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PREFACE 

One or more interactive elements has been excluded from this version of the text. You can view them 

online here: https://ecampusontario.pressbooks.pub/diffeq/?p=4#oembed-1 

About 

This open-access textbook is designed to make the study of Differential Equations accessible and engaging for 
everyone. Differential Equations is a resource primarily intended for engineering students, but it’s versatile and 
beneficial for learners from any discipline. It serves as a comprehensive tool, whether you’re approaching differential 
equations for the first time or revisiting the topic for a refresher. Instead of delving into theorem proofs or formula 
derivations, the focus is on offering a step-by-step guide for solving differential equations. 

Content and Format 

Each chapter in this resource introduces essential concepts and provides illustrative examples with detailed solutions. 
Following these examples, there are ‘Try An Example’ questions to evaluate your comprehension. These questions 
are generated dynamically through MyOpenMath, enabling the generation of similar questions and providing 
immediate feedback to aid your learning process. 

Incorporating interactive elements such as videos, dynamic problems, and graphs, the textbook is optimized for web 
viewing through Pressbook. This enables full interaction with its multimedia content, from watching instructional 
videos to engaging with dynamic graphs and problem sets. While a downloadable PDF version is available, it does not 
include the interactive features found in the web format. 

Sponsor 

This project has received support and funding from the Government of Ontario and eCampusOntario. The views 
expressed in this publication are the views of the author(s) and do not necessarily reflect those of the Government of 
Ontario. 
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ACCESSIBILITY STATEMENT 

The web version of this textbook is fully compliant with the Accessibility for Ontarians with Disabilities Act 
(AODA) requirements and adheres to the Web Content Accessibility Guidelines (WCAG) 2.0, Level AA standards. 
Furthermore, it aligns with the comprehensive checklist provided in Appendix A: Checklist for Accessibility of the 
Accessibility Toolkit – 2nd Edition, ensuring it meets the highest standards of accessibility. 

Designed with interactivity at its core, the textbook incorporates videos, dynamic problems, graphs, and simulations, 
making it ideally suited for online learning through Pressbook. Key accessibility features have been integrated into 
the web version to accommodate diverse learning needs: 

• The content is accessible to users of screen-reader technology, enhancing navigability and usability. 
• Keyboard navigation is supported throughout, allowing users to easily move through content without a 

mouse. 
• Formatting for links, headings, and tables is optimized for screen-reader compatibility. 
• Mathematical equations are presented in AsciiMath and rendered via MathJax to ensure they are accessible. 

The JAWS screen reader is recommended for the best experience in accessing these equations. 
• All images are accompanied by comprehensive descriptions, provided through text within the main content, 

alt-text, or detailed image descriptions. These extended alt-texts ensure that all visual information is conveyed 
clearly to users who rely on screen readers. 

• Color is not used as the sole means of conveying information, ensuring content is accessible to users with color 
vision deficiencies. 

• Video content includes captions to support users with hearing impairments. 
• The option to adjust font size is available, catering to users with visual impairments. 
• While a PDF version of the textbook is offered for download, it’s important to note that this format lacks the 

interactive elements present in the web version, which are central to the enhanced learning experience provided 
by the online resource. 

This holistic approach to accessibility ensures that all learners, regardless of their physical abilities, can effectively 
engage with and benefit from the rich educational content provided in this textbook. 
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Émilie du Châtelet (1706 – 1749). 
Attribution: Maurice Quentin de La 
Tour, Public domain, via Wikimedia 
Common 

PART I 

INTRODUCTION 

Chapter Outline 

This chapter provides an overview of fundamental concepts in differential equations along with an introduction to 
direction fields for first-order differential equations. 

1.1 Introduction: This section covers basic definitions concerning differential equations, including their order, 
various classifications, and the nature of their solutions. 

1.2 Direction Fields: This section briefly introduces direction fields, a tool for visually representing the behavior of 
solutions to first-order differential equations without needing an exact solution formula. 

Pioneers of Progress 

Émilie du Châtelet, born in Paris in 1706, was a woman of exceptional 
intellect and determination who carved her unique path in the male-
dominated world of science and mathematics during the Enlightenment. 
Despite societal norms restricting women’s access to formal education, Du 
Châtelet educated herself in mathematics and physics, often through 
creative means such as disguising herself as a man to attend lectures. Her 
most significant work, a translation and commentary on Isaac Newton’s 
‘Principia Mathematica’, remains the standard French translation to this 
day. In it, she clarified Newton’s ideas and expanded on them, particularly 
in her elucidation of the principle of conservation of energy. Émilie du 
Châtelet’s work laid the groundwork for future developments in physics 
and mathematics, including those in differential equations. Her tenacity 
and brilliance broke through the constraints of her time, paving the way for 
future generations of women in science, and her legacy continues to inspire 
and challenge norms in the scientific community. 

INTRODUCTION  |  5



6  |  INTRODUCTION



1.1 INTRODUCTION 

A. Definitions 

Differential equations (DEs) are mathematical equations that describe the relationship between a function and its 
derivatives, either ordinary derivatives or partial derivatives. In its simplest form, it describes the rate at which a 
quantity changes in terms of the quantity itself and its derivatives. Differential equations are powerful tools in 
mathematics and science as they enable the modeling of a wide range of real-world phenomena across various 
disciplines, including physics, engineering, biology, economics, and many others. Here are a few examples of 
differential equations. 

• Basic population growth: 

• Basic radioactive decay: 

• Newton’s laws of cooling: 

• Second Newton’s law of motion: 

• RL circuits: 

• RLC circuits: 

• Heat equation: 

B. Order of Differential Equations 

The order of a differential equation is the order of the highest derivative that appears in the equation. For example, 
if the highest derivative is a second derivative, the equation is of second order. Here are a few examples: 

      (First Order) 
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      (Second Order) 

     (Third Order) 

     (Second Order) 

The order of a differential equation often determines the methods used to solve it. The order of a differential 
equation is independent of the type of derivatives involved, whether they are ordinary or partial derivatives. 

Throughout this book, our focus will primarily be on first- and second-order differential equations. As you’ll 
discover, the methods used to solve second-order differential equations can often be easily extended to tackle higher-
order equations. 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=5 

C. Ordinary and Partial Differential Equations 

If an equation includes the derivative of one variable with respect to another, such as , then the variable whose 

derivative is taken (in this case, ) is known as the dependent variable. The variable with respect to which the 
derivative is taken (here, ) is called the independent variable. 

An Ordinary Differential Equation (ODE) is a differential equation involving a function of one independent 
variable and its derivatives. All the above examples except the heat equation are ordinary differential equations. 
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A Partial Differential Equation (PDE) is a differential equation that contains unknown multivariable functions 
and their partial derivatives. PDEs are used to formulate problems involving functions of several variables. 

In this textbook, our primary focus will be on ordinary differential equations, which involve functions of a single 
variable. We will only delve into partial differential equations in the final chapter. 

D. Linear and nonlinear Differential Equations 

A linear differential equation is one in which the dependent variable  and its derivatives appear with the first 
power, are not multiplied together, and are not arguments of another function, e.g.,  or . The general 
form of a linear differential equation is 

   

where  is the dependent variable,  is the independent variable,  are functions of  (which can be constants 
or zeros), and  is a function of . 

A nonlinear differential equation is one in which the dependent variable or its derivatives appear to a power 
greater than one, or they are multiplied together, or in any way that does not fit the linear form. For example, 

 is nonlinear since   has a power of 2. 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=5 
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E. Homogeneous and Nonhomogeneous Differential Equations 

A differential equation is termed homogeneous if every term in the equation is a function of the dependent variable 
and its derivatives. For linear differential equations, an equation is homogeneous if the function  on the right-
hand side of the equation is zero. 

   

For example, the linear equation  is homogeneous because all terms are functions of 

and its derivatives, and the equation equals zero. 

A differential equation is nonhomogeneous if it includes terms that are not solely functions of the dependent 
variable and its derivatives. For linear equations, this typically means there is a non-zero function on the right-hand 

side of the equation. For example, the linear equation  is nonhomogeneous because 

of the presence of the term , which is a function of the independent variable  . 

F. Solutions 

A solution of a differential equation is a function that satisfies the equation on some open interval. This means that 
when the function and its derivatives are plugged into the differential equation, the equation holds true for all values 
within the interval. Often there are a set of solutions. 

 

Example 1.1.1: Verify Solution 

Verify   is a solution to   . 

Show/Hide Solution 

First, we find  since it appears in the equation: 

     . 
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By substituting  and  into the left-hand side of the equation, we obtain 

 

 

 

which is equal to the right-hand side of the equation. Since the given  satisfies the equation, it is a solution 
to the equation. 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=5 

Now, consider the differential equation . We can easily solve this equation by integrating: 

 

 

, where  is an arbitrary constant, represents a family of solutions to the given differential equation. 
Each distinct value of  yields a unique particular solution, demonstrating how various initial conditions can be 
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satisfied. This family of solutions, encompassing all possible solutions through the inclusion of the arbitrary constant 
, is known as the general solution of the differential equation. 

An explicit solution explicitly expresses the dependent variable in terms of the independent variable(s). For example, 
 is an explicit solution. On the other hand, an implicit solution, may not directly express the 

dependent variable explicitly but still satisfies the differential equation. An example is . Note that 
finding an explicit solution is not always possible. 

G. Initial Conditions 

Initial condition(s) refer to the values specified for the dependent variable and possibly its derivatives at a specific 
point. Initial conditions are used to determine the specific (or particular) solution of a differential equation from 
the general solution, which typically contains arbitrary constants. For example,  states that at time  
, the value of  is . The number of initial conditions required for a given differential equation depends on the 
order of the differential equation. Generally, an  order differential equation needs  initial conditions. These 
conditions specify the values of the function and its derivatives up to the  order at a particular point. 
For example, a second-order differential equation requires two initial conditions. These are often the value of the 
function and the value of its first derivative at a specified point. 

An Initial Value Problem (IVP) is a differential equation with initial condition(s) that nails down one particular 
solution. A solution might not be valid for all real numbers – there is the “interval of validity” or the domain of the 
solution. 

 

Example 1.1.2: Inital Value Problem 

  ,  is an initial value problem, where   and   can be substituted in the general 
solution of   to find  , which results in the particular solution of . 

12  |  1.1 INTRODUCTION



1.2 DIRECTION FIELDS 

Although having an explicit formula for the solution of a differential equation is useful for understanding the nature 
of the solution, determining where it increases or decreases, and identifying its maximum or minimum values, finding 
such a formula is often impossible for most real-world differential equations. Consequently, alternative methods are 
employed to gain insights into these questions. One effective approach for visualizing the solution of a first-order 
differential equation is to create a direction field for the equation. This method provides a graphical representation 
of the solution’s behavior without requiring an explicit formula. 

We assume that the first-order differential equation  has solutions. For this equation, function 
 gives the slope of the solution curve at any point  in the XY-plane. In a direction field, these slopes 

are represented by small line segments or arrows, drawn at a selection of points in the plane. Each segment has a slope 
equal to the value of  at that point. 

 

Example 1.2.1: Compute FV 

For the equation , the graph of the solution passing through the point  must have a 

slope of . 

The general solution of the equation is . The direction field and some of the solutions 
of the equation for different values for constant   are shown in Fig. 1.2.1. 

 

One or more interactive elements has been excluded from this version of the text. You can view them 

online here: https://ecampusontario.pressbooks.pub/diffeq/?p=89 

Figure 1.2.1 Direction field for and solutions to 
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The arrows in the direction fields represent tangents to the actual solutions of the differential equations. We can use 
these arrows as guides to sketch the graphs of the solutions to the differential equation, providing a visual 
representation of how the solutions behave. By following these arrows, we can visually trace the trajectory of a 
solution over time, which can indicate its long-term behavior. 
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PART II 

FIRST ORDER DIFFERENTIAL 
EQUATIONS 

Chapter Outline 

This chapter delves into first-order differential equations, vital in science and engineering for modeling rates of 
change in numerous phenomena. It covers their structure, solution techniques, and real-world applications in fields 
like population dynamics, thermal processes, and electrical circuits. 

2.1 Separable First-Order Differential Equations: This section addresses separable differential equations, a category 
of first-order equations where each variable can be separated on different sides of the equation. 

2.2 Linear First-Order Differential Equations: This section covers the solution to first-order nonhomogeneous linear 
equations. 

2.3 Exact Differential Equations: This part explains the criteria for an equation to be exact and outlines methods for 
solving these equations. 

2.4 Integrating Factors: This section explores the techniques of utilizing integrating factors to transform a non-exact 
equation into an exact equation that can be solved. 

2.5 Applications of First-Order Differential Equations: The final section illustrates the use of first-order differential 
equations in modeling growth and decay, substance mixing, temperature changes, motion under gravity, and circuit 
behaviors. 
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Mary Cartwright (1900-1998) Credit: 
Anitha Maria S, CC BY-SA 4.0 
<https://creativecommons.org/licenses/
by-sa/4.0>, via Wikimedia Commons 

Pioneers of Progress 

Mary Cartwright, born in 1900 in Aynho, Northamptonshire, 
England, emerged as a pioneering mathematician in an era when 
female academics were a rarity. Her journey in mathematics began at 
Oxford University, leading her to Cambridge, where she initially 
focused on classical analysis. However, it was during World War II, 
while investigating the problem of radio waves and their interference 
patterns, that Cartwright made a groundbreaking discovery. 
Collaborating with J.E. Littlewood, she delved into nonlinear 
differential equations, and their work laid the foundational stones for 
what would later be known as chaos theory. Cartwright’s foray into 
this field produced seminal results, including the Cartwright-
Littlewood theorem and her study of the Van der Pol oscillator, a 
concept critical in the understanding of oscillatory systems. Her 
extraordinary contributions not only advanced the field of 
mathematics but also broke gender barriers, setting a precedent for 
women in STEM. Mary Cartwright’s life was a blend of intellectual 
rigor and quiet resilience, inspiring a legacy that continues to 
encourage mathematicians, especially women, to explore and reshape 
the boundaries of mathematical knowledge. 
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2.1 SEPARABLE EQUATIONS 

Separable equations are a type of first-order differential equations that can be rearranged so all terms involving one 
variable are on one side of the equation and all terms involving the other variable are on the opposite side. This 
characteristic makes them easier to solve compared to other types of differential equations. Often, these equations 
represent nonlinear relationships. 

Understanding and applying integration techniques is crucial for solving separable equations. Therefore, reviewing 
and familiarizing yourself with standard integration methods is recommended before attempting to solve these 
equations. 

Solution to Separable Differential Equation 

A first-order differential equation is called separable if it can be written in the form of 

 

where  is a function of  only and  is a function of  only. The right-hand side is a product of these two 
functions, allowing the separation of variables. 

For example, the equation   is separable as it can be factored in and written as 

. However, the equation   is not separable as the right-hand 

side cannot be factored into a product of the functions of  and . 

 

How to Solve Separable Equations 

To solve the equation , 
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1. Separate variables: multiply both sides by  and by    

2. Integrate both sides:     where  is the merged 

constant of integration. 

3. Solve for : If possible, solve the resulting equation for  to get the explicit solution. Some solutions cannot be 
rearranged and solved for , so the implicit form obtained in Step 2 may be the final solution. 

Watch Video 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=138#oembed-1 

 

Example 2.1.1: Solve a Separable Equation 

Solve the nonlinear equation 

   . 

Show/Hide Solution 

 

1. Multiplying both sides by  and  we get 
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2. Integrating both sides, we get 

 

 

3. Multiplying by 3 and taking the cubic root of both sides, we obtain 

 

By substituting constant , we’ll have the explicit solution 

 

 

Example 2.1.2: Solve a Separable Equation 

Solve the differential equation 

   . 

Show/Hide Solution 

 

This is a separable differential equation as it can be expressed in the form 

1. Multiplying both sides by  and  we obtain 
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2. Integrating both sides, we get 

 

3. Exponentiating both sides yields 

      where 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=138 

When solving nonlinear differential equations using the separable method, it is crucial to consider the interval of 
validity, which is the range of the independent variable, typically , where the solution is defined and behaves 
appropriately. This interval is essential because solutions to nonlinear equations may not be valid across all  values 
due to potential issues like division by zero, undefined logarithms of non-positive numbers, and other undefined 
operations. 

Additionally, due to the nature of nonlinear equations, certain initial conditions might lead to no solution or 
multiple solutions, emphasizing the need to carefully select and verify the range of  over which the solution is 
applicable. The interval of validity is not always immediately apparent from the equation itself and often depends on 
both the specific form of the solution and the initial conditions. 
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Example 2.1.3: Solve a Separable Equation with Initial Condition 

Solve the initial value problem 

   ,      

Show/Hide Solution 

 

Find the general solution: 

After factoring out  in the right-hand side, the equation can be expressed in the form 

 

1. Multiplying both sides by  and  we get 

 

2. Integrating both sides, we get 

 

 

3. Multiplying by 7 and exponentiating both sides, we obtain 

 

By rearranging the equation and substituting , we’ll have the explicit solution 
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Applying the initial condition: 

 

 

 

The solution to the IVP problem is then 

 

There is no restriction on the domain of , and therefore the solution is valid on . 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=138 

 

Example 2.1.4: Solve a Separable Equation with Initial Condition 
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Solve the initial value problem and find the interval of validity of the solution. 

   ,      

Show/Hide Solution 

 

Find the general solution: 

This is a separable differential equation as it can be expressed in the form    

1. Multiplying both sides by  and  we get 

 

2. Integrating both sides, we get 

 

 

3. Multiplying by -1 and taking the reciprocal of both sides, we obtain the explicit solution 

 

Applying the initial condition: 
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The solution to the IVP problem is then 

 

Find the interval of validity: 

To establish the interval of validity for the solution, we need to consider two constraints: 

1. The expression within a square root must be positive. Therefore, the term under the square root,  , 
should be greater than or equal to 0 ( ). 

2. The denominator of any rational function should not equal zero to avoid undefined expressions. Given 
, it implies that . 

The interval of validity is the range of   values that satisfy both conditions:    

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=138 
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Section 2.1 Exercises 

1. Solve the differential equation: 

Show/Hide Answer 

 

2. Solve the differential equation. Express   explicitly as a function of . 

 

Show/Hide Answer 

 

3. Solve the initial value problem:        

Show/Hide Answer 

4. Solve the initial value problem and find the interval of validity of the solution:  

Show/Hide Answer 

Interval of validity: 
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2.2 LINEAR FIRST-ORDER DIFFERENTIAL 
EQUATIONS 

A first-order differential equation is classified as linear if it can be written as 

(2.2.1)   . 

A first-order differential equation that cannot be expressed in that form is called nonlinear. If , the 
equation is said to be homogeneous. In contrast, if  is not zero, the equation is nonhomogeneous. 
Homogeneous equations always have the trivial solution . Solutions that are not zero are referred to as 
nontrivial solutions. 

Some equations may not appear to be linear at first, such as  but can be rearranged 

into the standard linear form: 

. 

Theorem:  If  and  in Equation 2.2.1 are continuous on some open interval (a,b), then there’s a unique 
formula  that is the general solution to the differential equation. 

In our discussions within this text, we will not always explicitly mention the interval  when seeking the general 
solution of a specific linear first-order equation. By default, this implies that we are looking for the general solution 
on every open interval where the functions  and  in the equation are continuous. 

To solve Equation 2.2.1, we start by assuming that the solution can be expressed as   , where  is 
a known solution to the corresponding homogeneous equation (called complementary equation), and  is an 
unknown function we aim to determine. This approach is part of a technique called variation of parameters, which 
is particularly useful for finding solutions to nonhomogeneous differential equations. We will explore this technique 
more thoroughly in the context of second-order differential equations. Substituting the guessed solution into the 
equation yields 

 

By simplifying and rearranging, we obtain 
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Since  is a solution to the complementary equation, , simplifying the expression to 

. Integrating both sides allows us to determine  , leading to the 

solution for Equation 2.2.1 as 

 

 

The term  is called an integrating factor, represented as , hence the solution is often reformulated as 

   

Next, we focus on finding , the solution to the complementary homogeneous equation 

Rearranging this into a separable form , and integrating both sides gives 

 

which leads to . Consequently, , the integrating factor, is the reciprocal of   , resulting in 

. 

Now that we understand the derivation of the solution, let’s outline the solution process in the following steps. 

 

How to Solve Linear First-Order Equations 

1. Write the equation in the standard form. 
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2. Calculate the integrating factor letting the constant of integration be zero for convenience. 

 

3. Integrate the right-hand side equation and simplify where possible. Ensure you properly deal with the constant 
of integration. 

 

Occasionally, the function   may not be integrable in a straightforward manner. In that case, it is necessary to 
retain the function in its integral form instead of attempting to find an explicit solution. 

 

Example 2.2.1: Solve a Linear Equation 

Find the general solution to 

   ,   

Show/Hide Solution 

 

1. First, we multiply by  to put the equation in the standard form: 

 

So   and 

2. Thus, the integrating factor is 
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3. Substituting into the general formula, we obtain 

 

 

 

 

Figure 2.2.1 depicts the sketches of the solutions for various values of constant  for the above example. 

One or more interactive elements has been excluded from this version of the text. You can view them 

online here: https://ecampusontario.pressbooks.pub/diffeq/?p=144 

Figure 2.2.1 Graph of  for different values of constant 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=144 

Theorem – Existence and Uniqueness of solution: If  and  are continuous on , then 

a) The general solution to the nonhomogeneous equation is 

b) If  is an arbitrary point in  then the initial value problem has a unique solution on 

 

Example 2.2.2: Solve an IVP Problem 

Solve the initial problem 

   ,   

Show/Hide Solution 

 

Find the general solution: 

1. First, we rearrange the equation to put it in the standard form: 

 

Therefore,   and  . 

2. The integrating factor is 
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3. Substituting into the general formula for the solution, we obtain 

 

 

 

 

Apply the initial condition to find C: 

 

   

   

   

 

The solution to the IVP problem then is 

 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=144 

Section 2.2 Exercises 

1. Find the simplest integrating factor   of equation   . 

Show/Hide Answer 

 

 

2. Find the general solution of the differential equation:  

Show/Hide Answer 

 

3. Find the general solution of the differential equation:  

Show/Hide Answer 

 

4. Solve the initial value problem:   with the initial condition 

Show/Hide Answer 
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5. Solve the initial value problem:      

Show/Hide Answer 
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2.3 EXACT DIFFERENTIAL EQUATIONS 

A. Introduction 

Exact differential equations are a class of first-order differential equations that can be solved using a particular 
integrability condition. This section will discuss what makes an equation exact, how to verify this condition, and the 
methodology for solving such equations. 

We begin by introducing a foundational theorem followed by an illustrative example to demonstrate its application. 
Following that, we delve into the concept of exact equations and explore a method for solving them. 

Theorem: If function  has continuous partial derivatives  and , then the equation  is 
an implicit solution to the differential equation . 

The theorem can be proven by using implicit differentiation. 

 

Example 2.3.1: Prove a Solution to a Differential Equation 

Show that  is an implicit solution for the given differential equation. 

 

Show/Hide Solution 

 

To apply the theorem effectively, we need to define  as the function given in the solution. Then, we 
show that the terms multiplied by dx and dy are, respectively, the partial derivatives  and  of  with 
respect to   and . This process involves finding these partial derivatives and confirming that they 
correspond to the respective terms in the given differential equation. 

letting    , we find its partial derivatives: 
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We observe that   and  are equivalent to the expressions multiplied by  and   in the equation, 
respectively, which confirms that   is the solution to the given differential equation. 

 

B. Solution to Exact Equations 

We now shift our focus to a broader understanding of exact differential equations. Consider a differential equation 
expressed as 

 

which can also be represented as 

  . 

An equation of this form is called exact if there is a function  such that its partial derivatives  and 
 correspond to   and , respectively. When such a function exists   represents a 
solution to the differential equation. 

For instance, the equations  and  are examples of 

equations in exact form. 

Now the pertinent questions are 

1. How can we determine whether a given differential equation is exact? 
2. If it is exact, how do we find the function  and thus a solution? 

To address the first question, let’s assume the given differential equation is exact, implying the existence of a 
function with partial derivatives   and  that match   and , respectively. If   and 
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its partial derivatives   and   are continuous, then the cross partial derivatives of  must be equal: 

   

or equivalently, 

 

This relationship is summarized in the theorem below. 

 

1) Test for Exactness 

Theorem. Consider that the first derivatives of  and  are continuous within a rectangular 
region . Then, the differential equation 

is exact in  if, and only if, the following condition is satisfied for all  in   : 

 

To address the second question of solving an exact differential equation, follow the step-by-step procedure outlined 
below. 

 

2) Method for Solving Exact Equations 

1*. Find : If the equation is exact, then . Integrate this equation with respect to 

to find part of . Remember to include an arbitrary function of the other variable, in this case . 

 

2. Determine the Arbitrary Function: 
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a. To find , first determine    from the expression obtained for F(x,y) in Step 1. Since  must be equal to 
 from the exact differential equation, set  equal to  and solve for . 

b. After isolating , integrate it with respect to  to obtain . Set the constant of integration to zero. 
Substitute the determined  back into the expression for   to complete it. 

3. Form the general Solution: The solution to  is given implicitly (not solved 
for ) by 

 

where  is a constant. This equation represents the family of curves that are solutions to the differential equation. 

 

*Note: As an alternative method, you might also start by integrating   with respect to  and 

then use similar steps to find  if the integration seems to be easier. 

 

Example 2.3.2: Solve an Exact Equation 

Determine if the equation is exact and if so find the solution:  

Show/Hide Solution 

 

1) Test for Exactness: 

         

    

Since , the equation is exact. 
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2) Find the solution: 

1. We know  . We integrate with respect to : 

          

 

2a. To find , we take the partial derivative of above  with respect to : 

 

Since  must be equal to  from the exact differential equation, set  equal to 

and solve for or determine it by comparing. 

By comparing, we determine that . 

 

2b. By integrating  with respect to y, we obtain .  Setting the constant of integration to zero 
gives , resulting in . 

 

3. Thus, an implicit solution to the differential equation is 

 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=146 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=146 

 

Example 2.3.3: Solve an Exact Equation with Initial Condition 

a) Solve the initial value problem and find the explicit solution . b) Determine the interval of validity. 

      

Show/Hide Solution 

 

a) 

1) Test for Exactness: 

2.3 EXACT DIFFERENTIAL EQUATIONS  |  39

https://ecampusontario.pressbooks.pub/diffeq/?p=146
https://ecampusontario.pressbooks.pub/diffeq/?p=146


         

      

Since , the equation is exact. 

 

2) Find the general solution: 

We have the option to integrate  with respect to  or integrate  with respect to . Since both integrals are 
equally straightforward in this case, we integrate  with respect to  for variety, ensuring we provide examples 
of both methods. 

1. 

 

 

          

It is important to note that we include an arbitrary function of , , since we integrate with respect to 
this time. 

 

2a. To find , we take the partial derivative of above  with respect to : 

 

Since  must be equal to  from the exact differential equation, we set 

equal to  and solve for  or determine it by comparing. 
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2b. By integrating  with respect to , we obtain .  Setting the constant of 
integration to zero gives . Therefore, 

      

 

3. Thus, an implicit solution to the differential equation is 

 

Apply the initial condition: 

 

The solution to the IVP problem then is 

 

We need to find the explicit solution, so we rearrange the equation to solve for : 
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b) Find the interval of validity: 

To establish the interval of validity for the solution, we need to ensure the denominator of the rational 
function is not equal to zero to avoid undefined expressions: 

 

Therefore, the interval of validity for the solution is    . 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=146 

Section 2.3 Exercises 

1. Determine if the equation is exact and if so find the solution: 

. 

Show/Hide Answer 
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2. Solve the differential equation: . 

Show/Hide Answer 

3. Solve the initial value problem. Give the explicit solution: , 

. 

Show/Hide Answer 
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2.4 INTEGRATING FACTORS 

When faced with a non-exact first-order differential equation, the method of integrating factors provides a systematic 
way to transform it into an exact equation that can be solved. This section explores the techniques of utilizing 
integrating factors for solving differential equations. 

Sometimes a differential equation that is not initially exact can be transformed into an exact one by multiplying 
through by an appropriate function, . Consider the equation 

. 

