

print("The type of area is {:^10}".

format(str(type(area))), end='')

print(", and its value is {:^12}.".format(area))

Task 2
In a new cell of Jupyter Notebook, write and run the following state-
ments, which calculate the circumference of a circle with radius r = 10,
and print the result:

	 Essential Building Blocks of Computer Programs	 103

 https://doi.org/10.15215/remix/9781998944088.01

pi = 3.1415

r = 10

circumference = 2 * pi * r

print("The circumference of a circle with radius {:d} is

{:f}".format(r, circumference))

Please note that in Jupyter Notebook, if you need a new cell, simply click
the plus sign button under the notebook menu.

Please also note that the type of variable area is the same as the type of
variable pi, but not of variable r. We can check what type the result will be when
a different arithmetic operator is applied to a pair of numbers of the same or
different types, as shown in Tables 2-5a and 2-5b:

Table 2-5a: Semantics of operator +, -, *
+, -, * integer float complex

integer integer float complex

float float float complex

complex complex complex complex

Table 2-5b: Semantics of / (division) operator
/ integer float complex

integer float float complex

float float float complex

complex complex complex complex

The following coding example in Jupyter Notebook confirms that the result
will be a complex number when an integer is divided by a complex number:

In []: i = 12
cx = 23 + 35j
icx = i / cx
print(icx, type(icx))

Out []: (0.1573546180159635-0.2394526795895097j) <class 'complex'>

You may copy and modify the code above to check other combinations in
Jupyter Notebook.

	104	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

BUILT-IN CONSTANTS
We have seen some values of various data types. Some values have special
meanings in Python. We call them constants. The following table lists all the
constants you may see and use when programming with Python.

Table 2-6: Python built-in constants

Constant
name Meaning

Code sample in Python
interactive mode

True Logical true >>> x = True
>>> if x:
… print(f"x is {x}")
…
x is True

False Logical false >>> x = False
>>> if not x:
… print(f"x is {x}")
…
x is False

None No value assigned >>> x = None
>>> if not x:
… print(f"{x} is treated
as False")

…
None is treated as False

Ellipsis Same as …, often used in slicing
multiple dimensional arrays

>>> Ellipsis == …
True
>>> Ellipsis is …

__debug__ Contains True if Python is started
without the -O option

C:\Users\comp218>python
-O

Python 3.7.2
>>> __debug__
False

quit Contains information displayed
when Python quits and
terminates

>>> quit
Use quit() or
Ctrl+Z+Enter to exit

exit Contains information displayed
when Python quits and
terminates

>>> exit
Use exit() or
Ctrl+Z+Enter to exit

	 Essential Building Blocks of Computer Programs	 105

 https://doi.org/10.15215/remix/9781998944088.01

Constant
name Meaning

Code sample in Python
interactive mode

copyright Contains copyright information >>> copyright
Copyright (c) 2001–2018
Python Software
Foundation.

All Rights Reserved.
Copyright (c) 2000
BeOpen.com.

All Rights Reserved.
Copyright (c) 1995–2001
Corporation for
National Research
Initiatives.

All Rights Reserved.
Copyright (c) 1991–1995
Stichting Mathematisch
Centrum, Amsterdam.

All Rights Reserved.

credits Contains credit information >>> credits
Thanks to CWI, CNRI,

BeOpen.com, Zope
Corporation and a
cast of thousands
for supporting Python
development. See
www.python.org for more
information.

license Contains licensing information >>> license
Type license() to see the
full license text

__name__ When a Python file is started,
some special variables are
initialized with specific values,
and __name__ is one such
variable. This variable will have
value __main__ if the Python file
is started as the main program;
otherwise, it will contain the
module name or the function or
class name if that is imported
from the module.

C:\comp218> python prime.
py

.…
>>> __name__
__main__

More information about these constants can be found at https://​docs​.python​
.org/​3/​library/​constants​.html.

Table 2-6: Python built-in constants (continued)

https://docs.python.org/3/library/constants.html
https://docs.python.org/3/library/constants.html

	106	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Operators
As we learned in previous sections, data are used to represent information,
while variables and constants are used to refer to data stored in computer
memory. In the following sections, we will learn about operators and built-in
functions that can be used to process and manipulate data.

ARITHMETIC OPERATORS
Arithmetic operators are used on numbers. These operators are well-known.
Table 2-7 provides a list of these operators, their meaning, and code samples you
may take and practise in Python interactive mode. Please copy only the expres-
sions or statements behind >>>, which is the Python prompt for your input.

Table 2-7: Arithmetic operators

Operator Operation
Code samples in Python
interactive mode

+ Add two operands
or unary plus
+ operator can be redefined in a

class for its objects defining
__add__

>>> x = 10
>>> y = 20
>>> x + y
30
>>> +y
20

− Subtract right operand from the
left or unary minus

>>> x, y = 10, 20
>>> x - y
-10
>>> -y
-20

* Multiply two operands >>> x, y = 10, 20
>>> y * x
200

/ Divide left operand by the right one
(always results into float)

>>> x, y = 10, 20
>>> y / x
2.0

// Floor division—division that results
into integer number by omitting
all the decimals

>>> x, y = 32, 7
>>> x, y
(32, 7)
>>> x // y
4

% Modulus—remainder of the
division of left operand by the
right

>>> x, y = 32, 7
>>> x, y
(32, 7)
>>> x % y
4

	 Essential Building Blocks of Computer Programs	 107

 https://doi.org/10.15215/remix/9781998944088.01

Operator Operation
Code samples in Python
interactive mode

** Exponent—left operand raised to
the power of right

>>> x, y = 32, 7
>>> x, y
(32, 7)
>>> x ** y
34359738368

When two or more of these arithmetic operators are used in an expression,
the precedence rules you learned in high school or university math courses
apply. In brief, the precedence rules for all the operators are as follows:

	 1.	 Exponent operation (*) has the highest precedence.
	 2.	 Unary negation (−) is the next.
	 3.	 Multiplication (*), division (/), floor division (//), and modulus operation

(%) have the same precedence and will be evaluated next unary
negation.

	 4.	 Addition (+) and subtraction (−) are next, with the same
precedence.

	 5.	 Comparison operators are next, with the same precedence.
	 6.	 The three logical operators (not, and, or) are next, with not having the

highest precedence among the three, followed by and, then or.
	 7.	 When operators with equal precedence are present, the expression

will be evaluated from left to right, hence left association.
	 8.	 Parentheses can be used to change the order of evaluation.

The following are some examples of how expressions are evaluated.

>>> 12 + 3 * 21
75

In the expression 12 + 3 * 21, because * has higher precedence than +, 3 *
21 is evaluated first to get 63, and then 12 + 63 is evaluated to get 75.

>>> ((23 + 32) // 6 - 5 * 7 / 10) * 2 ** 3
44.0

In this example, because ** has the highest precedence, 2 ** 3 is evaluated
first, to get

Table 2-7: Arithmetic operators (continued)

	108	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

((23 + 32) // 6 - 5 * 7 / 10) * 8

In this intermediate result, because of parentheses, we will need to evaluate

((23 + 32) // 6 − 5 * 7 / 10) first, and in this subexpression, because of parentheses,

23 + 32 will be evaluated first to get 55//6 − 5 * 7 /10. According to the precedence

rules, this subexpression will be evaluated to 9 − 35 / 10, and then 9 − 3.5 = 5.5.

Then the expression above will be

5.5 * 8

which is evaluated to be 44.0.

COMPARISON OPERATORS

Comparison operators are used to compare two objects. It is easy to understand

how they work on numbers and even strings. When a comparison is applied

to lists or tuples, the comparison will be applied to pairs of items, one from

each list or tuple, and the final result is True if there are more Trues; otherwise

it will be False, as shown in the example below:

In []: l1 = ['apple', 'orange', 'peach']
l2 = ['tomato', 'pepper', 'cabbage']
l1 < l2

Out []: True

Table 2-8 explains all the comparison operators, with samples.

Table 2-8: Python comparison operators

Operator Operation
Code sample in Python
interactive mode

> Greater than—True if left operand
is greater than the right

>>> x, y = 23, 53
>>> x > y
False
>>> l1 = ('apple',
'orange', 'peach')

>>> l2 = ('tomato',
'pepper', 'cabbage')

>>> l2 > l1
True

	 Essential Building Blocks of Computer Programs	 109

 https://doi.org/10.15215/remix/9781998944088.01

Operator Operation
Code sample in Python
interactive mode

< Less than—True if left operand is
less than the right

>>> x, y = 23, 53
>>> x, y
(23, 53)
>>> x < y
True
>>> s1 = "Albert"
>>> s2 = "Jeremy"
>>> s1 < s2
True

== Equal to—True if both operands
are equal

>>> x, y = 23, 53
>>> x, y
(23, 53)
>>> x == y
False

!= Not equal to—True if operands are
not equal

>>> x, y = 23, 53
>>> x, y
(23, 53)
>>> x != y
True

>= Greater than or equal to—True if
left operand is greater than or
equal to the right

>>> x, y = 23, 53
>>> x, y
(23, 53)
>>> x >= y
True

<= Less than or equal to—True if left
operand is less than or equal to
the right

>>> x, y = 23, 53
>>> x, y
(23, 53)
>>> x <= y
True

LOGICAL OPERATORS
Logical operators are used to form logical expressions. Any expression whose
value is a Boolean True or False is a logical expression. These will include
expressions made of comparison operators discussed above. Table 2-9 sum-
marize the details of these logical variables.

Table 2-8: Python comparison operators (continued)

	110	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Table 2-9: Python logical operators

Operator Meaning
Code sample in Python
interactive mode

and A and B
True if both A and B are true

>>> (x, y) = (23, 53)
>>> (m, n) = (12, 9.6)
>>> x, y, m, n
(23, 53, 12, 9.6)
>>> x > y and m > n
False

or A or B
True if either A or B is true

>>> (x, y) = (23, 53)
>>> (m, n) = (12, 9.6)
>>> x, y, m, n
(23, 53, 12, 9.6)
>>> x > y or m > n
True

not not A
True if A is false

>>> (x, y) = (23, 53)
>>> x, y
(23, 53)
>>> not x < y
False

Logical expressions are often used in if and while statements, and it is
important to ensure that the logical expressions used in your programs are
correctly written. Otherwise, catastrophic results may occur in some real appli-
cations. Common errors in writing logical expressions include:

	 1.	 Using > instead of <, or using < instead of >
	 2.	 Using >= instead of >, or using > instead >=
	 3.	 Using <= instead of <, or using < instead <=

For example, suppose you are writing a program to control the furnace at home,
and you want to heat the home to 25 degrees Celsius. The code for this should be

if t < 25 : heating()

However, if instead you wrote,

if t > 25 : heating()

the consequence would be either the home will not heat at all (if the initial
temperature is below 25 when the program starts) or it will overheat (if the
initial temperature is greater than 25).

	 Essential Building Blocks of Computer Programs	 111

 https://doi.org/10.15215/remix/9781998944088.01

BITWISE OPERATORS
We know that data in computer memory are represented as sequences of bits,
which are either 1 or 0. Bitwise operators are used to operate bit sequences bit
by bit. These bitwise operations may look strange to you, but you will appre-
ciate these operations when you need them. Table 2-10 provides a summary
of bitwise operators. Please note that built-in function bin() converts data
into their binary equivalents and returns a string of their binary expressions,
with a leading 0b.

Table 2-10: Python bitwise operators

Operator Meaning
Code sample in Python
interactive mode

& Bitwise and >>> m, n = 12, 15
>>> bin(m), bin(n)
('0b1100', '0b1111')
>>> bin(m & n)
'0b1100'

| Bitwise or >>> bin(m), bin(n)
('0b1100', '0b1111')
>>> bin(m | n)
'0b1111'

~ Bitwise not >>> ~ m
-13
>>> bin(~ m)
'-0b1101'

^ Bitwise XOR >>> bin(m), bin(n)
('0b1100', '0b1111')
>>> bin(m ^ n)
'0b11'

>> Bitwise right shift >>> bin(m)
'0b1100'
>>> bin(m>>2)
'0b11'

<< Bitwise left shift >>> bin(m)
'0b1100'
>>> bin(m<<2)
'0b110000'

	112	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

ASSIGNMENT OPERATORS
In Python, and all programming languages, the assignment operation is one
of the most important operations because assignment operations store data
in variables for later use.

In previous sections, we have seen many examples of using the assignment
operator =, the equal sign. However, Python provides many augmented assign-
ment operators. Table 2-11 lists all the assignment operators you can use in
your Python programs.

Table 2-11: Python assignment operators

Operator Operation
Code samples in Python
interactive mode

x = e Expression e is evaluated, and the
value is assigned to variable x.

Note that in Python and in
previous code samples,
assignments can be made to
more than one variable with one
statement.

>>> m, n = 23, 12
>>> m, n
(23, 12)
>>> x = m + n
>>> x
35

x += e Expression x + e is evaluated,
and the value is assigned to
variable x.

x = x + e

>>> x, m, n = 35, 23, 12
>>> x, m, n
(35, 23, 12)
>>> x += m + n
>>> x
70
>>> x, m, n
(70, 23, 12)

x = e Expression x − e is evaluated,
and the value is assigned to
variable x.

x = x − e

>>> x, m, n = (70, 23,
12)

>>> x, m, n
(70, 23, 12)
>>> x -= m + n
>>> x, m, n
(35, 23, 12)

x *= e Expression x * e is evaluated,
and the value is assigned to
variable x.

x = x * e

>>> x, m, n = (35, 23,
12)

>>> x, m, n
(35, 23, 12)
>>> x *= m + n
>>> x, m, n
(1225, 23, 12)

	 Essential Building Blocks of Computer Programs	 113

 https://doi.org/10.15215/remix/9781998944088.01

Operator Operation
Code samples in Python
interactive mode

x /= e Expression x / e is evaluated,
and the value is assigned to
variable x.

x = x / e

>>> x, m, n = (1225, 23,
12)

>>> x, m, n
(1225, 23, 12)
>>> x /= m + n
>>> x, m, n
(35.0, 23, 12)

x %= e Expression x % e is evaluated,
and the value is assigned to
variable x.

x = x % e

>>> x, m, n = (28, 23,
12)

>>> x, m, n
(28, 23, 12)
>>> x %= m + n
>>> x, m, n
(28, 23, 12)

x //= e Expression x // e is evaluated,
and the value is assigned to
variable x.

x = x // e

>>> x, m, n = 989, 23, 12
>>> x, m, n
(989, 23, 12)
>>> x //= m + n
>>> x, m, n
(28, 23, 12)

x **= e Expression x ** e is evaluated,
and the value is assigned to
variable x.

x = x ** e

>>> x, m, n = 98, 3, 2
>>> x **= m + n
>>> x, m, n
(9039207968, 3, 2)

x &= e Expression x & e is evaluated,
and the value is assigned to
variable x.

x = x & e

>>> x, m, n = 9, 3, 2
>>> bin(x), bin(m),
bin(n)

('0b1001', '0b11',
'0b10')

>>> x &= m * n
>>> bin(x), bin(m),
bin(n)

('0b0', '0b11', '0b10')

x |= e Expression x | e is evaluated,
and the value is assigned to
variable x.

x = x | e

>>> x, m, n = 9, 3, 2
>>> bin(x), bin(m),
bin(n)

('0b1001', '0b11',
'0b10')

>>> x |= m * n
>>> bin(x), bin(m),
bin(n)

('0b1111', '0b11',
'0b10')

Table 2-11: Python assignment operators (continued)

(continued on next page)

	114	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Operator Operation
Code samples in Python
interactive mode

x ^= e Expression x ^ e is evaluated,
and the value is assigned to
variable x.

x = x ^ e

>>> x, m, n = 9, 3, 2
>>> bin(x), bin(m),
bin(n)

('0b1001', '0b11',
'0b10')

>>> x ^= m * n
>>> bin(x), bin(m),
bin(n)

('0b1111', '0b11',
'0b10')

x >>= e Expression x >> e is evaluated,
and the value is assigned to
variable x.

x = x >> e

>>> x, m, n = 9, 3, 2
>>> bin(x), bin(m),
bin(n)

('0b1001', '0b11',
'0b10')

>>> x >>= m * n
>>> bin(x), bin(m),
bin(n)

('0b0', '0b11', '0b10')

x <<= e Expression x << e is evaluated,
and the value is assigned to
variable x.

x = x << e

>>> x, m, n = 9, 3, 2
>>> bin(x), bin(m),
bin(n)

('0b1001', '0b11',
'0b10')

>>> x <<= m * n
>>> bin(x), bin(m),
bin(n)

('0b1001000000', '0b11',
'0b10')

CODING PRACTICE

Type the following code to a scratch file in VS Code or a code cell in
Jupyter Notebook and run. Explain why bin(8 << 2) is equal to bin(8 * 4).

print(bin(8))

print(bin(8 << 2), bin(8 * 4))

Table 2-11: Python assignment operators (continued)

	 Essential Building Blocks of Computer Programs	 115

 https://doi.org/10.15215/remix/9781998944088.01

IDENTITY OPERATORS
Identity operators are used to test if two operands, usually two identifiers,
are identical, which in most implementations of Python means that they are
referring to the same memory block of the computer. The examples Table 2-12
tell you more about this. Note that in the example, the built-in function id(o) is
used to get the id of object o.

Table 2-12: Python identity operators

Operator Meaning Example

is True if the operands are identical
(refer to the same object)

Note that 3 and 2 + 1 have the
same id, and so does 6 // 2, but
not 6 / 2 because 6 / 2 = 3.0,
which is different from 3.

>>> x = list(range(3))
>>> y = list(range(3))
>>> x, y
([0, 1, 2], [0, 1, 2])
>>> id(x), id(y)
(10049456, 10049016)
>>> x is y
False
>>> id(3)
258398416
>>> id(2 + 1)
258398416

is not True if the operands are not
identical (do not refer to the
same object).

Note that when assigning variable
y to variable x, the operation
points x to the same memory
block y is pointing to (so that the
two have the id) and shares the
same memory block. However,
when a new assignment is
made to x or y, the two will have
different ids, unless they both
hold the same integer or string.

>>> x = list(range(3))
>>> x = y
>>> id(x), id(y)
(10049016, 10049016)
>>> x is y
True
>>> y = list(range(3))
>>> id(x),id(y)
(10090256, 10090336)
>>> x, y
([0, 1, 2], [0, 1, 2])
>>> x is not y
True

SEQUENCE OPERATORS
In 2.1, we learned that sequences include strings, lists, and tuples because
elements in strings, lists, and tuples are ordered and indexed. Sets and dic-
tionaries are not sequences because elements in dictionaries and sets are not
ordered, or not in sequence.

Sequence operators are made available for operations on strings, lists and
tuples, as shown in Table 2-13.

	116	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Table 2-13: Python sequence operators

Operator Operation
Code sample in Python
interactive mode

* Repeat a sequence such as string,
list or tuple multiple times

>>> "Python " * 3
'Python Python Python '
>>> [1, 2, 3] * 5
[1, 2, 3, 1, 2, 3, 1, 2,
3, 1, 2, 3, 1, 2, 3]

+ Join two sequences >>> [1, 2, 3] + [5, 6, 7]
[1, 2, 3, 5, 6, 7]

[n] Slice out a single member of the
sequence

>>> name = 'John'
>>> name[1]
'o'

[n:m] Slice a sequence start from n to m. >>> name
'John'
>>> name[1:3]
'oh'

MEMBERSHIP OPERATOR
Membership operators are used to test whether an element is a member of a
sequence. There are three membership operators in Python, and two of them
are shown in Table 2-14.

Table 2-14: Python membership operators

Operator Operation
Code sample in Python
interactive mode

v in s True if value v is found in
sequence s

>>> l = list(range(10))
>>> l
[0, 1, 2, 3, 4, 5, 6, 7,
8, 9]

>>> 3 in l
True
>>> 2 + 1 in l
True
>>> 'x' in "Welcome to
COMP218"

False

	 Essential Building Blocks of Computer Programs	 117

 https://doi.org/10.15215/remix/9781998944088.01

Operator Operation
Code sample in Python
interactive mode

v not in s Checks whether value/variable is
not found in the sequence

>>> l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> 30 in l
False
>>> 30 not in l
True

The third membership operator is used to access members of objects, mod-
ules, or packages. It is the dot (.) operator. The example in Table 2-15 shows
how to access a function in module math.

Table 2-15: Dot operator

Operator Operation
Code sample in Python
interactive mode

p.q q is a member of p where p and
q refer to an object (variable,
constant, function or method
name), package, or module
name

>>> import math
>>> type(math)
<class 'module'>
>>> type(math.sqrt)
<class 'builtin_function_
or_method'>

>>> math.sqrt(35)
5.916079783099616

Built-In Functions
As with operators, built-in functions are also important in processing and
testing data in programs. As the name implies, built-in functions are built into
Python Virtual Machine (PVM). A built-in function can be used directly without
importing any module or noting what it belongs to.

Built-in functions, and functions or methods in general, can be put into two
categories. One is based on the data they return, whereas the other is based
on the operations performed, although sometimes the returned data from
a built-in function in the second category may still be useful in subsequent
executions of the program.

We will first explain built-in functions in the first category, followed by
built-in functions in the second category. To best understand these functions,
read through these built-in functions and test the sample code in a Python
interactive shell or Jupyter Notebook.

Table 2-14: Python membership operators (continued)

	118	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

ABS(X)
This returns the absolute value of x, which can be any number.

>>> abs(-99)
99
>>> abs(-b110010) # a binary number
50
>>> abs(-0o32560) # an octal number
13680
>>> abs(0xdef21a) # a hexadecimal(16) number
13610970

INT(S, BASE = 10)
This converts a number s in a specific base to an integer in base-10. The default
base is 10. If the base is explicitly given, s must be a string containing a legit-
imate literal for the base.

>>> int(19.9)
19
>>> int("22", 8) # in the quote must be a legitimate
literal for base-8
18
>>> int('0x123', base = 16) # a number in base-16
291

POW(X, P)
This returns the value of x to the power of p.

>>> pow(2.9, 12.8)
829266.980472172

FLOAT(S)
This converts s to float. s can be a number, or a string of numbers.

>>> float('18.23')
18.23
>>> float(19)
19.0

	 Essential Building Blocks of Computer Programs	 119

 https://doi.org/10.15215/remix/9781998944088.01

MAX(ITERABLE, *[, DEFAULT = OBJ, KEY = FUNC])
MAX(ARG1, ARG2, *ARGS, *[, KEY = FUNC])
These find and return the biggest element from an iterable such as a list, tuple
or string, or from two or more arguments. The default keyword-only argument
specifies what will be returned if the iterable is empty. The key keyword-only
argument specifies how the maximum is defined if it is out of the ordinary.

>>> max(2, 1, 5, 65, 89) # variable-length list of
arguments
89
>>> max("this") # the given sequence is a string
't'
>>> max((2, 3, 5, 1, 78)) # numbers in a tuple
78
>>> max([2, 3, 5, 1, 78]) # numbers in a list
78

MIN(ITERABLE, *[, DEFAULT = OBJ, KEY = FUNC])
MIN(ARG1, ARG2, *ARGS, *[, KEY = FUNC])
These find and return the smallest number from an iterable such as a list, tuple
or string, or from two or more arguments. The default keyword-only argument
specifies what will be returned if the iterable is empty. The key keyword-only
argument specifies how the minimum is defined if it is out of the ordinary.

>>> min(6, 5, 8, 3, 2)
2
>>> min([2, 3, 5, 1, 78]) # numbers in a list
>>> min([], default = 0) # 0 will be returned because
the list is empty
0

ROUND(F)
This rounds number f to the closest integer and returns the integer.

>>> round(3.1415926)
3

ORD(C)
This finds and returns the order of a character, as a single char string, in the
ASCII table.

	120	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> ord('c')
99

SUM(…)
This calculates and returns the sum of numbers in a list, a tuple, or a range() call.

>>> sum([23, 56, 67, 12, 89])
247
>>> sum((23, 56, 67, 12, 89))
247
>>> sum(range(88))
3828

SET(S)
This converts a set from a list or tuple.

>>> set([23, 56, 67, 12, 89])
{23, 56, 67, 12, 89}

DICT()
DICT(ITERABLE)
DICT(A = V,…)
These convert an empty dictionary, construct a dictionary from the iterable of
(k, v) tuples, and from key=value pairs, respectively.

>>> dict()
{}
>>> dict([(1,'Turing'), (2,'Bool'), (3,'Babbage'),
(4,'Neumann'), (5,'Knuth')])
{1: 'Turing', 2: 'Bool', 3: 'Babbage', 4: 'Neumann', 5:
'Knuth'}
>>> dict(a = 1, b = 2, c = 3)
{'a': 1, 'b': 2, 'c': 3}

BIN(N)
This converts a number to its binary equivalence as a string.

>>> bin(98)
'0b1100010'

	 Essential Building Blocks of Computer Programs	 121

 https://doi.org/10.15215/remix/9781998944088.01

HEX(N)
This converts a number to its hex equivalence as a string.

>>> hex(19)
'0x13'

OCT(N)
This converts a number to its oct equivalence as a string.

>>> oct(28)
'0o34'

BOOL(O)
This converts o to Boolean True or False. In Python, 0, '', and None are equiva-
lent to False, everything else is equivalent to True.

>>> bool(1)
True
>>> bool('school')
True
>>> bool(0)
False

TUPLE(S)
This constructs a tuple from a list, a string, or range() call.

>>> tuple("this is tuple")
('t', 'h', 'i', 's', ' ', 'i', 's', ' ', 't', 'u', 'p',
'l', 'e')

LEN(S)
This returns the length of a sequence.

>>> len(my_tuple)
13
>>> len("I like Python so much!")
22

LIST(S)
This constructs a list from a sequence or range() call.

	122	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> list(range(5))
[0, 1, 2, 3, 4]

RANGE(START, STOP, STEP)
This returns a sequence of numbers starting from 0 by default, ending right
before stop and increasing by one step by default.

>>> list(range(1, 9, 2))
[1, 3, 5, 7]

COMPLEX(A, B)
This constructs a complex number from a pair of numbers and returns the
complex number.

>>> complex(1, 8)
1 + 8j

HASH(S)
This generates a hash for a given string s and returns the hash. One use is for
transmitting and saving passwords.

>>> hash("Python is a great language for programming")
6145305589036905122

DIVMOD(A, B)
This returns a tuple of the quotient and the remainder of one integer or float
number divided by another integer or float number.

>>> divmod(23, 5)
(4, 3)

STR(X)
This converts object x literally to a string and returns the converted string.

>>> str([23, 56, 67, 12, 89])
'[23, 56, 67, 12, 89]'

	 Essential Building Blocks of Computer Programs	 123

 https://doi.org/10.15215/remix/9781998944088.01

CHR(N)
This returns the character n with its code in the Unicode table. Note that 0 <=
n <= 0x10ffff as a legitimate code.

>>> chr(90)
'Z'
>>> chr(99)
'c'

TYPE(O)
TYPE(C, BASES, DICT)
type(o) returns the data type of object o, whereas type(C, bases, dict) will create
a new type/class whose name is C and whose base classes are in bases, which
is a tuple, and the dictionary defines the attributes of the new class, with
assigned values. This gives programmers a way to dynamically define
classes.

>>> type(list(range(9)))
<class 'list'>

In []: X = type('X', (object), dict(a = 1, b = 3)) # create
a new class named X

x = X() # create an instance of X
print(f'x.a = {x.a}, x.b = {x.b}')
x.a, x.b = 23, 35 # assign values to x's attribute a
and b

print(f'x.a = {x.a}, x.b = {x.b}')

Out []: x.a = 1, x.b = 3
x.a = 23, x.b = 35

ALL(ITERABLE)
This returns True if all the elements of iterable are true.

>>> all(range(9))
False

>>> all(range(1,9))
True

	124	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

ANY(ITERABLE)
This returns True if any of the arguments true.

>>> any(range(9))
True
>>> any([0,0,0,0])
False

DIR()
DIR(O)
dir() returns a list of names in the current namespace. dir(o) returns a list of
the attributes of object o.

>>> dir()
['__annotations__', '__builtins__', '__doc__', '__
loader__', '__name__', '__package__', '__spec__']

>>> dir(math)
['__doc__', '__loader__', '__name__', '__package__',
'__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan',
'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh',
'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs',
'factorial', 'floor', 'fmod', 'frexp', 'fsum',
'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite',
'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10',
'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians',
'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau',
'trunc']

NEXT(IT)
This returns the next element of an iterable such as list, string, tuple, and so on.

>>> l=iter(list(range(3,99)))
>>> next(l)
3
>>> next(l)
4

ASCII(O)
This returns a string containing a printable ASCII representation of an object.

	 Essential Building Blocks of Computer Programs	 125

 https://doi.org/10.15215/remix/9781998944088.01

>>> ascii(math)
"< module 'math' (built-in)>"
>>> ascii(int)
"<class 'int'>"

ID(O)
This returns object o’s “identity,” which is a unique integer within a given con-
text, usually the address of the object in memory.

>>> i = 10
>>> id(i) # return the id of variable i
263313728
>>> i *= 98
>>> id(i) # id is different, but still the same i
2809440

SORTED(S)
This returns a new sorted list of elements in iterable s.

>>> il = [12, 0, 9, 32, 8, 5, 3, 99] # il is a list of
integers
>>> sorted(il) # default is to sort in ascending order
[0, 3, 5, 8, 9, 12, 32, 99]
>>> sorted(il, reverse = 1) # sorted in descending order
[99, 32, 12, 9, 8, 5, 3, 0]

REVERSED(S)
This returns a reversed iterator.

>>> il = [0, 3, 5, 8, 9, 12, 32, 99]
>>> list(reversed(il))
[99, 32, 12, 9, 8, 5, 3, 0]
>>> list(reversed(range(9))) # range(9) return a sequence
of 0,1,…9
[8, 7, 6, 5, 4, 3, 2, 1, 0]

ENUMERATE(S, START = 0)
This returns a list of tuples from a sequence in which the elements are counted
and each element is paired with its count to form a tuple.

	126	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> list(enumerate("this is")) # default value for

optional argument start is 0

[(0, 't'), (1, 'h'), (2, '€'), (3, 's'), (4, ' '), (5,

'€'), (6, 's')]

>>> list(enumerate("this is", 2)) # now counting start

from 2

[(2, 't'), (3, 'h'), (4, '€'), (5, 's'), (6, ' '), (7,

'€'), (8, 's')]

>>>

EVAL(S, GLOBALS = NONE, LOCALS = NONE, /)
This evaluates the expression in s as a string or a compiled Python code in s

and returns the value. Global and local namespaces can be specified for the

expression or code object using the keyword arguments.

>>> eval("1 / (1 + (1 / math.e) ** 12)")

0.9999938558253978

EXEC(S)
This executes the statement in string s and provides a way to dynamically

execute the Python code.

>>> exec("print('Hello World!')")

Hello World!

In []: def cubbie(n):
 return n * n * n
src = "print(cubbie(23))"
exec(src)

Out []: 12167

ZIP(*ITERABLES)
This returns a list of tuples by taking one element from each of the iterables

to make a tuple until reaching the end of the shortest iterable, and then

returning the tuple. In Python, *p notation means p takes multiple argu-

ments. In this case, multiple iterables such as lists, tuples, or strings are

expected.

	 Essential Building Blocks of Computer Programs	 127

 https://doi.org/10.15215/remix/9781998944088.01

>>> grade_n = [50, 70, 80, 90, 100]
>>> grade_c = ['F', 'D', 'C','B', 'A']
>>> list(zip(grade_n, grade_c))
[(50, 'F'), (70, 'D'), (80, 'C'), (90, 'B'), (100, 'A')]

In []: chars = [chr(i) for i in range(32,97)] # a list of chars
asc_table = zip(range(32,97), chars)
for coding in asc_table:
 print(coding)

Out []: (32, ' ') (33, '!') (34, '"') (35, '#') (36, '$') (37, '%') (38, '&') (39, "'")(40, '(') (41, ')')
(42, '*') (43, '+') (44, ',') (45, '-') (46, '.') (47, '/') (48, '0') (49, '1') (50, '2') (51,
'3') (52, '4') (53, '5') (54, '6') (55, '7') (56, '8') (57, '9') (58, ':') (59, ';') (60, '<')
(61, '=') (62, '>') (63, '?') (64, '@') (65, 'A') (66, 'B') (67, 'C') (68, 'D') (69, 'E')
(70, 'F') (71, 'G') (72, 'H') (73, 'I') (74, 'J') (75, 'K') (76, 'L') (77, 'M') (78, 'N')
(79, 'O') (80, 'P') (81, 'Q') (82, 'R') (83, 'S') (84, 'T') (85, 'U') (86, 'V') (87, 'W')
(88, 'X') (89, 'Y') (90, 'Z') (91, '[') (92, '\\') (93, ']') (94, '^') (95, '_') (96, '`')

The code sample above prints a portion of ASCII table showing the codes
from 32 to 96 and their corresponding characters. It is only to show how zip
function is used. There is a much simpler way to print such a table using just
one for loop.

MAP(F, *ITERABLES)
This applies function f to every item of an iterable and returns the resulted
iterator.

>>> import math
>>> list(map(math.sqrt, range(17))
[0.0, 1.0, 1.4142135623730951, 1.7320508075688772, 2.0,
2.23606797749979, 2.449489742783178]
>>> list(map(sum, ([1, 2, 3], [4, 5, 6], [7, 8, 9, 10])))
[6, 15, 34]

GETATTR(O, ATTR)
This returns the value of object o’s attribute attr, the same as o.attr.

>>> getattr(math, 'sqrt')
<built-in function sqrt>
>>> getattr(math, 'e')
2.718281828459045

	128	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

HASATTR(O, ATTR)
This tests if object o has attribute attr and returns True if it does.

>>> hasattr(math, 'e')
True
>>> hasattr(math, 'sqrt')
True
>>> hasattr(math, 'power')
False

SETATTR(O, A, V)
This sets or adds an attribute a to object o and assigns value v to the attribute.

>>> class Student: # defining a class named Student. By
convention, class names should be capitalized
…pass # this defines a class without any attribute
…
>>> s1 = Student() # create an instance of Student
>>> setattr(s1, 'name', 'John') # add an attribute
called name, and assign 'John' to it
>>> s1​.name
'John'
>>> hasattr(s1, 'name')
True

DELATTR(O, A)
This deletes attribute a from object o.

>>> delattr(s1, 'name') # delete attribute name from
object s1
>>> hasattr(s1, 'name') # check if s1 has attribute name
False

ISINSTANCE(O, C)
This returns True if o is an instance of class c or a subclass of c.

>>> class Student:
…pass
…
>>> s1 = Student()

	 Essential Building Blocks of Computer Programs	 129

 https://doi.org/10.15215/remix/9781998944088.01

>>> isinstance(s1, Student)
True

ISSUBCLASS(C, C)
This returns True if class c is a subclass of C.

>>> class Graduate(student):
…pass
…
>>> issubclass(Graduate, Student)
True

REPR(O)
This returns a string representation of object o.

>>> repr(Graduate)
"<class "__main__.graduate'>'

FILTER(F, ITERATOR)
This returns an iterator containing only the elements of the iterable for which
the function returns true.

>>> def even(n):
…return not n%2 # return True if n can be divided by 2
…
>>> list(filter(even, range(9))) # odd numbers will be
taken out
[0, 2, 4, 6, 8]

CALLABLE(O)
This returns True if o is a callable object such as a defined function.

>>> callable(even) # it will return True since even is
defined
True

LOCALS()
This updates and returns a dictionary of local names/symbols.

	130	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> locals()
{'__name__': '__main__', '__doc__': None, '__package__':
None, '__loader__': <class '_frozen_importlib.
BuiltinImporter'>, '__spec__': None, '__annotations__':
{}, '__builtins__': <module 'builtins' (built-in)>,
'math': <module 'math' (built-in)>, 'l': <list_iterator
object at 0x00370230>, 'student': <class '__main__.
student'>, 's1': <__main__.student object at 0x00CE3DB0>,
'graduate': <class '__main__.graduate'>, 'even':
<function even at 0x0029F7C8>}

VARS()
VARS(O)
vars() returns the same as locals(), whereas vars(o) returns the _dict_ attribute
of object o.

>>> setattr(s1, 'name', 'John')
>>> vars(s1)
{'name': 'John'}

GLOBALS()
This updates and returns a dictionary of global names/symbols in the current scope.

>>> globals()
{'__name__': '__main__', '__doc__': None, '__package__':
None, '__loader__': <class '_frozen_importlib.
BuiltinImporter'>, '__spec__': None, '__annotations__':
{}, '__builtins__': <module 'builtins' (built-in)>,
'math': <module 'math' (built-in)>, 'student': <class
'__main__.student'>, 's1': <__main__.student object at
0x00CE3DB0>, 'graduate': <class '__main__.graduate'>,
'even': <function even at 0x0029F7C8>}

BYTEARRAY([SOURCE[, ENCODING[, ERRORS]]])
This returns a bytearray object which is an array of the given bytes.

>>> s = "Hello Python lover!"
>>> barry = bytearray(s, 'utf-8')
>>> print(barry)
bytearray(b'Hello Python lover!')

	 Essential Building Blocks of Computer Programs	 131

 https://doi.org/10.15215/remix/9781998944088.01

BYTES([SOURCE[, ENCODING[, ERRORS]]])
>>> bs = bytes(s, 'utf-8')
>>> print(bs)
b'Hello Python lover!'

BREAKPOINT(*ARGS, **KWS)
This function break the program and takes it into debug mode, calls sys.
breakpointhook(), and passes a list of arguments (args) and a list of keyword
arguments (**kws) to the system function.

@CLASSMETHOD
The at sign @ is called a decorator in Python. This particular decorator is used to
declare a method as class method, which receives the class as its first argument.

define a class Person
class Person:
 # define a class attribute
 species = "human"

 # define an instance method
 def __init__(self, name, age):
 self​.name = name
 self.age = age

 # define a class method using the @classmethod
decorator
 @classmethod
 def from_birth_year(cls, name, birth_year):
 # calculate the age from the birth year
 age = 2023 - birth_year
 # return a new instance of Person with the given
name and age
 return cls(name, age)

create an instance of Person using the class method
p1 = Person.from_birth_year("Alice", 1995)
print the instance attributes
print​(p1​.name) # output: Alice
print(p1.age) # output: 28
print(p1.species) # output: human

	132	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The code above was taken from a code cell in Jupyter Notebook. The output
is as follows when you hit the Ctrl+Enter key to run the code:

Alice
28
Human

COMPILE(SOURCE, FILENAME, MODE, FLAGS = 0, DONT_INHERIT
= FALSE, OPTIMIZE = −1)
This is used to compile the source into a code that can be executed using eval()
or exec().

FORMAT(VALUE[, FORMAT_SPEC])
This is used to convert a value to a “formatted” representation, as controlled
by format_spec.

>>> print("Modern computers have over {h:3d} years of
history".format(h = 80))
Modern computers have over 80 years of history

FROZENSET([ITERABLE])
This returns a new frozenset object, with the option to display it with elements
taken from an iterable. frozenset is also a built-in class.

>>> l = list(range(10))
>>> print(frozenset(l))
frozenset({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) # {…} is
a set

HELP([OBJECT])
This invokes the built-in help system on the object.

>>> help(frozenset)

Using help on class frozenset in module builtins displays the following:

class frozenset(object)
 | frozenset() -> empty frozenset object
 | frozenset(iterable) -> frozenset object
 |

	 Essential Building Blocks of Computer Programs	 133

 https://doi.org/10.15215/remix/9781998944088.01

 | Build an immutable unordered collection of unique
elements.
 |….

INPUT([PROMPT])
This is used to read a line from input, convert it to a string with trailing newline
characters stripped, and return the string. The optional prompt argument will
be displayed without a trailing newline character so that the cursor will just
wait at the end of the prompt for input.

>>> s = input("please give me an integer:")
please give me an integer:

ITER(OBJECT[, SENTINEL])
This returns an iterator object. If the second argument doesn’t exist, the first
argument must be a collection object.

>>> for c in range(6): print(next(l))
…
P
y
t
h
o
n

MEMORYVIEW(OBJ)
This returns a “memory view” object of obj. Note that obj must be a bytes-like
object.

>>> mv = memoryview(b"Hello Python Lover")
>>> print(mv)
<memory at 0x000001B932AD4A00>

OBJECT
This returns a new featureless object, a base for all classes.

>>> O = object
>>> print(O)
<class 'object'>

	134	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

OPEN(FILE, MODE = 'R', BUFFERING = −1, ENCODING = NONE,
ERRORS = NONE, NEWLINE = NONE, CLOSEFD = TRUE,
OPENER = NONE)
This opens the file in the desired mode and returns a corresponding file object.
The default mode is read.

>>> f = open('scoresheet.txt', 'w')

The example opens a file named scoresheet.txt for writing and assigns the
handle to f.

PRINT(*OBJECTS, SEP = ' ', END = '\N', FILE = SYS.STDOUT,
FLUSH = FALSE)
This prints objects to the text stream file, separated by separator and followed by
end. sep, end, file, and flush, if present, must be given as keyword arguments.

>>> print("Hello Python Lover!")
Hello Python Lover!

PROPERTY(FGET = NONE, FSET = NONE, FDEL = NONE,
DOC = NONE)
This returns a property attribute. fget, sfet, and fdel take functions for getting,
setting, and deleting an attribute value.

SLICE(STOP)
SLICE(START, STOP[, STEP])
These return a slice object representing the set of indices specified by
range(start, stop, step).

>>> s = "Hello Python Lover!"
>>> slicing = slice(3) # slicing the first 3 items out
of an object
>>> print(s[slicing]) # this will take the first three
characters from the s
Hel

@STATICMETHOD
This function decorator is used to declare a method as static. A static method
can be called on the class or an instance.

	 Essential Building Blocks of Computer Programs	 135

 https://doi.org/10.15215/remix/9781998944088.01

In []: class FTool():
 @staticmethod
 def percentage(a, b):
 return a/b

r = FTool.percentage(13, 265)
print(f"{13}/{256} is {r}")

Out []: 13/256 is 0.04905660377358491

SUPER([TYPE[, OBJECT-OR-TYPE]])
This returns a proxy object that delegates method calls to a parent or sibling
type class. It is used for accessing inherited methods that have been overridden
in a class.

In []: class FTool():
 @staticmethod
 def percentage(a, b):
 return a/b

print(super(FTool))

Out []: <super: <class 'FTool'>, NULL>

The superclass is NULL because FTool is not a subclass of any class except
object, which doesn’t count.

Expressions
Expressions are important program constructs. An expression is made up of
data items, variables, constants, and function calls joined by proper operators.
The precedencies of the operators are as follows:

	 1.	 Within arithmetic operators, other operators take precedence over
addition and subtraction.

	 2.	 Arithmetic operators take precedence over comparison operators.
	 3.	 Membership operators, identity operators, and comparison operators

take precedence over logic operators.
	 4.	 Among logic operators, the order of precedence, from high to low, is

not > and > or.

	136	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

CODING ALERT

Python language is case-sensitive. Be sure to use the right case when
typing!

Expressions are used almost everywhere in a program and will be evaluated
to a value or object in a general term. According to the type of the value or object
from evaluation, an expression can be any of the following.

ARITHMETIC EXPRESSIONS
An arithmetic expression’s value is always one of the following: an integer,
float, or complex. An arithmetic expression can be made of data, variables,
function calls, and arithmetic operators. When mixed data types appeared in
an expression, the value type of the expression will be the most general data
type. For example, the value of 3 + 5.6 will be a float number.

STRING EXPRESSIONS
The string expression’s value is a string. String expressions are made of strings,
string operators, functions and methods that return a string.

BOOLEAN EXPRESSIONS
The Boolean expression’s value is either True or False. Boolean expressions
can be made of data, comparison operators, and logical operators. Note that
although Python has True and False defined as logical true and false, it treats
0, None, empty string, empty list, empty tuple, set, and dictionary as False and
treats everything else as True.

OTHER EXPRESSIONS
The values of some expressions may be a list, tuple, set, dictionary or even a
complex object. For example, some functions and methods can return a list or
an object of a user-defined class, and the operator + can be used to combine
two strings or lists together.
The following are some examples of expressions in Python:

12 + 35.6 - 36 * 3 + x # integer and float numbers can
be mixed
235 + x ** k # 235 plus x to the power of k
2 < j and j in list_x # 2 is less than j and j is a
member of list x

	 Essential Building Blocks of Computer Programs	 137

 https://doi.org/10.15215/remix/9781998944088.01

Expressions are often used on the right-side of an assignment operator,
such as

total = a1 + a2 + a3
i *= j + 2 # the same as i = i * (j + 2)

CODING ALERT

In Python, # is used to add end-of-line comments. Anything behind # is
ignored by PVM.

CODING PRACTICE

Within VS Code, create a new Jupyter Notebook and rename it
section-2.1, or double-click the notebook name on the left-hand file
navigation area to open the notebook if you have already created one.
In a cell, type the following code and hit Shift+Enter to run the code.
Then manually evaluate the expression within the curly braces of the
print statement and compare your result to the one given by the code.
Explain why the results are different.

x, y = 10.23, 5.2

m, n = 27, 8

print(f'{x * y + 27 // n}')

2.2 Higher-Level Constructs of Python Programs
The constructs you learned in section 2.1 are small and meant to be used as
parts of bigger ones. The big constructs of programs are called statements,
which give explicit instructions to computers to act upon.

Structure of Python Programs
Before diving into the details of writing statements in Python, this section will
first look at the general structure of a Python program and the coding style
widely agreed upon among the Python community, which will make it so the
programs that you write are readable to others.

For a simple application, a single Python file (with py as its extension) may
be enough to contain all the program code needed to implement the application;

	138	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

for a more complex application, however, several or even hundreds of Python
files may be needed. Of these files, there will be only one Python file defin-
ing the starting point of the program that implements the application, while
all other files are used as modules to be imported into the main Python file,
either directly or indirectly. So essentially, the relationships of all the Python
files used for an application can be depicted as a tree in which the root is the
main Python file.

The modules used directly or indirectly by the main Python program may
be from the standard libraries installed with Python or from those installed
later using the conda or pip command as needed.

Regarding coding style, see PEP 8: Style Guide for Python Code (https://​
pep8​.org/), which describes in great detail how Python code should be writ-
ten. Read it thoroughly and review it whenever you are unsure. Below are
the highlights:

	 1.	 A Python program/script file should begin with a docstring as the
main documentation of the program file, stating the application
and functionality of the program, as well as the author and revision
history.

	 2.	 In a script file, use double blank lines to separate the actual program
code from the documentation section at the beginning of the file.

	 3.	 Also use double blank lines to separate top-level function and class
definitions.

	 4.	 Use a single blank line to surround the definition of a method in a
class definition.

import

import import import

import
import

Main PY
file

Module 1 Module 2 Module m

Module 11 Module 21 Module m1

Figure 2-5: Illustration of the structure of files for a Python application

https://pep8.org/
https://pep8.org/

	 Essential Building Blocks of Computer Programs	 139

 https://doi.org/10.15215/remix/9781998944088.01

	 5.	 Pay attention to indentation, especially when an expression, a simple
statement, or the header of a compound statement is too long and
needs to cross multiple lines.

	 a.	 When an expression or a statement needs a closing brace, bracket,
or parenthesis mark to complete it, there is no need to escape (\)
newline at the end of an unfinished line.

	 b.	 When a string needs to cross multiple lines, newline must be
escaped by putting a backslash at the end of each unfinished
line.

	 c.	 The four-space rule is optional. The next line can be started
wherever it makes more sense, such as in the column next to the
opening delimiter.

In addition to the rules of coding, it’s important to maintain a consistent coding
style and to make sure that the programs not only are easy to read and under-
stand but also look neat and nice.

Documentation and Comments
As mentioned above, some lines of documentation, called docstring, are needed
at the very beginning of each Python script/program file to state the purpose and
functionality of the program, who made it and when, and notes for you and others
who may read the program.

The following sample program calculates the area of a circle for a given
radius. It shows how docstring is used in the program file.

1 """
2 This program is used to calculate the area of a circle. It

will take an input as
3 a radius, then calculate and print out the area.
4
5 File name: circle.py
6 Author: John Doe
7 Date: March 30, 2019
8 Version: 1.0
9 """
10
11
12 radius = int(input("tell me the radius:")) # take input

from user
13 area = 3.14 * radius ** 2 # calculate the area
14 print(f"The area of a circle with radius {radius} is

{area}") # print
15

	140	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Please note the triple quotation marks on line 1 and line 9. The triple quota-
tion marks on line 1 mark the start of the docstring, whereas the triple quotation
marks on line 10 mark the end of the docstring. The quotation marks can
be single or double, but they must be the same. You can also add docstrings
for functions, classes, class methods, or other code blocks in the program as
needed, but the opening triple quotation marks and ending triple quotation
marks must be indented the same amount as the code block. You will see how
this should be done in later chapters, with examples.

Please also note the comments starting with a # at the end of lines 13, 14,
and 15. They are called end-of-line comments or block notes. An end-of-line
comment is usually used to explain what the code on the line does. Everything
behind the # mark on that line is ignored by Python Virtual Machine (PVM)
and intended for only humans to read. An end-of-line comment can also be
started at the beginning of a line.

The difference between docstrings and end-of-line comments is that doc-
strings are formal documentation of the program or module and are accessible
through the built-in help() function, with the _doc_ variable automatically
attached to each module, function, class and method, whereas end-of-line
comments are not. As well, utility tools such as pydoc are available for gen-
erating formal documentation for a program or module from the docstrings
within each Python file. The revised version of program circle​.py is shown
below, in which we defined a function named area, with docstrings added to
the function and the program.

1 """
2 The purpose: revised circle.py program with more

docstrings, to demonstrate how docstrings and
3 inline documentation is used in Python programs.
4
5 This program is designed to calculate the area of a circle.

It takes an input from the user for the radius and
6 calculates and prints out the area.
7
8 File name: circle-v2.py
9 Author: John Doe
10 Date: March 30, 2019
11 Version: 1.0
12 """
13
14 def area(r):
15 """To calculate the area of a circle for a given

radius."""
16 return 3.14 * r ** 2 # calculate the area

	 Essential Building Blocks of Computer Programs	 141

 https://doi.org/10.15215/remix/9781998944088.01

17 """Add docstring after return statements?"""
18
19 radius = int(input("tell me the radius:")) # take input

from user
20 print(f"The area of a circle with radius {radius} is

{area(radius)}") # printout
21
22 """I want to add more docstrings."""

The following are some general rules for program documentation:

	 1.	 A docstring should also be written for every function, class, and public
method right after the header of the definition. Docstrings must be
indented the same amount as the suite of function or class definition.

	 2.	 Limit the maximum line length to 79 or 72 characters if the line is part
of a docstring.

	 3.	 Use inline comments whenever necessary.
	 4.	 Some code may need more than one line of comments, which makes

it a block comment. A block comment should be written right before
the code and indented to the same level as the code below.

CODING TRICK

Document! Document! Document!
Documentation is necessary not only for users but for the programmer
who made the program. The programmer may think they know every-
thing about the program, but time can blur their memory.

Simple Statements
Normally, a simple statement is contained within a single logical line, though
Python allows several simple statements to appear on one line separated by
semicolons. There will be examples of this later.

EXPRESSION STATEMENT
Simply put, expression statements in Python programs are just expressions in
mathematical terms. Any expression can be used as a statement, and PVM will
evaluate every expression statement, but the result is only displayed in Python
interactive mode, as shown in the following code sample in the Python Shell:

	142	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Code sample in Python interactive mode

1
2 >>> 2 * 3.14 * 15
3 94.2
4 >>> 3.14 * 15 ** 2
5 706.5
6 >>>
7
8

So if you are using Python in interactive mode, you can simply type expressions
without using the print statement to see the result of the calculation, just like
a powerful calculator.

We can also have expression statements in Jupyter Notebook, but when
there are several expression statements in the same cell, it will only show the
result of the last expression, as shown in the following example:

In []: 2 * 3.14 * 15
3.14 * 15 ** 2

Out []: 706.5

We mentioned earlier in this subsection that you can also put several simple
statements on the same line, but you must separate them with semicolons. This
is shown in the following examples:

Code sample in Python interactive mode

1
2 >>> 2 * 3.14 * 15; 3.14 * 15 ** 2
3 94.2
4 706.5
5 >>>
6
7
8

The expression statement above can also be given in Jupyter Notebook, as
shown below. In Jupyter Notebook, however, you have to press Shift+Enter or
click the play button to run the scripts in an active cell:

	 Essential Building Blocks of Computer Programs	 143

 https://doi.org/10.15215/remix/9781998944088.01

In []: 2 * 3.14 * 15; 3.14 * 15 ** 2

Out []: 706.5

Again, in Jupyter Notebook, even if multiple expression statements are
on the same line, only the result of the last expression statement will be
displayed.

ASSIGNMENT STATEMENT
The assignment statement is one of the most important statements and is used
most often in programs because it is a common requirement to keep the result
of computing or information processing in the computer memory for future
uses. It does so by assigning the result to a variable.

In section 2.1, we saw a list of assignment operators. Formally, an assign-
ment statement is made of a variable on the left and an expression on the right
of an assignment operator, either = or an augmented one such as +=. We have
already seen some examples of assignment statements before, but the following
code sample includes a few more examples:

In []: d = 15
r = d / 2
x = d * 3.14
a = r * r * 3.14
print(f"diameter = {d}; radius = {r}; circumference =
{x}; area is {a}")

Out []: diameter = 15; radius = 7.5; circumference = 47.1; area is 176.625

AUGMENTED ASSIGNMENT
In programming, we often take the value of a variable, perform an operation
on it, then put the result back to the variable. That is when augmented assign-
ment comes into play.

In section 2.1, we saw several augmented assignment operators. In general,
for an assignment in the form of

x = x <operator> v

the augmented assignment can be used in the following form:

x <operator>= v

	144	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The following are some examples of augmented assignments:

In []: y = 10
n = 5
print(f"y is {y}; n is {n}")
y *= n # y * n is assigned to y; it is equivalent to
y = y * n

print(f"y is {y}; n is {n}")
n += 2
y /= n
print(f"y is {y}; n is {n}")

Out []: y is 10; n is 5
y is 50; n is 5
y is 7.142857142857143; n is 7

To understand these augmented assignment statements, we need to consider
the memory location referred to by a variable, such as y with respect to time. Take
y *= n as an example. At time t0 before the actual assignment starts, the value
of y (data stored in the memory referred to by y, which is 10 at time t0) is taken out,
and multiplied by n, whose value is 5 at time t0; then time t1—the result, which
is 50 (from 10 * 5)—is stored in the memory location referred to by variable y.

CODING ALERT

The number of value items must be enough for the variables to be
assigned.

MULTIPLE ASSIGNMENTS
Also, for convenience and efficiency, you can assign values to multiple variables
in a single assignment statement. There are several ways of doing multiple
assignments, as shown in the following examples:

In []: x, y = 1, 2 # assign 1 to x, assign 2 to y
(x, y) = (1, 2) # it is the same as x, y = 1, 2
x, y = [1, 2] # it is the same as x, y = 1, 2
k, *l = [1, 2, 3, 5] # this will assign 1 to k, and
assign the rest to l as list, because of *l

x, *y, z = [1, 2, 3, 5, 6, 7] # this will assign 1 to
x, 7 to z, [2, 3, 5, 6] to y

print(f"x = {x}; y = {y}; z = {z}")

Out []: x = 1; y = [2, 3, 5, 6]; z = 7

	 Essential Building Blocks of Computer Programs	 145

 https://doi.org/10.15215/remix/9781998944088.01

In the last example above, *l, *y tells PVM that variable l and y can take a
variable-length list of values.

CONDITIONAL ASSIGNMENTS
Additionally, in Python, you may even assign different values to a variable under
different conditions, as shown in the following example:

Code sample in Python interactive mode

1 >>> marks = 90
2 >>> gr = 'pass' if marks >= 60 else 'fail' # note that

elif clause does not work on the conditional assignment
3 >>> gr
4 'pass'
5 >>> marks = 50
6 >>> gr = 'pass' if marks >= 60 else 'fail'
7 >>> gr
8 'fail'

As you will see throughout the text, there are many fancy ways of making state-
ments in Python, and that’s why Python is a very powerful language. Indeed,
the full power of a programming language can only be materialized by the
best programmers.

ANNOTATED ASSIGNMENT STATEMENT
We know that variables in Python are dynamically typed. Sometimes, however,
it is nice to indicate what type of data is expected for a variable. In Python, this
is done by annotating the variable using a colon followed by the name of the
data type, as shown in the following example:

marks: float = 86.5 # variable marks will hold a float
number

However, Python will not complain if other types of data are assigned, as
shown below:

>>> marks: float = "Python"
>>> marks
'Python'
>>>

To annotate the type of value returned from a function, you need to use -> fol-
lowed by the data type, right before the colon, as shown in the following example:

	146	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: def literal_grade(marks:float) -> str:
 return 'fail' if marks < 60 else 'pass'

print(literal_grade(88))

Out []: pass

In this example, marks:float determines that a float number is expected for
marks when calling the function, and -> str dictates that a string is to be returned.

It must be made clear that the actual type of a variable is still determined
by the value it holds, and annotation added to a variable or function doesn’t
really change the type of the variable or the value returned from a function.
So annotations are more for programmers as reminders.

PRINT STATEMENT
The print statement is another one of the most important statements. It
is used to output (to a terminal by default) so that a program can tell human
users the result of calculations or information processing, the value of an
object, or the status of the program. The following are some examples of
print statements:

In []: print("this is my first print statement.")

print("it will take about ", round(300/110), "hours to
drive from Edmonton to Calgary")

Out []: this is my first print statement.
it will take about 3 hours to drive from Edmonton to Calgary

The print statement can evaluate multiple arguments and print out the val-
ues. If the arguments are all constant strings, there will be no need to separate
them into multiple arguments. Separate arguments are needed only when some
arguments are expressions, like the round(300/110) in the above example. If
you do not like separations, introduced in release 3.0, Python provides a neat
way to include expressions all in a single pair of quotation marks, as shown in
the following example:

In []: print(f"it will take about {round(300/110)} hours to
drive from Edmonton to Calgary")

Out []: it will take about 3 hours to drive from Edmonton to Calgary

	 Essential Building Blocks of Computer Programs	 147

 https://doi.org/10.15215/remix/9781998944088.01

Please note the f—which is a flag or prefix—before the opening quotation
mark and the curly brackets around the expression. Without the f flag, every-
thing will be taken literally as part of the string, without evaluation.

If you want one portion of the string to be put on one line and the other
portion on the next line, you may insert \n between the two portions in the
string, as below:

In []: print(f"it will take about {round(300/110)} hours \nto
drive from Edmonton to Calgary")

Out []: it will take about 3 hours
to drive from Edmonton to Calgary

In addition to \n, other escape sequences that we discussed previously may
also be included in a string.

There may be times that you want to include an escape sequence such as
\n in a string as is. To achieve that effect, you either use the r flag before the
opening double quotation mark or use another backslash \ before the escape
sequence to cancel the first backslash (escape), as shown in the following
example:

In []: print(r"there will be no escape \n to newline") #
using the r flag

print("there will be no escape \\n to newline") #
using double backslash

Out []: there will be no escape \n to newline
there will be no escape \n to newline

Without the r flag, the sentence will be printed on two lines, as shown in the
following example:

In []: print("there will be no escape \nto newline")

Out []: there will be no escape
to newline

Normally, a \n (newline) will be automatically appended to the output from
each print statement by default, so that the output from the next print state-
ment will print on a new line. If you want the output from a print statement
to end with something else rather than a new line, you may use the end key-
word argument to specify how the output should be ended. In the following

	148	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

example, output from the first print statement will be ended with a whitespace,
so that outputs from the two print statements will be on the same line:

In []: print("this is my first print statement.", end=" ")
print("it will take about ", round(300/110), "hours to
drive from Edmonton to Calgary")

Out []: this is my first print statement. it will take about 3 hours to drive from
Edmonton to Calgary

Formally, a print statement may take the following form when used:

print(value0, value1, value2,…, sep=' ', end = '\n', file

= sys.stdout, flush = False)

where value0, value1,… are values to be printed to a file stream; optional
keyword argument sep defines what is used to separate value0, value1,…;
optional keyword argument end tells how the output from the print statement
should end; optional keyword argument file defines what file stream the
output should be printed on; and optional keyword argument flush tells how
the output should be flushed. The meanings and purposes of these optional
keyword arguments are explained in Table 2-16.

Table 2-16: Key arguments of the print statement

Keyword argument Values that can be taken Default value

sep it takes a string as its argument and
inserts it between values

a space

end it also takes a string as argument but
appends it to the last value of the
output stream

a new line

file it is a file handle such as that returned
by an open statement

sys.stdout

flush it takes a Boolean value (True or
False) indicating whether to forcibly
flush the output stream

False

Please note that a program may need to output different types of data
not only correctly but also nicely. In 5.1, we will learn how to construct well-
formulated strings from various types of data.

	 Essential Building Blocks of Computer Programs	 149

 https://doi.org/10.15215/remix/9781998944088.01

INPUT STATEMENT
The input statement is another important one you must learn and use correctly
and effectively. Contrary to the print statement, the input statement is used to
get information from users through the keyboard, as shown in the following
example in Jupyter Notebook:

In []: your_age = input("Please tell me your age:")
print("Now I know your age is", your_age)

Out []: Please tell me your age: 39
Now I know your age is 39

Please note that everything taken from users through the input statement is
treated as a string. If you are expecting a number, such as an integer, you must
convert the string into its respective data type, as shown in the following example:

In []: your_age = input("Please tell me your age:")
your_age = int(your_age)
print(f"In 50 years your age will be {your_age + 50}")

Out []: Please tell me your age: 39
In 50 years, your age will be 89

As you may have guessed already, the input statement takes one argument as
a prompt to tell users what to do and what the program is expecting from the user.

If you want to provide more detailed instructions in the prompt to the user,
you may use the triple quotation marks to include multiple lines of instruction
as prompt:

In []: sl = input("""Your choices
A: to get the average mark
M: to get the mean of all marks
H: to get the highest mark
L: to get the lowest mark
Q: to exit the program
Please select___""")

Out []: Your choices
A: to get average the mark
M: to get the mean of all marks
H: to get the highest mark
L: to get the lowest mark
Q: to exit the program
Please select___

	150	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

As you can see, this can be a good way to make a menu for some terminal-
based applications.

ASSERT STATEMENT
The assert statement is used to test if a condition is true in a program. It may
take one of two forms, as shown in Table 2-17.

Table 2-17: Semantics of assert statement

Syntax Meaning

assert <condition> if <condition> is false, the program will stop and raise
AssertionError

if <condition> is True, the program will run ahead

assert <condition>,
<error message>

if <condition> is false, the program will stop and raise
AssertionError, along with <error message>

The assertion statement is very useful in debugging your programs, because
it can be used to check the value of a variable or a certain condition of the pro-
gram. If the condition is not met as expected, the program would stop and let
you check what’s going on, as shown in the following examples:

In []: def average_incomes(incomes):
 assert len(incomes) != 0, "Error: need at least one
income"

 return sum(incomes) / len(incomes)

incomes = [35892, 13487, 56852, 135278, 87542]
print("Average of incomes is",average_incomes(incomes))
incomes = []
print("Average of incomes is",average_incomes(incomes))

Out []: Average of incomes is 65810.2

AssertionError Traceback (most recent call last)
<ipython-input-2-201cb13363c6> in <module>
6 print("Average of incomes is",average_incomes(incomes))
7 incomes = [] --
8 print("Average of incomes is","average_incomes(incomes))

<ipython-input-2-201cb13363c6> in average_incomes(incomes)
1 def average_incomes(incomes):
-- 2 assert len(incomes) != 0, "Error: there must be at least one income"
3 return sum(incomes)/len(incomes)
4
5 incomes = [35892, 13487, 56852, 135278, 87542]

AssertionError: Error: there must be at least one income

	 Essential Building Blocks of Computer Programs	 151

 https://doi.org/10.15215/remix/9781998944088.01

PASS STATEMENT
As the name implies, this statement does nothing. It is used as a placeholder
in places where you don’t have the actual code yet. As an example, assume you
have the class Student in your design for a project, but the implementation
details of the class, except the name, are yet to be worked out. You can use the
pass statement to hold the place of the details, as shown below:

In []: class Student():
 pass

s1 = Student()
s2 = Student()

With the pass statement in place, this piece of code can run as part of a big
program without raising an exception.

Note that a pass statement won’t let you get out of a loop. You will need to
use the break statement to get out of a loop.

DEL STATEMENT
This statement is used to delete an object. Because Python treats everything
as an object, you can use this statement to delete everything you’ve defined.

In []: grade = 99
print(f"grade = {grade}")

del grade
print(f"grade = {grade}")

Out []: grade = 99

NameError Traceback (most recent call last)
<ipython-input-9-2b1bea6f987e> in <module>
3
4 del grade
-- 5 print(f"grade = {grade}")
NameError: name 'grade' is not defined

Deleting an object will free up the memory locations occupied by the object.
Computer memory is a precious resource in computing. Python objects, even
objects of built-in data types—such as list, tuple, set, and dictionary—can take
up a great deal of memory. Deleting the objects that are no longer used will
free up memory and make it available for other objects and other applications.

	152	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

RETURN STATEMENT
The return statement is one of the most important statements in Python (and
some other languages as well). It is used to return a value from a function—a
very important construct of all programs. The following is an example:

In []: def cube(n):
 return n ** 3

print(f'The cube of 23 is {cube(23)}')

Out []: The cube of 23 is 12167

This function simply takes a number and returns n to the power of 3.
Please note that in Python, the return statement doesn’t have parentheses

around the value to be returned. Even if you want to return multiple values
from a function, you only need to use commas to separate the values behind
the return keyword. The return statement will automatically pack all the values
in a tuple and then return them.

In the following example, we define a function of a modular operation but
return the quotient and the remainder at the same time:

In []: def modular(a, b):
 assert b != 0, 'Zero divisor'
 return a // b, a % b

print(modular(13, 6))

Out []: (2, 1)

OPEN STATEMENT
The open statement is used to open a file for writing, reading, appending, or
updating (reading and writing). The following is an example:

f = open("c:\\workbench\\myprimes.txt", 'r')

This opens the file specified by c:\\workbench\\myprimes.txt and creates a
file object ready for reading. Reading is the default mode when you open a file
without the second argument. Hence the following statement does the same
as the above statement:

f = open("c:\\workbench\\myprimes.txt")

	 Essential Building Blocks of Computer Programs	 153

 https://doi.org/10.15215/remix/9781998944088.01

To open a file for writing, w is used for the second argument:

f = open("c:\\workbench\\myprimes.txt", 'w')

When a file is opened for writing, the old data will be overwritten if there is
already data in the file. To keep the old data and append new data to the file,
use a for the second argument instead:

f = open("c:\\workbench\\myprimes.txt", 'a')

If you want to create a file only if the file doesn’t exist, use x for the second
argument, to mean exclusive creation of the file:

f = open("c:\\workbench\\myprimes.txt", 'x')

This would avoid accidentally overwriting a file.
By default, data written to a file opened with w, a, or x is text. The data on

a file can also be in binary format. To explicitly indicate whether data on a file
are or should be text or binary, you can use t or b with r, w, a, or x, as shown
in the following examples:

f3 = open("c:\\workbench\\mykey.dat", 'bw')
f5 = open("c:\\workbench\\mykey.dat", 'br')

YIELD STATEMENT
The yield statement is used in place of the return statement in some special
circumstances when defining a function. When the yield statement is used
in defining a function, the function becomes a generator in Python terms, as
shown in the following example:

In []: def odds(n):
 for i in range(n):
 yield 2 * i + 1 # yield makes the function a generator

odd_numbers = odds(12)
print(f"type of object odd_numbers is
{type(odd_numbers)}")

for i in odd_numbers:
 print(i, end = ' ')

Out []: type of object odd_numbers is <class 'generator'>
1 3 5 7 9 11 13 15 17 19 21 23

	154	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

When we say a function becomes a generator, we mean that an object of
the generator class is returned from the function.

