THEORY OF
COMPUTING

AN OPEN INTRODUCTION

Taylor J. Smith

THEORY OF
COMPUTING

AN OPEN INTRODUCTION «

Taylor J. Smith St. Francis Xavier University

Copyright © Taylor J. Smith 2024
https://taylorjsmith.xyz

©@®O

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

For license details, visit
https://creativecommons.org/licenses/by-sa/4.0/.

Typeset in Computer Modern using IATEX
Figures produced using TikZ

« pre-publication edition, September 2024

https://taylorjsmith.xyz
https://creativecommons.org/licenses/by-sa/4.0/

Preface

CONTENTS

1 Regular Languages

1.1.

1.2.

1.3.

1.4.
1.5.

Regex and Regular Expressions
1.1.1. Words, Languages, and Operations
1.1.2. Language of a Regular Expression
Finite Automata
1.2.1. Computations and Accepting Computations
1.2.2. Language of a Finite Automaton
1.2.3. Nondeterminism
1.2.4. Epsilon Transitions
Equivalence of Models
1.3.1. eNFA=NFA
1.3.2. NFA=DFA
1.33. DFA=RE
1.3.4. Kleene’s Theorem
Closure Properties
Proving a Language is Nonregular
1.5.1. The Pumping Lemma for Regular Languages
1.5.2. The Myhill-Nerode Theorem o

Chapter Notes

2 Context-Free Languages

2.1.

2.2,

Context-Free Grammars
2.1.1. Language of a Context-Free Grammar
2.1.2. Ambiguity
2.1.3. Normal Forms

2.1.3.1 Chomsky Normal Form

2.1.3.2 Greibach Normal Formo
Pushdown Automata
2.2.1. Computations and Accepting Computations

<

D W N =

13
14
20
22
22
25
28
33
34
40
42
48
48

CONTENTS

2.2.2. Language of a Pushdown Automaton.
2.3. Equivalence of Models
231. CFG=PDAo
232, PDA=CFG.
233. CFG=PDA
2.4. Closure Properties
2.5. Proving a Language is Non-Context-Free
2.5.1. The Pumping Lemma for Context-Free Languages
2.5.2. Ogden’s Lemmao
Chapter Notes o

Decidable and Semidecidable Languages
3.1. Turing Machines,
3.1.1. Configurations and Accepting Configurations
3.1.2. Language of a Turing Machine
3.1.3. Computing Functions
3.2. Variants of Turing Machines
3.2.1. Nondeterministic Turing Machines
3.2.2. Multitape Turing Machines
3.2.3. One-Way Infinite Tape Turing Machines
3.3. Closure Properties©
3.4. Encodings of Turing Machineso
3.5. Universal Turing Machines
3.6. The Church-Turing Thesis.
3.7. The Chomsky Hierarchy
Chapter Notes

Decision Problems

4.1. Decidable Problems for Regular Languages
4.2. Decidable Problems for Context-Free Languages
4.3. An Undecidable Problem for Turing Machines
4.4. A Non-Semidecidable Problem for Turing Machines
Chapter Notes o

Proving Undecidability
5.1. Many-One Reductions
5.1.1. Properties of Reductions
5.1.2. Reductions, Decidability, and Semidecidability .
5.2. The Halting Problem
5.3. More Undecidable Problems for Turing Machines
5.4. Reducing from Turing Machine Computations
5.5. Undecidable Problems for Context-Free Languages
5.6. Post’s Correspondence Problem <
5.7. Rice’s Theorem o

97

99
102
104
109
111
111
113
115
118
118
118
121
126
126

133
134
141
145
150
155

CONTENTS

Chapter Notes

A Mathematical Background
A.1l. Sets and Sequences
A.2. Relations and Functions
A3. Graphs.

B The Greek Alphabet

Bibliography

iii

185

189
189
194
200

203

205

PREFACE

WHEN YOU THINK about the theory of computation, what comes to mind?
In fact, what s the “theory” of computation? Computers are real, tangible
machines that humans built, so surely we should know all about how they
work. However, all the day-to-day work we do with our computers belies
the reality of computation itself and all of its intricacies.

At some point, we’ve all found ourselves in a position where we wanted
to do something with our computer, but the hardware just wasn’t up to the
task. Imagine, then, if we were to remove all of the physical components of
a computer—its finite memory, its finite storage space, its limited processing
power. In doing so, we would end up with an ideal computer, a machine
with no limitations, one that can solve any problem we throw at it...or so
it would seem.