It is not exact because  and  do not match. However, if we multiply the entire equation by a 
function , it becomes 

. 

This equation is now exact as . This modified equation can then be solved using the exact 
equation methods discussed in Section 2.3. 

The function  is known as an integrating factor for the equation if, when multiplied by the equation, it 
results in an exact equation. In formal terms, if multiplying the differential equation by  as in 

makes it exact, then  is the integrating factor. 

 

Method for Finding the Special Integrating Factor 

When you encounter a first-order differential equation in the form  that is neither separable 
nor linear, you can still potentially solve it by finding a special integrating factor. Follow these steps: 

1. Compute partial derivatives: Compute  and   . 

2. Check for exactness: 
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• If  , then the equation is already exact, and no integrating factor is needed. 
• If  , the equation is not exact, and you may proceed to find an integrating factor. 

3. Find a special integrating factor: 

• Compute the expression      (i). If (i) is a function of   only, then an integrating factor is given 

by   . 

• If (i) is not a function of  only, compute the expression    (ii). If (ii) is a function of  only, 

then an integrating factor is given by  . 

4. Apply the integrating factor: Multiply the entire differential equation by the integrating factor   to transform 
it to an exact equation. 

5. Solve the exact equation: Once the equation is made exact, solve it using the method outlined in Section 2.3 
for exact equations. 

 

Example 2.4.1: Solve an Equation Using Integrating factors 

Solve 

Show/Hide Solution 

 

A quick inspection shows that the equation is neither separable nor linear nor exact. Therefore, we check if a 
special integrating factor exists: 

 

Since (i) is the function of only , an integrating factor is given by 
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Multiplying  by the original differential equation, we obtain the exact equation 

Solving the equation using the exact method, we get the implicit solution 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=148 

Section 2.4 Exercises 

1. Find an integrating factor for the following equation: 

Show/Hide Answer 
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2. For the given differential equation, a) Determine the integrating factor. b) Find a general solution. 

 

Show/Hide Answer 

a) 

b) 

 

3. Solve the differential equation: 

Show/Hide Answer 

 

4. For the given differential equation, a) Determine the integrating factor. b) Find a general solution. 

 

Show/Hide Answer 

a) 

b) 
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2.5 APPLICATIONS OF FIRST-ORDER ODE 

A. Introduction 

Mathematical modeling is the process of translating real-world problems into mathematical language. This involves 
formulating, developing, and rigorously testing models to represent and solve complex issues. Differential equations, 
including both ordinary and partial types, are instrumental in these models. They relate some function with its 
derivatives, representing rates of change. This makes them particularly suited to modeling dynamic systems where 
understanding how things evolve is crucial. 

In this section, we will explore how first-order differential equations are applied across various domains, including 
growth and decay processes, substance mixing, Newton’s law of cooling, the dynamics of falling objects, and the 
analysis of electrical circuits. 

B. Population Growth and Decay 

One of the most common applications of first-order differential equations is in modeling population growth or 
decline. The models provide insights into how populations change over time due to births, deaths, immigration, 
and emigration. The simplest model for population growth is the Exponential Growth Model, which assumes an 
unlimited resource environment. It is represented by the differential equation: 

 

where  is the population size, and   is the constant of proportionality. The solution to this separable differential 
equation is 

 

where  is the initial population at time  . 

If   the population decays exponentially and if  the population grows exponentially. This model 
implies that the population grows continuously and without bounds, which is unrealistic in the long term for any 
population due to limitations in resources, space, etc. However, it is a good approximation for populations with no 
significant constraints on resources or for short-term predictions. 
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When dealing with problems where there are different rates of population entering and exiting a region, the key is to 
understand that the overall rate of change of the population is the result of the difference between the rate of 
population entering (immigration or birth) and the rate of population leaving (emigration or death). This can be 
represented as a differential equation that models the net change in population over time. The general approach is 
to set up a balance equation reflecting these rates: 

 

Here  is the rate at which the population enters the region, and  is the rate at which the population exits 
the region. 

 

Example 2.5.1: Population Change 

A fish population in a lake grows at a rate proportional to its current size. Without outside factors, the fish 
population doubles in 10 days. However, each day, 5 fish migrate into the area, 16 are caught by fishermen, and 
7 die of natural causes. Determine if the population will survive over time and, if not, when the population will 
become extinct. The initial population is 200 fish. 

Show/Hide Solution 

 
Let P(t) be the population of fish at time t (in days). The growth rate is proportional to the population, 
which can be represented as rP(t), where r is the proportionality constant. The net migration and death rates 
contribute as constants to the population rate of change. The equation for the net change in population per 
day is: 

 

 

So, the differential equation with the initial condition becomes: 

     

Before we solve this IVP, we need to find   using the information about doubling the population in 10 days 
without outside factors. If the initial population is 200, then in 10 days it will become 400. 
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The general solution to this separable differential equation is 

 

Applying the initial condition, we obtain 

 

 

 

 

Now, we return to the original differential equation. 

     

This is a linear differential equation. we write it in standard form: 

  

The integrating factor is 

 

The general solution is 
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Applying the initial condition gives 

 

 

Thus the specific solution is 

 

The exponential term has a positive exponent and thus grows exponentially. However, since the coefficient of 
the exponential term is negative, the whole population declines and becomes extinct eventually. To 
determine when the population will become extinct, we set  and solve for  . 

 

    days 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=150 
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C. Mixing Problems 

Mixing problems involve combining substances or quantities and observing how they interact over time. This can 
refer to pollutants in a lake, different chemicals in a reactor, or even sugar dissolving in coffee. The common element 
in these scenarios is the change in concentration of substances in a mixture over time. Through differential equations, 
specifically first-order ones, we can model and solve these dynamic situations. 

In mixing problems,  represents the substance amount dissolved in the fluid, changing over time at a rate (

). The rate is influenced by the inflow and outflow of the substance. 

For a typical mixing problem, you might have a tank that contains a certain amount of fluid into which another 
substance is being mixed. The concentration of the substance in the tank changes as more of the substance is added 
or removed. The general first-order differential equation for such a scenario is similar to what we discussed for the 
population change of a region. 

 

Here  is the rate at which the substance enters the system, and  is the rate at which the substance 
leaves the system. 

 

Example 2.5.2: Mixing Problem with Same Rates of Inflow and Outflow 

Consider a tank holding 2000 liters of fresh water. Starting at , water containing 0.1 kilograms of salt per 
liter is poured into the tank at the rate of . The mixture is kept uniform by stirring and is drained 
from the tank at the same rate it is filled. a) Formulate a differential equation for the quantity of salt in the tank 
( ) at any given time, and solve the equation to determine . b) Determine when the concentration of 
the salt in the tank will reach . 

Show/Hide Solution 

 

Given information 
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• The volume of water in the tank ( ) is constant since water inflow and outflow are equal: 

• Water inflow rate 
• Water outflow rate 
• Concentration of incoming salt: 

a) Our task is to determine the rate at which salt enters the tank ( ) and the rate at which it leaves the 
system. Remember that the rate at which water enters and leaves the tank is different from the rate at which 
salt enters and leaves the tank. 

 

The rate at which salt enters the tank is the product of the salt concentration of the incoming water and the 
water inflow rate: 

 

The rate at which salt leaves the tank is the concentration of salt in the tank (ratio of the salt in the tank to 
the volume of water in the tank), multiplied by the water outflow rate. At any time, the quantity of salt in the 
tank is . 
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The tank initially has pure fresh water without any salt, so . Therefore, the differential equation 
with an initial condition becomes 

 ,  

The differential equation is separable (and linear) and can be solved easily. The solution to the IVP is 

 

This equation gives us the amount of salt in the tank  in kilograms at any time t after the process starts. 

b) To determine when the concentration of salt in the tank reaches , we first need to find an 
equation for the concentration in terms of time. Concentration is the ratio of the salt quantity and the 
volume of the water. The volume remains constant at 2000 liters. Therefore, the concentration  at time 
t is the amount of salt divided by the total volume : 

 

 

 

Now, we need to solve for t when . 
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The concentration of salt in the tank will reach 0.04 kg/L approximately at  minutes after the 
process starts. 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=150 

D. Newton’s Law of Cooling 

Newton’s Law of Cooling describes the rate at which an object’s temperature changes when it is exposed to a 
surrounding environment with a different, constant temperature. The fundamental principle is that the rate of 

change of temperature ( ) is proportional to the difference between the object’s temperature ( ) and the 

surrounding temperature ( ). Therefore, the differential equation representing Newton’s Law of Cooling is 

 

Here,  represents the object’s temperature at any time , is the constant surrounding temperature,  is a positive 
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constant dependent on the characteristics of the object and its environment, and  is the rate of change of 

temperature. When the initial temperature is denoted by , the initial value problem is 

 

This differential equation is separable (and linear), which has the solution 

(2.5.1)  

The negative sign in the exponent indicates that the temperature difference between the object and its surroundings 
decreases exponentially over time. This formula applies whether the object is initially hotter or cooler than the 
surroundings, depicting both cooling and warming processes under the law’s assumptions. 

 

Example 2.5.3: Newton’s Law of Cooling 

Consider a microprocessor that operates in an environment where the room temperature is constant at 25 ◦C. 
After a long period of operation, the microprocessor’s temperature is at 75 ◦C. Once the device is turned off, the 
microprocessor begins to cool down to room temperature. Suppose the characteristic cooling constant  for this 
scenario, which depends on the heat transfer properties of the microprocessor and its cooling system, is 0.07/min. 
a) Find the equation of the microprocessor’s temperature. b) What will be the temperature of the microprocessor 
10 minutes after the device is turned off? c) How long will it take for the microprocessor to cool down to 35 ◦C? 

Show/Hide Solution 

Given information: 

• Surrounding temperature: 
• Initial temperature of the microprocessor: 
• Cooling constant: 

a) Plugging the given values into the solution to Newton’s Law of Cooling equation, Equation 2.5.1, gives the 
formula for . 
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b) To find the temperature of the microprocessor 10 minutes after the device is turned off, plug in 
minutes into  . 

 

 

c) To find the time when the temperature is 35 ◦C, rearrange the formula when  . 

 

 

 minutes 

It takes 23 minutes for the microprocessor to cool down to 35 ◦C. 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=150 
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E. Dynamics of Falling Objects 

The dynamics of falling objects represent a classic example of how differential equations model real-world situations. 
This phenomenon is directly connected to Newton’s Second Law of Motion, which states that the force acting on 
an object is equal to the mass of the object times its acceleration. 

In this equation, the force may depend on time ( ), displacement ( ), and velocity ( ). To focus on first-order 
differential equations, we typically consider problems where  doesn’t depend on , as inclusion often leads to 
higher-order equations. Given that the object’s acceleration ( ) is , the equation for Newton’s Second Law 
of Motion becomes 

 . 

Solving this equation yields  as a function of time. 

Basic Model 

The simplest model of a falling object applies Newton’s Second Law by considering gravity as the only force acting 
on the object. Here, the force due to gravity is   , leading to the differential equation 

   

where  is the acceleration due to gravity, and the mass is assumed to be constant. This model assumes no air 
resistance and that the gravitational field is uniform. The approximate value of   are   (metric unit) 

or  (British unit). Depending on the direction convention you set for a problem, the sign of 

changes. For example, if you decide that the upward direction is positive, then since the force due to gravity is 
downward the equation is simplified to 

   

Including Air resistance 

In reality, as an object falls, it encounters air resistance, which opposes the motion of the object. The net force on the 
object then becomes a combination of gravity and air resistance, modifying the equation to 

58  |  2.5 APPLICATIONS OF FIRST-ORDER ODE



(2.5.2)  

where  is the force of air resistance. 

The force of air resistance is often proportional to the velocity of the object and thus , where  is a 
constant of proportionality (a positive value) that represents the coefficient of air resistance. When solving problems 
involving forces and motions, it is important to ensure consistent conventions for positive and negative directions. 

As the object falls, air resistance increases with velocity until it balances the gravitational force. At this equilibrium 
point, the net force is zero, and the object no longer accelerates, reaching a constant velocity, known as terminal 
velocity. 

 

Example 2.5.4 Falling Object with Air Resistance 

Consider an object that has a mass of 25 kg and is initially moving downward with a velocity of -29 m/s. The 
object is falling through the atmosphere, which exerts a resistive force against its motion. This resistive force is 
proportional to the object’s velocity. Specifically, when the object’s velocity is 2 m/s, the resistive force is known 
to be 20 N. a) Write the differential equation that describes the motion of the object in terms of its velocity and 
time. b) Solve the differential equation to find the velocity of the object as a function of time, . c) Determine 
the terminal velocity of the object 

Show/Hide Solution 

Given information 

• mass of the object: 
• Initial velocity: 
• The acceleration due to gravity: 

a) Downward velocity is expressed as a negative value. Therefore, the upward direction is positive and the 
downward direction is negative. 
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Two primary forces acting on the object are gravity and air resistance. The force of gravity always acts 
downward, which we consider negative in our coordinate system, and is given by . 

On the other hand, air resistance acts in the opposite direction of the object’s motion, providing an upward 
force when the object is falling downward. This force is represented as . The negative sign in 
ensures that the air resistance force always opposes the motion: it is positive (upward) when the object is falling 
(  is negative), and negative (downward) when the object is moving upward (  is positive). 

 

Combining these forces, the equation of motion is 

 

 

we can use the information about the magnitude of air resistance to be  when velocity is  to find 
: 

k=20/2=10\  &quot;kg&quot;//&quot;s&quot; 

Plugging in the values with initial condition  , we obtain the IVP 

 

b) This is a separable (and linear) differential equation. The general solution of the equation is 
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Applying the initial condition yields 

c) The terminal velocity is 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=150 

F. Electrical Circuits: RL and RC 

Electrical circuits are integral to technological advancements, functioning based on the interplay of components such 
as resistors, inductors, and capacitors. In this section, we specifically discuss the application of first-order differential 
equations to analyze electrical circuits composed of a voltage source with either a resistor and inductor (RL) or a 
resistor and capacitor (RC), as illustrated in Fig. 2.5.1 Circuits containing both an inductor and a capacitor, known 
as RLC circuits, are governed by second-order differential equations, a topic we will revisit in the following chapter. 

 

2.5 APPLICATIONS OF FIRST-ORDER ODE  |  61

https://ecampusontario.pressbooks.pub/diffeq/?p=150


(a)                      (b)  

Figure 2.5.1 (a) RL Series circuit and (b) RC series circuit 

Kirchhoff’s laws—current law and voltage law—form the foundational principles governing electrical circuits. 
Kirchhoff’s current law states that the total current entering a junction must equal the total current leaving, implying 
that the algebraic sum of currents in a node is zero. Kirchhoff’s voltage law asserts that the algebraic sum of all voltages 
around any closed loop in a circuit must equal zero. 

Kirchhoff’s current law implies that the same current passes through all elements in circuits in Figure 2.5.1. To apply 
Kirchhoff’s voltage law, understanding the voltage drop across each component is crucial: 

a) Ohm’s law dictates that the voltage drop   across a resistor is proportional to the current I flowing through it, 
expressed as , where    is the resistance. 

b) Faraday’s law, complemented by Lenz’s law, describes that the voltage drop  across an inductor is proportional 

to the rate of change of current, given as , where  is the inductance. 

c) The voltage drop  across a capacitor is proportional to the electric charge q stored on it, represented as 

, with   being the capacitance 

RL Circuit Model 

In this section, we derive the mathematical model for an RL circuit as shown in Figure 2.5.1, while the model 
derivation for an RC circuit is left as an exercise. Consider   to be the voltage source for the RL circuit. By 
applying Kirchhoff’s voltage law, we have 
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where  is the voltage across the inductor and  is the voltage across the resistor. Substituting 

these into the equation yields a first-order linear differential equation 

 

or in the standard form 

 

To solve this linear differential equation. we use an integrating factor 

 

The general solution for the current    is then: 

(2.5.3) 
 

With specific  and an initial condition, such as , one can determine the current I(t) using the above 
equation. Once  is known, the voltage across the resistor and inductor can be determined. 

 

Example 2.5.5: RL Series Circuit 

Consider an RL circuit with a resistor of  and an inductor of , powered by a voltage 
 voltage source. Initially, the current through the resistor, , is 0 A. Calculate the 

following: a) The current  in the circuit as a function of time. b) The voltage across the inductor as a 
function of time. c) The voltage across the resistor as a function of time. 

Show/Hide Solution 

 

Given information: 

2.5 APPLICATIONS OF FIRST-ORDER ODE  |  63



• Resistor: 
• Inductor: 
• Voltage source: 
• Initial condition: 

a)  Finding the current 

The differential equation for an RL series circuit using Kirchhoff’s voltage law is 

   

 

Plugging in the given values, we obtain 

 

This is a first-order linear non-homogeneous differential equation. 

Equation 2.5.3 gives the solution to this differential equation. 

 

The right-hand side involves an integral with the exponential and sinusoidal terms that is typically solved using 
integration by parts. We only provide the final solution of the integral, leaving the detailed integration steps as 
an exercise for further exploration. 

 

Which further simplifies to 
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Applying the initial condition yields 

 

 

Therefore, the current is 

 

b) Finding the voltage across the inductor 

To find the voltage across the inductor, we first need to differentiate  . 

 

Therefore, the voltage across the inductor is 

 

 

 

c) Finding the voltage across the resistor 

Similarly, the voltage across the resistor is found by 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=150 

Section 2.5 Exercises 

1. A tank initially contains a solution of 11 kilograms of salt in 2400 liters of water. Water with 0.2 kilograms of 
salt per liter is added to the tank at 11 L/min, and the resulting solution leaves at the same rate. Let 
denote the quantity (kg) of salt at time   (min). a) Write a differential equation for  . b) Find the quantity 

  of salt in the tank at time . c) Determine when the concentration of the salt in the tank will reach 0.1 
kg/L. Round to the nearest minute. 

Show/Hide Answer 

a) 

b) 

c) 146 min 

2. A fluid initially at 135 ◦C is placed outside on a day when the temperature is -30 ◦C, and the temperature of the 
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fluid drops 30 ◦C in one minute. Let    denote the temperature, in Celsius, at time  , in minutes. (a) Find 
the temperature    of the fluid for  . (b) Find the temperature of the fluid 15 minutes after it is 
placed outside. Round your answer to two decimal places. 

Show/Hide Answer 

a)    

b)  

3. An object with mass    has an initial downward velocity of  . Assume that the atmosphere 
exerts a resistive force with a magnitude proportional to the speed. The resistance is  when the velocity is 

. Use  . a) Write a differential equation in terms of the velocity , and acceleration . 

b) Find the velocity  of the object. 

Show/Hide Answer 

a) 

b)    

4. Suppose an RL circuit with a    resistor and a   inductor is driven by the voltage  . If the 

initial resistor current is  , find the current  , the voltages across the inductor   and the resistor 
 in terms of time  . Find the current   . 

Show/Hide Answer 
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PART III 

SECOND ORDER DIFFERENTIAL 
EQUATIONS 

Chapter Outline 

This chapter discusses linear second-order differential equations, a fundamental class of equations in the study of 
mathematics, physics, and engineering. It explores their structure and techniques for solving them and discusses how 
they model real-world systems such as mechanical vibratory systems and electrical circuits. 

3.1. Homogeneous Equations:  This section discusses homogeneous linear second-order differential equations, 
where there is no external forcing function. The general solution involves finding two linearly independent solutions, 
which form the foundation of all possible solutions. 

3.2 Constant Coefficient Equations: This section focuses on constant coefficient homogeneous equations. 

3.3. Non-Homogeneous Equations: This section explores nonhomogeneous equations, which model systems 
influenced by external forces or inputs. 

The chapter proceeds to introduce various methods for solving equations with variable coefficients and 
nonhomogeneous structures. 

3.4 Method of Undetermined Coefficients: This method is effective for non-homogeneous equations with constant 
coefficients. 

3.5 Variation of Parameters: A versatile technique for more general cases. 

3.6 Reduction of Order: Useful for finding a second solution when one solution is already known. 

3.7 Cauchy-Euler Equation: Specifically for equations with variable coefficients in a particular form. 

The chapter concludes by applying these concepts to physical and engineering scenarios. 

3.8 Mechanical Systems:  This section examines the behavior of spring-mass systems, including free, forced, damped, 
and undamped vibrations. 
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Elbert Frank Cox (1895-1969). 
Attribution: Unknown Author, 
Public domain, via Wikimedia 
Commons 

3.9 Electrical Circuits: This section discusses the analysis of RLC circuits, which incorporate a resistor, inductor, and 
capacitor. 

Pioneers of Progress 

Elbert Frank Cox, born in 1895 in Evansville, Indiana, holds a monumental 
place in history as the first African-American to earn a Ph.D. in mathematics. 
Overcoming the pervasive racial barriers of his time, Cox’s unwavering 
determination led him to earn his doctoral degree from Cornell University in 
1925. His groundbreaking dissertation, “The Polynomial Solutions of the 
Difference Equation,” laid the foundation for significant advancements in the 
field of differential equations. Cox’s academic journey was not just a personal 
achievement but a beacon of inspiration, symbolizing the potential for 
extraordinary accomplishment despite systemic obstacles. After earning his 
Ph.D., he dedicated his life to education, teaching at historically black colleges 
and universities and mentoring the next generation of mathematicians. Elbert 
Frank Cox’s legacy transcends his mathematical contributions; it is a testament 
to resilience and intellectual brilliance in the face of societal challenges, paving 
the way for future scholars of diverse backgrounds. 
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3.1 HOMOGENEOUS LINEAR SECOND-ORDER 
DIFFERENTIAL EQUATIONS 

A linear second-order differential equation takes the form: 

(3.1.1) 

Here,  is the function we seek, and , , and  are known functions. When referring to non-
homogeneous equations,  is known as the forcing function, representing external forces or influences. We start 
with the homogeneous case where , and later, we will explore the non-homogeneous case. 

(3.1.2)    

Unique Solution Theorem. If  and  are continuous on an open interval , then the initial value 
problem has a unique solution within this interval. 

Linear Combination Theorem. Suppose  and  are two solutions to the homogeneous Equation 
3.1.2 on an open interval . Then any linear combination  is also a solution over the same 
interval. 

The set of solutions,  and , forms a fundamental set or basis for the solution space if they are linearly 
independent. This implies any solution to Equation 3.1.2 can be expressed as a linear combination of  and . 
The Wronskian, W, is crucial in determining their linear independence. For ,  and , the Wronskian at any  in 

 must be non-zero to confirm independence: 

(3.1.3) 
    

Theorem on Linear Independence. If  and  are continuous on   and  and  are solutions, 
then they are linearly independent on  if and only if the Wronskian W does not equal zero anywhere on 
. 

Abel’s Theorem. If  and  are continuous on , and  is any point in , then the Wronskian 
 is given by: 
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Abel’s Theorem is a powerful tool for analyzing the solutions’ behavior across an interval, affirming that if the 
Wronskian is non-zero at one point and  is continuous, then the Wronskian remains non-zero across the entire 
interval. 

Equivalence Theorem: For  and  continuous on , and given two solutions  and  of Equation 
3.1.2, the following are equivalent: 

• The general solution of the equation on  is 
•    is a fundamental set of solutions of the equation on 
•    is linearly independent on 
• The Wronskian of  is nonzero at some point in 
• The Wronskian of  is nonzero at all points in 

With these foundational theorems, we have the necessary tools to start solving homogeneous linear second-order 
differential equations and prepare for the complexities of non-homogeneous cases. 

 

Example 3.1.1: Calculate Wronskian and Find a General Solution Given two Solutions 

Two solutions to the differential equation   are  ,  . 

a) Find the Wronskian of the solutions and determine if they are linearly independent. 

b) Write the general solution to the differential equation. 

c) Find the solution satisfying the initial conditions  . 

Show/Hide Solution 

 

a) To find Wronskian, we use Equation 3.1.3. We first need to find the first derivatives of the solutions 
and  . 
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   for any 

The Wronskian  is never equal to zero for any value of , which means the solutions are 

linearly independent on the interval . 

b) Since the solutions are linearly independent, we can express the general solution to the differential equation 
as a combination of these solutions. 

 

 

Here,  and  are constants that will be determined based on initial conditions or specific requirements of 
the problem. 

c) We apply the initial conditions to find constants  and . 

Applying the initial condition to : 

 

 

 

Applying the initial condition to : 

 

 

 

 

3.1 HOMOGENEOUS LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS  |  73



 To determine  and , we need to solve the following system of two equations and two unknowns: 

 

Solving the system yields 

      

Therefore the solution to the initial value problem is 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=167 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=167 

Section 3.1 Exercises 

1. Compute the Wronskian of the functions   and . Determine if the functions are 

linearly independent for all real numbers. 

Show/Hide Answer 

 ; the functions are linearly independent because  for all real numbers. 

2. Two solutions to the equation   are  ,  . 
a) Find the Wronskian. 
b) Find the solution satisfying the initial conditions  . 

Show/Hide Answer 

a) 

b) 

3. Two solutions to the equation   are  ,  . 

a) Find the Wronskian. 
b) Find the solution satisfying the initial conditions  . 

Show/Hide Answer 

a) 

b) 
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3.2 CONSTANT COEFFICIENTS 
HOMOGENEOUS EQUATIONS 

We first consider the homogenous equation with constant coefficients: 

(3.2.1)  

To solve this, we recognize that a solution to this equation must have the property that its second derivative can be 
expressed as a linear combination of the first derivative and the function itself, suggesting that the solution form is 

. Substituting  and its derivatives into Equation 3.2.1 leads to 

 

Since   is never zero for any real number , we can conclude 

(3.2.2)       

Equation 3.2.2 is known as the auxiliary equation or characteristic equation (characteristic polynomial) of 
the homogeneous Equation 3.2.1. To determine the general solution of Equation 3.2.1, we solve for  in the 
characteristic equation. 

The roots of the characteristic equation determine the nature of the solution, leading to three possible cases based on 
whether the roots are real and distinct, real and repeated, or complex conjugate. 

 

The General Solution to the Second-Order Linear DE with Constant Coefficients 

Case 1: Two Distinct Real Roots 

If the characteristic equation (Equation 3.2.2) has two real roots  and   , then the solutions are 
and . The general solution is the linear combination of these two solutions: 

 

Case 2: Repeated Root 
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If the characteristic equation has a repeated root , then the solutions are  and . The 
general solution is the linear combination of these two solutions: 

 

Case 3: Complex Conjugate Roots 

If the characteristic equation has complex conjugate roots of the form , then the solutions can 
be represented using Euler’s formula as . The real-valued general 
solution derived from these complex solutions is 

 

In this form,  represents the exponential growth or decay, and the combination of cosine and sine functions 
represents the oscillatory behavior due to the complex part of the roots. 

 

Example 3.2.1: Find the General Solution – Case 1 (Two Real Roots) 

Find the general solution to the differential equation 

 

Show/Hide Solution 

 

The auxiliary equation is 

The equation is factorable to 

 

The roots are  and   . This is Case 1 since the roots are real and distinct. Therefore, the 
general solution is the linear combination of  and  : 
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Example 3.2.2: Find the Solution to IVP – Case 1 (Two Real Roots) 

Solve the following initial value problem (IVP). 

    

Show/Hide Solution 

 

Finding the general solution: 

The auxiliary equation is 

 

The equation is factorable to 

 

The roots are  and   . This is Case 1 since the roots are real and distinct. Therefore, the 
general solution is the linear combination of  and  : 

 

Applying the initial conditions: 

Applying the initial condition to  : 
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Applying the initial condition to  : 

 

 

 

 

To determine   and  , we solve the following system of two equations and two unknowns: 

 

Solving the system yields 

      

Therefore the solution to the initial value problem is 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=169 
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Example 3.2.3: Find the General Solution – Case 2 (Repeated Roots) 

Find the general solution to the differential equation 

 

Show/Hide Solution 

 

The auxiliary equation is 

 

The equation is factorable to 

 

The equation has a repeated root . This is Case 2, the repeated root. Therefore, the general solution is 
the linear combination of  and   : 

 

 

Example 3.2.4: Find the Solution to IVP – Case 2 (Repeated Roots) 

Solve the following initial value problem (IVP). 