What is a generator object? For now, you may consider it a dynamic list
whose members are generated and used dynamically on the fly, without using
a big bunch of memory to store the whole list. The following is an example
of a generator:

Object_generator = (x ** 3 for x in range(13))

If we run

for i in Object_generator:
 print(i)

we will see the following members:

0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728,

However, if we try to get the length of the generator object with the follow-
ing statement:

print(f"{len(object_generator)}")

we will get the following error:

TypeError: object of type 'generator' has no len()

This confirms that an object of type generator has no length.

RAISE STATEMENT
When some errors occur in a Python program, exceptions will be automatically
raised and the program will stop running, unless the exception is handled
with the try-except statement. Such errors include operations deemed illegal
by Python. In some cases, an exception needs to be explicitly applied when a
certain condition is met. In the previous section, we saw how an exception can
be raised with the assert statement. In the following example, we show how to
raise an exception with the raise statement.

	 Essential Building Blocks of Computer Programs	 155

 https://doi.org/10.15215/remix/9781998944088.01

In []: total = 0
for i in range(39):
 mark = int(input("Tell me a mark:"))
 if mark < 0:
 raise Exception("No negative mark is accepted!")
 total += mark
print(f'average mark is {total / 39}')

Out []: Tell me a mark: -12

Exception Traceback (most recent call last)
<ipython-input-13-f4aa3f6c4326> in <module>
3 mark = int(input("Tell me a mark:"))
4 if mark < 0:
-- 5 raise Exception("No negative mark is accepted!")
6 total += mark
7 print(f'average mark is {total / 39}')

Exception: No negative mark is accepted!

This piece of code is used to calculate the average marks of 39 students, but
it considers a negative mark unacceptable and will raise an exception.

BREAK STATEMENT
The break statement is used to get out of a loop and continue to the next state-
ment. Here is an example:

In []: for i in range(10):
 print(i, end = " ")
 if i == 8:
 print(f"\nget out of the loop when i = {i}")
 break

Out []: 0 1 2 3 4 5 6 7 8
get out of the loop when i = 8

CONTINUE STATEMENT
The continue statement is used within a loop code block to continue to the next
iteration of the loop and ignore the rest of the code block. This statement can
be very useful if you don’t want to run some statements when some condition
is met.

	156	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

IMPORT STATEMENT

The import statement is used to import modules into a program file or a specific

class within the module. The following is an example of how to import the

standard math module into the program:

In []: import math
print(f"98 ** 3 = {math.pow(98, 3)}")

Out []: 98 ** 3 = 941192.0

GLOBAL STATEMENT

A global statement simply declares, within a code block such as function or

class, that some identifiers/names such as variables should be treated as globally

writable. Without a global statement, a variable defined outside of a function or

class may be read, but writing to the variable will raise an exception, as shown

in the following examples:

In []: gravity = 9.807 # gravity on the earth's surface,
global variable

r_earth = 6371000 # the earth's mean radius 6371000
metres

def changed_gravity(m): # m is the distance from the
earth

 gravity = gravity * (r_earth/(r_earth+m)) ** 2 #
decrease gravity by 2

 return gravity

print(f'gravity at 99999 metres above sea level is
{changed_gravity(99999)} or {gravity}')

Out []: ----------------------------------
UnboundLocalError Traceback (most recent call last)
<ipython-input-36-7f10379e5fb0> in <module>
6 return gravity
7
-- 8 print(g_force(99999))
<ipython-input-36-7f10379e5fb0> in g_force(m)
3
4 def changed_gravity(m):
-- 5 gravity = gravity * (r_earth/(r_earth+m))**2
6 return gravity
7 UnboundLocalError: local variable 'gravity' referenced before assignment

	 Essential Building Blocks of Computer Programs	 157

 https://doi.org/10.15215/remix/9781998944088.01

In the code above, gravity is first introduced outside the function definition. It

became a global variable by the rule of naming scopes. Inside the definition

of function changed_gravity, the name was defined again by putting it on the

left side of the assignment, but only locally by default, according to the rules.

However, this local variable is used on the right side of the same assignment

statement. That is how the exception has occurred.

Since what we actually want is to use the globally defined variable gravity

on both sides of the assignment statement within the function definition, we

need to explicitly declare that, as shown in the following example revised

from above:

In []: gravity = 9.807 # gravity on the earth's surface,
global variable

r_earth = 6371000 # the earth's mean radius is
6371000 metres

def changed_gravity(m): # m is the distance from the
earth

 global gravity
 gravity = gravity * (r_earth / (r_earth+m)) ** 2
 return gravity

print(f'gravity at 99999 metres above sea level is
{changed_gravity(99999)} or {gravity}')

Out []: gravity at 99999 metres above sea level is 9.506238807104731 or
9.506238807104731

As you can see, the value of global variable gravity has now been changed

within the function.

NONLOCAL STATEMENT

We have seen global variables and local variables, and how global variables

are accessible globally, whereas local variables are only accessible within

a local scope such as a function. There is something between global and

local called nonlocal. The nonlocal statement can be used to declare a list

of variables that are not local but refer to variables defined in the nearest

enclosing scope but excluding global variables. This may happen when

defining a function within another function, as shown in the following

example:

	158	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: def outer_logger():
 event = 'Something has happened.'

def inner_logger():
 nonlocal event
 event += "Something else has happened as well."
 print("inner log:", event)

inner_logger()
 print("outer log:", event)

outer_logger()

Out []: inner log: Something has happened. Something else has happened
as well.

outer log: Something has happened. Something else has happened as
well.

HELP STATEMENT
The help statement is used to invoke a helping system and is often used in
Python interactive mode to get help on modules, statements, functions, or
methods.

Code sample in Python interactive mode

1 >>> help(str)
2 Help on class str in module builtins:
3
4 class str(object)
5 | str(object = '') -> str
6 | str(bytes_or_buffer[, encoding[, errors]]) -> str
7 |
8 | Create a new string object from the given object. If

the encoding or
9 | any errors are specified, then the object must expose a

data buffer
10 | that will be decoded using the given encoding and error

handler.
11 | Otherwise, returns the result of object.__str__() (if

defined)
12 | or repr(object).
13 | encoding defaults to sys.getdefaultencoding().
14 | errors defaults to 'strict'.
15 |
16 | Methods defined here:
17 |

	 Essential Building Blocks of Computer Programs	 159

 https://doi.org/10.15215/remix/9781998944088.01

18 | __add__(self, value, /)
19 | Return self+value.
20 |
21 | __contains__(self, key, /)
22 | Return key in self.
23 |
24 | __eq__(self, value, /)
25 | Return self==value.
26 |
27 | __format__(self, format_spec, /)
28 | Return a formatted version of the string as described

by format_spec.
29 |
30 |
31 | __ge__(self, value, /)
32 -- More --

Compound Statements
In the previous section, we studied individual statements that can be used in
programming with Python. In this section, we study compound statements
and ways to make various compound statements in Python.

In Python, a compound statement consists of at least one clause, and each
clause is made of a header and a suite, or code block. A header starts with a
keyword such as if, for, while, class, def, try, else, except, finally, and so on
and ends with a colon :, as described below:

<header>:
 <code block>

What can be on the header line depends on the keyword leading the header.
You will learn more about this in the following chapters.

CODE BLOCKS
In programs, some statements are grouped and run in sequence as a unit or a
suite. We call such a group of statements a code block.

Unlike C, C++, Java, and some other languages that use curly brackets to
make code blocks, Python uses indentation to form code blocks. In Python, a
program can have multiple code blocks, and code blocks can be nested with
proper indentation. Statements intended to be in the same code block must
use the same indentation. The following is an example:

	160	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Code sample

1 i, s = 1, 1 # the first statement must be started at
the very beginning

2
3 while I <= 100: # this compound statement is in the

same code block
4 s *= i # this is the first statement in the code

block/suite
5 i += 1 # this is the second statement in the code

block/suite
6
7 print("the product of 1x2x3 … 100 is ", s)

The sample program above has two simple statements on lines 1 and 7, and one
compound statement on lines 3 to 5. The header of the compound statement
begins with the keyword while, and its suite is a code block that consists of
two simple statements. Because statements on lines 1, 3, and 7 are in the same
code block, they must be indented the same, whereas statements on lines 4
and 5 must be further indented to form a code block as a suite for the while
compound statement.

RULES OF INDENTATION
To ensure that your programs are properly indented, follow the following rules:

	 1.	 The first line of code of a program must start at the very first column
of line, though there can be some blank lines before the first line of
code, for better readability, if you like.

	 2.	 All lines of code in the same code block must be indented the same.
	 3.	 The suite of a compound statement must be indented further than the

header of the compound statement.
	 4.	 All code blocks that are at the same level must use the same indentation.
	 5.	 All lines of code in the same suite must use the same indentation.

RULES OF SPACING
The rules of spacing are about how to space out words within a line of script or code
and how to space lines of scripts. Some of the rules must be followed, while other
rules are for readability or are merely convention among Python programmers:

	 1.	 There must be at least one space between two words.
	 2.	 As a convention, there should be only one space between two words.

	 Essential Building Blocks of Computer Programs	 161

 https://doi.org/10.15215/remix/9781998944088.01

	 3.	 Also as a convention, there should be one space before each operator
and one space behind each operator in an expression. So x>y should
be written as x > y.

	 4.	 For better readability, there should be no space between a unary
negation operator (−) and the term it negates. So - x should be written
as -x.

	 5.	 Also for readability, in a function call, there should be no space
between a function name and the list of parameters. So abs (y)
should be written as abs(y).

	 6.	 The same goes for definitions of functions. There should be no space
between the function name and the list of arguments.

	 7.	 There should be no blank lines between lines of simple statements if
they are intended to be in the same code block.

	 8.	 For better readability, there should be a blank line between simple
statement(s) and compound statements if they are in the same code
block, as shown in the following sample code:

Code sample

1 i, s = 1, 1 # first statement must be started at the
very beginning

2
3 while I <= 100: # this compound statement is in the same

code block
4 s *= i # statement must be indented
5 i += 1 # second statement in the code block/suite
6
7 print("the product of 1x2x3 … 100 is ", s)
8

Please note the blank line between line 1 and line 3, as well as between
lines 5 and 7.

IF STATEMENT
An if statement is used to run a block of statements under a condition. The
header of an if statement begins with the keyword if, followed by a logical
expression of a condition, and then a colon, as shown below:

if <condition>:

 <suite or code block>

	162	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Here is an example:

Code sample

1 mark = float(input("Please input your mark:"))
2
3 if mark >= 0:
4 print(f"The mark is {mark}.")
5

Note that although Python allows the suite to be on the same line as the header,
as shown in the following sample, for readability, that is not preferable.

if mark >= 0: print(f"The mark is {mark}.") # allowed but
not preferred

IF-ELSE STATEMENT
In the example above, the if statement can only make one selection. To do
something in particular if the condition is not met, the else clause can be
added. The syntax of if-else statement is shown below, and the corresponding
flowchart is shown in Figure 2-7.

if <condition>:
 <code block 1>
else:
 <code block 2>

Condition
met?

suite

No

Yes

Figure 2-6: Flowchart of an if statement

	 Essential Building Blocks of Computer Programs	 163

 https://doi.org/10.15215/remix/9781998944088.01

The code sample shown above can be rewritten as follows by adding an
else clause:

Code sample

1 mark = float(input("please input your mark:"))
2
3 if mark >= 0:>
4 print(f"The mark is {mark}.")
5 else:
6 print("Incorrect input! A mark cannot be a negative

number.")
7

IF-ELIF STATEMENT
The if-else statement can only handle double selections. How can we handle
multiple selections in Python? For example, in addition to telling whether a
mark is legitimate or not, we may also want to convert the percentage mark to a
letter grade. In Python, that can be done with an if-elif or if-elif-else statement.
The syntax of the if-elif statement is shown below:

if <condition 1>:
 < suite 1 >
elif <condition 2>:
 < suite 2 >
elif <condition 3>:
 < suite 3 >
…

Condition
met?

suite 1

suite 2

No

Yes

Figure 2-7: Flowchart of the if-else statement

	164	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The code that can tell the letter grade from a percentage grade is shown
below:

Code sample

1 number_grade = round(float(input("please tell me a
numeric grade between 0 and 100:")))

2 if number_grade >= 90:
3 print(f"alpha/letter grade for {number_grade}% is A+")
4 elif number_grade >= 85:
5 print(f"alpha/letter grade for {number_grade}% is A")
6 elif number_grade >= 80:
7 print(f"alpha/letter grade for {number_grade}% is A-")
8 elif number_grade >= 76:
9 print(f"alpha/letter grade for {number_grade}% is B+")
10 elif number_grade >= 73:
11 print(f"alpha/letter grade for {number_grade}% is B")
12 elif number_grade >= 70:
13 print(f"alpha/letter grade for {number_grade}% is B-")
14 elif number_grade >= 67:
15 print(f"alpha/letter grade for {number_grade}% is C+")
16 elif number_grade >= 64:
17 print(f"alpha/letter grade for {number_grade}% is C")

Condition
met?

suite 1

Condition
met?

suite 2

Condition
met?

suite 2

suite 2

No

Yes

No

Yes

No

Yes

Figure 2-8: Flowchart of the if-elif-elif-…

	 Essential Building Blocks of Computer Programs	 165

 https://doi.org/10.15215/remix/9781998944088.01

18 elif number_grade >= 60:
19 print(f"alpha/letter grade for {number_grade}% is C-")
20 elif number_grade >= 55:
21 print(f"alpha/letter grade for {number_grade}% is D+")
22 elif number_grade >= 50:
23 print(f"alpha/letter grade for {number_grade}% is D")
24 elif number_grade >= 0:
25 print(f"alpha/letter grade for {number_grade}% is F")
26 else:
27 print("Numeric grade must be a positive integer!")

IF-ELIF-ELSE STATEMENT
An else clause can be added to the end of an if-elif statement in case something
special needs to be done if all the conditions are not met.

WHILE STATEMENT
The while statement is used to run a block of code repeatedly as long as a given
condition is met. The syntax of the statement is as follows:

while <condition>:
 < a suite >

Condition 1
met?

suite 1

Condition 2
met?

suite 2

Condition 3
met?

suite 3

suite 4

No

Yes

No

Yes

No

Yes

Figure 2-9: Flowchart of an if-elif-…elif-else statement

	166	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The following is an example:

Code sample

1 i = 1
2
3 while i <= 10:
4 print(f"I am counting to {i}")
5 i += 1

The loop is ended when not (I <= 10). The while statement is more advantageous
when used to form a loop if we only know when the loop should end, as shown
in the following word-guessing program:

Code sample

1 cnt, your_guess = 0, ""
2
3 while (your_guess.lower()) != "python":
4 your_guess = input("Guess which programming language

is my favourite: ")
5
6 cnt += 1
7 print(f"Congratulations! You got it in just {cnt} guesses")

FOR STATEMENT
A for statement provides another way to form a loop and is best for when the
loop runs through an iterable, such as a list, a tuple, a string, a generator, a set,
or even a dictionary. The syntax of the for statement is as follows:

for <iteration variable(s)> in <iterable>:
 < a suite >

Note that there can be more than one iteration variable if needed, but it is
more common to have only one iteration variable.

The following is an example:

Code sample: for statement with a string

1 cnt = 0
2 my_string = "this is a secret"
3 for c in my_string:
4 print(c)
5 cnt += 1
6
7

	 Essential Building Blocks of Computer Programs	 167

 https://doi.org/10.15215/remix/9781998944088.01

8 print(f"there are {cnt} characters in ({my_string})")
9

Code sample: for statement with a set

1 week_set = set(('Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat',
'Sun'))

2 for w in week_set:
3 print(w)
4

Code sample: for statement with a dictionary

1 week = {1: 'Mon', 2: 'Tue', 3: 'Wed', 4: 'Thu', 5: 'Fri',
6: 'Sat', 7: 'Sun'}

2 for w in week.keys():
3 print(week[w], " in key and value pair in dictionary")
4

DEF STATEMENT

The def statement is used to define new functions or methods if defined within

a class definition. The syntax of def statement is as follows:

def <function_name>(<list of arguments>):

 < code block >

where function_name should be a unique identifier within the current scope,

and the list of arguments can be empty. The details of defining and using func-

tions will be presented in Chapter 6. For now, you need only be concerned with

the definition of a simple function so that you know how the def statement is

used. The function is to calculate a given number x to the power of 10, and

return x*x*x*x*x*x*x*x*x*x:

In []: def power10(x):
 s = x
 for i in range(9):
 s *= x
 return s

print(f'power10({2}) = {power10(2)}')

Out []: 2 to the power of 10 = 1024

	168	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

CLASS STATEMENT
The class statement is used to define new classes. The syntax of defining a new
class that only inherits from the base class (object) is as follows:

Class class_name:
 < suite >

or

Class class_name(object):
 < suite >

To define a new class that inherits from classes other than object, the syntax
is as follows:

Class Class_name(<list of base classes>):
 < suite >

TRY-EXCEPT STATEMENT
The try-except statement is used to handle errors and exceptions, especially
when certain errors are expected. The following are some common types of
errors that you may encounter in your programs:

ArithmeticError FileExistsError LookupError

FloatingPointError FileNotFoundError IndexError

OverflowError InterruptedError KeyError

ZeroDivisionError IsADirectoryError MemoryError

AssertionError NotADirectoryError NameError

AttributeError PermissionError UnboundLocalError

BufferError ProcessLookupError BrokenPipeError

EOFError TimeoutError ConnectionAbortedError

ImportError ReferenceError ConnectionRefusedError

ModuleNotFoundError RuntimeError ConnectionResetError

Refer to https://​docs​.python​.org/​3/​library/​exceptions​.html for a detailed
discussion about the exceptions and error types defined in Python.

https://docs.python.org/3/library/exceptions.html

	 Essential Building Blocks of Computer Programs	 169

 https://doi.org/10.15215/remix/9781998944088.01

The following is an example showing how to handle errors from user input
that use 0 for the denominator.

Code sample: for statement with dictionary

1 try:
2 a = int(input("give me a number:"))
3 b = int(input("give me another number:"))
4 print(f"{a} / {b} = {a / b}")
5 except ZeroDivisionError:
6 print(f"incorrect second input {b}!")
7

The details of error and exception handling in programs will be discussed
in Chapter 4.

WITH STATEMENT
The with statement is used to provide a context for the execution of a code
block. The mechanism is a bit complex, but the following may provide some
help. Remember that the with statement works only on objects that have special
methods __enter__() and __exit__() implemented in accordance with Python
context management protocol (PEP 343). For the mechanisms behind the with
statement, read https://​effbot​.org/​zone/​python​-with​-statement​.htm or search
the internet for more details.

The general syntax of the with statement is as follows:

With <expression of object> as < variable referring to the object>:
<suite>

where the value of <expression of the object> will be an object on which the
context management protocol has been implemented and the <variable refer-
ring to the resulted object> will often be used in the suite. A good and common
example of using the with statement is dealing files, which, when opened, are
objects with context management protocol implemented. The following is an
example:

Code sample: with statement

1 """
2 This program will get an input of a big integer from

user, and
3 find all the prime numbers not greater than the integer

input from the user, and

https://effbot.org/zone/python-with-statement.htm

	170	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

4 write all the prime numbers into a text file.
5 """
6 m = int(input("""
7 Please tell me a big integer number and
8 then I can find all the primes less than
9 the prime number:"""))
10 import math as mt
11 with open("c:\\workbench\\myprimes.txt", 'w') as p:
12 i = 2
13 while i <= m:
14 flag = True
15 j = 2
16 while j <= int(mt.pow(i,1/2)) + 1 and flag:
17 if i % j == 0:
18 flag = False
19 j += 1
20 if flag:
21 p.write(str(i)+ "\n")
22 i += 1

Chapter Summary
•	 Vocabulary is important for any language, and even more important

for computer languages, because computers will not understand your
programs at all if you have used the wrong vocabulary.

•	 For programming languages, including Python, vocabulary includes
various types of data, operators, built-in functions, reserved words
(including keywords), and variables identified by user-defined names
(also called identifiers).

•	 Identifiers must begin with a letter or underscore in the ASCII table,
then be followed by letters, digits, and/or an underscore.

•	 Identifiers in Python are case-sensitive, which means that A1 and a1 are
two different identifiers.

•	 Within the Python community, there are conventions for how
identifiers should be made and used for identifying different things in
Python programs.

•	 Simple data types include integer numbers, float numbers, Boolean
numbers, and complex numbers.

•	 Complex numbers are represented as a + bj or a − bj, where a and b are
integers or float numbers.

•	 Compound data are made of other data that can be of two types: simple
or compound.

	 Essential Building Blocks of Computer Programs	 171

 https://doi.org/10.15215/remix/9781998944088.01

•	 A string is a sequence of characters within a pair of single or double
quotation marks.

•	 Some special characters in a string must be represented using
an escape sequence, such as \n for newline, \t for tab, and \\ for a
backslash, and so on.

•	 In a string, all characters are indexed starting from 0, so that each
individual character can be accessed using its index.

•	 There are many functions available to manipulate strings.
•	 There are three ways of formatting strings: using placeholders, using

the format method, and using the f prefix before a string. The last one
is preferred.

•	 A list is a sequence of data within a pair of square brackets.
•	 Members of a list are also indexed, and each individual member can be

accessed through its index.
•	 A tuple is a sequence of data within a pair of parentheses.
•	 Members of a tuple are also indexed, and each individual member can

also be accessed through its index.
•	 While individual members of a list can be deleted or changed,

individual members in a tuple cannot be deleted or changed.
•	 A set is a collection of data within a pair of curly braces.
•	 Members in a set are not indexed, so individual members in a set

cannot be accessed through the index.
•	 A dictionary is a collection of key-value pairs within a pair of curly

braces.
•	 Keys are used to access the values of a dictionary.
•	 In Python, everything can be treated as an object.

Exercises
	 1.	 Indicate which of the following are not legitimate Python identifiers to

name variables, functions/methods, and classes, and explain why.

This 3da My_name for i9 vote

$s _sum_ cLearance method lists t5#

	 2.	 Write a single statement to complete each of the following tasks:
	 a.	 Read an integer from user into variable k.
	 b.	 Print a multiple-line mailing label with your name and home

address, including the postal code.
	 c.	 Print the area of a circle with a radius of 13.

	172	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

	 d.	 Assign the cube of 23 to variable x.
	 e.	 Print the square of 12, 25, and 56, respectively, on one line.

	 3.	 Evaluate the following expressions
	 a.	 23 + 16 / 2
	 b.	 round(78.3)
	 c.	 pow(2,3) + 5
	 d.	 sum([1,3,5,7,9])/13
	 e.	 bin(9)
	 f.	 divmod(13, 5)
	 g.	 int(38.6)//7
	 h.	 (3.5 + 6.7j) + (5.3 + 12.9j)
	 i.	 'Well' * 3 + '!'

	 4.	 Mentally run the following code blocks and state what each code block
will display.

	 a.	 x = 5
		 y = 6
		 print(x + y)
	 b.	 m = 5
		 k = 3
		 print(f’{m}**{k} = {m**k}’)
	 c.	 m, k = 35, 12
		 m //= k
		 print(m)
	 d.	 m, k = 35, 12
		 m %= k
		 print(m)

Projects
	 1.	 Write a program to read a float number from the user into variable s,

then calculate and print the area of a square with s as the length of
its side.

	 2.	 Write a program to read two numbers and calculate the product of the
two numbers.

	 3.	 A parking lot charges $2.50 per hour. Write a program to read the
number of hours a vehicle has parked, then calculate and print the
total to be paid for parking.

	 4.	 The arithmetic mean of several numbers is the sum of all these
numbers divided by the number of these numbers. For this project,

	 Essential Building Blocks of Computer Programs	 173

 https://doi.org/10.15215/remix/9781998944088.01

write a program that will generate three numbers from users and
calculate and display the arithmetic mean of these three numbers.

	 5.	 A cube has 6 faces and 12 edges, all of the same length. Write a
program that takes a number from the user as the length of an edge
and calculate and display the total surface area of the cube.

This page intentionally left blank

 https://doi.org/10.15215/remix/9781998944088.01

Chapter 3

Flow Control of Statements

If you praise computers for their diligence when they iterate operations tirelessly
trillions of trillions of times, you must also appreciate their intelligence when they
do certain things only if certain conditions are met, because decision making is
important for all intelligent beings, including modern computers. All computer
programming languages provide constructs for decision making—to run a state-
ment or a block of statements only under certain conditions. Python does the same.

In Chapter 3, you will learn how to use the if, if-else, if-elif, and if-elif-else
statements to instruct computers to do certain things only under certain
conditions.

Learning Objectives
After completing this chapter, you should be able to

•	 use an if statement to run a code block only under a set condition.
•	 use if-else to run two code blocks under two different conditions.
•	 use if-elif to make multiple selections.
•	 use if-elif-else to make multiple selections.
•	 use for statements to make loops to run code blocks repeatedly.
•	 use while statements correctly and efficiently to put a code block in a loop.
•	 use break and continue statements correctly to change the flow of

program within the code block.

3.1 Selective with the if Statement
In Python, all selections are done with the if statement, which can take mul-
tiple forms. The following is a code sample showing how if is used to make a
single selection.

	176	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Code sample in Python interactive mode

1 """
2 Code sample showing how to use an if statement to have a

code block run under a certain condition
3 this piece of code is used to calculate the square root of

number n only if it is a positive number.
4 """
5 n = input('Tell me a number and I will tell you the square

root:')
6 n = float(n) # convert n from string to float
7 if n >= 0:
8 print(f"The square root of {n} is {n ** (1 / 2)}")
9
10
11

Note that a code block for if statements must begin on the next line after a
colon : and be properly indented, as shown below:

n = int(input("n = ?"))
if n >= 0:
 Code block

Note: Each code block must be properly indented to indicate what the code
block belongs to.

The conditions for an if statement can be any Boolean expression, as dis-
cussed in 2.1.

3.2 Single-branch selective with if Statement
In the above example, the program specifies only what to do when n >= 0 but
does not say what to do otherwise. With Python, you can further specify what
can be done if n >= 0 is not true. The following is a revised code sample—
it simply tells the user to input a positive number.

Code sample in Python interactive mode

1 """
2 Code sample showing how to use an if statement have a code

block run under a certain condition
3 this piece of code is used to calculate the square root of

number n only if it is a positive number
4 """

	 Flow Control of Statements	 177

 https://doi.org/10.15215/remix/9781998944088.01

5
6 n = float(input('Tell me a number and I will calculate the

square root for you:'))
7 if n >= 0:
8 print(f"The square root of {n} is {n ** (1 / 2)}")
9 else:
10 print ("Please give me a positive number!")

Note that no condition needs to be specified for an else clause because it implies
that the condition is the negation of the condition for that if clause—that is,
not n >= 0.

With the if and if-elif statements studied above, you can make single- or
two-branch selections, which are depicted in Figures 3-1 and 3-2.

3.3 Multiple-branch selective with if-elif-… and
if-elif-…-else Statements
In decision making, there can be multiple options, each of which requires
different actions to be taken. In Python, multiple selections can be made with
if-elif and if-elif-else statements. The logic flow of these two statements is
depicted in the following diagrams.

The flowchart in Figure 3-3 shows the logic flow of an if-elif-elif…elif state-
ment without else, which can be used to make multiple selections. The flowchart
in Figure 3-4 illustrates the logic flow of an if-elif-elif…else statement for mul-
tiple selections.

? Code block
Yes

No

Figure 3-1: Flowchart of an if statement

? Code block A

Code block B

Yes

Figure 3-2: Flowchart of an if-else statement

	178	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Now, you are ready to tackle a real problem: to decide what letter grade
should be assigned for a given numeric mark of a student in a course, accord-
ing to Table 3-1.

Table 3-1: Assignment of letter grade to numeric grade
Number of selections
needed Numeric grade (%) Alpha/letter grade

1 90–100 A+
2 85–89 A
3 80–84 A−
4 76–79 B+
5 73–75 B
6 70–72 B−
7 67–69 C+
8 64–66 C
9 60–63 C−

10 55–59 D+
11 50–54 D
12 0–49 F

?

CB 2

No

Yes

?

CB n

NoNo

Yes

?

CB 1

No

Yes

Figure 3-3: Flowchart of an if-elif-elif-elif… statement

?

CB 2

No

Yes

?

CB n

CB Else
NoNo

Yes

?

CB 1

No

Yes

Figure 3-4: Flowchart of an if-elif-elif-else statement

	 Flow Control of Statements	 179

 https://doi.org/10.15215/remix/9781998944088.01

The table shows only integer numeric grades, but decimal inputs, auto-
matically rounded to the nearest integer, are also allowed. The case study is
shown in Table 3-2.

Table 3-2: Case study: How to use if-elif-else

The problem In this case study, design a program using an if-elif-else statement
to convert numeric grades to alpha/letter grades.

The analysis
and design

As the above grade-conversion table shows, the program needs to
make 12 selections. For each selection, a letter grade will be printed
out when the numeric grade falls within the corresponding interval.

The code """
You are required to design a program using an if-elif-
else statement

to convert numeric grades to alpha letter/grades.
"""

number_grade = round(float(input("Please tell me a
numeric grade between 0 and 100:")))

if number_grade >= 90:
 print(f"alpha/letter grade for {number_grade}% is A+")
elif number_grade >= 85:
 print(f"alpha/letter grade for {number_grade}% is A")
elif number_grade >= 80:
 print(f"alpha/letter grade for {number_grade}% is A-")
elif number_grade >= 76:
 print(f"alpha/letter grade for {number_grade}% is B+")
elif number_grade >= 73:
 print(f"alpha/letter grade for {number_grade}% is B")
elif number_grade >= 70:
 print(f"alpha/letter grade for {number_grade}% is B-")
elif number_grade >= 67:
 print(f"alpha/letter grade for {number_grade}% is C+")
elif number_grade >= 64:
 print(f"alpha/letter grade for {number_grade}% is C")
elif number_grade >= 60:
 print(f"alpha/letter grade for {number_grade}% is C-")
elif number_grade >= 55:
 print(f"alpha/letter grade for {number_grade}% is D+")
elif number_grade >= 50:
 print(f"alpha/letter grade for {number_grade}% is D")
elif number_grade >= 0:
 print(f"alpha/letter grade for {number_grade}% is F")
else:
 print("Numeric grade must be a positive integer!")

The result Please tell me a numeric grade between 0 and 100: 88
alpha/letter grade for 88 is A

	180	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The code above didn’t explicitly specify the upper bounds of the intervals
shown in the grade conversion table because it takes advantage of the if-elif-
elif statement—that is, the upper bound of the current if condition has been implicitly
satisfied when the previous if condition is not satisfied, and the program flow gets
into the current elif selection. Taking the first elif statement as an example, since
the previous if condition is number_grade >= 90, when the condition is not satis-
fied and the program flow goes to the elif, the number_grade must be less than 90,
which is equal to number_grade <= 89, the upper bound of the first elif condition.

After you run the code on your computer, you may notice that for each
conversion, you have to rerun the program to get another chance to input a
numeric grade. How can you do as many conversions as you want until you tell
the program to stop? You’ll be able to do that after learning how to put a code
block in a loop in the next chapter.

CODING TRICK

How would you specify the conditions for the elif if you began from the
lowest numeric grade to make number_grade <= 49 for the if?

3.4 Iterate with for Statement
Computers can do many amazing things. Many of these amazing things can
only be done in thousands or even trillions of trillions of steps. Luckily, pro-
grammers don’t need to write trillions of trillions of statements in a computer
program, because computers can be instructed to run a block of statements
in a loop as many times as needed without complaint. As such, a programmer
must be able to correctly put code blocks in loops when programming. In
this and the next section of this chapter, you will learn how to use for statements
and while statements correctly and effectively to put code blocks in loops.

In Python, the for statement is one of only two statements that can be used to
make loops or iterations. In previous sections, you already saw some examples
using the for statement. Formally, a for loop takes the following form:

for <iteration variable> in <sequence to be looped through>:
 <Code Block>

in which for and in are keywords, and the iteration variable is used to take items
one by one from the sequence, which can be a list, a tuple, a string, or an iterable
object or generator, as you will see. The code block is a block of Python code to

	 Flow Control of Statements	 181

 https://doi.org/10.15215/remix/9781998944088.01

be executed in each iteration of the loop. The following example loops through
a list of integers and calculates the cube of each.

In []: for i in range(1, 11):
 print(f'The cube of {i} is {i * i * i}')

Out []: The cube of 1 is 1
The cube of 2 is 8
The cube of 3 is 27
The cube of 4 is 64
The cube of 5 is 125
The cube of 6 is 216
The cube of 7 is 343
The cube of 8 is 512
The cube of 9 is 729
The cube of 10 is 1000

A flowchart describing the for loop is shown in Figure 3-5.

Now we are ready to solve a more complex problem, shown in Table 3-3.

Table 3-3: Case study: How to display a multiplication table
The task Print a multiplication table from 1 * 1 to 9 * 9, and the result table

should be a right triangle.

Analysis
and
design

The resulting multiplication table should be a right triangle like this:
1 x 1 = 1
1 x 2 = 2 2 x 2 = 4
1 x 4 = 3 2 x 3 = 6 3 x 3 = 9
…
so we will need two loops: the outer one is used to loop through the

row, whereas the inner one loops through the column of each row.
The algorithm is as follows:

Step 1: Start a row I, I = 1, 2,…, 9
Step 2: Start a column j of row I, j = 1,…i
Step 3: Print j × I = j * i on the same line until I * i
Step 4: Go back to step 1 and finish all rows

Still unused item in
the sequence?

Get next item

Code block

Yes

No item unused

Figure 3-5: Flowchart of the for loop

(continued on next page)

	182	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

1 """
2 This program is used to print a multiplication table

from 1 x 1 to 9 x 9.
3 The table will be displayed nicely as a right

triangle. It uses two loops,
4 an outer loop for the rows and an inner loop for the

columns.
5 """
6
7 for i in range(1, 10):
8 for j in range(1, i + 1):
9 print(f"{i}x{j} = {i * j}", end = " ")
10 if j == i:
11 print("\n")
12

Output in
terminal

1 x 1 = 1
1 x 2 = 2 2 x 2 = 4
1 x 3 = 3 2 x 3 = 6 3 x 3 = 9
1 x 4 = 4 2 x 4 = 8 3 x 4 = 12 4 x 4 = 16
1 x 5 = 5 2 x 5 = 10 3 x 5 = 15 4 x 5 = 20 5 x 5 = 25
1 x 6 = 6 2 x 6 = 12 3 x 6 = 18 4 x 6 = 24 5 x 6 = 30 6 x 6 = 36
1 x 7 = 7 2 x 7 = 14 3 x 7 = 21 4 x 7 = 28 5 x 7 = 35 6 x 7 = 42 7 x 7 = 49
1 x 8 = 8 2 x 8 = 16 3 x 8 = 24 4 x 8 = 32 5 x 8 = 40 6 x 8 = 48 7 x 8 = 56

8 x 8 = 64
1 x 9 = 9 2 x 9 = 18 3 x 9 = 27 4 x 9 = 36 5 x 9 = 45 6 x 9 = 54 7 x 9 = 63

8 x 9 = 72 9 x 9 = 81

Our next problem, in Table 3-4, is to find all the Pythagorean triples of
integers less than an integer given by the user.

Table 3-4: Case study: How to find Pythagorean triples
The task Three integers—A, B, and C—are called a Pythagorean triple when C * C

= A * A + B * B.
This program will take an integer input by the user and find all the

Pythagorean triples of integers less than that integer.

Analysis
and
design

Step 1: Get input from user
Step 2: Find all the Pythagorean triples
Step 3: Print all the triples
Step 2.0: Make an empty list, say, plist =[]
Step 2.1: One loop for A = 1…user input
Step 2.2: One loop for B = 1…user input
Step 2.3: One loop for C = 1…user input
Step 2.4: If C * C = A * A + B * B, add the triple to the list plist

1 """

2 Three integers - A, B, and C - are called a
Pythagorean triple when C * C = A * A + B * B.

Table 3-3: Case study: How to display a multiplication table (continued)

	 Flow Control of Statements	 183

 https://doi.org/10.15215/remix/9781998944088.01

3 This program will take an integer input by the user
and find all the Pythagorean triples of integers
less than that integer.

4 """
5
6 upper_bound = int(input("Give me a big integer:"))
7 plist = []
8 for i in range(1, upper_bound + 1):
9 for j in range(i, upper_bound + 1):
10 for k in range(j, upper_bound + 1):
11 if k * k == j * j + i * i:
12 plist.append((i, j, k))
13 for i in plist:
14 print(i)
15
16
17

Output in
terminal

Give me a big integer:39
(3, 4, 5)
(5, 12, 13)
(6, 8, 10)
(7, 24, 25)
(8, 15, 17)
(9, 12, 15)
(10, 24, 26)
(12, 16, 20)
(12, 35, 37)
(15, 20, 25)
(15, 36, 39)

A for statement can have multiple iteration variables if needed. In order to
make it work, however, each item of the iteration sequence needs to have multiple
values for the multiple iteration variables, as shown in the following example:

for i, j in [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)]:
 print(f"{i} * {j} = {i * j}")

or

for i, j in zip(range(5), range(5)): # zip is a special
function
 print(f"{i + 1} * {j + 1} = {(i + 1) * (j + 1)}")

In the above, zip is a built-in function that takes an element from each
iterable and forms a tuple, as shown below:

>>> list(zip(range(5), range(5), range(6)))
[(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)]

Table 3-4: Case study: How to find Pythagorean triples (continued)

	184	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The function zip will stop making tuples when the shortest iterable has
reached the end.

Note that the following two statements are totally different:

for i in range(5):
 for j in range(5):
 print(f"{j + 1} * {i + 1} = {(i + 1)*(j + 1)}")z

versus

for i, j in zip(range(5), range(5)):
 print(f"{i + 1} * {j + 1} = {(i + 1)*(j + 1)}")

The first statement is two loops nested, whereas the second is a single loop.
You may copy and paste the code into Jupyter Notebook to find out why and how.

Using break and continue Statements and an else Clause Within
Loops
Chapter 2 discussed what the break statement and continue statement do.
Within a for loop, if you want to get out of the iteration immediately when some-
thing has occurred, you can use a break statement; if you want to go to the next
item in the iteration sequence right away, you can use a continue statement.

A for statement can also have an else clause whose code block will be exe-
cuted when the iteration sequence is used up. The following code example
taken from the Python documentation explains how the break statement and
else clause can be used on a for loop.

In []: for n in range(2, 10):
 for x in range(2, n):
 if n % x == 0:
 print(n, 'equals', x, '*', n // x)
 break # if break is ever executed, the else
code block will never be reached

 else: # the else code block is executed when
 range(2, n) is used up without finding a factor
 print(n, 'is a prime number')

Out []: 2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

	 Flow Control of Statements	 185

 https://doi.org/10.15215/remix/9781998944088.01

In the example above, pay particular attention to the indentation of else.
The else block is treated as a clause of the inner for statement because it
has the same indentation as the inner for. If it were indented the same as the
if statement, the else block would become part of the if statement.

Common Coding Mistakes with the for Loop
Because Python made the for loop to run an iteration variable or variables
through a sequence with a finite number of items, it has essentially avoided
some mistakes common in other languages such as C, C++, and Java. You should,
however, remember to not change the value of any iteration variable within
the code block of a for loop because it needs to be changed automatically by
Python interpreter to the next item in the sequence. The iteration might be
unexpected if the value of the iteration variable is changed in the code block.

3.5 Iterate with the while Statement
The while statement is another statement you can use to make loops. As dis-
cussed in Chapter 2, while is best used if you know when the loop should stop
but do not know how many times the code will iterate. For the problem solved
in the previous section, even though you also know when each loop should
stop, it can still be coded with the while statement, as shown below:

The code

1 """
2 This program is used to print a multiplication table from

1 x 1 to 9 x 9.
3 The table will be displayed nicely as a right triangle.

The two loops are coded with the while statement
4 instead of the for statement.
5 """
6
7 i = 1
8 while i < 10:
9 j = 1
10 while j <= i:
11 print(f"{j} x {i} = {i * j}", end ="")
12 if j == i: # if statement is used to decide when

to start a new line
13 print("\n")
14 j += 1
15 i += 1
16
17

	186	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

While a for loop can always be replaced with a while loop, a while loop cannot
be replaced with a for loop in cases where the number of iterations is unknown.

Consider the problem of calculating the average of the student marks taken
from user input. Either the total number of marks is unknown or you do not
expect the user to count how many marks they input, so it is not possible to use
a for loop to solve the problem. However, you do know there will be no negative
marks, which can then be used to indicate the end of the input. Hence, you can
use a while loop to take input from the user until you get a negative number
from the user. The program is shown in Table 3-5.

Table 3-5: Case study: How to stop a while loop

Code sample in VS Code IDE

The task Get student marks from user input and calculate the average mark, using
a negative number input by the user to indicate the end of marks.

Analysis
and
design

You don’t know how many marks will be input from the user, but you do
know there will be no negative marks. You can then use a negative
number, input by the user, to end the application and use the while
loop to iterate.

To calculate the average, you need to know the sum of all the marks
as well as the total number of marks. For the former, you need to
add each mark to the total, whereas for the latter, you need to use a
counter to count every mark. Use the variable total to keep the sum
and use the variable count to keep the number of marks. Both need to
be initialized to 0. The algorithm is below:

Step 1: Initialize both count and total to 0
Step 2: Take an input from user and convert it to a float number
Step 3: If the number is a mark (>= 0), then do the following:
 Step 3.1: Increase count by 1
 Step 3.2: Add mark to total
 Step 3.3: Get another input from user and convert to float
 Step 3.4: Go back to Step 3
Step 4: Calculate the average using total/count and print out the result.
Step 5: End the program

Is condition to
loop met?

Code block
Met

Not met

Figure 3-6: Flowchart illustrating the while loop

	 Flow Control of Statements	 187

 https://doi.org/10.15215/remix/9781998944088.01

Code sample in VS Code IDE

1 """
2 Program file name: averagemark.py
3 Application: this application takes marks from user

input and calculates the average mark.
4 A negative number from user input is used to

indicate the end of the program.
5 """
6
7 count, total = 0, 0 # two variables are

initialized in one assignment statement
8 mark = float(input("Please input a mark or a

negative number to end:"))
9 while mark >= 0:
10 total += mark
11 count += 1
12 mark = float(input("Please input next mark or a

negative number to end:"))
13 print(f"The average of the {count} marks is {total/count}")
14

Output in
terminal

Please input a mark or a negative number to end: 78
Please input next mark or a negative number to end: 89
Please input next mark or a negative number to end: 98
Please input next mark or a negative number to end: 88
Please input next mark or a negative number to end: 85
Please input next mark or a negative number to end: -1
The average of the 5 marks is 87.6

Similarly, we can also write a program that takes a list of student marks

and identify the lowest marks, the highest marks, and the mean, as shown

in Table 3-6.

Table 3-6: Case study: How to use a while loop statement

The problem In this problem, you will get a list of student marks and find out the
lowest, the highest, and the mean.

The analysis
and design

The steps involved are
Step 1: Start with an empty list
Step 2: Get marks in a loop and build a list
Step 3: Sort the list
Step 4: Get the lowest mark, the mean, and the highest mark from

the sorted list

Table 3-5: Case study: How to stop a while loop (continued)

(continued on next page)

	188	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The code """
Get a number of marks into a list, sort the list and
find the mean, max, and min.
"""

mark = int(input("Please input a mark or -1 to
complete:"))

marks = []
while mark >= 0:
 marks.append(mark)
 mark = int(input("Please input next mark or -1
to complete:"))

marks = sorted(marks)
ln = len(marks)
print(f"The lowest is {marks[0]}, mean is
{marks[ln // 2]}, highest is {marks[ln - 1]}")

print(marks)

The result The lowest is 25, mean is 65, highest is 85
[25, 32, 36, 54, 55, 58, 65, 66, 74, 77, 85, 85]

The next programming task for using a while loop is to write a program
that can take an integer from a user and decide whether the integer is a prime
number or not (see Table 3-7).

Table 3-7: Code sample: Prime number test

Code sample in VS Code IDE

The task Take an integer from a user and decide whether the integer is a
prime number or not.

Analysis and
design

A prime number is an integer greater than 1 that cannot be divided by
any of the integers between 1 and itself. The way to test this can be
very simple: try to divide that number by all the numbers between 1
and that number. If it can be divided, and the answer is a whole
number, then that number is prime. However, since i*j = j*i, we only
need to test integers <= square root of m to speed up the test. We
can assume the integer is a prime at the start of the test with a flag
initialized to True; if a number in the range discussed above is found
to be able to divide into the integer, the flag is changed to False and
the test is complete. If no such number is found until the end of
the range, the flag will remain True, and the number is a prime. The
algorithm is as follows:

Step 1: Get an integer from the user into variable n
Step 2: Initialize flag to True
Step 3: Initialize variable i to 2
Step 4: If i <= sqrt(n), do the following:

	 Flow Control of Statements	 189

 https://doi.org/10.15215/remix/9781998944088.01

Code sample in VS Code IDE

 Step 4.1: If n % m != 0, then m = m + 1; go to Step 4, else
 Step 4.2: If flag = False, break out and stop testing
Step 5: If flag = True, then number n is a prime; print it out
Step 6: End program

1 """
2 Program file name: primetest.py
3 Application: this program takes an integer from

user input and determines
4 whether it is a prime or not.
5 """
6
7 m = int(input("Give me an integer that is greater

than 1, and I will tell you if it is a prime: "))
8 flag = True
9 if m < 2:
10 print("The number must be greater than 1")
11 flag = False
12 else:
13 i = 2
14 while i< = m ** (1 / 2): # because i * j = j *

i, we only need to check integers < = sqrt(m)
15 if m % i == 0:
16 print(f"{m} is divisible by {i}, so that ",

end=" ")
17 flag = False
18 break
19 else:
20 i += 1
21 if flag:
22 print(f"{m} is a prime")
23 else:
24 print(f"{m} is not a prime")
25
26
27

Output in
terminal

Give me an integer that is greater than 1, and I will tell you if it is a
prime: 911

911 is a prime

Please note the break statement in the example above. It is used to get out
of the loop immediately by ignoring all the code before it without going back
to test the looping condition. This is a way to get out of a loop in the middle of
an iteration and is applicable to both the while loop and for loop.

Somewhat related to the break statement, the continue statement is used
within a loop to go back directly to the beginning of the iteration—testing the

Table 3-7: Code sample: Prime number test (continued)

	190	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

looping condition in a while loop or taking the next item of the sequence in a
for loop.

Common Coding Mistakes with a while Loop
As mentioned, the while loop is good for iterations in which the number
of iterations is unknown but the condition of looping is known. To ensure
that the loop will end as expected, the looping condition must be changed
within the code block of the while statement. Otherwise, the loop will go on
forever. To ensure that, there must be at least one variable within the code block
of the loop whose value needs to be changed during iterations. Such a variable
is called an iteration variable.

There are two common mistakes when using the while statement. The first
one is not correctly writing the looping condition, which could be coded so that
it is always true (hence, the iteration will keep going forever) or incorrectly
coded to become false at the wrong time. For example, if x < 0 is written in
place of x > 0 as the looping condition, the iteration would not finish as desired
or wouldn’t run at all.

The other common mistake people often make when using the while
statement is not coding the code block correctly to ensure that the following
conditions hold:

	 1.	 There will be at least one iteration variable within the code block of
the while loop.

	 2.	 The value(s) of iteration variable(s) must change within the code
block.

	 3.	 The logical expression of the looping condition is not correctly
written. This mistake may occur when inequal operators are involved
in the logical expression of the looping condition. For example, using
> in place of >=, or using < in place <=, will cause the program to miss
one iteration of the loop.

In the example we just mentioned above, if x is never changed within the code
block of the while loop, the value of the looping condition will remain the same,
and the iteration will keep going forever as well.

3.6 Iterate with for Versus while
The for loop is controlled by a variable going through a sequence with a finite
number of items. So essentially, the for loop is good for cases when the number
of iterations is known. Let’s take a second look at the example about finding

	 Flow Control of Statements	 191

 https://doi.org/10.15215/remix/9781998944088.01

the average mark for a class. Assume now that we know the class has 30 students
and we want the program to take the final marks of all students in the class and
calculate the average mark. Because the number of students in the class is known,
the for loop can be used to iterate, as shown below:

In []: total = 0
for i in range(30):
 mark = int(input("Please input a mark:"))
 total += mark
print(f'The average course mark is {total/30}.')

When the number of iterations is unknown, the while loop must be used,
in which case the condition for exiting from the loop must be known. In this
particular application, because no mark will be a negative number, we can use
negative numbers to signify the end of input, to end the iteration, as shown in
the following example:

In []: total, mark, count = 0, 0, 0
while mark >= 0:
 mark = int(input("Please input a mark:"))
 if (mark >= 0):
 total += mark
 count += 1
print(f'The average course mark of {count} students is
{total/count}.')

Out []: Please input a mark: 89
Please input a mark: 96
Please input a mark: 78
Please input a mark: 97
Please input a mark: 88
Please input a mark: -7
The average course mark of 5 students is 89.6.

In the example above, we use mark as an iteration variable to control the
loop. Initializing it with 0 = ensures that the looping condition (logical expres-
sion mark >= 0) is satisfied to start the iteration.

Since we know the logical expression (mark >= 0) is true when 0 is assigned
to mark, we can also simply use constant True in place of mark >= 0 and then
use an if statement with the break statement to get out of the loop when a
certain condition (condition to exit the loop) is met. The revised version of the
program is shown below:

	192	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: total, mark, count = 0, 0, 0
while True:
 mark = int(input("Please input a mark:"))
 if (mark >= 0):
 total += mark
 count += 1
 else:
 break

print(f'The average course mark of {count} students is
{total/count}.')

Out []: Please input a mark: 88
Please input a mark: 98
Please input a mark: 97
Please input a mark: 96
Please input a mark: 78
Please input a mark: -3
The average course mark of 5 students is 91.4.

In the previous section we mentioned that the while loop is an entry-
controlled iteration, which means that the code block of the loop statement
may not be executed at all if the entry condition is not met at the beginning. In
the example above, when we use True in place of the looping condition, it has
guaranteed that the code block will always be run at least once, and the itera-
tion could go on forever if a break statement is not used and executed when a
certain condition (condition to exit) is met. This has made while statement an
exit-controlled iteration. The flowchart of such iteration is shown in Figure 3-7.

Compared to the for statement, the while statement is more powerful and
its uses are more versatile. In fact, all code written with a for statement can
be rewritten with a while statement, though when looping through sequences,
coding with for statements is more elegant and more readable.

Condition to
exit

Code block

Condition to exit
is not met

Condition to exit
is met

Figure 3-7: Flowchart for a while loop

	 Flow Control of Statements	 193

 https://doi.org/10.15215/remix/9781998944088.01

Since we know how to put a code block in a while loop, we can improve the
grade conversion program written in the previous chapter so that we do not
have to rerun the program for each conversion (see Tables 3-8 and 3-9).

Table 3-8: Conversion between numeric grade and letter grade in
Alberta

Letter grade Percentage

A+ 90–100%

A 95–89%

A− 80–84%

B+ 77–79%

B 73–76%

B− 70–72%

C+ 67–69%

C 63–66%

C− 60–62%

D 55–59%

D 50–54%

F 0–49%

Table 3-9: Case study: How to make a grade converter

The problem In this case study, you are required to design a program using an
if-elif-else statement to convert as many numeric grades to alpha/
letter grades as needed until the user inputs -1 to stop.

The analysis
and design

In Canada, different provinces may use different conversion tables
for numeric grade to letter grade conversion. In this case study,
we take the one used in Alberta, as shown above. Based on the
conversion table, our program needs to make 12 selections; for
each selection, a letter grade will be printed out when the numeric
grade falls within the corresponding interval. Since we allow a
user to convert as many numeric grades as needed until the user
explicitly tells the program to stop by inputting -1, we will put the
above if-elif-elif multiple selection statements inside a while loop.
Note that for this problem, the for loop will not work because we
do not know how many times the loop will need to run.

(continued on next page)

	194	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The code """
Design a program using an if-elif-else statement
to convert numeric grades to alpha/ letter grades.
"""
number_grade = 0
while number_grade >= 0:
 number_grade = input("Please input a numeric grade
between 0 and 100 to convert; input -1 to exit:")

 number_grade = round(float(number_grade))
 if number_grade >= 90:
 print(f"alpha/letter grade for {number_grade}
is A+")

 elif number_grade >= 85:
 print(f"alpha/letter grade for {number_grade}
is A")

 elif number_grade >= 80:
 print(f"alpha/letter grade for {number_grade}
is A-")

 elif number_grade >= 76:
 print(f"alpha/letter grade for {number_grade}
is B+")

 elif number_grade >= 73:
 print(f"alpha/letter grade for {number_grade}
is B")

 elif number_grade >= 70:
 print(f"alpha/letter grade for {number_grade}
is B-")

 elif number_grade >= 67:
 print(f"alpha/letter grade for {number_grade}
is C+")

 elif number_grade >= 64:
 print(f"alpha/letter grade for {number_grade}
is C")

 elif number_grade >= 60:
 print(f"alpha/letter grade for {number_grade}
is C-")

 elif number_grade >= 55:
 print(f"alpha/letter grade for {number_grade}
is D+")

 elif number_grade >= 50:
 print(f"alpha/letter grade for {number_grade}
is D")

 elif number_grade >= 0:
 print(f"alpha/letter grade for {number_grade}
is F")

 else:
 print("Thank you for using this grade
converter!")

The result Please input a numeric grade between 0 and 100 to convert; input -1
to exit:96

alpha/letter grade for 96% is A+
Please input a numeric grade between 0 and 100 to convert; input -1

to exit:79
alpha/letter grade for 79% is B+
Please input a numeric grade between 0 and 100 to convert; input -1

to exit:67
alpha/letter grade for 67% is C+
Please input a numeric grade between 0 and 100 to convert; input -1

to exit:-1
Thank you for using this grade converter!

Table 3-9: Case study: How to make a grade converter (continued)

	 Flow Control of Statements	 195

 https://doi.org/10.15215/remix/9781998944088.01

Chapter Summary
•	 Knowing what to do at a given time and under certain conditions is

important for any intelligent being.
•	 Conditional statements are necessary and important constructs in all

programming languages.
•	 if, if-else, if-elif, if-elif-else are the constructs for conditional

statements.
•	 Each if, if-else, if-elif, if-elif-else statement represents a flow of

program execution.
•	 The if statement is for one selection. It will execute a code block if the

condition is met.
•	 The if-else statement is good for two selections.
•	 The if-elif and if-elif-else statements are good for multiple selections.
•	 The conditions behind if and elif are logical or Boolean expressions.
•	 Python has two constructs for iteration, the for statement and the while

statement.
•	 The for statement can be used to repeat a code block through each

member of an iterable, such as a list, tuple, or string, or an iterable
object such as range(…).

•	 When the iteration includes a for statement, the number of iterations
can be determined most of the time, unless the break statement is used
within the code block to break out from the loop.

•	 The while statement is used to iterate under certain conditions.
•	 The number of repetitions needed when using a while statement is

often unknown. One can be used with or without a break statement
within the code block.

•	 The continue statement can be used within the code block of a for or
while statement to directly go to the next iteration.

•	 Any for statement can be rewritten as a while statement.

Exercises
	 1.	 Mentally run the following code blocks and write down the output of

each code block.

a. m, n = 10, 20
if m * n < 1000:
 print('This is not enough!')

	196	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

b. m, n = 10, 3
if m // n == m / n:
 print(f'{m} // {n} = {m//n}')
else:
 print(f'{m} / {n} = {m/n}')

c. m, n = 13, 5
if m * 2 > n**2:
 print(f'{m} * {2} = {m*2}')
else:
 print(f'{n} ** {2} = {n**2}')

	 2.	 Mentally run each of the code blocks below and write down the output
of each code block:

a. for i in range(1, 6):
 print(f'The cube of {i} is {i*i*i}')

b. i, s = 1, 1
while i<=10:
 s *= i
 i += 1
print("the product of 1x2x3…10 is ", s)

c. total = 0
for i in range(10):
 total += i*2 +1
print(f'1+3+5+ … +19 = {total}')

d. number = 32
factors = []
for d in range(1, number):
 if number % d == 0:
 factors += [d]
print(f'factors of {number} are {factors}')

Projects
	 1.	 Write a program that gets three numbers from the user and displays the

biggest number among the three.
	 2.	 Write a program that gets a number from the user then says whether

the number is an even number or odd number.
	 3.	 Write a program that takes three numbers from the user as the lengths

of three lines, then determines if the three lines can make a triangle.
	 4.	 Write a program that takes three numbers from the user as the

lengths of three lines, then determines if the three lines can make a
triangle. If the three lines can make a triangle, the program should
further determine if the triangle is an equilateral triangle or an
isosceles triangle.

	 Flow Control of Statements	 197

 https://doi.org/10.15215/remix/9781998944088.01

	 5.	 Write a program that takes three numbers from the user as the lengths
of three lines, then determines if the three lines can make a triangle.
If the three lines can make a triangle, the program should further
determine if the triangle will be a right triangle.

	 6.	 Compound interest is a common practice in finance and banking,
allowing you to earn interest on interest as well as on the principal.
Assume that your bank offers a savings account with which you can
earn compound interest. The amount you deposit into the account is
p, and annual compound interest is r. By the end of n years after your
initial deposit, the account balance will be a = p(1 + r)n. For this project,
write a program that takes three numbers from the user as the initial
deposit, the annual interest, and the number of years that the user
wants the money to stay in the account. Calculate and display how
much money the user will have by the end of the nth year.

	 7.	 In some countries like Canada, tax on taxable personal income for a
year is calculated progressively according to a calculation table set for
the year, such as the one shown below:

Income
tax

15% on
the first
$48,534
or less

20.5% on
the next
$48,534

26% on
the next
$53,404

29% on
the next
$63,895

33% on
taxable
income
over
$214,368

Income $0–
$48,535

$48,536–
$97,069

$96,070–
$150,473

$150,474–
$214,368

over
$214,368

Write a program that takes taxable income from a user and calculates
the total income tax payable according to the table above.

	 8.	 A mortgage is the money borrowed from a lender for the purchase
of a property. Mortgages and mortgage payments are a big thing for
almost everyone. For a mortgage with principal of P at a fixed monthly
interest rate of r that needs to be paid off in Y years or 12 * Y = N
months, the monthly payment would be:

Write a program that takes the principal, fixed annual interest rate,
and years of amortization then calculates and displays the monthly
payment amount. Hint: You will need to work out the number of
months from number of years, and the monthly interest rate from the
annual interest rate.

	198	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

	 9.	 In the world of science and mathematics, the existence of some
constants has attracted the attention of many scientists and
mathematicians. Among those constants, pi π is the most well-known.
Many great efforts have been made to get a more precise value for π.
The following is a formula developed by Gottfried Leibniz for the
calculation of π.

Write a program that takes an integer from the user to specify the
number of terms used to calculate π. Calculate and display the
approximate value.

	 10.	 Three integers—A, B and C—are called a Pythagorean when C * C =
A * A + B * B. Write a program to take an input of integer from the
user and find all the Pythagorean triples of integers, none of which
are bigger than the integer taken from the user. For example, if the
number from the user is 6, then 5, 4, and 3 are a Pythagorean triple
because 52 = 42 + 32 = 25.

	 11.	 Compound interest is a common practice in finance and banking
to earn interest on interest as well as on the principal. Assume that
your bank offers you a deposit account through which you can earn
compound interest, the amount you deposit into the account is p, and
annual compound interest is r. By the end of n years after your initial
deposit, the account balance will be a = p(1 + r)n. For this project, get
p, r, and n from the user, then calculate and display a table showing
the balance, the interest earned each year, and the total interest
earned so far.

	 12.	 An integer is called a perfect number* if the sum of its factors,
excluding itself, is equal to the integer itself. For example, 6 is a
perfect number because 6 = 1 + 2 + 3, and 1, 2, and 3 are all its factors.
Write a program to get a number from a user, then determine if the
number is a perfect number. If yes, display all its factors.

	 13.	 For a given integer n, if another integer m can divide n, then m is
called a factor of n. In mathematics, finding all factors of a given
integer is an important operation, especially for cryptography. Write
a program that takes an integer from the user and determine and
display all the factors of the number given by the user.

* By definition, a perfect number is a positive integer that is equal to the sum of all its divisors,
excluding itself but including 1. The smallest perfect number is 6, which is equal to the sum of
1, 2, and 3.

	 Flow Control of Statements	 199

 https://doi.org/10.15215/remix/9781998944088.01

	 14.	 Read a series of float numbers from the user and calculate and display
the average of all the numbers given by the user. Assume that the
number of float numbers is unknown but that a negative number is
used to indicate the end of the input.

	 15.	 For a mortgage with a principal of P at a fixed monthly interest rate of
r that needs to be paid off in Y years or 12 * Y = N months, the monthly
payment would be:

Continuing the project you did above for project 8, calculate a table
showing the interest and principal paid each month and the principal
balance at each month’s end.

This page intentionally left blank

 https://doi.org/10.15215/remix/9781998944088.01

Chapter 4

Handle Errors and
Exceptions in Programs

Errors in programs are inevitable but must be handled elegantly when they
occur. In this chapter, you will learn how to raise and handle exceptions when
errors occur in programs.

Learning Objectives
After completing this chapter, you should be able to

•	 explain different types of errors and exceptions that may occur in a
Python program.

•	 write down the specific codes for some common types of exceptions.
•	 use the try statement properly to handle possible exceptions raised by

potential errors in a block of program code.
•	 understand the cause of the following messages:

◾	 TypeError
◾	 NameError
◾	 RuntimeError
◾	 OSError
◾	 ValueError
◾	 ZeroDivisionError
◾	 AssertionError
◾	 FileNotFoundError

•	 understand how to purposely throw an exception using a raise
statement in a program.

•	 use an assert statement to prevent future exceptions in a program.
•	 list user-defined exceptions.
•	 define a class of exceptions.

	202	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

4.1 Errors in Your Programs
It is not unusual to have errors in your programs, especially for beginners. There
are three types of errors in computer programs: syntax errors, runtime errors, and
logic errors. If you program in a modern IDE such as VS Code, syntax errors can
be easily avoided because whenever there is incorrect syntax, such as a misspelled
keyword, you will be alerted by the IDE. Modern IDEs can even detect whether an
identifier is used properly, such as when an undefined function is called or the
value of a variable is used but no value has been previously assigned to the variable.

On the other hand, runtime errors only happen during the runtime of pro-
grams. Runtime errors are the most irritating to users and should be caught
and handled gracefully in programs.

Logic errors are those caused by incorrect logic or operation in a program
for a given problem or task. The following are some examples of logic errors:

	 1.	 An incorrect operator is used in an expression or statement, such as
use + instead of −, > instead <, or vice versa.

	 2.	 The boundary of a sequence is miscounted.

Compared to syntax errors and runtime errors, the consequences of logic errors can
be more costly because they often cause the program to produce incorrect results.
It is even more concerning because logic errors often remain undetected until
someone realizes that the result from the program is not what was expected. For
example, syntax and runtime errors will produce no result, which will be immedi-
ately noticed by the user, whereas an incorrect result often goes unnoticed till it
causes unexpected consequences, such as a missile being sent to the wrong target.

No programming techniques can help eliminate logic errors. It is up to the
programmers to make the logic correct. That is why computer programmers
should also take certain math courses.

Because Python programs are normally interpreted without compilation,
syntax errors such as misspelled keywords are often found at runtime as well
(unless the programs were developed in a smart IDE that can help identify the
syntax errors while programming). However, the exception-handling mechan-
ism provided by Python or other programming is not intended to catch syntax
errors. You, as a programmer, must ensure that the programs you write use
correct syntax, with the help of an IDE whenever is available.

You may be wondering what errors can be handled by the exception-handling
mechanism provided by Python. The following is a long list of exception classes, all
of which can be caused by errors in programs. The try-except statement provided
by Python to handle exceptions and errors uses the names of exception classes to

	 Handle Errors and Exceptions in Programs	 203

 https://doi.org/10.15215/remix/9781998944088.01

identify particular exceptions caused by specific errors. Remember at least the
names of these commonly occurring exceptions or know where to find them.

Exception
This is the superclass of all exception classes to be detailed below. In the code
sample below, any error will be caught and treated the same because it has
“Exception” in the list of exceptions behind the except clause.

In []: try:
 n = int(input('Give me an integer:'))
 m = int(input('Give me another integer:'))
 n /= m # divide n by m
except Exception:
 print('Wrong: It is not an integer or m is 0')

Out []: Give me an integer: 12
Give me another integer: 0
Wrong: It is not an integer or m is 0

In this particular case, m was given 0 so that the exception was caused by
dividing n by 0, but the except clause could not tell because “Exception” is not
a specific exception class.

When programming, you should put a code block in a try-except statement if
you know that an error or errors might occur and you may even know what kind
of error it may be. You want to have the errors handled elegantly. In the sample
code above, because we ask for input from users and there is no guarantee that
the user will not input a 0 for m, which will be used as the denominator or divisor,
we put the code in a try-except to handle the possible exception raised by the error.
Otherwise, the program would stop with a report of the error, as shown below:

In []: n = int(input('Give me an integer:'))
m = int(input('Give me another integer:'))
n /= m # divide n by m

Out []: Give me an integer: 12
Give me another integer: 0

ZeroDivisionError Traceback (most recent call last)
<ipython-input-2-d0d8abede315> in <module>
1 n = int(input('give me an integer:'))
2 m = int(input('give me another integer:'))
-> 3 n /= m # divide n by m

ZeroDivisionError: division by zero

	204	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The use of the try-except statement will be explained in the next section.
For now, just remember the code lines between try and except are part of the
program to be executed for the application, while the code under the except
header tells what to do when a given exception has occurred.

ArithmeticError
The base class of all arithmetic errors, including OverflowError, ZeroDivision-
Error, and FloatingPointError, which means except ArithmeticError would be
the same as except (OverflowError, ZeroDivisionError, FloatingPointError).
Note that when there are multiple error names behind the except keyword, a
pair of parentheses is used to enclose them.