In this book, we will build our way up from a simple machine that
can answer nothing more than yes/no questions all the way to our ideal
computer. In the process, we will learn about the fundamental limits of
computation itself. What is a computer truly capable of? What makes
some problems harder for a computer to solve than others? What kinds of
problems can a computer solve at all? What kind of problems cannot ever
be fully solved by a computer, no matter how many resources we throw at
it? We will investigate all of these questions, and much more.

ABOUT THIS BOOK

For students. The chances are high that, if you're reading this book, you’re
enrolled in a course titled “Theory of Computing” or something similar.
And the chances are just as high that you need to take that course as a part
of your degree program. (If you're taking the course for fun, then you're
truly a student after my own heart.) In my career, I have noticed that the
theory of computing has a reputation among students for being dry and
difficult, largely because these students are made to take a course with no
coding, devoid of flashy tech, and even worse: packed with mathematics.

vi PREFACE

But I believe this reputation is undeserved. Yes, theory isn’t flashy, and yes,
theory is mathematical. But theory is also beautiful in that it reveals a side
of computer science that no other course comes close to touching.

Before we embark on our journey, consider abandoning any preconceived
notions you may have gleaned from other students. While it may take a
little time to build up our vocabulary and notation, the results we will study
in this book are truly deep and enlightening. The theory of computing is
a unique subject in that it touches literally every other area of computer
science in some way, and you’re invited to find and explore the many
connections between the material we learn in this book and the material
from the other areas of computer science that interest you.

The material in this book does not require any more prerequisite knowl-
edge on your part than a familiarity (and comfort) with discrete mathematics
and introductory computer science—namely, fundamental data structures
and programming constructs. If you feel you need to brush up on your math-
ematical knowledge, I have included some review material in Appendix A.

I have tried to write this book in a way that stimulates your curiosity
and encourages you to come back to it again and again, even if you only
ever end up taking one course in the theory of computing. As a first-timer,
you or your class might read the first few chapters to become acquainted
with abstract models of computation. Then, later, you might focus on the
following chapters where we progress from computation to complexity theory.
Further reads may have you adventure into the later chapters that explore
specialized topics. No matter how you approach the material, whether it be
in the classroom or on your own time, I hope you return to these pages and
learn something new on every read.

In certain parts of this book, you will encounter paragraphs marked

with a “dangerous bend” sign. Inspired by Nicolas Bourbaki and Donald
Knuth, who each used the symbol in their works, I include this warning
sign at any place where I feel the material might be more difficult to grasp
on one’s first reading. Just like driving on a winding road, take it slow and
easy, and exercise caution with these paragraphs!

Additionally, as you progress through the book, you may notice that I
have included comprehensive chapter notes with pointers to the literature
at the end of each chapter. I have also interspersed citations at appropriate
spots throughout the text itself as the need arises. One can argue that
computer science is unique in how forward-looking it is as a field: the state
of the art changes monthly, if not weekly. But this comes with a downside in
that computer scientists rarely stop to evaluate and appreciate the history
of our subject. Thus, if any particular topic in this book grabs your interest,
I strongly encourage you to track down copies of the papers and books I
have cited, either through your library or online. There’s no better way

PREFACE vii

to appreciate the ideas in this book than to read the actual words of the
people who discovered them.

For instructors. This book emerged from the lecture notes I wrote for my
undergraduate and graduate-level courses on the theory of computing. My
lecture notes were, in turn, influenced by what I studied as an undergraduate
and graduate student. The material I chose to include in this book was
guided not only by what students ought to learn, but also by what I wanted
to learn as a student myself. Thus, while you’ll find all of the core material
within these pages, you’ll also find quite a bit of enriched content for those
looking to take that extra step into this exciting subject.

The approach that I take to teaching the theory of computing is influenced
(perhaps heavily) by my research focus as an automata theorist. I believe
the best way to introduce undergraduate students to this material is by
building up from a simple and accessible model of computation: the finite
automaton. I am aware of other approaches to teaching this material that
begin with alternative models such as Boolean circuits, but I don’t agree
with this pedagogy: although circuits as a model prevail in both the research
literature and in hardware, I find them too technical and fiddly to teach as
a first model. They may be suitable for electrical engineering students, but
we’re teaching future computer scientists who should be used to abstraction.

By starting with a model that can do nothing more than read input and
either accept or reject, students can easily grasp fundamental properties
and draw connections between the model and more familiar real-world tools,
such as regular expressions. From these foundations, I demonstrate to
students how augmenting the finite automaton—first with a stack and then
with a tape—produces progressively stronger models of computation. Here,
I follow an analogous progression in drawing out the fundamental properties
of both the pushdown automaton and the Turing machine.

With the introduction of the Turing machine, the focus of the book
shifts from the models of computation themselves to what the models are
capable of computing. I introduce students both to decision problems and
to the idea of “programming” a Turing machine in the form of describing
the steps performed by a Turing machine in order to decide a problem. My
undergraduate course culminates in a discussion on the limits of computation
and undecidable problems.