        

Show/Hide Solution 

 

Finding the general solution: 
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The auxiliary equation is 

 

The equation is factorable to 

 

The equation has a repeated root . This is Case 2, the repeated root. Therefore, the general 
solution is the linear combination of  and  : 

 

Applying the initial conditions: 

Applying the initial condition to  : 

 

 

 

Applying the initial condition to  : 

 

 

 

 

Plugging in  yields . 

Therefore the solution to the initial value problem is 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=169 

 

Example 3.2.5: Find the General Solution – Case 3 (Complex Roots) 

Find the general solution to the differential equation 

 

Show/Hide Solution 

 

The auxiliary equation is 

 

Using the quadratic formula, we obtain 

   

The equation has complex conjugate roots with a real part  and an imaginary part . This is 
Case 3 and thus the general solution is 
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Example 3.2.6: Find the Solution to IVP – Case 3 (Complex Roots) 

Solve the following initial value problem (IVP). 

        

Show/Hide Solution 

 

Finding the general solution: 

The auxiliary equation is 

 

Alternative to using the quadratic formula that we used in the previous example, we can find the roots by 
completing the square. For variety, we use completing the square this time. 

 

 

 

The equation has complex conjugate roots with a real part  and an imaginary part . This is 
Case 3 and thus the general solution is 

 

Applying the initial conditions: 

Applying the initial condition to  : 
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Applying the initial condition to  : 

   

 

 

Plugging in  yields . 

Therefore the solution to the initial value problem is 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=169 

Section 3.2 Exercises 

1. Solve the given initial value problem. 

         

Show/Hide Answer 
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2. Solve the given initial value problem. 

         

Show/Hide Answer 

3. Solve the given initial value problem. 

         

Show/Hide Answer 
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3.3 NONHOMOGENEOUS LINEAR 
SECOND-ORDER DIFFERENTIAL EQUATIONS 

A. General Solution of Nonhomogeneous Equations 

In this section, we explore the nonhomogeneous linear second-order differential equation of the form: 

(3.3.1)  

Uniqueness Theorem. If   and   are continuous on an open interval   and  is in the interval, then 
the initial value problem has a unique solution within . 

To solve Equation 3.3.1, we first need the solutions to the associated homogeneous equation 

(3.3.2)    

We refer to Equation 3.3.2 as the complementary equation for Equation 3.3.1. 

General Solution Theorem.  is a particular solution to the nonhomogeneous Equation 3.3.1, and  is a 
fundamental set of solutions to the complementary Equation 3.3.2, then the general solution of the nonhomogenous 
equation is 

(3.3.3)   . 

Here  represents the solution to the associated complementary equation, commonly referred to as 
. Therefore, Equation 3.3.3 often expressed as 

 

B. Superposition Principle 

The superposition principle is a powerful tool that allows us to simplify solving nonhomogeneous equations. It 
works by dividing the forcing function into simpler components, finding a particular solution for each component, 
and then adding those solutions together to form a complete solution to the original equation. 

Theorem. If  is a particular solution to the differential equation 
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and  is a particular solution to the differential equation 

Then for any constants  and ,  is a particular solution to the differential equation 

 

 

Example 3.3.1: Superposition Principle 

Given  is a particular solution to  (i) and  is a 

particular solution to  (ii), find a particular solution to 
 (iii). 

Show/Hide Solution 

• The forcing function of equation (i): 
• The forcing function of equation (ii): 

• The forcing function of equation (iii): 

Looking at the right-hand side of the equations, we notice that . Therefore, 
the same linear combination of  and   yields a particular solution for equation (iii): 

 

 

 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=172 

Section 3.3 Exercises 

1. Given    is a particular solution to  , and 

 is a particular solution to  , use the method of superposition to find a particular 
solution to 

 

Show/Hide Answer 

 

2. Given    is a particular solution to  , and 

 is a particular solution to  , use 

the principle of superposition to find a particular solution to 

 

Show/Hide Answer 
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3.4 METHOD OF UNDETERMINED 
COEFFICIENTS 

The method of undetermined coefficients is a technique for finding particular solutions, , to nonhomogeneous 
linear differential equations with constant coefficients 

 

To apply this method, we first identify the form of the forcing function  and then make an educated guess of 
 with undetermined coefficients. This guess is substituted back into the equation to solve for these coefficients. 

This method is useful when the forcing function, , is a relatively simple function, such as a polynomial, 
exponential, sine, or cosine function, or a linear combination of these. 

 

Example 3.4.1: Form of the Guess of Particular Solution 

Polynomial Forcing Functions: For , we don’t know a particular 
solution. However, by looking at , we wonder what kind of function would leave a polynomial, guess 

 and solve for . 

 

Exponential Forcing Functions: For  , we guess . If  was 

, we would multiply our guess by : . 

 

Adjusting the Guess Based on Complementary Equation Solutions: If the complementary equation has 
a solution matching part of , adjust your guess accordingly. For example, if , start 

with . If  is a solution for the homogeneous equation, use 

. For a repeated root, use . 
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Note that we use  with a capital ‘Y’ to represent our initial guess for the particular solution. In contrast, 
with a lowercase ‘y’ is used to denote the actual particular solution after determining the coefficients. 

 

Example 3.4.2: Solve an Equation with Exponential Forcing Function 

Find the general solution to the following equation. 

 

Show/Hide Solution 

 

Finding the complementary solution: 

While it’s not necessary to know the complementary solution to find the particular solution, knowing it is 
beneficial. Understanding the complementary solution helps us make better initial guesses for the particular 
solution and adjust them accordingly before we proceed with the algebra needed to determine the 
undetermined coefficients. 

The auxiliary equation associated with the complementary equation is , which has a 
repeated root  . Thus,  is a fundamental set of solutions of the complementary 

equation. 

Guessing the form of the particular solution: 

Since   is an exponential function and exponential functions never change exponent or disappear 
through differentiation, we assume that the particular solution will have a form similar to the exponential 
component in . Also, the exponent in  differs from the exponent in the complementary solution, 
so there is no adjustment required. 

 

Plugging in the guess into the equation to find A: 
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Next, we plug in the guess and its derivatives into the differential equation to determine the undetermined 
coefficient A. 

   ,    ,  

 

Therefore, the particular solution to the differential equation is 

 

Finding the general solution: 

The general solution of a nonhomogenous equation is 

  . 

where , and   are the solutions to the complementary equation and  is the particular solution to the 
nonhomogeneous equation. 

 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=174 

 

Example 3.4.3: Forcing Function Similar to the Complementary Solution with 
Repeated Root 

Find the general solution to the following equation. 

 

Show/Hide Solution 

 

Finding the complementary solution: 

The complementary equation is similar to the one in Example 3.4.2. Thus,  is a 

fundamental set of solutions of the complementary equation and the complementary solution is 
. 

Guessing the form of the particular solution: 

Our initial guess is  . However, since  is also the complementary solution, we need to 

adjust our guess. Given  is a repeated root, we multiply our original guess by  . 

 

Plugging in the guess into the equation to find A: 
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Next, we plug in the guess and its derivatives into the differential equation to determine the undetermined 
coefficient A. 

  , 

  , 

 

 

 

    

Factoring the exponential term and collecting the like terms yields 

 

 

Therefore, the particular solution to the differential equation is 

 

Finding the general solution: 

The general solution is 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=174 

 

Example 3.4.4: Solve IVP with Nonhomogeneous Equation 

Solve the following initial value problem. 

         

Show/Hide Solution 

 

Finding the general solution: 

The equation is similar to the one in Example 3.4.3. Therefore, the general solution is 

 

Applying the initial conditions: 

Applying the initial condition to  : 
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Applying the initial condition to   : 

 

Plugging in    yields  . 

Therefore, the solution to the initial value problem is 

 

Note that the initial conditions must satisfy the entire solution of the nonhomogeneous equation, not just 
the complementary part. Therefore, we apply the initial conditions directly to the general solution of the 
given nonhomogeneous equation to determine the constants. 

The following section summarizes the appropriate forms of guesses for various types of forcing functions and 
explains how to modify these guesses if any part of the forcing function  corresponds to solutions of the 
complementary equation. 

 

Method of Undetermined Coefficient (Guessing ) 

To find a particular solution to the differential equation 
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       Guess 

   degree polynomial 
 

   

   

   

   

Remarks 

1. Exponential and Polynomial Products: If  contains only exponential functions or products of an 
exponential function and polynomials and if  is also the solution to the associated complementary equation, 
then multiply the exponential part of  by  for a simple root or   for a repeated root. 

2. Complex Roots: If   relates to the complex root of the complementary equation, i.e.,     is a 
complex root of the associate auxiliary equation, then multiply the guess  by . 

3. Exponential and Trigonometric/Polynomial Products: If  includes products of an exponential 
function and a polynomial or a trigonometric function, consider only the trigonometric or polynomial part for 
your initial guess, then multiply by the exponential part of . 

4. Polynomial and Trigonometric Products: If  contains products of polynomials and trigonometric 
functions, first, write down the guess for just the polynomial and multiply that by the appropriate cosine. Then 
add on another guessed polynomial with different coefficients and multiply that by the appropriate sine. 

 

Example 3.4.5: Find the Form of the Particular Solution 

Find the form of a particular solution to 
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where   is 

a)       b)        c)        d)        e) 

Show/Hide Solution 

 

The auxiliary equation associated with the equation is  , which has roots   and 
. 

a)        

 

b) This function contains the product of polynomials (second degree) and trig functions. Using Remark 4, 
first, we guess the polynomial and multiply it by the proper cosine. We then add it to the product of another 
guessed polynomial with different coefficients and a sine. 

 

 

c) This function contains the product of exponential, polynomial (first degree), and trig functions. Using 
Remarks 3 and 4, first, we guess the polynomial and multiply it by the proper cosine. We then add it to 
the product of another guessed polynomial with different coefficients and a sine. Finally, we multiply the 
exponential part. 

 

 

d) Since   is the root of the auxiliary equation and thus   is a solution in the fundamental set, 
 won’t be a correct guess. Noting Remark 1, we need to multiply it by . Thus 

 

 

e) This function contains the product of exponential and polynomial (second degree). Using Remark 
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3, first, we guess the polynomial and multiply the exponential part. The polynomial guess will be 
. The exponential part  needs to be multiplied by  as   is in the fundamental 

solution set (Remark 1). Therefore, 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=174 

Section 3.4 Exercises 

1. Find the particular solution of the ODE 
 

Show/Hide Answer 

 

2. Find the general solution to the ODE: 

 

Show/Hide Answer 
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3. Find the particular solution of the ODE 
 

Show/Hide Answer 

4. Solve the initial value problem 

 

Show/Hide Answer 

5. Solve the initial value problem 

     

Show/Hide Answer 
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3.5 METHOD OF VARIATION OF PARAMETERS 

A. Introduction 

The method of variation of parameters is another technique used to find particular solutions to nonhomogeneous 
linear differential equations. It is especially useful for equations with both constant and variable coefficients and 
is applicable when the forcing function, , makes the method of undetermined coefficients impractical. This 
technique also extends well to higher-order equations. 

Unlike the method of undetermined coefficients where the complementary solution aids in guessing the form of 
the particular solution, variation of parameters requires the complementary solution to determine the particular 
solution. 

B. Variation of Parameters: Constant-coefficient Equations 

We first focus on applying the method of variation of parameters to nonhomogeneous constant-coefficient 
equations. Consider the nonhomogeneous linear second-order equation 

(3.5.1)  

Let    be a fundamental set of solutions to the associated complementary (homogenous) equation. The 
general solution to the complementary equation is . To find a particular solution,  , using the 
variation of parameters method, we replace the constants   and   with functions  and  , respectively, 
resulting in 

 

We aim to substitute   and its derivatives into Equation 3.5.1 to determine functions  and  . The first 
derivative of   is 

 

Since we have more parameters than we have equations, we impose that  (i) to simplify 
calculations. Therefore,  is simplified to the following. 
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We then find . 

 

After substituting  and its derivatives into Equation 3.5.1 and collecting the terms, we obtain 

   

The expressions multiplied by  and  are zero, since  and   are solutions to the complementary equation, 
leading to 

      (ii). 

Combining (i) and (ii) yields a system of equations 

 

Solving the system for and   and then integrating yields the solutions for  and  . 

    and  

Notice that the term in the parenthesis in the denominator is the Wronskian ( ). Therefore,  and   can also 
be written as 

    and  

 

Method of Variation of Parameters for Constant-coefficient Equations 

To find a particular solution to Equation 3.5.1, 

1. Find a Solution to the Homogeneous Equation: Determine a fundamental set of solutions  to 
the corresponding homogeneous equation. Additionally, find the Wronskian of the solutions. 
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2. Determine   and  : Calculate  and   using the system derived from variation of parameters. Then 
integrate them to find  and , setting the constant of integration to zero: 

      and    

3. Construct the Particular Solution: Combine , ,  , and  to form the particular solution: 

 

 

Example 3.5.1: Find a Particular Solution for a Constant-Cofficient Equation 

Find a particular solution to 

 

Show/Hide Solution 

 

To find a particular solution using the method of variation of parameters, we should first find a solution to 
the associated homogeneous equation: 

1. The characteristic polynomial of the complementary equation  is 

 

 

So the solution is a repeated root . Then,  and   form a fundamental set 
of solutions. 

The Wronskian of the fundamental set is 
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2. Next substituting   ,  ,  , and 

 into formulas for  and    to determine them. 

Finding  : 

 

 

 

This integral can be evaluated using the technique of integration by parts. 

 

 

Finding  : 
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This integral can be evaluated using the technique of integration by parts. 

 

 

Since we only need one particular solution, we set the constant of integrations to zero in  and  for 
simplicity. 

3. We substitute  and   together with  into the expression for   to obtain a particular 
solution: 

 

 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=176 
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Example 3.5.2: Find a General Solution for a Constant-Cofficient Equation 

Find (a) a particular and then (b) a general solution to 

Show/Hide Solution 

a) To find a general solution, we first need to find a particular solution. To find a particular solution using 
the variation of parameters method, we should first find a set of fundamental solutions to the associated 
homogenous equation: 

1. The characteristic polynomial of the complementary equation   is 

So the solutions are   and   and thus   and   form a 
fundamental set of solutions. 

2. Next we find  and    by substituting   ,   ,   , and 

 into 

 

    

and 
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Since we only need one particular solution, we take both constants of integration as zero for simplicity. 

3. We substitute  and   together with  into the expression for   to obtain a particular 
solution: 

 

 

 

b) To find a general solution we add the general solution to the homogeneous equation and a particular 
solution: 

   

  Notice that the terms   and   are like terms and can be combined to  . Letting 
 yields 

   

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=176 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=176 

C. Variation of Parameters: Variable-Coefficient Equations 

Having discussed solving homogeneous and nonhomogeneous second-order differential equations with constant 
coefficients, we now turn our attention to equations where the coefficients are functions of the independent variable. 
The method of variation of parameters is suitable for such equations. 

Considerations for Variable-Coefficient Equations 

For a differential equation of the form 

 

valid solutions are expected on an open interval where all four governing functions, , and 
 are continuous and  is nonzero. Standardizing the equation by dividing by  yields 

 

Existence and Uniqueness Theorem: If  , , and  are continuous on an interval  containing 
point , for any initial values  and , there exists a unique solution  on the same interval to the initial 
value problem. 

   

The methodological steps for variable-coefficient equations mirror those for constant coefficients except the equation 
should be in the standard form. 
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Method of Variation of Parameters for Variable-Coefficient Equations 

1. Standardize the equation: Divide the equation by the coefficient of  to make the coefficient one. The 
equation should be in the following format: 

 

2. Linearly Independent Solutions: Find two linearly independent solutions,  , to the corresponding 
homogeneous equation. Additionally, find the Wronskian of the solutions. 

3. Determine  and  : Calculate  and   using the system derived from variation of parameters. Then 
integrate them to find  and , setting the constant of integration to zero: 

      and    

4. Construct the Particular Solution: Combine , ,  , and  to form the particular solution: 

 

 

Example 3.5.3: Find a Particular Solution for a Variable-Cofficient Equation 

Find a particular solution to the following differential equation given   and   satisfy 

the corresponding homogeneous equation. 

 

Show/Hide Solution 

 

1. First, divide the equation by the coefficient of , to put it in the standard form. 

   

2. To find a particular solution using the method of variation of parameters, we need a fundamental set of 
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solutions to the associated homogeneous equation. the provided solutions  and   will form the 
fundamental set if their Wronskian is nonzero over an open interval. 

The Wronskian of the solution set is 

 

 

 

The Wronskian is never zero. Therefore, the solution set is the fundamental solution set. 

3. Next substituting   ,  ,  , and  into 

formulas for  and    to determine them. 

Finding  : 

 

 

 

 

Letting  gives 

 

Finding  : 
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Letting  yields 

 

4. Substitute  and   together with  into the expression for   to obtain a particular solution: 

 

 

 

 

Try an Example 

 

110  |  3.5 METHOD OF VARIATION OF PARAMETERS



One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=176 

D. Summary 

• Use the undetermined coefficients method for constant-coefficient equations with recognizable forcing 
functions  . 

• Use the variation of parameters method for constant-coefficient equations with less typical   or for 
variable-coefficient equations. 

• In general, if a fundamental set of solutions is known, variation of parameters is a viable and often preferable 
method. 

Section 3.5 Exercises 

1. Find a particular solution to the equation 

 

Show/Hide Answer 

2. Find the particular solution to the equation 

 

Show/Hide Answer 

 

3. Find a particular solution to the following differential equation given   and 

satisfy the corresponding homogeneous equation. 
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Show/Hide Answer 
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3.6 METHOD OF REDUCTION OF ORDER 

The method of Reduction of Order is a technique for finding a second solution to a second-order linear differential 
equation when one solution is already known. It is useful for both homogeneous and nonhomogeneous equations. 

Generally, to apply the reduction of order method for the nonhomogeneous equation 

 

we assume the second solution  takes the form  where  is a function of the independent variable. 
Substituting  and its derivatives into the equation and simplifying it yields a first-order equation in terms of : 

 

We can then solve this first-order differential equation using standard techniques, integrate it to find , and then 
determine . 

 

Method of Reduction of Order for Homogeneous Equations 

For a homogeneous equation with a known solution , find a second, linearly independent solution 
by 

1. Standardize the equation: Divide the equation by the coefficient of   to make the coefficient one. The 
equation should be in the following format: 

 

2. Determine : Identify the function , the coefficient of , and evaluate the integral: 

 

3. Find the second Solution : Evaluate the following integral to find the second solution. Let the constant of 
integration be zero for simplicity. 
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4. Form the General Solution: The general solution is then a combination of both solutions. 

 

Note that constant  can absorb any numerical coefficients of  

 

Example 3.6.1: Reduction of Order for a Homogeneous Equation 

Given   is a solution to the given equation, use the Method of Reduction of Order to find a second 

solution. 

 

Show/Hide Solution 

 

1. First, standardize the equation by dividing it by the coefficient of : 

 

2. Identify , the function coefficient of  and then find  . 

         

3. The second solution is given by 
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We are looking for the simplest , so we let the constant of integration be zero. Given any scalar multiple of 
 is also a solution, we can choose  as the simplest second solution. 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=178 

While primarily detailed for homogeneous equations, its principles apply to nonhomogeneous situations by initially 
solving the associated homogeneous equation and then finding a particular solution using the standard methods 
discussed for nonhomogeneous equations. 

 

Example 3.6.2: Reduction of Order for a Nonhomogeneous Equation; IVP 

Given   is a solution to the complementary equation, solve the following initial value problem. 
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Show/Hide Solution 

 

a. Finding the second solution of the complementary equation: 

We follow the steps for the reduction of orders method to find the second linearly independent solution to 
the complementary equation. 

1a. First, standardize the equation by dividing it by the coefficient of : 

 

2a. Identify , the function coefficient of  and then find  . 

        

3a. The second solution is given by 

  

 

 

 

 4a. The general solution to the complementary equation is 

 

Constant  can absorb any numerical coefficients of    Thus   simplifies to 
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b. Finding a particular solution of the nonhomogeneous equation: 

We use the method of variation of parameters to find the particular solution . 

1b. Standardize the original differential equation. 

 

2b. The solutions to the homogeneous equation are now known:  and . 

The Wronskian of the fundamental set is 

 

 

 

3b. Next substituting    ,  ,  , and 

 into formulas for   and    to determine them. 

Finding  : 
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Finding  : 

    

 

 

 

4b. Substitute   and   together with   into the expression for   to obtain a particular solution: 

 

 

 

 c. Finding the General Solution 

 The general solution to the nonhomogeneous equation is the sum of the particular solution and 
complementary solution. 

 

 

d. Applying the initial conditions 

Applying the initial condition to  : 
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Applying the initial condition to  : 

 

 

 

To determine   and  , we solve the following system of two equations and two unknowns: 

 

Solving the system yields 

      

Therefore the solution to the initial value problem is 

 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=178 

Section 3.6 Exercises 

1. Given    is a solution to the given equation, use the Method of Reduction of Order to find a 

second solution. 

 

Show/Hide Answer 

2. Find the general solution of the following equation given that   satisfies the complementary equation. 

 

Show/Hide Answer 

 

3. Solve the initial value problem, given that   satisfies the complementary equation. 

 

Show/Hide Answer 
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3.7 CAUCHY-EULER EQUATION 

The Cauchy-Euler equation, also known as the Euler-Cauchy equation or simply Euler’s equation, is a type of 
second-order linear differential equation with variable coefficients that appear in many applications in physics and 
engineering. These equations are particularly noteworthy because they have variable coefficients that are powers of 
the independent variable. 

A second-order Cauchy-Euler equation is generally of the form: 

(3.7.1)    

Here   and   are constant and  is a function of the independent variable. The equation is homogeneous 
if   and inhomogeneous otherwise. For example,   is a Cauchy-Euler 
equation. 

 

Method to Solve a Homogeneous Cauchy-Euler Equation 

To solve a homogeneous Cauchy-Euler Equation 3.7.1, 

1. Substitute and Transform: Let   and form the characteristic (auxiliary) equation. Thus, 
 , and . Substituting these into Equation 3.7.1, we obtain 

    

     

which yields the characteristic equation. 

 

2. Solve the Characteristic Equation: Similar to the equations with constant coefficients, we solve the 
quadratic equation for , and depending on the nature of the roots, the solution will have different forms. 

Case 1: Two Distinct Real Roots   and 
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The general solution will be the linear combination of  and  : 

 

Case 2: Repeated Root 

The general solution will be the linear combination of   and  : 

 

Case 3: Complex Conjugate Roots 

The general solution will be the linear combination of   and   : 

 

 

Example 3.7.1: Solve Initial Value Problem with Homogeneous Cauchy-Euler Equation 

Solve the initial value problem 

   

Show/Hide Solution 

 

The equation is Cauchy-Euler. 

1. So first we find its characteristic polynomial given  ,  , and   : 

 

The equation has a repeated root , which is Case 2. 

2. Therefore, the general solution of the equation is 
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3. We use the initial values to find  and  : 

    

    

Therefore, the solution to the IVP is 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=180 

For a nonhomogeneous Cauchy-Euler equation, the method of variation of parameters or undetermined coefficients 
(if applicable) is used. 

Section 3.7 Exercises 

1. Find the general solution of the following equation. 

 

Show/Hide Answer 
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2. Solve the initial value problem 

    

Show/Hide Answer 
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3.8 APPLICATION: MECHANICAL VIBRATIONS 

A. Introduction 

As we progress from first-order to second-order ordinary differential equations, we encounter a variety of applications 
that can be modeled by these higher-order equations. In this section and next, we focus on mechanical vibrations 
and electrical circuits (RLC circuits) as two primary areas where second-order differential equations are extensively 
applied. These areas are fundamental in engineering and physics, providing rich contexts for understanding dynamic 
system behavior. 

Studying mechanical vibrations is crucial for designing and analyzing systems that experience oscillatory motion. 
Understanding vibrations helps engineers reduce noise, prevent catastrophic failure due to resonance, and optimize 
the performance of various mechanical systems ranging from buildings and bridges to vehicle suspensions and 
electronic components. Modeling these systems allows engineers to predict responses to various stimuli, ensuring 
safety and functionality. 

To model a vibratory system, we often use a simplified representation involving masses, springs, and dampers. These 
elements capture the essential dynamics of more complex real-world systems. Using Newton’s laws of motion or 
energy methods, we develop a mathematical model that typically results in a second-order differential equation. 

B. Components of a Spring-Mass System 

This system consists of a mass, typically denoted as , which represents the object in motion. Attached to it is 
a spring with a stiffness coefficient , providing a restoring force that is proportional and opposite to the 
displacement from its equilibrium position, as dictated by Hooke’s Law. In many practical scenarios, this system may 
also include a damping component characterized by a damping coefficient , representing the resistance to motion 
due to factors like air resistance or internal friction in the system. The damper exerts a force that is proportional to 
the velocity of the mass but in the opposite direction of motion. Additionally, the system might be subjected to an 
external force , which can vary with time and induce forced vibrations. 
Consider the mass-spring system illustrated in Figure 3.8.1. The spring has a natural length of  when unstretched. 
When we attach a mass   to the spring, it stretches by a length . This point where the mass comes to rest and the 
spring ceases to stretch further is known as the equilibrium position. At this point, the system is stable, and the 
mass hangs motionless until disturbed. In this system, we define  as the displacement of the mass from its 
equilibrium position, where positive values indicate upward movement. 
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Figure 3.8.1. Mass-spring system without damping 

C. The General Differential Equation Modelling the 
System 

To derive the equation governing the motion of a spring-mass-damper system, we apply Newton’s second law of 
motion, which relates the net force acting on the mass to its acceleration. The primary forces acting on the mass in a 
spring-mass system include: 

• Force due to gravity    acting downward. 
• Restorative Force of the spring , where  is the spring constant. This force is governed by 

Hooke’s law and is typically proportional to the displacement from the spring’s natural length ( ) and 
opposite in direction. 

• Damping Force , where  is the damping coefficient. If present, the damping force is 
proportional to the velocity of the mass and acting in the opposite direction of motion. 

• External Force . It includes any external force acting on the system, which might be periodic or random, 
leading to forced vibrations. 

According to Newton’s second law, 
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Substituting all the forces and writing acceleration as the second derivative of displacement yields 

At equilibrium, the sum of all forces acting on the mass equals zero. Therefore, 

 

Simplify the equation by incorporating  to focus on deviations from equilibrium, leading to the standard 
form of the vibration equation. 

(3.8.1)    

Here,  is the displacement from the equilibrium position,  is the velocity,  is the acceleration, and 
represents any external force applied to the system. We usually solve this equation along with the initial conditions 
for initial displacement from the equilibrium position:  and initial velocity: . 

Depending on which forces act on the system, there are several special cases: 

• Free Undamped Vibration ( ): The simplest form of vibration occurs when there is no 
damping and no external force. The system oscillates at its natural frequency, determined by the mass and 
spring constant. 

• Free Damped Vibration ( ): When damping is present but there is no external force, the 
system experiences damped vibrations leading to a gradual decrease in oscillation amplitude over time. The 
nature of the damping (underdamped, critically damped, or overdamped) depends on the values of , , and 

. 
• Forced Undamped Vibration ( ): When an external force acts on the system, the system 

experiences forced vibrations. If the frequency of the external force is close to the system’s natural frequency, 
resonance can occur, leading to large amplitude oscillations. 
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• Forced Damped Vibration ( ): This is the most general case, combining the effects of 
damping and external forcing, leading to complex oscillatory behavior. 

D. Free Undamped Vibration 

The simplest form of vibration occurs when there is no damping ( ) and no external force ( ). In 
such cases, Equation 3.8.1 reduces to 

 (3.8.2)  

This equation is a homogeneous second-order linear differential equation. By solving the characteristic equation 
, we find that the roots are complex conjugates given by 

 

The term  is known as the natural frequency of the system, denoted by . Therefore the solution to the 

equation is expressed as 

(3.8.3)  

It is often convenient to represent the displacement in the amplitude-phase form with a single trigonometric function 

(3.8.4)  

Here   is the amplitude of oscillation, given by  and  is the phase angle, which can be 

determined from the initial conditions of the system. The phase angle   is typically chosen to satisfy 
  for uniqueness and is related to  and . 