OverflowError
This subclass of ArithmeticError is raised when the result of an arithmetic
operation is too large to be represented.

A coding example of catching arithmetic errors like this is shown below:

In []: try:
 x = pow(123567,999999)
 print(f'Big x has {len(str(x))} digits')
except OverflowError:
 print('It has overflowed because the number is too
big')

Out []: Big x has 5091898 digits

The code in the try clause calculates the power of 123567 to 999999 or
123567**999999. The code is put in a try-except statement because the result
is expected to be very big and may overflow. Though the result has over five
million digits, no exception is raised because the design and implementation
of Python can handle very big numbers.

ZeroDivisionError
ZeroDivisionError is raised when the divisor of a division or module operation
is 0. With this very specific exception/error name, the earlier example of this
section can be rewritten as shown below:

In []: try:
 n = int(input('Give me an integer:'))
 m = int(input('Give me another integer:'))
 n /= m # divide n by m
except ZeroDivisionError:
 print('Wrong: 0 cannot be used as a divisor!')

	 Handle Errors and Exceptions in Programs	 205

 https://doi.org/10.15215/remix/9781998944088.01

Out []: Give me an integer: 23
Give me another integer: 0
Wrong: 0 cannot be used as a divisor!

FloatingPointError
FloatingPointError is raised when a floating-point operation fails. However,
Python does not raise such errors by default in its standard distribution. You
will need a Python built with the -- with-fpectl flag, and import a module called
fpectl when you want to turn the floating-point error control on or off.

AssertionError
AssertionError is raised when the assert statement fails. The assert statement
is used to make an assertion on an assumed fact, such as whether a variable is
defined, whether a variable is holding a specific value, or whether a value
is a member of a sequence or set. If the assumed fact is not True, an Asser-
tionError will be raised so that we know the assumed fact is untrue and we
may need to deal with it, such as doing something else in the absence of the
assumed fact.

In []: vs = list(range(19)) # create a list with 19 members
indexed from 0 to 18

assert(20 in vs) # 20 is not in the list

Out []: ----------------------------------
AssertionError Traceback (most recent call last)
<ipython-input-14-5a912881af6c> in <module>
1 vs = list(range(19)) # create a list with 19 members indexed from 0 to 18
----> 2 assert(20 in vs) # 19 is out of the range > 18

AssertionError:

AttributeError
AttributeError is raised when an attribute assignment or reference fails. Such an
error will occur if you use an attribute of an object but the attribute itself does
not exist.

In []: class Student:
 pass
s0 = Student()
s0.firstname = 'John'
s0.lastname = 'Doe'
print(s0.fullname)

	206	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Out []: ----------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-15-5dc5b1212e9f> in <module>
6 s0.lastname = 'Doe'
7
----> 8 print(s0.fullname)

AttributeError: 'Student' object has no attribute 'fullname'

BufferError
BufferError is raised when a buffer-related operation cannot be performed.
This often happens when working directly with computer memory and making
restricted changes to a given memory area (buffer). The following is an example:

In []: import io
data = b'Hello, Python!' # this creates a bytearray
darray = io.BytesIO(data) # this creates a read-write
copy of the bytearray

dbuff = darray.getbuffer() # the memory of the
bytearray is exported

darray.write(b'Hello World!') # raise error because
the buffer is not changeable

Out []: ----------------------------------
BufferError Traceback (most recent call last)
<ipython-input-23-dc2c4a5f6bbd> in <module>
3 darray = io.BytesIO(data) # this creates a read-write copy of the

bytearray.
4 dbuff = darray.getbuffer() # the memory of the bytearray is exported
--> 5 darray.write(b'Hello World!') # raise error because the buffer is not

changeable

BufferError: Existing exports of data: object cannot be re-sized

EOFError
EOFError is raised when the input() function hits the end-of-file condition.

GeneratorExit
GeneratorExit is raised when a generator’s close() method is called.

ImportError
ImportError is raised when the imported module is not found.

	 Handle Errors and Exceptions in Programs	 207

 https://doi.org/10.15215/remix/9781998944088.01

IndexError
IndexError is raised when the index of a sequence is out of range.

In []: vs = list(range(19)) # create a list with 19 members
indexed from 0 to 18

vs[19] *= 3 # 19 is out of the range > 18

Out []: ----------------------------------
IndexError Traceback (most recent call last)
<ipython-input-3-47e31ad8b75b> in <module>
1 vs = list(range(19))
----> 2 vs[19] *= 3

IndexError: list index out of range

KeyError
KeyError is raised when a key is not found in a dictionary.

In []: vdict = {1:'One', 2:'Two', 3:'Three'} # create a
dictionary

vdict[5] # the dictionary doesn't have key 5

Out []: ----------------------------------
KeyError Traceback (most recent call last)
<ipython-input-4-3011ee6a346e> in <module>
1 vdict = {1:'One', 2:'Two', 3:'Three'}
----> 2 vdict[5]
KeyError: 5

KeyboardInterrupt
KeyboardInterrupt is raised when the user hits the interrupt key (Ctrl+C or
Delete).

MemoryError
MemoryError is raised when an operation runs out of memory.

ModuleNotFoundError
ModuleNotFoundError is raised by import when a module could not be located,
or None is found in sys.modules.

In []: import fpectl # import module fpectl for floating-
points control

round(14.5/0, 3)

	208	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Out []: -----------------------------------
ModuleNotFoundError Traceback (most recent call last)
<ipython-input-8-3808b892163e> in <module>
----> 1 import fpectl
2 round(14.5/0, 3)

ModuleNotFoundError: No module named 'fpectl'

NameError
NameError is raised when a variable is not found in the local or global scope.

In []: print(what) # print the value of variable named what,
undefined

Out []: ----------------------------------
NameError Traceback (most recent call last)
<ipython-input-1-8b57ddde6300> in <module>
----> 1 print(what)

NameError: name 'what' is not defined

NotImplementedError
NotImplementedError is raised by abstract methods such as when an abstract
method is called.

OSError
OSError is raised when a system operation causes a system-related error.

BlockingIOError
BlockingIOError is a subclass of OSError, raised when an operation would block
on an object (e.g., a socket) set for a nonblocking operation.

ChildProcessError
ChildProcessError is a subclass of OSError, raised when an operation on a child
process fails.

ConnectionError
ConnectionError is a subclass of OSError and a base class for connection-
related issues.

	 Handle Errors and Exceptions in Programs	 209

 https://doi.org/10.15215/remix/9781998944088.01

BrokenPipeError
BrokenPipeError is a subclass of ConnectionError, raised when trying to write
on a pipe while the other end has been closed or when trying to write on a
socket that has been shut down for writing.

ConnectionAbortedError
ConnectionAbortedError is a subclass of ConnectionError, raised when a con-
nection attempt is aborted by the peer.

ConnectionRefusedError
ConnectionRefusedError is a subclass of ConnectionError, raised when a
connection attempt is refused by the peer.

ConnectionResetError
ConnectionResetError is a subclass of ConnectionError, raised when a con-
nection is reset by the peer.

FileExistsError
FileExistsError is a subclass of OSError, raised when trying to create a file or
directory that already exists.

FileNotFoundError
FileNotFoundError is a subclass of OSError, raised when a file or directory
is requested but does not exist.

IsADirectoryError
IsADirectoryError is a subclass of OSError, raised when a file operation is
requested on a directory.

NotADirectoryError
NotADirectoryError is a subclass of OSError, raised when a directory oper-
ation is requested on something that is not a directory.

PermissionError
PermissionError is a subclass of OSError, raised when trying to run an operation
without adequate access rights such as filesystem permissions.

	210	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

ProcessLookupError
ProcessLookupError is a subclass of OSError, raised when a given process
doesn’t exist.

TimeoutError
TimeoutError is a subclass of OSError, raised when a system function has timed
out at the system level.

RecursionError
RecursionError is a subclass of Exception, raised when the maximum recursion
depth set by the system is exceeded. The set recursion depth can be found by
calling sys.getrecursionlimit().

ReferenceError
ReferenceError is a subclass of Exception, raised when a weak reference proxy
is used to access a garbage collection referent.

RuntimeError
RuntimeError is raised when an error does not fall under any other category.

StopIteration
StopIteration is raised by the next() function to indicate that there is no further
item to be returned by the iterator.

StopAsyncIteration
StopAsyncIteration is raised by the __anext__() method of an asynchronous
iterator object to stop the iteration.

SyntaxError
SyntaxError is raised by the parser when a syntax error is encountered.

In []: s = 0
for i in range(10) # a colon is missing which will
cause a syntax error

 s += i

Out []: File '<ipython-input-16-6e54ba8cdb35>', line 2
for i in range(10)
 ^
SyntaxError: invalid syntax

	 Handle Errors and Exceptions in Programs	 211

 https://doi.org/10.15215/remix/9781998944088.01

IndentationError
IndentationError is raised when there is an incorrect indentation. Such errors
may occur quite often at the beginning of your study of Python programming.
You must pay great attention to it because indentation matters a lot in Python
programs/scripts.

In []: s = 0
while i < 10:
 s += i
 i += 1# not indented the same

Out []: File '<tokenize>', line 4
 i += 1 # not indented the same
 ^
IndentationError: unindent does not match any outer indentation level

TabError
TabError is raised when the indentation consists of inconsistent tabs and spaces.
Indentations can be made of spaces and tabs, but they need to be consistent
to avoid such errors.

SystemError
SystemError is raised when the interpreter detects an internal error.

SystemExit
SystemExit is raised by the sys.exit() function.

TypeError
TypeError is raised when a function or operation is applied to an object of an
incorrect type.

In []: sm = 10 + 'twenty' # computer doesn't know twenty is
20

Out []: ----------------------------------
TypeError Traceback (most recent call last)
<ipython-input-19-a90f29de94a2> in <module>
----> 1 sm = 10 + 'twenty'
TypeError: unsupported operand type(s) for +: 'int' and 'str'

	212	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

UnboundLocalError
UnboundLocalError is raised when a reference is made to a local variable in a
function or method but no value has been bound to that variable.

UnicodeError
UnicodeError is raised when a Unicode-related encoding or decoding error occurs.

UnicodeEncodeError
UnicodeEncodeError is raised when a Unicode-related error occurs during
encoding.

UnicodeDecodeError
UnicodeDecodeError is raised when a Unicode-related error occurs during decoding.

UnicodeTranslateError
UnicodeTranslateError is raised when a Unicode-related error occurs during
translation.

ValueError
ValueError is raised when a function gets the correct type of argument but an
improper value.

In []: i = int('ten') # int doesn't convert ten into 10

Out []: ----------------------------------
ValueError Traceback (most recent call last)
<ipython-input-20-6bbb9f319a0e> in <module>
----> 1 i = int('ten')

ValueError: invalid literal for int() with base-10: 'ten'

The following is a sample program to show how errors should be handled
in a Python program:

a python program to show how errors and exceptions are
handled

ask the user to enter two numbers
num1 = input("Enter the first integer number: ")
num2 = input("Enter the second integer number: ")

	 Handle Errors and Exceptions in Programs	 213

 https://doi.org/10.15215/remix/9781998944088.01

try to convert the inputs to floats and divide them
try:
 result = int(num1) / int(num2)
 print(f"The result of dividing {num1} by {num2} is
{result}.")
handle the possible errors and exceptions
except ValueError:
 print("Invalid input. Please enter numbers only.")
except ZeroDivisionError:
 print("Cannot divide by zero. Please enter a nonzero
number.")
except Exception as e:
 print(f"An unexpected error occurred: {e}")

The following exception will be raised when you run the code but input a
literal instead of an integer:

Invalid input. Please enter numbers only.

If you type a 0 for the second input, the following exception will be raised:

Cannot divide by zero. Please enter a nonzero number.

Note that in real applications, you may not want a user to restart the pro-
gram when an error has occurred. Instead, you may want to let the program
continue until the user has given a valid input.

a python program to show how errors and exceptions are
handled

initialize a flag to indicate if the division is
successful
success = False

use a while loop to keep asking for inputs until
success is True
while not success:
 # ask the user to enter two numbers
 num1 = input("Enter the first number: ")
 num2 = input("Enter the second number: ")

	214	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

 # try to convert the inputs to floats and divide them
 try:
 result = int(num1) / int(num2)
 print(f"The result of dividing {num1} by {num2}
is {result}.")
 # set success to True if no error occurs
 success = True
 # handle the possible errors and exceptions
 Zexcept ValueError:
 print("Invalid input. Please enter numbers
only.")
 except ZeroDivisionError:
 print("Cannot divide by zero. Please enter a
nonzero number.")
 except Exception as e:
 print(f"An unexpected error occurred: {e}")

This will ensure the program will continue until two integer numbers are
received and the division is successful.

Now let us solve a real problem: write a Python program to find all perfect
numbers in a given range set by a user. A perfect number is an integer number
that is equal to the sum of all factors, including 1 but excluding itself. For example,
6 is a perfect number because 6 = 1 + 2 + 3, and 1, 2, and 3 are all its factors.

So basically, the steps to take, or the algorithm, will be as follows:

	 1.	 Get two integers from user to set the range, assigned to a and b,
respectively. If a is greater than b, then we swap their values.

	 2.	 Loop through all the numbers between a and b, including a and b, and
test each number to see if it is a perfect number; if yes, we add it to
a list holding perfect numbers found so far. The list should be set as
empty at the beginning.

	 3.	 Print out all the perfect numbers in the list, and stop.

To test a number to see if it is perfect, according to the definition above, we
need to first find out its factors and check whether the sum of all the factors is
equal to the number itself. So there will be two additional steps:

	 2.1.	 Find out all the factors, and keep them all in a list.
	 2.2.	 Check whether the number is equal to the sum of all its factors in the

list built up in step 2.1.

	 Handle Errors and Exceptions in Programs	 215

 https://doi.org/10.15215/remix/9781998944088.01

The following is one implementation of the algorithm in Python, taken
from a Jupyter Notebook cell:

a python program to find all the perfect numbers in a
range
set by the user

first get two integers from user
initialize a flag to indicate if the division is
successful
success = False

use a while loop to keep asking for inputs until
success is True
while not success:
 # ask the user to enter two numbers
 num1 = input("Enter the first number: ")
 num2 = input("Enter the second number: ")

 # try to convert the inputs to floats and divide them
 try:

 a, b = int(num1), int(num2)

 # set success to True if no error occurs
 success = True

 if a>b: # then we need to swap a and b
 c = a
 a = b
 b = c
 perfect_list = [] # make an empty list ready to
hold all perfect numbers
 for n in range(a, b+1): # we said b is included
 # start finding all factors of n
 factor_list = [1] # make a list with 1 as a
single element
 for f in range(2,n): # start from 2, with n
as excluded from factors
 if n%f == 0: # f is a factor of n

	216	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

 if n%f == 0: # f is a factor of n
 if not f in factor_list:
 factor_list.append(f)
 # now we have a list of factors for n
 if n == sum(factor_list): # n is a perfect
number
 perfect_list.append([n, factor_list]) #
keep factors too for checking
 # now we have found all the perfect numbers in
the range
 print(f"Perfect numbers found between {a} and
{b}:")
 for n in perfect_list:
 print(n, end=" ")

 # handle the possible errors and exceptions
 except ValueError:
 print("Invalid input. Please enter numbers
only.")
 except ZeroDivisionError:
 print("Cannot divide by zero. Please enter a
nonzero number.")
 except Exception as e:
 print(f"An unexpected error occurred: {e}")

When running the program with Jupyter Notebook in VS Code, by pressing
Ctrl+Enter and inputting 3 and 1000 for the two numbers requested, the fol-
lowing output will be produced:

Perfect numbers found between 3 and 1000:
[6, [1, 2, 3]] [28, [1, 2, 4, 7, 14]] [496, [1, 2, 4, 8, 16, 31, 62, 124, 248]]

The output shows both the perfect numbers and a list of their factors.

4.2 Handling Runtime Errors and Exceptions
The runtime errors and exceptions discussed can be fatal or nonfatal. By a non-
fatal error, we mean that when the error occurs, the program can still continue
if it is properly handled. In contrast, when a fatal error occurs, the program
stops and has to be fixed before you can restart the program.

	 Handle Errors and Exceptions in Programs	 217

 https://doi.org/10.15215/remix/9781998944088.01

When programming, since runtime errors (or “exceptions,” to use a more
techie term) are unavoidable, the best a programmer can do is to have all
exceptions caught and handled properly when they occur. Otherwise, what
renders to the users when an error has occurred could be overwhelming
and irritating. Consider the following code example, which simply asks for
a numeric grade.

In []: grade = int(input('Please input your grade: '))

When a letter grade is entered instead, a runtime error occurred, and Python
interpreter or Python Virtual Machine (PVM) renders a bunch of information
about the error, as shown below:

Out []: Please input your grade: A

ValueError Traceback (most recent call last)
<ipython-input-13-d0126eb94acb> in <module>
----> 1 grade = int(input('Please input your grade: '))

ValueError: invalid literal for int() with base-10: 'A'

Although the information above may be helpful for programmers to debug
the code and correct the error, it is completely useless for ordinary users. For
that reason, all modern programming languages provide some way to handle
runtime errors and exceptions so that only sensible information can be seen
by users and, in most cases, programs can continue and recover from errors
peacefully, without crashing.

Similar to those in other modern programming languages, Python excep-
tions are handled with a try statement. The general coding structure of try
statements is as follows:

the try clause is for enclosing a code block of the
program
in which errors may occur
try:
 <code block in the normal code flow> # things to do
normally

except <exception/error 1>: # the except clause is for
handling errors

	218	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

 <code block for exception 1> # things to do if
exception 1 happens

except <exception/error 2>: # except clause may have a
list of errors
 <code block for exception 2> # things to do if
exception 2 happens

except <exception/error 3>: # there can be more
exceptions
 <code block for exception 3> # things to do if
exception 3 happens

else: # do something when no error has occurred
 <code block for else> # things to do when no
exceptions are raised

finally: # finally clause allows to do something
regardless of the above
 <code block for finally> # things to do regardless of
the above

As shown, a try statement starts with a try clause, which encloses the
code that you want to run for the application but may cause errors and raise
exceptions.

Right after the try clause is one or more exception clauses, each of which
starts with the keyword “except,” followed by a system-defined error/exception
name. The code of each exception clause specifies what you want to do if this
error happens.

In []: try:
 grade = int(input('Please input your grade: '))
except ValueError as e:
 print('Exception has been raised! ', e)

Out []: Please input your grade: A
Exception has been raised! invalid literal for int() with base-10: 'A's

Note that in the code above, ValueError is the name of a built-in exception
class. We put this code in a try statement because you do not know whether
the user will type an integer as expected. If a nonnumber is typed, an error
will occur for function int.

	 Handle Errors and Exceptions in Programs	 219

 https://doi.org/10.15215/remix/9781998944088.01

The else clause encloses the code specifying what to do if no errors are
caught by all the exception blocks.

The finally clause encloses the code that will run regardless of whether any
exception has been raised within the try clause.

Now comes the question of when you need to put a code block in a try state-
ment. You cannot put every piece of code in a try statement. The rule is that
if a statement or block of code may cause an error during runtime, especially
when the possibility is out of your control, the statement or code should be
enclosed in a try statement and each of the possible errors should be handled
properly. Examples of such a possibility may include the following situations:

	 1.	 Statements involve user input, because you never know if a user will
do what you expected.

	 2.	 Statements involve the use of files, because there is no guarantee as to
the status of the file. It may have been deleted when you want to read
it; it may already have existed when you want to create a new one with
same name.

	 3.	 Statements involve the use of resources on the web or on the internet
in general because the resources may no longer be available.

	 4.	 Statements involve the use of numbers from user input or involve
calculation, where 0 may end up as a denominator.

	 5.	 Statements involve extensive use of computer memory, which may
lead to the depletion of RAM.

Chapter Summary
•	 Programs can have syntax errors and logic errors.
•	 Errors that are found when running the program are runtime errors.
•	 A good IDE can often help you avoid many syntax errors, including

undefined names, incorrect indentation, incorrect formation of
statements, and more. If there are syntax errors in your program, look
for marks that your IDE may have added to indicate them in your code.

•	 Logic errors are caused by incorrect problem solving or programming
logic. Examples include values that are out of the intended range and
the incorrect use of operators or functions.

•	 Some logic errors can raise exceptions at runtime. For example, if an
index variable for a sequence (string, list, or tuple) is out of range, an
exception will be raised.

•	 Some logic errors can only be discovered by programmers, system testers,
or users who notice an unexpected result or behaviour in the system.

	220	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

•	 A Python interpreter or virtual machine will raise exceptions when a
runtime error has occurred. If exceptions are not caught and properly
handled, the application or system will crash and become very ugly.

•	 Python and many other modern programming languages use try-except
statements to handle exceptions.

•	 In Python, a try statement may take one of five forms: try-except,
try-except-else, try-except-finally, try-except-else-finally, and
try-finally.

•	 Between try and except, there should be a code block that may have
runtime errors (such as incorrect input from users, files, or network
sockets). The try keyword and the code block together form a try
clause; right behind the except keyword, there should be the name or
names of errors, followed by a code block to be run when the named
error or errors occurred, which together form an except clause.

•	 A try clause can be followed by multiple except clauses.
•	 An except clause can be followed by an else clause, which consists of

the else keyword and a code block to be run when an error has occurred
but didn’t match any of the named errors in the except clauses.

•	 The finally clause can be used as a final clause of a try statement. It
consists of the finally keyword and a code block that is to be run in all
circumstances, whether an error has occurred or not.

Exercises
	 1.	 Suppose that you want to get an integer from a user, but you are

concerned that the user may type something else other than an
integer. Write a piece of code, as concise as possible, that asks the user
for input until an integer is entered by the user.

	 2.	 What error will occur when running the following code?
	 a.	 s = 8 + 'a'
	 b.	 students = ['John', 'May', 'Jim']
	 c.	 total = sum(12, 90, 32, 'one hundred')

	 3.	 What’s wrong with the following code?

idx = 1
product = 0
while idx>10:
 product *= idx
 idx++
print(product)

 https://doi.org/10.15215/remix/9781998944088.01

Chapter 5

Use Sequences, Sets,
Dictionaries, and Text Files

Chapter 5 details how compound data types and files can be used in program-
ming to solve problems. Data need to be structured and organized to represent
certain kinds of information and to make problem solving, information process-
ing, and computing possible and more efficient. In addition to integer, float,
and complex numbers, Python provides compound data types to represent
more complicated information. These compound data types include strings,
lists, tuples, sets, and dictionaries, as well as files that can be used to store
a large volume of data in the long term (after the computer is shut off).

Learning Objectives
After completing this chapter, you should be able to

•	 explain sequences.
•	 explain strings and the methods and functions that can be applied to

them.
•	 construct and format strings with the f prefix and the format method.
•	 discuss lists and tuples and the differences between the two.
•	 properly use the methods and functions of lists and tuples.
•	 explain sets and dictionaries and discuss the methods and functions

that can be used on them.
•	 explain files and discuss the differences between text files and binary

files and the methods and functions available for manipulating files.
•	 use strings, lists, tuples, sets, dictionaries, and files in problem solving

and system design and development with Python.

	222	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

5.1 Strings
The string is one of the most important data types for information representa-
tion and processing. Strings are the base of information and data, and they
were used to structure the sequences of characters for the ASCII table in the
early days of modern computers. They are still used the same way now in UTF-8
(8-bit Unicode Transformation Format Unicode), which includes characters for
all human languages in the world.

Because strings are sequences of characters, the characters are ordered
and indexed. We can access and manipulate individual characters through these
indexes, starting from 0, as shown in the following example:

>>> name = "John Doe"
>>> name[0]
"J"
>>> name[3]
"n"

To construct a string from another data type, you use built-in function str(),
as shown in the following example:

>>> tax_rate = 0.16
>>> tax_string = str(tax_rate)
>>> tax_string
'0.16'
>>> type(tax_string)
<class 'str'>

Methods of Built-In Class str
As is the case with some other object-oriented programming languages, string
is a built-in class but is named str in Python. The str class has many powerful
methods built into it, as detailed below with coding samples.

S.CAPITALIZE()
This converts the first character of the first word of string s to upper case and
returns the converted string. Please note that characters in string s remain
unchanged. This is the same for all string methods: no string method will alter
the content of the original string variable. Rather, the method will make a copy
of the content, manipulate the copy, and return it.

	 Use Sequences, Sets, Dictionaries, and Text Files	 223

 https://doi.org/10.15215/remix/9781998944088.01

>>> s = "intro to programming with python"
>>> s_capitalized = s.capitalize()
>>> s_capitalized
'Intro to programming with python'
>>> s
'intro to programming with python'

S.CASEFOLD()
Converts all characters of string s into lower case and returns the converted
characters.

>>> s_capitalized
'Intro to programming with python'
>>> s_capitalized.casefold()
'intro to programming with python'

S.CENTER(SPACE)
Returns a string centred within the given space. Note how the empty whitespace
is divided when the number is not even.

>>> s="hello"
>>> s.center(10)
' hello '

S.COUNT(SUB)
Returns the number of times a specified value occurs in a string.

>>> s = "intro to programming with python"
>>> s.count('i')
3
>>> s.count('in')
2

S.ENCODE()
Returns an encoded version of characters if they are not in the standard ASCII
table. In the example below, there are Chinese characters in the string assigned
to variable es.

>>> es = "Python is not a big snake (蟒蛇)"
>>> print(cs.encode())
b'Python is not a big snake \xe8\x9f\x92\xe8\x9b\x87'

	224	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Please note that the b in b'Python is not a big snake \xe8\x9f\x92\xe8\x9b\
x87' indicates that all non-ASCII characters in the string are in byte.

S.ENDSWITH(SUB)
Returns true if the string ends with the specified value, such as a question mark.

>>> cs = "Is Python an animal?"
>>> print(cs.endswith('?'))
True

S.EXPANDTABS(TS)
Sets the size of tabs in the string to ts, which is an integer.

>>> cs = "Is\t Python\t an\t animal?"
>>> cs
'Is\t Python\t an\t animal?'
>>> print(cs)
Is Python an animal?
>>> print(cs.expandtabs(10))
Is Python an animal?

S.FIND(SUB)
Searches the string for a substring and returns the position of where it was
found.

>>> s= 'intro to programming with python'
>>> s.find("ro")
3

S.FORMAT(*ARGS, **KWARGS)
Formats specified values given in the list of position arguments *args, and/or
the list of keyword arguments **kwargs into string s, according to the format-
ting specs given in s.

This is very useful in constructing complex strings.

>>> "Hello {0}, you are {1:5.2f} years
old.".format("Python", 23.5)
'Hello Python, you are 23.50 years old.'

	 Use Sequences, Sets, Dictionaries, and Text Files	 225

 https://doi.org/10.15215/remix/9781998944088.01

Please note that when mapping a dictionary, s.format(**mapping) can
be used to format a string by mapping values of the Python dictionary to
its keys.

>>> point = {'x':9,'y':-10} # point is a dictionary
>>> print('{x} {y}'.format(**point))
9 -10

Please note that ** has converted the dictionary point into a list of key-
word arguments. This formatting can also be done by directly using keyword
arguments:

>>> print('{x} {y}'.format(x=9,y=-10))
9 -10

S.FORMAT_MAP(MAPPING)
Similar to format(**mapping) above. The only difference is that this one takes
a dictionary without operator **.

>>> point = {'x':9,'y':-10}
>>> print('{x} {y}'.format_map(point))
9 -10

S.INDEX(SUB)
Searches the string for a substring and returns the position of the substring.
Generates a return error if there is no such substring.

Note that this may not be a good method to test if one string is a substring
of another.

>>> s= 'intro to programming with python'
'intro to programming with python'
>>> s.index("ing")
17
>>> s.index('w')
21
>>> s.index('z')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: substring not found

	226	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

S.ISALNUM()
Returns True if all characters in the string are alphanumeric.

>>> "98765".isalnum()
True
>>> "98765abcde".isalnum()
True
>>> "98765<>abcde".isalnum()
False

S.ISALPHA()
Returns True if all characters in the string are in the alphabet, including Unicode
characters.

>>> "abcde".isalpha()
True
>>> "abcTde".isalpha()
True
>>> "abc35Tde".isalpha()
False
>>> "abc他Tde".isalpha()
True

S.ISDECIMAL()
Returns True if all characters in the string are decimals.

>>> "1235".isdecimal()
True
>>> "1235.65".isdecimal()
False
>>> "1235.65e".isdecimal()
False

S.ISDIGIT()
Returns True if all characters in the string are digits.

>>> "123565".isdigit()
True
>>> "1235.65".isdigit()
False

	 Use Sequences, Sets, Dictionaries, and Text Files	 227

 https://doi.org/10.15215/remix/9781998944088.01

>>> "1235y65".isdigit()
False

S.ISIDENTIFIER()
Returns True if the string is an identifier by Python’s definition.

>>> "w1235y65".isidentifier()
True
>>> "9t1235y65".isidentifier()
False
>>> "w1235_y65".isidentifier()
True

S.ISLOWER()
Returns True if all characters in the string are lower case.

>>> "w1235y65".isidentifier()
True
>>> "9t1235y65".isidentifier()
False
>>> "w1235_y65".isidentifier()
True

S.ISNUMERIC()
Returns True if all characters in the string are numeric.

>>> "123565".isnumeric()
True
>>> "1235.65".isnumeric()
False
>>> "123565nine".isnumeric()
False

S.ISPRINTABLE()
Returns True if all characters in the string are printable.

>>> "123565nine".isprintable()
True
>>> "123565 all printable".isprintable()
True

	228	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> "123565 all printable<>!@#$%^&**".isprintable()
True

S.ISSPACE()
Returns True if all characters in the string are whitespace.

>>> " ".isspace()
True
>>> " \t ".isspace()
True
>>> " \t \n".isspace()
True
>>> " \t m\n".isspace())
False

S.ISTITLE()
Returns True if the string follows the rules of a title—that is, the first letter of
each word is upper case, while the rest are not.

>>> "Python Is a Great Language".istitle()
False
>>> "Python Is A Great Language".istitle()
True

S.ISUPPER()
Returns True if all characters in the string are upper case.

>>> "THIS IS ALL UPPER".isupper()
True
>>> "THIS IS ALL UPPER with some lower".isupper()
False

SEP.JOIN(ITERABLE)
Joins the elements of an iterable with the separator. The iterable can be a list,
tuple, string, dictionary, or set. Note that each element of the iterable must be
a string. An integer or other number will raise an error.

>>> "-".join([" for", " programming!"])
'for- programming!'
>>> "&".join([" for", " programming!"])

	 Use Sequences, Sets, Dictionaries, and Text Files	 229

 https://doi.org/10.15215/remix/9781998944088.01

'for& programming!'
>>> "%".join([" for", " programming!"])
'for% programming!'
>>> "%".join(" for programming!")
'%f%o%r% %p%r%o%g%r%a%m%m%i%n%g%!'
>>> "%".join(('a', '2', '3'))
'a%2%3'
>>> "%".join({'a', '2', '3'})
'3%a%2'
>>> "%".join({'a':'mnmn', '2':'987', '3':'43322'})
'a%2%3'

S.LJUST(SL)
Returns a left-justified version of the string within the given size of space.

>>> "Python Is A Great Language".ljust(30)
'Python Is A Great Language '

S.LOWER()
Converts a string into lower case.

>>> "Python Is A Great Language".lower()
'python is a great language'

S.LSTRIP()
Returns a left trim version of the string.

>>> " Python Is A Great Language ".lstrip()
'Python Is A Great Language '

S.MAKETRANS(DICT)
S.MAKETRANS(S1, S2)
Return a translation table to be used in translations.
In s.maketrans(dict), key-value pairs of dict provide mapping for translation; in
the case of s.maketrans(s1, s2), chars in s1 are mapped to chars in s2 one by one.

>>> "Python Is A Great Language".maketrans({'a':'b',
'c':'d'})
{97: 'b', 99: 'd'}
>>> "Python Is A Great Language".maketrans('ab', 'cd')
{97: 99, 98: 100}

	230	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

S.PARTITION(SUB)
Returns a tuple where the string is divided into three parts with sub in the
middle.

>>> "Python Is A Great Language".partition('A')
('Python Is ', 'A', ' Great Language')

S.REPLACE(S1, S2)
Returns a string where a specified value is replaced with a specified value.

>>> "Python Is A Great Language".replace('Great',
'Powerful')
'Python Is A Powerful Language'

S.RFIND(SUB)
Searches the string from the right for a substring and returns the position
of where it was first found.

>>> "Python Is A Great Language".rfind('g')
24

S.RINDEX(SUB)
Searches the string from the right for a substring and returns the index of
the substring where it was first found.

>>> "Python Is A Great Language".rindex('g')
24

S.RJUST(SUB)
Returns a right-justified version of the string within the given size of space.

>>> "Python Is A Great Language".rjust(35)
' Python Is A Great Language'

S.RPARTITION(SUB)
Returns a tuple where the string is divided into three parts at the substring
found from the right.

>>> "Python Is A Great Language".rpartition('g')
('Python Is A Great Langua', 'g', 'e')

	 Use Sequences, Sets, Dictionaries, and Text Files	 231

 https://doi.org/10.15215/remix/9781998944088.01

S.RSPLIT(SEP)
Splits the string at the specified separator and returns a list.

>>> "Python Is A Great Language".rsplit('g')
['Python Is A Great Lan', 'ua', 'e']

S.RSTRIP()
Returns a right-trimmed version of the string.

>>> "Python Is A Great Language ".rstrip()
'Python Is A Great Language'

S.SPLIT(SEP)
Splits the string at the specified separator and returns a list.

>>> "Python Is A Great Language".split('g')
['Python Is A Great Lan', 'ua', 'e']

S.SPLITLINES()
Splits the string at line breaks and returns a list.

>>> "Python Is A Great Language.\n I love
it.".splitlines()
['Python Is A Great Language.', ' I love it.']

S.STARTSWITH(SS)
Returns true if the string starts with the specified value.

>>> "Python Is A Great Language".startswith('g')
False
>>> "Python Is A Great Language".startswith('P')
True

S.STRIP()
Returns a trimmed version of the string.

>>> " Python Is A Great Language ".strip()
'Python Is A Great Language'

	232	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

S.SWAPCASE()
Swaps cases, so lower case becomes upper case, and vice versa.

>>> "Python Is A Great Language".swapcase()
'pYTHON iS a gREAT lANGUAGE'

S.TITLE()
Converts the first character of each word to upper case.

>>> 'pYTHON iS a gREAT lANGUAGE'.title()
'Python Is A Great Language'

S.TRANSLATE()
Returns a string translated from s using a translation table created with the
maketrans() method.

>>> table = "".maketrans("ab", 'cd')
>>> print("Python Is A Great Language".translate(table))
Python Is A Grect Lcngucge

S.UPPER()
Converts a string into upper case.

>>> "Python Is A Great Language".upper()
'PYTHON IS A GREAT LANGUAGE'

S.ZFILL(SL)
Fills the string to a specific length with a specified number of 0s at the beginning.

>>> "Python Is A Great Language".zfill(39)
'0000000000000Python Is A Great Language'

Built-In Functions and Operators for Strings
In addition to the string methods that you can use to manipulate strings, there
are built-in functions and operators. The following are some examples.

USE OPERATOR + TO JOIN STRINGS TOGETHER
>>> "Python is a good language " + "for first-time
programming learners."
'Python is a good language for first-time programming
learners.'

	 Use Sequences, Sets, Dictionaries, and Text Files	 233

 https://doi.org/10.15215/remix/9781998944088.01

USE OPERATOR * TO DUPLICATE A STRING
>>> "Python! "*3
'Python! Python! Python! '

USE BUILT-IN FUNCTION LEN(S) TO FIND OUT THE LENGTH IF A
STRING
>>> p_string = "Python is a good language " + "for first-
time programming learners."
>>> len(p_string)
62

USE OPERATOR [I:J] TO SLICE A STRING
>>> p_string[0:5] # slice begins at index 0 till index
5 but excluding 5
'Pytho'
>>> p_string[5:25] # slice begins at index 5 till index
25 but excluding 25
'n is a good language'
>>> p_string[:16] # when the starting index point is
missing, 0 is assumed
'Python is a good'
>>> p_string[6:] # when the ending index point is
missing, the string is copied from the start to the end
'is a good language for first-time programming
learners.'
>>> p_string[:] # when both indexes are missing, the
entire string is copied
'Python is a good language for first-time programming
learners.'
>>> p_string[:-1] #the result is the same as using [:]
'Python is a good language for first-time programming
learners'

Table 5-1 summarizes the operators and built-in functions you can use to
manipulate strings.

	234	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Table 5-1: String-related operators and built-in functions

Operators and
built-in functions
on string Operation

Code samples in Python interactive
mode

s[n] Get the character at
nth position (n is
an integer)

>>> name = "John Doe"
>>> name[2]
'h'

s[start:end] Get a slice of the
string. Negative
indexes can also
be used to count
from the end.

>>> name = "John Doe"
>>> name[2:6]
'hn D'
>>> name = "John Doe"
>>> name[:-3]
'John '

s1 + s2 Concatenate two
strings together

>>> first_name = "John"
>>> last_name = "Doe"
>>> first_name +' '+
last_name

'John Doe'

s * n Duplicate s n times >>> (name +' ')*3
'John Doe John Doe John Doe '

s1 in s Test if s1 is a
substring of s

>>> first_name in name
True

len(s) Get the length of
string s

>>> len(name)
8

print(s) Print string s >>> name = "John Doe"
>>> print(name)
John Doe

In addition to the ways discussed above to construct and manipulate strings,
Python also provides some methods for constructing and formatting strings
nicely.

Constructing and Formatting Strings
Because text is made of strings, and text is very important in representing data,
information, and knowledge, there is a need to convert various data objects into
well-formatted strings. For this purpose, Python has provided programmers
with a very powerful means of formatting strings that may consist of various
types of data such as literals, integer numbers, float numbers with different
precisions, compound data, and even user-defined objects.

	 Use Sequences, Sets, Dictionaries, and Text Files	 235

 https://doi.org/10.15215/remix/9781998944088.01

In 2.1, we saw how we could use f/F, r/R, u/U, and b/B to provide some dir-
ection on string formation and representation. We also saw that prefixing f or
F to a string allows us to conveniently embed expressions into the string with
{ } and have the expressions be automatically evaluated. In the following, you
will see two more ways of formatting strings.

FORMATTING WITH %-LED PLACEHOLDERS
Let’s begin with an example to explain how %-led placeholders are used to
format and construct strings:

In []: d, n = 5.689, 8 # assigning values to variable d and
n

s0 = "n has a value of %3d, and d has a value of
%9.5f"%(n, d) # with %-led placeholders

print(s0) # s is evaluated

Out []: n has a value of 8, and d has a value of 5.68900

In the example above, the string before the last percentage sign % is called
a formatting string. %3d is a %-led placeholder for an integer that will take a
3-digit spot, whereas %9.5 is a %-led placeholder for a float number, where 9
specifies the total number of digits the float number will take and 5 specifies the
total number of decimal digits. The values in the tuple behind the last percent-
age sign are to be converted and placed into their corresponding placeholders.
In the example, the value of n will be converted to an integer and placed into the
first placeholder, whereas the value of d will be converted into a float number
and placed into the second placeholder.

You can also use named placeholders, as shown in the next example, where
the course and language (in the parentheses) are the names of the placeholders.

In []: course_number = 'comp218'
language = 'Python'
s1 = '%(course)7s - introduction to programming in
%(language)s '%{'course':course_number,

'language':language}
print(s1)

Out []: comp218 - introduction to programming in Python

Note that when named placeholders are used, you will need to use dictionary
instead of a tuple behind the last percentage sign.

The general format of a %-led placeholder is as follows:

	236	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

%[flags][width] [.precision] type

or the following, if you like to use named placeholders:

%[(name)][flags][width] [.precision] type

The flags may use one or a combination of the characters in Table 5-2.

Table 5-2: Flags used in placeholders in formatting strings

Flag Meaning Code sample

Used with b, o, x, or X,
this specifies that the
formatted value is
preceded with 0b, 0o, 0x,
or 0X, respectively.

>>> data = ("COMP 218", 10)
>>> '%s has %#X units.' % data
'COMP 218 has 0XA units.'

0 The conversion result
will be zero-padded for
numeric values.

>>> data = {"course": "COMP
218", "number": 10}

>>> '%(course)s has
%(number)016d units.' % data

'COMP 218 has 0000000000000010
units.'

- The converted value is
left-adjusted.

>>> data = {"course": "COMP
218", "number": 10}

>>> '%(course)s has
%(number)-6d units.' % data

'COMP 218 has 10 units.'

If no sign (e.g., a minus
sign) is going to be
written, a blank space is
inserted before the value.

>>> data = {"course": "COMP
218", "number": -10}

>>> '%(course)s has
%(number)16d units.' % data

'COMP 218 has 10 units.'

+ The converted value is
right-adjusted, and a
sign character (+ or -,
depending on whether
the converted value is
positive or negative) will
precede it.

>>> data = {"course": "COMP
218", "number": -10}

>>> '%(course)s has
%(number)+6d units.' % data

'COMP 218 has -10 units.'

The width is the total width of space held for the corresponding value, and
precision is the number of digits that the decimal portion will take if the value
is a float number. The type can be one of the types shown in Table 5-3.

	 Use Sequences, Sets, Dictionaries, and Text Files	 237

 https://doi.org/10.15215/remix/9781998944088.01

Table 5-3: Types used in placeholders for formatting strings

Conversion Meaning Code sample

d, i, or u Signed integer decimal.
Note that in the last three coding

samples, the plus sign has
been automatically removed in
the printout.

>>> print("%+d"% (88))
+88
>>> print("%+i"% (88))
+88
>>> print("%+u"% (88))
+88
>>> print("%+u"% (-88))
-88
>>> print("%+i"% (-88))
-88
>>> print("%+d"% (-88))
-88

o Unsigned octal. >>> print("%10o"% (25))
31
>>> print("%10.3o"%
(25))

031
>>> print("%10.5o"%
(25))

00031

X or x Unsigned hexadecimal. >>> print("%6.5X"% (88))
00058
>>> print("%6.5x"% (88))
00058
>>> print("%#5X"% (88))
0X58
>>> print("%5X"% (88))
58

E or e Floating-point exponential format
(lower case or upper case).

>>> print("%10.3e"%
(123456.789))

1.235e+05
>>> print("%10.3E"%
(123456.789))

1.235E+05

F or f Floating-point decimal format. >>> print("%13.5f"%
(123456.789))

123456.78900
>>> print("%13.5F"%
(123456.789))

123456.78900

G or g Same as E or e if exponent is
greater than −4 or less than
precision; F otherwise.

>>> print("%13.5g"%
(123456.789))

1.2346e+05
>>> print("%13.5G"%
(123456.789))

1.2346E+05

(continued on next page)

	238	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Conversion Meaning Code sample

c Single character (accepts integer
or single character string).

>>> s = 'Python is
great!'

>>> 'The first character
of string %s is %c'%(s,
s[0])

'The first character of
string Python is great!
is P'

r String (converts any python
object using repr() or __repr__(),
instead of str() or __str__()). In
class definition, you need to
implement the dunder method
__repr__ in order for repr() or __
repr__() to work on the objects
of the defined class.

>>> 'The complex number
will be displayed as
%r'%(cn)

'The complex number
will be displayed as
(12+35j)'

s String (converts any python
object using str()). We will see
the difference between %r and
%s when we defined __repr__
method for a user-defined
class.

>>> 'The complex number
will be displayed as
%s'%(cn)

'The complex number
will be displayed as
(12+35j)'

%% No argument is converted
(results in a "%" character in
the result). It works only if the
formatting is complete.

>>> '%% will be displayed
as a single percentage
sign, and the complex
number is %s'%(cn)

'% will be displayed as
a single percentage
sign, and the complex
number is (12+35j)'

FORMATTING STRINGS WITH THE FORMAT METHOD
Compared to the two methods we have seen so far, a more formal way of string
formatting in Python is using the format method, as shown in the following
example:

>>> s = "{0} is the first integer; {1} is the second
integer".format(88, 99)
>>> s
'88 is the first integer; 99 is the second integer'

Table 5-3: Types used in placeholders for formatting strings (continued)

	 Use Sequences, Sets, Dictionaries, and Text Files	 239

 https://doi.org/10.15215/remix/9781998944088.01

The {} in the above example is also called a placeholder or replacement
field. You can index the placeholders with integer numbers starting from 0,
corresponding to the positions of values. You can also name the placeholders,
in which case dictionary or keywords arguments need to be used within the
format method call. In the example above, if we switch the indices (0 and 1),
99 will be placed as the first integer and 88 will be placed as the second integer,
as shown below:

>>> s = "{1} is the first integer; {0} is the second
integer".format(88, 99)
>>> print(s)
99 is the first integer; 88 is the second integer

The general form of the replacement field is as follows:

{[field_name] [! conversion] [: format_spec]}

As mentioned before, having the item inside [] is optional; a placeholder
can be as simple as an empty {}, as shown in the following example:

>>> 'X: {}; Y: {}'.format(3, 5)
'X: 3; Y: 5'

In the general form of the replacement field above, field name is something
that can be used to identify the object within the arguments of the format
method. It can be an integer to identify the position of the object, a name if
keyword arguments are used, or a dot notation referring to any attribute of the
object, as shown in the following example:

>>> c = 23 - 35j
>>> ('The complex number {0} has a real part {0.real} and
an imaginary part {0.imag}.').format(c)
'The complex number (23 - 35j) has a real part 23.0 and
an imaginary part -35.0.'

In this string formatting example, the first placeholder is {0}, in which
integer 0 indicates that the value of the first argument of the format method
call will be placed here; the second placeholder is {0.real}, which indicates
that the value of the attribute real of the first object pf the format method call
will be converted and inserted in that location; and the third placeholder is

	240	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

{0.imag}, which indicates that the value of the attribute imag of the first object
of the format method call will be converted and inserted in that location. It
is up to the programmer to use the right attribute names or to compose the
right reference to a valid object or value within the arguments of the format
method call.

Please note that conversion in the general form of the replacement field
above is led by an exclamation mark !, which is followed by a letter: r, s, or a.
The combination !r is used to convert the value into a raw string, !s is used to
convert the value into a normal string, and !a is used to convert the value into
standard ASCII, as shown in the following examples:

>>> print('{!r} is displayed as a raw string'.format('\t
is not tab, \n is not newline'))
'\t is not tab, \n is not newline' is displayed as a raw
string.

>>> print('{!s} is not displayed as a raw string'.
format('\t is a tab, \n is a new line'))
is a tab,
is a new line is not displayed as a raw string.

>>> print('{!s} is displayed in Chinese'.format('Python
is not 大蟒蛇.'))
Python is not 大蟒蛇. is displayed in Chinese.

>>> print('{!a} is displayed as an ASCII string'.
format('Python is not 大蟒蛇.'))
'Python is not \u5927\u87d2\u86c7.' is displayed as an
ASCII string.

Please note the difference between the two outputs using !s and !a in
particular.

It may also have been noted that with !r, the quotation marks surrounding
the argument remain in the output, whereas with !s, the quotation marks have
disappeared from the output. This is true when the argument for the !r is a
string.

When the argument for !r is not a string, especially when it is a compli-
cated object, o, the !r will cause the placeholder to be replaced with the result
of o.repr(), which in turn calls the dunder method __repr__() defined for the

	 Use Sequences, Sets, Dictionaries, and Text Files	 241

 https://doi.org/10.15215/remix/9781998944088.01

object’s class. You will learn how to define and use Python dunder methods
later in Chapter 7.

In string formatting with format method, formatting specification is led by
a colon :, which is followed by formatting instructions, including the following:

	 1.	 justification or alignment: > for right justification, < for left
justification, ^ for centre justification

	 2.	 with/without sign for numbers: + for always showing the sign, − for
only show the minus sign, and ' ' for showing a whitespace when the
number is positive

	 3.	 the total number of letter spaces allocated to the data, such as in {:6d},
where 6 specifies that 6 letter spaces are taken by the integer number

	 4.	 the number of decimal digits for float numbers, such as in {:6.2f}, in
which the 2 specifies the decimal, so the float number will be rounded
to take 2 spaces

	 5.	 data type conversion indicates what data will be converted and
inserted into the placeholder; the types of data include

	 a.	 s for string
	 b.	 d for integer
	 c.	 f for float number
	 d.	 x or X for hex number
	 e.	 o for octal number
	 f.	 b for binary number
	 g.	 #x, #X, #o, and #b to prefix the numbers 0x, 0X, 0o, and 0b,

respectively

The following example shows how the data type conversions work:

>>> '{:+12.8f}, {:+f}, {:#b}, {:#X}'.format(2.71828182,
-3.14, 78, 127)
' +2.71828182, -3.140000, 0b1001110, 0X7F'

If you wish the output of a placeholder to be left, right, or centre justified
within the given space, <, >, or ̂ can be used to lead the format spec, as shown
in the following example:

>>> '{:<+22.8f}, {:+f}, {:#b}, {:#X}'.format(2.71828182,
-3.14, 78, 127)
'+2.71828182 , -3.140000, 0b1001110, 0X7F'

	242	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

If you want the extra space to be filled with a special character, such as #,
you can put the character between the colon and <, >, or ^, as shown below:

>>> '{:#^+22.8f}, {:+f}, {:#b}, {:#X}'.format(2.71828182,
-3.14, 78, 127)
'#####+2.71828182######, -3.140000, 0b1001110, 0X7F'

By this point, we have learned three ways of constructing and formatting
strings: the first one is to use the f/F prefix, the second is to use a %-led place-
holder, and the last is to use the format method.

Among the three, the first one is the most compact and good for simple
string construction without any fancy formatting. The expression within each
{} will be evaluated, and the value will be converted into a string with which
the placeholder is replaced as is.

Both the second and the third way can be used to construct and format
more complex strings from various objects. The difference between the two is
that the second, using a %-led placeholder, is more casual, whereas the third
is more formal and the code more readable.

Regular Expressions
Information processing and text manipulation are important uses for modern
computers, and regular expressions, called “REs” or “regexes” for short, were
developed as a powerful way to manipulate text. Many modern programming
languages have special libraries for searching and manipulating text using
regular expressions. In Python, a standard module called re was developed
for that purpose.

To correctly use the re module, we first must understand what regular
expressions are and how to construct a regular expression that genuinely
defines the strings we want to find and/or manipulate within a text because
almost all functions/methods of the re module are based on such defined
regular expressions.

What is a regular expression? A regular expression is a pattern that describes
certain text or literal strings. Examples of some useful patterns include tele-
phone numbers, email addresses, URLs, and many others.

To be able to correctly define a regular expression precisely describing the
strings we want to find and manipulate, we must first understand and remem-
ber the rules of regular expressions, as well as special characters and sequences
that have special meanings in a re module. Since regular expressions are strings
themselves, they should be quoted with single or double quotation marks. For

	 Use Sequences, Sets, Dictionaries, and Text Files	 243

 https://doi.org/10.15215/remix/9781998944088.01

simplicity, however, we may omit some quotation marks in our discussion when
we know what we are talking about in the context.

Plain literals such as a, b, c,…z, A, B, C,…Z, and numeric digits such as 0, 1,
2,…9 can be directly used in a regular expression to construct a pattern, such
as Python, Foo, Canada. Some symbols in the ASCII table have been given
special meanings in re. These symbols, called metacharacters, are shown
in Table 5-4.

Table 5-4: Metacharacters and basic rules for constructing
regular expressions

Symbols Meaning Example

. Match any character except \n, a
new line, in a string.

t..t will match test, text,…

^ Affixed to a pattern to match the
preceding regex if it is at the
beginning of the string being
searched.

^Hello will only match Hello when
it is at the start of an email

$ Affixed to a pattern to match the
preceding regex if it is at the end
of a string.

mpeg$ will only match mpeg
when it is at the end of a text

| Match either the regex on the left
or the regex on the right.

Wang|Wong will match either
Wang or Wong

\ Form an escape sequence such
as \d, \s,… with special meaning.
Table 5-5 lists all the escape
sequences defined in the re
module.

Also used to escape the
metacharacters in this table
back to their original meanings.

\d will match any single decimal
digit

\D is the negation of \d, meaning
it will not match any single
decimal digit

[…] Define a set/class of characters. [xyz] will match either x, y, or z.
W[ao]ng is the same as

Wang|Wong

[^…] Define a set of characters
excluded from the pattern.
Inside and at the beginning of [],
^ is used as negation

[^A-Z\s] will match everything else
except upper case letters and
whitespace

[…x-y…] Within [], define a range of
characters from x to y

[0-9], [a-zA-Z]

(continued on next page)

	244	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Symbols Meaning Example

(…) Match enclosed regex and save
as subgroup for later use.

(B|blah\s)+ will only match the
second blah in “blah, blah and
blah” and save it

? This and the rest in this table
are called quantifiers. When
? is affixed to a preceding
regex (character or group) it
becomes a nongreedy qualifier,
meaning it will match only 0 or
1 occurrence of the preceding
regex.

? can also be affixed to + as +?, or
* as *?, to make + or * nongreedy.

mpe?g will match mpg or mpeg

* Affixed to pattern meaning to
match 0 or more (greedy)
occurrences of preceding
regular expression. Greedy
means that it will match as
many as possible.

=* will match 0 or more
consecutive =s

+ Affixed to a pattern to match 1
or more occurrences of the
preceding regular expression.

=+ will match 1 or more
consecutive =s

{n} Affixed to a pattern to match
exactly n occurrences of the
preceding regex.

[0-9]{3} will match the first 3
occurrences of digits, like an
area code, for example

{m, n} Affixed to a pattern to match
from m to n occurrences of the
preceding regex.

[0-9]{5, 11} will match all
sequences of decimal digits that
are 5 to 11 digits in length

Table 5-5: Escape sequences with special meanings in re

Escape sequence Special meaning in re Example

\d Match any decimal digit 0-9. Img\d+.jpg

\D Opposite of \d, meaning do
not match any decimal digit.

[\D] will match everything but
decimal digits

\w Match any alphanumeric
character, A-Z, a-z, 0-9.

[_a-zA-Z]\w* will match all
legitimate identifiers in
Python

Table 5-4: Metacharacters and basic rules for constructing
regular expressions (continued)

	 Use Sequences, Sets, Dictionaries, and Text Files	 245

 https://doi.org/10.15215/remix/9781998944088.01

Escape sequence Special meaning in re Example

\W Opposite of \w, meaning
do not match any
alphanumeric character.

[\W] will match everything but
alphanumeric characters

\n Match a new line whitespace. \.\n will match all periods that
end a paragraph

\t Match a tab whitespace. re.findall(r'\t', py_scripts)
will find all the tabs in the
py_scripts

\r Match a return/enter
whitespace.

re.findall(r'\r', article) will
find all the return/enter
whitespaces in the article.

\v Match a vertical feed
whitespace.

re.findall(r'\v', article) will
find all the vertical feed
whitespaces in the article

\f Match a feed whitespace. re.findall(r'\f', article) will find
all the feed whitespaces in
the article

\s Match any of the whitespaces
above.

re.findall(r'\s', article) will find
all the whitespaces in the
article

\S Opposite of \s, \S matches
any character which is not a
whitespace character.

re.findall(r'\S', article) will
find everything except
whitespaces in the article

\N N is an integer > 0. \1 refers
to the first subgroup saved
with (…).

In r'\b\w*(\w)\w*\1', \1
refers to the first found
alphanumeric characters
that appear more than once
in a word

\b Match any word boundary: the
left boundary if \b is at the
left of the pattern, the right
boundary if \b is at the right
side of the pattern

\bthe\b will match the if it is
not part of other words

\B Opposite of \b. \bthe\B will match the if it is
at the beginning of other
words

\.
\\
\+
*

Match a special symbol ., \, +,
* respectively.

\d+*\d+ will match
multiplications of two
integers in a text

\A Match at the start of a string,
same as ^.

\AHello will match Hello if
Hello is at the beginning of
the string

\Z Match at the end of a string,
same as $.

\.com\Z will match .com if it
is at the end of the string

Table 5-5: Escape sequences with special meanings in re (continued)

	246	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The above are the basic rules for constructing regular expressions or regex
patterns. Using these rules, we can write regular expressions to define most
string patterns we are interested in.

The following are some examples of regex patterns:

780-\d{7}, pattern for telephone numbers in Edmonton, Alberta
\$\d+\.\d{2}, pattern for currency representations in accounting
[A-Z]{3}-\d{3}, pattern for licence plate numbers

The re module is also empowered with the following extension rules, which
all begin with a question mark ? within a pair of parentheses. Although sur-
rounded by a pair of parentheses, an extension rule, except (?P<name>…), does
not create a new group.

(?AILMSUX)
Here, ? is followed by one or more letters from set a, i, L, m, s, u, and x,
setting the corresponding flags for the re engine. (?a) sets re.A, meaning
ASCII-only matching; (?i) sets re.I, meaning ignore case when matching;
(?L) sets re.L, meaning local dependent; (?m) sets re.M, meaning multiple
lines; (?s) sets re.S, meaning dot matches all characters including newline;
(?u) sets re.U, meaning Unicode matching; (?x) sets re.X, meaning verbose
matching. These flags are defined in the re module. The details can be found
by running help(re).

The flags can be used at the beginning of a regular expression in place of
passing the optional flag arguments to re functions or methods of pattern object.

(?AILMSUX-IMSX:…)
Sets or removes the corresponding flags. (?a-u…) will remove Unicode matching.

(?:…)
Is a noncapturing version of regular parentheses, meaning the match cannot
be retrieved or referenced later.

(?P<NAME>…)
Makes the substring matched by the group accessible by name.

(?P=NAME)
Matches the text matched earlier by given name.

	 Use Sequences, Sets, Dictionaries, and Text Files	 247

 https://doi.org/10.15215/remix/9781998944088.01

(?#…)
Is a comment; ignored.

(?=…)
Matches if… matches next but does not consume the string being searched,
which means that the current position in string remains unchanged. This is
called a lookahead assertion.

John (?=Doe) will match John only if it is followed by Doe.

(?!…)
Matches if… does not match next.

Jon (?!Doe) will match Jon only if it is not followed by Doe.

(?<=…)
Matches if preceded by… (must be fixed length).

(?<=John) Doe will find a match in John Doe because there is John before Doe.

(?<!…)
Matches if not preceded by… (must be fixed length).

(?<!John) Doe will find a match in Joe Doe because there is not Joe before Doe.

(?(ID)YES PATTERN | NO PATTERN)
(?(NAME)YES PATTERN | NO PATTERN)
Match yes pattern if the group with id or name is matched; match no pattern
otherwise.

To do text manipulation and information processing using regular expressions
in Python, we will need to use a module in the standard Python library called Re.
Similarly, we will need to import the module before using it, as shown below:

>>> import re

Using the dir(re) statement, you can find out what names are defined in the
module, as shown below, but you will need to use help(re) to find out the core
functions and methods you can use from the re module.

The following are functions defined in the re module:

re.compile(pattern, flags=0)

Compile a pattern into a pattern object and return the compiled pattern
object for more effective uses later.

	248	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> import re
>>> pobj=re.compile('780-?\d{3}-?\d{4}')
>>> pobj.findall('780-9381396, 7804311508,
18663016227') # findall method of pattern object
['780-9381396', '7804311508']
>>> b = re.compile(r'\d+\.\d*')
>>> b.match('32.23') # match method of pattern object
<re.Match object; span=(0, 5), match='32.23'>

RE.MATCH(PATTERN, STRING, FLAGS=0)
Match a regular expression pattern to the beginning of a string. Return None
if no match is found.

>>> r = re.match(r'\d+\.\d*', '123.89float')
>>> r
<re.Match object; span=(0, 6), match='123.89'>

RE.FULLMATCH(PATTERN, STRING, FLAGS=0)
Match a regular expression pattern to all of a string. Return None if no match
is found.

>>> r = re.fullmatch(r'\d+\.\d*', '123.89')
this will match
>>> r = re.fullmatch(r'\d+\.\d*', '123.89float')
this will not match

RE.SEARCH(PATTERN, STRING, FLAGS=0)
Search a string for the presence of a pattern; return the first match object.
Return None if no match is found.

>>> r = re.search(r'\d+\.\d+', 'real 123.89')
>>> r
<re.Match object; span=(5, 11), match='123.89'>

RE.SUB(PATTERN, REPLACING, STRING, COUNT=0, FLAGS=0)
Substitute occurrences of a pattern found in a string by replacing and return
the resulted string.

>>> re.sub('t', 'T', 'Python is great.')
'PyThon is greaT.'

	 Use Sequences, Sets, Dictionaries, and Text Files	 249

 https://doi.org/10.15215/remix/9781998944088.01

RE.SUBN(PATTERN, REPLACING, STRING, COUNT=0, FLAGS=0)
Same as sub, but also return the number of substitutions made.

>>> re.subn('t', 'T', 'Python is great.')
('PyThon is greaT.', 2)

RE.SPLIT(PATTERN, STRING, MAXSPLIT=0, FLAGS=0)
Split a string by the occurrences of a pattern and return a list of substrings cut
by the pattern.

>>> re.split(r'\W+', 'Python is great.') # \W is
nonalphanumeric so it will get a list of words
['Python', 'is', 'great', '']

RE.FINDALL(PATTERN, STRING, FLAGS=0)
Find all occurrences of a pattern in a string and return a list of matches.

>>> re.findall('t', 'Python is great.')
['t', 't']

RE.FINDITER(PATTERN, STRING, FLAGS=0)
Return an iterator yielding a match object for each match.

>>> re.finditer('t', 'Python is great.')
<callable_iterator object at 0x00000198FE0F5FC8>

RE.PURGE()
Clear the regular expression cache.

>>> re.purge()
>>>

RE.ESCAPE(PATTERN)
Backslash all nonalphanumerics in a string.

>>> print(re.escape('1800.941.7896'))
1800\.941\.7896

Suppose we want to write a program to check if a name given by a user is a
legitimate Python identifier. We can define a regex pattern for a Python iden-
tifier as shown below:

	250	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

idPatt = '\b_{0,2}[A-Za-z](_?[A-Za-z0-9])*_{0,2}\b\'

Before using the re module, we need to import it, as shown below:

import re

The next step will be to get an input from the user and test it:

name = input('Give me a name and I will tell you if it is
a Python identifier: ')

Trim the whitespace at the beginning and the end of the name just in case:

name = name.strip() # this will strip the whitespaces

Then, we do the real test:

if re.match(idPatt, name) is not None:
print('Congratulations! It is!') else:
print('Sorry, it is not.')

The complete code of the program is shown in the code section of Table 5-6.

Table 5-6: Case study: How to check Python identifiers
The problem In this case study, we will write a program to check if a name given

by a user is legitimate Python identifier.

The analysis
and design

Steps:
Step 1: Import re module before using it
Step 2: Define a regex pattern for Python identifiers
Step 3: Get an input from the user, and
Step 4: Test it with an if-else statement

The code import re
idPatt = '(^[A-Za-z]\w+)$|(^_[A-Za-z]\
w+_$)|(^__[A-Za-z]\w+__$)'

name = input('Give me a name and I will tell you
if it is a Python identifier:')

name = name.strip()
if re.match(idPatt, name) is not None:
 print('Congratulations! It is!')
else:
 print('Sorry, it is not.')

The result Give me a name and I will tell you if it is a Python identifier:A2
Congratulations! It is!

	 Use Sequences, Sets, Dictionaries, and Text Files	 251

 https://doi.org/10.15215/remix/9781998944088.01

5.2 Lists
The list is an important compound data type in Python and in almost all pro-
gramming languages, though not many programming languages have list as
a built-in data type.

In previous sections, you saw a few program examples with a list involved.
In the following, we explain the operators and functions that can be used
on lists.

LIST(ITERABLE)
To construct a list from an iterable such as a sequence or call to range().

>>> l1 = list("test")
>>> l1
['t', 'e', 's', 't']
>>> l2 = list((1,2,3,4))
>>> l2
[1, 2, 3, 4]
>>> l5 = list(range(13, 26))
>>> l5
[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]

In addition, you can also create a list by directly putting items in a pair of
square brackets, as shown below:

>>> l6 = ['Jon', 'John', 'Jonathan', 'Jim', 'James']
>>> l6
['Jon', 'John', 'Jonathan', 'Jim', 'James']

L[NTH]
To get the nth element of list l.

>>> students = ['John', 'Mary', 'Terry', 'Smith', 'Chris']
>>> students[3]
'Smith'

L[START:END]
To get a slice/sublist of l, including the members from a start position till right
before the end position.

	252	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> students = ['John', 'Mary', 'Terry', 'Smith',
'Chris']
>>> students[1:3]
['Mary', 'Terry']

L[START:END:STEP]
To get a slice/sublist of l, including members from a start position to right before
an end position with set step.

>>> l6 = ['Jon', 'John', 'Jonathan', 'Jim', 'James']
>>> l6[:5:3] # start from 0 till 5 with step set as 3.
['Jon', 'Jim']

L[N] = E
To replace element at n with e.

>>> print(students)
['John', 'Mary', 'Terry', 'Smith', 'Chris']
>>> students[2] = 'Cindy'
>>> print(students)
['John', 'Mary', 'Cindy', 'Smith', 'Chris']

L1 + L2
To concatenate list l2 to l1, but without changing l1. As such, if you want to keep
the result of concatenation, you will need to assign the result to a new variable.

>>> teachers = ['Jeffery', 'Clover', 'David']
>>> students + teachers
['John', 'Mary', 'Terry', 'Smith', 'Chris', 'Jeffery',
'Clover', 'David']
>>> teachers
['Jeffery', 'Clover', 'David']
>>> class_members = students + teachers
>>> class_members
['John', 'Mary', 'Terry', 'Smith', 'Chris', 'Jeffery',
'Clover', 'David']

L * N
N * L
To duplicate list l n times but without changing l.

	 Use Sequences, Sets, Dictionaries, and Text Files	 253

 https://doi.org/10.15215/remix/9781998944088.01

>>> students[1:3]
['Mary', 'Terry']
>>> students[1:3] * 2
['Mary', 'Terry', 'Mary', 'Terry']
>>> 2*students[1:3]
['Mary', 'Terry', 'Mary', 'Terry']

E IN L
To test if e is in list l. If l has compound data such as lists, tuples, or instances
of a class, e is only part of a compound data or object and is not considered
in the list.

>>> teachers
['David', 'Jeffery', 'Clover']
>>> 'Clover' in teachers
True
>>> l0 = [1, 2, 3, [4, 5], 6] # 4 and 5 are members of
a sublist of l0
>>> 5 in l0 # so that 5 is not considered as part of
list l0
False

LEN(L)
To get the number of elements in the list l.

>>> students
['John', 'Mary', 'Terry', 'Smith', 'Chris']
>>> len(students)
5

PRINT(L)
To print list l. Note that the list will be recursively printed, but complex objects
such as instances of a user-defined class may not be printed the way you
expected unless you have defined the __str__() method for the class.

>>> print(teachers)
['Jeffery', 'Clover', 'David']

In addition, there are also built-in methods for list objects, as detailed below.