(The material in the present edition of the book stops here. Everything
discussed in the following paragraphs will appear in future editions of the
book. See the following section, “About This Edition”, for more details.)

My graduate course picks up our study more or less where my under-
graduate course leaves off; indeed, the only prerequisite knowledge I assume
of my graduate students is that they know what Turing machines are and
how they perform computations. Here, the book shifts focus once more,

viii PREFACE

from discussing whether problems can be solved to discussing how effi-
ciently problems can be solved. The majority of the material I cover at
the graduate level focuses on complexity theory: we discuss foundational
results in complexity before focusing on time and space complexity classes,
hardness, completeness, and complements. (I also cover basic complexity
theory notions such as P, NP, and NP-completeness in my undergraduate-
level algorithm analysis course, but not in my undergraduate-level theory of
computing course.)

One aspect of my graduate-level course that I particularly enjoy is that,
after covering the major results in complexity theory, I get to veer off into
specific areas and special topics. These topics form the final focus of the
book, often covering newer results and more obscure material that students
might not otherwise learn during their studies. Many of the topics I discuss
in my graduate-level course were inspired by presentations given in past
offerings of the course, where students independently study some advanced
aspect of the theory of computing and deliver a mini-lecture in the final
weeks of the term. If you teach a similar course, I encourage you to try the
same activity: with any luck, you’ll gain as much inspiration as I do.

I have tried, where possible, to align the material in this book with
the illustrative learning outcomes presented in the ACM/IEEE-CS/AIII
Computer Science Curricula 2023, available online at https://www.acn.
org/education/curricula-recommendations. In particular, this book
most closely follows the AL-Models and AL-Complexity knowledge units.
The particular sections of this book that satisfy the learning outcomes
are outlined in Table 1. Note, however, that some learning outcomes—
particularly those that are more appropriate for a course on algorithm
analysis—do not fall within the scope of this book, and may be better
served by other books such as that by Erickson [2019].

ABOUT THIS EDITION

YOU MAY HAVE NOTICED that I refer to the present book as the “a pre-
publication edition”. This is to highlight the fact that this book is still
under active development and revision. In time, I will release the 3, =,
d, etc. ... pre-publication editions, each of which will contain more and
(hopefully) better material, until I feel the book is in a good-enough state
to receive the designation of “first edition”.

=\ Occasionally, you will encounter paragraphs marked with an “under
(construction” sign. These signs mark areas where I have promised to
write future material, but haven’t yet done so.

I have already started to lay the groundwork for certain future sections,
which T have marked in the book with a diamond (¢) symbol. Beyond

https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations

PREFACE

Table 1
ALIGNMENT BETWEEN THIS BOOK AND CS CURRICULA 2023
Learning outcome Relevant section of book
AL-Models
CS Core 1 Sections 1.2, 2.2, 3.1
CS Core 2 Sections 1.2, 2.2, 3.1
CS Core 3 Section 1.1
CS Core 4 Sections 1.1, 1.2
CS Core 5 Sections 1.1, 1.2, 2.1, 2.2, 3.1
CS Core 6 Section 3.5
CS Core 7 Section 5.2
CS Core 8 Sections 4.3, 4.4, 5.2, 5.3, 5.5
CS Core 9 Section 3.6
CS Core 10 Not covered
KA Core 11 Sections 1.2, 1.3, 1.4, 2.2, 2.3, 2.4
KA Core 12 Sections 1.5, 2.5
KA Core 13 Sections 4.3, 5.2
KA Core 14 Sections 5.1, 5.4
KA Core 15 Sections 1.3, 2.3, 3.2
KA Core 16 Section 5.7
KA Core 17 Sections 5.2, 5.3, 5.5
KA Core 18 Not covered
KA Core 19 Not covered
AL-Complexity
CS Core 1 Forthcoming
CS Core 2 Forthcoming
CS Core 3 Not covered
CS Core 4 Not covered
CS Core 5 Forthcoming
CS Core 6 Not covered
CS Core 7 Not covered
CS Core 8 Forthcoming
CS Core 9 Not covered
CS Core 10 Forthcoming
CS Core 11 Forthcoming
CS Core 12 Forthcoming
CS Core 13 Forthcoming
KA Core 14 Not covered
KA Core 15 Not covered
KA Core 16 Forthcoming
KA Core 17 Forthcoming
KA Core 18 Forthcoming
KA Core 19 Forthcoming
KA Core 20 Forthcoming

PREFACE

individual sections, my long-term plan is to include the following chapters—
for which I have material written—into future pre-publication editions of
this book:

6

10

11

Foundations of Complexity

Discussing basic complexity classes, speedup and compression, the
gap theorem, constructible functions, the time and space hierarchy
theorems, and Savitch’s theorem.