 

    and   

The motion described by Equation 3.8.4 is known as simple harmonic motion, characterized by its sinusoidal nature 
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and constant frequency. The period of the motion is , representing the time it takes to complete one full 

cycle. 

Considerations for Units and Phase Angle 

• Units: When working with the acceleration due to gravity or any other physical quantity, it is important to use 
consistent units throughout the calculation. In the metric system,  is typically given as , and 

lengths should be in meters with mass in kilograms. In the Imperial system,  is about , with lengths 

in feet and mass in slugs. 
• Phase Angle Uniqueness: There are infinitely many phase angles that satisfy the trigonometric equations due 

to their periodic nature. However, selecting  in the interval   ensures a unique solution within one 
complete cycle. The signs of  and  determine the quadrant in which   lies. 

◦ if  ,  is in the first quadrant 
◦ If  ,  is in the second quadrant. 
◦ if  ,  is in the third quadrant. 
◦ If  ,  is in the fourth quadrant. 

 

Example 3.8.1: Simple Harmonic Motion 

A 150 cm long vertical spring hangs from a fixed ceiling. A 2-kg object is attached to the lower end of the spring, 
and the length of the spring becomes 155 cm where the object is in equilibrium. The object is then pulled down 
an additional 3 cm and released with an initial upward velocity of 20 cm/s. Assuming no damping and no external 
forces other than gravity are acting on the system: 

a) Find the displacement of the object as a function of time. 

b) Determine the natural frequency, period, amplitude, and phase angle of the motion. 

c) Rewrite the equation of motion in the amplitude-phase form . 

Express your answers in the cgs unit where . 

Show/Hide Solution 
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Given information: 

• Natural length of the spring: 
• Length at equilibrium with a 2-kg object attached: 
• Mass of the object: 
• Initial displacement (downward): 
• Initial velocity (upward): 

a) 

Calculating the spring constant 

At equilibrium, the forces acting on the object are balanced, meaning . This allows us to 
determine the spring constant . 

 

 

 

Calculating the natural frequency: 

The natural frequency is 

 

It is important to note that to find  , we require the ratio of  and  rather than their individual values. 

Finding the general solution: 

Given there is no damping force and an external force, the initial value problem is 

         

The general solution to this equation is given by Equation 3.8.3. 
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Applying the initial conditions: 

 

 

The equation of the object displacement is then 

b) 

Natural frequency: 

Period: 

Amplitude  is given by 
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Phase angle: 

The reference phase angle is determined by 

 

Since  (  ) and  ( ),  should be in the second quadrant. 
Therefore, 

  . 

c) The equation of motion can be written as 

 

 

The graph of the displacement is shown for the first 7 seconds. 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182 
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E. Free Damped Vibration 

In free, damped vibration, there is no external force ( ). As such, Equation 3.8.1 simplifies to a 
homogeneous second-order linear differential equation. 

(3.8.5)    

This equation is a homogeneous second-order linear differential equation. By solving the characteristic equation 
 using the quadratic formula, we find the roots 

 

Depending on the discriminant , we encounter three types of motion: 

1. Critically damped ( ) 

In this case, there is a repeated root , and thus the general solution to Equation 3.8.5 becomes 

(3.8.6)    

The motion in this case is said to be critically damped as the damping is just enough to prevent oscillation. This level 
of damping is achieved when the damping coefficient . 

 is called the critical damping coefficient and is denoted by . 

It is important to note that as time progresses ( ), the displacement  approaches zero, indicating that 
the system smoothly and quickly settles to its equilibrium position without oscillation and overshooting the 
equilibrium position similar to how shock absorbers work in automotive suspension systems. 

2. Overdamped ( ) 
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In this case, there are two real distinct roots , where both roots are negative. The 

general solution to Equation 3.8.5 becomes 

(3.8.7)    

Given both   and  are negative, as time progresses (  ), the displacement  approaches zero and the 
system gradually returns to equilibrium without oscillating. Overdamped conditions arise when , typically 
desired in systems where overshooting the equilibrium position could be harmful or undesirable, like in heavy 
machinery. Overdamped systems return to equilibrium slower than critically damped systems. This slower response 
is due to the higher damping force applied, which prevents oscillation but also resists motion, causing a sluggish 
return. 

3. Underdamped ( ) 

In this case, the roots of the characteristic equation are complex conjugates given by 

 

Thus the solution to the differential Equation 3.8.5 is 

(3.8.8)  

The term   is related to the frequency of oscillation. Similar to the harmonic motion, we can 

derive the amplitude-phase form of the equation of motion. 

(3.8.9)  

Here again 

,    ,   and 

An underdamped system is characterized by a damping coefficient . In this scenario, the damping is 
insufficient to halt oscillations, causing the system to exhibit oscillatory behavior around the equilibrium position. 
The amplitude of these oscillations diminishes over time, represented by the time-varying term . As the 

exponent  is always negative, the displacement  gradually approaches zero as time progresses ( ). 

This results in a bouncy system response to any disturbances. 
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Such behavior is often preferred in various applications. In musical instruments, for example, the underdamped 
vibrations of strings or membranes contribute to a sustained, resonant sound. Similarly, seismic dampers in buildings 
employ a controlled underdamped response to safely dissipate energy from earthquakes, allowing structures to sway 
and reduce stress without collapsing. 

Example 3.8.2: Critically Damped Motion 

A 1-kg mass is attached to a string with a stiffness of 64 N/m and a dashpot with a damping constant 16 N.s/m. 
The object is compressed 20 cm above its equilibrium and released with an initial upward velocity of 2 m/s. Find 
the displacement of the object as a function of time. 

Show/Hide Solution 

 

Given information: 

• Mass of the object: 
• Damping constant: 
• Spring constant: 
• Initial displacement (upward):  
• Initial velocity (upward): 

The initial value problem for this system is 

      

Before solving the IVP, we can calculate the critical damping coefficient to determine the type of damping. 

 

 

The damping coefficient equals the critical damping coefficient ( ), and therefore, the system 
is critically damped. 

Finding the general solution: 
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The general solution for a critically damped system is given by Equation 3.8.6. 

 

 

Applying the initial conditions: 

 

 

 

 

 

 

 

 

The equation of the object’s displacement is then 

 

The graph of the displacement is shown for the first 3 seconds. As expected, the system smoothly and quickly 
returns to its equilibrium position without oscillation. 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182 
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Example 3.8.3: Overdamped Motion 

Find the displacement of the object in Example 3.8.2, if the spring is now attached to a dashpot with a damping 
constant 34 N.s/m. 

Show/Hide Solution 

 

Given information: 

• Mass of the object: 
• Damping constant: 
• Spring constant: 
• Initial displacement (upward):  
• Initial velocity (upward): 

The initial value problem for this system is 

      

In the previous example, we determined the critical damping coefficient to be . In the current 
system, the damping coefficient is greater than this critical value ( ), and therefore, the system 
is overdamped. 

Finding the general solution: 

The characteristic equation for the differential equation has two distinct real roots. 

 

   

The general solution to an overdamped system is given by Equation 3.8.7. 
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Applying the initial conditions: 

 

 

 

 

 

 

 

Solving the system for constants  and  yields 

 

The equation of the object’s displacement is then 

 

The below graph displays the displacement for the first 3 seconds. It confirms that the system gradually 
returns to its equilibrium position smoothly and without any oscillation. When compared to the critically 
damped system in Example 3.8.2, this overdamped system takes a longer time to settle down. This slower 
behavior underscores that the increased damping force in the overdamped system delays the return to 
equilibrium. 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182 
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Example 3.8.4: Underdamped Motion 

Find the displacement of the object in Example 3.8.2, if the spring is now attached to a dashpot with a damping 
constant 4 N.s/m. 

Show/Hide Solution 

Given information: 

• Mass of the object: 
• Damping constant: 
• Spring constant: 
• Initial displacement (upward):  
• Initial velocity (upward): 

The initial value problem for this system is 

      

In Example 3.8.2, we determined the critical damping coefficient to be . In the current system, the 
damping coefficient is less than this critical value ( ), and therefore, the system is 
underdamped. 

Finding the general solution: 

The characteristic equation for the differential equation has complex conjugates. 

 

The general solution to an underdamped system is given by Equation 3.8.8. 

 

Applying the initial conditions: 
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The equation of the object’s displacement is then 

 

The amplitude-phase form of the equation is 

 

The graph illustrates the displacement of the system over the initial 3 seconds. This underdamped system 
lacks enough damping to stop oscillations, leading to a pattern of diminishing swings around the 
equilibrium position. These oscillations decrease in amplitude for approximately 2 seconds before the system 
finally settles at the equilibrium position. 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182 
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F. Forced Undamped Vibration 

Forced undamped vibration occurs in systems subject to a continuous external force, typically modeled as a periodic 
function like  or . These sinusoidal forces commonly arise from 
rotational mechanisms, alternating currents, or other cyclic phenomena. The equation of motion for such a system 
is expressed as 

The solution to the differential equation is 

Here, the solution comprises a complementary part , representing the free, undamped vibration response, and 
a particular part , the steady-state response to the forcing function. The complementary solution, dictated by 

the system’s natural frequency , is given by Equation 3.8.3: 

To determine the particular solution, we typically use methods like undetermined coefficients or variation of 
parameters. As we seek the particular solution, depending on the driving frequency omega, we consider two cases: 

1. Non-Resonant ( ): When the driving frequency is different from the natural frequency, the particular 
solution is in the form 

   

To find the specific values of the coefficients A and B, we use the method of undetermined coefficients. After 
determining these coefficients, the particular solution can be expressed as 

and the general solution is 

(3.8.10) 
   

The displacement function consists of sine and cosine components with bounded amplitude. 
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2. Resonant ( ): When the driving frequency is equal to the natural frequency, the particular solution is in 
the form 

 

using the method of undetermined coefficients and after determining the coefficients, the particular solution can be 
expressed as 

The general solution is then 

(3.8.11)  

In this case, the particular solution includes a time factor , indicating the unbounded increase in amplitude. This 
phenomenon, known as resonance, significantly increases oscillation amplitude and poses potential risks, including 
mechanical failure from excessive oscillations. 

The amplitude of oscillation in forced vibration is sensitive to the relationship between the driving frequency and the 
natural frequency of the system. As the driving frequency approaches the natural frequency, the amplitude increases, 
peaking at resonance. This sensitivity is a key factor in designing structures and systems to ensure their natural 
frequencies are not aligned with frequencies of common environmental forces, like wind or traffic. Such alignment 
could trigger resonance, risking structural integrity. 

On the other hand, there are specific applications where inducing resonance is advantageous, for instance, in 
mechanical filters and sensors, where resonance can enhance sensitivity or signal strength. 

 

Example 3.8.5: Forced Undamped Vibration 

A 32 lb object is suspended from a spring, stretching it by 6 inches to reach equilibrium. This undamped 
system is subjected to an external force , and it experiences resonance. Initially, the object 
is displaced 3 inches below the equilibrium position and is given an upward velocity of 1 ft/s. Determine the 
object’s displacement under these conditions. 
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Show/Hide Solution 

 

Given information: 

• Mass of the object: 

• The spring displacement at equilibrium: 

• External force: 
• Initial displacement (downward):  
• Initial velocity (upward): 

Calculating the spring constant 

In the British system, weight is typically measured in pounds. To find the spring constant, we first convert 
weight to mass using the formula 

 

At equilibrium . This relationship allows us to calculate the spring constant  . 

 

 

Calculating the natural frequency: 

The natural frequency is 

 

Alternatively, if the system resonates at a driving frequency of   (from ), this 
resonance frequency should match the natural frequency of the system, reaffirming that  . 
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Finding the general solution: 

The initial value problem for this system is 

      

 The general solution for a system undergoing resonance is given by Equation 3.8.11. 

   

   

Applying the initial conditions: 

    

   

The equation of the object’s displacement is then 

   

We can write the complementary solution in the amplitude-phase form, combining the last two terms. 

 

The graph shows how the system’s displacement changes during the first 10 seconds. Since the particular 
solution includes a time factor (t), the displacement’s amplitude tends to become infinitely large as time 
progresses towards infinity. However, in reality, most systems experience some damping. Even a small 
amount of damping can significantly affect the system’s amplitude and behavior, especially around resonance 
frequencies, preventing the unlimited growth in amplitude predicted by ideal models. 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182 
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G. Forced Damped Vibration 

This is the most general case, combining the effects of damping and external forcing. The motion of such a system is 
governed by 

The solution to the differential equation is the sum of complementary and particular solutions. 

The complementary solution is the solution to the free, damped behavior, while the particular solution is found 
using the method of undetermined coefficients or variation of parameters. 

Based on our understanding of free-damped vibrations, we know that as time progresses toward infinity, the 
complementary solution approaches zero. Consequently, the system’s displacement increasingly reflects the behavior 
of the particular solution. Therefore, in vibrational analysis, the complementary solution is commonly referred to 
as the transient solution, reflecting the initial response, while the particular solution is known as the steady-state 
solution, indicating the ongoing response to the external force. 

 

Example 3.8.6: Forced Damped Vibration 

Find the displacement of the object in Example 3.8.5, if the system is now attached to a dashpot with a damping 
constant 34 lb.s/ft. 

Show/Hide Solution 

Given information: 

• Mass of the object: 

• The spring displacement at equilibrium: 

• Damping constant: 
• External force: 
• Initial displacement (downward):  
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• Initial velocity (upward): 

In the previous example, we determined the spring constant:  . The initial value problem for 
this system is 

      

Given the characteristic equation has distinct real roots  and , the complementary 
solution, according to Equation 3.8.7, is 

 

Finding the particular solution: 

To find the particular solution, we use undetermined coefficients. Given the forcing cosine function, we 
guess the form of the particular solution to be 

The derivatives are 

Substituting  and its derivatives into the differential equation yields 

 

Simplifying it gives 

By matching coefficients of sine and cosine terms, we get 
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Therefore, the particular solution is 

Combining the particular and complementary solutions gives the general solution 

   

Applying the initial conditions: 

    

   

Solving the system, we find the constants to be 

 

The equation of the object’s displacement is then 

   

The graph depicts the change in the system’s displacement over the first 6 seconds. Initially, for about the first 
second, the displacement is primarily influenced by the complementary solution, reflecting the transient 
phase. After this initial period, the displacement increasingly aligns with the periodic particular solution, 
representing the steady-state behavior of the system. 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182 
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Section 3.8 Exercises 

1. An object attached to a spring undergoes simple harmonic motion modeled by the differential equation 

 

where   is the displacement of the mass (relative to equilibrium) at time  ,   is the mass of the object, 
and   is the spring constant. A mass of   stretches the spring . a) Use this information to find 
the spring constant. (Use  ). b) The previous mass is detached from the spring and a mass 

of   is attached. This mass is displaced  above equilibrium (above is positive and below is negative) 
and then launched with an initial velocity of . Write the equation of motion in the form 

. Do not leave unknown constants in your equation. 

Show/Hide Answer 

a)   N/m 

b) 

2. A   object is attached to a spring with spring constant . It is also attached to a dashpot with 

damping constant  . The object is initially displaced   above equilibrium and released. a) Find its 
displacement for . b) Describe the motion. 

Show/Hide Answer 

a) 

b) Free underdamped vibration 

3. A   object is attached to a spring with spring constant   . It is also attached to a dashpot with 

damping constant    . The object is pulled down   and released with an initial upward 
velocity of  . Find the displacement of the object. Assume displacement and velocity are positive 
upward. 

Show/Hide Answer 
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3.9 APPLICATION: RLC ELECTRICAL CIRCUITS 

In Section 2.5F, we explored first-order differential equations for electrical circuits consisting of a voltage source with 
either a resistor and inductor (RL) or a resistor and capacitor (RC). Now, equipped with the knowledge of solving 
second-order differential equations, we are ready to delve into the analysis of more complex RLC circuits, which 
incorporate a resistor, inductor, and capacitor. 

Previously, we established that: 

• Ohm’s law dictates that the voltage drop   across a resistor is proportional to the current I flowing through 
it, expressed as  , where    is the resistance. 

• Faraday’s law, complemented by Lenz’s law, describes that the voltage drop  across an inductor is 

proportional to the rate of change of current, given as  , where   is the inductance. 

• The voltage drop  across a capacitor is proportional to the electric charge  stored on it, represented as 

, with    being the capacitance 

Figure 3.9.1 Schematic of an RLC series circuit 

With these foundations, consider  as the external voltage supplied to the RLC series circuit in Fig. 3.9.1. By 
applying Kirchhoff’s voltage law, we have 
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Substituting   ,  , and  into this equation yields 

(3.9.1)  

Differentiating this equation with respect to time and substituting  transform it into a second-order 

differential equation. 

(3.9.2) 
 

Alternatively, Equation 3.9.1 can be expressed in terms of charge  . 

(3.9.3) 
 

Given   and an initial condition, such as initial current  and initial charge , we can solve the equation 
for  using techniques discussed in previous sections, such as the method of undetermined coefficients. Once 

 is determined, the voltage across different components of the circuit can be calculated. 

 

Example 3.9.1: RLC Series Circuit 

Consider an RLC series circuit with a resistor of  and an inductor of , and a capacitor of 

powered by a voltage source . Initially, the current and charge on the capacitor are 
zero. Determine the current in the circuit as a function of time. 

Show/Hide Solution 

 

Given information: 
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• Resistor: 
• Inductor: 

• Capacitor: 

• Voltage source: 
• Initial current on capacitor: 
• Initial charge on capacitor: 

 

The differential equation for an RLC series circuit is given by Equation 3.9.1. 

 

The initial value problem is then 

     

Multiplying the equation by 100, we get 

      

Given the characteristic equation has complex conjugates , the complementary solution 
is 

 

 

Finding the particular solution: 

To find the particular solution, we use undetermined coefficients. Given the forcing cosine function, we guess 
the form of the particular solution to be 
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The derivatives are 

 

 

Substituting   and its derivatives into the differential equation yields 

   
 

Simplifying gives 

 

By matching coefficients of sine and cosine terms and solving the system of two equations in unknowns 
and , we get 

Therefore, the particular solution is 

 

 

Combining the particular and complementary solutions gives the general solution 

   

Applying the initial conditions: 

     

   

The equation of the object’s displacement is then 
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As with forced mechanical vibration scenarios, the current in an RLC circuit is composed of two distinct 
parts: the transient current, represented by the complementary solution that diminishes to zero as time 
progresses to infinity, and the steady-state current, described by the particular solution which is sinusoidal 
and persists over time. 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=184 

Section 3.9 Exercises 

1. Consider an RLC circuit with a   resistor, a   inductor, and a   capacitor driven by the 

voltage . a) Write the differential equation associated with this circuit in terms of 
current  . b) If the initial charge and initial current on the capacitor are both zero, find the current   and the 
voltages across the resistor   in terms of time  . 

Show/Hide Answer 

a) 

b)  

c)   

3.9 APPLICATION: RLC ELECTRICAL CIRCUITS  |  159

https://ecampusontario.pressbooks.pub/diffeq/?p=184


2. Consider an RLC circuit with a   resistor, a   inductor, and a   capacitor driven by the 

voltage . a) Write the differential equation associated with this circuit in terms of current 

. b) If the initial charge and initial current on the capacitor are both zero, find the current . 

Show/Hide Answer 

a) 

b) 
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PART IV 

LAPLACE TRANSFORM 

Chapter Outline 

This chapter focuses on the Laplace Transform, an integral operator widely used to simplify the solution of 
differential equations by transforming them into algebraic equations in a different domain. 

4.1 Definitions:  This section introduces the concept and integral operator of the Laplace Transform. 

4.2 Properties of Laplace Transform: This section discusses key properties of the Laplace Transform, essential for 
efficient function transformation and manipulation. 

4.3 Inverse Laplace Transform: This section covers the process of converting functions back from the Laplace domain 
to the original domain, known as the inverse Laplace Transform. 

4.4 Solving Initial Value Problems: This section demonstrates the application of the Laplace Transform and its 
inverse in solving initial value problems (IVP). 

4.5 Laplace Transform of Piecewise Functions: This section explores the application of the Laplace Transform to 
piecewise continuous functions, using tools like the Heaviside (Unit Step) function. 

4.6 Initial Value Problems with Piecewise Forcing Functions: This section discusses solving IVPs for second-order 
differential equations with constant coefficients and piecewise continuous forcing functions. 

4.7 Impulse and Dirac Delta Function: This section introduces the Dirac Delta function and its application in 
solving differential equations with impulse forcing functions, which are characterized by high magnitudes over very 
short intervals. 

4.8 Table of Laplace Transform: This section provides a table summarizing the Laplace Transform and some of its 
properties for quick reference. 
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Oliver Heaviside (1850-1925). 
Attribution: IET Archive, Public 
domain, via Wikimedia Commons 

Pioneers of Progress 

Oliver Heaviside, born in 1850 in Camden Town, London, was a self-
taught electrical engineer, mathematician, and physicist whose 
unconventional approach to academia did not hinder his profound impact 
on the field. Largely self-educated due to financial constraints, Heaviside 
pursued his interest in electromagnetic theory, making substantial 
contributions that were both innovative and contentious at the time. His 
most significant achievement was the development of operational calculus, 
a powerful tool in the application of differential equations to physical 
problems, particularly in the field of electrical engineering. Heaviside’s 
methods simplified Maxwell’s complex equations of electromagnetism, 
making them more accessible and practically applicable, a feat that had a 
lasting impact on telecommunications and electrical engineering. Despite 
facing criticism and limited recognition during his lifetime, Heaviside’s 
work was later acknowledged as groundbreaking, influencing not only the 
theoretical underpinnings of electrical engineering but also the practical 
aspects of signal transmission and circuit design. Oliver Heaviside’s story is 
one of perseverance and brilliance, showcasing how a relentless pursuit of 
knowledge can lead to discoveries that shape the world, irrespective of the 
conventional academic path. 
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4.1 DEFINITIONS 

A. Introduction 

In this section, we delve into an integral operator known as the Laplace Transform. This powerful tool is employed 
to convert initial value problems described by differential equations in one domain (e.g., t domain) into algebraic 
equations in another domain (s domain). Doing so facilitates a more efficient solution process, particularly for linear 
differential equations with constant coefficients and discontinuous or impulsive forcing terms. For instance, consider 
an initial value problem in the time domain 

t-Domain:      

Applying the Laplace Transform, the differential equation is transmuted into an algebraic equation in the s domain: 

s-Domain:    

This algebraic representation in the s domain is often simpler to solve, and the solution can then be transformed back 
to the original t domain. 

B. Definition 

Let   be a function defined on , and let   be a real number. The Laplace transform of  is the function 
 defined by the integral 

(4.1.1)    

The Laplace transform of   is denoted by both   and  . The functions can also be expressed as a transform 
pair . 

The improper integral in the definition 4.1.1 is more precisely defined as 

   

The integral converges, meaning it results in a finite number when this limit exists and is finite. 
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Example 4.1.1: Laplace Transform of Constant Function Using Definition 

Find the Laplace transform of the constant function . 

Show/Hide Solution 

Substituting  into integral 4.1.1 of the definition of the Laplace transform, we obtain 

   

     

Note that the integral diverges for   , so the domain of   is   . Since  when 
 for a fixed   , we then get 

    for      or      as a transform pair 

In general, the Laplace transform of the constant function  is . 

 

Example 4.1.2: Laplace Transform of Exponential Function Using Definition 

Find the Laplace transform of function . 

Show/Hide Solution 

Substituting  into integral 4.1.1 of the definition of the Laplace transform, we obtain 
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Note that the integral diverges for  , so the domain of   is  .  Therefore, 

    for      or     as a transform pair 

In practice, while the definition of the Laplace Transform involves an integral, it is rarely computed directly via 
integration due to the complexity and time-consuming nature of the process. Instead, we typically use precomputed 
tables of Laplace Transforms. These tables list common functions and their corresponding transforms, allowing for 
quick and accurate application of the Laplace Transform to solve differential equations and analyze systems. Table 
4.1.1 includes the Laplace Transform of some common functions. A more comprehensive table can be found in 
Section 4.8. 

Table 4.1.1: Brief Table of Laplace Transform 
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          Domain of 

   

     

        

     

        

     

     

     

     

     

     

 

Example 4.1.3: Laplace Transform Using Table 

Use the table of Laplace Transform to determine the Laplace Transform of the following function: 
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a) 

b) 

Show/Hide Solution 

a) From the table 

        for   

Recognizing that  , the transformation is 

        for   

 

b) From the table 

        for   

Recognizing that  , the transformation is 

        for   

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=210 
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Section 4.1 Exercises 

1. Find the Laplace transform,  , of the function  . 

Show/Hide Answer 

 

2. Find the Laplace Transform of,  , of the function  . 

Show/Hide Answer 

 

3. Find the Laplace transform of the function    . 

Show/Hide Answer 
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4.2 PROPERTIES OF LAPLACE TRANSFORM 

Understanding the properties of the Laplace Transform is crucial as it provides tools for efficiently transforming 
and manipulating functions. These properties greatly simplify the analysis and solution of differential equations and 
complex systems. 

A. Existence of the Transform 

The Laplace transform exists for any function that is (1) piecewise-continuous and (2) of exponential order (i.e., 
does not grow faster than an exponential function). A function   is said to be of exponential order  if there 
exist positive constants  and  such that   for all  . For example, 

 is of exponential order 7, but   is not of exponential order. 

B. Linearity of the Laplace Transform 

The Laplace Transform adheres to the principle of linearity. Let   and  be functions whose Laplace transforms 
exist for , and let  and  be constants. Then for , the Laplace Transform of a linear combination 
of these functions is given by: 

 

This property is useful when dealing with linear combinations of functions. 

 

Example 4.2.1: Find Laplace Transform Using – Linearity Theorem 

Use the Laplace Transform Table and the linearity property to determine 

. 

Show/Hide Solution 
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1. From the table 

        for   

                for   

                for   

2. From the linearity theorem, we have 

   

   

      for   

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=215 

C. First Shifting (Exponential) Theorem. 

If , then 
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This theorem is valuable when solving differential equations with exponential terms or in analyzing systems with 
exponential inputs. 

 

Example 4.2.2: Find Laplace Transform Using – First Shifting and Linearity Theorems 

Use the first shifting theorem and the linearity property to determine 

. 

Show/Hide Solution 

Using the first shifting theorem, we have 

   

1. In   ,   and the coefficient in the exponential term’s exponent is 

. 

        for   

Shifting  , we substitute   with 

     for   

2. In   ,   and the coefficient in the exponential term’s exponent is  . 

        for   

Shifting   , we substitute   with 

       for   
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3. From the linearity theorem, we have 

    

   

        for   

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=215 

D. Differentiation in the Time Domain 

Understanding how to transform derivatives is crucial for effectively solving differential equations. This property 
allows us to express the Laplace Transform of a function’s derivative in terms of the original function’s transform. 
For a function  with continuous derivatives up to  order, 
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Since we will mostly deal with second-order differential equations, we will focus on the Laplace Transform of the first 
and second derivatives. 

 

Example 4.2.3: Laplace Transform of First Derivative 

For function   show that . 

Show/Hide Solution 

Identifying the derivative and initial value: 

        and 

 

Finding the Laplace Transforms: 

From the Laplace Transform table, we have 

 

 

Applying the Differentiation Property: 

We need to show 

 

Plugging in the transforms and initial value yields 
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Simplifying both sides gives 

 

This equality confirms the differentiation property as the two sides match. 

 

Example 4.2.4: Laplace Transform of Second Derivative 

Find the Laplace Transform of   given the initial conditions   and  . Use  for 
. 

Show/Hide Solution 

From the differentiation property, we have 

 

Plugging in initial conditions  and  , we obtain 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=215 
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Table 4.2.1 summarizes the above properties of the Laplace Transform. These properties are crucial for simplifying 
computations and effectively utilizing the Laplace Transform in solving initial value problems. 

Table 4.2.1: Properties of Laplace Transform 

Property Example 

   
       

        for any constant      

       

   

   

        

 

Section 4.2 Exercises 

1. Find the Laplace transform of the function  . 

Show/Hide Answer 

2. Find the Laplace transform,  , of the function 

   . 