	254	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

L.APPEND(E)
To append element e to list l.

>>> l = ['T', 'h']
>>> l.append('e')
>>> l
['T', 'h', 'e']

L.CLEAR()
To remove all items from list l.

>>> l1 = list("test")
>>> l1
['t', 'e', 's', 't']
>>> l1.clear()
>>> l1 # l1 became an empty list
[]

L.COPY()
To return a shallow copy of list l—that is, it only copies simple objects of the list
such as numbers and strings; for compound data, it does not copy the actual
objects but only makes references to the objects.

>>> l7 = l6.copy() # from above we know that items in
l6 are all simple strings
>>> l7
['Jon', 'John', 'Jonathan', 'Jim', 'James']
>>> l7[3] = 'Joe' # change the value of l7[3]
>>> l7 # it shows l7 has been changed
['Jon', 'John', 'Jonathan', 'Joe', 'James']
>>> l6 # it shows l6 remains the same
['Jon', 'John', 'Jonathan', 'Jim', 'James']

Now suppose we have

>>> l8 = [[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25], ['Jon', 'John', 'Jonathan', 'Joe', 'James'],
100]
>>> l9 = l8.copy()
>>> l9 # l9 has the same items as l8

	 Use Sequences, Sets, Dictionaries, and Text Files	 255

 https://doi.org/10.15215/remix/9781998944088.01

[[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25],
['Jon', 'John', 'Jonathan', 'Joe', 'James'], 100]
>>> l9[0][0] = 1000 # make change to the internal value
of list l9[0], that is, l9[0][0] to 1000
>>> l9 # l9 has been changed
[[1000, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25],
['Jon', 'John', 'Jonathan', 'Joe', 'James'], 100]
>>> l8 # l8 has been changed as well
[[1000, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25],
['Jon', 'John', 'Jonathan', 'Joe', 'James'], 100]

As can be seen, if you make changes to a piece of compound data (a list as
the first item of l9 copied from l8), the change also occurs in the original list,
and vice versa.

L.INDEX(E, START = 0, STOP = 9223372036854775807)
To return the first index of element e, from a start position till a stop position.
The default range is from 0 to 9223372036854775807.

>>> l6.index('Jim')
3

L.POP()
To remove and return an item from the end of list l.

>>> l.pop()
'e'

L.POP(2)
To remove and return an item from the middle of list l. When there are an even
number of elements in the list, there will be two elements in the middle, but
only the first one pops out.

>>> l = [1, 3, 2, 6, 5, 7]
>>> l.pop(2)
2
>>> l
[1, 3, 6, 5, 7]
>>> l.pop(2)
6

	256	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

L.REVERSE()
To reverse the list.

>>> l.reverse()
>>> l
[7, 5, 3, 1]

L.SORT()
To sort the list in ascending order by default. To sort in descending order, use
l.sort(reverse = True).

>>> l.sort()
>>> l
[1, 3, 5, 7]

L.EXTEND(L0)
To extend list l by appending list l0 to the end of list l. It is different from l + l0
but it is same as l += l0.

>>> l = list(range(5))
>>> l
[0, 1, 2, 3, 4]
>>> l0 = list(range(6, 11))
>>> l0
[5, 6, 7, 8, 9, 10]
>>> l.extend(l0)
>>> l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

L.INSERT(I, E)
To insert e before index i of existing list l.

>>> l = list(range(10))
>>> l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> l.insert(5, 13)
>>> l
[0, 1, 2, 3, 4, 13, 5, 6, 7, 8, 9]

	 Use Sequences, Sets, Dictionaries, and Text Files	 257

 https://doi.org/10.15215/remix/9781998944088.01

L.REMOVE(E)
To remove first occurrence of e in the list.

>>> l
[0, 1, 2, 3, 4, 13, 5, 6, 7, 8, 9]
>>> l.remove(5)
>>> l # 5 has been removed from l
[0, 1, 2, 3, 4, 13, 6, 7, 8, 9]

L.COUNT(E)
To search the list and return the number of occurrences of e.

>>> l
[0, 1, 2, 3, 4, 13, 6, 7, 8, 9]
>>> l.count(6)
1

As you can see, elements in lists can be changed or mutated. You can insert,
delete, replace, expand, and reorder all the elements in a list.

Lists are a very important data model in programming and problem solving.
First, lists can be used as collections of data. Each member of the collection
can be as simple as a number or a string and as complex as another list or any
other compound data type, or even an object. Many functions and methods,
as discussed above, have been made available for accessing and manipulating
lists and their members.

Suppose we want to develop a management system for a company, for example.
Within the system, we need to represent information on its employees. We can
use a list containing the name, birthdate, department, start date at the company,
and level of employment to represent information on each employee, then use
another list to represent a collection of employees. This is illustrated as follows:

this defines an embedded list or two-dimensional array
employees = [['Kevin Smith', 19560323, 'Sale', 20100621, 3],
['Paul Davina', 19860323, 'HR', 20120621, 5],
['Jim Carri', 1969323, 'Design', 20120625, 2],
['John Wong', 19580323, 'Customer Service', 20110323, 3],
['Keri Lam', 19760323, 'Sale', 20130522, 5]]

Moreover, lists can be used to represent trees, which is an important data
structure in programming and problem solving.

	258	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

5.3 Tuples
Unlike a list, a tuple is an immutable object, which means that once created,
the internal structure of a tuple cannot be changed. Hence, most methods you
have seen for lists are not available for tuples, except for the following two.

T.COUNT(E)
To count and return the number of occurrences of a specified value in a tuple.

>>> t = (3, 6, 5, 7, 5, 9)
>>> t.count(5)
2

T.INDEX(E, START = 0, STOP = 9223372036854775807)
To search the tuple for a specified value e and return the index of the first
occurrence of the value. Remember that just like a list, a tuple can have dupli-
cate values as well.

>>> t.index(6)
1
>>> t.index(7)
3
>>> t0 = tuple("same as list, tuple")
>>> t0
('s', 'a', 'm', 'e', ' ', 'a', 's', ' ', 'l', 'i', 's',
't', ',', ' ', 't', 'u', 'p', 'l', 'e')
>>> t0.index('l') # it only returns the index of the
first l
8
>>> t.index('l', 9) # to get the index of the next
occurrence
17

As well, compared to list, fewer number of operators and built-in functions
can be used on tuples, as shown below.

TUPLE(ITERABLE)
To construct a tuple from an iterable such as another sequence or a call to
range(), a built-in function.

	 Use Sequences, Sets, Dictionaries, and Text Files	 259

 https://doi.org/10.15215/remix/9781998944088.01

>>> l1 = [1, 2, 3]
>>> t0 = tuple(l1)
>>> t0
(1, 2, 3)

This would be the same as the following:

>>> t0 = (1, 2, 3)

>>> t1 = tuple('tuple')
>>> t1
('t', 'u', 'p', 'l', 'e')

>>> tuple(range(7))
(0, 1, 2, 3, 4, 5, 6)

T[N]
To get nth element of a tuple.

>>> teachers = ('Jeffery', 'Clover', 'David')
>>> teachers[2]
'David'

Please note that because a tuple is an immutable sequence, making changes
to its members will generate an error, as shown below:

>>> teachers[1] = 'Chris'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item
assignment

T[I:J]
To get a slice of tuple t including elements from point i to the one right before
point j.

>>> teachers[0:2]
('Jeffery', 'Clover')
>>> print(teachers)
('Jeffery', 'Clover', 'David')

	260	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

T1 + T2
To concatenate tuple t2 to t1.

>>> students = tuple(students)
>>> print(students)
('John', 'Mary', 'Terry', 'Smith', 'Chris')
>>> students + teachers
('John', 'Mary', 'Terry', 'Smith', 'Chris', 'Jeffery',
'Clover', 'David')

T * N
To duplicate tuple t n times.

>>> teachers * 2
('Jeffery', 'Clover', 'David', 'Jeffery', 'Clover',
'David')

E IN T
To test if e is an element of tuple t.

>>> teachers
('David', 'Jeffery', 'Clover')
>>> 'David' in teachers
True

LEN(T)
To get the number of elements in the tuple t.

>>> len(teachers * 2)
6

PRINT(T)
To print tuple t. Again, print may print the tuple recursively, but the expected result
can only be achieved if __str__() has been defined for every object at all levels.

>>> print(students)
('John', 'Mary', 'Terry', 'Smith', 'Chris')

Again, although we can extend the tuple by concatenating and duplicating,
we cannot make any change to the existing element of a tuple as we did to

	 Use Sequences, Sets, Dictionaries, and Text Files	 261

 https://doi.org/10.15215/remix/9781998944088.01

lists, because tuples are immutable. As a result, the tuple is not a suitable data
structure for representing the group of employees in the example presented at
the end of the previous section because employees may come and go.

5.4 Sets
As in mathematics, a set is a collection of unindexed and unordered elements.
For sets, Python has very few operators and built-in functions that we can use.

SET(S)
To construct a set from s, which can be a list, tuple, or string.

>>> students = ['Cindy', 'Smith', 'John', 'Chris',
'Mary']
>>> students = set(students)
>>> students
{'Cindy', 'Smith', 'John', 'Chris', 'Mary'}
>>> numbers = set(range(10))
>>> numbers
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

E IN S
To test if e is a member of set s.

>>> students
{'Cindy', 'Smith', 'John', 'Chris', 'Mary'}
>>> 'Chris' in students
True

LEN(S)
To get the total number of elements in the set.

>>> numbers
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
>>> len(numbers)
10

However, there are good number of methods defined for sets.

	262	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

S.ADD(M)
To add an element to the set s.

>>> s = set([3])
>>> s
{3}
>>> s.add(5)
>>> s
{3, 5}

S.CLEAR()
To remove all the elements from the set s.

>>> s.clear()
>>> s
set()

S.COPY()
To make and return a copy of the set s.

>>> s
{3, 5}
>>> s1 = s.copy()
>>> s1
{3, 5}

S.DIFFERENCE(S1,…)
To make and return a set containing only members of s that other sets in the
arguments don’t have—that is, the difference between two or more sets.

>>> s1
{3, 5}
>>> s2 = {5, 7}
>>> s1.difference(s2)
{3}
>>> s3={3,7}
>>> s1.difference(s2,s3) # returns an empty set
set()

	 Use Sequences, Sets, Dictionaries, and Text Files	 263

 https://doi.org/10.15215/remix/9781998944088.01

S.DIFFERENCE_UPDATE(*SX)
To remove the items in set s that are also included in another, specified set.

>>> s1 = {2 * i for i in range(15)}
>>> s2 = {3 * i for i in range(15)}
>>> s1
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28}
>>> s2
{0, 33, 3, 36, 6, 39, 9, 42, 12, 15, 18, 21, 24, 27, 30}
>>> s1.difference_update(s2)
>>> s1
{2, 4, 8, 10, 14, 16, 20, 22, 26, 28}
>>> s2
{0, 33, 3, 36, 6, 39, 9, 42, 12, 15, 18, 21, 24, 27, 30}

S.DISCARD(M)
To remove the specified item.

>>> s2
{0, 33, 3, 36, 6, 39, 9, 42, 12, 15, 18, 21, 24, 27, 30}
>>> s2.discard(18)
>>> s2
{0, 33, 3, 36, 6, 39, 9, 42, 12, 15, 21, 24, 27, 30}

S.INTERSECTION(*SX)
To return a set that is the intersection of two other sets.

>>> s1 = {2 * i for i in range(15)}
>>> s2 = {3 * i for i in range(15)}
>>> s1
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28}
>>> s2
{0, 33, 3, 36, 6, 39, 9, 42, 12, 15, 18, 21, 24, 27, 30}
>>> s1.intersection(s2)
{0, 6, 12, 18, 24}

S.INTERSECTION_UPDATE(*SX)
To remove the items in this set that are not present in another, specified set
or sets.

	264	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> s1
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28}
>>> s2
{0, 33, 3, 36, 6, 39, 9, 42, 12, 15, 18, 21, 24, 27, 30}
>>> s1.intersection_update(s2)
>>> s1
{0, 6, 12, 18, 24}

S.ISDISJOINT(SX)
To check and return whether two sets have an intersection (common member)
or not.

>>> s1
{0, 6, 12, 18, 24}
>>> s2
{0, 33, 3, 36, 6, 39, 9, 42, 12, 15, 18, 21, 24, 27, 30}
>>> s1.isdisjoint(s2)
False

S.ISSUBSET(SX)
To check and return whether another set contains this set or not.

>>> s1 = {2 * i for i in range(15)}
>>> s2 = {3 * i for i in range(15)}
>>> s1
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28}
>>> s2
{0, 33, 3, 36, 6, 39, 9, 42, 12, 15, 18, 21, 24, 27, 30}
>>> s1.issubset(s2)
False

S.ISSUPERSET(SX)
To check and return whether this set contains another set or not.

>>> s1.issuperset(s2)
False

S.POP()
To remove an element from the set.

	 Use Sequences, Sets, Dictionaries, and Text Files	 265

 https://doi.org/10.15215/remix/9781998944088.01

>>> s2
{0, 33, 3, 36, 6, 39, 9, 42, 12, 15, 18, 21, 24, 27, 30}
>>> s2.pop()
0
>>> s2
{33, 3, 36, 6, 39, 9, 42, 12, 15, 18, 21, 24, 27, 30}

S.REMOVE(M)
To remove the specified element.

>>> s2
{33, 3, 36, 6, 39, 9, 42, 12, 15, 18, 21, 24, 27, 30}
>>> s2.remove(18)
>>> s2
{33, 3, 36, 6, 39, 9, 42, 12, 15, 21, 24, 27, 30}

S.SYMMETRIC_DIFFERENCE(SX)
To construct and return a set with elements in either set s or another set but
not both. These are called set symmetric differences (“I have you do not; you
have I do not”).

>>> s1 = {2 * i for i in range(15)}
>>> s2 = {3 * i for i in range(15)}
>>> s1
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28}
>>> s2
{0, 33, 3, 36, 6, 39, 9, 42, 12, 15, 18, 21, 24, 27, 30}
>>> s1.symmetric_difference(s2)
{2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 21, 22, 26, 27, 28,
30, 33, 36, 39, 42}

S.SYMMETRIC_DIFFERENCE_UPDATE(SX)
To insert the symmetric differences from this set and another.

>>> s1.symmetric_difference_update(s2)
>>> s1
{2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 21, 22, 26, 27, 28,
30, 33, 36, 39, 42}

	266	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

S.UNION(SX)
To return a set containing the union of sets.

>>> s2 = {3 * i for i in range(5)}
>>> s1 = {2 * i for i in range(5)}
>>> s1
{0, 2, 4, 6, 8}
>>> s2
{0, 3, 6, 9, 12}
>>> s1.union(s2)
{0, 2, 3, 4, 6, 8, 9, 12}

S.UPDATE(SX)
To update the set by adding members from other sets.

>>> s1
{0, 2, 4, 6, 8}
>>> s2
{0, 3, 6, 9, 12}
>>> s1.update(s2)
>>> s1
{0, 2, 3, 4, 6, 8, 9, 12}

5.5 Dictionaries
A dictionary is a collection of key and value pairs enclosed in curly brackets. As
with a set, the dictionary is also immutable. There are very few operators and
built-in functions that can be used on dictionaries, as shown below.

DICT(**KWARG)
To construct a dictionary from a series of keyword arguments.

>>> dt = dict(one = 1, two = 2, three = 3)
>>> dt
{'one': 1, 'two': 2, 'three': 3}

DICT(MAPPING, **KWARG)
To construct a dictionary from mapping. If keyword arguments are present,
they will be added to the dictionary constructed from the mapping.

	 Use Sequences, Sets, Dictionaries, and Text Files	 267

 https://doi.org/10.15215/remix/9781998944088.01

>>> d1 = dict(zip(['one', 'two', 'three'], [1, 2, 3]))
>>> d2 = dict(zip([1, 2, 3], ['one', 'two', 'three']))
>>> d1
{'one': 1, 'two': 2, 'three': 3}
>>> d2
{1:'one', 2:'two', 3:'three'}

DICT(ITERABLE, **KWARG)
To construct a dictionary from an iterable. If keyword arguments are present,
they will be added to the dictionary constructed from the mapping.

>>> d3 = dict([('two', 2), ('one', 1), ('three', 3)])
>>> d3
{'two': 2, 'one': 1, 'three': 3}

LIST(DT)
To return a list of all the keys used in the dictionary dt.

>>> d3
{'two': 2, 'one': 1, 'three': 3}
>>> list(d3)
['two', 'one', 'three']

DT[K]
To get the value of key k from dictionary dt.

>>> dt = {1:'One', 2:'Two', 3:'Three'}
>>> dt[1]
'One'

DT[K] = V
To set d[key] to value V.

>>> d3
{'two': 2, 'one': 1, 'three': 3}
>>> d3['two']
2
>>> d3['two'] = bin(2)
>>> d3['two']
'0b10'

	268	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

DEL DT[K]
To remove dt[key] from dt.

>>> d3
{'two':'0b10', 'one': 1, 'three': 3}
>>> del d3['two']
>>> d3
{'one': 1, 'three': 3}

K IN DT
To test if dt has a key k.

>>> d3
{'one': 1, 'three': 3}
>>> 'two' in d3
False

K NOT IN DT
Same as not k in dt, or k not in dt.

>>> 'two' not in d3
True
>>> not 'two' in d3
True

ITER(DT)
To return an iterator over the keys of dt. Same as iter(dt.keys()).

>>> iter(d3)
<dict_keyiterator object at 0x00000198FE0EFEF8>
>>> list(iter(d3))
['one', 'three']

LEN(DT)
To get the total number of elements in the dictionary.

>>> dt
{1:'One', 2:'Two', 3:'Three'}
>>> len(dt)
3

	 Use Sequences, Sets, Dictionaries, and Text Files	 269

 https://doi.org/10.15215/remix/9781998944088.01

REVERSED(DT)
To return a reverse iterator over the keys of the dictionary. Same effect as
reversed(dt.keys()). This is new in Python 3.8.

>>> dt = {1:'One', 2:'Two', 3:'Three'} # keys: 1, 2, 3
>>> rk = reversed(dt) # reversed iterator over the keys
in rk
>>> for k in rk:
print(k)
…
3
2
1

Note that in the output above, the keys in rk are 3, 2, 1.

The following built-in methods of the dictionary class can be used to manipu-
late dictionaries.

D.CLEAR()
To remove all the elements from the dictionary.

>>> dt = {1:'One', 2:'Two', 3:'Three'}
>>> dt
{1:'One', 2:'Two', 3:'Three'}
>>> dt.clear()
>>> dt

D.COPY()
To make and return a copy of the dictionary.

>>> dt = {1:'One', 2:'Two', 3:'Three'}
>>> dx = dt.copy()
>>> dx
{1:'One', 2:'Two', 3:'Three'}

DICT.FROMKEYS()
To make a dictionary from a list of keys.

	270	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> keys = ['Edmonton','Calgary','Toronto']
>>> weather = dict.fromkeys(keys, 'Sunny')
>>> print(weather)
{'Edmonton': 'Sunny', 'Calgary': 'Sunny', 'Toronto': 'Sunny'}

D.GET(K)
To return the value of the specified key.

>>> d3 =dict([('two', 2), ('one', 1), ('three', 3)])
>>> d3.get('two')
2

D.ITEMS()
To return a list containing a tuple for each key-value pair.

>>> d3.items()
dict_items([('two', 2), ('one', 1), ('three', 3)])

D.KEYS()
To return a list containing the dictionary’s keys.

>>> d3.keys()
dict_keys(['two', 'one', 'three'])

D.VALUES()
To return a list of all the values in the dictionary.

>>> d3.values()
dict_values([2, 1, 3])

D.POP(K)
To remove the element with the specified key. Note that the removed item will
no longer exist in the dictionary.

>>> d3
{'two': 2, 'one': 1, 'three': 3}
>>> d3.pop('two')
2
>>> d3
{'one': 1, 'three': 3}

	 Use Sequences, Sets, Dictionaries, and Text Files	 271

 https://doi.org/10.15215/remix/9781998944088.01

D.POPITEM()
To remove an item from the end of the dictionary, as a key and value pair.

>>> d3
{'two': 2, 'one': 1, 'three': 3}
>>> d3.popitem()
('three', 3)

D.SETDEFAULT(KEY, VALUE)
To insert a key-value pair into the dictionary if the key is not in the dictionary;
return the value of the key if the key exists in the dictionary.

>>> d3
{'two': 2, 'one': 1}
>>> d3.setdefault('three', 3)
3
>>> d3.setdefault('two', 'II')
2
>>> d3
{'two': 2, 'one': 1, 'three': 3}

D.UPDATE(DX)
To update the dictionary with the specified key-value pairs in dx.

>>> d3
{'two': 2, 'one': 1, 'three': 3}
>>> d2
{1:'one', 2:'two', 3:'three'}
>>> d3.update(d2)
>>> d3
{'two': 2, 'one': 1, 'three': 3, 1:'one', 2:'two',
3:'three'}

5.6 List, Set, and Dictionary Comprehension
Lists, sets, and dictionaries are important data models for programmers to
structure and organize data with. Before using lists, tuples, sets, and dictio-
naries, it is important to create them in a nice way. List, set, and dictionary
comprehension is provided by Python to construct lists, sets, and dictionaries

	272	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

in a concise but efficient language. The essential idea for list, set, and dictionary
comprehension is the use of a for loop with or without conditions.

List Comprehension
The following is an example that constructs a list of odd numbers from 1 to 100:

In []: l0 = [i * 2 + 1 for i in range(50)]
print(l0)

Out []: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43,
45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83,
85, 87, 89, 91, 93, 95, 97, 99]

In the example, the expression before for represents the items of the list;
the for loop will run through the item expression in each iteration. This list
can also be generated using the for loop with an if clause, as shown below:

In []: l1 = [i for i in range(100) if i % 2 != 0]
print(l1)

Out []: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43,
45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83,
85, 87, 89, 91, 93, 95, 97, 99]

In the example above, the list item expression will be evaluated in every
iteration of the for loop only if the condition of the if clause is met. In fact, we
can put any condition on the iteration variable i. For example, assume we have
a Boolean function isPrime(N) that can test if number N is prime or not; then
the following statement will produce a list of prime numbers in the given range:

primes = [i for i in range(1000) if isPrime(i)]

Please note that the list item expression before for can be anything whose
value is a legitimate list item, as shown in the example below:

In []: detailed = [f"{i} is odd" if i % 2 !=0 else f"{i} is
even" for i in range(10)]

print(detailed)

Out []: ['0 is even', '1 is odd', '2 is even', '3 is odd', '4 is even', '5 is odd', '6 is even', '7
is odd', '8 is even', '9 is odd']

For item expressions involving two variables or more, nested for statements
can be used. For example, the following statement will generate a list of com-
binations of some years and months:

	 Use Sequences, Sets, Dictionaries, and Text Files	 273

 https://doi.org/10.15215/remix/9781998944088.01

In []: years = ['2015', '2016', '2017', ' 2018', '2019']
combo = [year + str(month).rjust(2, '0') for year in
years for month in range(1, 13)]

print(combo)

Out []: ['201501', '201502', '201503', '201504', '201505', '201506', '201507', '201508',
'201509', '201510', '201511', '201512', '201601', '201602', '201603', '201604',
'201605', '201606', '201607', '201608', '201609', '201610', '201611', '201612',
'201701', '201702', '201703', '201704', '201705', '201706', '201707', '201708',
'201709', '201710', '201711', '201712', ' 201801', ' 201802', ' 201803', '
201804', ' 201805', ' 201806', ' 201807', ' 201808', ' 201809', ' 201810', '
201811', ' 201812', '201901', '201902', '201903', '201904', '201905', '201906',
'201907', '201908', '201909', '201910', '201911', '201912']

Set Comprehension
A set is a collection of unique unordered items. With that in mind, set compre-
hension is similar to list comprehension, except that the items are enclosed in
curly brackets, as shown in the example below:

In []: asc = {chr(c) for c in range(ord('A'), ord('Z') + 1)}
print(asc)

Out []: {'K', 'M', 'G', 'T', 'C', 'O', 'L', 'D', 'S', 'I', 'B', 'N', 'A', 'F', 'W', 'H', 'P', 'X', 'J', 'Z', 'E', 'R', 'U',
'Y', 'Q', 'V'}

What would happen if items generated from the iteration were duplicated?
No worries! The implementation of set comprehension can take care of that.
If we want to find out all the unique words contained in a web document, we
can simply use set comprehension to get them, as shown below:

In []: import requests # import requests module to handle
requests for web resources

content = requests.get("https://scis.athabascau.ca/").
text

separators = [',', '.', '"', "'", '>', '<', '--', '!',
'|', ']', '[', '?', ';', '/'] # separators used to
separate words

separators += [')', '(', '$', '&', ':', '}', '{']
operators = ['=', '+']
for sp in separators:
 content = content.replace(sp, ' ') # replace each
of the separators with a space

for op in operators:
 content = content.replace(op, f' {op} ') # add a
space before and after each operator

unique_words = {w for w in content.split()}
print(len(unique_words), unique_words)

Out []: 969

	274	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The example above took a web document at https://​scis​.athabascau​.ca,
pulled all the unique words used in the document into a set, and printed the
number of unique words used, which is 969.

As you can see, we could get the unique words in a document very easily
by using set comprehension. How would we find out the ratio between the
number of unique words and the total number of words used?

Dictionary Comprehension
Dictionary comprehension is very similar to set comprehension, except that
we need to add a key and colon before each item to make a dictionary item, as
shown in the following:

In []: months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

m_dict = {i + 1: months[i] for i in range(12)}
print(m_dict)

Out []: {1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug', 9: 'Sep', 10:
'Oct', 11: 'Nov', 12: 'Dec'}

This can also be written in nested for clauses, as shown below:

In []: months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

m_dict = {i + 1: m for i in range(12) for m in
months}

print(m_dict)

Out []: {1: 'Dec', 2: 'Dec', 3: 'Dec', 4: 'Dec', 5: 'Dec', 6: 'Dec', 7: 'Dec', 8: 'Dec', 9: 'Dec',
10: 'Dec', 11: 'Dec', 12: 'Dec'}

5.7 Text Files
For people and smart beings in general, part of intelligence is being able to
remember things. Memory is an important part of that.

Computers have two types of memory. The first is RAM, which is volatile,
expensive, and of relatively lower capacity but provides high-speed access.
The variables we have been talking about so far are using RAM to hold data
and running programs that are also inside RAM. If the computer is turned off,
both data and programs will disappear from RAM. RAM is also called internal
memory.

https://scis.athabascau.ca

	 Use Sequences, Sets, Dictionaries, and Text Files	 275

 https://doi.org/10.15215/remix/9781998944088.01

The second type of memory that modern computers have is persistent
memory, such as a hard drive, flash memory card, or solid-state hard disk. This
type of memory is also called external memory. For this type of memory to be
useful, it must be part of a file system managed by an OS such as Windows, iOS,
or Linux. Within a file system, files are used for saving data and programs to
external memory, and the files are organized into hierarchical directories or
folders. In a file system, a file can be located through a path from the root to
the file within a tree-like structure.

Opening and Closing a File
To use a file, the first step is to open the file using the built-in function open.
The following will open a file for writing:

f = open("./mypoem.txt", 'w') # open file mypoem.txt in
the current working directory for writing

The statement above opened the file mypoem.txt in the current working
directory and returned a stream, which was then assigned to variable f, often
called a file handle.

The general syntax of the open statement is as follows:

open(file, mode = 'r', buffering = -1, encoding = None,
errors = None, newline = None, closefd = True, opener =
None)

The statement opens a file and returns a stream or file object; it will raise
OSError upon failure. In the statement, file is a text or byte string referring to
the file to be opened. It may include the path to the actual file if the file is not
in the current working directory.

Apart from the first argument for the name of the file to be opened, all
other arguments have default values, which means that these arguments are
optional. If no value is supplied, the default value will be used.

The second argument is called mode. It is optional with a default value r,
which means “open a text file for reading.” This argument is used to tell
the program what to do with the file after opening. Because reading from
a text file is not always what you want it to do with a file, the argument
is not optional. All available values for the mode argument are shown in
Table 5-7.

	276	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Table 5-7: List of mode arguments for the open function

Mode argument Access or accesses

r Open for reading only; file must already exist.

r+ Open for both reading and writing; file must already exist.

w Open for writing only; file may or may not exist. If not, a new
file will be created and ready for writing; if file already exists,
content will be overwritten.

w+ Open for writing and reading; file may or may not exist.

a Open for appending, same as w, but will not overwrite the
existing content.

a+ Open for both appending and reading.

x Create a new file for writing. File Exists Error will occur if the
file already exists. This would help prevent accidentally
overwriting an existing file.

The file to be opened or created can be either a text file, referred to as t, or
a binary file containing raw bytes, referred as b. To explicitly specify whether
the file is a text or binary file, t or b can be used in combination with each
of the values in Table 5-7. The default file type is text, so you do not have to
use t if the file is a text file. So in the example above, the statement is equivalent
to the following, in which t is used to explicitly indicate that it is a text file:

f = open("./mypoem.txt", 'wt') # open text file mypoem.
txt in the current working directory

In both examples, we assigned the file stream returned from the open state-
ment to a variable f, which is called the file handle. After the file is opened,
all operations on the file—such as read, write, append, or even close—must
be appended to the file handle. Every file must be closed using the f.close()
method after open and use unless the file is opened within a with statement,
in which case a context manager will take over access to the file and close it
when the job is done, as in the sample code below:

In []: with open("./mypoem.txt", 'r') as f: # f is still a
file handle

 for ln in f: # a file stream referred by f is an
iterator

 print(ln)

Out []: Yet it was plain she struggled, and that salt

	 Use Sequences, Sets, Dictionaries, and Text Files	 277

 https://doi.org/10.15215/remix/9781998944088.01

When not using the with statement, you will need to use the following
instead:

In []: f = open("./mypoem.txt", 'r') # f is still a file
handle

for ln in f: # a file stream referred by f is an
iterator

 print(ln)
f.close()

Out []: Yet it was plain she struggled, and that salt

The third argument is called buffering. It takes an optional integer used to
specify the buffering policy of the file operation. Passing 0 turns off buffering,
but it is only allowed for binary files. Passing 1 selects line buffering, which is
only allowed for text files. Passing an integer greater than 1 specifies the actual
size of a fixed-size chunk buffer. When no buffering argument is provided, the
default value −1 is used, which means that if the file is a binary file, the file will
be buffered in a fixed-size chunk; if the file is a text file, line buffering policy
is used, which means that the data will be flush to the actual file (on a disk
such as a hard drive) from the buffer (a portion of internal memory to buffer
the data) after each line was written.

The fourth argument is encoding, which specifies how the data in the file
are encoded. This argument only makes sense for text files. The default value
is platform dependent. If you believe that the encoding of data on a file is not
the default, you can specify whatever encoding in which the data are encoded.
However, the encoding must be supported by Python. In most cases, UTF-8 is
the default encoding.

The next optional argument is errors, which takes a string if provided. The
string specifies how encoding errors should be handled. Again, this argument
only makes sense if the file is a text file. The same is true for the optional new-
line argument, which controls how universal newlines work in a text file. The
optional newline argument can take the following:

•	 None
•	 ,
•	 \n
•	 \r
•	 \rn

Once a file is opened, a list of methods can be used to operate on the file object,
as detailed below.

	278	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Write or Append to a File
New data can be added to a file in two different manners. The first one is to
overwrite everything already in the file and place the new data at the beginning
of the file, and the second one is to keep the data already in the file and append
the new data to the end of the existing data. The write methods are the same
for both, but the file must be opened with a different mode depending on the
operation. That is, mode w or x must be used to open a file for writing the data
from the beginning of the file, and mode a must be used to append new data,
as you will see shortly in the examples.

There are two methods for writing to a file. The first one is f.write(string),
which writes string to the file referred by f. The second method is f.writelines(se-
quence), in which the sequence is any iterable object, such as a list or tuple,
but often a list of strings. The following is an example of opening or creating
a file (if the file does not exist yet) for writing data from the beginning of the
file using the write(string) method:

>>> f = open("./mypoem.txt", "w") # open file in the
current working directory for writing
>>> f.write("\nYou may write me down in history") # add
\n to write on a new line
>>> f.flush() # to flush the data out to the actual file

The resulting file will read,

You may write me down in history

If you could write only this one line of your poem and had to close the
file and shut down the computer, you would be more likely to continue from
where you had stopped the next time you came back to the poem. So you need
to append the new lines to the file. This is done by opening the file in a mode,
as shown below:

>>> f = open("./mypoem.txt", "a") # open file in the
current working directory for writing
>>> f.write("\nWith your bitter, twisted lies") # add
\n to write on a new line
>>> f.flush() # to flush the data out to the actual
file

The file is extended with one more line of poem:

	 Use Sequences, Sets, Dictionaries, and Text Files	 279

 https://doi.org/10.15215/remix/9781998944088.01

You may write me down in history
With your bitter, twisted lies

Note that the write method will only write a string to the file. As such, any-
thing that is not a string must be converted into a string before being written
to the file, as shown in the following example:

>>> f.write(f'\n{3.1415926}')

Also, because of buffering, the data you write to a file will not immediately
show up in the actual file until you close the file or use the flush() method
to flush the data in the buffer out to the file, as shown below:

>>> f.flush()

The write(string) method can only write one string to a file each time. To
write multiple strings to a file, the writelines(sequence) method is used. How-
ever, keep in mind that writelines() does not automatically write one string on
each line. You will still need to add \n at the beginning of the string if you want
it to be on the next line or at the end of the string if you don’t want anything
behind the string on the same line.

Recall the example of printing a 9 × 9 multiplication table. Now we can write
the table to a text file so that you can print it out whenever you want. This is
shown in the two examples below:

"""This first code sample is using the write method."""

f = open('./my9x9table.txt', 'w')
for i in range(1, 10):
 for j in range(1, i + 1):
 f.write('{:1d} x {:1d} = {:2d} '.format(j, i, i * j))
 f.write('\n')
f.close()

The output of the program is in the file my9x9table.txt:

1 x 1 = 1
1 x 2 = 2 2 x 2 = 4
1 x 3 = 3 2 x 3 = 6 3 x 3 = 9
1 x 4 = 4 2 x 4 = 8 3 x 4 = 12 4 x 4 = 16
1 x 5 = 5 2 x 5 = 10 3 x 5 = 15 4 x 5 = 20 5 x 5 = 25

	280	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

To use the writelines(sequence) method, we need to store the results in a
list first; each item of the list will be printed on one line. The code is shown
as follows:

"""This code sample is using the writelines method."""

table = []
for i in range(1, 10):
 newline = ''
 for j in range(1, i + 1):
 newline += '{:1d} x {:1d} = {:2d} '.format(j, i, i * j)
 newline += '\n'
 table.append(newline)

f = open('./my9x9table0.txt', 'w')
f.writelines(table)
f.close()

The result is the same as in the my9x9table.txt text shown above.

Reading from a File
To read from a file, three methods can be used. These methods are read([size]),
readline([size]), and readlines([sizehint]).

Use the read([size]) method to read the entire file and return the entire
contents as a single string or, if the optional size argument is given, to read
the specified number of bytes and return the contents as a single string. The
following example shows how the 9 × 9 multiplication table is read using
the read([size]) method:

In []: f = open('./my9x9table0.txt', 'r')
ln = f.read()
print(ln)
f.close()

Out []: 1 x 1 = 1
1 x 2 = 2 2 x 2 = 4
1 x 3 = 3 2 x 3 = 6 3 x 3 = 9
1 x 4 = 4 2 x 4 = 8 3 x 4 = 12 4 x 4 = 16
1 x 5 = 5 2 x 5 = 10 3 x 5 = 15 4 x 5 = 20 5 x 5 = 25
1 x 6 = 6 2 x 6 = 12 3 x 6 = 18 4 x 6 = 24 5 x 6 = 30 6 x 6 = 36
1 x 7 = 7 2 x 7 = 14 3 x 7 = 21 4 x 7 = 28 5 x 7 = 35 6 x 7 = 42 7 x 7 = 49
1 x 8 = 8 2 x 8 = 16 3 x 8 = 24 4 x 8 = 32 5 x 8 = 40 6 x 8 = 48 7 x 8 = 56 8 x

8 = 64
1 x 9 = 9 2 x 9 = 18 3 x 9 = 27 4 x 9 = 36 5 x 9 = 45 6 x 9 = 54 7 x 9 = 63 8 x

9 = 72 9 x 9 = 81

	 Use Sequences, Sets, Dictionaries, and Text Files	 281

 https://doi.org/10.15215/remix/9781998944088.01

If size is given, only that number of bytes will be read, as shown in the next
example:

In []: f = open('./my9x9table0.txt', 'r')
ln = f.read(135) # only read 135 bytes
print(ln)
f.close()

Out []: 1 x 1 = 1
1 x 2 = 2 2 x 2 = 4
1 x 3 = 3 2 x 3 = 6 3 x 3 = 9
1 x 4 = 4 2 x 4 = 8 3 x 4 = 12 4 x 4 = 16
1

Because the given size is so small, only a small portion of the multiplication
table has been read from the file.

Our next method for reading data from a file is readline([size]). This method
will read and return one entire line from the file if the optional size argument
is not provided or if the integer value is equal to or greater than the size of the
line. If the provided size is smaller than the actual size of the line being read,
then only part of that line, equal to the size in bytes, will be read and returned,
as shown in the following example:

In []: f = open('./my9x9table0.txt', 'r')
ln = f.readline(3)
print(ln, end='')
f.close()

Out []: 1 x

Using this method to read all the lines of the 9 × 9 multiplication table in the
file shown in the previous examples, we will need to put it in a loop and read
line by line until the end of the file. In Python, however, there is no effective
way to test if it has reached the end of the file. For this particular file, since
we know there is no blank line before the end of the file, we will use an empty
string to signify the end of the file. The revised code is shown below:

In []: f = open('./my9x9table0.txt', 'r')
while True:
 ln = f.readline()
 print(ln, end='')
 if ln == '': # test if it has reached the end of
the table

 break
f.close()

	282	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Out []: 1 x 1 = 1
1 x 2 = 2 2 x 2 = 4
1 x 3 = 3 2 x 3 = 6 3 x 3 = 9
1 x 4 = 4 2 x 4 = 8 3 x 4 = 12 4 x 4 = 16
1 x 5 = 5 2 x 5 = 10 3 x 5 = 15 4 x 5 = 20 5 x 5 = 25
1 x 6 = 6 2 x 6 = 12 3 x 6 = 18 4 x 6 = 24 5 x 6 = 30 6 x 6 = 36
1 x 7 = 7 2 x 7 = 14 3 x 7 = 21 4 x 7 = 28 5 x 7 = 35 6 x 7 = 42 7 x 7 = 49
1 x 8 = 8 2 x 8 = 16 3 x 8 = 24 4 x 8 = 32 5 x 8 = 40 6 x 8 = 48 7 x 8 = 56 8 x

8 = 64
1 x 9 = 9 2 x 9 = 18 3 x 9 = 27 4 x 9 = 36 5 x 9 = 45 6 x 9 = 54 7 x 9 = 63 8 x

9 = 72 9 x 9 = 81

The code above does not look so neat. In fact, since the text file is treated
as an iterator in Python, with one item for each line, the above code can be
simply written as follows:

f = open('./my9x9table0.txt', 'r')
for ln in f:
 print(ln, end = '')
f.close()

The output is the same as above.
Using a context manager with the code can be further simplified as follows:

with open('./my9x9table0.txt', 'r') as f:
for ln in f:
 print(ln, end='') # keyword argument end is set empty
because ln already has newline in it

Considering the fact that a text file is an iterator, the built-in function
next(iterator) can be used to iterate the file line by line. However, it would raise
a StopIteration error if it reached the end of the file. The following example
shows how to use next(iterator) to read and print the entire multiplication table:

In []: f = open('./my9x9table0.txt', 'r')
try:
 while True:
 line = next(f) # treat f as an iterator
 print(line, end='')
except (StopIteration):
 f.close() # if it reached the end of the file,
close the file

	 Use Sequences, Sets, Dictionaries, and Text Files	 283

 https://doi.org/10.15215/remix/9781998944088.01

Out []: 1 x 1 = 1
1 x 2 = 2 2 x 2 = 4
1 x 3 = 3 2 x 3 = 6 3 x 3 = 9
1 x 4 = 4 2 x 4 = 8 3 x 4 = 12 4 x 4 = 16
1 x 5 = 5 2 x 5 = 10 3 x 5 = 15 4 x 5 = 20 5 x 5 = 25
1 x 6 = 6 2 x 6 = 12 3 x 6 = 18 4 x 6 = 24 5 x 6 = 30 6 x 6 = 36
1 x 7 = 7 2 x 7 = 14 3 x 7 = 21 4 x 7 = 28 5 x 7 = 35 6 x 7 = 42 7 x 7 = 49
1 x 8 = 8 2 x 8 = 16 3 x 8 = 24 4 x 8 = 32 5 x 8 = 40 6 x 8 = 48 7 x 8 = 56 8 x

8 = 64
1 x 9 = 9 2 x 9 = 18 3 x 9 = 27 4 x 9 = 36 5 x 9 = 45 6 x 9 = 54 7 x 9 = 63 8 x

9 = 72 9 x 9 = 81

The third method for reading data from a file is readlines([sizehint]), where
optional sizehint, if provided, should be an integer hinting at the amount of
data to be read. Again, it is only available for text files. As the name implies,
it reads multiple lines into a Python list until the end of the file, or as much
as defined by sizehint, if the argument is provided. For example, if the total
amount of data of the first n lines is less than sizehint, but the first n + 1 lines
is greater than sizehint, then the method will read (n + 1) lines. So it will read
whole lines rather than partial, in contrast to the readline([size]) method.

Sometimes, we might like to read from a particular portion of a file, just like we
want to start reading a book from a specific page. How can we do that in Python?

Imagine there is a pointer indicating where the reading will start in a file.
In Python, several methods can be used to adjust the pointer.

The first method is f.tell(), which determines where the pointer is in terms
of how many bytes ahead it is, as shown in the following example:

In []: f = open('./my9x9table0.txt', 'r')
while True:
 pt = f.tell()
 line = f.readline()
 print('{:3d}: {:s}'.format(pt, line), end = '')
 if line == '': # test if it has reached the end of
the table

 break

f.close()

Out []: 0: 1 x 1 = 1
15: 1 x 2 = 2 2 x 2 = 4
43: 1 x 3 = 3 2 x 3 = 6 3 x 3 = 9
84: 1 x 4 = 4 2 x 4 = 8 3 x 4 = 12 4 x 4 = 16
138: 1 x 5 = 5 2 x 5 = 10 3 x 5 = 15 4 x 5 = 20 5 x 5 = 25
205: 1 x 6 = 6 2 x 6 = 12 3 x 6 = 18 4 x 6 = 24 5 x 6 = 30 6 x 6 = 36
285: 1 x 7 = 7 2 x 7 = 14 3 x 7 = 21 4 x 7 = 28 5 x 7 = 35 6 x 7 = 42 7 x 7 = 49
378: 1 x 8 = 8 2 x 8 = 16 3 x 8 = 24 4 x 8 = 32 5 x 8 = 40 6 x 8 = 48 7 x 8 = 56

8 x 8 = 64
484: 1 x 9 = 9 2 x 9 = 18 3 x 9 = 27 4 x 9 = 36 5 x 9 = 45 6 x 9 = 54 7 x 9 = 63

8 x 9 = 72 9 x 9 = 81
603:

	284	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The output above shows where each line starts. For example, the end of
the file is at 603. So with this information, the code using the readline([size])
method to read the multiplication table previously given can be easily revised
to the following:

f = open('./my9x9table0.txt', 'r')
while f.tell() != 603: # we use the read location to
identify if it has reached the end of the file
 line = f.readline()
 print(line, end = '')
f.close()

What if we want to read from a specific point in the file? To do that, we
need to move the pointer to that point. That brings us to the second method
of adjusting the pointer, which is f.seek(offset, start), in which the offset is
how much to move it from the start. The default value for start is the cur-
rent position of the pointer in the file. It would have been 0 when the file
opened.

So suppose we want to read the line of the multiplication table 138 bytes from
the beginning of the file. We would have to move the pointer to 138 first. From 0
at the beginning, the offset would be 138 as well. The code is shown below:

In []: f = open('./my9x9table0.txt', 'r')
f.seek(138)
pt = f.tell()
line = f.readline()
print('{:3d}: {:s}'.format(pt, line), end = '')

f.close()

Out []: 138: 1 x 5 = 5 2 x 5 = 10 3 x 5 = 15 4 x 5 = 20 5 x 5 = 25

Update Existing Content of a Text File
In a text file, how do we replace an existing line with something else? To achieve
this, we need to take the following steps:

	 1.	 Open the file in r+ mode
	 2.	 Find out the position of the line
	 3.	 Move the file pointer to that position using f.seek(offset, start)
	 4.	 Write whatever you want to the file, which will replace the original

content on that line

	 Use Sequences, Sets, Dictionaries, and Text Files	 285

 https://doi.org/10.15215/remix/9781998944088.01

An example of such an update is shown below:

In []: f = open('./my9x9table0.txt', 'r+')
f.seek(138)
pt = f.tell()
line = f.readline()
f.seek(138, 0)
f.write("update this line\n")
print('{:3d}: {:s}'.format(pt, line), end = '')

f.close()

Out []: 138: 1 x 5 = 5 2 x 5 = 10 3 x 5 = 15 4 x 5 = 20 5 x 5 = 25

The updated content of the file is shown below:

1 x 1 = 1
1 x 2 = 2 2 x 2 = 4
1 x 3 = 3 2 x 3 = 6 3 x 3 = 9
1 x 4 = 4 2 x 4 = 8 3 x 4 = 12 4 x 4 = 16
1 x 5 = 5 2 x 5 = 1update this line
= 20 5 x 5 = 25

Note that if there is less new content than the original, only part of the
original is replaced.

We can also replace a single original line with multiple lines, as shown
below:

In []: f = open('./my9x9table0.txt', 'r+')
f.seek(138)
pt = f.tell()
line = f.readline()
f.seek(138, 0)
f.write("we write a line at the current position\n")
f.write("we write another line below\n")
f.write("we add third line below the two lines already
written\n")

print('{:3d}: {:s}'.format(pt, line), end = '')

f.close()

Out []: 138: 1 x 5 = 5 2 x 5 = 10 3 x 5 = 15 4 x 5 = 20 5 x 5 = 25

The updated file is shown below:

	286	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

1 x 1 = 1
1 x 2 = 2 2 x 2 = 4
1 x 3 = 3 2 x 3 = 6 3 x 3 = 9
1 x 4 = 4 2 x 4 = 8 3 x 4 = 12 4 x 4 = 16
1 x 5 = 5 2 x 5 = 1we write a line at the current position
we write another line below
we add third line below the two lines already written
4 3 x 7 = 21 4 x 7 = 28 5 x 7 = 35 6 x 7 = 42 7 x 7 = 49
1 x 8 = 8 2 x 8 = 16 3 x 8 = 24 4 x 8 = 32 5 x 8 = 40 6 x 8 = 48 7 x 8 =
56 8 x 8 = 64
1 x 9 = 9 2 x 9 = 18 3 x 9 = 27 4 x 9 = 36 5 x 9 = 45 6 x 9 = 54 7 x 9 =
63 8 x 9 = 72 9 x 9 = 81

However, if the total size of the new written data is longer than the line
being replaced, part of the line or lines under will be overwritten. Therefore,
if you want to replace a specific line of the text file exactly, you will need to
write just enough to cover the existing data—no more, no less.

Deleting Portion of a Text File
To delete a portion of existing data from a file, you will need to use the f.trun-
cate([size]). If the optional size argument is given, the file will be truncated to
that size or the size of the file. Otherwise, the file will be truncated to the current
file position. So if a file is freshly opened in w, w+, a, or a+ mode, f.truncate()
will remove all data from the beginning to the end of the file. Please note that if
the optional size argument is given and greater than 0, the file must be opened
in a or a+ mode in order to truncate the file to the expected size.

f = open('./my9x9table0.txt', 'a')
f.truncate(399)

f.close()

The resulting content of the file is shown below:

1 x 1 = 1
1 x 2 = 2 2 x 2 = 4
1 x 3 = 3 2 x 3 = 6 3 x 3 = 9
1 x 4 = 4 2 x 4 = 8 3 x 4 = 12 4 x 4 = 16
1 x 5 = 5 2 x 5 = 1we write a line at the current position
we write another line below
we add third line below the two lines already written
4 3 x 7 = 21 4 x 7 = 28 5 x 7 = 35 6 x 7 = 42 7 x 7 = 49
1 x 8 = 8 2 x 8 = 16 3 x 8 = 24 4 x 8 = 32 5 x 8 = 40 6 x 8 = 48 7 x 8
= 56

	 Use Sequences, Sets, Dictionaries, and Text Files	 287

 https://doi.org/10.15215/remix/9781998944088.01

Please note that only part of the content in the file is left.
If the file is opened in w or w+ mode, the file will be truncated to a size of

0 regardless.
With all we have learned so far, we are ready to design and code a program

to analyze an article stored in a text file. The program is shown in Table 5-8.

Table 5-8: Case study: How to create a word list

The problem Different people have different styles when writing articles. These
styles may include the words, phrases, and even sentences used
most often in their writing. In this case study, we will develop a
program that analyzes an article stored as a text file to create a list
of the words used most often in the article.

The analysis
and design

To analyze the article, we need to read the file into memory, build a
list of words used in the article, then count how many times each
word appears in the article. Because the file needs to be read line
by line, we will read, analyze, and count the words in each line.
How can we store the result containing the unique words and the
number of times each word appeared in the article? Recall what
we learned about dictionaries: each unique word can be used as a
key, and the number of times the word appears can be the value.
We then just need to determine the words used most often in the
article. The best way to do that would be to sort the items of the
dictionary based on the values (instead of keys), then take the
first 10 items as the result. The algorithm is as follows:

 1. Prepare by creating a list of punctuation marks and a list of
nonessential words that can be ignored.

 2. Initialize by setting the counter to 0, w_dict = {}.
 3. Read the first line from the article into the memory.
 4. Build a list of all words within the line:
 a. replace all the punctuation marks with whitespace
 b. split the entire article at whitespace to build a list of words
 c. remove all nonessential words from the list
 5. Add the length of the list to the word counter:
 a. get a word from the list
 b. �if the word is already in w_dict, increase the value by 1;

otherwise, add dictionary item (word:1) to w_dict
 c. repeat step 5
 6. Repeat steps 3–5 on the next line until there are no remaining lines

in the file.
 7. Sort w_dict based on the values.
 8. Print out the first 10 items to show the words used most often by

the article’s author.
Please note that this is just an example of programming with text

files and Python dictionaries. The underlying theory about writing
style may not be sound. The words that appear most often in an
article may also be relevant to the topics covered by the article.

(continued on next page)

	288	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The code """
This program finds out the frequencies of all words
used in a news article stored in a text file.

"""
def news_analysis(article="WritingProposal.txt"):
 f = open(article, 'r')
 w_dict = {} # we use dictionary to store the
result, the key is the word, the value is times
used

 punctuations = ['//', '-', ',', '.', ':', '"',
'[', ']', '(', ')', ';', '!', '?', '\n']

 less_meaningful = ['the', 'a', 'an', 'to', 'of',
'and', 'was', 'is', 'are', 'in', 'on']

 space, words_total, unique_count = ' ', 0, 0
 for m in f: # this will lead the PVM to read the
file line by line

 for c in punctuations:
 m = m.replace(c, ' ')
 words = m.split(f"{space}")
 for w in words:
 if w == '':
 continue
 else:
 words_total += 1 # count total number of
all words

 for w in less_meaningful:
 m = m.replace(f' {w} ', ' ')
 m = m.replace(f' {w.capitalize()} ', ' ')
 words = m.split(f"{space}")
 for w in words:
 if w == '':
 continue
 else:
 if w not in w_dict.keys():
 unique_count += 1
 w_dict.update({w: 1})
 else:
 w_dict[w] += 1
 f.close()
 return words_total, [(k, v) for k, v in sorted(w_
dict.items(), reverse=True, key=lambda item:
item[1])]

result = news_analysis()
print(f"The article has {result[0]} words in total")
print(f"The number of unique words used is
{len(result[1])}")

for i in range(20):
 print(f'word "{result[1][i][0]}" used
{result[1][i][1]} times.')

Table 5-8: Case study: How to create a word list (continued)

	 Use Sequences, Sets, Dictionaries, and Text Files	 289

 https://doi.org/10.15215/remix/9781998944088.01

The result The article has 926 words in total
The number of unique words used is 467
word "will" used 20 times.
word "be" used 13 times.
word "NATO" used 13 times.
word "https" used 13 times.
word "research" used 10 times.
word "interoperability" used 9 times.
word "as" used 9 times.
word "Information" used 8 times.
word "standards" used 7 times.
word "military" used 7 times.
word "Interoperability" used 7 times.
word "for" used 7 times.
word "www" used 7 times.
word "such" used 6 times.
word "This" used 5 times.
word "this" used 4 times.
word "Canada" used 4 times.
word "essay" used 4 times.
word "exchange" used 4 times.
word "MIP" used 4 times.

Chapter Summary
•	 Computer intelligence is achieved by computing and information

processing.
•	 Both computing and information processing involve the manipulation

of data.
•	 Simple types of data such as integers, floats, characters, and bools are

the fundamental elements for complex data types.
•	 Unlike other languages, such as C, Python doesn’t have a separate data

type for single characters. In Python, a single character is a string
whose length is 1.

•	 Python has two constants, True and False, defined as values of type
bool. However, Python also treats 0, None, and empty string, empty
list, empty tuple, empty set, and empty dictionary as False and treats all
other values/objects as True.

•	 Python has some special data values/constants that don’t belong to
any ordinary data type. These special values/constants include None,
NotImplemented, Ellipsis, and __debug__.

•	 Strings, lists, tuples, sets, and dictionaries are the compound data types
in Python.

Table 5-8: Case study: How to create a word list (continued)

	290	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

•	 A string is a sequence of characters (ASCII, Unicode, or another
encoding standard).

•	 A list is a sequence of data in a pair of square brackets [], such as [1, 2,
3, 4, 5].

•	 A tuple is a sequence of data in a pair of parentheses (), such as (1, 2, 3,
4, 5).

•	 The difference between a list and a tuple is that a list is mutable
whereas a tuple is immutable, which means that once created, the data
member of a tuple cannot be changed.

•	 Characters in a string and members of a list or a tuple are indexed from
0 to n − 1, where n is the length of the string, list, or tuple.

•	 The character at place j of string s can be accessed using s[j].
•	 Similarly, a data member at place j of a list or tuple x can be accessed

using x[j].
•	 Strings, lists, and tuples are collectively called sequences.
•	 A slice of sequence (string/list/tuple) x can be taken using x[i:j], in

which i specifies where the slice starts and j specifies that the slice
should end right before location j.

•	 A number of operators and functions are available for constructing and
manipulating strings, lists, or tuples.

•	 String, list, and tuple objects also have a number of methods available
for constructing and manipulating strings, lists, or tuples.

•	 Some operators, functions, and methods are common for strings, lists,
and tuples.

•	 A set is a collection of unique data enclosed by a pair of curly brackets
{}, such as {1, 2, 3, 5}.

•	 Members of a set s are unordered, which means that they cannot be
accessed using notion S[j], for example.

•	 A set has some very special functions and methods from other
compound data types in Python.

•	 A dictionary is a collection of keys: value pairs enclosed by a pair of
curly brackets {}, such as {'one':1, 'two':2, 'three':3, 'five':5}.

•	 Members of a set s are unordered, which means that in a dictionary,
there is no such thing as a member at location j, for example.

•	 However, the value of a dictionary d can be accessed using the key
associated with the value with the notion of d[k], which refers to the
value whose associated key is k.

•	 Some special methods are defined for the operations of dictionaries.
•	 Files are important for storing data and information permanently.
•	 Files include text files and binary files.

	 Use Sequences, Sets, Dictionaries, and Text Files	 291

 https://doi.org/10.15215/remix/9781998944088.01

•	 The basic operations of files include create, read, write, append, and
expand.

•	 A new file can be created when open with the w or x flag, when the file
doesn’t already exist. Opening a file with the w flag will overwrite the
existing content of the file.

•	 To prevent data already in a file from being overwritten, open a file
with the a flag or x flag. The a flag will open the file for appending new
data to the end of the existing content of the file, while the x flag will
not open the file if it already exists.

•	 Open a file with the t flag to indicate that the file is a text file.
•	 Open a file with the b flag to indicate that the file is a binary file.
•	 After reading or writing a file, use the close() file object method to close

the file.

Exercises
	 1.	 Mentally run the following code blocks and write down the output of

each code block.
	 a.	course = 'comp218 - introduction to programming in

Python'
print(f'The length of \'{course}\' is
{len(course)}')

	 b.	course = 'comp218 - introduction to programming in
Python'
print(f'The length of \'{course[10:22]}\' is
{len(course[10:22])}')

	 c.	ls = list(range(9))
print(ls[2:5])

	 d.	asc = {chr(c) for c in range(ord('A'),
ord('Z')+1)}
print(asc)

	 e.	l0 = [i*2+1 for i in range(10)]
print(l0[2])

	 f.	combo = [year + str(month+1) for year in ['2015',
'2016'] for month in range(6)]
print(combo)

	 g.	s0 = 'Python '
s1 = 'is my language!'
print(s0+s1)

	292	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Projects
	 1.	 Write a program that reads a text from a user, then counts and displays

how many words and how many alphanumeric letters are in the text.
	 2.	 Write a program that

	 a.	 reads a series of numbers that are separated by whitespace and
uses a new line to end the input, then converts the numbers in the
input string and puts them into a list.

	 b.	 sorts the numbers in the list in descending order, using the sort()
list object method.

	 c.	 sorts the numbers in the list in descending order, using the Python
built-in function sorted().

Write your own code to sort the numbers in the list in ascending order
without using the sort() method or sorted() function.

	 3.	 Sorting is a very important operation in computing and information
processing because it is much easier to find a particular item (a
number or a word) from a large collection of items if the items
have been sorted in some manner. In computer science, many
algorithms have been developed, among which selection sort, bubble
sort, insertion sort, merge sort, quick sort, and heap sort are the
fundamental ones. For this project, search the internet for articles
about these sorting algorithms. Choose one to sort a list of integers.

	 4.	 Every course offered at universities has a course number and a title.
For this project, write an application that uses a dictionary to save
course information, allows users to add a course into the dictionary,
and allows a user to get the title of a course for a given course
number. The application should perform the following functions:

	 a.	 Get a course number and name from a user and add an item, with
the course number as key and the name as value, to the dictionary
if the course doesn’t already exist in the dictionary.

	 b.	 Get a course number from a user, then find out the name of the
course.

	 c.	 Display a list of all the courses in the dictionary showing the course
numbers as well as names.

	 d.	 Quit the application.

Hint: You will need a top-level while loop, which displays a menu
showing the four options then acts accordingly.

	 5.	 This project is about text analysis. Find a news article on the internet,
analyze the content, and generate and display some statistical data
from the article. The detailed requirements are as follows:

	 Use Sequences, Sets, Dictionaries, and Text Files	 293

 https://doi.org/10.15215/remix/9781998944088.01

	 a.	 Find a news article on the internet and save it as a text file on your
computer.

	 b.	 Have your program build a list of words in the article while reading
the news content from the file.

	 c.	 Generate and display the following statistics of the article:
	 i.	 the total number of words in the article
	 ii.	 a list of unique words
	 iii.	 the frequency of each unique word in the article
	 iv.	 a short list of words that represent the essence of the article
	 v.	 a table with the above data nicely presented
	 6.	 Cryptography is the study of theory and technology for the protection

of confidential documents in transmission or storage. It involves both
encryption and decryption. In any cryptographic scheme, encryption
is the process of converting plaintext to ciphertext according to a
given algorithm using an encryption key, whereas decryption is the
process of converting encrypted text (ciphertext) back to plaintext
according to a given algorithm using a decryption key. If the
encryption key and decryption key are the same in a cryptographic
scheme, the scheme is a symmetric cryptographic scheme; if the
two keys are different, the scheme is an asymmetrical cryptographic
scheme.

Among the many cryptographic schemes, substitution is a classic
one, though the scheme is prone to frequency analysis attack. Write a
program that can

	 a.	 automatically generate a substitution key and add it to a key list
stored in a file.

	 b.	 display the substitution keys in the file.
	 c.	 allow the user to choose a key in the list and encrypt some text

taken from the user.
	 d.	 allow the user to choose a key to decrypt an encrypted text taken

from the user.
	 e.	 allow the user to choose a key, encrypt the content of a text file,

and save the encrypted content into a different file.
	 f.	 allow a user to choose a key, decrypt the encrypted content in a

file, and display the plaintext decrypted content.

This page intentionally left blank

 https://doi.org/10.15215/remix/9781998944088.01

Chapter 6

Define and Use Functions

In programming or software development, program codes must be well
structured to be manageable. Some program codes can be reused to make pro-
gramming and software development more efficient. Functions and modules
serve these two goals. Chapter 6 shows you how to define and use functions in
Python and how to make and use modules in programming.

Learning Objectives
After completing this chapter, you should be able to

•	 explain what functions are in Python.
•	 define new functions correctly.
•	 use functions, including both built-in and programmer-defined

functions.
•	 use return statements properly to return various values from a

function.
•	 use positional arguments in defining and using functions.
•	 use variable-length lists of arguments in defining and using functions.
•	 use keyed arguments in defining and using functions.
•	 use positional arguments, keyed arguments, and variable-length lists of

arguments.
•	 explain what recursive functions are and how they work.
•	 define and use recursive functions.
•	 explain what anonymous/lambda functions are.
•	 define and use anonymous/lambda functions.
•	 use special functions such as mapping, filtering, and reducing.
•	 explain what generators are and what advantages they have.
•	 define a function as a generator.

	296	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

•	 explain what closures and decorators are and how they are used.
•	 define and use closures and decorators.
•	 describe the properties of functions and use them properly.

6.1 Defining and Using Functions in Python
You have already seen and used some built-in functions in the previous chap-
ters. These built-in functions are built into Python Virtual Machine (PVM)
in its standard distribution so that you can use them without importing any
Python modules. For example, the built-in function sum can be used directly
to calculate the sum of a sequence of numbers, as shown in the following
code sample:

>>> sum([12, 23, 25, 65, 52])
177

As you will see, many Python modules, available via either Python distribu-
tion or a third party, have also defined functions ready for you to use in your
programs.

For functions defined in a standard or third-party module, you must
import the module before you can call the function by using the dot notation
or operator, such as m.f(…), where m is a name referring to the module,
and f is the name of the function to be used. Within the pair of parentheses
are data as arguments of the function call, to be passed to the function for
processing. The following is an example calling the pow() function from
the math module:

>>> import math
>>> math.pow(35,12)
3.3792205080566405e+18

Note that when calling a function, a pair of parentheses must be attached to
the name of the function, even if there is no argument to pass. Otherwise, the
name of the function will be evaluated as a first-class object, and the type of
the object and the name will be returned, as shown in the following example:

>>> print(sum)
<built-in function sum>
>>> print(id)
<built-in function id>

	 Define and Use Functions	 297

 https://doi.org/10.15215/remix/9781998944088.01

Although many modules have been developed by others and many func-
tions have been made available, programmers do need to define their own
functions for their specific purposes.

To define a function in Python, the def compound statement is used. The
general syntax is as follows:

def <function name>(parameters):
 <code block>

Where function name is a legitimate identifier in the local scope, parameters
are legitimate variable names that can be used to pass values (arguments) to
the function, and a code block (function body, in this compound statement)
is the real program code that does the computing or information processing.
What makes a code block in a function definition different from code blocks
in other compound statements such as for, while, and if is that it will always
return a value with the return statement. Even if you do not have anything
to return from a function definition and do not have a return statement, special
value None will still be automatically returned from the function.

The following is a real example showing how a function is defined in Python:

In []: def factorial(n):
"""This function calculates and returns n!, the
factorial of an integer n > 0."""

 if (not isinstance (n, int)) or (n < 1):
 return None
 r = 1
 for i in range(n):
 r *= (i + 1)
 return r

As documented in the docstring, the function is to calculate and return the
factorial of an integer if the number is greater than 0; otherwise, it returns
None.

The function you defined can be used in the same way as built-in functions.
The following example shows how to call the factorial function defined above:

In []: N = 16
fn = factorial(N)
print(f'factorial of {N} is {fn}.')

Out []: factorial of 16 is 20922789888000.

	298	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Sometimes you need to return more than one value from a function. To
do that, you can either put the values in a compound data type such as a
list, tuple, set, or dictionary, or just put the value all behind return. In the
latter case, the values will be automatically packed in a tuple by the return
statement.

The following example calculates and returns both the quotient and remain-
der of two integers at the same time.

In []: def idivmod(n, m):
 if (not isinstance(n, int)) or (not isinstance(n,
int)) or (m == 0):

 return None
 return n // m, n % m

n, m = 23, 5
print(f'The value returned from idivmod({n}, {m}) is
{idivmod(n, m)}.')

Out []: The value returned from idivmod(23, 5) is (4, 3).

In the remainder of this section, we show how to program to solve slightly
more complicated problems with Python.

A perfect number is an integer that equals the sum of all its factors excluding
the number itself. For example, 6 is a perfect number because 6 = 1 + 2 + 3. So
is 28. It sounds simple, but the next perfect number is very far from 28: 496. A
program for finding perfect numbers is shown in Table 6-1.

Table 6-1: Case study: How to find perfect numbers

The problem In this case study, we are going to write a program to ask for a big
integer from the user, then find all the perfect numbers smaller
than the big integer.

The analysis
and design

Step 1.	 Take an input from user, and convert it into an integer
Step 2.	 Loop from 2 to the big integer
 a.	 Test each integer to see if it is a perfect number
 b.	 If yes, print the number and all its factors
Step 3.	 Finish
Steps to check if a number is a perfect number:
Step 4.	 Find all its factors, including 1 but excluding the number

itself, and put them into a list
Step 5.	 Sum up the factors with sum(factors)
Step 6.	 If the number == sum(factors), then return True.

	 Define and Use Functions	 299

 https://doi.org/10.15215/remix/9781998944088.01

The code """
This program is used to find all the perfect
numbers that are less than N given by a user.

"""
def perfect(n):
 factor = [1] # create a list with 1 as the
first factor

 for j in range(2, (n // 2) + 1): # only need
loop to n // 2 + 1

 if n % j == 0: # if j is a factor
 factor.append(j) # add j to the list
 if n == sum(factor): # if the sum of the
factors = n

 return [True, factor] # return True as well
as factors

 else:
 return [False, []]
upper_bound = int(input("Tell me the upper
bound:"))

for i in range(2, upper_bound):
 test = perfect(i)
 if test[0]:
 print(f"{i} = {test[1]}")

The result Tell me the upper bound:32198765
6 = [1, 2, 3]
28 = [1, 2, 4, 7, 14]
496 = [1, 2, 4, 8, 16, 31, 62, 124, 248]
8128 = [1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064]

6.2 Parameters and Arguments in Functions
When you define a function, you can use variables within the parentheses
right next to the function name to specify what values can be taken when
the function is called. These variables within the parentheses are called par-
ameters, and the values to be passed to the parameters in a function call are
called arguments.

In Python, a function call may take positional arguments, keyword argu-
ments, variable-length lists of nonkeyword arguments, variable-length lists
of keyword arguments, and default arguments. These are determined in the
definition of the function.

In a function definition, a simple variable name can be used for a parameter
expecting a positional argument or keyword argument, to give a parameter, such
as x, a default V using assignment x = V. When a parameter is given a default

Table 6-1: Case study: How to find perfect numbers (continued)

	300	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

value, the default value will be used when no value is given to the parameter
in a function call.

To indicate that parameter y will hold a variable-length list of nonkeyword
arguments, use *y; to indicate that parameter z will take variable-length
of keyword arguments, use **z. Keyword arguments will be explained
shortly.

When calling a function, positional arguments are the arguments passed to
their respective parameters in accordance with their positions. That is, the first
parameter in a function call is passed to the first argument in the definition of
the function, the second parameter is passed to the second argument, and so
on. This is illustrated in the example below:

In []: def func_demo1(a, b, c):
 print(f'a = {a}, b = {b}, c = {c}')

func_demo1(1, 2, 3)

Out []: a = 1, b = 2, c = 3

This shows that the first argument was passed to the first parameter a, the
second argument was passed to the second parameter b, and the third argument
was passed to the third parameter c.

When calling a function, its parameter name, such as x, can be used as a
keyword to explicitly indicate that a specific value, such as v, will be passed to
x. This is done using x = v syntax, called a keyword argument in a function call.
The following example shows how keyword arguments are used.

In []: def func_demo1(a, b, c):
 print(f'a = {a}, b = {b}, c = {c}')

func_demo1(b =1, a = 2, c = 3)

Out []: a = 2, b = 1, c = 3

In this case, the order of the arguments does not matter because the code
explicitly indicates which argument is given to which parameter. Please note
that in a function call when keyword argument is used, no more positional
arguments, except variable-length nonkeyword arguments, may follow. An
error will occur otherwise, as shown below:

	 Define and Use Functions	 301

 https://doi.org/10.15215/remix/9781998944088.01

In []: def func_demo1(a, b, c):
 print(f'a = {a}, b = {b}, c = {c}')

func_demo1(b=1, 2, 3)

Out []: File "<ipython-input-51-6539f4d878e5>", line4
func_demo1(b = 1, 2, 3)
 ^
SyntaxError: positional argument follows keyword argument

Also, in a function definition, parameters expected to be used as keywords
must be placed behind those expecting positional arguments. An error will
occur otherwise, as shown in the following example:

In []: def func_demo1(a, b, c):
 print(f'a = {a}, b = {b}, c = {c}')

func_demo1(3, 1, a = 2)

Out []: ----------------------------------
TypeError Traceback (most recent call last)
<ipython-input-185-f540d2127799> in <module>
 2 print(f'a = {a}, b = {b}, c = {c}')
 3 ---->
 4 func_demo1(3, 1, a = 2)
TypeError : func_demo1() got multiple values for argument 'a'

When a parameter in a function definition has a default value, the argu-
ment for the parameter can be omitted if the default value is to be used. The
function defined in the following example will calculate the square of num-
ber x by default, but it can also calculate x power of y by passing a particular
value to y:

In []: def powerof(x, y = 2):
 return f'{x} ** {y} = {x ** y}'

print(powerof(12))
print(powerof(23, 5))
print(powerof(13, y = 6))
print(powerof(y = 21, x = 3)) # with keyword
arguments, the order doesn't matter

Out []: 12 ** 2 = 144 23 ** 5 = 6436343 13 ** 6 = 4826809 3 ** 21 = 10460353203

	302	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The following example demonstrates how to define a function that can
take variable-length nonkeyword arguments. The function is to calculate the
product of a series of numbers:

In []: def product(*n):
 s = 1
 for i in n:
 s *= i
 return f'Product of all numbers in {n} is {s}'

print(product(1,2,5,32,67))
print(product(11,32,25,3,7))
print(product(19,12,15,322,6))

Out []: Product of all numbers in (1, 2, 5, 32, 67) is 21440
Product of all numbers in (11, 32, 25, 3, 7) is 184800
Product of all numbers in (19, 12, 15, 322, 6) is 6607440

As can be seen, using variable-length nonkeyword positional arguments
has made the function more powerful.

Sometimes in a function call, you may also want to use variable-length
keyword arguments. The following example shows how this can be done:

In []: def reporting(**kwargs):
 for k, v in kwargs.items():
 print(f'{k}:{v}')
reporting(First_name ='John', Last_name ='Doe', Sex
='Male')

reporting()

Out []: First_name:John
Last_name:Doe
Sex:Male

When calling a function with variable-length keyword arguments, the key-
words look like parameter names to which the values are passed. However,
in the case of variable-length keyword arguments, these keywords cannot be
used as variables inside the function definition because they are not in the
parameter list when the function is defined.

While variable-length nonkeyword arguments are passed to a function as
a tuple, variable-length keyword arguments are passed to the function as a
dictionary. As such, what can be achieved by using variable-length keyword

	 Define and Use Functions	 303

 https://doi.org/10.15215/remix/9781998944088.01

arguments can also be achieved by passing a dictionary instead. For example,
the above example can be easily rewritten as follows:

In []: def dict_reporting(ps): # kw is a dictionary
 for k, v in ps.items():
 print(f'{k}:{v}')

pdict = {'First_name':'John', 'Last_name':'Doe',
'Sex':'Male'}

dict_reporting(pdict)

Out []: First_name:John
Last_name:Doe
Sex:Male

Similarly, functions taking variable-length nonkeyword arguments can be
easily rewritten to take a tuple. So the example of list_product function can
be rewritten as follows:

In []: def product_tuple(nt):
 s = 1
 for i in nt:
 s *= i
 return f'Product of all numbers in {nt} is {s}'

print(product_tuple((1,2,5,32,67)))
print(product_tuple((11,32,25,3,7)))
print(product_tuple((19,12,15,322,6)))

Out []: Product of all numbers in (1, 2, 5, 32, 67) is 21440
Product of all numbers in (11, 32, 25, 3, 7) is 184800
Product of all numbers in (19, 12, 15, 322, 6) is 6607440

The difference between using variable-length arguments and passing a
tuple or dictionary is that, because the length of variable-length arguments can
be 0, you do not have to pass any argument at all if you don’t have one. With
a tuple or dictionary, on the other hand, you would have to have a legitimate
argument for the corresponding parameter in the function definition unless
you have set a default value to it. Also, as can be seen from the two examples
above, in some applications, using variable-length arguments is more natural
and elegant.

	304	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

CODING PRACTICE

We know that given a, b, and c for equation ax2 + bx + c = 0, x is (−b +
sqrt(b2 − 4ac)) / 2a, or (−b − sqrt(b2 − 4ac)) / 2a.

Design a program that will take three numbers with the input
statement, and then solve quadratic equation ax2 + bx + c = 0 by calling
a function solve quadratic(a, b, c) which you need to design. The two
solutions x1, x2 should be returned in a tuple as (x1, x2).

6.3 Recursive Functions
A function is recursive if it calls itself either directly or indirectly. Recursion
is a powerful concept in computing and computational theory. In computational
theory, it has been proven that any problem computable by modern computers
can be represented as a recursive function.

In programming, recursive functions do not make your programs run fast.
However, they do provide a powerful means of algorithm design to solve a
problem and make neater program code.

Take the factorial function n! as an example. You know that n! is defined as
1 * 2 * 3 * … * n. If you use fac(n) to refer to the factorial function, you cannot
simply define the function in Python as

def fac(n):

 return 1 * 2 * 3 * … * n # this does not work in

Python

because the dots (…) do not make sense to computers in this context. With what
you have learned so far, the function can be defined as

def fac(n):

 if n == 0:

 return 1

 product = 1

 for i in range(n): # using loop

 product *= (i + 1)

 return product

The function above has seven lines of code.

	 Define and Use Functions	 305

 https://doi.org/10.15215/remix/9781998944088.01

Since you know that 0! = 1, and n! can be computed as n * (n − 1)! if n > 0,
you can program a recursive function in Python to solve the factorial problem,
as shown in the case study in Table 6-2.

Table 6-2: Case study: How to use a recursive function for
calculating factorial n

The problem Define a recursive function to calculate factorial n as n!

The analysis
and design

We know that 0! = 1, and n! can be computed as n * (n − 1)! when
n > 0. So if we use fac(n) to denote n!, this will be translated as
fac(n) = 1 if n = 0 and as fac(n)= n * fac(n − 1) if n > 0. Accordingly,
we can define a recursive factorial function in Python as follows:

The code def fac(n):
 if n == 0:
 return 1
 else:
 return n * fac(n - 1)

n = 9
print(f"{n}! = {fac(n)}")

The result 9! = 362880

As you can see, the function has become shorter and neater, although it
often takes more memory and more time to run.

The next case study, in Table 6-3, shows how a recursive function can be
used to find the greatest common divisor of two integers.

CODING ALERT

What will happen if fac(n) is called with n < 0? For example, as fac(−9)?

Table 6-3: Case study: How to use a recursive function

The problem This simple problem aims to find the greatest common divisor
(GCD) for two given integers. A common divisor of two integers
is an integer that can divide both integers, and the GCD is the
biggest one among the common divisors. For example, 1 and 2 are
common divisors of 4 and 6, and 2 is the GCD of 4 and 6.

The analysis
and design

At first glance, a straightforward approach is to find all the divisors
for each integer,

(continued on next page)

	306	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

The code """
Ask for two integers and find the GCD of the two
using the improved Euclidean algorithm.

"""

def my_gcd(a, b):
 global depth
 if b == 0: # condition to finish
 return b
 else:
 b, a = sorted((abs(a - b), b)) # sort and
reassign

 depth += 1 # recursion depth increased by 1
 print(f"recursion #{depth} for{(a, b)}")
 return my_gcd(a, b)

i = int(input("Tell me the first integer:"))
j = int(input("Tell me the second integer:"))
if i < j:
 i, j = j, i
depth = 0
print(f"The greatest common divisor of {i} and {j}
is {my_gcd(i, j)} after {depth} recursions.")

The result Tell me the first integer:3238
Tell me the second integer:326
recursion #1 for (2912, 326)
recursion #2 for (2586, 326)
recursion #3 for (2260, 326)
recursion #4 for (1934, 326)
recursion #5 for (1608, 326)
recursion #6 for (1282, 326)
recursion #7 for (956, 326)
recursion #8 for (630, 326)
recursion #9 for (326, 304)
recursion #10 for (304, 22)
recursion #11 for (282, 22)
recursion #12 for (260, 22)
recursion #13 for (238, 22)
recursion #14 for (216, 22)
recursion #15 for (194, 22)
recursion #16 for (172, 22)
recursion #17 for (150, 22)
recursion #18 for (128, 22)
recursion #19 for (106, 22)
recursion #20 for (84, 22)
recursion #21 for (62, 22)
recursion #22 for (40, 22)
recursion #23 for (22, 18)
recursion #24 for (18, 4)
recursion #25 for (14, 4)
recursion #26 for (10, 4)
recursion #27 for (6, 4)
recursion #28 for (4, 2)
recursion #29 for (2, 2)
recursion #30 for (2, 0)
The greatest common divisor of 3238 and 326 is 2 after 30

recursions.

Table 6-3: Case study: How to use a recursive function (continued)

	 Define and Use Functions	 307

 https://doi.org/10.15215/remix/9781998944088.01

As noted, the program took 30 recursions to find the GCD of 3238 and 326.
Can we make it more efficient? The answer is yes, and it is fun to design and
code a better and faster program to solve a problem, as shown in the case study
of this same problem in Table 6-4.

Table 6-4: Case study: How to use a recursive function—revised
The problem This simple problem aims to find the greatest common divisor

(GCD) for two given integers. A common divisor of two integers
is an integer that can divide both integers, and the GCD is the
biggest one among the common divisors. For example, 1 and 2 are
common divisors of 4 and 6, and 2 is the GCD of 4 and 6.

The analysis
and design

The original Euclidean algorithm is great because it only needs
subtraction to find out the greatest common divisor, but sometimes
it will involve too many steps, especially if we do the calculation
manually. For example, to find the greatest common divisor of 4
and 40000, one needs to complete 10000 subtractions to find out
that 4 is the GCD. An obvious and straightforward improvement to
the algorithm is to use modular operation in place of subtraction.

The code """
Ask for two integers and find the GCD of the two
using the improved Euclidean algorithm.

"""

def my_gcd(a, b):
 global depth
 if b == 0: # condition to exit from recursion
 return a
 else:
 b, a = sorted(((a % b), b)) # sort and
reassign

 depth += 1 # recursion depth increased by 1
 print(f"recursion # {depth} for {(a, b)}")
 return my_gcd(a, b)

i = int(input("Tell me the first integer:"))
j = int(input("Tell me the second integer:"))
if i < j:
 i, j = j, i
depth = 0
print(f"The greatest common divisor of {i} and {j}
is {my_gcd(i, j)} after {depth} recursions.")

The result Tell me the first integer:3238
Tell me the second integer:326
recursion #1 for (326, 304)
recursion #2 for (304, 22)
recursion #3 for (22, 18)
recursion #4 for (18, 4)
recursion #5 for (4, 2)
recursion #6 for (2, 0)
The greatest common divisor of 3238 and 326 is 2 after 6

recursions.

	308	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

As you can see, for the same numbers, the improved algorithm took only six
recursions, whereas the original took 30. Another benefit of using the improved
algorithm is that because Python Virtual Machine (PVM) has a limit on the
maximum depth of recursions due to the limitations of computer memory,
the improved algorithm will be able to handle much bigger numbers than the
original algorithm. You may run the two programs on 24230336504090 and
356879542 to see the difference between the two algorithms.

6.4 Anonymous Functions: lambda Expressions
In previous sections, you saw functions with names, which make it possible to
call a function by its name. Sometimes, especially when the operations of the
function are simple and used only once, it is more convenient to simply use a
small code block as a function without defining a function with a name. This
is where anonymous functions or lambda expressions come to play.

The word lambda originates from lambda calculus, which has played an
important role in the development of modern computational theory and func-
tional programming. You are encouraged to search for lambda calculus on the
internet for more details.

In Python, an anonymous function can be defined using the following
syntax:

lambda <formal argument list> : <expression whose value is to be

returned>

In the above syntax, a formal argument list is a list of variables separated
by commas but without surrounding parentheses, and everything behind the
colon takes the role of the code block in the regular function definition. But
it must be a single expression whose value is to be returned by the lambda
function without a keyword return.

The following is an example of a lambda function in Python that is used to
construct an odd number from a given integer:

>>> lambda n: 2 * n + 1
<function <lambda> at 0x012CBD20>
>>>

Because an anonymous function is meant to have no name, the common use
of such a function is to have it called directly when it is defined, as shown below:

	 Define and Use Functions	 309

 https://doi.org/10.15215/remix/9781998944088.01

>>> (lambda n: 2 * n + 1)(4)
9

Note that a pair of parentheses encloses the entire lambda expression to
signify the end of the lambda expression.

A lambda expression can also have two or more formal arguments, as shown
below:

>>> (lambda x, y: x + y)(3, 5)
8

In the example above, we first defined a lambda function within a pair of paren-
theses, then applied it to a list of two actual arguments within a pair of parentheses.

An anonymous function can even be defined to take a variable-length list
of arguments, as shown in the following example:

>>> (lambda& * x: sum(x) * 3)(1, 2, 3, 4, 5)
15

Although an anonymous function is meant to have no name, that does not
stop you from giving it a name, as shown in the next example:

>>> double = lambda x: 2 * x

We can then call the function with the name, as shown below:

>>> double(23)
46

Our next anonymous function takes two arguments and checks if one is a
multiple of the other:

>>> is_multiple = lambda m, n: m % n == 0
>>> is_multiple(32, 4)
True
>>> is_multiple(32, 5)
False

The next section will show how lambda expressions can be used to program
more effectively.

	310	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

6.5 Special Functions: Mapping, Filtering, and
Reducing
As mentioned, Python treats everything as objects, including functions, which
can be accessed in the same way as ordinary objects. The following is an example:

>>> f_objects = [abs, len, open] # the list has three
functions as its members
>>> f_objects[0](-2) # f_objects[0] refers to the first
item in the list, which is built-in function abs
12
>>> f_objects[1](f_objects) # f_objects[1] refers to the
second item in the list, which is built-in function len
3

This has provided programmers with great possibilities. For example,
Python has three special built-in functions that can take other functions as
arguments and apply them to a list. These special functions include mapping,
filtering, and reducing.

Mapping
It is easier to explain what mapping does with a code example:

>>> integers = [-12, 32, -67, -78, -90, 88] # this list
has negative numbers
>>> list(map(abs, integers)) # this maps the function
abs to each integer in the list
[12, 32, 67, 78, 90, 88]

Note that abs() has been applied to every member of the list.
Basically, the map function can apply any function to as many lists as

required for its arguments. The following is an example:

>>> def sum(a, b): # this function requires two
arguments
… return a + b
…
>>> list(map(sum, [1, 2, 3], [5,8,9])) # this maps the
sum function to two lists for the two arguments
[6, 10, 12]

	 Define and Use Functions	 311

 https://doi.org/10.15215/remix/9781998944088.01

Given what you have already learned about anonymous functions, you can
generate a list of odd numbers neatly, as follows:

>>> list(map(lambda n: 2 * n + 1, range(10)))
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

Similarly, we can generate all multiples of a number k, such as 3 in the
example below:

>>> list(map(lambda n: 3 * n, range(10)))
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

Filtering
The filtering function takes the same form as the mapping function but is used
to extract items from the iterable that satisfy the Boolean filtering condition at
hand. The following sample code keeps only even numbers in the generated list:

>>> def even(n):
… return n % 2 == 0 # if it can be divided by 2, then
return true; return false otherwise
…
>>> list(filter(even, range(10))) # filter applies to
each even number and keeps only some
[0, 2, 4, 6, 8]

The code above can be neatly rewritten by using a lambda expression, as
follows:

>>> list(filter(lambda n: n % 2 == 0, range(10)))
[0, 2, 4, 6, 8]

The filter function may play an important role in selecting items from a
given list based on certain criteria, as shown in the following example:

>>> st = "The filter function may play an important role
in selecting words from a given text. In the following
example, only words that contain the letter o are selected"
>>> list(filter(lambda s: 'o' in s, st.split()))
['function', 'important', 'role', 'words', 'from',
'following', 'only', 'words', 'contains', 'o']

Note that only the words that include the letter o are selected.

	312	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Reducing
The reduce function is not a built-in function but defined in the functools mod-
ule. It takes the same form as the mapping and filtering functions but applies
the function to items in the iterable progressively until the list is exhausted
and reduced to a single value or object, as shown in the following example in
JupyterLab:

In []: def pow(m, n):
 return m ** n

from functools import reduce
reduce(pow, range(2, 6)) # equal to pow(pow(pow(2,
3), 4), 5)

Out []: 1152921504606846976

We can recode the above operation with the lambda expression (anonymous
function) we learned in the previous section, as shown below:

In []: reduce(lambda n, m: n ** m, range(2, 6))

Out []: 1152921504606846976

As seen from the examples above, a lambda expression becomes handy
when you use a function only once and the function is simple enough to be
written with an expression.

6.6 Generators: Turning a Function into a Generator
of Iterables
As you have seen, sequences (including lists, tuples, and strings) are an import-
ant way of organizing data. In addition to having a relatively static list accessible
through a variable, Python also provides a means to make a generator that can
generate members of a sequence dynamically.

Assume we want to find out a sequence of perfect numbers within a
given range. Instead of finding all perfect numbers within the range and
returning them in a list, we can define a generator of perfect numbers
using the yield statement in place of the return statement, as shown in the
following example:

	 Define and Use Functions	 313

 https://doi.org/10.15215/remix/9781998944088.01

In []: def isPerfect(n):
 factor = [1]
 for j in range(2, (n // 2) + 1):
 if n % j == 0:
 factor.append(j)
 if n == sum(factor):
 return [True, factor]
 else:
 return [False, []]

def perfectGenerator(m = 100):
 for i in range(m):
 testResult = isPerfect(i)
 if testResult[0]:
 yield [i, testResult[1]]

myPerfects = perfectGenerator(10000)
print(myPerfects)

Out []: <generator object perfectGenerator at 0x00000191402373C8>

As we can see, instead of returning a list of all the perfect numbers and

factors within the given range, the function actually returned a generator.

To get the next perfect number in the generator, we use the built-in function

next, as shown below:

In []: print(next(myPerfects))
print(next(myPerfects))
print(next(myPerfects))
print(next(myPerfects))
print(next(myPerfects))

Out []: [1, [1]]
[6, [1, 2, 3]]
[28, [1, 2, 4, 7, 14]]
[496, [1, 2, 4, 8, 16, 31, 62, 124, 248]]
[8128, [1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064]]

Note that in the output above, we found five perfect numbers between 1 and

10000. Output on each line is a list, and the first member is a perfect number,

whereas the second member contains a list of its factors (whose sum is equal

to the first number).

Recall that we have used the built-in function range() with for loops. We can

use user-defined generators with for loops as well, as shown below:

	314	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: myPerfects = perfectGenerator(10000)
for p in myPerfects:
 print(p)

Out []: [1, [1]]
[6, [1, 2, 3]]
[28, [1, 2, 4, 7, 14]]
[496, [1, 2, 4, 8, 16, 31, 62, 124, 248]]
[8128, [1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064]]

You may wonder why we need generators instead of returning a list of

objects. The reason is for performance in terms of both speed and memory

usage. The next two examples show the difference in speed between a generator

and a normal function returning a list of perfect numbers.

In []: import time # time module for time and timing
related functions

from memory_profiler import profile # a module
for profiling memory usage

def isPerfect(n):
 factor = [1]
 for j in range(2, (n // 2) + 1):
 if n % j == 0:
 factor.append(j)
 if n == sum(factor):
 return [True, factor]
 else:
 return [False, []]

def getAllPerfects(n = 10):
 perfects=[]
 for i in range(1, n + 1):
 testResult = isPerfect(i)
 if testResult[0]:
 perfects.append((i, testResult[1]))
 return perfects

t0 = time.process_time()
perfectNumbers = getAllPerfects(10000)
t1 = time.process_time()

print(f"{t1 - t0} seconds are used to get a list
of perfect numbers")

Out []: 1.1875 seconds are used to get a list of perfect numbers

	 Define and Use Functions	 315

 https://doi.org/10.15215/remix/9781998944088.01

In []: import time # time module for time and timing related
functions

from memory_profiler import profile # a module for
profiling memory usage

def isPerfect(n):
 factor = [1]
 for j in range(2, (n // 2) + 1):
 if n % j == 0:
 factor.append(j)
 if n == sum(factor):
 return [True, factor]
 else:
 return [False, []]

def perfectGenerator(m = 100):
 for i in range(m):
 testResult = isPerfect(i)
 if testResult[0]:
 yield [i, testResult[1]]

t0 = time.process_time()
myPerfects = perfectGenerator(10000)
t1 = time.process_time()
print(f"{t1 - t0} seconds are used to get a generator
of perfect numbers")

Out []: 0.0 seconds are used to get a generator of perfect numbers

The first code sample is to find a list of perfect numbers within a given
range using a normal function to return a list of perfect numbers, whereas the
second code sample uses a generator instead. As you can see, to get a generator
of perfect numbers took no time (0.0 seconds), whereas using a function to
return a list of perfect numbers took 1.1875 seconds.

The gain from returning a generator instead of a complete list from a func-
tion is even more obvious in terms of memory usage, because a list would
usually take a bigger chunk of computer memory, which increases drastically
along with the growth of the list, whereas for a list generator, the memory
usage is determined by the coding of the function and will not change. In our
examples above, the generator that generates perfect numbers from 1 to 100000
has almost the same number of lines of code as the function that produces a list
of perfect numbers in the same range, but the function consumes much more
memory than the generator because of the use of list. To get a sense of how
much memory would be consumed by a bigger list, see the following example:

	316	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: import sys
print(f"The size of a list containing numbers from 0 to
100 is {sys.getsizeof(list(range(100)))}Bytes")

print(f"The size of list containing numbers from 0 to
1000 is {sys.getsizeof(list(range(1000)))}Bytes")

print(f"The size of list containing numbers from 0 to
10000 is {sys.getsizeof(list(range(10000)))}Bytes")

Out []: The size of a list containing numbers from 0 to 100 is 1008Bytes
The size of a list containing numbers from 0 to 1000 is 9112Bytes
The size of a list containing numbers from 0 to 10000 is 90112Bytes

As you can see, a simple list containing integer numbers from 0 to 10000
takes up almost 90KB of memory.

6.7 Closures: Turning a Function into a Closure
In Python and some other programming languages such as JavaScript, closures
are the result of a nested function—that is, one function that is defined inside
another—as shown in the following example:

In []: def outer(greeting):
 print('Good morning!')
 def inner(msg):
 print(msg)
 inner(greeting)

outer('Good day!')

Out []: Good morning!
Good day!

In the example above, the outer function can also return the inner function
with the parameter list as a first-order object, as shown below:

In []: def outer():
 greeting = 'Good morning,'
 def greet(who):
 print(greeting, who)
 return greet

cl = outer() # cl will hold function greet
name = input('What is your name?')
cl(name) # local greeting in outer still attached

Out []: Good morning, Joe

The output was produced when you input Joe for the name.

	 Define and Use Functions	 317

 https://doi.org/10.15215/remix/9781998944088.01

What has been returned from call of outer() is a function object. However,
because of the way the function is defined and returned, the value of the vari-
able greeting, defined locally within the outer function, has been attached to
the inner function object. This is called closure—the binding of certain data
to a function without actually executing the function.

6.8 Decorators: Using Function as a Decorator
in Python
Python has many powerful means and program constructs that you can use to
solve problems and get the jobs done. Decorators are one of them.

In Python, a decorator can be a function, but it is used to modify the func-
tionality of other functions. Suppose we want to keep a log of the time a function
is called, the parameters passed, and the time the call took to run. A decorator
function can be defined as follows:

In []: import time # import the time module
define a function as a decorator
def calllog(function_logged): # calllog function will
be used as a high order function and decorator

 def wrapper_function(*args, **kwargs):
 t0 = time.asctime()
 t1 = time.time() # time started in seconds as
a float number

 func_handle = function_logged(*args, **kwargs)
 t2 = time.time() # time ended in seconds as a
float number

 call_args = ''
 if args:
 call_args += str(args)
 if kwargs:
 call_args += str(kwargs)
 with open("calllog.txt", "w") as logs:
 log_str = f"Call to {function_logged.__
name__}{call_args}\n"

 log_str += f"was made at {t0}, taking {t2
- t1} \n"

 logs.write(log_str)
 print(f"Logging string written to file
is:\n {log_str}")

 return func_handle

 return wrapper_function

@calllog # calllog is used as decorator
def real_function(message = "Operation",m=2, n=3):
 print(message,'\n', f'{m}**{n}=\n', m**n)

real_function(message="Operation m to the power of n",
m=123456789, n=199)

	318	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Out []: Operation m to the power of n
123456789**199=
16273480830928460132417950594596569558877352891957597527186

5178655668529042309237619989258306106107470796567847777669
4979578642000466712019740418952547246055989565285203342320
1635987631993944618743752213013724549514037908343831333069
3339877194631448240511529289603414404095019761182651422306
3215694559633025394947655131573832171589906384161873332226
4922481325525627831284047397626329561279283208434591744868
1553425787599413514884427065211671134509510806599010879043
4049581161589934723326683225949480983457824265493831766741
8414495414087226417784891667194654738380143539652423296727
8397336246191565592631874430342301391129941032341482155018
4853648462203555248458520671193824561733068153104155547783
9087024586408999843855597754908302821728495386842518994478
2520828778542782626615331157474809673798175226065273267575
2489133426820060935499575223584065751090015735421676999145
0814755577140900813045111393260168223478200641944154844292
6373709258668550718362777098506123158504564363626666999333
4013946685549557175420965888062340558027537152951783153293
2230219978406047270164537039827469092224210875077720641113
1334391598657540208216549131267004257438048558678889138741
5395857275045805521942026082836745137076008067859592825225
6417990024617027365928579573806527191486578290433390603117
7020338769884454165407411399431838155103129975186500016431
8853234471269192633863320874318241295949565851371992467870
9745114665575426890554943460193024792121207815114065877782
2152688458823924816621267882515972976339888586466699424919
8618153756380986737526890055365847162354423404796566823762
41467062062297627346560365999071034663278109

Logging string written to file is:
Call to real_function{'message': 'Operation m to the power of n', 'm':

123456789, 'n': 199}
was made at Mon Mar 13 12:07:27 2023, taking 0.0

As shown above, the log written to the calllog.txt file is as follows:

Call to real_function{'message': 'Operation m to the power of n', 'm':
123456789, 'n': 199}
was made at Mon Mar 13 12:07:27 2023, taking 0.0

Our next example is to use the calllog function as a decorator, as defined
above, to record the time it takes to find all perfect numbers in a given range,
the example we have worked on in Chapter 4.

This time, since we have learned how to define and use functions, we will
define functions for factorization and perfect number testing, respectively, so
that we can log the time on calls to the function. The code is as follows:

	 Define and Use Functions	 319

 https://doi.org/10.15215/remix/9781998944088.01

In []: def factors(n): # function for finding factors of a given
number

 # the function will return a list of factors for n
 factor_list = [1] # make a list with 1 as a single element
 for f in range(2,n): # start from 2, with n as excluded
from factors

 if n%f == 0: # f is a factor of n
 if not f in factor_list:
 factor_list.append(f)
 # now we have a list of factors for n
 return factor_list

function to find all perfect numbers in a given range
def perfect_numbers(a, b):
 if a>b: # then we need to swap a and b
 c = a; a = b; b = c
 perfect_list = [] # make an empty list ready to hold all
perfect numbers

 for n in range(a, b+1): # b is included
 factor_list = factors(n)
 if n == sum(factor_list):
 perfect_list.append([n, factor_list]) # keep
factors too for checking

 return perfect_list

now the main
@calllog # calllog is used as a decorator
def do_perfect():
 success = False
 # use a while loop to keep asking for inputs until success
is True

 while not success:
 num1 = input("Enter the first number: ")
 num2 = input("Enter the second number: ")

 # try to convert the inputs to floats and divide them
 try:
 a, b = int(num1), int(num2)
 # set success to True if no error has occurred by
now

 success = True
 perfect_list = perfect_numbers(a, b)
 # now we have found all the perfect numbers in the
range

 print(f"Perfect numbers found between {a} and
{b}:")

 for n in perfect_list:
 print(n, end=" ")
 # handle the possible errors and exceptions
 except ValueError:
 print("Invalid input. Please enter numbers only.")
 except ZeroDivisionError:
 print("Cannot divide by zero. Please enter a
nonzero number.")

 except Exception as e:
 print(f"An unexpected error occurred: {e}")
 # end of do_perfect

do_perfect()

	320	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Out []: Perfect numbers found between 3 and 10000:
[6, [1, 2, 3]]
[28, [1, 2, 4, 7, 14]]
[496, [1, 2, 4, 8, 16, 31, 62, 124, 248]]
[8128, [1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016,
2032, 4064]] Logging string written to file is:

Call to do_perfect
was made at Mon Mar 13 13:18:15 2023, taking

5.2627036571502686

As shown above, the log written to the calllog.txt is

Call to do_perfect
was made at Mon Mar 13 13:18:15 2023, taking 5.2627036571502686

As you can see, although a decorated function is called in the same way as other
functions, a lot of other things can be done through a decorator during the call.

It is also worth noting that perfect numbers are very rare. Between 3 and
10000, there are only four perfect numbers, and it took a little over 5 seconds to
find them. Tested on the same machine, it took more than 100 second to look
for all the perfect numbers between 3 and 100000, and there are no perfect
numbers between 10000 and 100000.

6.9 Properties of Functions
Functions are important building blocks of programs in all programming lan-
guages. In Python, a function will have the following properties, and most of
them can be written by the programmer of the function.

__DOC__
This holds the function’s docstring, written by the programmer, or None if no
docstring is written by the coder. The docstring will show up when the help()
function is called on a function, though help() will also show some standard
information even if no docstring is available.

__NAME__
This contains the name of the function.

__QUALNAME__
This contains the qualified name of the function and is new to Python 3.3 and
later versions. By qualified name, we mean the name that includes the path

	 Define and Use Functions	 321

 https://doi.org/10.15215/remix/9781998944088.01

leading to the location where the function is defined. For example, a function F
can be a method defined in a class C, which is defined in a module M, in which
case the qualified name will be M.C.F.

__MODULE__
This stores the name of the module in which the function was defined. It con-
tains None if module info is unavailable.

__DEFAULTS__
This stores a tuple containing default argument values for those arguments that
have defaults or stores None if no arguments have a default value.

__CODE__
This contains the actual code object representing the compiled function body.

__GLOBALS__
This contains a reference to the dictionary that holds the function’s global
variables, the global namespace of the module in which the function was
defined. It is a read-only function automatically generated by Python Virtual
Machine (PVM).

__DICT__
This stores a dictionary describing names of attributes and their values in the
namespace of the function. In Python, a namespace is a mapping from names
to objects and is implemented as a Python dictionary.

__CLOSURE__
This stores a tuple of cells that contain bindings for the function’s free variables.
Each cell has an attribute called cell_contents from which a cell’s value can be
retrieved. It is automatically generated by PVM.

__ANNOTATIONS__
This stores a dictionary containing annotations of parameters. The keys of the
dictionary are the parameter names, and return as key for the return annota-
tion, if provided, and the values of the dictionary are the expected data type of
the parameters as well as the expected data type of the object to be returned
by the function.

__KWDEFAULTS__
This stores a dictionary containing default values for keyword-only parameters.

	322	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Chapter Summary
•	 Functions are important building blocks of programs in almost all

programming languages.
•	 Different languages use different keywords to signify the definition of

a function. Python uses def to start the definition of a function (and
method within a class definition).

•	 In Python, the definition of one function can contain the definition of
other function or functions.

•	 A function can have positional arguments, variable-length lists of
arguments, and keyword arguments.

•	 When calling a function, the parameters for positional arguments must
come first, followed by variable-length lists of arguments. Keyword
arguments come last.

•	 A recursive function is a function that calls itself within its definition.
•	 Anonymous functions are functions without a name. They begin

with the keyword lambda. Anonymous functions are useful when the
function is only used once.

•	 Mapping, filtering, and reducing are special functions that can used
to apply a function, including an anonymous function, to a list of
parameters.

•	 Mapping applies a function to each item of a list.
•	 Filtering applies some criteria specified in a Boolean function to a list

to filter out the items that do not meet the criteria.
•	 Reducing sequentially applies a function to the members of a list and

reduces the list to a single member.
•	 Functions are often used to process and return the results of

information processing using the return statement.
•	 In a function definition, the return statement can be replaced with the

yield statement to turn the function into a generator of a sequence.
Note that a function cannot be turned into a generator by simply
replacing the return statement with a yield statement.

Exercises
	 1.	 Python has a built-in input function for taking input from users.

However, it treats everything from the user as a string. For this
exercise, define a function named getInteger, which takes one
optional argument as a prompt and gets and returns an integer from
the user.

	 Define and Use Functions	 323

 https://doi.org/10.15215/remix/9781998944088.01

	 2.	 Define a function that has one argument, n, that will take a natural
number and return the product of all the odd numbers between 1 and n.

	 3.	 Define a function that has one argument, n, that will take an integer
and return the product of all the odd numbers between 1 and n, or
between n and −1 if n is a negative integer, or that will return None if n
is not an integer.

	 4.	 The Fibonacci sequence (Fn) is well-known in mathematics, and is
defined as follows:

F0 = 1, F1 = 1, Fn = Fn−1 + Fn−2

Define a recursive function that takes one argument, n, and
calculates and returns the nth item (Fn) of the Fibonacci sequence.

	 5.	 Define a recursive function that takes one argument, n, and calculates
and returns the entire list of all items from F0 to Fn, of the Fibonacci
sequence.

	 6.	 Define a function that takes a variable-length list of numbers and
returns the product of all these numbers.

Projects
	 1.	 Study the federal personal income tax rates for the current tax

year and define a function that takes one argument as net taxable
income and calculates and returns the total federal income tax due.

	 2.	 Study both the federal personal income tax rates and the provincial
tax rates for your province for the current tax year. Define a function
that takes one argument as net taxable income and calculate and
return both total federal income tax due and total provincial tax due.

	 3.	 Modify the function defined for 6.6 by adding a keyword argument
with the default value f or F to tell the function to calculate and return
the federal tax due. If the argument passed to the keyword parameter
is p or P, then provincial tax due should be calculated and returned.
Test the modified function with different values passed to the keyword
argument to make sure it works as expected.

	 4.	 The Tower of Hanoi is a mental game. It consists of three rods and N
disks of different sizes that can move onto any rod one by one, but
at no time is a bigger disk allowed to be on top of a smaller disk. The
three rods are labelled A, B, and C. The game begins with all disks
stack on rod A, and the goal is to move all the disks onto rod C. Write
a recursive function that takes one argument as the number of disks
initially on rod A and print out the moves to be taken in order to move

	324	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

all the disks from A to C. Each move can be represented as i: Rs Rd,
where i is 0, 1, 2…, Rs and Rd is A, B or C, but Rs and Rd cannot be the
same. It means that at step i, take one disk from source rod Rs and
slide it onto destination rod Rd. For example, if there are three disks
on rod A, the moves will be as follows:

1: A C, 2 : A B, 3 : C B, 4 : A C, 5 : B A, 6 : B C, 7 : A C

 https://doi.org/10.15215/remix/9781998944088.01

Chapter 7

Object-Oriented
Programming with Python

This chapter introduces you to object-oriented programming, including how to
define classes and how to use classes as a new data type to create new objects,
and will show you how to use objects in programming. Programming for com-
puters essentially means modelling the world, or parts of it, for computers.
In modern computing and programming, object-oriented programming is a
very powerful means of thinking and modelling. In Python, everything can be
treated as an object.

Learning Objectives
After completing this chapter, you should be able to

•	 explain object-oriented programming and list its advantages.
•	 define a new class to model objects in programming and software

development.
•	 create and use objects and instances of classes in programming and

system development.
•	 use subclasses and superclasses properly when defining and using

classes.
•	 properly define and use public, private, and protected members of

a class.
•	 correctly define and use class attributes.
•	 effectively define and use class methods and static methods when doing

object-oriented programming.
•	 properly define and use dunder methods.
•	 use class as a decorator.

	326	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

•	 explain the built-in property function and use it to add an attribute
or property to a class with or without explicit setter, getter, or deleter
functions.

•	 use the property function as a decorator to turn a method into an attribute
of a class, and declare explicitly the setter, getter, or deleter of the attribute.

7.1 Introduction to Object-Oriented Programming
(OOP)
Object-oriented programming, including analysis and design, is a powerful
methodology of thinking of how things are composed and work. The world
is made of objects, each of which has certain attributes and contains smaller
objects. What is specially offered by object-oriented analysis, design, and
programming in a systematic and even scientific manner are abstraction,
information hiding, and inheritance.

Abstraction
Abstraction is a very fundamental concept of object-oriented programming. The
concept is rather simple. Because an object in the real word can be very com-
plicated, containing many parts and with many attributes, it would be practical
to consider only those parts and attributes that are relevant to the programming
tasks at hand. This simplified model of a real-world object is an abstraction of it.

Information Hiding or Data Encapsulation
The concept of information hiding is very simple and straightforward. There are
two reasons for hiding certain kinds of information: one is to protect the infor-
mation, and the other is to make things easier and safer by hiding the details.
An example of information hiding that you have already seen is defining and
using functions. The code block of a function can be very lengthy and hard to
understand. After a function is defined, however, a programmer only needs to
know what the function does and how to use it, without considering the lengthy
code block of how the function works.

In OOP, information hiding is further down within classes. Some OOP lan-
guages strictly limit direct access to class members (variables declared within
a class), and all access must be done through the setter and getter methods.
Python, however, has no such restriction, but you still need to remember the
benefit of information hiding: avoiding direct access to the internal members
of objects. Python also provides a way to hide, if you want to, by using double
underscored names, such as __init__, __str__, and __repr__.

	 Object-Oriented Programming with Python	 327

 https://doi.org/10.15215/remix/9781998944088.01

Inheritance
Inheritance is a very important concept of object-oriented programming,
and inheriting is an important mechanism in problem solving and system
development with the object-oriented approach. The underlying philosophy
of inheritance is how programmers describe and understand the world. Most
often, things are categorized and put in a tree-like hierarchy with the root on
the top, as shown in Figure 7-1 below. In such a tree-like hierarchy, the root
of the tree is the most generic class or concept, and the leaves are the most
specific and often refer to specific objects. From the root down to the leaves,
nodes on a lower level will inherit the properties of all the connected nodes
at higher levels.

Within such a hierarchy, it is more convenient to have a model that captures
general attributes shared by desktop, laptop, and tablet computers than to
have models capturing the specifics of desktop, laptop, and tablet computers,
respectively, with these specific models inheriting the common attributes cap-
tured by the generic model for computers. In such a hierarchy, the computer is
the superclass of the desktop, laptop, and tablet, whereas the desktop, laptop,
and tablet are a subclass of the computer.

7.2 Defining and Using Classes in Python
Normally in OOP, a class would include some attributes and methods, as well
as a constructor or initiator for creating instances of the class. However, com-
pared to other object-oriented programming languages, especially the earlier
generations such as C++ and Java, Python provides some less-restricted ways
of defining classes and instantiating objects.

In Python, a class can be easily created with only two lines of code, as
shown below:

>>> class Computer:
… pass

Computer

Figure 7-1: Illustration of class inheritance

	328	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

This defines a class named Computer containing no attribute and no
method, though it automatically inherits all the attributes and methods of the
generic object class in the built-in module of Python. As mentioned before,
the pass statement is simply a placeholder for everything needed to com-
plete the class definition. We can use the help statement to see that the class
has been created, as shown below:

>>> help(Computer)
Help on class Computer in module __main__:

class Computer(builtins.object)
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)

The builtins.object is a built-in class of Python from which all classes auto-
matically inherit by default. In OOP term, the class that inherits from another
class is called a subclass of the other class, while the class being inherited
from is called a superclass.

Formally in Python, if you are defining a class that needs to inherit from
another class, you can put the superclass(es) in a pair of parentheses, as shown
in the following example:

>>> class PC(Computer):
… pass # the pass statement does nothing, but it
completes the class definition

We can check the result using the help statement, as shown below:

>>> help(PC)
Help on class PC in module __main__:

class PC(Computer)
| Method resolution order:
| PC
| Computer

	 Object-Oriented Programming with Python	 329

 https://doi.org/10.15215/remix/9781998944088.01

| builtins.object
|
| Data descriptors inherited from Computer:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)

This shows that the class PC has been created, which is a subclass of Computer.
Although the Computer class contains nothing in its original definition, we

can create an instance of the class, add attributes to the instance, and manipu-
late the attributes using some built-in functions. For example, we can use the
setattr function to add an attribute called CPU to an instance of the Computer
class, as shown below:

>>> c = Computer() # to create an instance of the
Computer class
>>> setattr(c, 'CPU', 'Intel i6800')
>>> c.CPU
'Intel i6800'

In the above example, Computer() is the constructor of class Computer. In
Python, X() will be automatically the constructor of class X, but it calls a special
method named __init__, which can be defined within the class to instantiate
instances of the class. In our simplest definition of class Computer, we did not
define the __init__ method, but it has been automatically inherited from class
builtins.object.

Now we can use special attribute __dict__ of instance c of class Computer
to check the attribute and value of object c, as shown below:

>>> print(c.__dict__)
{'CPU': 'intel i6800'}

As you can see, the c object has an attribute called CPU and its value intel
i6800.

In addition to setattr, Python has a number of built-in functions available
for class and object manipulation. These built-in functions are summarized
in Table 7-1.

	330	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Table 7-1: Built-in functions for class and object manipulation

Built-in function Operation Coding example

getattr(o, attr) Return the value of
object o's attribute
attr, same as o.attr

>>> getattr(math, 'sqrt')
<built-in function sqrt>
>>> getattr(math, 'e')
2.718281828459045

hasattr(o, attr) Test if object o has
attribute attr; return
True if it does

>>> hasattr(math, 'e')
True
>>> hasattr(math, 'sqrt')
True

setattr(o, a, v) Set/add an attribute
a to object o, and
assign value v to the
attribute

>>> class student:
… pass
…
>>> s1 = student()
>>> setattr(s1, 'name',
'John')

>>> s1.name
'John'

delattr(o, a) Delete attribute a
from object o

>>> delattr(s1, 'name')
>>> hasattr(s1, 'name')
False

isinstance(o, c) Return true if o is an
instance of class c
or a subclass of c

>>> class student:
… pass
…
>>> s1 = student()
>>> isinstance(s1, student)
True

issubclass() Return true if class c
is a subclass of C

>>> class
graduate(student):

… pass
…
>>> issubclass(graduate,
student)

True

repr(o) Return string
representation of
object o

>>> repr(graduate)
"<class '__main__.
graduate'>"

The rest of this section describes in detail how to define classes in Python—in
particular, how to define attributes and methods in a class definition. Your jour-
ney to learn OOP begins with modelling a small world, shapes, which include
the circle, rectangle, and triangle.

	 Object-Oriented Programming with Python	 331

 https://doi.org/10.15215/remix/9781998944088.01

First, define an abstract class called shape, as shown in Table 7-2.

Table 7-2: Example of class definition with overriding

Code sample in Python interactive mode

1 """
2 Modelling the world of shapes. First Python app with

OOP.
3 """
4
5 class Shape:
6 """We design an abstract class for shape."""
7 def circumference(self):
8 """Method to be overridden."""
9 pass
10
11 def area(self):
12 """Method to be overridden."""
13 pass
14
15 class Circle(Shape):
16 def __init__(self, radius): # two underscores on

each side
17 self.radius = radius
18
19 def circumference(self): # this overrides the

method defined in Shape
20 return self.radius * 2 * 3.14
21
22 def area(self): # this overrides that defined in

Shape
23 return self.radius ** 2 * 3.14
24
25 c1 = Circle(35)
26 print(f"A circle with a radius of {c1.radius} has an

area of {c1.area()},")
27 print(f"and the circumference of the circle is {c1.

circumference()}")

Output A circle with a radius of 35 has an area of 3846.5,
and the circumference of the circle is 219.8

In the example above, __init__ is a reserved name for a special method in
a class definition. It is called when creating new objects of the class. Please
remember, however, that you need to use the name of the class when creating
new instances of the class, as shown on line 25 of the example above.

It may have been noted that “self” appears in the list of arguments when
defining the __init__ method and other methods of the class, but it is ignored in

	332	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

the calls of all these methods. There is no explanation as to why it is ignored.
In the definitions of all these methods, “self” is used to refer to the instance of
the class. It is the same as “this” in other OOP languages such as C++ and Java,
though “this” doesn’t appear in the list of formal arguments of any method
definition.

Another detail worth noting when defining classes in Python is that there
can be no explicit definition of any of the attributes, as is the case in C++ or
Java. Instead, attributes are introduced within the definition of the __init__
method by assignment statements or by using the built-in function setattr(o,
a, v), which are all the attributes of the particular instance created by the
constructor of the class. Function setattr(o, a, v) sets the value of attribute a
of object o to n, if o has attribute a; if not, it will add attribute a to o, then set
its value to v.

Next, we define a class for a rectangle, as shown in Table 7-3.

Table 7-3: Example of subclass definition

Code sample in Python interactive mode

1 """
2 Modelling the world of shapes. First Python app

with OOP.
3 """
4
5 class Shape:
6 """We design an abstract class for shape."""
7 def circumference(self):
8 """Method to be overridden"""
9 pass
10
11 def area(self):
12 """Method to be overridden"""
13 pass
14
15 class Rectangular(Shape):
16 def __init__(self, length, width):
17 self._length = length
18 self._width = width
19
20 def circumference(self):
21 return (self._length + self._width) * 2
22
23 def area(self):
24 return self._length * self._width
25
26 def is_square(self):

	 Object-Oriented Programming with Python	 333

 https://doi.org/10.15215/remix/9781998944088.01

27 return self._width == self._length
28
29 rt1 = Rectangular(35, 56)
30
31 print(f"The circumference of the rectangle is

{rt1.circumference()}, and")
32 print(f"the area is {rt1.area()}")
33 print(f"Is the rectangle a square? {rt1.

is_square()}")

Output of the
program

The circumference of the rectangle is 182, and
the area is 1960
Is the rectangle a square? False

Note that class Rectangular not only has overridden two methods of
Shape but has also defined a new method named is_square() to test if the
rectangular is a square.

Inheritance: Subclass and Superclass
If you want to inherit from other base classes when defining a new class in
Python, you need to add all the base classes to the list of inheritances enclosed
in a pair of parentheses, as shown below:

class myClass(base_1, base_2, base_3):
 pass

The new class will inherit all the attributes and methods from base_1,
base_2, and base_3 and override the methods defined in the base classes.

In Python, all classes are a subclass of the built-in base object class and
inherit all the properties and methods of object, even if object is not explicitly
included in the inheritance list. So the following two statements will have the
same effects:

In []: class myClassA:
 pass

dir(myClassA)

Out []: ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__',
'__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__',
'__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_
ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__',
'__weakref__']

Table 7-3: Example of subclass definition (continued)

	334	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: class myClassB(object):
 pass

dir(myClassB)

Out []: ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__',
'__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__',
'__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_
ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__',
'__weakref__']

As you can see, myClassA and myClassB both inherit from the base class
object. However, in the list, some of the dunder names such as __le__ and __ge__
inherited from base class object are merely wrapper descriptors. If you want to
make real use of these wrapper descriptors in your class, you will need to over-
ride them. Some inherited dunder methods can be used, but the values returned
are not so useful. In particular, you will need to override the dunder methods
__init__ __str__, and __repr__. The method __init__ is a dunder method used
as constructor called internally by PVM whenever a new instance of a class needs
to be created. The method __str__ is a dunder method called internally when-
ever an object of a class needs to be converted to a string, such as for printout.
Finally, __repr__ is a dunder method called internally when an object needs to be
converted to a representation for serialization—a process that converts a Python
object into a byte stream that can be stored or transmitted.

Public, Private, and Protected Members of a Class
People familiar with other OO programming languages such as C++ and Java
may be wondering how to declare and use public, private, and protected attrib-
utes in Python, as they are used to doing in other OO programming languages.
Python, however, doesn’t differentiate attributes between public, private, and
protected members. Instead, Python treats all attributes of a class as public.
It is up to the programmers to decide whether a member should be public,
private, or protected. To ensure that everyone reading the code understands
the intention of the original coder/programmer, Python has a convention for
naming protected members, private members, and public members: a name
with a leading underscore _ is a protected member of the class in which it is
defined, a name with a double underscore __ is a private member of the class
in which it is defined, and all other names will be public.

According to the common principles of object-oriented programming,
public members of a class can be seen and accessed from outside of the class
or the instance of the class; protected members of a class can only be seen

	 Object-Oriented Programming with Python	 335

 https://doi.org/10.15215/remix/9781998944088.01

and accessible within the class or a subclass of the class; private members can
only be accessed within the class. In Python, however, the rule for protected
members is not strictly enforced. As such, the following code will not raise
any error or exception.

In []: class Student:
 def __init__(self, firstname, lastname):
 self._firstname = firstname
 self._lastname = lastname

s0 = Student('Jim', 'Carte')
print(s0._firstname, s0._lastname)

Out []: Jim Carte

In our example about shapes, _width and _length are protected attributes
of the class, which should only be accessible within the class or its subclasses
and should be hidden from the outside.

In contrast, the rule on private members, those with names prefixed with
a double underscore __, is strictly enforced in Python. So if we change first-
name and lastname to private members, it will raise exceptions, as shown in
the following example:

In []: class Student:
 def __init__(self, firstname, lastname):
 self.__firstname = firstname
 self.__lastname = lastname

s0 = Student('Jim', 'Carte')
setattr(Student, '_firstname', 'Richard')
print(s0.__firstname, s0.__lastname)

Out []: AttributeError Traceback (most recent call last)
<ipython-input-5-87cd9bc7801e> in <module>
 6 s0 = Student('Jim', 'Carte')
 7 setattr(Student, '_firstname', 'Richard')
----> 8 print(s0.__firstname, s0.__lastname)

AttributeError: 'Student' object has no attribute '__firstname'

If you want to access the private members of a class from outside, the built-in
functions setattr and getattr can be used to access both private and protected
members of a class or its instance, as shown below:

	336	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: class Student:
 def __init__(self, firstname, lastname):
 self.__firstname = firstname
 self.__lastname = lastname

s0 = Student('Jim', 'Carte')
setattr(s0, '__firstname', 'Richard')
setattr(s0, '__lastname', 'Selot')
print(getattr(s0, '__firstname'), getattr(s0, '__lastname'))

Out []: Richard Selot

Class Methods
As we have seen, in Python, special method __init__ is used as a constructor
of the class. People familiar with C++ or Java might be wondering if __init__
can be overloaded or defined multiple times in Python to make multiple con-
structors, because a class in C++ and Java can have two or more constructors
with different signature. In Python, however, a class cannot have more than
one __init__ effectively defined. If you define two or more __init__ within a
class definition, only the last one will take effect.

So how can you create an instance of a class differently in Python if there
can be only one constructor, the special __init__ method, in a class definition?
The solution is to use the class method, as shown in the next example:

In []: class Graduate:
 def __init__(self, fullname):
 firstname, lastname = fullname.split(' ')
 self.firstname = firstname
 self.lastname = lastname

@classmethod # this decorator declaires a class method
def newGraduate(cls, firstname, lastname): # cls as 1st
 return cls(f'{firstname} {lastname}') # return an
object

def __str__(self): # normal method
 return f'{self.firstname} {self.lastname}'

g0 = Graduate('James Gord') # __init__ is called to
construct a new object

g1 = Graduate.newGraduate('John', 'Doe')
newGraduate() is called to create a new object

print(g0) # __str__ is called to convert the object to
a string

print(g1) # __str__ is called to convert the object to
a string

Out []: James Gord
John Doe

	 Object-Oriented Programming with Python	 337

 https://doi.org/10.15215/remix/9781998944088.01

In the example above, decorator @classmethod is used to declare that
method newGraduate() is a class method, which means that the first param-
eter refers to the class instead of an instance of the class, and the method is
bound to the class and can be called through the class. A class method can be
used to directly modify the structure of the class. For example, we can have a
class method for Graduate class that sets the value of the class attribute
at the beginning of a new year, say, 20210101. In this particular example
above, however, class method newGraduate() is used as an alternate con-
structor of class Graduate, which takes first name and last name separately to
instantiate an instance of Graduate.

When defining a class method, it is a convention to use cls as the name
of the first parameter to refer to the class. Technically, however, it can be
anything unique in the scope of a class definition, as long as you know it
refers to the class. This is similar to “self” in definitions of regular methods,
which is only the conventional name referring to the instance itself being
instantiated.

Static Methods
Similar to the class method of a class, a static method can be called directly
through the class. The difference is that in the definition of a static method, no
parameter refers to the class nor to the instance itself. Its usefulness may be
demonstrated by the example below, where we define a class called Convertor,
and within the class definition, we define a number of static methods, each of
which convert values from one unit to another:

In []: class Convertor:

 @staticmethod
 def kg2lb(w):
 return w * 2.20462

 @staticmethod
 def lb2kb(w):
 return w/2.20462

 @staticmethod
 def metre2feet(l):
 return l * 3.28084

 @staticmethod
 def feet2metre(l):
 return l / 3.28084

	338	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

 @staticmethod
 def C2F(d):
 return (d * 9 / 5) + 32

 @staticmethod
 def F2C(d):
 return (d - 32) * 5 / 9

 @staticmethod
 def acr2hec(a):
 return a * 0.404686

 @staticmethod
 def hec2arc(a):
 return a / 0.404686

print(Convertor.kg2lb(123))
print(Convertor.C2F(21))

Out []: 271.16826
69.8

As you can see from the above example, the static methods can be called dir-
ectly through the class Convertor, without an instance. Defining a static method
within a class is a way to add utility functions to the class so that it can be used
without instantiating an object.

Class Attributes
As previously mentioned, in Python, you can define a class without explicitly
declaring attributes of the class. However, Python does allow the explicit dec-
laration of attributes within a class definition. These attributes are called class
attributes. Explicit declaration of an attribute within a class definition means
that the attribute is declared outside of the __init__ method. In the following
example, student_id is declared as a class attribute.

In []: class Graduate:
 student_id = 20201195 # student_id is a class
attribute

 def __init__(self, fullname):
self refers to the instance in normal method
 firstname, lastname = fullname.split(' ')
 self.f_name = firstname
 self.l_name = lastname
 self.__class__.student_id += 1
self.__class__.student_id must be used to
refer class attribute

	 Object-Oriented Programming with Python	 339

 https://doi.org/10.15215/remix/9781998944088.01

 @classmethod # decorator
 def newGraduate(cls, firstname, lastname):
cls refers to the class
 return cls(f'{firstname} {lastname}')

 def __str__(self):
 return f'{self.f_name} {self.l_name}, {self.
student_id}'

g0 = Graduate('James Gord')
print(g0)
newGraduate() is called from class Graduate
g1 = Graduate.newGraduate('John', 'Doodle')
print(g1)

Out []: James Gord, 20201196
John Doodle, 20201197

From this example, you can see how a class attribute is used and shared
among all the instances of the class. You can create student_id as a class attrib-
ute to dynamically track the student IDs allocated to new students—a new
instance of the class Graduate. It starts from 20201195 and increases by one
every time a new student is enrolled.

Note the dunder name __class__ used in the example. In Python, __class__
refers to the class of an object. So in the example above, self.__class__ refers to
the class of object self—that is, Graduate. If you do not have __class__ between
self and student_id but simply use self.student_id, student_id would become
an attribute of each instance of the class, different from the class attribute, as
demonstrated in the following example:

In []: class Graduate:
 student_id = 20201195
 def __init__(self, fullname):
 firstname, lastname = fullname.split(' ')
 self.f_name = firstname
 self.l_name = lastname
 self.student_id += 1
self.student_id is an attribute of an individual object

 def __str__(self): # self refers to the instance/
object

 return f'{self.f_name} {self.l_name}, {self.
student_id}'

g0 = Graduate('James Gord')
print(g0)
print(f'class attr student_id = {g0.__class__.student_id}')
g1 = Graduate('John Doodle')
print(g1)

Out []: James Gord, 20201196
class attribute student_id = 20201195
John Doodle, 20201196

	340	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

As you can see from the example above, although value 20201195 of
class attribute student_id is used to calculate the student_id (20201195
+ 1) when instantiating each instance of the class, the result 20201196 has
no effect on the class attribute whose value remains to be 20201195. How
did that work? Remember that assignment self.student_id += 1 is short for
self.student_id = self.student_id. In this example, self.student_id on the right
side of the assignment statement is resolved to be the class attribute according
to the rule, whereas self.student_id on the left side of the assignment statement
is an attribute of the object being instantiated. That is, the two self.student_id
are two different variables.

Class attributes have different behaviours from static attributes in C++ or
Java, although they do have certain things in common. In Python, class attrib-
utes are shared among all the objects of the class and can also be accessed
directly from the class, without an instance of the class, as shown above.

7.3 Advanced Topics in OOP with Python
The previous section showed how classes can be defined and used in prob-
lem solving and system development. With what you learned in the previous
section, you can certainly solve some problems in an object-oriented fashion.
To be a good OOP programmer and system developer, it is necessary to learn
at least some of the advanced features offered in Python for object-oriented
programming.

Dunder Methods in Class Definition
Python has a list of names reserved for some special methods called dunder
methods or magic methods. These special names have two prefix and suffix
underscores in the name. The word dunder is short for “double under (under-
scores).” Most of these dunder methods are used for operator overloading.
Examples of the dunder/magic methods that can be used for overloading
operators are __add__ for addition, __sub__ for subtraction, __mul__ for multi-
plication, and __div__ for division.

Some dunder methods have specific meanings and effects when overloaded
(defined in a user-defined class). These dunder methods include __init__,
__new__, __call__, __len__, __repr__, __str__, and __getitem__.

In the previous section you saw how __init__ method is used as a constructor
of class. The following sheds some light on the others.

	 Object-Oriented Programming with Python	 341

 https://doi.org/10.15215/remix/9781998944088.01

__CALL__
Dunder method __call__ can be used to make an object, an instance of class,
callable, like a function. In the following example, a class is defined as Home,
which has two attributes: size and value. In addition to __init__ as a con-
structor, a dunder function __call__ is defined, which turns object h1, an
instance of class Home, into a callable function.

In []: class Home():
 def __init__(self, size, value):
 self.size = size
 self.value = value

 def __call__(self, check='average'): # return the
size, or value, or average

 if check == 'size':
 return self.size
 elif check == 'value':
 return self.value
 else:
 return self.value/self.size

h1 = Home(3270, 986500)
print(h1()) # using default value for the keyword
argument

print(h1(check='size')) # check the size of the home
print(h1(check='value')) # check the value of the
home

Out []: 301.68195718654437
3270
986500

What can be done through dunder method __call__ can also be done through a
normal method, say checking. The obvious benefit of using the dunder method
__call__ is cleaner and neater code.

__NEW__
Dunder method __new__ is a method already defined in the object base class. It
can be overridden to do something extra before the creation of a new instance
of a class. Dunder method __ new__ itself doesn’t create or initialize an object
for a class. Instead, it can check, for example, if a new object can be created.
If the answer is yes, then it will call __init__ to do the actual work of creation
and initialization, as shown in the following example:

	342	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: class TravelPlan():
 _places = dict()
 _step = 0
 def __new__(cls, newPlace):
 if newPlace in TravelPlan._places.values():
 print(f"{newPlace} is already in the plan!")
 return newPlace
 else:
 return super(TravelPlan, cls).__new__(cls)

 def __init__(self, newPlace):
 TravelPlan._places[TravelPlan._step] = newPlace
 print(f'{TravelPlan._places[TravelPlan._step]} is
added.')

 TravelPlan._step += 1

 @staticmethod
 def printPlan():
 for pl in TravelPlan._places:
 print(f'Stop {pl + 1}: {TravelPlan._places[pl]}')

TravelPlan('Calgary')
TravelPlan('Toronto')
TravelPlan('Calgary')
TravelPlan.printPlan()

Out []: Calgary is added.
Toronto is added.
Calgary is already in the plan!
Stop 1: Calgary
Stop 2: Toronto

The example above makes a travel planning system by making a list of
places to be visited. The __new__ method is defined to control the addition
of a new city to the list. It checks whether the city has already been added to
the plan and will not add the city if it is already on the list.

Note that we also defined and used two protected class attributes in the def-
inition of class TravelPlan. One is a dictionary storing the places in the plan and
their order. We also used a static method so we can print out the entire plan when
it is needed. Because the class attributes are shared among the instances of the
class, changes to the class attributes will be retained, and at any time before
the application is stopped, one can use the static method to print out the plan.

__STR__
Dunder method __str__can be used to implement the string representation of
objects for a class so that it can be printed out by using the print statement.
The method will be invoked when str() function is called to convert an object

	 Object-Oriented Programming with Python	 343

 https://doi.org/10.15215/remix/9781998944088.01

of the class to a string. In our definition of class Graduate in our earlier example,
the __str__ has been implemented to just return the full name of a student.
You may, of course, choose to return whatever string you think would better
represent the object for a given purpose.

__LEN__
Dunder method __len__ can be used to return the length of an object for a class.
It is invoked when function len(o) is called on object o of the class. It is up to the
programmer to decide how to measure the length, though. In our definition of
class Graduate, we simply use the sum of the first name, last name, and id length.

__REPR__
Dunder method __repr__ can be used to return the object representation of a
class instance so that, for example, the object can be saved to and retrieved from
a file or database. An object representation can be in the form of a list, tuple, or
dictionary, but it has to be returned as a string in order to be written to and read
from a file or database. The __repr__ method will be invoked when function
repr() is called on an object of the class. The following example extended from
the definition of class Graduate shows how dunder methods __str__, __len__,
and __repr__ can be defined and used.

In []: class Graduate:
 student_id = 20201195
 def __init__(self, fullname):
 firstname, lastname = fullname.split(' ')
 self.firstname = firstname
 self.lastname = lastname
 self.__class__.student_id += 1

 @classmethod
 def newGraduate(cl, firstname, lastname):
 return cl(f'{firstname} {lastname}')

 def __str__(self):
 return f'{self.firstname} {self.lastname}'

 def __len__(self):
 return len(self.firstname) + len(self.lastname) +
len(str(self.student_id))

 def __repr__(self):
 return "{'firstname':" + self.firstname +",
'lastname':" + self.lastname + ", 'student_id':" +
str(self.student_id) + "}"

g0 = Graduate('James Gord'); print(g0, g0.student_id)
g1 = Graduate.newGraduate('John', 'Doodle') #
newGraduate() is called from class Graduate

print(g1, g1.student_id); print(len(g0));
print(str(repr(g1)))

	344	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Out []: James Gord 20201196
John Doodle 20201197
17
{'firstname':John, 'lastname':Doodle, 'student_id':20201197}

__GETITEM__ AND __SETITEM__
These two methods are used to turn a class into an indexable container object.
__getitem__ is called to implement the evaluation of self[key] whereas __
setitem__ is called to implement the assignment to self[key].

__DELITEM__
This is called to implement the deletion of self[key].

__MISSING__
This is called by dict.__getitem__() to implement self[key] for dict subclasses
when the key is not in the dictionary.

__ITER__
This is called when an iterator is required for a container.

__REVERSED__
This can be implemented and called by the reversed() built-in function to
implement a reverse iteration.

__CONTAIN__
This is called to implement membership test operators. It should return True
if the item is in self and False if it is not.

__DELETE__
This is called to delete the attribute on an instance of the owner class.

Tables 7-4, 7-5, 7-6, and 7-7 show a comprehensive list of dunder methods
and their respective operators that can be overridden by programmers when
defining new classes.