Show/Hide Answer 
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3. Find the Laplace Transform of   given the initial conditions   and  . 

Show/Hide Answer 
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4.3 INVERSE LAPLACE TRANSFORM 

In previous sections, we defined the Laplace Transform as an integral operator that can map a function   and its 
derivatives in a differential equation into an algebraic equation in terms of  and function . As part of solving 
differential equations, it is often necessary to obtain  from its transform  to solve the original initial value 
problem. This process is facilitated by the Inverse Laplace Transform. 

The formal inversion formula is typically not used directly due to its complexity. Instead, we rely on tables of 
Laplace Transforms to find the inverse transforms of  obtained from the original problem. The Inverse Laplace 
Transform is denoted as 

 

Linearity of the inverse Laplace Transform 

Similar to the Laplace Transform, the inverse operation is also linear. If  and  are functions in the s-domain with 
constants  and , then then the inverse Laplace Transform of a linear combination of  and  for  is 
given by 

 

This property ensures that the process of finding the inverse transform of a complicated expression can often be 
broken down into simpler, more manageable parts. 

 

Example 4.3.1: Determine the Inverse laplace Transform 

Determine . 

Show/Hide Solution 

From Table 4.1 
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       and    

Thus from linearity, we obtain 

    

From the table of Laplace Transform, we get 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=217 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=217 
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In the process of finding the inverse Laplace transform, we often encounter rational function  in the form 

 

Here,  and  are polynomials. To ensure that   represents a valid Laplace Transform, we typically 
consider cases where the degree of  is less than that of  , as it can be shown that  is a Laplace 

transform if . This condition is often referred to as the condition for the properness of a rational 

function in the Laplace domain. 

In such cases, finding the inverse may require completing the square in the denominator or performing a partial 
fraction expansion, a technique similar to one used in integral calculus. These techniques are particularly necessary 
when attempting to match   to a known inverse transform from standard tables. The choice between 
completing the square and partial fraction decomposition depends on the nature and composition of the 
denominator . 

• Partial Fraction Decomposition is often the first approach considered. It is effective when the denominator 
 is factorable into linear or irreducible quadratic factors. This technique breaks down complex rational 

expressions into simpler parts, making it easier to find the inverse Laplace Transform for each term 
individually. 

• Completing the Square is used when the denominator   contains quadratic terms that do not factor 
into real linear terms, often indicating complex roots. 

To illustrate these methods, let’s proceed with a few examples demonstrating how to apply these techniques to find 
the inverse Laplace Transform of various functions. 

 

Example 4.3.2: Completing the Square 

 Find the inverse Laplace transform 

 

Show/Hide Solution 
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The denominator is not factorable. Therefore, we try to complete the square: 

     

From Table 4.1, we see that 

    

Thus,  and   . To be able to use the above inverse transform we need to create a 4 in the 
numerator. So we multiply both the numerator and the denominator of the original function by 4. We 
obtain 

   

Now, we can use the inverse from the table 

    

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=217 
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Example 4.3.3: Partial Fraction Expansion 

Find the inverse Laplace Transform 

 

Show/Hide Solution 

 

In the denominator, we have a repeated linear factor  with multiplicity two and a non-repeated linear 
factor  . This composition leads us to structure the partial fraction expansion as: 

   

One way to find constants A, B, and C is to multiply both sides of the equality by   to 

eliminate denominators: 

 

We can then solve for the constants by equating coefficients of like terms on both sides. This forms a system 
of equations. 

An alternative and often simpler method is strategically choosing values for  that simplify the equation and 
isolate each constant. For instance. For example 

For B: Set  , which nullifies the terms with A and C, leading to: 

 

      

For C: Set  , simplifying the equation to solve for C: 
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For A: Choose a different  , say  to isolate and solve for A: 

        

 

With  ,  , and  , the partial fraction becomes 

   

Using linearity, the inverse Laplace Transform is 

   

Referring to the table of inverse transforms 

             and          

Applying these with   for the first two terms and   for the last term, we obtain 

 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=217 

Section 4.3 Exercises 

1. Find the inverse Laplace transform of the function  . 

Show/Hide Answer 

2. Find the inverse Laplace transform of 

Show/Hide Answer 

3. Solving a differential equation using the Laplace transform, you find    to be 

 

Find the inverse Laplace transform . 

Show/Hide Answer 
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4.4 SOLVING INITIAL VALUE PROBLEMS 

Having explored the Laplace Transform, its inverse, and its properties, we are now equipped to solve initial value 
problems (IVP) for linear differential equations. Our focus will be on second-order linear differential equations with 
constant coefficients. 

 

Method of Laplace Transform for IVP 

General Approach: 

1. Apply the Laplace Transform to each term of the differential equation. Use the properties of the Laplace 
Transform listed in Tables 4.1 and 4.2 to obtain an equation in terms of . The Laplace Transform of the 
derivatives are 

 

 

2. The transforms of derivatives involve initial conditions at . Apply the initial conditions. 

3. Simplify the transformed equation to isolate  . 

4. If needed, use partial fraction decomposition to break down   into simpler components. 

5. Determine the inverse Laplace Transform using the tables and linearity property to find . 

Shortcut Approach: 

1. Find the characteristic polynomial of the differential equation . 

2. Substitute , , and the initial conditions into the equation 

(4.4.1) 
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3. If needed, use partial fraction decomposition to break down  into simpler components. 

4. Determine the inverse Laplace transform of  using the tables and linearity property to find . 

 

Example 4.4.1: Solve IVP Using Laplace Transform (General Approach) 

Solve the initial value problem. 

      

Show/Hide Solution 

Using the General Approach 

1. Take the Laplace Transform of both sides of the equation 

 

Letting , we get 

 

2. Plugging in the initial conditions gives 

 

3. Collecting like terms and isolating , we get 
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Multiplying both the denominator and numerator by  and factoring the denominator yields 

 

4. Using partial fraction expansion, we get 

 

5. From Table 4.1, we see that 

      

Taking the inverse, we obtain the solution of the equation 

   

 

Example 4.4.2: Solve IVP Using Laplace Transform (Shortcut Approach) 

Solve the initial value problem. 

      

Show/Hide Solution 

Using the Shortcut Approach 

1. The characteristic polynomial is 

 

and 

186  |  4.4 SOLVING INITIAL VALUE PROBLEMS



   

2. Substituting them together with the initial values into Equation 4.4.1, we obtain 

   

Multiplying both the denominator and numerator by  yields 

 

3. Using partial fraction expansion, we get 

 

4. From Table 4.1, 

        and    

Taking the inverse, we obtain the solution of the equation 

   

 

Try an Example 

 

4.4 SOLVING INITIAL VALUE PROBLEMS  |  187



One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=219 

Section 4.4 Exercises 

1. Solve the IVP by using the inverse Laplace Transform 

 

Show/Hide Answer 

2. Solve the IVP by using the inverse Laplace Transform 

 

Show/Hide Answer 

3. Solve the IVP by using the inverse Laplace Transform 

 

Show/Hide Answer 
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4.5 LAPLACE TRANSFORM OF PIECEWISE 
FUNCTIONS 

A. Step function 

In this section, we explore how to apply the Laplace Transform to piecewise continuous functions. In the next 
section, we will address solving initial value problems that involve second-order differential equations with constant 
coefficients where the forcing function  is a continuous piecewise function. 

Jump discontinuities often occur in physical situations like switching mechanisms or abrupt changes in forces 
acting on the system. To handle such discontinuities in the Laplace domain, we utilize the unit step function to 
transform piecewise functions into a form amenable to Laplace transforms and subsequently find piecewise 
continuous inverses of Laplace transforms for the solution. 

The unit step function (Heaviside function)   is defined as 

 

It steps (or jumps) from 0 to 1 at . By shifting the input argument  , we can move the step to different 
locations. 

             

The step function can also be transformed, e.g., shifted, stretched, or compressed. For example, by multiplying 
by some constant , we can stretch it vertically. 

 

Or by combined shifting and reflecting , we can opposite the way the function switches on and off. 
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The step function enables us to represent any piecewise continuous function conveniently. For instance, consider the 
function 

 

   

 

It can be rewritten as 

(4.5.1)  

We can extend Equation 4.5.1 to more general continuous piecewise functions. 

 

(4.5.2)     

B. Laplace Transform of Piecewise Functions 

The Laplace Transform of the step-modulated function is key in solving differential equations with piecewise 
forcing functions. 

Theorem: Laplace Transform of a Step-Modulated Function. Let   be defined on , suppose 
, and assume  exists for . Then 

(4.5.3)    

This theorem enables the transformation of step-modulated functions into the Laplace domain, which can then be 
manipulated algebraically. 

 

Example 4.5.1: Find Laplace Transform of a Step-Modulated Function 
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Find the Laplace transform of . 

Show/Hide Solution 

To apply Equation 4.5.3, we take   and  . Therefore, we have 

   

From the table then, we find . 

    

     

 

Thus by Equation 4.5.3, we have 

 

 

Example 4.5.2: Find Laplace Transform of a Piecewise Function 

Find the Laplace transform of 

 

Show/Hide Solution 

 

We first write   in terms of the step function using Equation 4.5.1 with ,  , and 
. 
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Taking the Laplace transform, we have 

   

To apply Equation 4.5.3 to the second term, we take  and   . 

   

We have then 

   

   

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=221 

C. Inverse Laplace Transform of Piecewise Functions 

The previous theorem also allows us to determine the inverse Laplace Transform of functions that arise from 
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piecewise functions. However, it will be more convenient to shift the argument of  and replace  with 
. 

Translation in  Theorem. If   and   exists for , then 

 

Given , it is equivalent to 

(4.5.4)        

 

Example 4.5.3: Find Inverse Laplace Transform 

Find the inverse Laplace transform of the given function and find distinct formulas for  on appropriate 
intervals. 

 

Show/Hide Solution 

Since   has   as a factor, we use Equation 4.5.4 to determine the inverse. 

Letting  and , we obtain 

   

   

Using Equation 4.5.4 with  and linearity of , we have 
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We simplify it using trigonometric identities:  and 

. Applying these identities yields 

   

From Equation 4.5.1, we recognize that 

• The expression without a unit function, , corresponds to , the function active 
before the step. 

• The expression multiplied by the unit function, , represents the change in the 
function at the step, thus corresponding to . 

Given   , we can solve for  . 

 

 

We can now express  as a piecewise function. 

 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=221 

Section 4.5 Exercises 

1. Find the Laplace transform,   of  . 

 

Show/Hide Answer 

2. Take the inverse Laplace transform to determine . Enter  for   if the unit function is a 
part of the inverse. 

 

Show/Hide Answer 

3. Apply the Laplace transform to the differential equation, and solve for  . 

Show/Hide Answer 
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4.6 IVP WITH PIECEWISE FORCING 
FUNCTIONS 

Solving Initial Value Problems with Piecewise Forcing 
Functions 

In this section, we tackle initial value problems (IVP) for second-order differential equations with constant 
coefficients where the forcing function  is a continuous piecewise function. 

   

 

How to Solve IVPs with Piecewise Forcing Functions using the 
Method of Laplace Transform 

1. Write the piecewise forcing function in terms of the step function. 

2. Determine the Laplace transform of the differential equation. 

3. Solve the transformed equation for . 

4. Use the Laplace transform tables and the translation theorem in previous sections to determine the inverse 
Laplace transform. 

5. If required, rewrite   in piecewise format. 

 

Example 4.6.1: Solve IVP Using Laplace Transform 

Solve the given initial value problem. 
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Show/Hide Solution 

1. The forcing function  is already in the step-modulated form with  . 

2. Taking the Laplace transform of the equation yields 

    

Letting   and recognizing that  (Applying Equation 

4.5.3), we obtain 

 

Applying the initial conditions, we get 

 

3. Solving for   yields 

 

 

 

Factoring the denominators yields 

    1/(s^2(s+2)(s-5) )(-3e^(-2s)) 
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4. To find , we note that 

 

where 

   

   

 

Computing the inverse Laplace transform of ,  and , we obtain 

   

   

   

To make the inverse process easier, let’s rewrite  first. 

 

Taking the inverse transform and using the translation theorem for the terms with the exponential term, we 
obtain 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=223 

 

Example 4.6.2: Solve IVP Using Laplace Transform – Piecewise Forcing Function 

The current  in an  series circuit is governed by the following initial value problem. Determine the current 
in terms of . 

                     

Show/Hide Solution 

1. The forcing function   can be written in terms of the step function as 
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2. Taking the Laplace transform of the equation yields 

    

Letting   , we obtain 

 

3. Solving for   yields 

 

4. To find , we note that 

 

where 

   

Computing the inverse Laplace transform of  yields 

   

Using the translation theorem, we obtain 
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5. This can be written as the piecewise function 

   

The figure below depicts the graph of the current . 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=223 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=223 

Section 4.6 Exercises 

1. Solve the following initial value problem. Only provide the solution for  . 

      

Show/Hide Answer 
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2. The solution to the IVP 

 

is in the form  . Find functions  and  . 

Show/Hide Answer 

3. The solution to the IVP 

 

is in the form  . Find functions  and  . 

Show/Hide Answer 
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4.7 IMPULSE AND DIRAC DELTA FUNCTION 

In prior sections, we explored initial value problems for second-order differential equations with constant 
coefficients, focusing on cases where the forcing function, , is either continuous or piecewise continuous on the 
interval . 

   

Now, let’s turn our attention to a different type of forcing function: one that represents an impulsive force. Impulsive 
forces are characterized by very large magnitudes over extremely short time intervals, effectively appearing as a sudden 
“jolt” or “spike” in the system. Such impulses occur in various contexts, including electrical circuits during a switch-
on event, mechanical systems during a collision, or any scenario where a sudden, significant force is applied for a brief 
period. 

A. Dirac Delta Function 

To mathematically model these impulsive forces, we use the Dirac Delta function, denoted as  . The Dirac Delta 
function is not a function in the traditional sense but rather a generalized function or distribution with the following 
properties. 

1. Zero everywhere except at zero: 

  

2. Integral equals one: 

3. Sifting property: 

  for any   that is continuous on the interval that contains 

204  |  4.7 IMPULSE AND DIRAC DELTA FUNCTION



By shifting the argument  in , we can model impulses that occur at times other than . The shifted Dirac 
Delta function, , has a spike at  and is defined as 

 

Thus the sifting property extends to 

4. Sifting at : 

   for any   that is continuous on the interval that contains 

B. Laplace Transform of the Dirac Delta Function 

The Laplace Transform provides a convenient way to handle the Dirac Delta function in the context of solving 
differential equations. The transform of a shifted Dirac Delta function is given by 

(4.7.1)  

Understanding the Dirac Delta function and its properties is crucial for modeling and analyzing systems subjected to 
impulsive forces. 

 

Example 4.7.1: Solve IVP with Impulsive Forcing Function 

Find the solution to the initial value problem 

         

Show/Hide Solution 

 

Taking the Laplace transform of the equation, applying Equation 4.7.1 with   to the Delta function, 
yields 
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Solving for  , we obtain 

 

 

Computing the inverse Laplace transform gives 

   

Which equivalently is 

 y(t)= {(cos(4t) if tltpi),(sin(4t)+cos(4t) if  t&gt;=pi):} 

   ={(cos(4t) if tltpi),(sqrt(2)sin(4t +pi/4) if  t&gt;=pi):} 

The below figure shows . The impulsive force is applied and adds momentum to the system at . 
For comparison, the dotted line represents the undisturbed system. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=225 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=225 

Section 4.7 Exercises 

1. Solve the initial value problem 

 

Show/Hide Answer 

 

2. Solve the initial value problem 

 

Show/Hide Answer 
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4.8 APPLICATION: ELECTRICAL CIRCUITS 

A. Introduction 

This section briefly shows the practical use of the Laplace Transform in electrical engineering for solving differential 
equations and systems of such equations associated with electric circuits. The Laplace Transform is particularly 
beneficial for converting these differential equations into more manageable algebraic forms. 

We start by looking at a single initial value problem (IVP) from a basic RLC circuit. We demonstrate how the Laplace 
transform can simplify finding the circuit’s current as a function of time by translating a differential equation into an 
algebraic equation. 

 

Example 4.8.1: RLC Series Circuit – Linear Differential Equation 

Consider an RLC series circuit with a resistor of  and an inductor of , and a capacitor of 

powered by a voltage voltage source. Initially, the current and charge on the capacitor 
are zero. Determine the current in the circuit as a function of time. 

Show/Hide Solution 

 

Given information: 

• Resistor: 
• Inductor: 

• Capacitor: 

• Voltage source: 
• Initial current on capacitor: 
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• Initial charge on capacitor: 

In Example 3.9.1, we developed the initial value problem governing this RLC circuit. 

     

Applying the Laplace Transform to the differential equation results in 

 

Letting , we have 

 

 

Since  and  are both zero, the equation simplifies to 

 

Solving for , we find 

 

Breaking  down by partial fraction expansion, we obtain 

   

To simplify the second fraction, we complete the square. 
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Applying the inverse Laplace Transforms to  yields the current  . 

   

This result is consistent with what we obtained in Example 3.9.1 by solving the initial value problem using 
the method of undetermined coefficients. 

B. Solving Systems of Linear Equations with the Laplace 
Transform 

The Laplace Transform can be applied to turn certain systems of differential equations with initial values into systems 
of algebraic equations in the s-domain. Solving these algebraic equations allows us to find functions of , which we 
can then convert back into time-domain solutions using the inverse Laplace Transform. Next, we address a more 
complex example involving a series-parallel RL circuit, which results in a system of differential equations. 

 

Example 4.8.2: RL Series Circuit – System of Linear Equations 

a) For the given electrical circuit diagram, derive the system of differential equations that describes the currents 
in various branches of the circuit. Assume that all initial currents are zero. b) Once the system of differential 
equations and initial conditions are established, solve the system for the currents in each branch of the circuit. 
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Diagram Description 

 
Consider a circuit with a 12-volt DC power supply. From the positive terminal of the power supply, a 4-ohm 
resistor is connected in series. Following this resistor, the circuit branches into two parallel paths. The first 
parallel branch contains a 2-ohm resistor, and the second branch contains a 0.1-henry inductor. These two 
branches then converge, and the circuit continues through a 0.2-henry inductor before returning to the negative 
terminal of the power supply. Given this setup, calculate the currents I1 (through the 4-ohm resistor), I2 
(through the 2-ohm resistor), and I3 (through the 0.1-henry inductor). Assume steady-state conditions for the 
inductors. 

Show/Hide Solution 

 
a) 

We denote the current passing through the main branch by , the current through the 2ohm-resistor by 
and the current passing through the  0.1H-inductor by . 

Given the voltage drop across a resistor is  and across an inductor is , we apply Kirchhoff’s voltage 

law to the electrical network. 

In the main loop including 0.1 H-inductor, we find 
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In the sub-branch including the 2 Ω-resistor and 0.1 H-inductor, we find 

Also, since current  is split into  and , we have 

Thus the system of equations describing the currents in the circuit is 

(4.8.1) 
     

b) 

To solve the system, we apply the Laplace Transform to each equation in the system. 

(4.8.2) 

 

Letting , , and , we have 

   

   

Since initial currents are zero, system 4.8.2 simplifies to 
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In the third equation, we express  in terms of the other two variables. 

(4.8.3)  

Next, we substitute this expression for  into the second equation, which reduces the system to two 
equations with two unknowns. 

 

(4.8.4) 
   

To eliminate , we multiply the first equation by  and the second equation by  and 
then add both equations. This results in 

   

Rearranging for  gives 

 

To eliminate decimal and rational terms, we multiply the numerator and the denominator by . 

     

Breaking  down by partial fraction expansion, we get 

 

By substituting  in the second equation in system 4.8.4, we find . 
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This simplifies to 

 

Breaking  down by partial fraction expansion yields 

 

By substituting the expressions for  and  in Equation 4.8.3, we find . 

 

Finally, applying the inverse Laplace Transforms to , , and , we determine the current in the 
branches of the circuit. 
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4.9 TABLES OF LAPLACE TRANSFORMS 

Table 4.1: Table of Laplace Transform 
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          Domain of  
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     Domain of  

Step Function: 
 

     

Direct Delta Function: 
 

   

   

   

 

Table 4.2: Properties of Laplace Transform 
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Property Example 

   
       

        for any constant      
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PART V 

SERIES SOLUTIONS OF 
DIFFERENTIAL EQUATIONS 

Chapter Outline 

This chapter addresses the challenge of solving complex differential equations, often encountered in physical 
applications, which do not yield solutions expressible by standard functions. It focuses on series solutions as an 
alternative method. 

5.1 Review of Power Series: This section revisits the concept of power series, examining their key properties and how 
they are used in solving differential equations. 

5.2 Power Series Solutions to Linear Differential Equations: This section discusses the process of finding the power 
series representing solutions to linear differential equations. 
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Emmy Noether (1882-1935). Attribution: 
Unknown Author, Public Domain, via 
Wikimedia Commons. 

Pioneers of Progress 

Emmy Noether, born in 1882 in Erlangen, Germany, stands as a 
towering figure in the realm of mathematics and theoretical physics, 
overcoming the formidable gender barriers of her time to 
revolutionize these fields. Despite initially being barred from holding 
an academic position due to her gender, Noether’s profound 
contributions, especially in abstract algebra and theoretical physics, 
earned her worldwide acclaim. Her most significant achievement, 
Noether’s Theorem, unveiled a fundamental connection between 
symmetries and conservation laws in physics, a principle crucial in 
many areas governed by differential equations. Her work in the 
calculus of variations, a field closely related to differential equations, 
provided essential tools for physicists and mathematicians alike. 
Noether’s insights into ring theory and algebraic invariants also laid 
the groundwork for modern algebra, influencing the methods used in 
solving differential equations. Emmy Noether’s story is not just one of 
remarkable intellectual feats; it is a tale of resilience and perseverance 
against the societal norms of her era. Her legacy continues to inspire 
and empower generations of mathematicians and scientists, 
symbolizing the unyielding pursuit of knowledge against all odds. 

220  |  SERIES SOLUTIONS OF DIFFERENTIAL EQUATIONS



5.1 REVIEW OF POWER SERIES 

Not all differential equations have solutions that can be expressed in terms of elementary functions such as 
polynomials, exponentials, trigonometric functions, etc. Even when they do, finding these solutions explicitly can 
be complex or impossible. Series solutions offer a way to represent the solution as an infinite sum of terms. They 
can provide insights into the behavior of solutions, such as their convergence, oscillation, or growth properties 
when an explicit solution is unknown. In practical applications, an exact solution may not be necessary, and a finite 
series (a truncation of the infinite series) can serve as an approximate solution. This method is especially useful in 
computational methods and simulations. 

Before delving into power series solutions of differential equations, let’s review the concept of a power series and its 
relevant properties. 

A. Power Series 

A power series is an infinite series of the form 

 

where  is the index of summation,  represents the coefficient of the nth term,  is the center of the series, and 
 is the variable. The series can be expressed as 

   

This allows us to approximate functions in regions where the series converges, which is essential for understanding 
and solving differential equations. We may sometimes be interested in the pattern or form of initial terms in the 
series or manipulating terms such as re-indexing or combining terms. Thus, we can ‘strip out’ these terms from the 
general series notation. 

   

Here, the first two terms are stripped out of the general series notation, and the summation index now starts from 
. 
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B. Shifting the Index of a Power Series 

Shifting the index of a power series changes the starting point of the summation and reindexes the terms of the series. 
This is particularly useful for aligning terms for addition or subtraction of series. Consider a power series 

 

Shifting Right (Increasing index) 

To shift the series right by  unit, replace  with  in the general term and add  to the original lower limit of 
the summation. 

 

Shifting Left (Decreasing index) 

To shift the series left by  unit, replace  with  in the general term and subtract  from the original lower 
limit of the summation. 

 

C. Linear Combination of Power Series 

When solving differential equations using series often we need to add or subtract series. When adding or subtracting 
series, we ensure the terms being added or subtracted correspond to the same power of the variable. This means 
ensuring both series have the same power of   and their summation indices are aligned properly to start 
from the same lower limit. Consider two power series 

    and  

Since the power of  term is the same in both series and the index in both start from the same value, they can 
be linearly combined as 
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where   and   are constants. 

If there is an  term in front of the summation in a series, we move it inside the summation and combine it 
with  term there. For example, 

 

 

This simplifies the handling and manipulation of series in differential equation solutions. 

 

Example 5.1.1: Combine Power Series 

Write the following as a single series in terms of . 

 

Show/Hide Solution 

 

1. First, we multiply  term into the first summation. 
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2. We shift the indexes in both series to make the exponent of  be  . Thus we need to shift the first 
series two units to left and the second series one unit to right. 

 

 

3. Finally, we ensure both series start from the same lower limit. Depending on the series, we can sometimes 
strip out terms or adjust the index if the preceding terms are already zero. Notice that if the second series 
starts from , the initial term will be zero because of the factor . Therefore, initiating the 
index from  does not alter its overall value. 

 

Now we can combine the series to obtain the final answer. 

 

Note: Generally, whenever a series contains a factor of , the term at  (where a is the starting 
index) will be zero. 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=234 

D. Convergence of Power Series 

The convergence of power series is essential for ensuring that the series represents the function accurately over some 
interval. A series converges at a particular point if the sum approaches a finite limit as  approaches infinity.  In other 
words, a power series converges for a given  if the following limit exists. 

 

For any power series, any of the three cases can be true: 

• Converges only at : Here, the sum of the series equals to . 
• Converges for all values of . 
• Converges within a radius of convergence  : The series converges if  and diverges if 

 .  is called the radius of convergence, and the interval  is the 
interval of convergence. 

To determine the radius and interval of convergence for a given power series, the Ratio Test is often used. The Ratio 
Test involves taking the limit 

 

If , the series converges, and the radius of convergence is . 
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E. Differentiation of Power Series 

Differentiation and integration of power series within their interval of convergence can be performed term-by-term. 
For a given power series centered at 

 

The first derivative of  is 

 

 

Note that the index of the first derivative starts at  because the first term in the original series is constant ( ) 
and disappears upon differentiation. The interval of convergence for the derivative series is at least as large as that of 
the original series, but careful attention should be paid to the endpoints. 

Similarly, the second derivative of  is 

 

 

Note that the index of the second derivative starts at  as the first term of the first derivative is constant ( ) 
and disappears upon differentiation. 

 

Example 5.1.2: Combine Power Series 
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Suppose  can be expressed as a power series  . Write the following as a single series in terms of 

. 

 

Show/Hide Solution 

 

1. First, we find  and   : 

   

   

2. Next, we substitute  and   into the expression: 

     

 

3. Multiplying the  term in front of the summation by the  term in the general term of each series, we 
obtain 

       

4. Note that the exponent of  is the same in all but the first series. Therefore, we only need to shift the index 
of the first summations by 2 to the left: 
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5. Finally, we ensure all series start from the same lower limit. Notice that the second series is zero at 
because there factors  and  in the general term of the series. Thus, its index can start at 
without changing its value. Likewise, the third series is zero at  so it can too start at   . Then we 
rewrite the indices and we have 

       

Combining the series yields 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=234 

F. Properties of Power series 

Equality of Series 

If two power series are equal for all  in an open interval that contains x_0, then their coefficients must be equal. 
That is 
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Implies   for all  . 

Power Series Vanishing on an Interval 

 If a power series equals zero for all  in an open interval, then all its coefficients must be zero. That is 

 

Implies  for all . 

G. Taylor Series 

A Taylor series is a specific type of power series representation of a function based on its derivatives at a specific point, 
typically at . It is given by 

 

Here,  is the nth derivative of  evaluated at , and   is the factorial of . 

When  , the series is often called a Maclaurin series. The Taylor series expansions of a few functions at 
 (Maclaurin series) are as follows. 

   

   

   

H. Recursive Relation 

A recursive relation for a series provides a way to calculate each term of the series using one or more of the preceding 
terms. Instead of defining each term independently, a recursive relation relates each term to its predecessors, building 
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the series progressively. This method is particularly useful when the direct calculation of terms is complex or when 
the relationship between consecutive terms is simpler to express. 

Generally, a recursive relation has the following structure. 

 for 

Here,   is the nth term of the series, and  is a function that defines how to calculate the nth term using the 
previous   terms. 