Table 7-4: Binary operators
Overridden operator Dunder method

+ object.__add__(self, other)

- object.__sub__(self, other)

* object.__mul__(self, other)

	 Object-Oriented Programming with Python	 345

 https://doi.org/10.15215/remix/9781998944088.01

Overridden operator Dunder method

// object.__floordiv__(self, other)

/ object.__truediv__(self, other)

% object.__mod__(self, other)

** object.__pow__(self, other[, modulo])

<< object.__lshift__(self, other)

>> object.__rshift__(self, other)

& object.__and__(self, other)

^ object.__xor__(self, other)

| object.__or__(self, other)

Table 7-5: Augmented assignment operators

Overridden operator Dunder method

+= object.__iadd__(self, other)

-= object.__isub__(self, other)

*= object.__imul__(self, other)

/= object.__idiv__(self, other)

//= object.__ifloordiv__(self, other)

%= object.__imod__(self, other)

**= object.__ipow__(self, other[, modulo])

<<= object.__ilshift__(self, other)

>>= object.__irshift__(self, other)

&= object.__iand__(self, other)

^= object.__ixor__(self, other)

|= object.__ior__(self, other)

Table 7-4: Binary operators (continued)

	346	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Table 7-6: Unary operators

Overridden operator Dunder method

- object.__neg__(self)

+ object.__pos__(self)

abs() object.__abs__(self)

~ object.__invert__(self)

complex() object.__complex__(self)

int() object.__int__(self)

long() object.__long__(self)

float() object.__float__(self)

oct() object.__oct__(self)

hex() object.__hex__(self)

Table 7-7: Comparison operators

Operator Dunder method

< object.__lt__(self, other)

<= object.__le__(self, other)

== object.__eq__(self, other)

!= object.__ne__(self, other)

>= object.__ge__(self, other)

> object.__gt__(self, other)

Using Class as Decorator
In Chapter 6, we saw how decorators can be used as powerful and useful tools
that wrap one function with another to change the behaviour of the wrapped
function without modifying the wrapped function. In this section, we show how
to use classes as decorators to modify the behaviour of an existing function.

As we know, a class has two types of members. One is attributes and the
other is methods. Our first example uses the methods of a class as a decorator,
as shown below:

	 Object-Oriented Programming with Python	 347

 https://doi.org/10.15215/remix/9781998944088.01

In []: class MyClass:
 def __init__(self, decorated):
 self.func = decorated

 def __call__(self, *args, **kwargs): # variable-
length arguments

 print("More code can be added before calling the
decorated function")

 self.func(*args, **kwargs) # call the decorated
function

 print("More code can be added after calling the
decorated function")

use MyClass as a decorator
@MyClass
def myFunc(name, message ='Welcome to COMP218'):
 print(f"Hello {name}, {message}")

myFunc("Joe", "Welcome to the world of Python")

Out []: More code can be added before calling the decorated function

Hello Joe, Welcome to the world of Python

More code can be added after calling the decorated function

As shown in the example above, the __init__ method is used to pass a func-
tion to be decorated or wrapped to the class, and the __call__ method is used
to actually wrap the real function passed to the class.

We learned in Chapter 6 how to calculate the actual execution time of a
program using a function as a decorator. The same can be done with a class
as a decorator when we time finding all the primes within a given range using
an algorithm called “sieve of Eratosthenes.”

In []: from time import time
class ProgramTimer:
 def __init__(self, func):
 self.function = func
 def __call__(self, *args, **kwargs):
 program_start_time = time()
 result = self.function(*args, **kwargs)
 program_end_time = time()
 print(f"Execution of {self.function} took
 {program_end_time- program_start_time} seconds"
 return result

	348	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

add a decorator to the class

def sieving(n, l):
 """Remove all n's multiples from list l."""
 return list(filter(lambda m: m == n or m%n != 0, l))

def i_list(max_l_int):
 """Create initial list."""
 l0 = [2] + list(range(3, max_l_int, 2))
 return l0

@ProgramTimer
def primesBySieving(upper_bound):
 nl = i_list(upper_bound)
 sl = nl[1: len(nl) // 2 + 1] # initial sieve
 flag = True
 while flag:
 d = sl[0]
 nl = sieving(d, nl)
 sl = sl[1:]
 if d**2 > nl[-1]:
 flag = False
 return nl

ub = 2**19
pl = primesBySieving(ub)
print(f"{len(pl)} prime numbers have been found between
2 and {ub}")

Out []: Execution of <function primesBySieving at 0x0000014363F8AEE8> took
3.1760756969451904 seconds

43390 prime numbers have been found between 2 and 524288

In the above examples, we used class to decorate a function. Within the class,
a special dunder function __call__ is used to execute the decorated function
and calculate the time spent on the execution of the function that finds all the
prime numbers between 2 and 32768 (2 ** 15).

Built-In Property() Function and Property Decorator
Python has a special built-in function named property, as mentioned in Chap-
ter 2. It can be called directly to create an attribute of a class with potentially
added setter, getter, and deleter methods and documentation. In this case, the
function can either be called within a class definition or outside a class defin-
ition while adding the created property to a class or object of a class.

A call of the property function may take none or any combination of the
four optional keyword arguments, as shown below:

	 Object-Oriented Programming with Python	 349

 https://doi.org/10.15215/remix/9781998944088.01

Property_name = property(fget=None, fset=None, fdel=None,
doc=None)
fget, fset, and fdel take functions only
firstname = property() # call of the property function
with default
lastname = property(set_lastname, get_lastname,
delete_lastname)
call with three function names
firstname.setter(set_firstname) # add a set function to
property firstname. set_firstname must be a function
firstname.getter(get_firstname)
add a get function to property firstname. get_firstname
must be a function

If property() function is called with no argument, you can add a setter
function, getter function, and/or deleter function later by calling the setter,
getter. and deleter methods.

The following example demonstrates how the built-in property function is
used to add a property/attribute to a class:

In []: class Employee:
 def __init__(self, firstname, lastname):
 self.firstname = firstname
 self.lastname = lastname

 def setFullname(self, fullname):
 names = fullname.split()
 self.firstname = names[0]
 self.lastname = names[1]

 def getFullname(self):
 return f'{self.firstname} {self.lastname}'

 fullname = property(getFullname, setFullname)

e1 = Employee('Jack', 'Smith')
print(e1.fullname)
e1.fullname = 'John Doe'
print(e1.fullname)
print(f'{e1.lastname}, {e1.firstname}')

Out []: Jack Smith
John Doe
Doe, John

	350	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

A built-in property function can also be used as a decorator within a class def-
inition to make a method name to be used as an attribute/property of the class.

Similar to the example above, suppose we want to define a class named Stu-
dent for a management system at a university. The attributes should include the
first name, last name, full name, email address, and some other information.
We know that a full name is made of a first name and a last name and that the
university often has a rule of assigning an email address based on the first name
and last name. If we define full name and email address as ordinary attributes,
the dependencies would not be reflected because a change to the first name
or last name of a student will not automatically result in the change to the full
name and email address. Using property() function as a decorator can nicely
solve the problem, as shown in the following example:

In []: class Student:
 def __init__(self, firstname, lastname):
 self.firstname = firstname
 self.lastname = lastname

 @property
 def fullname(self):
 return f"{self.firstname} {self.lastname}"

 @property
 def emailaddress(self):
 return f"{self.firstname}.{self.lastname}@
globalemail.com"

s0 = Student('John', 'Doe')
print(f'First name: {s0.firstname}')
print(f'Last name: {s0.lastname}')
print(f'Full name: {s0.fullname}')
print(f'Email address: {s0.emailaddress}')
s0.lastname = 'Smith'
print(f'First name: {s0.firstname}')
print(f'Last name: {s0.lastname}')
print(f'Full name: {s0.fullname}')
print(f'Email address: {s0.emailaddress}')

Out []: First name: John
Last name: Doe
Full name: John Doe
Email address:​John​.Doe​@globalemail​.com

First name: John
Last name: Smith
Full name: John Smith
Email address:​John​.Smith​@globalemail​.com

	 Object-Oriented Programming with Python	 351

 https://doi.org/10.15215/remix/9781998944088.01

In the example above, we use built-in property() function as a decorator to
decorate method fullname() and emailaddress(). By doing that, the function
name can be used as a property or attribute of the object, but access to the
attribute invokes a call to the function so that an updated full name or email
address is retrieved. In the example, when the last name is changed to Smith,
the full name is automatically changed to John Smith, and the email address
is automatically changed to John​.Smith​@globalemail​.com.

Using decorator, we can also further add setter, getter, and deleter methods
to the property fullname, as shown below:

In []: class Student:
 def __init__(self, firstname, lastname):
 self.firstname = firstname
 self.lastname = lastname

 @property
 def fullname(self):
 return f"{self.firstname} {self.lastname}"

 @fullname.setter
 def fullname(self, fullname):
 """
 Set the value of fullname. However,
 you cannot do self.fullname = fullname
 because fullname is not true attribute.
 """
 names = fullname.split()
 self.firstname = names[0]
 self.lastname = names[1]

s0 = Student('John', 'Doe')
print(s0.fullname)
s0.fullname = 'Kevin Smith'
print(s0.fullname)

Out []: John Doe
Kevin Smith

Note that using a property decorator can make a method to be used like an
attribute/property without the need to allocate memory space to keep the value
of the attribute. As such, you cannot assign a value directly to such an attribute.

	352	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Creating a New Class Dynamically and Modify a Defined Class or
Instance
In Python, you have the freedom to make changes to an already defined class
or an instance of the class, and you can even create a new class dynamically.

To create a new class dynamically in your Python program, a built-in func-
tion type is used, as shown below:

In []: Shape = type('Shape', (object,), dict(points=[(1,1)]))
s0=Shape()
s1=Shape()
print(f's0.points = {s0.points}')
print(f's1.points = {s1.points}')
s0.points += [(12, 23)] # add a new point to s0
print(f's0.points = {s0.points}')
print(f's1.points = {s1.points}')
s1.points = [(35, 67)] # this adds an attribute point
to s1

print(f's0.points = {s0.points}')
print(f's1.points = {s1.points}')

Out []: s0.points = [(1, 1)]
s1.points = [(1, 1)]
s0.points = [(1, 1), (12, 23)]
s1.points = [(1, 1), (12, 23)]
s0.points = [(1, 1), (12, 23)]
s1.points = [(35, 67)]

In the example above, we dynamically create a new class called Shape and set
one attribute called points, which is a list of points initially assigned one point
(1, 1). We then create two instances of the Shape class, s0 and s1, in the same
way that we do with other classes defined with the class statement. We then even
added one more point to s0. Because attributes added to the class with built-in
function type() are automatically treated as class attributes and shared by all
instances of the class, changes to points of s0 are also reflected in the value of
points of s1. However, the third-to-last statement above adds an attribute with
the same name as the class attribute to object s1, which only belongs to s1. As
a result, a change to this attribute of s1 has no effect on s0.

As we have already seen above, with a defined class or an instance of a
defined class, you can modify the class or instance by adding or deleting attrib-
utes to/from the class or instance. Moreover, you can even add or delete a new
method dynamically to or from a class or instance of a class.

One way to add an attribute to an object, either a class or an instance of a class,
is to directly name a new attribute and assign a value in the same way that we

	 Object-Oriented Programming with Python	 353

 https://doi.org/10.15215/remix/9781998944088.01

introduce a new variable to a program. For example, we can add a new attribute
called shape_type to s0 instantiated above with the first statement of code below:

In []: s0.shape_type = 'line'
print(f'The shape is a {s0.shape_type}, with points
{s0.points}')

Out []: The shape is a line, with points [(1, 1), (12, 23)]

The second statement has proved that a new attribute shape_type has been
added to object s0, and now this particular instance of Shape is called line.

A new attribute can also be added by using the built-in function setattr().
To add the shape_type attribute to s0 with setattr(), run the following statement:

In []: setattr(s0, 'shape_type', 'rectangle')
this will only add attribute shape_type to object s0
s0.shape_type

Out []: 'rectangle'

An attribute can also be deleted from an object using the built-in function
delattr(). When you want to add or delete an attribute, but you are not sure if the
attribute exits, you can use built-in function hasattr() to check, as shown below:

In []: print(hasattr(s0, 'shape_type'))
delattr(s0, 'shape_type')
print(hasattr(s0, 'shape_type'))

Out []: True
False

Remember, attributes added to an instance of a class will not be seen by
other instances of the same class. If we want to make the shape_type attribute
visible to all instances of the Shape class because every shape should have a
shape type, we need to add the shape_type attribute to the class to make it
a class attribute. This is done with the following statement:

Shape.shape_type = 'point'

From now on, all instances of the Shape class will have an attribute called
shape_type, as shown in the examples below:

	354	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: Shape.shape_type = 'point'
print(f's0.shape_type = {s0.shape_type}')
print(f's1.shape_type = {s1.shape_type}')

Out []: s0.shape_type = point
s1.shape_type = point

As you may have noted, the attribute shape_type and its value, added to the
Shape class, have been propagated to both s0 and s1 because the shape_type
attribute was added as a class attribute. By comparison, the attribute later added
to an individual instance of the class is the attribute of that instance only. This
is shown in the following code sample:

In []: print(s0.points, s1.points)
s0.weight = 1
print(s0.weight)
hasattr(s1, 'weight')

Out []: [(1, 1), (12, 23), (2, 3), (2, 3)] [(1, 1), (12, 23), (2, 3), (2, 3)]
1
False

The example shows that the new attribute weight was only added to object
s0, and s1 does not have the attribute. Again, if you want the weight attribute
and its value to be shared by all instances of the class, you have to add the
attribute to the class directly, as shown below:

In []: Shape.weight = 1
print('s0 weight = ', s0.weight)
print('s1 weight = ', s1.weight)

Out []: s0 weight = 1
s1 weight = 1

How can you add a new method to an already defined class? You can do this
in almost the same way as you would add new attributes to a class or instance
of a class, as shown in the following example:

In []: def print_points(self): # we define a function with a
parameter

 for i, p in enumerate(self.points):
 print(f'point {i} at {p}')

Shape.print_points = print_points # we now attach the
function

s0.print_points() # the method is called on s0

	 Object-Oriented Programming with Python	 355

 https://doi.org/10.15215/remix/9781998944088.01

Out []: Point 1 at (1, 1)
Point 2 at (12, 23)

This provides programmers with so much power, as they can create new
classes and modify all aspects of classes dynamically. For example, we know
we can only define one __init__() in a class definition, so we only have one
constructor to use when creating new instances of the class. By attaching a
different properly defined method to the __init__ attribute, we are now able
to construct a new instance of a class in whatever way we want, as shown in
the following example:

In []: def print_shape(self):
 print(f'A {self.shape_type} has {len(self.points)}
point(s):')

 for i, p in enumerate(self.points, 1):
 print(f'Point {i} at {p}')

Shape.print_shape = print_shape

def c1(self, *points): # a point
 self.points = list(points)
 self.shape_type = 'point'

def c2(self, *points): # a line, a shape made of two
points

 self.points = list(points)
 self.shape_type = 'line'

def c3(self, *points): # a triangle, a shape made of
three points

 self.points = list(points)
 self.shape_type = 'triangle'

Shape.__init__= c1 # constructor for one point
p1 = Shape((3,5))
Shape.__init__= c2 # constructor for a line
l1 = Shape((3,5), (12, 35))
Shape.__init__= c3 # constructor for a triangle
t1 = Shape((3,5), (12, 35), (26, 87))

print(p1.print_shape())
print(l1.print_shape())
print(t1.print_shape())

	356	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Out []: A point has 1 point(s):
Point 1 at (3, 5)
None
A line has 2 point(s):
Point 1 at (3, 5)
Point 2 at (12, 35)
None
A triangle has 3 point(s):
Point 1 at (3, 5)
Point 2 at (12, 35)
Point 3 at (26, 87)
None

In this example, we defined three methods to use as constructors or
initiators for the shape class we previously defined. Constructor c1 is for
creating point objects, c2 is for creating line objects, and c3 is for creating
triangle objects. We then attach each method to the __init__ attribute of the
shape class to create the shape object we want. We also defined a method
called print_shape() for the class, just to show the results of the three different
constructors.

As you may imagine, however, the consequence of modifying instances of
a class is that different instances of the same class may have totally different
attributes. In an extreme case, two instances of the same class can have totally
different attributes. This is something you need to keep in mind when enjoying
the freedom offered by Python.

Keeping Objects in Permanent Storage
As mentioned previously, classes and objects are a very powerful way to model
the world. Hence, in a program, classes and objects can be used to represent
information and knowledge for real-world application. You do not want to
lose that information and knowledge whenever you shut down the computer.
Instead, you want to keep this information and knowledge in permanent stor-
age and reuse it when you need it. For example, you may have developed a
management system using the Student class, defined earlier in this section,
and created a number of objects of the Student class containing information
about these students. You need to reuse the information about these students
contained in those student objects next time you turn on the computer and run
the system. How can you do that?

Previously, we discussed defining the __repr__ dunder method, which
returns a string representation of an object that can be in the form of list, tuple,
or dictionary, as shown in the following example:

	 Object-Oriented Programming with Python	 357

 https://doi.org/10.15215/remix/9781998944088.01

In []: class Employee:
 age : int = 20
 salary : float = 30000
 def __init__(self, firstname, lastname):
 self.firstname = firstname
 self.lastname = lastname

 def __str__(self):
 return f'{self.firstname} {self.lastname}, {self.
age}, {self.salary}'

 def __repr__(self):
 rdict = {'firstname':self.
firstname,'lastname':self.lastname, 'age':self.age,
'salary':self.salary}

 return f"{rdict}"

e1 = Employee('Jack', 'Smith')
e1.age =37
e1.salary = 56900
e2 = Employee('Jone', 'Doe')
print(e1) # this will call the __str__ method
e2 # this will call the __repr__ method

Out []: Jack Smith, 37, 56900
{'firstname': 'Jone', 'lastname': 'Doe', 'age': 20, 'salary': 30000}

With the __repr__() method for a class, you can save the representation of
these objects into a file. To use the object representations stored in a file, you
will need to write another function/method to pick up the information from
each object representation and add it to its respective object. The two processes
must work together to ensure that objects can be correctly restored from files.
Neither process is easy. Fortunately, there is a Python module called pickle
already developed just for this purpose.

In formal terms, saving data, especially complex data such as objects in OOP,
in permanent storage is called serialization, whereas restoring data from perma-
nent storage back to its original form in programs is called deserialization.
The pickle module is a library implemented for serializing and deserializing
objects in Python. The pickling/serializing process converts objects with hier-
archical structure into a byte stream ready to save on a binary file, send across
a network such as the internet, or store in a database, whereas the unpickling/
deserializing process does the reverse: it converts a byte stream from a binary
file or database, or received from a network, back into the object hierarchy.

	358	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

There are some good sections and documents on the internet that explain
how to use the pickle module for your Python programming needs. When you
do need to use it, be aware of the following:

	 1.	 Unpickling with the pickle module is not secure. Unpickling objects from
unknown and untrusted sources can be dangerous because harmful
executable code may be deserialized into your computer memory.

	 2.	 Not all objects can be pickled. You need to know what data types
and objects can be pickled before you pickle them. Pickling
unpicklable objects will raise exception.

Chapter Summary
•	 Object-oriented programming is an important approach to object

modelling and programming.
•	 Abstraction, information hiding, and inheritance are important

concepts and principles in OOP.
•	 New classes can be defined with the class statement.
•	 A class contains attributes/properties and methods.
•	 In Python, there are attributes called class attributes, which can have

default values.
•	 The __init__ method is called upon when instantiating new instances of

classes.
•	 Except for class attributes, attributes of individual objects of a class

don’t need to be explicitly declared in a class definition.
•	 Instead, attributes of a class are introduced in the definition of

the __init__ method.
•	 In Python, each class can only have one constructor for the initializing

instance of the class. That means that you can define only one __init__
method within a class.

•	 Methods of a class are defined the same way as functions, except that the
first parameter of a method definition needs to be self, which refers to
the object, an instance of the class on which the method is being called.

•	 There are methods called class methods in Python.
•	 There are also methods called static methods in Python class definition.
•	 A number of dunder methods can be defined in a class to achieve neat

and powerful programming effects.
•	 Some dunder methods can be redefined in a class to mimic arithmetic

operators.

	 Object-Oriented Programming with Python	 359

 https://doi.org/10.15215/remix/9781998944088.01

•	 Some important and interesting dunder methods include __repr__,
__init__, __call__, __new__, and __len__.

•	 Class can also be used as a decorator of a function/method.
•	 The built-in function property() has two interesting uses: one is to

attach specific getter, setter, and deleter functions to a property/
attribute of an object, and the other is to use it as a decorator—to create
the name of a method to be used as a property/attribute name.

Exercises
	 1.	 Run the following code in a cell of one of the Jupyter Notebooks

created for the chapter and answer the questions below:

class myClassB(object):
 pass

print(myClassB.__dict__)
dir(myClassB)

	 a.	 What does each statement do?
	 b.	 What is the output from print(myClassB.__dict__) statement?
	 c.	 What does dir(myClassB) return?
	 d.	 Python dir() function returns a list of the attributes and methods of

any object. In the code above, no attribute or method is defined in
the definition of class myClassB. Why does the list returned from
dir(myClassB) have so many items in it? Find out and explain what
each item is.

	 2.	 Mentally run the code below and write down the output of the program:

class Employee:
 def __init__(self, firstname, lastname):
 self.firstname = firstname
 self.lastname = lastname

 def setFullname(self, fullname):
 names = fullname.split()
 self.firstname = names[0]
 self.lastname = names[1]

 def getFullname(self):

	360	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

 return f'{self.firstname} {self.lastname}'

 fullname = property(getFullname, setFullname)

e1 = Employee('Jack', 'Smith')
print(e1.fullname)
e2 = e1
e2.fullname = 'John Doe'
print(e2.fullname)

	 3.	 For the Employee class defined in Exercise 2, define method __str__()
so that the statement print(e1) will display the full name of the
employee.

	 4.	 For the Employee class defined below, define setter and getter
methods for attribute age and salary, respectively.

class Employee:
 age : int = 20
 salary : float = 30000
 def __init__(self, firstname, lastname):
 self.firstname = firstname
 self.lastname = lastname

	 5.	 For the Employee class defined in Exercise 4, define method
__repr__() to return a dictionary whose item is a pair of that includes
the attribute name and its value, such as 'firstname': 'John'.

	 6.	 Define a class named Quiz_question that models multiple-choice
questions, including the correct answers. In addition to a constructor—
the __init__ method to construct the objects of the class—there should
be other methods allowing the user to change the description of
the question, the individual choices, and the correct answers.

	 7.	 If we allow the number of choices to vary for the multiple-choice
questions modelled by the Quiz_question class defined for Exercise 6,
what changes need to be made to the Quiz_question class?

	 8.	 Define a class named Quiz that uses the Quiz_question class defined
above to model a quiz that contains a number of quiz questions. It
should have methods for a user to create a quiz, to add quiz questions
to the quiz, to display a list of all quiz questions in a quiz for review,
and to execute a quiz on a user and calculate the score.

	 Object-Oriented Programming with Python	 361

 https://doi.org/10.15215/remix/9781998944088.01

Project
	 1.	 Using the Quiz_question and Quiz classes you developed in Exercises 7

and 8 above, develop a terminal-based quiz system that will allow the
user to do the following:

•	 Create a quiz.
•	 Select a quiz and add new quiz questions.
•	 Select a quiz and preview all the quiz questions.
•	 Select a quiz and execute the quiz by presenting the quiz

questions one by one.
•	 At the end of the quiz, calculate the user’s score as a percentage

and show the correct answers to incorrectly answered questions.
The quiz questions should be displayed to the user one by one
during the quiz.

This page intentionally left blank

 https://doi.org/10.15215/remix/9781998944088.01

Chapter 8

Modules and Packages

Divide-and-conquer is a fundamental but effective strategy in problem solv-
ing as well as system design and development. This is because big problems
can often be divided into smaller problems that can be easily solved or have
already been solved, and large systems can often be made of smaller ones that
can be easily created or are already readily available. Not only that, but the
divide-and-conquer method also results in easier system maintenance, better
quality insurance, quicker error detection and correction, and better reusability.

In Chapter 6, we learned how functions can be used in problem solving,
and in Chapter 7, we studied object-oriented programming and learned how
classes and objects can be used in system development and to solve problems.
In computing, both functions and objects are common programming technol-
ogies that implement divide-and-conquer strategies.

In this chapter, we will study modules and packages that can also be used
to implement the divide-and-conquer strategy in programming. In this way,
we will learn how to create and use modules in programming and software
development. We will also study some Python modules and packages that are
readily available and often needed to solve problems and develop computer
applications.

Learning Objectives
After completing this chapter, you should be able to

•	 describe modules.
•	 explain what packages are, what files are required, and how they are

structured in a file system.
•	 import and use modules already in the Python programming/

development environment.

	364	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

•	 import and use specific parts from a module or specific modules from
a package.

•	 explain the functionalities of some standard and widely used modules,
and use them comfortably in programming.

•	 write and use your own modules and packages.

8.1 Creating Modules and Packages
As mentioned in previous sections, a module can be just a Python script file
defining functions, classes, and other program constructs such as variables
and constants. The following is an example of a Python module:

Code sample in VS Code IDE

1 """
2 The module in this file defines some functions often used

in calculations related to circles
3
4 Author: John Doe
5 Date: March 30, 2019
6 Version: 1.0
7 """
8
9
10 PAI = 3.1415926
11
12
13 def area(r):
14 """Calculate the area of a circle with radius r."""
15 return PAI * r ** 2 # calculate the area
16
17
18 def circumference(r):
19 """Calculate the circumference of a circle with radius

r."""
20 return 2 * PAI * r
21
22

The file can then be imported into a Python program and used as a module,
as shown below:

In []: import circle

print(f'The area of a circle with a radius of 12 is
{circle.area(12)}')

Out []: The area of a circle with a radius of 12 is 452.3893344

	 Modules and Packages	 365

 https://doi.org/10.15215/remix/9781998944088.01

How do you create a module or package and publish it at https://​pypi​.org/
for the Python community at large so that it can be found and installed with
the pip command?

Suppose you want to create a package for developing e-learning applications.
You would need to take the following steps to develop the package to make it
available for the others in the Python community:

	 1.	 First, create a directory called mypackages, which will contain all the
packages and modules that you will develop for yourself or the Python
community at large.

	 2.	 Suppose you would like the package to be called elearn. You first need
to check to see if the name has been used by others to name any top-
level module or package published at http://​pypi​.python​.org.

	 3.	 Under the mypackages directory, create a directory named elearn,
which will contain everything for your elearn package or module.

	 4.	 Under this elearn directory, you can create Python script files (.py)
and other subdirectories under which you may have other packages or
modules.

	 5.	 To distinguish this elearn directory from other ordinary directories of
the file system so that it can be searchable through a Python interpreter,
create a special file called ​_​_init​_​_​.py right under the elearn directory.
The ​_​_init​_​_​.py file should contain all the names and objects defined
in the package or module, either directly or indirectly (by importing
individual names and objects from each of the other files). The must-
have ​_​_init​_​_​.py file is the entry point of each package or module.

	 6.	 Under the mypackages directory, write a special Python script file
called setup​.py, which imports a special module called setuptools
and calls the setup function to prepare the package to be sent to the
repository. The following is an example of the setup​.py file.

import setuptools

setup(name = 'elearn',
version = '1.0beta',
description = 'A package for developing elearn
applications',
url = 'http://​github​.com/​AU​.CA/​elearn',
author = 'SCIS Athabasca',
author_email = 'scis​@athabascau​.ca',
license = 'FSF free software foundation',

https://pypi.org/
http://pypi.python.org

	366	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

packages = ['elearn'],
zip_safe = False)

	 7.	 If you are not really ready to submit the package to the repository but
would rather test it or just want to use it by yourself, you can install the
package locally so that it can be found with the import statement. The
following is the command to be used to install the package when your
current working directory is mypackages:

$ pip install .

	 8.	 To publish your elearn package, you need to
	 a.	 Register the package with PyPi so that the online repository will

know about your package and create an entry-point link to the
elearn package at GitHub, as specified in the setup​.py file.

	 b.	 Create a single zip file that contains all Python script files.
	 c.	 Upload the zip file to PYPI repository.

By running the following command also under mypackages directory:

$ python setup​.py register sdist upload

Upon completing the above steps, anyone on the internet will be able to install
and use your elearn library to develop elearn applications using the following
command:

$ pip install elearn

Please note that for your package to be available in a GitHub repository so
that the link used in your entry at PYPI is valid, you will need to create or sign
into an account with GitHub and do the following:

	 1.	 Create the project within your account at GitHub
	 2.	 Install Git on your computer and use the commands to manually

synchronize your work on your computer with GitHub

VS Code IDE can work with Git and GitHub through respective GitHub exten-
sions that can be downloaded and installed in VS Code so that your project in
VS can be easily synchronized with GitHub.

	 Modules and Packages	 367

 https://doi.org/10.15215/remix/9781998944088.01

8.2 Using Modules and Packages
To use a module, we first import it, as shown in the following example:

Code sample in Python interactive mode

1
2 import circle
3
4 radius = float(input("Tell me the radius:"))
5
6 print(f"The area of a circle with the radius

{radius} is {circle.area(radius)}")
7 print(f"The circumference of a circle with the

radius {radius} is {circle.circumference(radius)}")

The result Tell me the radius: 12.3
The area of a circle with the radius 12.3 is 475.2915444540001
The circumference of a circle with the radius 12.3 is 77.28317796

When importing a module, you can also give the module an alias to use,
especially if the original name is too long or hard to remember. In the above
code sample, the import statement import circle can be changed to ci, as in
the following:

>>> import circle as ci

Then in the program file, you can use ci in place of circle, as shown below:

>>> print(f"The area of a circle with the radius {radius}
is {ci.area(radius)}")

When designing and coding a system, you may create and use as many
modules as needed, but do so wisely and do not make a simple system too
complicated. Managing too many unnecessary modules and files will consume
time and resources as well, especially since many Python modules have already
been developed by the great Python community for almost every application
domain you can think of. In most cases, all you need is to know is what modules
are available out there and what each module does, even if you do not want to
learn about the details now.

In general, the import statement may take one of the following forms.

	368	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

IMPORT <THE NAME OF THE MODULE>
This is the simplest form, although you do need to know what the module has
defined and know exactly what the name is, which is just the file name without
the extension py.

IMPORT <THE NAME OF THE MODULE> AS <SIMPLER ALIAS FOR
THE MODULE NAME>
Sometimes, the name of a module can be long and hard to remember, and giving
the module an alias would make programming more efficient. For example,
there is a module for mathematical plotting called matplotlib if you give an
alias to the module when importing it as follows:

import matplotlib as mpl

A name such as o defined in the module can then be referred to using mpl.o,
which is much simpler than matplotlib.o.

FROM <MODULE/PACKAGE NAME> IMPORT <NAME OF OBJECT
OR MODULE>
When importing from a module, you can import a specific name you want to use
instead of the entire module. For example, a mathematical module may have
defined a number of mathematical constants such as PI and E. You may import
only the one you want to use in your program.

As previously mentioned, a package usually contains other packages
and modules, which can often be depicted as a tree. You can import just the
package, module or even the name you want to use by using the import state-
ment above. Again, the important thing is that you need to know where the
thing you want to import is located within the tree. Assume from the root r
the module m is located at r.n.m; then the import statement can be written
as follows:

from r.n import m

This dot notation can also be used to import a module from a package
without using from, as shown in the following example:

import matplotlib.pyplot as ppl

which imports the pyplot module from the matplotlib package and assigns an
alias to the module.

	 Modules and Packages	 369

 https://doi.org/10.15215/remix/9781998944088.01

FROM <MODULE/PACKAGE NAME> IMPORT <NAME OF OBJECT
OR MODULE> AS <ALIAS>
This is the last form an import statement can take. It gives an alias to the module/
name imported from a package or module.

8.3 Install and Learn About Modules Developed by
Others
To learn about modules already developed by others, your starting point can
be a website called Python Package Index (PyPi) at https://​pypi​.org, where you
can find, install, and publish Python packages and modules. By browsing this
site, you will quickly get an idea what packages and modules have been already
developed and published and are ready for use.

To see what modules and packages have already been installed on your
computer, you can simply run pip list on a shell terminal such as PowerShell,
as shown below:

PS C:\> pip list
Package Version
------------------ -----------
appdirs 1.4.4
argon2-cffi 20.1.0
asgiref 3.3.1
async-generator 1.10
attrs 20.3.0
backcall 0.2.0
bleach 3.2.1
certifi 2020.11.8
cffi 1.14.3
chardet 3.0.4
colorama 0.4.4
decorator 4.4.2
defusedxml 0.6.0
distlib 0.3.1
Django 3.1.5
entrypoints 0.3
filelock 3.0.12
idna 2.10
ipykernel 5.3.4
ipython 7.19.0

https://pypi.org

	370	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

ipython-genutils 0.2.0
ipywidgets 7.5.1
jedi 0.17.2
Jinja2 2.11.2
json5 0.9.5
jsonschema 3.2.0
jupyter 1.0.0
jupyter-client 6.1.7
jupyter-console 6.2.0
jupyter-core 4.6.3
jupyterlab 2.2.9
jupyterlab-pygments 0.1.2
jupyterlab-server 1.2.0
MarkupSafe 1.1.1
mistune 0.8.4
nbclient 0.5.1
nbconvert 6.0.7
nbformat 5.0.8
nest-asyncio 1.4.2
notebook 6.1.5
packaging 20.4
pandocfilters 1.4.3
parso 0.7.1
pickleshare 0.7.5
Pip 21.1.3
pipenv 2020.11.15
prometheus-client 0.8.0

To find out what a particular installed module or package does, you can
import the package or module into a Python interactive shell or a Jupyter Note-
book cell, then run the dir command/statement to find out the names defined
in the module or package and use the help command/statement to see more
detailed information for a particular name.

PS C:\> python
Python 3.9.0 (tags/v3.9.0:9cf6752, Oct 5 2020, 15:34:40)
[MSC v.1927 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more
information.
>>> import math

	 Modules and Packages	 371

 https://doi.org/10.15215/remix/9781998944088.01

>>> dir(math)
['__doc__', '__loader__', '__name__', '__package__',
'__spec__', 'acos', 'acosh', 'asin , asinh , atan',
'atan2', 'ata
nh', 'ceil', 'comb', 'copysign', 'cos', 'cosh', 'degrees',
'dist', 'e', 'erf', 'erfc', 'exp', 'expmr, 'fabs', 'factoria
l', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot',
'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt',
'1cm', 'Idexp', 'lgamma', 'log', 'log10', 'Ioglp',
'log2', 'modf', 'nan', 'nextafter', 'perm', 'pi', 'pow',
'prod', 'rad
ians', 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh',
'tau', 'trunc', 'ulp']
>>> help(math)
Help on built-in module math:

NAME
 math

DESCRIPTION
 This module provides access to the mathematical functions
 defined by the C standard.

FUNCTIONS
 acos(x, /)
 Return the arc cosine (measured in radians) of x.

 The result is between 0 and pi.

 acosh(x, /)
 Return the inverse hyperbolic cosine of x.

 asin(x, /)
 Return the arc sine (measured in radians) of x.

 The result is between -pi/2 and pi/2.

 asinh(x, /)
 Return the inverse hyperbolic sine of x.

	372	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

 atan(x, /)
 Return the arc tangent (measured in radians) of x.

 The result is between -pi/2 and pi/2.

 atan2(y, x, /)
 Return the arc tangent (measured in radians) of y/x.

 Unlike atan(y/x), the signs of both x and y are
considered.

 atanh(x, /)
 Return the inverse hyperbolic tangent of x.

Another way to learn about and navigate through the available modules and
packages is to use a module called pydoc. However, this module is usually run
from a command shell or PowerShell terminal as shown below:

(base) PS C:\Users\james> python pydoc
pydoc - the Python documentation tool

pydoc <name> …
 Show text documentation on something. <name> may be
the name of a
 Python keyword, topic, function, module, or package,
or a dotted
 reference to a class or function within a module or
module in a
 package. If <name> contains a '\', it is used as the
path to a
 Python source file to document. If name is
'keywords', 'topics',
 or 'modules', a listing of these things is displayed.

pydoc -k <keyword>
 Search for a keyword in the synopsis lines of all
available modules.

pydoc -n <hostname>

	 Modules and Packages	 373

 https://doi.org/10.15215/remix/9781998944088.01

 Start an HTTP server with the given hostname
(default: localhost).

pydoc -p <port>
 Start an HTTP server on the given port on the local
machine. Port
 number 0 can be used to get an arbitrary unused port.

pydoc -b
 Start an HTTP server on an arbitrary unused port and
open a Web browser
 to interactively browse documentation. This option
can be used in
 combination with -n and/or -p.

pydoc -w <name> …
 Write out the HTML documentation for a module to a
file in the current
 directory. If <name> contains a '\', it is treated as
a filename; if
 it names a directory, documentation is written for
all the contents.

(base) PS C:\Users\james>

Note that when you want to run a Python module as a normal script, run
Python with the -m switch before the module name.

As shown above, if you want to get documentation on something, just add
the something behind pydoc. For example, if you want to see the documenta-
tion on the math module, run the following command in the command shell:

python -m pydoc math

The resulting documentation is shown below:

Help on built-in module math:

NAME
 math

	374	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

DESCRIPTION
 This module provides access to the mathematical
functions
 defined by the C standard.

FUNCTIONS
 acos(x, /)
 Return the arc cosine (measured in radians) of x.

 acosh(x, /)
 Return the inverse hyperbolic cosine of x.

 asin(x, /)
 Return the arc sine (measured in radians) of x.

 asinh(x, /)
 Return the inverse hyperbolic sine of x.

 atan(x, /)
 Return the arc tangent (measured in radians) of x.

 atan2(y, x, /)
 Return the arc tangent (measured in radians) of y/x.

 Unlike atan(y/x), the signs of both x and y are
considered.

 atanh(x, /)
 Return the inverse hyperbolic tangent of x.

With some installations of Python, such as those installed with Anaconda,
pydoc has been made available as executable directly from command shell,
as shown here:

(base) PS C:\Users\james> pydoc math
Help on built-in module math:

NAME
 math

	 Modules and Packages	 375

 https://doi.org/10.15215/remix/9781998944088.01

DESCRIPTION
 This module provides access to the mathematical functions
 defined by the C standard.

FUNCTIONS
 acos(x, /)
 Return the arc cosine (measured in radians) of x.

 acosh(x, /)
 Return the inverse hyperbolic cosine of x.

 asin(x, /)
 Return the arc sine (measured in radians) of x.

 asinh(x, /)
 Return the inverse hyperbolic sine of x.

 atan(x, /)
 Return the arc tangent (measured in radians) of x.

 atan2(y, x, /)
 Return the arc tangent (measured in radians) of y/x.

 Unlike atan(y/x), the signs of both x and y are considered.

 atanh(x, /)
 Return the inverse hyperbolic tangent of x.

pydoc has some switches that can be used when running it as a Python
module or an executable directly from the command shell. These switches
include the following.

-K <KEYWORD>
Used to search for a keyword in the synopsis lines of all available modules
installed. The following example searches for all modules that has the word
“hash” in the synopsis.

PS C:\Users\james> python -m pydoc -k hash

-N <HOSTNAME>
Used to start an HTTP server with the given <hostname>. When no hostname
is given, localhost is default.

	376	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

-P <PORT>
Used to start an HTTP server on the given <port> on the local machine. Port
number 0 can be used to get an arbitrary unused port.

-B
Used to start an HTTP server on an arbitrary unused port and open a web
browser to interactively browse documentation. This option can be used in
combination with -n and/or -p.

The following example starts a server on the local machine at an available
port and launches a web browser to browse all available modules and packages.

(base) PS S:\Dev\learn-python> pydoc -b
Server ready at http://localhost:30128/
Server commands: [b]rowser, [q]uit
server>

Please note that if you type q to quit from the program, the server will be
down and no longer available.

The browser opened by the example above will look like this:

Index of Modules

Built-In Modules
_abc	 _imp	 _stat
_ast	 _io	 _statistics	 builtins
_bisect	 _json	 _string	 cmath
_blake2	 _locale	 _struct	 errno
_codecs	 _lsprof	 _symtable	 faulthandler
_codecs_cn	 _md5	 _thread	 gc
_codecs_hk	 _multibvtecodec	 _tokenize	 itertools
_codecs_iso2022	 _opcode	 _tracemalloc	 marshal
_codecs_jp	 _operator	 _typing	 math
_codecs_kr	 _pickle	 _warnings	 mmap
_codecs_tw	 _random	 _weakref	 msvcrt
_collections	 _shal	 _winapi	 nt
_contextvars	 _sha256	 _xxsubinterpreters	 sys
_csv	 _sha3	 array	 time
_datetime	 _sha512	 atexit	 winreg
_functools	 _signal	 audioop	 xxsubtype
_heapq	 _sre	 binascii	 zlib

	 Modules and Packages	 377

 https://doi.org/10.15215/remix/9781998944088.01

Please note that the above only shows the built-in modules. There is more
about nonbuilt-in modules if you scroll down to read further.

-W <NAME>…
Used to write out the HTML documentation for a module to a file in the current
directory. If the name contains a backslash \, it is treated as a filename; if it
names a directory, documentation is written for all the contents. The following
example generates documentation in HTML for a module called timeit:

(base) PS S:\Dev\learn-python > pydoc -w timeit
wrote timeit.html

As can be seen, using the pydoc -b in command shell can easily access a
server and start to browse documentation for all the available modules and
packages installed on your computer. For example, if we want to learn more
about the timeit module, we can browse or search for timeit within the first
page of the browser window launched by the pydoc -b command, then click
the link to see the details of the documentation.

The remainder of this chapter introduces some Python modules that you
may need to use in the development of different computer applications.

8.4 Module for Generating Random Numbers
In certain computer applications, you often need to generate random numbers.
For example, you need random numbers to automatically generate quizzes. In
computer security, big random numbers play very important roles.

The random module comes with the standard Python distribution library.
It provides functions and class definitions related to generating pseudor-
andom numbers, though they are not good enough to be used for security
purposes. To see what names are defined at the top level of the module, run
the dir(random) statement after importing the module to get a list of the
names, as shown below:

>>> import random
>>> dir(random)
['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF',
'Random', 'SG_MAGICCONST', 'SystemRandom', 'TWOPI', '_
BuiltinMethodType', '_MethodType', '_Sequence', '_Set',
'__all__', '__builtins__', '__cached__', '__doc__',
'__file__', '__loader__', '__name__', '__package__',

	378	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

'__spec__', '_acos', '_bisect', '_ceil', '_cos', '_e',
'_exp', '_inst', '_itertools', '_log', '_os', '_pi',
'_random', '_sha512', '_sin', '_sqrt', '_test', '_
test_generator', '_urandom', '_warn', 'betavariate',
'choice', 'choices', 'expovariate', 'gammavariate',
'gauss', 'getrandbits', 'getstate', 'lognormvariate',
'normalvariate', 'paretovariate', 'randint',
'random', 'randrange', 'sample', 'seed', 'setstate',
'shuffle', 'triangular', 'uniform', 'vonmisesvariate',
'weibullvariate']

In the list, names with leading underscores are often intended to be hid-
den. It’s important to know only what those without leading underscores are
and what they do. You can use the help statement to find out what randint is,
for example:

>>> help(random.randint)

Running help on method randint in the random module outputs the
following:

randint(a, b) method of random.Random instance

This returns a random integer within the range [a, b], including both end
points.

As you can see with the help statement, all these names defined in the ran-
dom module are functions and methods. These functions and methods can be
categorized as bookkeeping methods, random integer generating methods, ran-
dom real/float number generating methods, random item generating methods,
or items from a sequence. The module also provides alternate random number
generators such as the one provided by the operating system.

In the following, you will run through the functions provided in the ran-
dom module. These functions are categorized into four groups: bookkeeping
functions, functions randomly generating integers, functions randomly gen-
erating float/real numbers, and functions randomly selecting items from a
sequence.

	 Modules and Packages	 379

 https://doi.org/10.15215/remix/9781998944088.01

Functions for Bookkeeping
SEED(A = NONE, VERSION = 2)
This initializes the random number generator by seeding the generator. If there
is no argument for a, the current time is used to seed the generator. Version 2 is
the default version of the algorithm.

>>> import random
>>> random.seed(a = 3)

GETSTATE()
This gets and returns the current internal state of the random number generator.

>>> s1 = random.getstate()

SETSTATE(STATE)
This sets the internal state of the random number generator to state.

>>> random.setstate(s1)

GETRANDBITS(K)
This generates and returns an integer with k random bits.

>>> bin(random.getrandbits(9))
'0b100101111'
>>> bin(random.getrandbits(9)) # will get a different
number
'0b10111101'

Functions for Generating Random Integers
RANDRANGE(START, STOP=NONE, STEP = 1)
This generates and returns a random number within the given range.

>>> random.randrange(99)
69
>>> random.randrange(99)

	380	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

RANDINT(A, B)
This generates and returns a random integer within the given range.

>>> random.randint(1, 100)
42
>>> random.randint(1, 100)
85

Functions for Randomly Generating Float Numbers
RANDOM()
This randomly generates and returns a random float number between 0 and
1, including 0 but excluding 1.

>>> random.random()
0.4084252811341471

UNIFORM(A, B)
This randomly generates and returns a float number between a and b.

>>> random.uniform(2, 99)
73.1658416986511
>>> random.uniform(2, 99)
92.92610150048253

TRIANGULAR(LOW = 0.0, HIGH = 1.0, MODE = NONE)
This randomly generates and returns a random float number between low
and high. The third argument for mode parameter can be used to indicate the
preference for the outcome. If it is closer to low, it is more likely to get a ran-
dom float number on the low end, for example. Internally, the default value
for mode is the midpoint between low and high.

>>> random.triangular(2, 99)
84.02716580051677
>>> random.triangular(2,99,35)
50.303535641546

BETAVARIATE(ALPHA, BETA)
This randomly generates and returns a random float number between 0
and 1 based on the beta distribution of statistics. Parameters alpha and beta

	 Modules and Packages	 381

 https://doi.org/10.15215/remix/9781998944088.01

(both > 0) are used to set the conditions of the distribution, as used in the beta
distribution function.

>>> random.betavariate(2, 99)
0.011368344795580798
>>> random.betavariate(2, 99)
0.019428131869773747

EXPOVARIATE(LAMBDA)
This randomly generates and returns a random float number between 0 and
1, or between 0 and −1 if lambda is negative, based on the exponential distri-
bution of statistics.

>>> random.expovariate(2)
0.379317249922913

GAMMAVARIATE(ALPHA, BETA)
This randomly generates and returns a random float number between 0 and 1
based on the gamma distribution of statistics. Parameters alpha and beta (both
> 0) are used to set the conditions of the distribution, as used in the gamma
distribution function.

>>> random.gammavariate(2,99)
43.06391063895096

GAUSS(MU, SIGMA)
This randomly generates and returns a random float number between 0 and 1
based on the Gaussian distribution of probability theories. Parameter mu is the
mean, and sigma is the standard deviation, as used in the distribution function.

>>> random.gauss(2, 99)
38.05513497609059

LOGNORMVARIATE(MU, SIGMA)
This generates and returns a random float number between 0 and 1 based on a
log-normal distribution of probability theories. Parameter mu is the mean, and
sigma is the standard deviation, as used in the log normal distribution function.

>>> random.lognormvariate(2, 99)
9.252497191266324e-41

	382	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

NORMALVARIATE(MU, SIGMA)
This generates and returns a random float number between 0 and 1 based on
the normal distribution of probability theories. Parameter mu is the mean, and
sigma is the standard deviation, as used in the normal distribution function.

>>> random.normalvariate(2, 99)
155.45854862650918

VONMISESVARIATE(MU, KAPPA)
This generates and returns a random float number between 0 and 1 based
on the von Mises distribution of directional statistics. Parameter mu is the
mean angle, expressed in radians between 0 and 2 * pi, whereas kappa is
the concentration.

>>> random.vonmisesvariate(2, 99)
1.9289474404869416

PARETOVARIATE(ALPHA)
This generates and returns a random float number between 0 and 1 based
on the Pareto distribution of probability theories. Parameter alpha is used to
indicate the shape.

>>> random.paretovariate(2)
1.7794461337233882

WEIBULLVARIATE(ALPHA,BETA)
This generates and returns a random float number between 0 and 1 based on
the Weibull distribution of statistics. Parameter alpha is the scale, and beta
is the shape, as in its mathematical function.

>>> random.weibullvariate(2, 99)
2.0164248554211417

Functions for Randomly Selected Item(s) from Sequences
Functions in this group are often used in statistics.

CHOICE(POPULATION)
This generates and returns a random element from the given population (in
the form of a Python sequence).

	 Modules and Packages	 383

 https://doi.org/10.15215/remix/9781998944088.01

>>> random.choice(range(1, 1000))
536
>>> random.choice(list("The message will look like this
but"))
'l'
>>> random.choice(list("The message will look like this
but"))
't'

CHOICES(POPULATION, WEIGHTS = NONE, *, CUM_WEIGHTS =
NONE, K = 1)
This generates and returns a list with k randomly selected items from the given
sequence, with weights or cumulative weights considered if they are given. An
optional argument for weights should be a list of integers specifying how likely
the corresponding items are to be selected. The number of integers in weights
must match the number of items in the population; optional argument for
cum_weights is also a list. A value in the list is shown as cumulation of weights so
far. Argument weights and cum_weights are just different ways of representing
the same preferences.

>>> random.choices(range(1, 1000), k = 5)
[456, 79, 57, 51, 110]
>>> random.choices(range(1, 10), weights = [2, 3, 5, 8,
2, 3, 3, 2, 10], k = 5)
[9, 4, 6, 3, 8]

This function can be very useful when you want to generate a quiz by ran-
domly selecting questions from a question bank. Assume the question bank is
called q_bank, and each quiz will have 10 questions. The random choices can
be easily made by calling the function as follows:

>>> random.choices(q_bank, k = 10)

SHUFFLE(POPULATION, RANDOM = NONE)
This takes a sequence, shuffles the members, then returns the sequence with
the members randomly shuffled.

>>> l = list(range(10))
>>> l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

	384	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> random.shuffle(l)
>>> l
[2, 9, 0, 4, 1, 6, 5, 3, 7, 8]

SAMPLE(POPULATION, K)
This generates and returns a sample for a given population. It seems similar
to choices(), but internally the algorithm should check whether the choices
would make a sample of the population according to some sampling criteria
in statistics.

>>> random.sample(range(1, 1000), k = 5)
[251, 337, 822, 499, 853]

In the following programming problem in Table 8-1, you will study how well
the random generator works. You will randomly generate 1000 integer numbers
within the range of 0 to 999 and visualize the randomness of these numbers.

Table 8-1: Case study: Random number generator quality

The problem This case study will find out how good the random number
generator is.

The analysis
and design

Random numbers generated by computers are not completely
random. Rather, they are pseudorandom sequences. To study
how good a generator is, you need to see if the numbers
generated by the generator look random. We will show that in a
two-dimensional chart to visualize it.

The code import random
import matplotlib.pyplot as pyp
data = [random.randint(0,100) for i in
range(1000)]

pyp.plot(list(range(1000)), data)
pyp.xlabel('Run #')
pyp.ylabel('Random Integer')
pyp.title('Visualization of Randomness')
pyp.show()

The result Figure 8-1 below is plotted by the program. It seems the random
generator works very well.

	 Modules and Packages	 385

 https://doi.org/10.15215/remix/9781998944088.01

8.5 Module for Mathematical Operations
The math module also comes with the standard Python distribution library
and provides many useful mathematical functions that you may need. To learn
what the module has for you, type the following statement in a Jupyter Note-
book cell and click run or press Shift+Enter at the same time. You will see
the documentation for all these functions as well as the constants defined
in the math module.

To learn what is defined in the module, run the dir statement on math after
import, as we did before with the random module:

>>> import math
>>> dir(math)
['__doc__', '__loader__', '__name__', '__package__',
'__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan',
'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh',
'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs',
'factorial', 'floor', 'fmod', 'frexp', 'fsum',
'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite',
'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10',

0 200 400 600 800 1000

Run #

0

20

40

60

80

100
Ra

nd
om

 In
te

ge
r

Visualization of Randomness

Figure 8-1: Visualization of randomness

	386	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians',

'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau',

'trunc']

Then run help on a particular name to find out what that name, such as
ceil, does:

>>> help(math.ceil)

Running help on the built-in function ceil in the math module outputs the
following:

ceil(x, /)
 Return the ceiling of x as an Integral.

This returns the smallest integer >= x.
In the following, we run through the functions available in the math module.

ACOS(X)
This calculates and returns the arc cosine (measured in radians) of x, where
0 <= x < = 1.

>>> import math

>>> math.acos(0.5)

1.0471975511965979

ACOSH(X)
This calculates and returns the inverse hyperbolic cosine of x. (Google “hyper-
bolic functions” to learn more.)

>>> math.acosh(1000)

7.600902209541989

ASIN(X)
This calculates and returns the arc sine (measured in radians) of x.

>>> math.asin(0.5)

0.5235987755982989

	 Modules and Packages	 387

 https://doi.org/10.15215/remix/9781998944088.01

MATH.ASINH(X)
This calculates and returns the inverse hyperbolic sine of x.

>>> math.asinh(5)
2.3124383412727525

MATH.ATAN(X)
This calculates and returns the arc tangent (measured in radians) of x.

>>> math.atan(0.5)
0.4636476090008061

MATH.ATAN2(Y, X)
This calculates and returns the arc tangent (measured in radians) of y/x. Unlike
atan(y/x), the signs of both x and y are considered.

>>> math.atan2(3, -5)
2.601173153319209

MATH.ATANH(X)
This calculates and returns the inverse hyperbolic tangent of x.

>>> math.atanh(0.5)
0.5493061443340549

MATH.CEIL(X)
This calculates and returns the ceiling of x as an Integral—the smallest integer
>= x.

>>> math.ceil(0.5)
1

MATH.COPYSIGN(X, Y)
This calculates and returns a float with the magnitude (absolute value) of x
but the sign of y. On platforms that support signed zeros, copysign(1.0, −0.0)
returns −1.0.

>>> math.copysign(0.5, -1.2)
-0.5

	388	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

MATH.COS(X)
This calculates and returns the cosine of x (measured in radians).

>>> math.cos(0.5)
0.8775825618903728

MATH.COSH(X)
This calculates and returns the hyperbolic cosine of x.

>>> math.cosh(50)
2.592352764293536e+21

MATH.DEGREES(X)
This converts angle x from radians to degrees and returns the result.

>>> math.degrees(0.5)
28.64788975654116

MATH.ERF(X)
This is the error function at x, as defined in statistics.

>>> math.erf(0.5)
0.5204998778130465

MATH.ERFC(X)
This is the complementary error function at x, so that erf(x) + erfc(x) = 1.

>>> math.erfc(0.5)
0.4795001221869534

MATH.EXP(X)
This calculates and returns e raised to the power of x. This is the same as
math.e**x, or math.pow(math.e, x).

>>> math.exp(5)
148.4131591025766

MATH.EXPM1(X)
This calculates and returns exp(x)−1. This function avoids the loss of precision
involved in the direct evaluation of exp(x)−1 for small x.

	 Modules and Packages	 389

 https://doi.org/10.15215/remix/9781998944088.01

>>> math.expm1(5)
147.4131591025766

MATH.FABS(X)
This calculates and returns the absolute value of the float x.

>>> math.fabs(-23.6)
23.6

MATH.FACTORIAL(X)
This calculates and returns x!. It will raise a ValueError if x is negative or
nonintegral.

>>> math.factorial(23)
25852016738884976640000

MATH.FLOOR(X)
This calculates and returns the floor of x as an integer—that is, the return value
is the largest integer < = x.

>>> math.floor(2.3)
2

MATH.FMOD(X, Y)
This calculates and returns fmod(x, y), according to platform C. x % y may differ.

>>> math.fmod(2.3, 1.5)
0.7999999999999998

MATH.FREXP(X)
This calculates the mantissa and exponent of x and returns a pair (m, e). m is
a float, and e is an integer, such that x = m * 2** e. If x is 0, m and e are both 0.
Otherwise, 0.5 <= abs(m) < 1.0.

>>> math.frexp(2.3)
(0.575, 2)

MATH.FSUM(SEQ)
This calculates and returns an accurate floating-point sum of values in the
iterable seq. It assumes IEEE-754 floating-point arithmetic. It is a lossless sum.

	390	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> math.fsum([2.3, 2, 53454, 6.71232])
53465.01232

MATH.GAMMA(X)
This returns the value of the gamma function at x.

>>> math.gamma(2.3)
1.16671190519816

MATH.GCD(X, Y)
This calculates and returns the greatest common divisor of x and y.

>>> math.gcd(222, 780)
6

MATH.HYPOT(X, Y)
This calculates and returns the Euclidean distance—that is, the value of sqrt(x
* x + y * y).

>>> math.hypot(3, 4)
5.0

MATH.ISCLOSE(A, B, *, REL_TOL = 1E-09, ABS_TOL = 0.0)
Determine whether two floating-point numbers are close in value. The rel_tol
argument sets the maximum difference for being considered “close” relative
to the magnitude of the input values, whereas abs_tol argument sets the max-
imum difference for being considered “close” regardless of the magnitude of
the input values. Return True if a is close in value to b, and False otherwise.
For the values to be considered close, the difference between them must be
smaller than at least one of the tolerances set by rel_tol and abs_tol. -inf, inf,
and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to
anything, even itself, and inf and -inf are only close to themselves.

>>> math.isclose(3.5, 3.51)
False
>>> math.isclose(3.5, 3.500000001)
True
>>> math.isclose(3.5, 3.50000001)
False

	 Modules and Packages	 391

 https://doi.org/10.15215/remix/9781998944088.01

MATH.ISFINITE(X)
This returns True if x is neither an infinity nor a NaN, and False otherwise.

>>> math.isfinite(3.5)
True

MATH.ISINF(X)
This returns True if x is a positive or negative infinity, and False otherwise.

>>> math.isinf(3.5)
False

MATH.ISNAN(X)
This returns True if x is a NaN (not a number), and False otherwise.

>>> math.isnan(3.5)
False

MATH.ISQRT(N)
This returns the integer square root of the nonnegative integer n, which is the
floor of the exact square root of n, or equivalently the greatest integer is such
that a2 ≤ n. This function is only available in Python 3.8.0 or later.

>>> math.isqrt(43)
6

MATH.LDEXP(X, I)
This calculates and returns x* (2 ** i). The function is essentially the inverse
of frexp().

>>> math.ldexp(3, 12)
12288.0

MATH.LGAMMA(X)
This calculates and returns the natural logarithm of the absolute value of the
gamma function at x.

>>> math.lgamma(3)
0.693147180559945

	392	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

MATH.LOG(X, BASE = MATH.E)
This calculates and returns the logarithm of x to the given base. If the base is
not specified, it returns the natural logarithm (base-e) of x.

>>> math.log(3)
1.0986122886681098
>>> math.log(3,3)
1.0
>>> math.log(3,5)
0.6826061944859854

MATH.LOG10(X)
This calculates and returns the base-10 logarithm of x.

>>> math.log10(3)
0.47712125471966244

MATH.LOG1P(X)
This calculates and returns the natural logarithm of 1 + x (base-e). The result
is computed in a way that is accurate for x near 0.

>>> math.log1p(3)
1.3862943611198906

MATH.LOG2(X)
This calculates and returns the base-2 logarithm of x.

>>> math.log2(3)
1.584962500721156

MATH.MODF(X)
This calculates and returns the fractional and integer parts of x. Both results
carry the sign of x and are floats.

>>> math.modf(32.6)
(0.6000000000000014, 32.0)

MATH.POW(X, Y)
This calculates and returns x ** y (x to the power of y).

	 Modules and Packages	 393

 https://doi.org/10.15215/remix/9781998944088.01

>>> math.pow(32,6)
1073741824.0

MATH.RADIANS(X)
This converts angle x from degrees to radians and returns the result.

>>> math.radians(32)
0.5585053606381855

MATH.REMAINDER(X, Y)
This calculates and returns the difference between x and the closest integer
multiple of y, which is x − n * y, where n * y is the closest integer multiple of y.
In the case where x is exactly halfway between two multiples of y, the nearest
even value of n is used. The result is always exact.

>>> math.remainder(32,7)
-3.0
>>> math.remainder(30,7)
2.0
>>> math.remainder(31,7)
3.0

MATH.SIN(X)
This calculates and returns the sine of x (measured in radians).

>>> math.sin(0.31)
0.3050586364434435

MATH.SINH(X)
This calculates and returns the hyperbolic sine of x.

>>> math.sinh(31)
14524424832623.713

MATH.SQRT(X)
This calculates and returns the square root of x.

>>> math.sqrt(31)
5.5677643628300215

	394	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

MATH.TAN(X)
This calculates and returns the tangent of x (measured in radians).

>>> math.tan(31)
-0.441695568020698

MATH.TANH(X)
This calculates and returns the hyperbolic tangent of x.

>>> math.tanh(31)
1.0

MATH.TRUNC(X)
This truncates the float number x to the nearest Integral toward 0. It uses the
__trunc__ magic method.

>>> math.trunc(3.561)
3

In addition, the module also defines the following constants used in math:

math.e = 2.718281828459045
math.inf = inf
math.nan = nan
math.pi = 3.141592653589793
math.tau = 6.283185307179586

Note that to use these functions and constants, you will have to use the dot nota-
tion shown in the sample code above to indicate that it is from the math module.

If you only need to use one or some functions from the math module, you
may import the particular functions from it to save computer memory and
use the functions without using the dot notation. The following is an example,
generating a table of square roots for numbers from 1 to 100, in which only the
sqrt function has been imported from the math module:

In []: from math import sqrt
for i in range(100):
 print('{:<5.3}'.format(sqrt(i + 1)), end = ' ')
 if (i + 1) % 10 == 0:
 print('\n')

	 Modules and Packages	 395

 https://doi.org/10.15215/remix/9781998944088.01

Out []: 1.0 1.41 1.73 2.0 2.24 2.45 2.65 2.83 3.0 3.16
3.32 3.46 3.61 3.74 3.87 4.0 4.12 4.24 4.36 4.47
4.58 4.69 4.8 4.9 5.0 5.1 5.2 5.29 5.39 5.48
5.57 5.66 5.74 5.83 5.92 6.0 6.08 6.16 6.24 6.32
6.4 6.48 6.56 6.63 6.71 6.78 6.86 6.93 7.0 7.07
7.14 7.21 7.28 7.35 7.42 7.48 7.55 7.62 7.68 7.75
7.81 7.87 7.94 8.0 8.06 8.12 8.19 8.25 8.31 8.37
8.43 8.49 8.54 8.6 8.66 8.72 8.77 8.83 8.89 8.94
9.0 9.06 9.11 9.17 9.22 9.27 9.33 9.38 9.43 9.49
9.54 9.59 9.64 9.7 9.75 9.8 9.85 9.9 9.95 10.0

8.6 Modules for Time, Date, and Calendar
Date and time are often used and referred to in many applications. You may
also want to include a calendar in an application. Python has modules in its
standard distribution that allow you to import these modules right away.

The Datetime Module
The first of these modules is the datetime module that comes in the standard
Python library. To use the module, simply import it as shown below:

>>> import datetime

To find out what is defined and available in the module, run the following
dir statement:

>>> dir(datetime)

['MAXYEAR', 'MINYEAR', '__builtins__', '__cached__',

'__doc__', '__file__', '__loader__', '__name__',

'__package__', '__spec__', 'date', 'datetime', 'datetime_

CAPI', 'sys', 'time', 'timedelta', 'timezone', 'tzinfo']

To further find out what each name is defined for, use the help statement
on each. As usual, we will go through some of the important names defined in
the module, with examples.

DATETIME.DATE(<YEAR, MONTH, DAY>)
This is the constructor of the date class defined in the datetime module and
used to construct and return a date object for the day of the month of the year.

	396	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> d1 = datetime.date(2020, 7, 1) # create a date
object
>>> d1.year # get the year attribute of the date object
2020
>>> d1.month # get the month attribute of the date
object
7
>>> d1.day # get the day attribute of the date object
1

A date object has the following methods defined.

DATETIME.DATE.CTIME()
This returns a ctime()-style string.

>>> d1.ctime()
'Wed Jul 1 00:00:00 2020'

DATETIME.DATE.ISOCALENDAR()
This returns a three-tuple containing an ISO year, week number of the year,
and day number of the week. In the datetime module, Monday is 1, Tuesday
is 2,…, Sunday is 7.

>>> d1.isocalendar()
(2020, 27, 3)

DATETIME.DATE.ISOFORMAT()
This returns a date string in ISO 8601 format, YYYY-MM-DD.

>>> d1.isoformat()
'2020-07-01'

DATETIME.DATE.ISOWEEKDAY()
This returns an integer from 1 to 7 as the day of the week represented by the
date.

>>> d1.isoweekday()
3

	 Modules and Packages	 397

 https://doi.org/10.15215/remix/9781998944088.01

DATETIME.DATE.REPLACE(…)
This returns the date with new specified fields.

DATETIME.DATE.STRFTIME(…)
This changes the date format and returns a strftime()-style string.

DATETIME.DATE.TIMETUPLE(…)
This returns a time-tuple that is compatible with time.localtime().

DATETIME.DATE.TOORDINAL(…)
This returns a proleptic Gregorian ordinal. January 1 of year 1 is day 1.

DATETIME.DATE.WEEKDAY(…)
This returns the day of the week represented by the date: Monday is 0…Sunday
is 6.

The following are all class methods of the date class defined in the datetime
module, which means they can be called from the class name date.

DATETIME.DATE.FROMISOFORMAT(<ISO_DATE_FORMAT
STRING>)
This will construct a date object from an ISO date format string, which is
YYYY-MM-DD.

>>> d2 = datetime.date.fromisoformat('2020-07-01')
>>> d2.ctime()
'Wed Jul 1 00:00:00 2020'

DATETIME.DATE.FROMORDINAL(<DAYS IN RELATION TO A
PROLEPTIC GREGORIAN ORDINAL>)
This constructs a date object from an integer >= 1 representing the days after
the proleptic Gregorian ordinal, which is January 1 of year 1, with ordinal 1.

>>> from datetime import date # after this, you don't
need to have datetime in the reference to date class
>>> d3 = date.fromordinal(1235)
>>> d3.ctime()
'Wed May 19 00:00:00 0004'

	398	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

DATETIME.DATE.FROMTIMESTAMP(<TIMESTAMP>)
This constructs a local date object from a POSIX timestamp (a big positive float
number), such as returned time.time(), which will be explained shortly.

>>> import time
>>> time.time() # it returns a timestamp for now
1593745988.6121984
>>> date.fromtimestamp(1593745988.6121984)
datetime.date(2020, 7, 2)

DATETIME.DATE.TODAY()
This returns a date object of for the current date.

>>> from datetime import date
>>> print(date.today())
2020-07-05

The datetime module also has a class called time. The following is the con-
structor of the time class.

DATETIME.TIME(HOUR = 0, MINUTE = 0, SECOND = 0,
MICROSECOND = 0, TZINFO = NONE)
This returns a time object. All arguments with 0 as their default value must be in
their reasonable range or the program will raise a value error. If no argument is
provided, they are all 0, except tzinfo (for time zone information, which needs
to be an instance of tzinfo class if given). The default value of tzinfo is None.

>>> from datetime import time
>>> print(time(hour = 23))
23:00:00
>>> t1 = time(11, 25, 5)
time is 11:25:05
>>> print(f'time is {t1}')
>>> print(f'hour is {t1.hour}') # this is to get the
hour of a time
hour is 11
>>> print(f'minute is {t1.minute}') # this is to get
the minute
minute is 25

	 Modules and Packages	 399

 https://doi.org/10.15215/remix/9781998944088.01

>>> print(f'second is {t1.second}') # this is to get
second
second is 5

The following is the only class method of the date class in the datetime module.

TIME.FROMISOFORMAT(…)
This class method will construct a date object from a string passed in the
parameter.

>> import datetime
>> canada_day_str = "2022-07-01"
>> canada_day_object = datetime.date.
fromisoformat(canada_day_str)
>> print(f"{canada_day_object} as
{type(canada_day_object)}")
2022-07-01 as <class 'datetime.date'>

The datetime module also has a class called datetime, which is a combination
of date and time. The following is the constructor of the datetime objects.

DATETIME.DATETIME(YEAR, MONTH, DAY, HOUR = 0, MINUTE = 0,
SECOND = 0, MICROSECOND = 0, TZINFO = NONE, *, FOLD = 0)
This returns a datetime object for the date and time given in the arguments.
If no time is given, the default is the beginning of the day of the month
of the year.

The following are the methods defined in the datetime class.

DATETIME.CTIME(…)
This returns a ctime()-style time string.

>>> from datetime import datetime
>>> dt1 = datetime.now()
>>> print(f'now it is {dt1.ctime()}')
now it is Mon Jul 6 14:07:01 2020

	400	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

DATETIME.ASTIMEZONE(TZ)
This converts to the local time with the time zone set to <tz> or local.

>>> from datetime import datetime
>>> dt1 = datetime.now()
>>> print(dt1)
2020-07-06 14:07:01.046202
>>> print(dt1.astimezone())
2020-07-06 14:07:01.046202-06:00
>>> import pytz
>>> asiachina=pytz.timezone('Asia/Chongqing')
>>> print(dt1)
2020-07-06 14:07:01.046202
>>> print(dt1.astimezone(asiachina)) # print time in
China
2020-07-07 04:07:01.046202+08:00

A complete list of time zone names can be found at https://​en​.wikipedia​
.org/​wiki/​List​_of​_tz​_database​_time​_zones.

DATETIME.DATE()
This returns a date object of the date portion of the datetime object with the
same year, month, and day.

>>> from datetime import datetime
>>> tm1 = datetime.now()
>>> print(f'now is {dtm1.ctime()}')
now is Tue Jul 7 08:50:25 2020
>>> dt1 = dtm1.date()
>>> print(f'the date is {dt1}')
the date is 2020-07-07

DATETIME.DST()
This returns the DST (daylight saving time) status of a given tzinfo.

>>> print(f'the date is {dt1}')
the date is 2020-07-07
>>> print(f'the dst status is {dtm1.dst()}')
None

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

	 Modules and Packages	 401

 https://doi.org/10.15215/remix/9781998944088.01

DATETIME.ISOFORMAT(SEP = 'T')
This returns a date and time string in ISO 8601 format, YYYY-MM-
DDT[HH[:MM[:SS[.mmm[uuu]]]]][+HH:MM]. sep is a single character used
to separate the year from the time, and defaults to T. timespec specifies what
components of the time to include. The allowed values include the following:
auto, hours, minutes, seconds, milliseconds, and microseconds.

>>> from datetime import datetime
>>> dt1 = datetime.now()
>>> print(dt1.isoformat(sep='@'))
2023-03-13@18:51:29.324588

DATETIME.REPLACE(<FIELD>=<VALUE>)
This returns a datetime object with the named field(s) replaced.

>>> dt2 = dt1.replace(year=2025)
>>> print(f'new datetime becomes {dt}')
new datetime becomes 2021-07-07 09:00:37.138388

DATETIME.TIME()
This returns a time object for the time portion of the datetime object but with
tzinfo = None.

>>> dt1 = dtm1.date()
>>> tm1=dtm1.time()
>>> print(f'the date is {dt1}')
the date is 2020-07-07
>>> print(f'the time is {tm1}')
the time is 09:17:06.055195

DATETIME.TIMESTAMP()
This returns POSIX timestamp as a float number.

>>> tmstamp = dtm1.timestamp()
>>> print(f'The timestamp of {dtm1} is {tmstamp}')

DATETIME.TIMETUPLE()
This returns a time-tuple compatible with time.localtime().

>>> tmtuple = dtm1.timetuple()
>>> print(f'The time-tuple of {dtm1} is {tmtuple}')

	402	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

DATETIME.TIMETZ()
This returns a time object with the same time and tzinfo. Note the difference
between timetz() and time().

>>> tminfo = dtm1.timetz()
>>> print(f'The time of {dtm1} is {tminfo}')
The timezone info of 2020-07-07 09:24:39.517213 is
09:24:39.517213

DATETIME.TZNAME(…)
This returns the tzname of tzinfo.

>>> import pytz
>>> tz = pytz.timezone('Canada/Mountain')
>>> dtm = datetime.fromisoformat('2020-07-05T21:05:33')
>>> ndtm = dtm.replace(tzinfo = tz)
>>> tmzname = ndtm.tzname()
>>> print(f'The timezone for {ndtm} is {tmzname}')
The timezone for 2020-07-05 21:05:33-07:34 is LMT

DATETIME.UTCOFFSET(…)
This returns utcoffset of tzinfo.

>>> tmzutcoffset = ndtm.utcoffset()
>>> print(f'The timezone utc offset of {ndtm} is
{tmzutcoffset}')
The timezone utc offset of 2020-07-05 21:05:33-07:34 is
-1 day, 16:26:00

The following are some class methods defined in the datetime class.

DATETIME.COMBINE(DT, TM)
This combines the date dt and time tm into a datetime object and returns the
datetime object.

>>> dt = datetime.date.today()
>>> tm = datetime.time(20,59,12)
>>> dtm = datetime.datetime.combine(dt, tm)
>>> print(f'date is {dt}, time is {tm}, datetime is {dtm}')

	 Modules and Packages	 403

 https://doi.org/10.15215/remix/9781998944088.01

date is 2020-07-05, time is 20:59:12, datetime is
2020-07-05 20:59:12

DATETIME.FROMISOFORMAT(DTMSTR)
This constructs the datetime object from a date and time string in ISO format
and returns the converted datetimeobject. Remember that the ISO time string
format is YYYY-MM-DDTHH:MM:SS:mmm:uuu.

>>> dtm = datetime.datetime.fromisoformat('2020-07
-05T21:05:33')
>>> print(dtm)
2020-07-05 21:05:33

DATETIME.FROMTIMESTAMP(…)
This constructs a datetime object from a POSIX timestamp.

>>> tmstamp1 = ndtm.timestamp()
>>> print(f'The time stamp of {ndtm} is {tmstamp1}')
The time stamp of 2020-07-05 21:05:33-07:34 is
1594010373.0
>>> redtmobj = datetime.fromtimestamp(tmstamp1)
>>> print(f'It is a different object and the time value
has changed to {redtmobj}')
It is a different object, and the time value has changed
to 2020-07-05 22:39:33.

DATETIME.NOW(TZ = NONE)
This returns a datetime object representing the current time local to tz, which
should be a Timezone object if given. If no tz is specified, the local timezone
is used.

>>> from datetime import datetime # import the datetime
class from the datetime module
>>> dt1 = datetime.now()
>>> print(f'it is {dt1}')
it is 2020-07-05 11:22:48.876825

DATETIME.STRPTIME(<DATE_STRING, FORMAT>)
This returns a datetime object by parsing a date_string, based on a given format.

	404	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> dtstring = "7 July, 2020"
>>> dtobj = datetime.strptime(dtstring, "%d %B, %Y") #
note the date formatting string
>>> print("date object = ", dtobj)

date object = 2020-07-07 00:00:00

DATETIME.TODAY()
This returns a datetime object for today.
>>> dt2 = datetime.today()
>>> print(f'Today is {dt2}')
Today is 11:34:09.228618

DATETIME.UTCFROMTIMESTAMP()
This constructs a naive UTC datetime from a POSIX timestamp.

>>> redtmobj = datetime.utcfromtimestamp(tmstamp1)
>>> print(f'{redtmobj} is a UTC datetime from a POSIX
timestamp {redtmobj}')
2020-07-06 04:39:33 is a UTC datetime from a POSIX
timestamp 1594010373.0

DATETIME.UTCNOW()
This returns a new datetime representing the UTC day and time.

>>> dt2 = datetime.today()
>>> dt3 = datetime.utcnow()
>>> print(f'Today is {dt2}, and the UTC time is {dt3}')
Today is 2020-07-07 11:37:02.862356, and the UTC time is
2020-07-07 17:37:02.862356

Sometimes, you need to deal with time intervals such as how long has passed
since the last time you saw your best friend. That is what the timedelta class is
defined for in the datetime module. The following is the constructor of the class.

DATETIME.TIMEDELTA(DAYS = 0, SECONDS = 0, MICROSECONDS
= 0, MILLISECONDS = 0, MINUTES = 0, HOURS = 0, WEEKS = 0)
This constructs and returns a timedelta object. Note that all arguments are
optional, and all default to 0 if not provided.

	 Modules and Packages	 405

 https://doi.org/10.15215/remix/9781998944088.01

>>> from datetime import timedelta
>>> ndlt = timedelta(days = 31)

TIMEDELTA.TOTAL_SECONDS(…)
This returns the total number of seconds in the duration.

>>> print(f'the total number of seconds in 31 days is
{ndlt.total_seconds()}')
the total number of seconds in 31 days is 2678400.0
>>> ndlt = timedelta(31, 25, hours = -3)
>>> print(f'the total number of seconds in 31 days is
{ndlt.total_seconds()}')
the total number of seconds in 31 days and 25 seconds
minus 3 hours is 2667625.0

The Time Module
The second of these modules is the time module. It comes with the standard
Python distribution, so there is no need for you to install anything in par-
ticular. This module can be imported and used directly within your program
when needed. The following statements get us a list of the names defined in
the module:

>>> import time
>>> dir(time)
['_STRUCT_TM_ITEMS', '__doc__', '__loader__', '__
name__', '__package__', '__spec__', 'altzone',
'asctime', 'clock', 'ctime', 'daylight', 'get_clock_
info', 'gmtime', 'localtime', 'mktime', 'monotonic',
'monotonic_ns', 'perf_counter', 'perf_counter_ns',
'process_time', 'process_time_ns', 'sleep',
'strftime', 'strptime', 'struct_time', 'thread_time',
'thread_time_ns', 'time', 'time_ns', 'timezone',
'tzname']

In the following, we explain the names, including attributes and functions,
available in the time module on a Windows platform. The code samples are all
shown as they would appear in a Python interactive shell. If you wish to see
all functions defined in the time module, please read the documentation at
https://​docs​.python​.org/​3/​library/​time​.html.

https://docs.python.org/3/library/time.html

	406	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

TIME.ALTZONE
This is an attribute that contains the offset of the local DST timezone in seconds
west of UTC, if one is defined. The value is negative if the local DST timezone is
east of UTC (as in Western Europe, including the UK). Only use this if daylight
is nonzero.

>>> import time
>>> print("local time zone is %d " % (time.altzone/3600))
local time zone is 6

TIME.ASCTIME(TUPLETIME)
This accepts a time-tuple and returns a readable 24-character string such as Tue
Dec 11 18:07:14 2008. A time-tuple has nine elements, as returned by gmtime()
or localtime().

>>> import time # you only need to import a module
once, so this is just in case
>>> print("local time is %s " % (time.asctime()))
local time is Tue Nov 12 15:10:50 2019
>>> time.asctime(tuple(time.localtime()))
'Tue Nov 12 15:24:05 2019'

TIME.CLOCK()
This returns a floating-point number for the CPU time or real time since the
start of the process or since the first call to clock(). It is very useful, especially
when measuring the computational cost of a code block.

>>> time.clock()
428446.1717301

TIME.CTIME([SECS])
This returns a time in seconds since the epoch to a string in the local time.
Remember that the argument in [] is optional.

This has the same result as asctime(localtime(secs)), and simply a call of
asctime(), which will use the current local time in seconds.

>>> time.asctime()
'Tue Nov 12 15:24:49 2019'
>>> time.ctime()
'Tue Nov 12 15:24:55 2019'

	 Modules and Packages	 407

 https://doi.org/10.15215/remix/9781998944088.01

TIME.GET_CLOCK_INFO(NAME)
This returns information on the specified clock as a namespace object. Sup-
ported clock names and the corresponding functions to read their value are
the following: monotonic, perf_counter, process_time, thread_time, and time.

>>> time.get_clock_info('monotonic')
namespace(adjustable = False,
implementation='GetTickCount64()', monotonic=True,
resolution = 0.015625)
>>> time.get_clock_info('time')
namespace(adjustable = True, implementation =
'GetSystemTimeAsFileTime()', monotonic=False,
resolution=0.015625)

TIME.GMTIME([SECS])
This accepts an instant expressed in seconds since the epoch and returns
a time-tuple t with the UTC time. Note: t.tm_isdst is always 0.

>>> time.gmtime()
time.struct_time(tm_year = 2019, tm_mon = 11, tm_mday =
12, tm_hour = 22, tm_min = 21, tm_sec = 31, tm_wday = 1,
tm_yday = 316, tm_isdst = 0)
>>> tuple(time.gmtime())
(2019, 11, 12, 22, 22, 2, 1, 316, 0)

TIME.LOCALTIME([SECS])
This accepts an instant expressed in seconds since the epoch and returns
a time-tuple t with the local time (t.tm_isdst is 0 or 1, depending on whether
DST applies to instant secs by local rules).

>>> time.localtime()
time.struct_time(tm_year = 2019, tm_mon = 11, tm_mday =
12, tm_hour = 15, tm_min = 19, tm_sec = 0, tm_wday = 1,
tm_yday = 316, tm_isdst = 0)
>>> tuple(time.localtime())
(2019, 11, 12, 15, 22, 32, 1, 316, 0)

TIME.MKTIME(TUPLETIME)
This accepts a time instant expressed as a time-tuple in the local time and returns
a floating-point value, with the instant expressed in seconds since the epoch.

	408	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> time.mktime((2019, 11, 12, 22, 22, 2, 1, 316, 0))
1573622522.0

TIME.MONOTONIC()
This returns the value of a monotonic clock as a float number, the number
of seconds since the previous call. The clock is not affected by system clock
updates. The reference point of the returned value is undefined, so that only
the difference between the results of consecutive calls is valid.

>>> time.monotonic()
1557979.093

TIME.MONOTONIC_NS()
This is similar to monotonic() but returns time as nanoseconds.

>>> time.monotonic_ns()
1557954406000000

TIME.PERF_COUNTER()
This returns the value of a performance counter as a float number since the
previous call. A performance counter is a clock with the highest available
resolution to measure a short duration. It includes time elapsed during
sleep and is system-wide. The reference point of the returned value is
undefined, so that only the difference between the results of consecutive calls
is valid.

>>> time.perf_counter()
429437.6389873

TIME.PERF_COUNTER_NS()
This is similar to perf_counter() but returns time as nanoseconds.

>>> time.perf_counter_ns()
429556266018100

TIME.PROCESS_TIME()
This returns the value (in fractional seconds) of the sum of the system and the
user CPU time of the current process. It does not include time elapsed during
sleep. It is process-wide by definition. The reference point of the returned value

	 Modules and Packages	 409

 https://doi.org/10.15215/remix/9781998944088.01

is undefined so that only the difference between the results of consecutive
calls is valid.

>>> time.process_time()
6.71875

TIME.PROCESS_TIME_NS()
This is similar to process_time() but returns time as nanoseconds.

>>> time.process_time_ns()
6687500000

TIME.SLEEP(SECS)
This suspends the calling thread for secs (seconds). It can be used to delay
programs.

>>> time.sleep(6) # sleep 6 seconds

TIME.STRFTIME(FMT[,TUPLETIME])
This accepts an instant expressed as a time-tuple in the local time and returns
a string representing the instant as specified by string fmt.

>>> t = (2019, 11, 17, 17, 3, 38, 1, 48, 0)
>>> t = time.mktime(t)
>>> print(time.strftime("%b %d %Y %H:%M:%S", time.
gmtime(t)))
Nov 18 2019 00:03:38

TIME.STRPTIME(STRINGTIME[, FMT])
This parses str according to format string fmt and returns the instant in
time-tuple format.

>>> time.strptime('Tue Nov 12 15:24:05 2019','%a %b %d
%H:%M:%S %Y')
time.struct_time(tm_year = 2019, tm_mon = 11, tm_mday =
12, tm_hour = 15, tm_min = 24, tm_sec = 5, tm_wday = 1,
tm_yday = 316, tm_isdst = -1)
>>> tuple(time.strptime('Tue Nov 12 15:24:05 2019','%a %b
%d %H:%M:%S %Y'))
(2019, 11, 12, 15, 24, 5, 1, 316, -1)

	410	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

TIME.TIME()
This returns the current time instant, a floating-point number of seconds
since the epoch.

>>> time.time()
1573607220.4043384
>>> time.asctime(time.localtime(time.time())) # it is
the same as time.asctime()
'Mon Jun 8 13:59:35 2020'
>>> time.asctime()
'Mon Jun 8 13:59:45 2020'

The Calendar Module
If you prefer a simple and more direct module to handle time and date, you
can use the calendar module, as detailed below.

CALENDAR.CALENDAR(YEAR, W = 2, L = 1, C = 6)
This returns a formatted calendar for year—a multiline string formatted into
three columns separated by c spaces. w is the width in characters of each date;
each line has length 21 * w + 18 + 2 * c. l is the number of lines for each week.

>>> import calendar as cl

>>> print(cl.calendar(2021))

 2021

 January February March

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 6 7

 4 5 6 7 8 9 10 8 9 10 11 12 13 14 8 9 10 11 12 13 14

11 12 13 14 15 16 17 15 16 17 18 19 20 21 15 16 17 18 19 20 21

18 19 20 21 22 23 24 22 23 24 25 26 27 28 22 23 24 25 26 27 28

25 26 27 28 29 30 31 29 30 31

 April May June

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

 1 2 3 4 1 2 1 2 3 4 5 6

 5 6 7 8 9 10 11 3 4 5 6 7 8 9 7 8 9 10 11 12 13

12 13 14 15 16 17 18 10 11 12 13 14 15 16 14 15 16 17 18 19 20

19 20 21 22 23 24 25 17 18 19 20 21 22 23 21 22 23 24 25 26 27

26 27 28 29 30 24 25 26 27 28 29 30 28 29 30

 31

	 Modules and Packages	 411

 https://doi.org/10.15215/remix/9781998944088.01

 July August September

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

 1 2 3 4 1 1 2 3 4 5

 5 6 7 8 9 10 11 2 3 4 5 6 7 8 6 7 8 9 10 11 12

12 13 14 15 16 17 18 9 10 11 12 13 14 15 13 14 15 16 17 18 19

19 20 21 22 23 24 25 16 17 18 19 20 21 22 20 21 22 23 24 25 26

26 27 28 29 30 31 23 24 25 26 27 28 29 27 28 29 30

 30 31

 October November December

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5

 4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12

11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19

18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26

25 26 27 28 29 30 31 29 30 27 28 29 30 31

CALENDAR.FIRSTWEEKDAY()
This returns an integer that is the current setting for the weekday that starts each
week. By default, when the calendar module is first imported, it is 0 for Monday.

>>> import calendar as cl
>>> cl.firstweekday()
0

CALENDAR.ISLEAP(YEAR)
This tests if a year is a leap year. It returns True if it is; it returns False otherwise.

>>> cl.isleap(2022)
False

CALENDAR.LEAPDAYS(Y1, Y2)
This returns the total number of leap days in the years within range(y1, y2).

>>> cl.leapdays(2020, 2030)
3

CALENDAR.MONTH(YEAR, MONTH, W = 2, L = 1)
This returns a multiline string with a calendar for month of year, one line per
week plus two header lines. w is the width in characters of each date; each line
has length 7 * w + 6. l is the number of lines for each week.

	412	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> print(cl.month(2021, 3))
 March 2021
Mo Tu We Th Fr Sa Su
 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

CALENDAR.MONTHCALENDAR(YEAR, MONTH)
This returns a list of sublists of integers. Each sublist denotes a week starting
from Monday. Days outside month of year are set to 0; days within the month
are set to their day-of-month, 1 and up. The result as a list of sublists can be
conveniently used in applications. For example, you can easily tell what date
it is for Monday of the third week of a month.

>>> print(cl.monthcalendar(2020, 6))
[[1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14], [15, 16, 17, 18,
19, 20, 21], [22, 23, 24, 25, 26, 27, 28], [29, 30, 0, 0, 0, 0, 0]]

CALENDAR.MONTHRANGE(YEAR, MONTH)
This returns two integers. The first one is the code of the weekday for the first
day of the month in year; the second one is the number of days in the month.
Weekday codes are 0 (Monday) to 6 (Sunday); month numbers are 1 (January)
to 12 (December). This is useful if you want to print a calendar that begins on
a specific day of the week.

>>> print(cl.monthrange(2020, 6))
(0, 30)

CALENDAR.PRCAL(YEAR, W = 2, L = 1, C = 6)
This prints a well-formatted calendar of a given year. It is the same as calendar.
calendar(year, w, l, c). Remember that w is the width of each date in number
of characters and l is the number of lines for each week.

>>> cl.prcal(2020, w = 2, l = 1, c = 6)
 2020
 January February March

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
 1 2 3 4 5 1 2 1
 6 7 8 9 10 11 12 3 4 5 6 7 8 9 2 3 4 5 6 7 8
13 14 15 16 17 18 19 10 11 12 13 14 15 16 9 10 11 12 13 14 15
20 21 22 23 24 25 26 17 18 19 20 21 22 23 16 17 18 19 20 21 22
27 28 29 30 31 24 25 26 27 28 29 23 24 25 26 27 28 29
 30 31

	 Modules and Packages	 413

 https://doi.org/10.15215/remix/9781998944088.01

 April May June

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7

 6 7 8 9 10 11 12 4 5 6 7 8 9 10 8 9 10 11 12 13 14

13 14 15 16 17 18 19 11 12 13 14 15 16 17 15 16 17 18 19 20 21

20 21 22 23 24 25 26 18 19 20 21 22 23 24 22 23 24 25 26 27 28

27 28 29 30 25 26 27 28 29 30 31 29 30

 July August September

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

 1 2 3 4 5 1 2 1 2 3 4 5 6

 6 7 8 9 10 11 12 3 4 5 6 7 8 9 7 8 9 10 11 12 13

13 14 15 16 17 18 19 10 11 12 13 14 15 16 14 15 16 17 18 19 20

20 21 22 23 24 25 26 17 18 19 20 21 22 23 21 22 23 24 25 26 27

27 28 29 30 31 24 25 26 27 28 29 30 28 29 30

 31

 October November December

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

 1 2 3 4 1 1 2 3 4 5 6

 5 6 7 8 9 10 11 2 3 4 5 6 7 8 7 8 9 10 11 12 13

12 13 14 15 16 17 18 9 10 11 12 13 14 15 14 15 16 17 18 19 20

19 20 21 22 23 24 25 16 17 18 19 20 21 22 21 22 23 24 25 26 27

26 27 28 29 30 31 23 24 25 26 27 28 29 28 29 30 31

 30

CALENDAR.PRMONTH(YEAR, MONTH, W = 2, L = 1)
This prints a well-formatted calendar month, the same as the one created by
calendar.month(year, month, w, l).

>>> cl.prmonth(2020, 6, w = 2, l = 1)

 June 2020

 Mo Tu We Th Fr Sa Su

 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

 15 16 17 18 19 20 21

 22 23 24 25 26 27 28

 29 30

	414	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

CALENDAR.SETFIRSTWEEKDAY(WEEKDAY)
This sets the first day of each week. Weekday codes are 0 (Monday by default)
to 6 (Sunday by default), so if you change this, you will see the days in the
calendar shift.

>>> cl.setfirstweekday(6) # set to start from Sunday

>>> cl.prmonth(2020, 6, w = 2, l = 1)

 June 2020

 Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

 14 15 16 17 18 19 20

 21 22 23 24 25 26 27

 28 29 30

CALENDAR.TIMEGM(TUPLETIME)
This is the inverse of time.gmtime. It accepts a time instant in time-tuple form and
returns the same instant as a floating-point number of seconds since the epoch.

>>> cl.timegm((2020, 6, 19, 11, 35, 56))

1592566556

CALENDAR.WEEKDAY(YEAR, MONTH, DAY)
This returns the weekday code for the given date. Weekday codes are 0 (Monday)
to 6 (Sunday); month numbers are 1 (January) to 12 (December).

>>> import calendar as cl

>>> cl.weekday(2020, 6, 19) # it is a Friday

4

Our last example in Jupyter Lab is to display a calendar for March of 1961.

import calendar

cld = calendar.month(1961, 3)

print(cld)

 March 1961

 Mo Tu We Th Fr Sa Su

 1 2 3 4 5

 6 7 8 9 10 11 12

 13 14 15 16 17 18 19

 20 21 22 23 24 25 26

 27 28 29 30 31

	 Modules and Packages	 415

 https://doi.org/10.15215/remix/9781998944088.01

With the calendar module, you will be able to produce a calendar of any
year you want.

8.7 Modules for Data Representation and Exchange
JavaScript Object Notation (JSON) is a lightweight data interchange format widely
used today. JSON can be used to represent different types of data, though the
most used are objects or associate arrays made of key-value pairs. When used for
data interchanges between applications, JSON data are represented in a string
so that they can be stored, transmitted, and parsed by different applications.

Python has a built-in module called json to handle JSON data. The following
two statements will get us a list of the few names defined in the json module:

>>> import json
>>> dir(json)
['JSONDecodeError', 'JSONDecoder', 'JSONEncoder', '__all__',
'__author__', '__builtins__', '__cached__', '__doc__',
'__file__', '__loader__', '__name__', '__package__',
'__path__', '__spec__', '__version__', '_default_decoder',
'_default_encoder', 'codecs', 'decoder', 'detect_encoding',
'dump', 'dumps', 'encoder', 'load', 'loads', 'scanner']

In the following, we explain two pairs of important functions provided in
the json module. The first pair of functions is used to convert JSON data to
Python data, which is called deserialization or decoding. The other is used
to convert Python data to JSON data, which is called serialization.

JSON.LOADS(S, *, ENCODING=NONE, CLS=NONE, OBJECT_
HOOK=NONE, PARSE_FLOAT=NONE, PARSE_INT=NONE,
PARSE_CONSTANT=NONE, OBJECT_PAIRS_HOOK=NONE, **KW)
This deserializes json data in s, which can be a str, byte, or bytearray instance
containing a JSON document and returns a Python object of s. Or, in plainer
terms, it converts a string of JSON data into a Python object and returns the
converted Python object.

>>> import json
>>> sj = '{"firstname": "Jone", "lastname": "Doe"}'
>>> pdict = json.loads(sj)
>>> print(pdict)

{'firstname': 'Jone', 'lastname': 'Doe'}

	416	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

JSON.LOAD(FP, *, CLS = NONE, OBJECT_HOOK = NONE, PARSE_
FLOAT=NONE, PARSE_INT = NONE, PARSE_CONSTANT = NONE,
OBJECT_PAIRS_HOOK = NONE, **KW)
This deserializes data in a file object or file-like object, such as a socket, referred
to as fp that contains a JSON document, making it a Python object. Note the
difference between loads and load function: loads convert JSON data in a string,
whereas load converts JSON data in a file.

>>> import json
>>> from io import StringIO
>>> sio = StringIO('{"firstname": "Jone", "lastname":
"Doe"}')
>>> json.load(sio)
{'firstname': 'Jone', 'lastname': 'Doe'}

The next pair of functions are used to convert Python objects into JSON data.
This process is called serialization or encoding.

JSON.DUMPS(OBJ, *, SKIPKEYS=FALSE, ENSURE_ASCII=TRUE,
CHECK_CIRCULAR=TRUE, ALLOW_NAN = TRUE, CLS = NONE,
INDENT = NONE, SEPARATORS = NONE, DEFAULT = NONE, SORT_
KEYS=FALSE, **KW)
This serializes a Python object obj and returns a JSON-formatted string of the
object.

>>> print(pdict)
{'firstname': 'Jone', 'lastname': 'Doe'}
>>> js = json.dumps(pdict)
>>> print(js) # please note the double quotation marks
used in JSON-formatted data
{"firstname": "Jone", "lastname": "Doe"}

JSON.DUMP(OBJ, FP, *, SKIPKEYS = FALSE, ENSURE_ASCII =
TRUE, CHECK_CIRCULAR = TRUE, ALLOW_NAN = TRUE, CLS =
NONE, INDENT = NONE, SEPARATORS = NONE, DEFAULT = NONE,
SORT_KEYS = FALSE, **KW)
This serializes the Python object obj and writes it as a JSON-formatted stream
to a writable file or file-like object, such as a socket, referred to as fp.

	 Modules and Packages	 417

 https://doi.org/10.15215/remix/9781998944088.01

>>> from io import StringIO
>>> io = StringIO()
>>> json.dump({'firstname': 'Jone', 'lastname': 'Doe'}, io)
>>> io.getvalue()
'{"firstname": "Jone", "lastname": "Doe"}'

Conversions can be made between JSON and Python on different types of
data. Table 8-2 shows those conversions.

Table 8-2: Conversion between JSON and Python data

Python
Sample Python
data JSON

Sample JSON
data

dict {'firstname':
'Jone',
'lastname':
'Doe'}

Object {"firstname":
"Jone",
"lastname":
"Doe"}

list ['James',
'Jone',
'Smith',
'Doe']

Array ["James",
"Jone",
"Smith",
"Doe"]

tuple ('James',
'Jone',
'Smith',
'Doe')

Array ["James",
"Jone",
"Smith",
"Doe"]

str "James, Jone,
Smith, Doe"

String "James, Jone,
Smith, Doe"

int 98765321 Number 98765321

float 98765.321 Number 98765.321

True True true true

False False false false

None None null null

As you can see, all basic Python data can be converted/serialized into JSON
data, and vice versa. However, trying to serialize multiple Python objects by
repeatedly calling dump() using the same file handle will result in an invalid
JSON file because when doing deserialization with load() from the file, load has
no way to find out the boundary between different JSON data. As such, there
will be only one serialized Python object per file.

	418	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

8.8 Modules for Interfacing Operating Systems and
Python Interpreter
On a computer, all applications run on top of an operating system (OS) such as
Windows, MacOS, or Linux. Therefore, quite often when developing applica-
tions, you will need to interact with an OS, file paths, and the Python interpreter.
In Python, the built-in os module, path submodule of os, and sys module provide
powerful and convenient ways to interact with the OS, the file path, the Python
interpreter, and the runtime environment.

OS Module for Interacting with the Operating System
Since it is a built-in module, all you need to do to use the os module is import it,
as shown below:

import os

If you use the dir(os) statement, you can get a rather big list of names defined in
the module. Note that because the os module is operating-system dependent,
you may get a different list of names available depending on your platform (e.g.,
Windows or Linux).

The following are some functions provided in the os module. You are encour-
aged to test these functions with your own examples on your own machine.

OS.ACCESS(PATH, MODE)
This tests if access to path is in mode, which is an integer such as 777 (111111111)
representing the global, group, and user’s executable, write, and read rights.

>>> import os
>>> p = os.path.abspath(".")
>>> p
'd:\\workshop'
>>> os.access(p,763)
True

OS.CHDIR(PATH)
This changes the current working directory to path.

>>> os.chdir('c:\\workbench')
>>> os.getcwd()
' c:\\workbench'
>>> os.listdir()
['myprimes.txt', ' news_01.txt', ' personal']

	 Modules and Packages	 419

 https://doi.org/10.15215/remix/9781998944088.01

OS.CHMOD(PATH, MODE)
This changes the mode of path to the numeric mode.

>>> os.chmod('c:\\workbench', 477)

OS.CHOWN(PATH, UID, GID)
This changes the owner and group id of path to the numeric uid and gid. Please
note that these operations are more similar to what you would do on a Unix/
Linux system, all subject to permission by the operating system.

OS.CLOSE(FD)
This closes the file descriptor fd. A file descriptor is returned by the os.open()
function.

>>> fd = os.open('/home/james/testing.txt')
>>> os.close(fd)

OS.CPU_COUNT()
This returns the number of CPUs in the system; it will return None if the num-
ber is indeterminable.

>>> os.cpu_count()
8

OS.GET_EXEC_PATH(ENV=NONE)
This returns the sequence of directories that will be searched for by the named
executable.

>>> import os
>>> print(os.get_exec_path())
['/opt/tljh/user/bin', '/usr/local/sbin', '/usr/local/
bin', '/usr/sbin', '/usr/bin', '/sbin', '/bin', '/snap/
bin']

OS.GETCWD()
This returns a Unicode string representing the current working directory.

>>> import os
>>> print(os.getcwd())
/home/jupyter-kevin

	420	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

OS.GETCWDB()
This returns a byte string representing the current working directory.

>>> import os
>>> print(os.getcwdb())
b'/home/jupyter-kevin'

OS.GETENV(KEY, DEFAULT=NONE)
This returns an environment variable and returns None if it does not exist. The
optional second argument can specify an alternate default.

OS.GETLOGIN()
This returns the actual login name.

>>> os.getlogin()
kevin

OS.LINK(SRC, DST)
This creates a hard link pointing to src named dst.

OS.LISTDIR(PATH)
This returns a list containing the names of the entries in the directory given
by path.

>>> os.listdir('.')
['backups', 'Pipfile', 'snap']

OS.MKDIR(PATH, MODE=511, DIR_FD=NONE)
This function is used to create a directory, the mode argument only used on
Unix-like systems, and will be ignored on Windows. The path argument is
required; the mode argument is optional and takes an integer representing
permission for the path to be created. Argument _dir_fd is a file descriptor
referring to a directory that the new directory will be under; the path is not an
absolute path. The default value is None.

>>> import os
>>> os.mkdir('/home/james/learn_python')
>>> os.listdir('.')
['backups', 'learn_python', 'Pipfile', 'snap']

	 Modules and Packages	 421

 https://doi.org/10.15215/remix/9781998944088.01

OS.MAKEDIRS(PATH, MODE = 511, EXIST_OK = FALSE)
This recursively makes directories. For example, if the path is ./comp218/
assignment1, it will first make a directory named comp218 under the current
working directory, if it doesn’t exist, then make assignment1 under comp218.
The optional mode argument is the same as the one in os.mkdir(). The optional
exist_ok argument tells if the operation will continue if the leaf directory already
exists. The default is False, meaning that a FileExistsError will be raised if the
leaf directory already exists.

OS.OPEN(PATH, FLAGS, MODE = 511, *, DIR_FD = NONE)
This opens the file path and sets various flags for low-level IO and returns a
file descriptor to be used by other functions in the os module. Argument dir_fd
should be a file descriptor open to a directory (if not default None) and can be
used to provide a directory that the file path is relative to. The flags argument
tells what the path is opened for. It can take one or some of the following values
joined with or |: os.O_RDONLY, os.O_WRONLY, os.O_RDWR, os.O_APPEND,
os.O_CREAT, os.O_EXCL¶, os.O_TRUNC. These values are available on both
Windows and Unix platforms.

OS.PUTENV(NAME, VALUE)
This changes or adds an environment variable if name doesn’t exist yet.

>>> os.times()
nt.times_result(user = 4.125, system = 1.890625, children_
user = 0.0, children_system = 0.0, elapsed = 0.0)

OS.READ(FD, N)
This reads at most n bytes from file descriptor fd and returns a string containing
the bytes read. If the end of the file referred to by fd has been reached, an
empty string is returned.

OS.UMASK(MASK)
This sets the current numeric umask to mask and returns the previous umask.
umask is used by operating systems to determine the default permission for
newly created files.

>>> import os
>>> os.umask(666) # from now on all new files created
will have umask 666 till next change
256

	422	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

OS.URANDOM(SIZE)
This returns a bytes object containing random bytes suitable for cryptographic use.

>>> os.urandom(5)

b'-\x8e\xeb\xf1\x7f'

OS.UTIME(PATH, TIMES = NONE)
This sets the access and modified times of path, such as on a file.

OS.WALK(TOP)
This is a directory-tree generator and returns a walk object. For each directory
in the directory tree rooted at top, it will yield a three-tuple (dirpath, dirnames,
filenames), in which dirpath is a string, the path to the directory; dirnames is
a list of the names of the subdirectories in dirpath; and filenames is a list of
the names of the nondirectory files in dirpath.

Note that the names in the lists are just names, with no path components.
To get a full path (which begins with top) to a file or directory in dirpath, use
os.path.join(dirpath, name).

In []: import os
loop through all the directories and files
for dirName, subdirList, fileList in os.walk('.'):
 print('Found directory: %s' % dirName)
 for fname in fileList:
 print('\t%s' % fname)

Out []: Found directory: ./samples
 average marks​.py
 brutal attack on cipher​.py
 circle​-v2​.py
Found directory: ./samples/chapter3
 randomness​.py
 regex1​.py
 scratch​-v3​.py
 sieve prime​.py

OS.WALK(TOP, TOPDOWN = TRUE, ONERROR = NONE,
FOLLOWLINKS = FALSE)
This generates the file names in a directory tree by walking the tree either from
the top down or from the bottom up. The os.walk function will be very useful
in completing one of the projects in the textbook.

	 Modules and Packages	 423

 https://doi.org/10.15215/remix/9781998944088.01

OS.WRITE(FD, STR)
This writes the string str to the file descriptor fd and returns the number of
bytes actually written.

The path Submodule from os for Manipulating File Paths
When dealing with files and file systems, we quite often need to manipulate
file paths. For that reason, the os module has a submodule called path. To use
the path module, run the following statement:

>>> from os import path

The path module provides functions for joining and splitting paths, getting
information about a path or file such as its size and timestamp, and testing
whether a path is a file, a directory, a real path, or just a link.

PATH.ABSPATH(P)
This returns the absolute version of p.

>>> path.abspath('.')
'd:\\workshop\\comp218'

PATH.BASENAME(P)
This returns the final component of a pathname.

>>> os.path.basename(p)
'comp218'

PATH.COMMONPATH(PATHS)
This returns the longest common subpath for a given sequence of pathnames.

>>> os.path.commonpath(['d:/workshop/comp218','d:/
workshop/comp369'])
'd:\\workshop'

PATH.COMMONPREFIX(PATHS)
This returns the longest common leading component of a given list of pathnames.

>>> os.path.commonprefix(['d:/workshop/comp218','d:/
workshop/comp369'])
'd:/workshop/comp'

	424	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

PATH.DIRNAME(P)
This returns the directory component of a pathname.

>>> os​.path​.dirname​(​'d:​/​workshop/​comp218/​test​.py')

'd:/workshop/comp218'

PATH.EXISTS(P)
This tests whether a path exists. It returns False for broken symbolic links.

>>> os​.path​.exists​(​'d:​/​workshop/​comp218/​test​.py')

False

PATH.EXPANDUSER(P)
This expands ~ and ~user constructs, mostly for Unix/Linux systems. If user
or $HOME is unknown, it does nothing.

>>> os​.path​.expanduser​('​~/​workshop/​comp218/​test​.py')

'C:\\Users\\kevin/​workshop/​comp218/​test​.py'

PATH.EXPANDVARS(P)
This expands shell variables of the forms $var, ${var}, and %var%. Unknown
variables will be left unchanged.

PATH.GETATIME(FILENAME)
This returns the time a file was last accessed, as reported by os.stat().

PATH.GETCTIME(FILENAME)
This returns the time a file’s metadata was last changed, as reported by
os.stat().

PATH.GETMTIME(FILENAME)
This returns the time a file was last modified, as reported by os.stat().

PATH.GETSIZE(FILENAME)
This returns the size of a file, as reported by os.stat().

PATH.ISABS(S)
This tests whether a path is absolute.

	 Modules and Packages	 425

 https://doi.org/10.15215/remix/9781998944088.01

PATH.ISDIR(P)
PATH._ISDIR(P)
These return True if the pathname refers to an existing directory.

>>> from os import path
>>> path.isdir('.')
True

PATH.ISFILE(P)
This tests whether a path is a regular file.

>>> from os import path
>>> path.isfile('.')
False

PATH.ISLINK(P)
This tests whether a path is a symbolic link. It will always return False for
Windows prior to 6.0.

PATH.ISMOUNT(P)
This tests whether a path is a mount point (a drive root, the root of a share, or
a mounted volume).

PATH.JOIN(P1, P2)
This is used to join two paths or a path with a file.

>>> from os import path
>>> fullpath = path.join('/comp218/', 'testfile')
>>> print(fullpath)
/comp218/testfile

PATH.LEXISTS(P)
This tests whether a path exists. It will return True for broken symbolic links.

PATH.NORMCASE(S)
This normalizes the case of a pathname. That is, it makes all characters lower
case and all slashes backslashes.

PATH.NORMPATH(P)
This normalizes the path, eliminating double slashes, etc.

	426	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

PATH.ABSPATH(P)
This returns the absolute version of a path.

PATH.RELPATH(P, START=NONE)
This returns a relative version of a path.

PATH.SAMEFILE(F1, F2)
This tests whether two pathnames reference the same actual file or directory.

PATH.SAMEOPENFILE(FP1, FP2)
This tests whether two open file objects reference the same file.

PATH.SAMESTAT(S1, S2)
This tests whether two stat buffers reference the same file.

PATH.SPLIT(P)
This splits a pathname and returns tuple (head, tail), where tail is everything
after the final slash.

PATH.SPLITDRIVE(P)
This splits a pathname into a drive/UNC sharepoint and relative path specifiers
and returns a two-tuple (drive_or_unc, path); either part may be empty.

PATH.SPLITEXT(P)
This splits the extension from a pathname. An extension is everything from
the last dot to the end, ignoring leading dots. For some paths without a dot, the
extension part will be empty.

The sys Module for Interaction Between the Python and Python
Interpreter or Python Virtual Machine (PVM)
The os and path modules we studied above provide programmers with ways
to interact with the operating system and to access the underlying interface
of the operating system. The sys module we are going to study below allows
programs to interact with Python interpreter.

The following are the objects defined in the sys module and maintained
by Python interpreter. These objects are put into two groups: dynamic objects
and static objects.

The following are the dynamic objects defined in the sys module. Dynamic
means the values can be changed.

	 Modules and Packages	 427

 https://doi.org/10.15215/remix/9781998944088.01

SYS.ARGV
This holds command-line arguments; argv[0] is the script pathname if known.
The following example shows what happens when we test it in Jupyter Lab:

factorial.py
def fac(n):
 if n == 0:
 return 1
 else:
 return n * fac(n-1)

n = 9

print(f"{n}! = {fac(n)}")

import sys
print(f'argv = {sys.argv}')

python -u "d:\workshop\research\books\COMP218\samples\
factorial​.py"
9! = 362880
argv = ['d:\\workshop\\research\\books\\COMP218\\
samples\\factorial​.py']

SYS.PATH
This holds the module search path; path[0] is the script directory. The sys.path
for the above Python program/script will be

sys.path = ['d:\\workshop\\research\\books\\COMP218\\
samples', 's:\\python\\python311\\python311.zip', 's:\\
python\\python311\\Lib', 's:\\python\\python311\\
DLLs', 'C:\\Users\\james\\AppData\\Roaming\\Python\\
Python311\\site-packages', 'C:\\Users\\james\\AppData\\
Roaming\\Python\\Python311\\site-packages\\win32', 'C:\\
Users\\james\\AppData\\Roaming\\Python\\Python311\\
site-packages\\win32\\lib', 'C:\\Users\\james\\AppData\\
Roaming\\Python\\Python311\\site-packages\\Pythonwin',
's:\\python\\python311', 's:\\python\\python311\\Lib\\
site-packages']

	428	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

SYS.MODULES
This is a dictionary of all loaded modules. It will provide a long list of modules
it is using.

SYS.DISPLAYHOOK
This contains an executable object and can be called to show the results in an
interactive session.

>>> sys.displayhook
<ipykernel.displayhook.ZMQShellDisplayHook at
0x15a70b56b48>

SYS.EXCEPTHOOK
This contains an executable object and can be called to handle any uncaught
exception other than SystemExit.

SYS.STDIN
This contains the standard input file object; it is used by input().

SYS.STDOUT
It contains the standard output file object; it is used by print().

SYS.STDERR
This contains the standard error object; it is used for error messages.

SYS.LAST_TYPE
This contains the type of the last uncaught exception.

>>> sys.last_type
AttributeError

SYS.LAST_VALUE
This contains the value of the last uncaught exception.

>>> sys.last_value
AttributeError("module 'os' has no attribute 'chroot'")

SYS.LAST_TRACEBACK
This contains the traceback of the last uncaught exception.

	 Modules and Packages	 429

 https://doi.org/10.15215/remix/9781998944088.01

>>> sys.last_traceback
<traceback at 0x15a70ca9388>

The above three objects are only available in an interactive session after a
traceback has been printed.

The next group of objects available from the sys module are called static objects,
which means the values do not change for the given Python interpreter being
used.

SYS.BUILTIN_MODULE_NAMES
This contains a tuple of built-in module names.

SYS.COPYRIGHT
This contains the copyright notice pertaining to the interpreter in use. sys.copy-
right in our case will produce the following, as an example:

Copyright (c) 2001–2022 Python Software Foundation.
All Rights Reserved.

Copyright (c) 2000 BeOpen​.com.
All Rights Reserved.

Copyright (c) 1995–2001 Corporation for National Research
Initiatives.
All Rights Reserved.

Copyright (c) 1991–1995 Stichting Mathematisch Centrum,
Amsterdam.
All Rights Reserved.

SYS.EXEC_PREFIX
This contains the prefix used to find the machine-specific Python library.

SYS.EXECUTABLE
This contains the absolute path of the executable binary of the Python
interpreter.

	430	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

SYS.FLOAT_INFO
This contains a named tuple with information about the float implementation.

SYS.FLOAT_REPR_STYLE
This contains a string indicating the style of repr() output for floats.

SYS.HASH_INFO
This contains a named tuple with information about the hash algorithm.

>>> print(sys.hash_info)
sys.hash_info(width = 64, modulus = 2305843009213693951,
inf = 314159, nan = 0, imag = 1000003, algorithm =
'siphash24', hash_bits = 64, seed_bits = 128, cutoff = 0)

SYS.HEXVERSION
This contains version information encoded as a single integer.

SYS.IMPLEMENTATION
This contains Python implementation information.

>>> print(sys.implementation)
namespace(cache_tag = 'cpython-37', hexversion =
50792432, name = 'cpython', version =s ys.version_
info(major = 3, minor = 7, micro = 7, releaselevel =
'final', serial = 0))

SYS.INT_INFO
This contains a named tuple with information about the int implementation.

>>> print(sys.int_info)
sys.int_info(bits_per_digit = 30, sizeof_digit = 4)

SYS.MAXSIZE
This contains the largest supported length of containers.

>>> print(sys.maxsize)
9223372036854775807

SYS.MAXUNICODE
This contains the value of the largest Unicode code point.

	 Modules and Packages	 431

 https://doi.org/10.15215/remix/9781998944088.01

>>> print(sys.maxunicode)
1114111
>>> print(chr(1114111))
􏿿

>>> print(chr(1114112)) # this is out of range and will
cause an error

ValueError Traceback (most recent call last)
<ipython-input-81-1965bd6642f9> in <module>
----> 1< print(chr<(1114112))
ValueError: chr() arg not in range(0x110000)

SYS.PLATFORM
This contains the platform identifier.

>>> print(sys.platform)
win32

SYS.PREFIX
This contains the prefix used to find the Python library.

>>> print(sys.prefix)
C:\ProgramData\Anaconda3

SYS.THREAD_INFO
This contains a named tuple with information about the thread implementation.

>>> print(sys.thread_info)
sys.thread_info(name = 'nt', lock = None, version =
None)

SYS.VERSION
This contains the version of this interpreter as a string.

SYS.VERSION_INFO
This contains the version information as a named tuple.

SYS.DLLHANDLE
This is the integer handle of the Python DLL (Windows only).

	432	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

SYS.WINVER
This contains the version number of the Python DLL (Windows only).

SYS.__STDIN__
This is the original stdin.

SYS.__STDOUT__
This is the original stdout.

SYS.__STDERR__
This is the original stderr.

SYS.__DISPLAYHOOK__
This is the original displayhook.

SYS.__EXCEPTHOOK__
This is the original excepthook.

The following are functions also defined in the sys module.

SYS.DISPLAYHOOK()
This function prints an object to the screen and saves it in builtins.

SYS.EXCEPTHOOK()
This function prints an exception and its traceback to sys.stderr.

SYS.EXC_INFO()
This function returns thread-safe information about the current exception.

SYS.EXIT()
This function exits the interpreter by raising SystemExit.

SYS.GETDLOPENFLAGS()
This function returns flags to be used for dlopen() calls.

SYS.GETPROFILE()
This function returns the global profiling function.

	 Modules and Packages	 433

 https://doi.org/10.15215/remix/9781998944088.01

SYS.GETREFCOUNT()
This function returns the reference count for an object.

SYS.GETRECURSIONLIMIT()
This function returns the max recursion depth for the interpreter.

SYS.GETSIZEOF()
This function returns the size of an object in bytes.

>>> from datetime import datetime
>>> import sys
>>> dt1 = datetime.now()
>>> print(sys.getsizeof(dt1))
48

SYS.GETTRACE()
This function gets the global debug tracing function.

SYS.SETCHECKINTERVAL()
This function controls how often the interpreter checks for events.

SYS.SETDLOPENFLAGS()
This function sets the flags to be used for dlopen() calls.

SYS.SETPROFILE()
This function sets the global profiling function.

SYS.SETRECURSIONLIMIT()
This function sets the max recursion depth for the interpreter.

SYS.SETTRACE()
This function sets the global debug tracing function.

As can be seen, the sys module gives programmers a way to find out informa-
tion about the Python interpreter and the runtime environment in particular.

	434	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

8.9 Module for Logging Events During Program
Runtime
In some applications, sometimes it’s necessary or desirable to keep a rec-
ord of what happened with the program for performance improvement,
error debugging, security, and audit purposes. Examples of such events/
data include, but are not limited to, how many times a function/method has
been called, how long a function call takes, how much memory it used, and
so on. In Python, a package called logging is available for logging within its
standard distribution.

Due to the variety of purposes stated above, logged events can be classified
into the following five categories based on the nature or severity of the events,
in the view of the users of the application, as shown in Table 8-3.

Table 8-3: Levels of logging

Category of logs Description
Numeric value of
the level

NOTSET The level hasn't been set. 0

DEBUG Events are useful for error
debugging. This is the lowest
level of severity.

10

INFO Information can be useful for
improving the performance
of the application/program or
for assurance of security and
auditing.

20

WARNING Something needs checking. 30

ERROR These errors are often logical and
should be checked.

40

CRITICAL The event is critical for the program
to perform correctly and should
be checked and resolved. This is
highest level of severity.

50

The logging library defines several classes and module-level functions, and it
is the latter that you would be using directly in your programs and applications.
The basicConfig() function is used to set up the logging file and other param-
eters for the logger. The logging() function is for logging messages describing
events in each category, as shown in the following code sample:

	 Modules and Packages	 435

 https://doi.org/10.15215/remix/9781998944088.01

In []: import logging
logging.debug('Everything logged with logging.debug is
labelled as debug')

logging.info('Everything logged with logging.info is
labelled as info')

logging.warning('Everything logged with logging.warning
is labelled as warning')

logging.error('Everything logged with logging.error is
labelled as error')

logging.critical('Everything logged with logging.
critical is labelled as critical')

The output of the code above is shown below:

Out []: WARNING:root:Everything logged with logging.warning is labelled as warning
ERROR:root:Everything logged with logging.error is labelled as error
CRITICAL:root:Everything logged with logging.critical is labelled as critical

You may have noted that output from the debug and info logging functions are
missing from the output. This is because the default configuration of the logging
module only logs events at warning level or higher. To change the default log-
ging level, you can call a function of the logging module named basicConfig(), as
shown in the following example:

1 import logging
2

3 logging.basicConfig(level=logging.DEBUG,
4 filename='c:\\users\\james\\myapp.log',
5 filemode='w', format='%(name)s - %(levelname)s - %(message)

s') # this line belongs to the basicConfig call as well
6 logging.debug('Everything logged with logging.debug is

labelled as debug')
7 logging.info('Everything logged with logging.info is

labelled as info')
8 logging.warning('Everything logged with logging.warning is

labelled as warning')
9 logging.error('Everything logged with logging.error is

labelled as error')
10 logging.critical('Everything logged with logging.critical

is labelled as critical')

Instead of directly printing out to the terminal, this code writes the logs to a
file named myapp.log, and the content of the generated logging file myapp.
log is as follows:

	436	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

root - DEBUG - Everything logged with logging.debug is labelled as debug
root - INFO - Everything logged with logging​.info is labelled as info
root - WARNING - Everything logged with logging.warning is labelled as
warning
root - ERROR - Everything logged with logging.error is labelled as error
root - CRITICAL - Everything logged with logging.critical is labelled
as critical

Now as can be seen, DEBUG and INFO are recorded in the logging file
because we changed the logging level to DEBUG.

Please note that for logging configuration to take full effect, all should be
configured in a single basicConfig() method call. If the statement becomes too
long to fit in a single line, the statement can take two or more lines, as long as
newline is not within the string or word, as shown above.

In the basicConfig() function call shown above, keyword arguments are used
to set the level of logging to DEBUG, the logging file name to c:\users\james\
myapp.log, and the log file mode to w for write, which means that everything
in the log file will be overwritten by new logging messages. If you want to keep
the old logs and add the new logs to the end of the old logs, you need to set the
file mode to a for append, which is the default set by the logging mode.

It has been noted that the basicConfig() function for logging is not fully
functional within Jupyter Notebook. To change the logging level within Jupyter
Notebook, you can use the logging.getLogger().setLevel() method. However, you
cannot set the logging file name and logging file mode within Jupyter Notebook.

8.10 Modules for Playing and Manipulating Audio
and Video Files
This section covers how to develop sound- and music-related applications with
Python.

winsound
To play WAV files in your Windows applications, you can use the winsound
module included in the standard Python distribution. You can import the mod-
ule and use the functions defined in it without installing the module. Using
the following statements, you can get a list of names defined in the module:

>>> import winsound
>>> dir(winsound)
['Beep', 'MB_ICONASTERISK', 'MB_ICONEXCLAMATION', 'MB_
ICONHAND', 'MB_ICONQUESTION', 'MB_OK', 'MessageBeep',

	 Modules and Packages	 437

 https://doi.org/10.15215/remix/9781998944088.01

'PlaySound', 'SND_ALIAS', 'SND_APPLICATION', 'SND_
ASYNC', 'SND_FILENAME', 'SND_LOOP', 'SND_MEMORY',
'SND_NODEFAULT', 'SND_NOSTOP', 'SND_NOWAIT', 'SND_PURGE',
'__doc__', '__file__', '__loader__', '__name__', '__
package__', '__spec__']

For more details about the module and functionalities provided, run
help(winsound) in Python interactive mode, as shown below:

>>> import winsound
>>> help(winsound)
 Help on module winsound:

NAME
winsound
DESCRIPTION
PlaySound(sound, flags)—play a sound
SND_FILENAME—sound is a wav file name
SND_ALIAS—sound is a registry sound association name
SND_LOOP—play the sound repeatedly; must also specify
SND_ASYNC
SND_MEMORY—sound is a memory image of a wav file
SND_PURGE—stop all instances of the specified sound
SND_ASYNC—PlaySound returns immediately
SND_NODEFAULT—Do not play a default beep if the sound
cannot be found
SND_NOSTOP—Do not interrupt any sounds currently
playing
SND_NOWAIT—Return immediately if the sound driver is
busy
Beep(frequency, duration)—Make a beep through the PC
speaker.
MessageBeep(type)—Call Windows MessageBeep.
FUNCTIONS
eep(frequency, duration)
A wrapper around the Windows Beep API.
frequency
Frequency of the sound in hertz.
Must be in the range 37 through 32,767.
duration
How long the sound should play, in milliseconds.

	438	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

MessageBeep(type = 0)
Call Windows MessageBeep(x).
x defaults to MB_OK.
PlaySound(sound, flags)
A wrapper around the Windows PlaySound API.
sound
The sound to play; a filename, data, or None.
flags
Flag values, ORed together. See module
documentation.
DATA
MB_ICONASTERISK = 64
MB_ICONEXCLAMATION = 48
MB_ICONHAND = 16
MB_ICONQUESTION = 32
MB_OK = 0
SND_ALIAS = 65536
SND_APPLICATION = 128
SND_ASYNC = 1
SND_FILENAME = 131072
SND_LOOP = 8
SND_MEMORY = 4
SND_NODEFAULT = 2
SND_NOSTOP = 16
SND_NOWAIT = 8192
SND_PURGE = 64
FILE
s:\python\python311\dlls\winsound.pyd

Among the functions defined in the module, PlaySound is an important
one for playing sound or music files. The following statement will play a WAV
file named dj.wav.

>>> import winsound
>>> winsound.PlaySound("c:/users/comp218/
dj.wav",winsound.SND_FILENAME)

When using the PlaySound function to a play sound file, you must make
sure the WAV file exists in the default or specified path. In the example above,
an absolute path has been given. You can also use a relative path that makes

	 Modules and Packages	 439

 https://doi.org/10.15215/remix/9781998944088.01

use of two special notations, a single dot (.) representing the current directory
and a double dot (..) representing the parent directory; or you don’t need to
specify the path at all if the WAV file is in the current directory. In any case,
the rule is that you must be clearly aware of where the file is located. This rule
is applicable whenever the file is used.

PyGame
The PlaySound function in the standard winsound module can play only WAV
files. To play the popular MP3 music files in your Python applications, use the
module called mixer in the PyGame package. Because the package is usually
included in the standard Python distribution, you can install the package into
your Python programming environment using the pip command, as shown
below:

pip install pygame

Then you can import and use the mixer module to load and play MP3 files, as
shown below:

>>> from pygame import mixer # load the required library
Hello from the pygame community. https://​www​.pygame​.org/​
contribute​.html
>>> mixer.init()
>>> mixer.music.load("../I_Will_Remember_You.mp3")
>>> mixer.music.play()

To learn more about how to use the mixer and mixer.music module, you
can run the following commands in Python interactive mode as shown below,
after the module has been imported:

>>> help(mixer)

You can then see the functions defined within the module, as further
detailed below.

CHANNEL(ID)
This is used to create and return a Channel object for controlling playback.

FADEOUT(TIME)
This sets the time to fade out the volume on all sounds before stopping.

	440	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

FIND_CHANNEL(FORCE = FALSE)
This finds and returns an unused channel.

GET_BUSY()
This tests if any sound is being mixed and returns a Boolean value.

GET_INIT()
This tests if the mixer is initialized and returns a tuple (frequency, format,
channels) representing the channel.

GET_NUM_CHANNELS()
This can be used to check and return the total number of playback channels.

INIT(FREQUENCY = 22050, SIZE = −16, CHANNELS = 2, BUFFER =
4096, DEVICENAME = NONE, ALLOWEDCHANGES = AUDIO_ALLOW_
FREQUENCY_CHANGE | AUDIO_ALLOW_CHANNELS_CHANGE)
This can be used to initialize the mixer module.

PAUSE() -> NONE, TEMPORARILY STOP PLAYBACK OF ALL
SOUND CHANNELS
PRE_INIT(FREQUENCY=22050, SIZE = −16, CHANNELS = 2,
BUFFERSIZE = 4096, DEVICENAME = NONE)
These can be used to preset the mixer init arguments.

QUIT()
This can be used to uninitialize the mixer.

SET_NUM_CHANNELS(COUNT)
This can be used to set the total number of playback channels.

SET_RESERVED(COUNT)
This can be used to keep channels from being automatically used.

STOP()
This can be used to stop playback on all sound channels.

UNPAUSE()
This can be used to resume playback on sound channels after it has been
paused.

	 Modules and Packages	 441

 https://doi.org/10.15215/remix/9781998944088.01

The mixer module has a submodule named music. To learn what func-
tions are available in the mixer.music submodule module, run the following
statement:

>>> help(mixer.music)

You will then see the following information about the related functions.

FADEOUT(TIME)
This can be used to stop music playback after fading out.

GET_BUSY()
This can be used to check if the music stream is playing. It will return True
or False.

GET_ENDEVENT()
This can be used to get the event a channel sends when playback stops.

GET_POS()
This can be used to get the music playtime.

GET_VOLUME() -> VALUE
This can be used to get the music volume.

LOAD(FILENAME) -> NONE, OR LOAD(OBJECT) -> NONE,
This can be used to load a music file/object for playback.

PAUSE() -> NONE
This can be used to temporarily stop music playback.

PLAY(LOOPS = 0, START = 0.0) -> NONE
This can be used to start the music stream playback.

QUEUE(FILENAME) -> NONE
This can be used to queue a music file to follow the currently playing file.

REWIND() -> NONE
This can be used to restart the music.

	442	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

SET_ENDEVENT() -> NONE
SET_ENDEVENT(TYPE) -> NONE
These can be used to have the mixer send events when playback stops.

SET_POS(POS) -> NONE
This can be used to set the position in the music file when starting playback.

SET_VOLUME(VALUE) -> NONE
This can be used to set the music volume.

STOP() -> NONE
This can be used to stop the music playback.

UNPAUSE() -> NONE
This can be used to resume paused music.

These functions in mixer.music are the ones used directly to handle music files.
These functions are sufficient for you to develop a high-quality music player with
what you will learn in Chapter 9 on developing GUI-based applications in Python.

Please note that the mixer module from the PyGame package can also play
other types of music files including WAV, as shown below:

>>> from pygame import mixer # import mixer module from
PyGame
>>> mixer.init() # initialize the mixer
>>> mixer.music.load("../I_will_Remember_you.mp3") #
load the mp3 file
>>> mixer.music.play(loops = 2) # play the most recent
loaded file twice

The functions listed above are needed if you are developing a music player
with PyGame. For details on these functions, please refer to the official documen-
tation on the PyGame mixer at https://​www​.pygame​.org/​docs/​ref/​mixer​.html.

8.11 Modules for Creating and Manipulating
Graphics and Images
In computing and information processing, graphics are an important part of
data and information. In this section, we learn how to create and manipulate
graphics and images with Python.

https://www.pygame.org/docs/ref/mixer.html

	 Modules and Packages	 443

 https://doi.org/10.15215/remix/9781998944088.01

Create Graphics with Tkinter
The module built into the standard Python distribution for creating graphics
is the Tkinter module, which is commonly used to develop graphical user
interface (GUI) applications. However, Tkinter also provides a widget called
Canvas for graphics and images. The following statements in Python interactive
mode will produce a window containing a Canvas ready for drawing graphic
objects—Canvas items:

>>> from tkinter import *
>>> d_board = Canvas()

Table 8-4 is a list of Canvas items we can draw on a Canvas.

Table 8-4: A list of functions that can be used to draw on a Canvas

Graphic object
Canvas method to
create Code sample

arc or arc-shaped
region (such as a
chord or pie slice)

create_arc(bbox,
**options)

>>> d_board = Canvas()
>>> d_board.pack()
>>> d_board.create_arc(30,
50, 100, 200)

1

bitmap (built-in or read
from an XBM file)

create_bitmap(position,
**options)

>>> d_board.create_
bitmap(30, 50)

image (a BitmapImage
or PhotoImage
instance)

create_image(position,
**options)

>>> d_board.create_
image(30, 50)

line create_line(coords,
**options)

>>> d_board.create_
line(30, 50, 100, 200)

2

Figure 8-2: An example of TK Canvas

(continued on next page)

	444	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Graphic object
Canvas method to
create Code sample

oval (a circle or an
ellipse)

create_oval(bbox,
**options)

>>> d_board.create_
oval(30, 50, 80, 80,
fill = "RED")

polygon create_polygon(coords,
**options)

>>> d_board.create_
polygon(30, 50, 80, 80,
70, 90, fill = "RED")

rectangle create_rectangle(bbox,
**options)

>>> d_board.create_
rectangle(30, 50, 80,
80, fill = "RED")

text create_text(position,
**options)

>>> d_board.create_
text(130, 150, text =
"Hello!")

window create_
window(position,
**options)

Every method listed in Table 8-4 returns a unique ID for the created graphic
object, which can be used later to manipulate the object.

Note that graphic objects created by the above methods will be stacked
on the Canvas and will remain until being moved, lifted, lowered, or deleted,
with the methods in Table 8-5.

Table 8-5: Other methods of Canvas within Tkinter

Method Operation Code sample

dchars(item, from, to
= None)

Deletes text from an
editable graphic
item such as text:
from is where to
start deleting text,
to is where to stop
deleting text. If to is
omitted, only a single
character is deleted.

>>> d_board.create_
text(130, 150, text =
"Hello Python!")

>>> d_board.dchars('text',
1,2)

delete(item) Deletes all matching
items.

>>> h3 = d_board.
create_text(230, 150,
text="Hello!")

>>> d_board.delete(h3)
>>> d_board.delete(3)
>>> d_board.delete(10)
>>> d_board.delete(11)
>>> d_board.delete(9)

Table 8-4: A list of functions that can be used to draw on a Canvas
(continued)

	 Modules and Packages	 445

 https://doi.org/10.15215/remix/9781998944088.01

Method Operation Code sample

coords(item, *coords) Returns or sets the
coordinates of
matching items.

>>> d_board.coords(o1, 30,
150, 80, 250)

move(item, dx, dy) Moves matching
items by an offset.

>>> d_board.move(o1, 10,
15)

Canvas has many other methods for accessing and manipulating graphic
objects. Running the following statements in Python interactive mode will give
you a list of names defined within the Canvas class.