The recursive relation allows the calculation of all coefficients in the series from a set of initial conditions or known 
coefficients. These are usually derived from the initial or boundary conditions of the differential equation. 

 

Example 5.1.3: Find Terms of a Series using Recursive Relation 

Suppose the recursive formula for a power series solution is 

Find the second, third, and fourth terms of the series in terms of   and  . 

Show/Hide Solution 

 

To find the terms we plug  into the recursive relation. 

 

 

 

Given   ,   can be written in terms of  : 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=234 

Section 5.1 Exercises 

1. Write the following as a single series in terms of  . 

        

Show/Hide Answer 

2. Suppose   can be expressed as a power series   . Express the following as a single series in 

terms of  . 

 

Show/Hide Answer 
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3. Suppose the recursive formula for a power series solution is 

 

Find the fourth and fifth terms in terms of   and  . 

Show/Hide Answer 
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5.2 SERIES SOLUTION TO DIFFERENTIAL 
EQUATIONS 

Power Series Solutions to Linear Differential Equations 

In earlier discussions, we primarily focused on homogeneous linear differential equations with constant coefficients. 
However, many physical applications lead to more complex second-order homogeneous linear differential equations 
of the form 

(5.2.1)    

where   and  are polynomials with no common factor. Often, the solutions to Equation 5.2.1 cannot 
be expressed in terms of familiar functions, prompting the use of series solutions. We start by normalizing the 
equation, dividing by  to make the coefficient of   one. 

 

Given the continuity of polynomials,  and  are continuous except possibly where . 
A point  where  is called an ordinary point of Equation 5.2.1; otherwise it is a singular point. 
Importantly, at ordinary points,   and  are analytic, allowing for power series representation. 

Theorem. Suppose  and  are polynomials with no common factor and . If   is an 
ordinary point of Equation 5.2.1, then every solution of the equation can be represented by a power series 

(5.2.2) 
   

Moreover, the radius of convergence  of such a power series solution is at least as large as the distance from  to 
the nearest singular point (real or complex) of the equation. If  is constant, implying it is never zero, the radius of 
convergence will be infinity and the interval of convergence will be . 

To find series solutions of Equation 5.2.1, we consider a power series converging near an ordinary point . We 
assume that the solution can be written as a power series 5.2.2, substitute  and its derivatives in the given 
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differential equation, and collect like powers of . Setting the coefficient of each power to zero, we can 
systematically solve for the   coefficients, often resulting in a recursive relation. 

 

How to Find a Series Solution to a Differential Equation 

1. Determine the differential equation and choose the point  around which to expand the series (typically an 
ordinary point) 

2. Assume a power series solution (Equation 5.2.2) for  and find its derivatives  , , etc., as required by the 
differential equation. 

3. Substitute the series and its derivative into the differential equation. 

4. Organize like powers of  by aligning terms, ensuring all series are expressed from the same starting 
value of  . 

5. Collect and group the coefficients of like powers of . 

6. Solve equations by equating coefficients of like powers of  to find relations among ‘s. 

7. Use the given initial or boundary conditions to find specific ‘s. Use the recursive relation to determine all 
coefficients. 

8. Construct the solution with the coefficients found and discuss the radius and interval of convergence. 

 

Example 5.2.1: Find a Series Solution to an Equation with Constant Coefficients 

Determine a series solution for the differential equation 

Show/Hide Solution 
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1. Notice that  and thus the coefficients are analytic at every point. We assume  and that 
the solution can be written as a power series 

  

 

2. First, we need to find : 

   

   

3. Next, we substitute  and   into the equation: 

   

4. The next step is to align terms. To do this we need to shift the summation indices to start at the same value. 
Letting  or equally  in the first summation and  in the second summation, 
we have 

   

5. Adding the series yields 

 

6. From the Power Series Vanishing on an Interval property discussed in Section 5.1, we know that If a power 
series is zero for all , then all its coefficients must be zero. Therefore, we conclude that 
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or 

     

This is called the recurrence relation for the values of  for which the relation is true. 

7. Next, we write a few terms of the series to see if we can determine the trend and hopefully the explicit 
formula of the series. Setting , we get 

         

      
    

         

Notice that the term with even indices can be written in terms of the previous term and eventually in terms 
of   and so can be the odd indices in terms of . Therefore, by writing the recurrence relation separately 
for odd ( ) and even ( ) indices, we get 

     

     

8. Thus the general solution of the equation can be written as 
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We recognize that the series in the solution are the Maclaurin series of  and  , respectively. 

      and   

Therefore, the general solution can be expressed as 

 

for some arbitrary constant   and . This is the same solution we would obtain using the methods 
learned in previous sections. 

The interval of convergence for both the cosine and sine series is all real numbers  . 

For both series in the solution, the Ratio Test indicates that as  the limit  approaches zero, which 
means the series converge for all real numbers. Therefore, without prior knowledge of the series representing 
sine and cosine, we would conclude that the interval of convergence for each series and hence the combined 
series solution is all real number  . 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=236 

In practice, we are interested in finding the series solution for equations with nonconstant coefficients. This is 
because equations with constant coefficients can be easily solved using the technique outlined in Chapter 3 for 
homogeneous equations with constant coefficients. Let us do another example for an equation with nonconstant 
coefficients. 

 

Example 5.2.2: Find a Series Solution to an Equation with Variable Coefficents 

Find a series solution for the differential equation 

 

Show/Hide Solution 

 

1. Note that  has no root and thus every point for this equation is an ordinary point. We 

assume that the solution can be written as a power series 

  

2. Next, we find  and  : 
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3. Next, we substitute  and   into the equation: 

    

Multiplying the coefficients by the series, we get 

     

4. Note that the exponent of  is the same in all but the first series. Therefore, we only need to shift the index 
of the first summations by 2: 

     

Also, notice that the second series is zero at   . So its index can start at  . Likewise, the third 
series is zero at  so it can too start at  . Then we rewrite the indices and we have 

     

5. Combining the series yields 

 

 

6. Now setting the coefficient to zero gives 
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7. So the recursive relation is simplified to 

 

Setting  , we get 

         

            

            

Notice that all the terms with odd indices are zero except . Therefore, by writing the recurrence relation 
separately for odd ( ) and even ( ) indices, we obtain 

     

     

8. Thus the general solution of the equation can be written as 
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Example 5.2.3: Find a Series Solution to an Equation with Variable Coefficents 

Find the first six terms in the series solution of the initial value problem 

    

Show/Hide Solution 

 

In Example 5.2.2, we found the general series solution to this differential equation. 

 

To apply the initial conditions, we first recognize that   and  . Then, we 
substitute   and  into the general solution to compute the other terms. 
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Therefore, the solution to the initial value problem is 

   . 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=236 

Section 5.2 Exercises 

1. Find the first five terms in the series solution of the initial value problem 

    

Show/Hide Answer 
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2. Find the first five terms in the series solution of the initial value problem 

    

Show/Hide Answer 

 

3. Find the first five terms in the series solution of the initial value problem 

    

Show/Hide Answer 
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PART VI 

SYSTEMS OF DIFFERENTIAL 
EQUATIONS 

Chapter Outline 

This chapter presents the matrix method for solving systems of first-order differential equations. These systems 
are instrumental in modeling applications with multiple interdependent processes, common in complex real-world 
situations. 

6.1 Review of Matrices: This section offers a concise overview of essential matrix theory concepts in linear algebra, 
foundational for addressing systems of differential equations. 

6.2 Review of Linear Independence and Systems of Equations: This section reviews the topic of systems of linear 
equations and methods for assessing the linear independence of solution sets. 

6.3: Review: Eigenvalues and Eigenvectors: This section revisits eigenvalues and eigenvectors, explaining their 
calculation and importance in solving systems of differential equations. 

6.4: Linear Systems of Differential Equations: This section introduces first-order differential equation systems and 
their matrix representations and discusses solution existence. It also explores transforming higher-degree differential 
equations into first-order system forms. 

6.5 Solutions to Homogeneous Systems: This section details methods to find solutions for homogeneous differential 
equation systems and employs the Wronskian to verify solution independence. 

6.6 Constant-Coefficient Homogeneous Systems: Real Eigenvalues: This section continues exploring homogeneous 
systems of differential equations with constant coefficients, focusing on scenarios with real-number eigenvalues. 

6.7 Constant-Coefficient Homogeneous Systems: Complex Eigenvalues: This section addresses solutions for 
homogeneous systems with constant coefficients when eigenvalues are complex numbers. 

6.8 Constant-Coefficient Homogeneous Systems: Repeated Eigenvalues: This section discusses solving 
homogeneous systems with constant coefficients when eigenvalues are repeated real numbers. 

6.9 Nonhomogeneous Linear Systems: This section studies nonhomogeneous linear systems focusing on the method 
of variation of parameters. 
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Pioneers of Progress 

Evelyn Boyd Granville, born in 1924 in Washington, D.C., is a pioneering mathematician whose journey is a 
testament to resilience and brilliance in the face of racial and gender barriers. As one of the first African-American 
women to earn a Ph.D. in mathematics from Yale University in 1949, Granville’s early work in functional analysis laid 
a foundation for her diverse and impactful career. She played a pivotal role in America’s space race, working with IBM 
on the Project Vanguard and Project Mercury space programs, where she developed complex computer algorithms 
for trajectory analysis. This work heavily relied on systems of differential equations to calculate the orbits and predict 
the paths of spacecraft – a critical component in the success of these early space missions. 

Granville’s contributions extended beyond the realm of space exploration. She was also a passionate educator and 
advocate for women and minorities in STEM fields. Throughout her career, she taught mathematics at various 
universities and inspired countless students to pursue careers in science and technology. 

246  |  SYSTEMS OF DIFFERENTIAL EQUATIONS



6.1 REVIEW: MATRICES 

Linear algebra, particularly the study of matrices, is fundamental in understanding and solving systems of differential 
equations. This section provides a focused overview of the key concepts in matrix theory that are essential for this 
purpose. 

A. Matrix Definition and Notation 

A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. The individual 
items in a matrix are called its elements or entries. A matrix is typically denoted by a capital letter (e.g., A, B, C). The 
element in the -th row and -th column of a matrix A is denoted as . The dimensions of a matrix are given as 

. For example, a matrix A with  rows and  columns is an  matrix. 

 

B. Special Matrices 

A row matrix has only one row and multiple columns, while a column matrix has one column and multiple rows. 
These are also known as row vectors and column vectors, respectively. 

                       

A matrix with the same number of rows and columns is called a square matrix. For example, matrix B is an 
square matrix. 
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In a diagonal matrix, the elements outside the main diagonal are all zero. The main diagonal is the set of elements 
 where . For example, matrix C is an  diagonal matrix. 

 

The identity matrix is a special type of diagonal matrix where all the elements on the main diagonal are 1. It is 
denoted as  or  to indicate its size ( ). 

 

The zero matrix is a matrix in which all elements are zero. It is denoted by to indicate its dimensions. 

 

C. Matrix Operation 

Matrix Addition and Subtraction 

Matrix addition and subtraction are elementary operations where matrices of the same dimension are added or 
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subtracted element by element. If  and  are matrices of the same size, their sum 
 is a matrix where each element . 

These operations are commutative (i.e., ) and associative (i.e., 
). 

Scalar Multiplication 

Scalar multiplication involves multiplying every element of a matrix by a scalar (a constant number). If  is a scalar 
and , then  is a matrix where each element is . 

Scalar multiplication is distributive over matrix addition or subtraction (i.e.,  ) and 
associative with respect to the multiplication of scalars (i.e., ). 

 

Example 6.1.1: Matrix Subtraction and Scalar Multiplication 

Find matric  where  given matrices  and  . 

    and 

Show/Hide Solution 

 

Matrices   and   are the same size and thus can be subtracted. 

 

 

We first multiply all entries of matrix A by 3. 
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We then subtract the corresponding entries. 

 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240 

Matrix Multiplication 

Matrix multiplication is only possible when the number of columns in the first matrix matches the number of rows in 
the second matrix. Consider two matrices   and . The product of these matrices is a new matrix 
, where the dimension of C is . Each element of C is computed by taking the dot product of a corresponding 
row from A and a column from B. This computation for each element in the -th row and -th column of C is given 
by the formula 

(6.1.1)    

Matrix multiplication is associative, meaning . It is also distributive over addition, which 
implies . However, it is not commutative, meaning  may not equal ). 

Special cases in matrix multiplication include interactions with identity and zero matrices. Multiplying any matrix by 
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an identity matrix of appropriate size leaves the matrix unchanged (i.e.,  ). Any matrix multiplied 
by a zero matrix results in a zero matrix of appropriate dimensions. 

 

Example 6.1.2: Matrix Multiplication 

Compute matrix  given 

   and 

Show/Hide Solution 

 

To compute the product of matrices A and B, , we first verify that multiplication is possible. Matrix A 
has dimensions , and matrix B has dimensions . Since the number of columns in A (3) matches 
the number of rows in B (3), multiplication can be performed. The resulting matrix C will have dimensions 

. 

We compute each entry of matrix C using Equation 6.1.1: 
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Therefore, the resulting matrix C is 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240 

D. Matrix Determinant 

The determinant is a scalar value that is associated with every square matrix. It provides critical information about 
the matrix, such as its invertibility. The determinant of a matrix A is denoted as 

 

For a  matrix, the determinant is calculated as 

(6.1.2) 
 

For larger square matrices, the determinant is typically calculated using the method of cofactor expansion. For 
instance, the determinant of a  matrix can be computed by expanding along any row or column. Expanding 
along the first row, the formula is 
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(6.1.3) 
     

Another approach to compute determinants, especially for large matrices, is to use row reduction to transform the 
matrix into an upper triangular form. The determinant is then the product of the diagonal elements. 

 

Example 6.1.3: Find Determinant 

Find the determinant of the given matrices. 

   and 

Show/Hide Solution 

 

To find the determinant of matrix A, we use Formula 6.1.2. 

   

To find the determinant of matrix B, we use Formula 6.1.3. 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240 

E. Matrix Inverse 

The inverse of a square matrix , denoted as , is a matrix that, when multiplied with , yields the identity 
matrix. 

 

One common method to find a matrix inverse is to use the adjugate and determinant. The formula is 

 

where  is the adjugate of , calculated from the cofactors of . This method involves computing the 
determinant and then the cofactor matrix, which is then transposed to get the adjugate matrix. For a  matrix 

, the inverse is given by 

(6.1.4) 
 

Another method for finding the inverse is the row reduction method, which involves augmenting the matrix  with 
the identity matrix 

 

and then performing row operations to transform  into the identity matrix. The operations that transform A into 
 will transform the augmented identity matrix into . 
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This method is particularly useful for numerical calculations and for larger matrices. 

If a matrix is invertible, its inverse is unique. A square matrix is invertible if and only if it is nonsingular, meaning its 
determinant is not zero. If the determinant of a matrix is zero, the matrix does not have an inverse, and it is referred 
to as a singular matrix. 

 

Example 6.1.4: Find Inverse of 2 by 2 Matrix 

Find the inverse of matrix A, provided it exists. 

 

Show/Hide Solution 

 

We first find the determinant of A to determine if it has an inverse. 

The determinant is nonzero, so the inverse exists. For a  matrix, the cofactor approach, Formula 6.1.4, 
is fairly simple. 

 

 

Try an Example 

6.1 REVIEW: MATRICES  |  255



 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240 

 

Example 6.1.5: Find Inverse of 3 by 3 Matrix 

Find the inverse of matrix A, provided it exists. 

 

Show/Hide Solution 

 

To find the inverse of a  matrix, the row reduction method is more straightforward. To find the inverse 
of matrix  using the row reduction method, we start by forming an augmented matrix with matrix  and 
the   identity matrix . The goal is to use row operations to transform the left side of the augmented 
matrix (the first three columns) into the identity matrix. 

   

Apply the row operation: 

 (Add 3 times the first row to the second row): 
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 (Subtract 2 times the second row from the third row): 

 

 (Subtract 3 times the third row from the first row): 

 

Since we have successfully transformed the left side of the augmented matrix into the identity matrix, the 
inverse of matrix A exists and is given by the right side of the augmented matrix: 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240 
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F. Matrix Calculus 

Differentiation and integration of matrices are important in the context of systems of linear differential equations, 
particularly in finding the solution to nonhomogeneous systems. 

Matrix Differentiation 

Differentiating a matrix with function entries involves taking the derivative of each element of the matrix 
individually. Consider matrix   whose entries are a function of . 

 

The derivative of  with respect to , denoted as  or , is a matrix of the same size where each entry is 

the derivative of the corresponding entry of . 

 

The standard rules of differentiation, including the product rule, quotient rule, and chain rule, apply to each 
element of the matrix. 

Matrix Integration 

Integrating a matrix with function entries is similar to differentiation and is done element-wise. The integral of a 
matrix  over a variable  is a matrix of the same size where each element is the integral of the corresponding 
element of . 
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Example 6.1.6: Matrix Integration 

Evaluate the integral of matrix  with respect to . 

 

Show/Hide Solution 

 

The integral of matrices is an element-wise operation. 

 

 

 

Try an Example 

 

6.1 REVIEW: MATRICES  |  259



One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240 

Section 6.1 Exercises 

1. Given    and  , find matrix  . 

Show/Hide Answer 

 

2. Find the inverse of  . 

Show/Hide Answer 

 

3. Find the inverse of  

Show/Hide Answer 

4. Given the matrices   and  , find their multiplication  . 
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Show/Hide Answer 

 

5. Given the matrix 

 

Evaluate the integral of   with respect to  . 

Show/Hide Answer 
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6.2 REVIEW: LINEAR INDEPENDENCE AND 
SYSTEMS OF EQUATIONS 

 A. Solving Systems of Linear Equations 

Solving systems of linear equations is a fundamental aspect of linear algebra. To solve these systems efficiently, we 
often express them in matrix form. Consider a system of linear equations 

   

Such a system can be represented in matrix form as 

     

which is simply denoted as 

 

Here,  is the coefficient matrix, containing the coefficients of the variables in the system,  is the vector (column 
matrix) representing the variables, and   is the vector (column matrix) representing the constants on the right side 
of each equation. If all the constant terms in the vector   are zero, then the system of linear equations is referred 
to as a homogeneous system. Conversely, if any of the constants in  are non-zero, the system is classified as a 
nonhomogeneous system. 

To simplify this system, we use an augmented matrix, which combines the coefficient matrix  and the constant 
vector   into a single matrix. This is done by appending  as an additional column to . 
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Row operations are then used to systematically simplify this augmented matrix, maintaining the equivalence of the 
system. The goal is to achieve either row echelon form (REF) or reduced row echelon form (RREF). REF, achieved 
through the Gaussian elimination method, simplifies the matrix into an upper triangle form where all non-zero rows 
are above rows of all zeros, and each leading coefficient (first non-zero number in a row) is to the right of the leading 
coefficient of the row above it. RREF achieved through the Gauss-Jordan elimination method, further simplifies 
REF so that each leading coefficient is the only non-zero number in its column and is equal to 1, making it easier to 
read the solutions directly from the matrix. 

 Solution Possibilities 

The solution of the system depends on the final form of the augmented matrix after applying row operations: 

• Unique Solution: If the augmented matrix can be reduced to row echelon form where each variable has a 
leading 1 and there are no inconsistent equations (like  ), the system is consistent and has a unique 
solution. 

Watch Video: Unique Solution 

 

One or more interactive elements has been excluded from this version of the text. You can 

view them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=242#oembed-1 

• No Solution: If the matrix yields a contradiction (such as  ), it indicates that the system is inconsistent 
and has no solution. 

Watch Video: Possible Solutions 
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One or more interactive elements has been excluded from this version of the text. You can 

view them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=242#oembed-2 

• Infinite Solutions: If the system has at least one row where all coefficients are zero, but the system is 
consistent (like  ), the system has an infinite number of solutions. In such cases, the solution is typically 
expressed in a parametric form. This case typically happens when there are fewer independent equations than 
variables. 

Watch Video: Infinite Solutions 

 

One or more interactive elements has been excluded from this version of the text. You can 

view them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=242#oembed-3 

B. Linear Independence 

Understanding linear independence is also important for solving systems of linear equations and differential 
equations. It helps in determining whether a set of solutions forms a valid basis for the solution space and whether 
the solutions are unique and span the entire solution space. 

A set of vectors in a vector space is said to be linearly independent if no vector in the set can be written as a linear 
combination of the others. Consider a set of vectors 

 

The vectors are linearly independent if the only solution to the equation 

is   , where  is the zero vector and  are constants. In other words, none 
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of the vectors can be expressed as a linear combination of the others. If there exists at least one non-trivial solution 
(where not all  are zero) to this equation, then the vectors are linearly dependent. This means at least one of the 
vectors in the set can be written as a linear combination of the others. 

To test for linear independence or dependence, we can represent this system in matrix form as 

 

where   is a matrix whose columns are the vectors in the set. 

 Testing for Linear Independence 

• Using a Matrix: Form a matrix  with these vectors as columns. The set of vectors is linearly independent if 
the determinant of  is non-zero. If the determinant is zero, the vectors are linearly dependent. 

• Row Reduction: Alternatively, use row reduction to bring the matrix  into row echelon form (REF) or 
reduced row echelon form (RREF). If any column in  lacks a leading 1 (pivot), the vectors are linearly 
dependent. 

If the vectors are found to be linearly dependent, the specific relationship among them can be found by solving the 
system  for the constants . 

 

Example 6.2.1: Determine Linear Independence 

Determine whether the given set of vectors is linearly independent or dependent. In the case of linear dependence, 
identify the specific relationship among the vectors. 

 

Show/Hide Solution 

 

To test a set of vectors for linear independence, we first form a matrix with these vectors as columns and then 
determine if its determinant is non-zero. 
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The determinant is nonzero, and thus the vectors are linearly independent. 

 

Example 6.2.2: Determine Linear Independence 

Determine whether the given set of vectors is linearly independent or dependent. If they are dependent, identify 
the specific relationship among them. 

 

Show/Hide Solution 

 

To test a set of vectors for linear independence, we first form a matrix  with these vectors as columns 

 

Calculating the determinant of  , we find 

 

Since the determinant is zero, the vectors are linearly dependent. 

To find the relationship among the vectors, we solve the system  . 
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We form the augmented matrix and then use row reduction to simplify it. 

 

Applying row operations to bring the matrix to RREF, we get 

 

The third column lacks a leading 1 (pivot), indicating that  is a free variable. 

Converting the first row of the RREF to an equation, we have 

   

Converting the second row of the RREF to an equation, we have 

     

Choosing   for simplicity, we find 

 

 

Thus the relationship among the vectors in the set is 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=242 

Section 6.2 Exercises 

1. Solve the given system of equations. 

 

Show/Hide Answer 

 

2. Determine whether the given set of vectors is linearly independent by forming matrix    whose columns are 
the vectors in the set and computing the determinant of  . 

Show/Hide Answer 

 

Since the determinant is nonzero, the vectors are linearly independent. 

3. Determine whether the given set of vectors is linearly independent by forming matrix    whose columns are 
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the vectors in the set and computing the determinant of  . 

Show/Hide Answer 

 

Since the determinant is zero, the vectors are linearly dependent. 
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6.3: REVIEW: EIGENVALUES AND 
EIGENVECTORS 

Understanding eigenvalues and eigenvectors is essential for solving systems of differential equations, particularly in 
finding solutions to homogeneous systems. This section aims to review these concepts and demonstrate how to find 
them. 

A. Definition 

Consider a square matrix  of size  and a vector   with   elements. Multiplying matrix  by the vector 
 yields a new vector   with   elements. Geometrically, this operation can be viewed as transforming the vector  by 
matrix , which may involve rotation, scaling, reflection, or a combination of these, depending on the properties of 

. The resulting vector  might differ in direction and magnitude from the original vector . 

In many applications, we seek a special scalar  and a corresponding nonzero vector  such that when matrix 
multiplies , the result is a scalar multiple of , not yielding a new vector. This relationship is expressed as 

(6.3.1)      

In that case, scalar  is called the eigenvalue, and vector  is the eigenvector of matrix . An eigenvalue, thus, 
represents the factor by which an eigenvector is scaled when undergoing the linear transformation represented by . 

To find the eigenvalues of matrix , we need to solve Equation 6.3.1 for a nonzero . Rewriting the equation, we 
obtain 

 

 

 

Here  is the identity matrix of the same size as  . The determinant of  must be zero for this system to 
have non-trivial solutions. We define  as the characteristic polynomial of matrix . 
The roots of the characteristic polynomial are the eigenvalues, which can be expressed as 

(6.3.2)      
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Once the eigenvalues are determined, the corresponding eigenvectors are obtained by solving the system 
 for each eigenvalue . These vectors are not unique, as any scalar multiple of an eigenvector is 

also a valid eigenvector. 

B. Properties of Eigenvalues and Eigenvectors 

• Algebraic Multiplicity: Refers to the number of times an eigenvalue appears as a root in the characteristic 
polynomial of a matrix. It provides a count of how many times an eigenvalue is repeated. 

• Geometric Multiplicity: Indicates the number of linearly independent eigenvectors associated with an 
eigenvalue. It is always less than or equal to the algebraic multiplicity. 

• Eigenvectors Linear Independence: Eigenvectors corresponding to different eigenvalues of a matrix are 
linearly independent. This is a key property that helps in forming a basis in the vector space spanned by these 
eigenvectors. If the algebraic and geometric multiplicities of an eigenvalue are equal, then there exists a full set 
of linearly independent eigenvectors for that eigenvalue. 

• Complex Conjugate Eigenvalues and Eigenvectors: In systems that have complex eigenvalues, these 
eigenvalues and their corresponding eigenvectors occur in conjugate pairs. This means if  is a complex 
eigenvalue with an associated eigenvector , then  (the complex conjugate of ) is also an eigenvalue, with 
the corresponding eigenvector being    (the complex conjugate of ). 

• Diagonalization: A matrix is diagonalizable if and only if, for each eigenvalue, the algebraic multiplicity 
equals the geometric multiplicity. This means there are enough linearly independent eigenvectors to form a 
basis for the space. If a matrix is not diagonalizable, it is called a defective matrix. 

Example 6.3.1: Find the Eigenvalues and Eigenvectors –  Real Eigenvalues 

For the given matrix, a) find the characteristic polynomial of the matrix and b) all the eigenvalues and their 
associated eigenvectors. 

 

Show/Hide Solution 

 
a) 
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Thus, the characteristic polynomial of  is 

 

 

 

 

b) The roots of  , which are  and  , are the eigenvalues of  . To find the 
corresponding eigenvectors, we need to find the solution to the system  for each 
eigenvalue. 

For   , we have 

 

     

   

   

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 
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The second column lacks a leading 1, and therefore  is a free variable. It is customary to let the free variable 
be represented by a parameter, say . We then write  and  in terms of the parameter . 

 

 

Thus the general solution is   where  is a nonzero arbitrary real number. We 

usually look for a basic (without a parameter) eigenvector. We can choose a value for  to find a basic 

eigenvector. Using , the eigenvectors corresponding to  is   . 

For  , we have 

     

   

   

Similarly, to solve the system, we form the augmented matrix and bring it to RREF using row operations. 

The general solution is 

where  is a nonzero arbitrary real number. Using , the basic eigenvectors corresponding to 

 is   . 

Both eigenvalues are simple eigenvalues with the algebraic multiplicity of one and therefore their eigenvectors 
are linearly independent. 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=244 

 

Example 6.3.2: Find the Eigenvalues and Eigenvectors –  Complex Eigenvalues 

For the given matrix, a) find the characteristic polynomial of the matrix and b) all the eigenvalues and their 
associated eigenvectors. 

 

Show/Hide Solution 

 
a) 

     

Thus the characteristic polynomial of   is 
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Completing the square, we get 

 

b) The roots of , are the eigenvalues of  . 

 

 

Next, to find the corresponding eigenvectors, we follow the same steps as we did for the previous example, 
solving system . However, since the eigenvalues are complex conjugates, their 
corresponding eigenvectors will also be conjugates. Therefore, we only need to find the eigenvector associated 
with one of the eigenvalues. 

We find the eigenvector associated with . 