>>> from tkinter import *
>>> dir(Canvas)
['_Misc__winfo_getint', '_Misc__winfo_parseitem', '__
class__', '__delattr__', '__dict__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__', '__gt__', '__hash__', '__init__', '__init_
subclass__', '__le__', '__lt__', '__module__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__setitem__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', '_bind', '_configure',
'_create', '_displayof', '_do', '_getboolean', '_
getconfigure', '_getconfigure1', '_getdoubles', '_getints',
'_grid_configure', '_gridconvvalue', '_last_child_ids',
'_nametowidget', '_noarg_', '_options', '_register', '_
report_exception', '_root', '_setup', '_subst_format',
'_subst_format_str', '_substitute', '_tclCommands', '_
windowingsystem', 'addtag', 'addtag_above', 'addtag_all',
'addtag_below', 'addtag_closest', 'addtag_enclosed',
'addtag_overlapping', 'addtag_withtag', 'after',
'after_cancel', 'after_idle', 'anchor', 'bbox', 'bell',
'bind', 'bind_all', 'bind_class', 'bindtags', 'canvasx',
'canvasy', 'cget', 'clipboard_append', 'clipboard_clear',
'clipboard_get', 'columnconfigure', 'config', 'configure',
'coords', 'create_arc', 'create_bitmap', 'create_image',
'create_line', 'create_oval', 'create_polygon', 'create_
rectangle', 'create_text', 'create_window', 'dchars',
'delete', 'deletecommand', 'destroy', 'dtag', 'event_add',
'event_delete', 'event_generate', 'event_info', 'find',
'find_above', 'find_all', 'find_below', 'find_closest',
'find_enclosed', 'find_overlapping', 'find_withtag',

Table 8-5: Other methods of Canvas within Tkinter (continued)

	446	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

'focus', 'focus_displayof', 'focus_force', 'focus_get',
'focus_lastfor', 'focus_set', 'forget', 'getboolean',
'getdouble', 'getint', 'gettags', 'getvar', 'grab_
current', 'grab_release', 'grab_set', 'grab_set_global',
'grab_status', 'grid', 'grid_anchor', 'grid_bbox',
'grid_columnconfigure', 'grid_configure', 'grid_forget',
'grid_info', 'grid_location', 'grid_propagate', 'grid_
remove', 'grid_rowconfigure', 'grid_size', 'grid_slaves',
'icursor', 'image_names', 'image_types', 'index', 'info',
'insert', 'itemcget', 'itemconfig', 'itemconfigure',
'keys', 'lift', 'location', 'lower', 'mainloop', 'move',
'nametowidget', 'option_add', 'option_clear', 'option_get',
'option_readfile', 'pack', 'pack_configure', 'pack_forget',
'pack_info', 'pack_propagate', 'pack_slaves', 'place',
'place_configure', 'place_forget', 'place_info', 'place_
slaves', 'postscript', 'propagate', 'quit', 'register',
'rowconfigure', 'scale', 'scan_dragto', 'scan_mark',
'select_adjust', 'select_clear', 'select_from', 'select_
item', 'select_to', 'selection_clear', 'selection_get',
'selection_handle', 'selection_own', 'selection_own_
get', 'send', 'setvar', 'size', 'slaves', 'tag_bind',
'tag_lower', 'tag_raise', 'tag_unbind', 'tk_bisque',
'tk_focusFollowsMouse', 'tk_focusNext', 'tk_focusPrev', 'tk_
setPalette', 'tk_strictMotif', 'tkraise', 'type', 'unbind',
'unbind_all', 'unbind_class', 'update', 'update_idletasks',
'wait_variable', 'wait_visibility', 'wait_window',
'waitvar', 'winfo_atom', 'winfo_atomname', 'winfo_cells',
'winfo_children', 'winfo_class', 'winfo_colormapfull',
'winfo_containing', 'winfo_depth', 'winfo_exists', 'winfo_
fpixels', 'winfo_geometry', 'winfo_height', 'winfo_id',
'winfo_interps', 'winfo_ismapped', 'winfo_manager', 'winfo_
name', 'winfo_parent', 'winfo_pathname', 'winfo_pixels',
'winfo_pointerx', 'winfo_pointerxy', 'winfo_pointery',
'winfo_reqheight', 'winfo_reqwidth', 'winfo_rgb', 'winfo_
rootx', 'winfo_rooty', 'winfo_screen', 'winfo_screencells',
'winfo_screendepth', 'winfo_screenheight', 'winfo_
screenmmheight', 'winfo_screenmmwidth', 'winfo_screenvisual',
'winfo_screenwidth', 'winfo_server', 'winfo_toplevel',
'winfo_viewable', 'winfo_visual', 'winfo_visualid', 'winfo_
visualsavailable', 'winfo_vrootheight', 'winfo_vrootwidth',
'winfo_vrootx', 'winfo_vrooty', 'winfo_width', 'winfo_x',
'winfo_y', 'xview', 'xview_moveto', 'xview_scroll', 'yview',
'yview_moveto', 'yview_scroll']

	 Modules and Packages	 447

 https://doi.org/10.15215/remix/9781998944088.01

You can then call help on each of the names in the list to learn more about
the name defined. The following are just two examples:

>>> help(Canvas.addtag)

Running help on the function addtag in module tkinter outputs the following:

addtag(self, *args)
 Internal function.

>>> help(Canvas.after)

Running help on the function after in module tkinter outputs the following:

after(self, ms, func=None, *args)
 Call function once after given time.
 MS specifies the time in milliseconds. FUNC gives the
 function, which shall be called. Additional parameters
 are given as parameters to the function call. Returns
 identifier to cancel scheduling with after_cancel.

>>> help(Canvas.create_image)

Running help on the function create_image in module tkinter outputs the
following:

create_image(self, *args, **kw)
 Create image item with coordinates x1, y1.

The following coding example will draw a line on a Canvas:

import tkinter

from tkinter.constants import *

tk = tkinter.Tk()

canvas = tkinter.Canvas(tk, relief = RIDGE, borderwidth = 2)

canvas.pack(fill = BOTH, expand=1)

ln1 = canvas.create_line(100, 100, 300, 300, width = 6)

tk.mainloop()

	448	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Manipulate Images with Pillow
Another way you can work with visual objects in Python is to manipulate images
stored in files. These manipulations include the following:

•	 rotating
•	 converting from colour to grey-scale
•	 applying colour filtering
•	 highlighting a specific area of an image
•	 blurring an image or part of it
•	 sharpening an image or part of it
•	 changing the brightness of an image
•	 detecting the edge on an image
•	 scaling an image
•	 applying colour inversion to an image
•	 morphing one image into another image

How can all these manipulations be done within your computer? First, an image
is made of pixels, which can be stored in an m × n matrix, or two-dimensional
array, mapped to a rectangular area of the computer screen. The value of each
cell of the matrix represents a pixel and contains all the information about it.
All manipulations to the image can be done by manipulating the matrix or its
values.

To manipulate an image with Python, you can use a package called Pillow
(available from https://​pypi​.org/​project/​Pillow/​2​.2​.1/ or https://​github​.com/​
python​-pillow/​Pillow). Because it is not a standard part of the Python library,
you will need to install it with the following statement:

Figure 8-3: Drawing on TK Canvas

https://pypi.org/project/Pillow/2.2.1/
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow

	 Modules and Packages	 449

 https://doi.org/10.15215/remix/9781998944088.01

pip install Pillow
Collecting Pillow
Downloading
wordhttps://​files​.pythonhosted​.org/​packages/​70/​21/​04723e78916eff8e0

9901dbb7dc9705f4de8a0dfe7882a9ed56982bd128e/​Pillow​-6​.0​.0​
-cp37​-cp37m​-win32​.whl (1.7MB)

|████████████████████████████████| 1.7MB
1.3MB/s

Installing collected packages: Pillow
Successfully installed Pillow-6.0.0
Once this is done, you can import and then use the following two

modules:
Image,
ImageFilter

The following is a coding sample:

from PIL import Image, ImageFilter
read the image
im = Image.open('./resort.jpg')
im_sharp = im.filter(ImageFilter.SHARPEN)
save the filtered image to a new file
im_sharp.save('./resort-sharp.jpg', 'JPEG')

display the image
im_sharp.show()

The sharpened image is shown in Figure 8-4.
Note that the Image module has a class with the same name as the module,

Image, although it is more convenient to construct an object of Image with the
open statement rather than the constructor of Image class.

Once an image object has been generated with the open statement, we can
check its format, size, and mode by looking at the format, size, and mode attrib-
utes and using the following methods of the Image class to manipulate the image
object:

•	 Image.convert(self, mode = None, matrix = None, dither = None, palette
= 0, colors = 256) makes various conversions to the image object.

	450	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

•	 Image.copy(self) makes a copy and retains the original image object.
•	 Image.crop(self, box=None) returns a rectangular region of the image,

defined by box.
•	 Image.draft(self, mode, size) returns a draft version of the image, such

as a grey-scale version.
•	 Image.effect_spread(self, distance) returns an image with pixels

randomly spread throughout the image.
•	 Image.filter(self, filter) filters this image using the given filter specified

in the ImageFilter module.
•	 Image.paste(self, im, box=None, mask=None) pastes another image

(im) into this image.
•	 Image.putalpha(self, alpha) adds or replaces the alpha layer in this image.
•	 Image.putdata(self, data, scale = 1.0, offset = 0.0) copies a sequence of

pixel data to this image.
•	 Image.putpalette(self, data, rawmode = 'RGB') attaches a palette to this

image.
•	 Image.putpixel(self, xy, value) modifies the pixel at the given position.
•	 Image.quantize(self, colors = 256, method = None, kmeans = 0, palette

= None, dither = 1) converts the image to P mode with the specified
number of colours.

Figure 8-4: Picture sharpened with Pillow (©Harris Wang, Athabasca University)

	 Modules and Packages	 451

 https://doi.org/10.15215/remix/9781998944088.01

•	 Image.emap_palette(self, dest_map, source_palette = None) rewrites
the image to reorder the palette.

•	 Image.resize(self, size, resample = 0, box = None) returns a resized copy
of this image.

•	 Image.rotate(self, angle, resample = 0, expand = 0, center = None,
translate = None, fillcolor = None) returns a rotated copy of this
image.

•	 Image.split(self), splits the image into individual bands, such as
R, G, B.

•	 Image.tobitmap(self, name='image') converts the image to an X11
bitmap.

•	 Image.tobytes(self, encoder_name = 'raw', *args) returns the image as a
bytes-object.

•	 Image.toqimage(self) returns a QImage copy of this image.
•	 Image.toqpixmap(self) returns a QPixmap copy of this image.
•	 Image.transform(self, size, method, data=None, resample = 0, fill = 1,

fillcolor = None) transforms this image to a given size but in the same
mode as the original.

•	 Image.transpose(self, method) transposes the image (flips or rotates in
90-degree steps).

There are other methods defined within the Image class for other purposes.
You can find out more info about the Image class by running the following
statement in Python interactive mode:

>>> from PIL import Image, ImageFilter
>>> help(Image.Image)

As we have seen from the above list, the Image class has provided a good
set of methods to manipulate an image.

The ImageFilter module provides some filtering operations on images, as
the name implies. These filtering operations include blurring, box blurring,
contouring, colour transformation, detailing, edge enhancing, embossing, sharp-
ening, smoothing, and more.

8.12 Modules for Data Analytics
The modules often used for data analytics include pandas, NumPy, SciPy,
and matplotlib. Among the four modules, pandas is mostly used to prepare

	452	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

data; NumPy and SciPy are used for numeric analysis and science computing,

respectively; and matplotlib is for visualization.

Since data analytics is a big topic, we will only give some examples of how

the modules can be used.

The first example is to show how to use matplotlib to visualise the square

root function in math.

import math

import matplotlib.pyplot as mpl

sqrt_data = {i+1 : math.sqrt(i+1) for i in range(100)}

x1 = list(sqrt_data.keys())

y1 = list(sqrt_data.values())

mpl.plot(x1, y1)

mpl.title("visualization of square root")

mpl.xlabel('x')

mpl.ylabel('y')

mpl.show()

The plot produced by the program is shown in Figure 8-5.

0 20 40 60 80 100

x

2

4

6

8

10

y

Visualization of Square Root

Figure 8-5: Visualization of square root

	 Modules and Packages	 453

 https://doi.org/10.15215/remix/9781998944088.01

Our next example is to visualize the world population changes in some
regions as well as world total since 1960. The program code is as follows:

import pandas as pd
import matplotlib.pyplot as mplt
content = pd.read_excel("world-population.xls")
years = [1960, 1970, 1980, 1990, 2000, 2010, 2017]
mplt.plot(years, content.iloc[0, 1:])
mplt.plot(years, content.iloc[1, 1:])
mplt.plot(years, content.iloc[7, 1:])
mplt.plot(years, content.iloc[11, 1:])
mplt.plot(years, content.iloc[12, 1:])
mplt.plot(years, content.iloc[17, 1:])
mplt.plot(years, content.iloc[22, 1:])
mplt.title("Population - World Total and Region Total")
mplt.xlabel("years")
mplt.ylabel("Populations (in millions)")
mplt.legend(["World Total", "Africa", "Latin America",
"North America", "Asia", "Europe", "Oceana"])
mplt.show()

In the program, the pandas module is used to read and prepare the data.
For details on how it works, please read the complete documentation at https://​
pandas​.pydata​.org/​docs/—the user guide at https://​pandas​.pydata​.org/​docs/​
user​_guide/​index​.html​#user​-guide in particular.

The rendered result of the program is shown in Figure 8-6.
NumPy allows you to do math manipulations on a data set, most often

manipulations on a matrix. Here is an example:

import numpy as np # import numpy

a = np.array(range(21,25)) # create an array from a
python list
print(a, a.shape) # print the array and its shape

create a 2-D array from nested lists
b = np.array([[1, 2, 3, 4], [5, 6, 7, 8],
 [11, 12, 13, 14], [15, 16, 17, 18]])

print(b, b.shape) # print the array and its shape

https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/user_guide/index.html#user-guide
https://pandas.pydata.org/docs/user_guide/index.html#user-guide

	454	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

c = a + b # perform element-wise addition on two arrays

print(c, c.shape) # print the result and the shape

d = np.dot(a, b) # perform matrix multiplication

print(d) # print the result

e = np.cos(a) # apply a mathematical function to an array

print(e) # print the result

f = np.sort(b, axis=0) # sort an array along a given axis

print(f) # print the result

The output from the program is as follows:

[21 22 23 24] (4,)
[[1 2 3 4]

1960 1970 1980 1990 2000 2010

years

2000

1000

0

3000

4000

5000

6000

7000

Po
pu

la
tio

ns
 (i

n
m

ill
io

n)
Population - World Total and Region Total

World Total
Africa
Latin America
North America
Asia
Europe
Oceana

Figure 8-6: Visualization of world population changes

	 Modules and Packages	 455

 https://doi.org/10.15215/remix/9781998944088.01

 [5 6 7 8]
 [11 12 13 14]
 [15 16 17 18]] (4, 4)
[[22 24 26 28]
 [26 28 30 32]
 [32 34 36 38]
 [36 38 40 42]] (4, 4)
[744 834 924 1014]
[-0.54772926 -0.99996083 -0.53283302 0.42417901]
[[1 2 3 4]
 [5 6 7 8]
 [11 12 13 14]
 [15 16 17 18]]

More details on NumPy can be found at https://​numpy​.org/​doc/​stable/.
SciPy is built upon NumPy, including various functions often needed for

scientific computing. The following example shows how integration function
in SciPy is used to integrate a function.

import numpy as np # import numpy and scipy.integrate
from scipy.integrate import quad # import quad integral
function

define a function to be integrated
def f(x):
 return np.exp(-x**2) # use exp function from NumPy

integrate the function from 0 to 1 using quad
result, _ = quad(f, 0, 1)

print the result and the estimated error
print(result)

The result is 0.7468241328124271.

Chapter Summary
•	 In addition to functions and classes, modules and packages are

important constructs that can be used to do modular programming in
Python.

https://numpy.org/doc/stable/

	456	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

•	 A module can be any file with a py extension that has legitimate Python
program codes or scripts in it.

•	 A package is a file directory containing several Python modules.
•	 To identify the directories in which the Python packages reside, each

such directory must contain a file named ​_​_init​_​_​.py.
•	 The ​_​_init​_​_​.py file defines what can be imported from the package.

These may include variables, functions, and classes.
•	 Packages can be nested to any depth, just like file directories are

nested. However, each directory for a package must have its own ​_​_init​
​​.py file.

•	 Dotted notation is used to refer to a package or module within a deep
package hierarchy.

•	 To use variables, functions, and classes defined in a module, you
have to import the module or the specific variables, functions, and/or
classes, using the import statement or from … import statement.

•	 A large number of Python modules and packages have been developed
and made available on the internet for Python programmers. Many
of these modules and packages have been already installed with the
standard Python distribution, such as the Anaconda package.

•	 A good Python programmer or software developer should have
knowledge of existing modules and packages, including what they are
developed for and what they do.

•	 Programmers can develop their own modules for their own
applications and development.

Exercises
	 1.	 Open VS Code, create or open a Jupyter Notebook file (.ipynb), and

select a Python virtual environment for the notebook file. Open a
terminal and run the pip list command to see what library modules
have been installed in the virtual environment.

In the output of your VS Code shell terminal, identify some
interesting packages and modules, and write a summary of those
packages and modules in a Word document, including what each is
developed for, where it may be used, and so on.

	 2.	 In VS Code, open the Jupyter Notebook file named chapter-8.ipynb.
Create a new cell and import the math module, run the help command
to study each of the functions defined in the math module, and do
some hands-on coding with the function.

	 Modules and Packages	 457

 https://doi.org/10.15215/remix/9781998944088.01

	 3.	 Search the internet for tutorials or other web documents related to
web scraping with Python and choose some to watch or read. Take
some coding samples to run in your Jupyter Notebook within VS Code,
then develop your own application based on the code samples.

Projects
	 1.	 Rational numbers are those real numbers that can be represented as

a quotient of two integers such as a/b, which can then be represented
by the pair of integers a and b. For this project, define a module
that contains the definition of a class named Rational, within
which dunder methods for print, addition, subtraction, division,
multiplication, and various comparisons are defined.

	 2.	 Develop an application using the math module to calculate and display
a table of squares for integers from 0 to 99. The layout is illustrated in
Table 8-6.

Table 8-6: The layout of the table to be produced

0 1 2 3 4 5 6 7 8 9

0 0 1 4 9 26 25 36 49 8 9

1 100 121 144 169 196 225 256 289 324 361

2 … … …

3

4

5

6

7

8

9

	 3.	 Develop an application to calculate and display a table showing the
square roots of integers from 0 to 99 (similar to what you did for
Project 2).

This page intentionally left blank

 https://doi.org/10.15215/remix/9781998944088.01

Chapter 9

Develop GUI-Based
Applications

In terms of user interface, there are two types of computer systems or appli-
cations: terminal-based, which can be run from a terminal, and those with a
graphical user interface (GUI), or GUI-based. So far, the applications we have
programmed have all been terminal-based. In this chapter you will learn how
to develop GUI-based applications in Python.

Learning Objectives
After completing this chapter, you should be able to

•	 explain terminal-based applications and GUI-based applications as
well as their differences.

•	 explain which Python libraries are available for developing GUI-based
applications.

•	 discuss the widgets, functions, other classes, and methods provided in
the Tkinter module.

•	 use widgets, functions, classes, and methods provided in the Tkinter
module to design and implement a graphical user interface for a given
application.

•	 develop GUI-based applications using the Tkinter module.
•	 discuss the themed Tkinter(Ttk) module and how it differs from the

Tkinter module.

	460	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

9.1 Terminal-Based Applications Versus GUI-Based
Applications
A computer terminal is a device, often referring to a utility program in today’s
Windows environment, that can receive and deliver data or commands. The
following shows what a terminal on Windows 11 looks like:

(base) PS C:\Users\james>

A terminal-based application is a program that runs from the command line
within a terminal. For that reason, terminal-based applications are also called
applications with a command-line interface. The following shows a Python
program with a command-line interface running within a terminal.

(base) PS C:\workshop\comp218\samples\project2> python
'.\perfect number​.py'
tell me the upper bound:33
6 = [1, 2, 3] 28 = [1, 2, 4, 7, 14]
(base) PS C:\workshop\comp218\samples\project2> python
'.\perfect number​.py'
tell me the upper bound:53
6 = [1, 2, 3] 28 = [1, 2, 4, 7, 14]
(base) PS C:\workshop\comp218\samples\project2>

The terminal-based program shown above takes an integer as upper
bound from the user and then finds all perfect numbers between 1 and the
upper bound. With a terminal-based application, only a keyboard can be used
by users to interact with the application.

A GUI-based application provides users with a graphical interface so that
users can interact with the application with keyboard and mouse. VS Code
IDE is an example of a GUI-based application we have been using throughout
this text.

The difference between terminal-based and GUI-based applications is
obvious. Although GUI-based applications are more user-friendly and more
common today, terminal-based applications still exist and are used by some
IT professionals, such as system administrators.

In the next section, we will learn how to develop GUI-based applications
with Python.

	 Develop GUI-Based Applications	 461

 https://doi.org/10.15215/remix/9781998944088.01

9.2 Designing and Developing GUI-Based
Applications in Python
The key component of a GUI-based application is a graphical user interface
(GUI) on which both mouse and keyboard can be used to interact with the appli-
cation on a two-dimensional graphic interface. As mentioned above, GUI-based
applications are more user-friendly than terminal-based applications. This is
why most computer applications used today are GUI-based.

In general, you need to ask yourself the following questions when designing
a GUI app:

•	 What will be shown to users?
•	 What input will be taken from users?
•	 What actions will we allow users to take?
•	 What actions will be taken in response to the users’ input?
•	 Where do we display the results of the actions?

Several Python modules are available for developing GUI-based applications.

•	 Tkinter, a de facto GUI library for Python applications, comes with the
standard Python distribution so that you can import and use it right
away. Documentation on tkinter can be found at https://​docs​.python​
.org/​3/​library/​tk​.html. You learned how to use Python modules and
packages, including tkinter, in Chapter 8.

•	 PyGObject is a Python implementation of GObject-based libraries such
as GTK, GStreamer, WebKitGTK, GLib, GIO, and some others. If you
have played with Linux, you will probably know the GTK- and GNOME-
based graphical user interfaces. The project is hosted at https://​
pygobject​.readthedocs​.io/​en/​latest/.

•	 PyQt5 is another GUI library for Python GUI-based application
development that implements the well-known Qt graphic framework.
Information about PyQt5 can be easily found on the internet, and its
home is at https://​pypi​.org/​project/​PyQt5/.

We chose to use a module called tkinter for its popularity among Python
application developers and because of its light weight. The tkinter module
usually comes with the standard Python distribution. To test if you have it
installed, run import tkinter as shown below to see if you will get the same
output:

https://docs.python.org/3/library/tk.html
https://docs.python.org/3/library/tk.html
https://pygobject.readthedocs.io/en/latest/
https://pygobject.readthedocs.io/en/latest/
https://pypi.org/project/PyQt5/

	462	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

>>> import tkinter
>>> dir(tkinter)
['ACTIVE', 'ALL', 'ANCHOR', 'ARC', 'BASELINE', 'BEVEL',
'BOTH', 'BOTTOM', 'BROWSE', 'BUTT', 'BaseWidget',
'BitmapImage', 'BooleanVar', 'Button', 'CASCADE',
'CENTER', 'CHAR', 'CHECKBUTTON', 'CHORD', 'COMMAND',
'CURRENT', 'CallWrapper', 'Canvas', 'Checkbutton',
'DISABLED', 'DOTBOX', 'DoubleVar', 'E', 'END', 'EW',
'EXCEPTION', 'EXTENDED', 'Entry', 'Event', 'EventType',
'FALSE', 'FIRST', 'FLAT', 'Frame', 'GROOVE', 'Grid',
'HIDDEN', 'HORIZONTAL', 'INSERT', 'INSIDE', 'Image',
'IntVar', 'LAST', 'LEFT', 'Label', 'LabelFrame',
'Listbox', 'MITER', 'MOVETO', 'MULTIPLE', 'Menu',
'Menubutton', 'Message', 'Misc', 'N', 'NE', 'NO',
'NONE', 'NORMAL', 'NS', 'NSEW', 'NUMERIC', 'NW',
'NoDefaultRoot', 'OFF', 'ON', 'OUTSIDE', 'OptionMenu',
'PAGES', 'PIESLICE', 'PROJECTING', 'Pack', 'PanedWindow',
'PhotoImage', 'Place', 'RADIOBUTTON', 'RAISED',
'READABLE', 'RIDGE', 'RIGHT', 'ROUND', 'Radiobutton',
'S', 'SCROLL', 'SE', 'SEL', 'SEL_FIRST', 'SEL_LAST',
'SEPARATOR', 'SINGLE', 'SOLID', 'SUNKEN', 'SW',
'Scale', 'Scrollbar', 'Spinbox', 'StringVar', 'TOP',
'TRUE', 'Tcl', 'TclError', 'TclVersion', 'Text',
'Tk', 'TkVersion', 'Toplevel', 'UNDERLINE', 'UNITS',
'VERTICAL', 'Variable', 'W', 'WORD', 'WRITABLE',
'Widget', 'Wm', 'X', 'XView', 'Y', 'YES', 'YView',
'__builtins__', '__cached__', '__doc__', '__file__',
'__loader__', '__name__', '__package__', '__path__',
'__spec__', '_cnfmerge', '_default_root', '_exit', '_
flatten', '_join', '_magic_re', '_setit', '_space_re',
'_splitdict', '_stringify', '_support_default_root',
'_test', '_tkerror', '_tkinter', '_varnum', 'constants',
'enum', 'getboolean', 'getdouble', 'getint', 'image_
names', 'image_types', 'mainloop', 're', 'sys',
'wantobjects']

A GUI application starts with a frame or window of a given size in terms of
pixels, which is divided into rows and columns. Each of the grids is numbered
from top to bottom, left to right, as shown in the following diagram:

	 Develop GUI-Based Applications	 463

 https://doi.org/10.15215/remix/9781998944088.01

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,0) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

Please note that although the frame size is measured in pixels, the coordinate
of each grid above is only a relative location within the grid and has nothing to
do with pixels. The size of each grid is dynamically determined by the object
or widget placed in it.

Tkinter Module
The following code running from Python interactive mode renders a window/
frame (as shown in Figure 9-1):

>>> from tkinter import *
>>> f = Tk()

The following statements can be used to set the title and the size of the
window:

>>> f.title("My First GUI App")
>>> f.geometry("300 x 200")

Figure 9-1: A window rendered by Python with Tkinter

	464	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Within this frame/window, we can place specific objects, called widgets, to
serve their designated purposes, as detailed below:

•	 Label displays text and bitmaps.
•	 Entry displays simple text.
•	 Button displays a button and associates a command with the button that

can be invoked.
•	 Checkbutton displays a button with only an on or off state. It is often

used in groups to provide a number of options for users to select.
•	 Menu displays menu bars, pull-down menus, and pop-up menus.
•	 OptionMenu allows the user to select a value from a menu.
•	 PanedWindow is a container that may contain a number of panes.
•	 Radiobutton displays a radio button with an on/off state. It is used in

groups, from which the user can select only one option at a time.
•	 Frame is a container to organize other widgets.
•	 LabelFrame is a spacer or container for complex window layouts.
•	 Text displays text in multiple lines.
•	 Canvas provides an area on which you can draw shapes such as lines,

ovals, polygons, and rectangles in your application.
•	 Scale provides a slider showing numerical scale.
•	 Scrollbar adds scrolling capability to various widgets, such as text and

list boxes.
•	 Spinbox is a variant of the standard Tkinter Entry widget and selects

from a fixed number of values.
•	 Toplevel provides a separate window container.

The following is a code sample in Jupyter Notebook:

In []: f = Tk() # make an instance of Tk window
f.title("My First GUI App") # add a title to the window
f.geometry("300 x 200") # set the size
add a label widget with text
lb = tkinter.Label(text = "This is my first label") #
label

lb.grid(row = 0, column = 0) # place the window
f.mainloop() # render it up to show

Out []: The window will be rendered as shown in Figure 9-2:

In the above, the first statement creates a label object with the text “This
is my first label” on it, whereas the second statement places the object in a
specific grid of the window. If no arguments are specified for the grid, the

	 Develop GUI-Based Applications	 465

 https://doi.org/10.15215/remix/9781998944088.01

default value is used, which is the next available grid in the window in order
from top to bottom, left to right.

Similarly, we can add an Entry widget to the window using the following
statements:

In []: f = Tk()
 f.title("My first GUI app")
 f.geometry("300x200")
 lb = tkinter.Label(text = "Please input here")
 lb.grid(row = 0, column = 0)
 ent = tkinter.Entry()
 ent.grid(row = 0, column = 1)
 f.mainloop()

By now the window should look like the one shown in Figure 9-3.

Figure 9-3: A GUI example with added entry widget

Figure 9-2: A GUI example with more details

	466	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In addition to the Entry widget for taking single-line text input, the Button
and Text widgets take mouse click and multiple-line text input, respectively,
from users. We can add buttons and text boxes to the window with the follow-
ing statements:

In []: f = Tk()
f.title("My first GUI app")
f.geometry("300 x 200")
 lb = tkinter.Label(text = "Please input here")
 lb.grid(row = 0, column = 0)
 ent = tkinter.Entry()
 ent.grid(row = 0, column = 1)
 btn = Button(text = "Click me")
 btn.grid(column = 0, row = 1)
 txt = Text(width = 20, height = 10)
 txt.grid(column = 1, row = 2)
 f.mainloop()

The rendered window is shown in Figure 9-4.
Within the window, you can type in the entry field, type more in the text

area, and click the button, but the app does not do anything in response, as
shown in Figure 9-5.

Figure 9-4: A GUI example with more widgets added

Figure 9-5: A GUI example taking user input

	 Develop GUI-Based Applications	 467

 https://doi.org/10.15215/remix/9781998944088.01

How can we make the app respond to the user’s input and do what we want
it to do? We need to attach an even handler to the intended object, such as a
button, as shown below:

In []: f = Tk()
 f.title("My first GUI app")
 f.geometry("300 x 200")
 lb = tkinter.Label(text = "Please input here")
 lb.grid(row = 0, column = 0)
 ent = tkinter.Entry()
 ent.grid(row = 0, column = 1)
 btn = Button(text = "Click me")
 btn.grid(column = 0, row = 1)
 txt = Text(width = 20, height = 10)
 txt.grid(column = 1, row = 2)

 def hdl():
 btn.config(text = "You clicked me!")

 btn.config(command = hdl) # add handler to act

 f.mainloop()

In the above, we first define a function as a handler, which simply
changes the text on the button to “You clicked me,” then attaches the hand-
ler to the button using the config() method built into the button object.
As expected, the text on the button changes after a click on the button, as
shown in Figure 9-6.

To learn more details about each of the widgets listed above, we can call for
help in Python interactive mode or Jupyter Notebook. The following example
shows how to get help on the Frame widget in Jupyter Notebook:

Figure 9-6: Now the GUI is able to respond to user input

	468	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In []: from tkinter import *
help(Frame)

As always, you can also search the internet for any widget in the tkinter

module to get help, including very detailed discussions on its use.

With what we have learned so far, we should be ready to develop a real

GUI-based application, which is the GUI version of a grade conversion pro-

gram. The conversion is based on the data in Table 9-1, and the case study

is in Table 9-2.

Table 9-1: Grade conversion table

Letter grade % Letter grade %

A+ 90–100 C+ 67–69

A 85–89 C 64–66

A- 80-84 C- 60-63

B+ 76–79 D+ 55–59

B 73–75 D 50–54

B− 70–72 F 0–49

Table 9-2: Case study: How to convert grades in a GUI program

The problem To develop a GUI-based application that can take the a numerical
grade from a user and convert it to a letter grade.

The analysis
and design

The application is meant to convert numerical grades to letter
grades based on the conversion table shown as Table 9-1. The
information flow is:

Get a numerical grade from user → convert to a letter grade →
display the letter grade

In previous chapters, we showed how to develop a terminal-based
application to do this conversion, where the input and output
were all done on a standard terminal. In a GUI-based application,
the input and output/display need to be done on a graphic
interface.

Consider the widget in the tkinter module. We need an Entry widget
for input and a Label widget to display the converted letter grade,
a Button to start a conversion, and another Button to exit and
close the application. Of course, we also need a function to do
the actual conversion.

	 Develop GUI-Based Applications	 469

 https://doi.org/10.15215/remix/9781998944088.01

The code """
A GUI-based program using the Tkinter module
to convert numeric grades to alpha letter/grades.
"""

from tkinter import *

def n_to_l(n_g):
 n_g = round(float(n_g))
 if n_g in range(90, 101):
 lg = f"Letter grade of {n_g} is A+"
 elif n_g in range(85, 90):
 lg = f"Letter grade of {n_g} is A"
 elif n_g in range(80, 85):
 lg = f"Letter grade of {n_g} is A-"
 elif n_g in range(76, 80):
 lg = f"Letter grade of {n_g} is B+"
 elif n_g in range(73, 76):
 lg = f"Letter grade of {n_g} is B"
 elif n_g in range(70, 73):
 lg = f"Letter grade of {n_g} is B-"
 elif n_g in range(67, 70):
 lg = f"Letter grade of {n_g} is C+"
 elif n_g in range(64, 67):
 lg = f"Letter grade of {n_g} is C"
 elif n_g in range(60, 64):
 lg = f"Letter grade of {n_g} is C-"
 elif n_g in range(55, 60):
 lg = f"Letter grade of {n_g} is D+"
 elif n_g in range(50, 54):
 lg = f"Letter grade of {n_g} is D"
 elif n_g in range(0, 50):
 lg = f"Letter grade of {n_g} is F"
 else:
 lg = "invalid mark!"
 return lg

def hdl():
 n = int(ent1.get())
 lb2.config(text = f"{n_to_l(n)}")
 return -1

w = Tk()
w.title("My GUI-based grade converter")
w.geometry("500 x 200")
lb1 = Label(text = "Please input percentage grade:")
lb1.grid(column = 2, row = 1, rowspan = 3, pady = 30)
ent1 = Entry()
ent1.grid(column = 3, row = 1, rowspan = 3, pady = 30)
btn = Button(text = "Convert", background = "#00FF00")
btn.grid(column = 2, row = 5, rowspan = 3, pady = 30)
btn.config(command = hdl)
btn_quit = Button(text = "Quit", background = "#FF0000")
btn_quit.grid(column = 6, row = 5, rowspan = 3, pady =
30)

btn_quit.config(command=quit)
lb2 = Label(text = "Letter grade will be displayed here")
lb2.grid(column = 2, row = 8, rowspan = 3)
mainloop()
this statement must be placed here to keep the window
alive

	470	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

In the coding example, the .grid() method positions a widget in the parent
widget in a grid or cell. The options that can be used with the .grid() method
are as follows:

column = number—uses cell identified with given column (starting
with 0)

columnspan = number—spans several columns
in = master—uses master to contain this widget
in_ = master—uses master to contain this widget
ipadx = amount—adds internal padding in x direction
ipady = amount—adds internal padding in y direction
padx = amount—adds padding in x direction
pady = amount—adds padding in y direction
row = number—uses a cell identified with a given row (starting with 0)
rowspan = number—span several rows
sticky = NSEW—tells on which sides this widget will stick to the cell

boundary if the cell is larger

Note that we placed a method of the imported tkinter module named
.mainloop() at the very end of the program. The call to the method is neces-
sary to keep the window of the GUI-based app alive when running the code
from the Python program file. Otherwise, the window will disappear as soon
as the Python Virtual Machine (PVM) reaches the end of the program file.

You may wonder why the GUI window we created from the Python inter-
active shell stays alive without the .mainloop() statement. The reason is very
simple: because PVM is still waiting for you to input a numeric grade, which
means that the file (standard IO file) won’t reach the end as long as you have
not quit the Python interactive shell.

The GUI application can also be placed in a frame. The result and the code
are shown in Figure 9-7 and below. As you can see, it has become nicer.

Figure 9-7: A GUI application doing grade conversion

	 Develop GUI-Based Applications	 471

 https://doi.org/10.15215/remix/9781998944088.01

"""
You are required to design a GUI-based program using the
Tkinter
module to convert numeric grades to alpha letter/grades.
"""
from tkinter import *

def n_to_l(n_g):
 n_g = round(float(n_g))
 if n_g in range(90, 101):
 lg = f"Letter grade of {n_g} is A+"
 elif n_g in range(85, 90):
 lg = f"Letter grade of {n_g} is A"
 elif n_g in range(80, 85):
 lg = f"Letter grade of {n_g} is A-"
 elif n_g in range(76, 80):
 lg = f"Letter grade of {n_g} is B+"
 elif n_g in range(73, 76):
 lg = f"Letter grade of {n_g} is B"
 elif n_g in range(70, 73):
 lg = f"Letter grade of {n_g} is B-"
 elif n_g in range(67, 70):
 lg = f"Letter grade of {n_g} is C+"
 elif n_g in range(64, 67):
 lg = f"Letter grade of {n_g} is C"
 elif n_g in range(60, 64):
 lg = f"Letter grade of {n_g} is C-"
 elif n_g in range(55, 60):
 lg = f"Letter grade of {n_g} is D+"
 elif n_g in range(50, 54):
 lg = f"Letter grade of {n_g} is D"
 elif n_g in range(0, 50):
 lg = f"Letter grade of {n_g} is F"
 else:
 lg = "invalid mark!"
 return lg

def hdl():
 n = int(ent1.get())
 lb2.config(text = f"{n_to_l(n)}")

	472	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

 return -1

w = Frame()
to add frame widget

w.master.title("My GUI-based grade converter in Frame")
w.master.geometry("500 x 200")
lb1 = Label(text = "Please input percentage grade:")
lb1.grid(column = 2, row = 1, rowspan = 3, pady = 30)
ent1 = Entry()
ent1.grid(column = 3, row = 1, rowspan = 3, pady = 30)
btn = Button(text = "Convert", background = "#FF0000")
btn.grid(column = 2, row = 5, rowspan = 3, pady = 30)
btn.config(command = hdl)
btn_quit = Button(text = "Quit", background = "#FF0000")
btn_quit.grid(column = 6, row = 5, rowspan = 3, pady =
30)
btn_quit.config(command = quit)
lb2 = Label(text = "Letter grade will be displayed here")

lb2.grid(column = 2, row = 8, rowspan = 3)
mainloop()
this statement must be placed below all others to keep
the window alive

If you don’t like placing widgets with the .geometry() method, you may
use the .pack() method to let the PVM automatically place the widgets for you.
The new GUI-based app and the revised Python code are shown in Figure 9-8
and below.

Figure 9-8: Frame widget is used in the GUI application

	 Develop GUI-Based Applications	 473

 https://doi.org/10.15215/remix/9781998944088.01

"""Revised grade conversion: placing widgets with the
.geometry() method."""

from tkinter import *

def n_to_l(n_g):
 n_g = round(float(n_g))
 if n_g in range(90, 101):
 lg = f"Letter grade of {n_g} is A+"
 elif n_g in range(85, 90):
 lg = f"Letter grade of {n_g} is A"
 elif n_g in range(80, 85):
 lg = f"Letter grade of {n_g} is A-"
 elif n_g in range(76, 80):
 lg = f"Letter grade of {n_g} is B+"
 elif n_g in range(73, 76):
 lg = f"Letter grade of {n_g} is B"
 elif n_g in range(70, 73):
 lg = f"Letter grade of {n_g} is B-"
 elif n_g in range(67, 70):
 lg = f"Letter grade of {n_g} is C+"
 elif n_g in range(64, 67):
 lg = f"Letter grade of {n_g} is C"
 elif n_g in range(60, 64):
 lg = f"Letter grade of {n_g} is C-"
 elif n_g in range(55, 60):
 lg = f"Letter grade of {n_g} is D+"
 elif n_g in range(50, 54):
 lg = f"Letter grade of {n_g} is D"
 elif n_g in range(0, 50):
 lg = f"Letter grade of {n_g} is F"
 else:
 lg = "invalid mark!"
 return lg

def hdl():
 n = int(ent1.get())
 lb2.config(text = f"{n_to_l(n)}")
 return -1

	474	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

w = Tk()
w.title("My GUI-based grade converter")
w.geometry("500 x 200")
lb1 = Label(text = "Please input percentage grade:")
lb1.pack(fill = Y, expand = 1)
ent1 = Entry()
ent1.pack(expand = 0)
btn_convert = Button(text = "Convert", background =
"#33FF88")
btn_convert.pack(padx = 10, side = LEFT, expand = 0)
btn_convert.config(command = hdl)
btn_quit = Button(text = "Quit", background = "#FF0000")
btn_quit.pack(padx = 10, side = RIGHT, expand = 0)
btn_quit.config(command = quit)
lb2 = Label(text = "Letter grade will be displayed
here")
lb2.pack(fill = Y, expand = 1)
mainloop()
this statement must be placed at the end to keep the
window alive

As you can see, the GUI-based app is rendered much more nicely with the
.pack() method. The .pack() method is used to pack a widget in the parent
widget. The options of the .pack() method and their meaning are as follows:

•	 after = widget—packs it after you have packed the widget
•	 anchor = NSEW (or subset)—positions widget according to a given

direction
•	 before = widget—packs it before you pack the widget
•	 expand = bool—expands the widget if the parent size grows
•	 fill = NONE or X or Y or BOTH—fills the widget if the widget grows
•	 in = master—uses master to contain the widget
•	 in_= f—uses fx to contain the widget
•	 ipadx = amount—adds internal padding in x direction
•	 ipady = amount—adds internal padding in y direction
•	 padx = amount—adds padding in x direction
•	 pady = amount—adds padding in y direction
•	 side = TOP or BOTTOM or LEFT or RIGHT—indicates where to add the

widget

	 Develop GUI-Based Applications	 475

 https://doi.org/10.15215/remix/9781998944088.01

Because all the widgets inherit behaviours from the Widget class, it is worth
learning about the general methods available in the Widget class for manipu-
lating widgets.

tkinter.ttk—Tk-Themed Widgets
In the past, people have complained about the look of GUI and the widgets of
tkinter, which led to the development of themed widgets of tkinter, or Ttk for
short. Now the Ttk module is part of the standard Python distribution. To use
it, all you need to do is to import the modules in the sequence shown below to
make sure Ttk overrides definitions of classes as intended.

>>> from tkinter import *
>>> import tkinter.ttk

Because themed widgets is based on the tkinter module, it overrides defin-
itions of classes, widgets, and methods.

Again, once imported, you can use help(tkinter.ttk) to get a rather detailed
documentation of the module, as summarized below:

As for all GUI libraries, the core of the module are the widgets and meth-
ods associated with the widgets. All widget classes inherit from a generic
class called Widget. The following is a list of widgets defined in the themed
Tk module.

BUTTON(WIDGET)
Ttk Button displays a textual label and/or image and evaluates a command
when pressed. In addition to the methods inherited from Widget, it has
method specific for its purpose, invoke(self), which invokes the command
associated with the button.

CHECKBUTTON
Ttk Checkbutton will be either in an on or off state. It has a specific method
called invoke(self) in addition to those inherited from Widget. The invoke(self)
will switch the Checkbutton between on and off states, further invoke the asso-
ciated command, and return the result of executing the command associated
with Checkbutton.

ENTRY(WIDGET, TKINTER.ENTRY)
Ttk Entry displays a one-line text string that allows that string to be edited by
the user. It inherits from Widget and tkinter.Entry.

	476	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

COMBOBOX(ENTRY)
Ttk Combobox widget combines a text field with a pop-down list of values. It
inherits from Ttk Entry, described above. It has two methods of its own:

	 1.	 current(self, newindex = None)—if newindex is supplied, it sets the
combobox value to the element at position newindex in the list of
values. Otherwise, it returns the index of the current value in the list
of values or −1 if the current value does not appear in the list.

	 2.	 set(self, value)—sets the value of the combobox to “value.”

SPINBOX(ENTRY)
Ttk Spinbox is an Entry with increment and decrement arrows. It is commonly
used for number entry or to select from a list of string values.

FRAME(WIDGET)
Ttk Frame is a container used to group other widgets together.

LABELEDSCALE(FRAME)
Ttk Scale is used with Ttk Label, indicating its current value. Ttk Scale can
be accessed through instance.scale, and Ttk Label can be accessed through
instance.label.

LABEL(WIDGET)
Ttk Label displays a textual label and/or image.

LABELFRAME(WIDGET)
Ttk Labelframe is a container used to group other widgets together. It has an
optional label, which may be a plaintext string or another widget.

MENUBUTTON(WIDGET)
Ttk Menubutton displays a textual label and/or image. It will display a menu
when pressed.

OPTIONMENU(MENUBUTTON)
Ttk OptionMenu allows the user to select a value from a menu.

NOTEBOOK(WIDGET)
Ttk Notebook manages a collection of windows and displays a single one at a
time. Each child window is associated with a tab that the user may select to

	 Develop GUI-Based Applications	 477

 https://doi.org/10.15215/remix/9781998944088.01

make the associated window show up. This gives us a way to implement tabs
like those in web browsers.

PANEDWINDOW(WIDGET, TKINTER.PANEDWINDOW)
Ttk Panedwindow displays a number of subwindows stacked either vertically
or horizontally. It has the following specific methods:

	 1.	 remove(self, child)
	 2.	 insert(self, pos, child, **kw)—inserts a pane at the specified positions.
	 3.	 pane(self, pane, option = None, **kw)—queries or modifies the options

of the specified pane.
	 4.	 sashpos(self, index, newpos = None)—if newpos is specified, sets the

position of sash number index and returns the new position of sash
number index.

PROGRESSBAR(WIDGET)
Ttk Progressbar shows the status of a long-running operation. It can operate
in two modes. Determinate mode shows the amount completed relative to the
total amount of work to be done, and indeterminate mode provides an animated
display to let the user know that something is happening.

RADIOBUTTON
Ttk Radiobuttons are used in groups to show or change a set of mutually exclu-
sive options. The specific method invoke(self) sets the option variable to the
option value, selects the widget, and invokes the associated command. It returns
the result of the command or an empty string if no command is specified.

SCALE(WIDGET, TKINTER.SCALE)
Ttk Scale is typically used to control the numeric value of a linked variable that
varies uniformly over some range.

SCROLLBAR(WIDGET, TKINTER.SCROLLBAR)
Ttk Scrollbar controls the viewport of a scrollable widget.

SEPARATOR(WIDGET)
Ttk Separator displays a horizontal or vertical separator bar.

SIZEGRIP(WIDGET)
Ttk Sizegrip allows the user to resize the containing top-level window by press-
ing and dragging the grip.

	478	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

TREEVIEW(WIDGET, TKINTER.XVIEW, TKINTER.YVIEW)
Ttk Treeview displays a hierarchical collection of items. Each item has a textual
label, an optional image, and an optional list of data values. The data values
are displayed in successive columns after the tree label. It has the following
specific methods:

•	 bbox(self, item, column = None)
It returns the bounding box (relative to the Treeview widget’s window)
of the specified item in the form of x y width height. If a column is
specified, it returns the bounding box of that cell. If the item is not
visible (i.e., if it is a descendant of a closed item or is scrolled off-
screen), it returns an empty string.

•	 column(self, column, option = None, **kw)
It queries or modifies the options for the specified column. If kw is not
given, it returns a dictionary of the column option values. If option is
specified, then the value for that option is returned. Otherwise, it sets
the options to the corresponding values.

•	 delete(self, *items)
It deletes all specified items and all their descendants. The root item
may not be deleted.

•	 detach(self, *items)
It unlinks all of the specified items from the tree. The items and all of
their descendants are still present and may be reinserted at another
point in the tree but will not be displayed. The root item may not be
detached.

•	 exists(self, item)
It returns True if the specified item is present in the tree; returns False
otherwise.

•	 focus(self, item = None)
if an item is specified, it sets the focus item to item. Otherwise, it
returns the current focus item, or '' if there is none.

•	 get_children(self, item = None)
It returns a tuple of children belonging to item. If the item is not
specified, it returns root children.

•	 heading(self, column, option = None, **kw)
It queries or modifies the heading options for the specified column. If
kw is not given, it returns a dict of the heading option values. If option
is specified, then the value for that option is returned. Otherwise, it sets
the options to the corresponding values. Valid options/values include
text, image, anchor, and a callback command.

	 Develop GUI-Based Applications	 479

 https://doi.org/10.15215/remix/9781998944088.01

•	 identify(self, component, x, y)
It returns a description of the specified component under the point
given by x and y or the empty string if no such component is present at
that position.

•	 identify_column(self, x)
It returns the data column identifier of the cell at position x. The tree
column has ID #0.

•	 identify_element(self, x, y)
It returns the element at position x, y.

•	 identify_region(self, x, y)
For the given coordinator (x, y) of a point related to the widget, it
returns a string indicating one of the following: nothing (not within any
functional part of the widget), heading (a column heading), separator (a
separator between columns), tree (the icon column), or cell (a data cell
within an item row).

•	 identify_row(self, y)
It returns the item ID of the item at position y.

•	 index(self, item)
It returns the integer index of an item within its parent’s list of
children.

•	 insert(self, parent, index, iid = None, **kw)
It creates a new item and returns the item identifier of the newly
created item, where parent is the item ID of the parent item or the
empty string to create a new top-level item and index is an integer
or the value end, specifying where in the list of parent’s children to
insert the new item. If index is less than or equal to 0, the new node
is inserted at the beginning; if index is greater than or equal to the
current number of children, it is inserted at the end. If iid is specified,
it is used as the item identifier, but iid must not already exist in the tree.
Otherwise, a new unique identifier is generated.

•	 item(self, item, option = None, **kw)
It queries or modifies the options for a specified item. If no options are
given, a dict with options/values for the item is returned. If an option is
specified, then the value for that option is returned. Otherwise, it sets
the options to the corresponding values, as given by kw.

•	 move(self, item, parent, index)
It moves item to position index in parent’s list of children. It is illegal
to move an item under one of its descendants. If an index is less than
or equal to 0, the item is moved to the beginning; if greater than or

	480	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

equal to the number of children, it is moved to the end. If the item was
detached, it is reattached.

•	 next(self, item)
It returns the identifier of an item’s next sibling, or '' if the item is the
last child of its parent.

•	 parent(self, item)
It returns the ID of the parent of an item, or '' if the item is at the top
level of the hierarchy.

•	 prev(self, item)
It returns the identifier of an item’s previous sibling, or '' if the item is
the first child of its parent.

•	 see(self, item)
It ensures that the item is visible and sets all of the item’s ancestors’
open options to True and scrolls the widget if necessary so that the item
is within the visible portion of the tree.

•	 selection(self, selop = <object object at 0x000002122111D7F0>,
items=None)
It returns the tuple of the selected items.

•	 selection_add(self, *items)
It adds all of the specified items to the selection.

•	 selection_remove(self, *items)
It removes all of the specified items from the selection.

•	 selection_set(self, *items)
It makes the specified items become the new selection.

•	 selection_toggle(self, *items)
It toggles the selection state of each specified item.

•	 set(self, item, column = None, value = None)
It queries or sets the value of a given item.

•	 set_children(self, item, *newchildren)
It replaces an item’s child with newchildren.

•	 tag_bind(self, tagname, sequence = None, callback = None)
It binds a callback for the given event sequence to the tag tagname.
When an event is delivered to an item, the callbacks for each tag option
of the item are called.

•	 tag_configure(self, tagname, option = None, **kw)
It queries or modifies the options for the specified tagname.

•	 tag_has(self, tagname, item = None)
If an item is specified, it returns 1 or 0 depending on whether the
specified item has the given tagname. Otherwise, it returns a list of all
items that have the specified tag.

	 Develop GUI-Based Applications	 481

 https://doi.org/10.15215/remix/9781998944088.01

The Treeview widget provides a way to use tree-like structures to visualize
and manipulate data and information. The methods available for manipulating
trees are versatile.

Among all the widgets provided in themed tkinter, the newly added Treeview,
Progressbar, and Notebook are very powerful and can be very useful in develop-
ing today’s GUI applications, such as those in the exercises, and projects below.

The content above Ttk and Treeview in particular are mostly taken from
the official documentation of Tkinter, for the purpose to prepare readers
for the projects at the end of this chapter.

For details on how Ttk can be used to develop GUI applications, please
read the Ttk documentation at https://​docs​.python​.org/​3/​library/​tkinter​.ttk​
.html and tutorials online such as the one at https://​www​.pythontutorial​.net/​
tkinter/​tkinter​-ttk/.

Instead of giving code samples for each widget like we previously did, we
conclude this chapter with the following sample program to show how Ttk and
Treeview can be used in GUI application development:

import tkinter as tk
from tkinter import ttk

class FileManager:
 def __init__(self):
 self.root = tk.Tk()
 self.tree = ttk.Treeview(self.root)
 self.tree.pack()
 self.tree["columns"] = ("one", "two", "three",
"four")
 self.tree.heading("one", text="Path")
 self.tree.heading("two", text="File name")
 self.tree.heading("three", text="File size")
 self.tree.heading("four", text="Last modified")
 self.tree.insert("", "end", text="1", values=("/
home/james/", "a.txt","213","June 3, 2023"))
 self.tree.insert("", "end", text="2", values=("/
home/james/", "b.txt","215","June 5, 2023"))
 self.tree.insert("", "end", text="3", values=("/
home/james/", "c.txt","217","June 7, 2023"))
 self.root.mainloop()

FileManager()

https://docs.python.org/3/library/tkinter.ttk.html
https://docs.python.org/3/library/tkinter.ttk.html
https://www.pythontutorial.net/tkinter/tkinter-ttk/
https://www.pythontutorial.net/tkinter/tkinter-ttk/

	482	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Chapter Summary
•	 Terminal-based applications are those started and rendered within a

terminal.
•	 A terminal is a system command-line-based application in which you

can interact with a computer.
•	 On the Windows platform, Windows terminal, Windows PowerShell,

and command prompt are examples of terminals.
•	 Within a terminal-based application, pointing devices such as a mouse

cannot be used to interact with the application.
•	 A graphical user interface is a two-dimensional graphic area in which

graphic objects or widgets can be created, placed, located, and accessed
with mouse and keyboard.

•	 GUI-based applications look nicer and are much more user-friendly.
•	 Python has some very well-developed library modules for the

development of applications with graphical user interface.
•	 The Tk and Themed Tk (Ttk) are the modules covered in this text; both

come with the Tkinter package.
•	 The Tk module provides the fundamental widgets and operations

needed for a graphic interface.
•	 To use the Tk module, use import tkinter, import tkinter as tk, or from

tkinter import. *.
•	 The Themed Tk (Ttk) module provides programmers with more styled

widgets to develop applications with a nicer graphical user interface.
•	 To ensure you are using the Ttk module instead of Tk module, override

Tk by running statements from tkinter import * and from tkinter.ttk
import * in order.

•	 To build a graphical user interface, create a main frame or window
first.

•	 Other widgets can be created and added to the main frame/window as
needed.

•	 Each widget has certain properties/attributes such as size, colour, and
more.

•	 The properties of a widget can be set when created and changed later.
•	 A widget can be placed at particular location within the main frame or

subframe.
•	 A function/method can be bound to widgets, such as a button, to help

users interact with the graphical user interface.
•	 A graphical user interface needs to be rendered by calling the

mainloop() method of main frame object.

	 Develop GUI-Based Applications	 483

 https://doi.org/10.15215/remix/9781998944088.01

Exercises
	 1.	 Explore the relationship between Tk and Ttk, and explain what the

following code does:
from tkinter import *
from tkinter.ttk import *

	 2.	 Write a script that will render a window as shown in Figure 9-9.

	 3.	 Write a script that will render a page for login or registration, as
shown in Figure 9-10.

Figure 9-10: Required GUI interface for the project

Figure 9-9: Required GUI interface for the exercise

	484	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

Projects
	 1.	 For this project, develop a GUI-based music player with the module

mixer.music as well as the os and os.path modules for file navigation.
The player should have a panel for the navigation and selection of
music files, as well as buttons to control play, stop, and pause.

	 2.	 For this project, develop a course management system with a
graphical user interface that meets the following requirements:

	 a.	 Define a student class modelling a student, including their name,
student id, and start date in the class, as well as the name of the
tutor assigned to them and a list of their assessment records. Each
assessment record will be a tuple containing a number to identify
the assessment, the weight of the assessment, and the mark, which
should be 0 for a newly added instance to a course.

	 b.	 Define a course class modelling a course, including its course
number (such as comp218), title, and revision number, as
well as the date of its initial offering and a list of its students,
professor(s). Additionally, include an assessment schedule as a list
of assessment items where each assessment item is represented as
a tuple of (id, name, weight) in which the id is the assessment item
id, the name is the assessment name such as assignment 1 or final
exam, and the weight is the percentage of the assessment that will
go toward the final grade.

	 c.	 The GUI program should include and do all of the following:
•	 There should be a button for adding a new course to the system,

which will open a form for input and save the basic course info
(previously mentioned), with the list of students as empty. Note
that when saving the basic course info, the system should be
able to check whether the weight of all the assessment items
makes up 100%.

•	 When a new course is added to the system, a unique binary file
will be created as permanent storage of the course data.

•	 At the start of the system, it should automatically load all
courses from their respective binary files to restore their
internal object representation.

•	 There should be a button to get a list of courses being offered to
students.

•	 A user should be able to select a course from the list.
•	 A user should be able to add students to the selected course.
•	 A user should be able to see a list of students in the course.

	 Develop GUI-Based Applications	 485

 https://doi.org/10.15215/remix/9781998944088.01

•	 A user should be able to select a student from the list.
•	 A user should be able to record an assessment for the selected

student.
•	 The system should be able to automatically calculate and display

the final grade of the student for the course.
•	 A user should be able to see a list of assessments, including the

calculated final grade for the selected student.
•	 There should be a button to shut down the system, but before

shutting down the application, the system must save/pickle each
piece of course data back to its binary file.

	 d.	 Your analysis and design of the system should be well documented
in your assignment report.

	 e.	 Within each of your program files, there should be a docstring at
the beginning stating the name and purpose of the file, as well as
its ownership and revision history. One docstring is required for
each class and function/method class. An end-of-line comment is
desired when deemed necessary.

	 3.	 In Project 1 of Chapter 7, you developed a terminal-based quiz system.
For this project, you are required to develop a GUI-based quiz system
also using the Quiz_item and Quiz classes you wrote in Chapter 7’s
Exercises 7 and 8. The system should have controls/widgets on the GUI
that will allow a user to do the following:

	 a.	 Create a quiz.
	 b.	 Select a quiz and add new quiz items.
	 c.	 Select a quiz and preview all the quiz items.
	 d.	 Select a quiz and execute the quiz by presenting the quiz items one

by one.
	 4.	 Modify the quiz system developed for Project 3 so that after the quiz,

it will present to the user the score as a percentage and the correct
answers to incorrectly answered questions. The quiz items should be
displayed to the user one by one during the quiz. Add a timer to the
quiz so that the entire quiz must be done within a given time. To make
sense of the timer function, you will need to show the total number of
quiz items, the number of items left to be answered, the total amount
of time allocated for the entire quiz, and the amount of time left for
the remaining quiz items.

	 5.	 Further modify the quiz system developed for Projects 3 and 4, so
that not only is the quiz timed, but each quiz item is also timed too,
meaning that the user must answer each quiz question within a given
time. For simplicity, we can assume that the time allocated to each

	486	 Introduction to Computer Programming with Python

 https://doi.org/10.15215/remix/9781998944088.01

quiz item is the same and equal to the total time allocated to the quiz
divided by the total number of questions in the quiz. To make better
sense of both timers now, the time (number of seconds) left for a quiz
question also needs to be displayed, and the quiz will move to the
next question as soon as the question is answered or the timer for the
question has run out.

	Title
	Copyright
	Contents
	Chapter 1 Introduction
	Learning Objectives
	1.1 A Brief History of Computers
	1.2 Fundamentals of Computing and Modern Computers
	Number Systems and the Foundation of Computing
	Computability and Computational Complexity
	The Construction of Modern Computers
	Analog Computers
	Digital Computers
	Mechanic-Based Components
	Vacuum Tube-Based Components
	Transistors
	Integrated Circuits and Very Large-Scale Integrated Circuits

	1.3 Programming and Programming Languages
	1.4 Python Programming Language
	The Development and Implementation of Python
	Advantages of Python
	Resources for Python and Python Education

	1.5 Getting Ready to Learn Programming in Python
	Installing and Setting Up the Python Programming Environment
	Installing Python
	Setting Up a Virtual Environment for a Python Project
	Installing Jupyter Notebook
	Installing Visual Studio Code

	Additional Tools Supporting Software Development in Python
	Buildbot
	Trac
	Roundup

	1.6 Getting a Taste of Programming with Python
	Program Interactively with Python Interactive Shell
	Program with VS Code IDE
	Use Jupyter Notebook Within VS Code to Program Interactively
	Write Documentation in Markdown
	Headings
	Paragraphs
	New Lines
	Italic, Bold, and Strikethrough Texts
	Horizontal Rules
	Keyboard Keys
	Unordered Lists
	Ordered Lists
	Definition Lists
	Links
	Links to Internal Sections
	Images
	Blockquotes
	Tables
	Inline Program / Script Code
	Code Block
	Mathematical Formulas and Expressions
	To-Do List
	Escape Sequence for Special Characters

	Programming Interactively with Jupyter Notebook Within VS Code
	Run Python Programs Outside IDE
	Make the Python Program File Executable
	Errors in Programs

	1.7 Essentials of Problem Solving and Software Development
	Design Algorithms to Solve Problems
	Phases of Software System Development
	Phase 1. Understand the Project
	Phase 2. Analyze the Requirements to Identify Computer--Solvable Problems and Tasks
	Phase 3. Design the System
	Phase 4. Implement the System
	Phase 5. Test the System
	Phase 6. Maintain the System

	1.8 Manage Your Working Files for Software Development Projects
	Set Up Git on Your Computer and Version-Control Locally
	Set Up an Account on GitHub and Version-Control with Remote Repositories

	Chapter Summary
	Exercises
	Projects

	Chapter 2 Essential Building Blocks of Computer Programs
	Learning Objectives
	2.1 Primary Constructs of Computer Programs in Python
	Vocabulary of the Programming Language
	Rules of Naming Identifiers
	Python Naming Conventions
	Names with Leading and/or Trailing Underscores
	Rules of Scope Resolution for Identifiers

	Simple Data Types
	Signed Integers (int)
	Float (float)
	Boolean (bool)
	Complex (complex)

	Compound Data Types
	String (str)
	List
	Tuple
	Set
	Dictionary
	Object

	Variables and Constants
	Variables
	Built-In Constants

	Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Identity Operators
	Sequence Operators
	Membership Operator

	Built-In Functions
	Expressions

	2.2 Higher-Level Constructs of Python Programs
	Structure of Python Programs
	Documentation and Comments
	Simple Statements
	Expression Statement
	Assignment Statement
	print Statement
	input Statement
	assert Statement
	pass Statement
	del Statement
	return Statement
	open Statement
	yield Statement
	raise Statement
	break Statement
	continue Statement
	import Statement
	global Statement
	nonlocal Statement
	help Statement

	Compound Statements
	Code Blocks
	Rules of Indentation
	Rules of Spacing
	if Statement
	if-else Statement
	if-elif Statement
	if-elif-else Statement
	while Statement
	for Statement
	def Statement
	class Statement
	try-except Statement
	with Statement

	Chapter Summary
	Exercises
	Projects

	Chapter 3 Flow Control of Statements
	Learning Objectives
	3.1 Selective with the if Statement
	3.2 Single-branch selective with if Statement
	3.3 Multiple-branch selective with if-elif-… and if-elif-…-else Statements
	3.4 Iterate with for Statement
	3.5 Iterate with the while Statement
	3.6 Iterate with for Versus while
	Chapter Summary
	Exercises
	Projects

	Chapter 4 Handle Errors and Exceptions in Programs
	Learning Objectives
	4.1 Errors in Your Programs
	Exception
	ArithmeticError
	OverflowError
	ZeroDivisionError
	FloatingPointError
	AssertionError
	AttributeError
	BufferError
	EOFError
	GeneratorExit
	ImportError
	IndexError
	KeyError
	KeyboardInterrupt
	MemoryError
	ModuleNotFoundError
	NameError
	NotImplementedError
	OSError
	BlockingIOError
	ChildProcessError
	ConnectionError
	BrokenPipeError
	ConnectionAbortedError
	ConnectionRefusedError
	ConnectionResetError
	FileExistsError
	FileNotFoundError
	IsADirectoryError
	NotADirectoryError
	PermissionError
	ProcessLookupError
	TimeoutError
	RecursionError
	ReferenceError
	RuntimeError
	StopIteration
	StopAsyncIteration
	SyntaxError
	IndentationError
	TabError
	SystemError
	SystemExit
	TypeError
	UnboundLocalError
	UnicodeError
	UnicodeEncodeError
	UnicodeDecodeError
	UnicodeTranslateError
	ValueError

	4.2 Handling Runtime Errors and Exceptions
	Chapter Summary
	Exercises

	Chapter 5 Use Sequences, Sets, Dictionaries, and Text Files
	Learning Objectives
	5.1 Strings
	Methods of Built-In Class str
	Built-In Functions and Operators for Strings
	Constructing and Formatting Strings
	Regular Expressions

	5.2 Lists
	5.3 Tuples
	5.4 Sets
	5.5 Dictionaries
	5.6 List, Set, and Dictionary Comprehension
	List Comprehension
	Set Comprehension
	Dictionary Comprehension

	5.7 Text Files
	Opening and Closing a File
	Write or Append to a File
	Reading from a File
	Update Existing Content of a Text File
	Deleting Portion of a Text File

	Chapter Summary
	Exercises
	Projects

	Chapter 6 Define and Use Functions
	Learning Objectives
	6.1 Defining and Using Functions in Python
	6.2 Parameters and Arguments in Functions
	6.3 Recursive Functions
	6.4 Anonymous Functions: lambda Expressions
	6.5 Special Functions: Mapping, Filtering, and Reducing
	Mapping
	Filtering
	Reducing

	6.6 Generators: Turning a Function into a Generator of Iterables
	6.7 Closures: Turning a Function into a Closure
	6.8 Decorators: Using Function as a Decorator in Python
	6.9 Properties of Functions
	Chapter Summary
	Exercises
	Projects

	Chapter 7 Object-Oriented Programming with Python
	Learning Objectives
	7.1 Introduction to Object-Oriented Programming (OOP)
	Abstraction
	Information Hiding or Data Encapsulation
	Inheritance

	7.2 Defining and Using Classes in Python
	Inheritance: Subclass and Superclass
	Public, Private, and Protected Members of a Class
	Class Methods
	Static Methods
	Class Attributes

	7.3 Advanced Topics in OOP with Python
	Dunder Methods in Class Definition
	Using Class as Decorator
	Built-In Property() Function and Property Decorator
	Creating a New Class Dynamically and Modify a Defined Class or Instance
	Keeping Objects in Permanent Storage

	Chapter Summary
	Exercises
	Project

	Chapter 8 Modules and Packages
	Learning Objectives
	8.1 Creating Modules and Packages
	8.2 Using Modules and Packages
	8.3 Install and Learn About Modules Developed by Others
	8.4 Module for Generating Random Numbers
	Functions for Bookkeeping
	Functions for Generating Random Integers
	Functions for Randomly Generating Float Numbers
	Functions for Randomly Selected Item(s) from Sequences

	8.5 Module for Mathematical Operations
	8.6 Modules for Time, Date, and Calendar
	The Datetime Module
	The Time Module
	The Calendar Module

	8.7 Modules for Data Representation and Exchange
	8.8 Modules for Interfacing Operating Systems and Python Interpreter
	OS Module for Interacting with the Operating System
	The path Submodule from os for Manipulating File Paths
	The sys Module for Interaction Between the Python and Python Interpreter or Python Virtual Machine (

	8.9 Module for Logging Events During Program Runtime
	8.10 Modules for Playing and Manipulating Audio and Video Files
	winsound
	PyGame

	8.11 Modules for Creating and Manipulating Graphics and Images
	Create Graphics with Tkinter
	Manipulate Images with Pillow

	8.12 Modules for Data Analytics
	Chapter Summary
	Exercises
	Projects

	Chapter 9 Develop GUI-Based Applications
	Learning Objectives
	9.1 Terminal-Based Applications Versus GUI-Based Applications
	9.2 Designing and Developing GUI-Based Applications in Python
	Tkinter Module
	tkinter.ttk-Tk-Themed Widgets

	Chapter Summary
	Exercises
	Projects