 

     

   

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

      

6.3: REVIEW: EIGENVALUES AND EIGENVECTORS  |  275



       

The second column lacks a leading 1, and therefore  is a free variable. We let the free variable be 
represented by a parameter . We then write  and  in terms of the parameter . 

      

 

Therefore, the eigenvectors corresponding to eigenvalue   are   for 

. Letting  , we have 

   

The eigenvector corresponding to the conjugate eigenvalue is the conjugate of eigenvector  . Thus, the 
eigenvector associated with eigenvalue  is 

   

Both eigenvalues are simple eigenvalues with the algebraic multiplicity of one and therefore their eigenvectors 
are linearly independent. 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=244 

 

Example 6.3.3: Find the Eigenvalues and Eigenvectors –  Real, Repeated Eigenvalues 

For the given matrix, a) find the characteristic polynomial of the matrix and b) all the eigenvalues and their 
associated eigenvectors. 

 

Show/Hide Solution 

 
a) 

     

Thus the characteristic polynomial of   is 
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b) 

The roots of , , with multiplicity 2, and , with multiplicity 1, are the 
eigenvalues of . 

To find the corresponding eigenvectors, we need to find the solution to the system  for each 
eigenvalue as we did in previous examples. 

For   , we have 

    

    

    

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 
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The second and third columns lack a leading 1, and therefore  and  are free variables. We let  and  be 
represented by parameters  and  , respectively. We then write  in terms of the parameters. 

   

 

 

Then, the eigenvector   can be expressed as 

         at the same time 

where   and  can’t be equal to zero at the same time because that would result in a zero vector and eigenvectors 

never equal zero. The eigenspace is spanned by two vectors . 

Therefore, the basic eigenvectors associated with eigenvalue   are  and . 

For  , we have 

   

Similarly, we form the augmented matrix and bring it to RREF using row operations. 
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The third column lacks a leading 1, and therefore  is a free variable. We let the free variable be represented by a 
parameter . We then write  and  in terms of the parameter . 

 

Then, the eigenvector   can be expressed as 

      

Using , the eigenvectors corresponding to  is   . 

For both eigenvalues, the algebraic multiplicity equals the geometric multiplicity and thus their eigenvectors are 
linearly independent. 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=244 

Section 6.3 Exercises 

1. Find the eigenvalues of the matrix 

  . 

Show/Hide Answer 

   

2. Find the eigenvalues and eigenvectors of the matrix  . 

Show/Hide Answer 

   or any scalar multiple. 

 or any scalar multiple. 

3. Find the eigenvalues and eigenvectors of the matrix  

Show/Hide Answer 
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   or any scalar multiple. 

 or any scalar multiple. 
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6.4: LINEAR SYSTEMS OF DIFFERENTIAL 
EQUATIONS 

A. Introduction 

After exploring first-order and second-order differential equations, we now turn our attention to systems of 
differential equations. These systems are instrumental in modeling scenarios with multiple interdependent processes, 
common in complex real-world situations. 

For instance, in an ecosystem with interacting species like prey and predators, the rate of change in each species’ 
population depends not only on its size but also on the populations of other species. This interaction leads to a 
system of differential equations where each equation represents the growth rate of one species, encapsulating their 
interrelations. Similarly, in mixing problems with interconnected tanks, the concentration in one tank affects and is 
affected by concentrations in connected tanks. In mechanical systems, such as a mass-spring system with multiple 
masses and springs, each mass’s displacement is influenced by its neighbors, forming a system of interconnected 
differential equations. 

B. Systems of Linear First-Order Differential Equations 

In this section, we introduce the matrix method for solving systems of linear first-order differential equations. These 
systems are characterized by each equation being first-order and linear. Such systems can be written in the following 
form. 

 

Matrix notation simplifies the characterization and solution of these systems, similar to how systems of algebraic 
equations are handled. A linear first-order system can be expressed in matrix form as 
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In vector notation, the system is written as 

  (6.4.1)  

Here matrix  is the coefficient matrix and  is the forcing function vector.  and  are continuous if their 
entries are continuous. If   in Equation 6.4.1, the system is homogeneous; otherwise, it is 
nonhomogeneous. 

An initial value problem involves finding a solution for 

 (6.4.2)      

where   is a constant vector representing the initial condition. 

 

 

Example 6.4.1: Write a System of Differential Equations in Matrix Form 

Write the given system of differential equations in matrix form. 

 

Show/Hide Solution 

The system can be written in matrix form as 
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An initial value problem for the system can be written as 

            

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=247 

Existence and Uniqueness Theorem. If the coefficient matrix  and the forcing function  are continuous 
on an open interval containing , then there exists a unique solution to the following initial value problem on that 
interval. 

     

 

Example 6.4.2: Verify a Solution to a System of Differential Equations 

a) Verify that 
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is a solution to the following system for any values of  and  . 

 

b) Find the solution to the initial condition 

      

Show/Hide Solution 

 

a) If  is a solution to the system, then  . 
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b) Since the coefficient matrix is continuous for all real numbers , the Existence Theorem guarantees that 
the given initial value problem has a unique solution on . To find constants  and  , we apply the initial 
condition: 

 

   

 

This yields a system of two equations in two variables  and  . 

Solving the system yields 

    

Therefore the solution to the initial value problem is 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=247 

C. n-th Order Differential Equation as a System of n First-order 
Equations 

Higher-degree differential equations can be transformed into systems of first-order differential equations. This 
conversion allows complex, higher-order problems to be analyzed using techniques and tools developed for first-
order systems. This approach is widely used in numerical methods and theoretical analysis in various scientific and 
engineering applications. Here’s a step-by-step guide to this process. 

 

How to Convert Single -th Order Differential Equations into a System 
of  First-Order Equations 

Consider a linear  -th order differential equation: 

1. Introduce New Variables: Introduce  new variables corresponding to the function  and its derivatives up 
to order . Let 
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2. Express the Derivatives: Express the derivatives of these new variables in terms of the original differential 
equation. 

 

 

 

Observe that the last equation is the original equation that is rearranged for the highest derivative of . In the last 
equation, substitute the new variables for  and its derivatives: 

 

3. Write the System of First-Order Equations: You now have a system of  first-order linear differential 
equations: 

 

 

 

 

Example 6.4.3: Write 2nd-Order Differential Equation as a First-Order Linear System 

Write the given 2nd-order differential equation as a system of first-order linear differential equations. 
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Show/Hide Solution 

1. Introduce a new variable   : 

   

 

2. Express the derivatives by differentiating the above equations and rearrange the original differential 
equation to isolate : 

 

        

We also express the initial conditions in terms of the new variables: 

 

 

3. The system of first-order equations is then 

 

   

 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=247 

Section 6.4 Exercises 

1. Write the system given system of differential equations in matrix form. 

 

Show/Hide Answer 

 

2. Convert the given differential equation into a system of first-order equations by letting . 

 

Show/Hide Answer 

3. Rewrite the system of linear equations 

 

As a single second-order differential equation for . 

Show/Hide Answer 
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6.5 SOLUTIONS TO HOMOGENEOUS SYSTEMS 

A. Fundamental Solution Set and Wronskian 

We start with studying the homogeneous linear system 

(6.5.1)  

where  is an  constant matrix with real entries.  is the trivial solution of the system. Any other 
solution is a nontrivial solution. 

Theorem. If  are  linearly independent solutions to the system 6.5.1 and  is continuous on an 
open interval , then the set  is called a fundamental set of solutions to the system on . 

Revisiting Section 6.2 on linear independence, vectors  are linearly independent if 
  has only the trivial solution. That is if 

       

then  

For this to be the only solution (unique solution), the determinant of the matrix of coefficient of the equation 
whose columns are the vector functions   must be nonzero. The determinant of the matrix of 
coefficient of the equation is called the Wronskian and denoted . 

 

Theorem. If the Wronkian  of  is nonzero at some point (and thus never zero) on , then 
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 is linearly independent, forming a fundamental solution set for system 6.5.1 on . The 
fundamental matrix  of the system is 

    

 

Example 6.5.1: Compute Wronskian and Find General Solution For a System Given 
Solution 

Given the vector functions 

    and  

are solutions to a  constant-coefficient system, a) compute the Wronkskian of  and b) find the 
general solution of the system. 

Show/Hide Solution 

 
a) 

       

b) Since  ,  are linearly independent and thus the set is a fundamental set of solutions 
to the system and the following matrix is the fundamental matrix of the system. 

 

Thus the general solution is 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=250 

B. Solutions to Homogeneous Systems with Constant 
Coefficients 

In our quest to find solutions to homogeneous systems with constant coefficients, represented by system 6.5.1, we 
apply a similar approach to that used in solving homogeneous linear differential equations with constant coefficients. 

Recall from Section 3.2 that we guessed a nontrivial solution of the form   for a homogeneous linear 
differential equation with constant coefficients. Section 6.4 showed that any higher-order linear differential equation 
can be expressed as a first-order linear system of differential equations. Therefore, it is reasonable that a solution for 
system 6.5.1 to be of the form 

(6.5.2)  

Here,  is a constant, and  is a constant vector. The next step is to substitute the guessed solution 6.5.2 into our 
system. Doing so gives 
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After canceling the exponential term  , we arrive at 

 

Rearranging this equation leads to 

 

This is the characteristic equation used to find the eigenvalues and eigenvectors of matrix , as seen in Section 6.3. 
For our guessed solution  to be nontrivial,  and   must correspond to the eigenvalue and eigenvector of 
matrix , respectively. 

Therefore, to solve system 6.5.1, we first find the eigenvalues and eigenvectors of the coefficient matrix . The 
solution structure varies depending on the nature of the eigenvalues, which can be real and distinct, complex, or 
repeated. Each of these scenarios will be explored in the following sections. 

Section 6.5 Exercises 

1. Given the vector functions 

     and   

are solutions to a   constant-coefficient differential system, compute the Wronkskian of  . 
Determine if the vectors are linearly independent. 

Show/Hide Answer 

; The vectors are linearly independent because their Wronskian is never zero for any 

real number . 

2. Given the vector functions 

     and   

are solutions to a   constant-coefficient differential system, compute the Wronkskian of  . 
Determine if the vectors are linearly independent. 

Show/Hide Answer 
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  ; The vectors are linearly independent because their Wronskian is nonzero. 
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6.6 CONSTANT-COEFFICIENT 
HOMOGENEOUS SYSTEMS: REAL 
EIGENVALUES 

In Section 6.5, we explored how solutions to homogeneous systems with constant coefficients 

(6.6.1) 

are in the form 

where   is an eigenvalue, and   is the corresponding eigenvector of the coefficient matrix  . 

In this section, we focus on the case where the eigenvalues of matrix  are distinct and real. 

Theorem: If an    matrix   has  real, distinct eigenvalues  , and   is an eigenvector 
associated with the eigenvalue  , then the vectors   are linearly independent. 

In this context, the solutions for each eigenvalue take the form . Collectively, the set 
   forms a fundamental solution set for the homogeneous system 6.6.1. 

Consequently, the general solution to the system can be expressed as a linear combination of these individual 
solutions. 

(6.6.2)  

where  is an arbitrary constant. 

 

Example 6.6.1: Find General Solution to Homogeneous System 

Find a general solution of 
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Show/Hide Solution 

1. First we need to find the eigenvalues of the coefficient matrix . 

The characteristic polynomial of  is given by 

 

 

 

 

 

The roots of  , which are  and  , are the eigenvalues of  . 

2. Next to find the corresponding eigenvectors, we need to find the solution to the equation 
 for each eigenvalue. 

For   , we have 

 

   

   

Therefore, the eigenvectors corresponding to  are  for  . Using , a 

basic eigenvector corresponding to  is   . 
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For   , we have 

 

   

   

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

    

Therefore, the eigenvectors corresponding to  are  for   . Using , a 

basic eigenvector corresponding to  is   . 

3. A general solution to the system is given by Equation 6.6.2. 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=253 

 

Example 6.6.2: Solve Intial Value Problem 

Solve the system of differential equations with the given initial values. 

       

Show/Hide Solution 

1. We first express the system in the matrix notation. 

      

2. Next, we find the eigenvalues of . 

The characteristic polynomial of the coefficient matrix  is given by 
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The roots of , which are  and  , are the eigenvalues of  . 

3. We then find the corresponding eigenvectors. 

For  , we have 

 

   

    

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

    

Therefore, the eigenvectors corresponding to  are  for  . Using , a 

basic eigenvector corresponding to  is   . 

For  , we have 

 

   

    

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 
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Therefore, the eigenvectors corresponding to  are  for   . Using , a 

basic eigenvector corresponding to  is   . 

4. A general solution to the system is given by Equation 6.6.2. 

 

5. Finally, we apply the initial conditions to find constants   and  . 

  

 

 

This gives a system of two equations and two unknowns. 

 

Solving the system yields 

      

Therefore the solution to the initial value problem is 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=253 

 

Example 6.6.3: Solve Intial Value Problem 

Solve the system of differential equations with the given initial values. 

    

Show/Hide Solution 

1. We first express the system in the matrix notation. 

      

2. Next, we find the eigenvalues of the coefficient matrix . 

The characteristic polynomial of  is given by 
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The roots of , which are , , and , are the eigenvalues of  . 

3. We then find the corresponding eigenvectors. 

For  , we have 

 

    

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

    

Therefore, the eigenvectors corresponding to  are  for  . Taking , a basic 

eigenvector corresponding to  is   . 
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For  , we have 

 

    

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

   

Thus, the eigenvectors corresponding to  are  for  . Taking , a basic 

eigenvector corresponding to  is   . 

For  , we have 

 

    

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 
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Therefore, the eigenvectors corresponding to   are   for  . Taking  , a 

basic eigenvector corresponding to   is    . 

4. A general solution to the system is given by Equation 6.6.2. 

 

5. Finally, we apply the initial conditions to find constants  , , and . 

  

 

This gives a system of three equations and three unknowns. 

 

Solving the system yields 

        

 

Therefore the solution to the initial value problem is 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=253 

In Section 6.4, we explored how higher-order linear differential equations can be converted into systems of first-
order linear equations. This transformation, coupled with the matrix method offers several advantages, like better 
organization of the problem and ease of computation. While this approach might not always be shorter than 
the characteristic polynomial method discussed in Section 3.2, especially for solving homogeneous second-order 
differential equations with constant coefficients, it is beneficial to understand this process. To illustrate how it is 
applied, let’s work through an example. 

 

Example 6.6.4: Solve 2nd Order Differential Equation using Matrix Method 

Convert the given differential equation to a linear first-order system and find the solution. 

        

Show/Hide Solution 

a. Converting the equation to a system: 
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1a. Introduce a new variable   : 

   

 

2a. Express the derivatives by differentiating the above equations and rearrange the original differential 
equation to isolate  : 

 

       

We also express the initial conditions in terms of the new variables: 

 

 

3a. The system of first-order equations is then 

   

 

   
b. Solving the system 

1b. We express the system in the matrix form. 

      

2b. Next, we find the eigenvalues of the coefficient matrix . 

The characteristic polynomial of  is given by 
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The roots of , which are  and , are the eigenvalues of  . 

3b. We then find the corresponding eigenvectors. 

For  , we have 

 

 

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

 

Therefore, the eigenvectors corresponding to  are  for  . Using , a basic 

eigenvector is   . 

For  , we have 
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To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

 

Therefore, the eigenvectors corresponding to  are  for   . Using , 

a basic eigenvector is   . 

4b. A general solution to the system is given by Equation 6.6.2. 

 

5b. We apply the initial conditions to find constants  and  . 

  

 

   

This gives a system of two equations and two unknowns. 

 

Solving the system yields 

      

Therefore the solution to the initial value problem is 
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c. Determining the solution to the original equation 

Given  , we see that the solution to the original 2nd-order differential equation 

is the top row of the system’s solution. Therefore, the solution to the original equation is 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=253 

 

Section 6.6 Exercises 

1. Solve the system of differential equations with the given initial values. 

         

Show/Hide Answer 
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2. Solve the system of differential equations 

 

Show/Hide Answer 

3. Solve the system of differential equations 

       

Show/Hide Answer 
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6.7 CONSTANT-COEFFICIENT HOMOGENEOUS 
SYSTEMS: COMPLEX EIGENVALUES 

In this section, we examine solutions to the homogeneous system with constant coefficients  for the 
case where the eigenvalues of the coefficient matrix are complex. Typically, these eigenvalues are conjugates of each 
other, denoted as , where   is the imaginary unit, and   and  are real numbers. As in the complex 
case of second-order differential equations, we utilize Euler’s formula to convert complex exponentials into real 
trigonometric functions, starting from the guessed solution form . 

Theorem. If an   matrix  has complex conjugate eigenvalues  with the corresponding 
eigenvector , then two linearly independent solutions to the homogeneous system  are 

 

 

The general solution to the system is then given by 

 

(6.7.1)     

where  and  are arbitrary constants. 

 

Example 6.7.1: Find General Solution to Homogeneous System 

Find a general solution of 

 

Show/Hide Solution 
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1. First we need to find the eigenvalues of . 

The characteristic polynomial of the coefficient matrix  is given by 

 

 

 

 

 

Therefore, the roots of , which are , are the eigenvalues of  . 

2. Next we find the corresponding eigenvectors by finding the solution to the equation . 
However, we only need to find the eigenvector associated with one of the eigenvalues, e.g., . 

 

   

   

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 
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Therefore, the eigenvectors corresponding to eigenvalue  are  for 

. Letting  ,  we have a basic eigenvector 

   

The real part of  is  and the imaginary part of   is . 

The eigenvector corresponding to the conjugate eigenvalue is the conjugate of eigenvector  . Thus, the 
eigenvector associated with the eigenvalue  is 

   

3. Therefore, a general solution to the system is given by Equation 6.7.1. 

    

   

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=256 

 

Example 6.7.2: Solve Intial Value Problem 

Solve the system of differential equations with initial conditions 

  . 

Show/Hide Solution 

 

1. First we need to find the eigenvalues of . 

The characteristic polynomial of the coefficient matrix  is given by 

 

 

 

 

 

Therefore, the roots of , which are , are the eigenvalues of  . 
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2. Next we find the corresponding eigenvectors by finding the solution to the equation . 
However, we only need to find the eigenvector associated with one of the eigenvalues, e.g., 

. 

 

   

   

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

     

Therefore, the eigenvectors corresponding to eigenvalue  are 

for   . Letting  ,  we have a basic eignevector 

   

The real part of  is   and the imaginary part of   is . 

The eigenvector corresponding to the conjugate eigenvalue is the conjugate of eigenvector . Thus, the 
eigenvector associated with eigenvalue   is 

   

3. Therefore, a general solution to the system is given by Equation 6.7.1. 
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4. We apply the initial conditions to find constants   and  . 

  

      

   

This gives a system of two equations and two unknowns. 

 

Solving the system yields 

      

Therefore the solution to the initial value problem is 

 

 

Try an Example 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=256 

Section 6.7 Exercises 

1. Find a solution to the system of differential equations 

 

Show/Hide Answer 

2. Solve the system of differential equations with initial conditions 

  . 

Show/Hide Answer 

3. Solve the system of differential equations with initial conditions 

  . 

Show/Hide Answer 
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6.8 CONSTANT-COEFFICIENT 
HOMOGENEOUS SYSTEMS: REPEATED 
EIGENVALUES 

In this section, we explore solutions to the homogeneous system with constant coefficients when the eigenvalues 
of the coefficient matrix are repeated. Specifically, we encounter a unique challenge when an eigenvalue’s algebraic 
multiplicity (the number of times it appears as a root of the characteristic polynomial) exceeds its geometric 
multiplicity (the number of linearly independent eigenvectors associated with it). This discrepancy necessitates a 
specific approach to find all the linearly independent solutions necessary for a complete solution to the system. Our 
focus here is on the case where an eigenvalue has an algebraic multiplicity of two but a geometric multiplicity of 
only one. In such situations, the concept of generalized eigenvectors becomes crucial to developing a comprehensive 
solution. 

Consider a homogeneous system denoted as 

(6.8.1)    

where matrix  has an eigenvalue   that is repeated twice (i.e., it has an algebraic multiplicity of two). 

Theorem. If an    matrix   has an eigenvalue   with an algebraic multiplicity of two, but only one linearly 
independent eigenvector associated with it (i.e., a geometric multiplicity of one), the system will have additional 
solutions derived from generalized eigenvectors. 

Finding Generalized Eigenvectors 

For an eigenvalue   with only one independent standard eigenvector  , we need to find a generalized eigenvector 
  by solving the equation: 

 

This generalized eigenvector   is not a solution to    but does satisfy the above equation. 
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Constructing the Solution 

The solution for the eigenvalue  includes terms involving both the standard and generalized eigenvectors. The two 
solutions are linearly independent. 

1.   – associated with the standard eigenvector. 

2.   – associated with the generalized eigenvector. 

General Solution for the System 

The general solution to the system 6.8.1 combines these solutions. 

(6.8.2)  

where  and  are arbitrary constants. 

 

Example 6.8.1: Solve Initial Value Problem with a 2 by 2 System 

Solve the system of differential equations with the given initial values. 

     

Show/Hide Solution 

 

1. First we need to find the eigenvalues of the coefficient matrix . 

The characteristic polynomial of  is given by 
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The characteristic polynomial  has a repeated root. Thus  is the eigenvalue of   with 
multiplicity of two. 

2. To find the corresponding standard eigenvectors, we need to find the solution to the equation 
. 

For  , we have 

 

   

   

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

 

Therefore, the eigenvectors corresponding to  are . Taking , a basic 

eigenvector corresponding to  is   . 

3. We need to find a generalized eigenvector   such that 
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To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

 

The solution to this is . Taking , a generalized eigenvector is   . 

4. A general solution to the system is given by Equation 6.8.2. 

 

5. We apply the initial conditions to find constants   and  . 

  

   

This gives a system of two equations and two unknowns. 

 

Solving the system gives 

     

Therefore, the solution to the initial value problem is 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=259 

 

Example 6.8.2: Solve Initial Value Problem with a 3 by 3 System 

Solve the system of differential equations with the given initial values. 

   

Show/Hide Solution 

1. We first express the IVP in the matrix notation. 

      

where . 

 2. We find the eigenvalues of the coefficient matrix . 

The characteristic polynomial of  is given by 
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The eigenvalues are  with a multiplicity of one and  with a multiplicity of two. 

3. To find the corresponding standard eigenvectors, we solve . 

For  , we have 

 

 

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

   

Therefore, the eigenvectors corresponding to  are . Taking , a basic 

eigenvector corresponding to  is   . 

For , we have 
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To solve the system, we form the augmented matrix and bring it to RREF using row operations. 

   

Therefore, the eigenvectors corresponding to  are . Taking , a basic 

eigenvector corresponding to  is   . 

For   the geometric multiplicity is one and thus less than the algebraic multiplicity (which is 2). 
This means that the dimension of the eigenspace associated with  is one (all eigenvectors are spanned by 
the only vector ). 

4. Therefore, we need to find a generalized vector  such that 

 

 

To solve the system, we form the augmented matrix and bring it to RREF using row operations. 
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The solution to this is . Taking , a generalized eigenvector is   . 

5. Three linearly independent solutions of the system are 

-For  and standard eigenvector : 

 

-For  and the standard eigenvector : 

 

-For  and a generalized eigenvector : 

 

6. Therefore, a general solution to the system is given by the linear combination of the above solutions: 

    

7. We apply the initial conditions to find the constants. 
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This gives a system of three equations and three unknowns. 

 

Solving the system gives 

           

Therefore, the solution to the initial value problem is 

    

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=259 
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Section 6.8 Exercises 

1. Solve the system of differential equations. 

  ,  

Show/Hide Answer 

2. Solve the system of differential equations. 

  ,  

Show/Hide Answer 

3. Solve the system of differential equations. 

  ,  

Show/Hide Answer 
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6.9 NONHOMOGENEOUS LINEAR SYSTEMS 

In this section, we study the nonhomogeneous linear system 

(6.9.1)  

where matrix  is an   matrix function and  is an n-vector forcing function. The associated homogenous 
system  is called the complementary system. 

The methods from Chapter 3, such as Undetermined Coefficients and Variation of Parameters, used for finding 
particular solutions to nonhomogeneous linear equations, can be extended to nonhomogeneous linear systems. We 
focus here on the method of Variation of Parameters. 

Variation of Parameters 

The method of variation of parameters, as discussed in Section 3.5 for linear equations, applies to linear systems. It 
requires a fundamental set of solutions to the complementary (homogeneous) equation. 

Theorem. Suppose an  matrix  and an n-th vector  are continuous on an open interval . Let  be 
a particular solution of system 6.9.1 on  , and let  be a fundamental set of solutions of the 
complementary system . Then the general solution to 6.9.1 on   is 

    

where   is the complementary solution and where   is an arbitrary 
constant. The general solution can be expressed as 

    

 

Method of Variation of Parameters for Nonhomogeneous Linear 
Systems 

To find a particular solution to 
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1. Find a fundamental set of solutions   to the corresponding complementary system  
. 

2. Form the fundamental matrix   for the complementary system. 

  

3. Find the inverse of the fundamental matrix,   . 

4. Determine 

5. A particular solution to the system is given by 

 

 

6. A general solution to the system is then 

 

 

Example 6.9.1: Find General Solution to Nonhomogeneous System 

Find the general solution to the system 

 

Show/Hide Solution 

 

1. First we find a fundamental solution to the associated complementary (homogeneous) system. 

The characteristic polynomial of the coefficient matrix  is given by 

332  |  6.9 NONHOMOGENEOUS LINEAR SYSTEMS



 

 

 

The roots of , which are  and , are the eigenvalues of  . Then, we find the 
corresponding eigenvectors. 

For  , we have 

 

   

Therefore, the eigenvectors corresponding to  are  for  . 

For  , we have 

 

   

The eigenvectors corresponding to  are  for   . 

Therefore,  is a fundamental solution set to the complementary system. 

2. Thus the fundamental matrix  for the complementary system is 
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3. We determine 

 

 

4. Determine   letting the constant of integration be zero 

 

 

 

 

 

5. Then, a particular solution to the system is 
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6. Thus, a general solution to the system is 

 

   

Which can also be written as 

   

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=262 

 

Example 6.9.2: Find General Solution to Nonhomogeneous System 

Find the general solution to the system 

 

Show/Hide Solution 
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The complementary system is 

 

The forcing vector is 

 

1. In Example 6.6.3 in Section 6.6, we found a fundamental solution set of the complementary system 
associated with the given system in this example. 

 

2. The fundamental matrix  for the complementary system is 

 

3. We determine  using the row reduction method, involving augmenting the matrix  with the 

identity matrix. 

 

 

4. Determine   letting the constant of integration be zero. 
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5. Then, a particular solution to the system is 

 

   

 

 

6. Thus, a general solution to the system is 
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This can also be expressed as 

   

Section 6.9 Exercises 

1. Find the general solution to the system of differential equations 

   

Show/Hide Answer 

2. Find the general solution to the system of differential equations 

   

Show/Hide Answer 
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6.10 APPLICATIONS 

A. Introduction 

In this section, we revisit the application of differential equations in modeling engineering systems. In particular, we 
focus on mechanical vibrations and electrical circuits as two primary areas where systems of differential equations are 
applied. 

Differential equations have a broad utility across various engineering fields. In chemical engineering, they are pivotal 
for modeling reaction kinetics and process dynamics. This includes scenarios such as mixing problems involving 
multiple tanks and substances, which are essential for reactor design and process optimization. In civil engineering, 
differential equation models are crucial for assessing the safety and longevity of structures subjected to diverse load 
conditions, such as in the earthquake resilience analysis of multi-story buildings. Aerospace engineering relies on 
these equations to simulate the movement of aircraft and spacecraft, incorporating both translational and rotational 
dynamics. This knowledge is instrumental in crafting control systems that enhance stability and maneuverability. 
Environmental engineering also employs differential equation models to track pollutant spread, providing a 
foundation for crafting effective environmental protection measures. 

B. Electrical Circuits 

Kirchhoff’s laws, which we discussed in Section 2.5, serve as the foundation for deriving the governing equations. 
These laws facilitate the analysis of circuits by providing a systematic approach to calculating the currents and 
voltages at various points within the circuit. In more complex circuits, e.g., series-parallel circuits, 

 

Example 6.10.1: RL Series Circuit – System of Linear Equations 

a) For the given electrical circuit diagram, derive the system of differential equations that describes the currents 
in various branches of the circuit. Assume that all initial currents are zero. b) Once the system of differential 
equations and initial conditions are established, solve the system for the currents in each branch of the circuit. 
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Diagram Description 

 
Consider a circuit with a 12-volt DC power supply. From the positive terminal of the power supply, a 4-ohm 
resistor is connected in series. Following this resistor, the circuit branches into two parallel paths. The first 
parallel branch contains a 2-ohm resistor, and the second branch contains a 0.1-henry inductor. These two 
branches then converge, and the circuit continues through a 0.2-henry inductor before returning to the negative 
terminal of the power supply. Given this setup, calculate the currents I1 (through the 4-ohm resistor), I2 
(through the 2-ohm resistor), and I3 (through the 0.1-henry inductor). Assume steady-state conditions for the 
inductors. 

Show/Hide Solution 

 

a) In Example 4.8.2, we previously examined this RL circuit and analyzed it using the Laplace Transform. In 
this example, we demonstrate solving the same circuit with the matrix method. The system equations for the 
circuit are given as follows, with initial conditions that all currents are zero at the time . 

(6.10.1) 
            

b) Steps for solving the system: 
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1. System 6.10.1 is a mix of differential and algebraic equations. We first need to convert it into a system of 
linear differential equations by using the second equation to express  as   in the first equation and 
isolating the first derivatives in the first two equations. This yields 

(6.10.1) 
            

To create a system of linear differential equations from the given system, it’s important to address the fact 
that   does not have a derivative present. To work around this,   needs to be eliminated from the 
equations. This is achieved by rearranging the third equation to express   in terms of   and , and then 
substituting this expression for   into the other equations. 

(6.10.2)    

The system is then simplified to 

(6.10.2) 
            

2. We then express the initial value problem (IVP) in matrix form. 

      

3. Next, we find a fundamental solution to the associated complementary (homogeneous) system. The 
characteristic polynomial of  is given by 
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The eigenvalues and the corresponding eigenvectors are 

   :    

   :  

Therefore,   is a fundamental solution set to the complementary system. 

Thus the fundamental matrix   for the complementary system is 

 

3. Next, we determine a particular solution to the system 

(i) Determine 

 

(ii) Determine  letting the constant of integration be zero 

 

 

 

Then, a particular solution to the system is 
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4. Thus, a general solution to the system is 

 

   

 

5. We apply the initial conditions to find the constants in the general solution. 

 

   

This gives a system of two equations and two unknowns. 

 

Solving the system gives 

      

Therefore, the solution to the initial value problem is 

   

This results in the final expressions for   and . 
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6. To find  , we substitute back the expression for  and   into Equation (6.10.1), yielding 

 

   

 

C. Mechanical Vibration 

The analysis of mechanical vibrations is crucial in designing systems that are resilient to dynamic loads. A more 
realistic model that captures the essence of mechanical systems involves considering not only the masses and springs 
but also damping elements and external forces. This section focuses on a system consisting of two masses connected 
by springs in a horizontal arrangement, with the inclusion of damping and external forces acting on both masses. 
Such a model can represent a wide array of engineering applications, from vehicle suspensions to machinery 
components. A schematic of the system is shown in Figure 6.10.1. 

Figure 6.10.1 Schematic diagram of a coupled mass-spring system comprising two masses connected by three 
springs and two dampers. 
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 Assumptions 

To proceed with the derivation of the system’s equations of motion, we make the following assumptions: 

• Linear Damping: Each mass is paired with a damping element, characterized by linear damping coefficients 
for   and  for . These coefficients quantify the resistance against the motion of each mass. 

• External Forces: Time-dependent external forces  and  act on  and , respectively, 
considered positive in the right direction. 

• Linear Elasticity: The springs obey Hooke’s law, implying that the force each spring exerts is directly 
proportional to its displacement from the rest length. 

• Small Displacements: The analysis assumes small displacements from equilibrium, allowing linearization of 
the system. Displacements are deemed positive when directed to the right. 

• Rigid Body: Masses are treated as point masses, and springs and dampers are considered massless, focusing 
solely on axial forces and displacements. 

 System Setup 

We consider a general case where the system consists of two masses,   and , connected by three springs with 
stiffness constants , , and , and augmented by two dampers. The outer springs are anchored to fixed walls. 
External forces act upon the masses and dampers counteract their movement. This framework allows the external 
forces and damping effects to be adjustable, accommodating scenarios where these forces might be absent by setting 
their respective values to zero. 

 

Example 6.10.2: Mechanical Vibration – Forced Damped System 

Derive the system of differential equations for the forced damped coupled system described above (Figure 6.10.1). 

Show/Hide Solution 

 

The dynamics of this damped system with external forces are governed by two coupled second-order linear 
differential equations, reflecting the balance of forces on each mass. Here we consider the external forces’ 
direction to be to the right and displacements are also positive (to the right) assuming the displacement of 
mass 1,   is larger than the displacement of mass 2, , thus  . 
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1) The forces acting on mass are 

• Restorative Force of the spring   ,  , 
• Restorative Force of the spring   ,  , where  is the displacement 

of the middle spring. 
• Damping Force  , where   is the damping coefficient for the damper 1. If present, 

the damping force is proportional to the velocity of the mass and acting in the opposite direction of 
motion. 

• External Force  . It includes any external force acting on mass , which might be periodic or 
random, leading to forced vibrations. 

According to Newton’s second law, 

 

 

This equation simplifies to 

 

Note that since  , the spring   is compressed, and the force it exerts on mass 1 is to the left 
(negative), aiming to restore the spring to its equilibrium length. 

2) The forces acting on mass are 

• Restorative Force of the spring   ,  , 
• Restorative Force of the spring   ,  , where  is the displacement of 

the middle spring. 
• Damping Force  , where   is the damping coefficient for the damper 2. If present, 

the damping force is proportional to the velocity of the mass and acting in the opposite direction of 
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motion. 
• External Force  . It includes any external force acting on mass , which might be periodic or 

random, leading to forced vibrations. 

According to Newton’s second law, 

 

 

This equation simplifies to 

 

Note that since  , the spring   is compressed, and the force it exerts on mass 2 is to the right and 
should be positive, which is consistent with the sign of  . 

Therefore, the time-dependent displacements of the masses are described by the system of differential 
equations 

 

 

 

Example 6.10.3: Mechanical Vibration – Rewrite to System of First-Order Equations 

a) Rewrite the derived system of differential equations in Example 6.10.2 to a system of first-order differential 
equations. b) Write the system in matrix form. 

Show/Hide Solution 
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a) The equations governing the mass-spring system in Figure 6.10.1 are derived in Example 6.10.2. 

 

 

Section 6.4-C discussed how to convert higher-order differential equations as a system of first-order 
equations. We introduce new variables as follows: 

 ,   ,  , and 

The equations then can be written as 

 

 

b) The system in the matrix form is 

 

   

 

Example 6.10.4: Solve Inital Value Problem: Free, Undamped Vibration 
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Consider a coupled mass-spring system, as described in Example 6.10.2, with the following parameters: both 
masses  and  are 1 kg, and all spring constants , , and  are 1 N/m. The system is isolated 
from external forces and damping effects. Initially, the displacements and velocities are given as 
m,  m/s,  m, and  m/s. Solve the initial value problem to determine the 
displacements of the masses as functions of time. Due to the complexity of calculations, use matrix algebra 
software to find the eigenvalues and eigenvectors. 

Show/Hide Solution 

 

Given information: 

•  
• 
• No damping: 
• No External forces: 
• Initial conditions: , , 

In Example 6.10.3, we converted a second-order system governing the coupled mass-spring system to a first-
order system and expressed it in matrix notation. 

 

   

where 
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Substituting the given values, the initial value problem becomes 

   

Using matrix algebra software, we find the eigenvalues and eigenvectors of the coefficient matrix. The 
eigenvalues and eigenvectors occur in the following complex conjugate pairs. 

Eigenvector for   : 

Eigenvector for   : 

The solution for each pair is given by Equation 6.7.1. 

For the first pair, , the two linearly independent solutions are 

   

   

For the second pair, , the two linearly independent solutions are 
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Thus, the fundamental matrix of the system is 

    

 

The general solution to the system in matrix form is 

   

Applying the initial conditions, we obtain 
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Solving for the coefficients, we find 

 

Therefore, the solution to the initial value problem is 

   

This can be written as 

      

Recall from Example 10.6.3 that we introduced variables  to represent the displacements and velocities of 
the masses. 

 

Given this conversion, the displacements of mass 1 ( ) and mass 2 ( ) as a function of time are 
determined by 
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The below visualization displays the displacements of the two masses over time in a coupled mass-spring 
system in this example, plotted on a graph with time on the horizontal axis (ranging from 0 to 10 seconds) and 
displacement in meters on the vertical axis. The line for Mass 1 oscillates, indicating a pattern of motion that 
varies between positive and negative displacements, suggesting complex harmonic motion. The line for Mass 2 
follows a similar oscillatory pattern, but with phase and amplitude differences compared to Mass 1, reflecting 
the interaction between the two masses through the spring system. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=870 

 

Section 6.10 Exercises 

1. Consider a coupled mass-spring system, as described in Example 6.10.2, with the following parameters: both 
masses  and  are 1 kg, and all spring constants , , and  are 1 N/m. The system is isolated from 
external forces and damping effects. Initially, the displacements and velocities are given as  m, 

 m/s,  m, and  m/s. Solve the initial value problem to determine the 
displacements of the masses as functions of time. Use matrix algebra software to find the eigenvalues and 
eigenvectors. 

Show/Hide Answer 
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PART VII 

PARTIAL DIFFERENTIAL EQUATIONS 

Chapter Outline 

This chapter provides a brief overview of partial differential equations, which involve partial derivatives of a function 
with respect to multiple independent variables. 

7.1 Introduction: This section outlines boundary and initial conditions, essential for solving initial boundary value 
problems in PDEs. 

7.2 Fourier Series: This section reviews the Fourier Series, a crucial tool for expressing the solution of partial 
differential equations. 

7.3 Heat Equation: This section discusses using the method of Separation of Variables for solving the heat equation, 
which describes how heat diffuses through a medium over time. 

7.4 Wave Equation: This section briefly discusses the solution to the wave equation, which models the propagation 
of waves, such as sound and light waves, through a medium 
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Maryam Mirzakhani (1977-2007). 
Attribution: Maryeraud9, CC BY-SA 4.0 
<https://creativecommons.org/licenses/
by-sa/4.0>, via Wikimedia Commons 

Pioneers of Progress 

Maryam Mirzakhani, born in 1977 in Tehran, Iran, was a trailblazing 
mathematician whose profound contributions to geometry and 
dynamical systems reshaped our understanding of these fields. Her 
mathematical journey, which began with outstanding successes in the 
International Mathematical Olympiads, culminated in her earning the 
prestigious Fields Medal in 2014, making her the first woman to receive 
this honor. Mirzakhani’s groundbreaking work at Harvard University 
under Curtis McMullen focused on the intricate geometry of Riemann 
surfaces and their moduli spaces, encompassing areas like hyperbolic 
geometry and Teichmüller theory. Renowned for her deep, creative 
thinking and ability to draw connections between different mathematical 
areas, Mirzakhani not only solved long-standing problems but also 
inspired a generation, particularly women and girls in STEM, through her 
remarkable intellect and perseverance. Her legacy as a symbol of 
intellectual curiosity and boundary-breaking achievement makes her an 
exemplary figure for illustrating the far-reaching impact and significance 
of mathematical concepts. 
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7.1 INTRODUCTION 

Unlike Ordinary Differential Equations (ODEs), which involve derivatives with respect to a single variable, PDEs 
involve partial derivatives of a function with respect to multiple independent variables. Essentially, a PDE is an 
equation that relates the partial derivatives of a function of multiple variables. 

PDEs are fundamental in modeling and understanding complex systems in the natural world, for example, in physics, 
for describing wave mechanics, electromagnetic fields, and heat transfer. For example, Maxwell’s equations, which are 
fundamental to electromagnetic theory, are expressed as PDEs or in engineering, in analyzing stress and strain within 
materials, fluid dynamics, and thermodynamics. 

A. Boundary Value Problems 

In the context of differential equations, particularly relevant for engineering students, understanding Boundary 
Value Problems (BVPs) and Initial Value Problems (IVPs) is crucial. 

A Boundary Value Problem involves solving a differential equation subject to a set of constraints called boundary 
conditions. These conditions specify the behavior of the solution at the boundaries of the domain over which the 
equation is defined. In the case of Partial Differential Equations (PDEs), these domains are often spatial, and the 
boundaries can be physical or geometric limits. 

An Initial Value Problem, in contrast, involves solving a differential equation given the value of the solution at 
a specific point, often the start of the time domain. For ODEs and time-dependent PDEs, these initial conditions 
specify the state of the system at the beginning of the observed period. 

B. Boundary Conditions and Initial Conditions 

• Boundary Conditions: These are constraints specified at the boundaries of the spatial domain of a PDE. They 
can be of various types: 

◦ Dirichlet Boundary Conditions: Specify the value of the solution at the boundary. 
◦ Neumann Boundary Conditions: Specify the value of the derivative of the solution at the boundary. 
◦ Mixed or Robin Boundary Conditions: Involve a combination of values and derivatives of the 

solution at the boundary. 

• Initial Conditions: These specify the state of the system at the beginning of the observation period, often time 
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 for time-dependent problems. They are essential in determining the unique evolution of the system over 
time. 
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7.2 FOURIER SERIES 

To solve partial differential equations we often use a method that transforms complex partial differential equations 
into simpler ordinary differential equations. A key step in this method involves expressing functions as trigonometric 
Fourier series. Therefore, this section provides a brief overview of the Fourier Series, which will enable us to effectively 
tackle the solution of partial differential equations in subsequent sections. 

A. Fourier Series 

A Fourier series is an expansion of a function  in terms of an infinite sum of sines and cosines. The series makes 
it possible to express a complex periodic waveform as a combination of simple oscillating functions. 

Decomposition into Sines and Cosines 

The formula for a Fourier series of a function  defined in the interval   is 

 

Here, ,  , and  are the Fourier coefficients that determine the amplitude of the corresponding sine and cosine 
terms. They are calculated as follows: 

 

     for 

     for  

B. Sine and Cosine Fourier Series 

In certain cases, the function  may have specific symmetries, which simplify the Fourier series: 
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Sine Series: If  is an odd function (i.e.,  ), the cosine terms in the Fourier series vanish, 
and only the sine terms remain. This results in a sine series, which is particularly useful for functions defined on 
symmetric intervals and satisfying certain boundary conditions, like being zero at the endpoints. 

Cosine Series: If  is an even function (i.e., ), the sine terms disappear, leaving only the 
cosine terms. The resulting cosine series is useful for problems where the derivative of  is zero at the endpoints. 

Fourier series are integral in solving PDEs, especially when using the method of Separation of Variables. This method 
often requires satisfying boundary conditions, and the Fourier series provides a way to do this. By expressing a 
function as a Fourier series, PDEs can be transformed into simpler ODEs, each associated with a different frequency 
component of the original function. 

 

Example 7.2.1: Find Fourier Series 

Find the Fourier Series of   on  . 

Show/Hide Solution 

 

The endpoint  is 2. Therefore, the Fourier Series is 

 

where 

 

     

    

 is an odd function and thus  and  will equal zero. Also, both  and sine are odd functions, 
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and thus their product is an even function. Thus, the integral over a symmetric interval of 
simplifies to 

 

We evaluate  using the integration by parts technique. 

 

Given ,  is simplifies to 

 

Therefore the Fourier series is 

 

The below figure shows the graph of  (solid black line) and its approximation by the partial sums 
of its Fourier Series on  for  (the blue dashed curve) and   (the red dotted curve). 
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The below interactive figure presents a visual comparison between a mathematical function’s Fourier series 
approximation and the linear function , plotted over the interval . The Fourier series 
approximation, depicted as a blue dashed line, illustrates how a function can be represented as a sum of 
simpler sine functions. The number of terms included in the Fourier series approximation can be adjusted 
dynamically using an interactive slider, ranging from 1 to 10 terms. This feature allows you to observe the 
impact of increasing the series terms on the approximation’s accuracy towards the actual function. The linear 
function  is plotted as a solid red line for reference. 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=281 

 

Example 7.2.2: Find Fourier Series 
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Find the Fourier Series of   on  . 

Show/Hide Solution 

 

The endpoint  is 2. Therefore, the Fourier Series is 

 

where 

 

     

    

 is an even function while sine is an odd function, so their product is an odd function. Thus, 

. The product of cosine (also an even function) and  is an even function and thus  and 
simplify to 

 

 

To evaluate , we need to use the integration by parts technique twice. 
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Given ,  is simplified to 

 

Therefore, the Fourier series is 

 

The below figure shows the graph of  (solid black line) and its approximation by the partial 

sums of its Fourier Series on  for  (the red dashed curve). 

 

The below interactive figure presents a visual comparison between a mathematical function’s Fourier series 
approximation and the quadratic function , plotted over the interval . The Fourier 

series approximation, depicted as a blue dashed line, illustrates how a function can be represented as a sum 
of simpler sine functions. The number of terms included in the Fourier series approximation can be adjusted 
dynamically using an interactive slider, ranging from 1 to 10 terms. This feature allows you to observe the 
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impact of increasing the series terms on the approximation’s accuracy towards the actual function. The 
function  is plotted as a solid red line for reference. 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=281 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=281 

Section 7.2 Exercises 

1. Find the Fourier series for  over the given interval. 

  ,  

Show/Hide Answer 
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2. Find the Fourier series for  over the given interval. 

  ,  

Show/Hide Answer 
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7.3 HEAT EQUATION 

A. Introduction to Solving Partial Differential Equations 

In this section, we explore the method of Separation of Variables for solving partial differential equations commonly 
encountered in mathematical physics, such as the heat and wave equations. This method simplifies complex partial 
differential equations into more manageable ordinary differential equations. While computer-based algorithms like 
finite differences and finite elements are frequently used for solving partial differential equations, their accuracy can 
be challenging to gauge. Therefore, the analytical Separation of Variables method is important for verifying these 
computational methods’ results. 

B. Heat Equation 

The heat equation describes how heat diffuses through a medium over time. It is formulated considering a small 
volume element within the material, where the rate of thermal energy change is equal to the net heat flow. 
Representing the temperature at point  and time  by , the heat equation in one dimension is expressed as 

 

Here,     represents the rate of change of temperature with time,    (where   is the thermal diffusivity of the 

material) is a constant that combines the material’s thermal conductivity, density, and specific heat capacity, and 
  (the Laplacian of ) represents the divergence of the temperature gradient, indicating how the temperature 

changes in space around any point. In one dimension, like a simple rod, the Laplacian of   simplifies to 

. Therefore, the heat equation becomes 

 

Solving this equation requires setting boundary and initial conditions. The initial condition specifies the temperature 
distribution throughout the domain at the initial time, usually at . For example, for a rod or a similar 
one-dimensional domain, the initial condition might be given as , where   describes the 
temperature distribution along the rod at the initial time. 
We first consider the Dirichlet Boundary Conditions for heat flow in a uniform rod whose ends are kept at a 
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constant temperature of zero. 

C. Solution to Heat Equation with Dirichlet Boundary 
Conditions 

Consider a uniform rod of length  with both ends kept at zero temperature. The heat equation in one dimension is 

(7.3.1)  

For zero temperature at both ends of the rod, the boundary conditions are: 

 

The initial temperature distribution along the rod is given by: 

Using the method of Separation of Variables, we assume that the solution can be written as the product of two 
functions, one depending only on  and the other only on  . 

 

Substituting the solution form into the Heat Equation gives 

 

Dividing the equation by  yields 

   

This equation is separated into two ordinary differential equations (ODEs) because the left side depends only on   
and the right side only on  .  For this equation to hold for all values of   and  , each side of the equation must be 
independently equal to a constant. This is because the only way a function of   can equal a function of  under all 
circumstances is if both are equal to the same constant value. Consequently, we set both sides of the equation to a 
negative constant, denoted a  ,   is known as the separation constant. The negative sign is conventionally added 
for simplification in subsequent steps. 
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As a result, we arrive at two distinct ODEs. 

   

   

Solving the Spatial ODE 

To solve the spatial part of the ordinary differential equation (ODE), we start by rearranging the equation 

 

 is the trivial solution for this boundary value problem. However, here our focus is on nontrivial 
solutions as they provide meaningful insights into the system’s behavior under various conditions. A value of  for 
which this problem has a nontrivial solution is called an eigenvalue of the problem and the nontrivial solutions 
are eigenfunctions associated with that . These eigenfunctions, unlike the trivial solution, provide a deeper 
understanding of the dynamics and characteristics of the system. 

Finding the Eigenvalues and Eigenfunctions 

The characteristic equation of the spatial differential equation is . Depending on the sign of , 

there are three cases to consider. 

Case 1:   

In this case, the roots of   are complex and the solution is 

 

Applying the first boundary conditions , we find that . Applying the second boundary 
conditions   yields the equation . To obtain a nontrivial solution, the sine 

function itself must be zero. 

7.3 HEAT EQUATION  |  369



       for  

Therefore, the positive eigenvalues and their associated eigenfunctions of this boundary value problem are 
determined to be 

      for  

Case 2:  

In this case, the solution to the differential equation is 

 

Applying the first boundary conditions , we find that . Applying the second boundary 
conditions , we obtain . In this case, the only solution is the trivial solution, which is discarded. 

Case 3:  

In this case, the roots of   are real number resulting in the solution 

 

Upon applying the first boundary conditions , we find that   . The second boundary 
conditions  leads to . Solving the system for  and , we arrive at 

 

As we seek a nontrivial solution, the term in parentheses must be zero. 

 

However, this equation holds only if , which contradicts our assumption that . Thus, we conclude 
that  must be zero, leading to a trivial solution. 

Therefore, the only valid eigenvalues and eigenfunctions for the spatial part of the equation are realized when 
. These are given by 

      for  
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Solving the Temporal ODE 

To solve the temporal part of the ordinary differential equation (ODE), we start by rearranging the equation 

  

and substituting the previously determined eigenvalues , which transforms the temporal ODE into 

  

For each eigenvalue , the to solution to this differential equation is 

      for  

Here  represents an arbitrary constant. This series of functions   describes how the temperature evolves over 
time for each spatial mode  . 

Constructing the General Solution 

To construct the general solution for the heat equation, we combine the spatial and temporal solutions into a 
composite series. 

 

Given the solutions  and , the combined form for each mode 

is 

    for  

In series notation, this becomes 

(7.3.2) 
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Here, the constant  from the temporal solution is represented as  for each  as this constant may vary with each 
term in the series. To find the coefficient  , we apply the initial condition  . This leads to 

 

This is the Fourier sine series representation of   over the interval . The coefficients  are determined 
by 

(7.3.3) 
 

 

Example 7.3.1: Solve Initial Boundary Value Problem for Heat Equation – Dirichlet 
Boundary Conditions 

Find the solution to the initial boundary value heat flow problem 

         

        

        

Show/Hide Solution 

Comparing the given partial differential equation to Equation 7.3.1, we see  and . Given the 
initial condition is a linear combination of a few sine functions (eigenfunctions), all we need to do is to find 
the combination of terms in the general solution 7.3.2 that satisfies the initial condition . 
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From the argument of sine functions, the two terms correspond to  and  respectively, and 
that   and  . All the other coefficients are zero. 

Therefore, the solution to the heat flow problem is 

 

 

 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=283 

 

Example 7.3.2: Solve Initial Boundary Value Problem for Heat Equation – Dirichlet 
Boundary Conditions 

Find the solution to the initial boundary value heat flow problem 
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Show/Hide Solution 

Comparing the equation with Equation 7.3.1, we see that ,  , and  .  Unlike the 
previous example, the initial condition function is not similar to eigenfunctions (sine functions). Therefore, 
we first need to find  using 7.3.3. 

 

 

By integration by parts, we have 

 

 

Thus the solution is 

 

 

The figure below shows the partial sum of the solution . 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=283 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=283 

D. Solution to Heat Equation with Neumann Boundary 
Conditions 

Neumann Boundary Conditions specify the value of the derivative (gradient) of the temperature at the boundary, 

often representing insulated or adiabatic surfaces where no heat flow occurs. For instance,  might 

represent one end of the rod being perfectly insulated. 

To develop a solution for the heat equation with Neumann Boundary Conditions, we use the method of Separation 
of Variables. 

Consider a uniform rod of length  with both ends perfectly insulated (no heat flows in or out of the rod) and the 
temperature at both ends is kept constant. The heat equation in one dimension is 
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For insulated ends, the derivative (gradient) of the temperature at the boundary is zero. Thus the boundary 
conditions are: 

 

The initial temperature distribution along the rod is given by 

The solution to this boundary value problem is 

(7.3.4) 
 

where 

 

is the Fourier cosine series of  on  and coefficients  and   are given by 

(7.3.5) 
 

(7.3.6) 
    for 

 

Example 7.3.3: Solve Initial Boundary Value Problem for Heat Equation – Neumann 
Boundary Conditions 

Find the solution to the initial boundary value heat flow problem 
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Show/Hide Solution 

Comparing the equation with Equation 7.3.1, we see that ,  , and  .  We first need 

to find coefficients   and . Using 7.3.5. 

 

 

Applying 7.3.6 to find  . 

 

 

By integration by parts, we have 

 

Given  ,   is simplifies to 

The general solution is then given by 7.3.4 
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The figure below shows the partial sum of the solution . 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=283 

 

Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=283 

Section 7.3 Exercises 

1. Find the solution to the initial boundary value heat flow problem 
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Show/Hide Answer 

 

2. Find the solution to the initial boundary value heat flow problem 

     

     

      

Show/Hide Answer 

 

3. Find the solution to the initial boundary value heat flow problem 

     

     

      

Show/Hide Answer 
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7.4 WAVE EQUATION 

The wave equation models the propagation of waves, such as sound waves, light waves, or water waves, through 
a medium. It captures how these waves travel and change over time and space. The wave equation for the initial 
boundary value problem for the displacement (deflection) of a vibrating string whose endpoints are held fixed is 

(7.4.1)        

      

           

Using the method of Separation of Variables, we can find the formal solution to this initial boundary value problem: 

 (7.4.2) 
   

where 

    and  

are the Fourier sine series of   and    on  and 

     and   

 

Example 7.4.1: Solve the Boundary Value Problem – Wave Equation 

Find the solution to the vibrating string problem 
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        , 

        

           

 
Show/Hide Solution 

Comparing the equation with Equation 7.4.1, we see that ,   , 

, and . Since  and   are in terms of sine functions, we can determine the 
values of the coefficients  and  by equating  and  to  and , respectively. 

Substituting  into Equation 7.4.2, we obtain 

  

From initial boundary values, we have 

 

Thus 

   

Equating the coefficients of like terms, we see that 

    and   

with the remaining coefficients being zero. Similarly, by partially differentiating Equation 7.4.2 with respect to 
and substituting , we obtain 
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From initial boundary values, we have 

 

Thus 

   

Equating the coefficients of like terms, we see that 

    and   

with the remaining coefficients being zero. 

The solution to the problem is 

 

   

The figure below shows the sketch of . 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=285 
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Try an Example 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=285 

Section 7.4 Exercises 

1. Find the solution to the initial boundary value wave problem 

     

     

         

Show/Hide Answer 

 

2. Find the solution to the initial boundary value wave problem 
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Show/Hide Answer 
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Simulations 

Fourier Series 

Use the following simulation to learn more about how sines and cosines add up to produce arbitrary periodic 
functions. 

 

One or more interactive elements has been excluded from this version of the text. You can view them 

online here: 

https://ecampusontario.pressbooks.pub/diffeq/?p=6#iframe-phet-1 

Mass-Spring System 

Use the following mass-spring system simulation to study the relationship between the velocity and acceleration 
vectors, and their relationship to motion, at various points in the oscillation with and without damping and learn 
more about the factors that affect the period of oscillation. 

 

One or more interactive elements has been excluded from this version of the text. You can view them 

online here: 

https://ecampusontario.pressbooks.pub/diffeq/?p=6#iframe-phet-2 
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