Time Complexity
Discussing basic time complexity classes, including P, NP, E; NE, EXP,
and NEXP.

Space Complexity
Discussing basic space complexity classes, including L, NL, PSPACE,
NPSPACE, EXPSPACE, and NEXPSPACE.

Hardness, Completeness, and Complements

Discussing polynomial-time many-one reductions, NP-completeness,
PSPACE-completeness, logarithmic-space many-one reductions, NL-
completeness, complement complexity classes, and the Immerman—
Szelepcsényi theorem.

Probabilistic Computation
Discussing probabilistic Turing machines, Las Vegas and Monte Carlo
algorithms, and randomized complexity classes.

Provers, Verifiers, and Interactivity
Discussing proof systems, Arthur and Merlin, interactive protocols,
zero-knowledge proofs, and probabilistically checkable proofs.

My longer-term (and very optimistic) plan will see the following not-yet-
written chapters added to the book at some point in the future:

Relativization
Circuit Complexity
Quantum Computation

...and more?

I realize that the present book, unlike most textbooks, does not yet
contain exercises, and this is another omission that I intend to rectify in
future editions. I have a variety of questions collected from assignments I
have given to my students, and in time I will include an appropriate selection
of these questions at the ends of each chapter.

Lastly, one feature I will eventually add to this book is an index, though
this will likely be added only after I have written up all of the content
outlined previously.

PREFACE xi

ON BEING OPEN ACCESS

AT SOME POINT in the now-far past, possibly after I returned home from
the university bookstore with an armful of textbooks and course readings, I
came across the following quote that stuck with me:

Information wants to be free.
— STEWART BRAND

In the following years as I progressed through my higher education, in spite of
the growing influence of the internet, I noticed a trend away from the spirit of
this quote: more expensive textbooks, course materials locked away behind
learning management systems, the commodification of education. This
trend has instilled within me the strong belief that high-quality educational
materials should be made available for free, in perpetuity, to everybody.
Moreover, and perhaps influenced by the impacts both the free software
and open source movements had on me during my upbringing in computer
science, I believe that “free” in this context should mean not just without
cost (gratis) but also with minimal restriction (libre).

Authors are often asked about their motivation for writing a book: my
motivation is to make information free. To this end, I have published this
book under a Creative Commons BY-SA license to encourage everyone to
use this material in the spirit of David Wiley’s five Rs of openness:

e Retain: download, print, and own this book for as long as you
like.

e Reuse: use part or all of the material in this book however you
want.

e Revise: add to or modify the material for use in your own class-
room, create audio and video materials based on the material,
translate the book, and make it even better and more accessible.

e Remix: take the material from this book and combine it with
open educational resources from other courses and institutions.

e Redistribute: share this book freely with your friends, colleagues,
and strangers.

The terms of this book’s particular license are available online at https:
//creativecommons.org/licenses/by-sa/4.0/.

Since this book is CC BY-SA licensed, the only stipulations on these
five Rs are that anything you create that is based on this book must include
an attribution to the original book and must likewise be licensed openly. If

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

xii PREFACE

you use or adapt the material from this book, please include the following
attribution:

Taylor J. Smith. Theory of Computing: An Open Introduction. Self-
published open educational resource, a pre-publication edition, 2024.
taylorjsmith.xyz/tocopen/.

Additionally, even though it isn’t a part of the license conditions, please feel
free to get in touch with me if you use or adapt this material. I would love
to hear about what you do with it!

FURTHER READING

AS THE AUTHOR of the present book, I may be slightly biased in believing
that you should read this instead of any others. But for readers who are
entirely new to this field of study, I can recommend a handful of great
alternative undergraduate-level treatments of this subject: Hopcroft and
Ullman [1979] wrote the very first book on theoretical computer science I
read, Rich [2008] wrote the book I learned from as an undergraduate student,
and Sipser [2013] wrote the book I previously used to teach undergraduate
students. There are, of course, dozens of other books on the subject, with
one favourite of mine being that by Kozen [1997].

Note that, although there are newer editions of the Hopcroft and Ullman
(and now, also Motwani) book, I have very deliberately cited the first edition
here. By the authors’ own admission, the newer editions of their book
are “larger on the outside, but smaller on the inside”—not exactly a selling
point—and as a result, they pale in comparison to the original. If you can
get your hands on a copy of the first edition, grab it!

Try as I might, I cannot include everything in this book, so readers
having some more familiarity with the subject may wish to consult various
graduate-level texts to gain exposure to advanced topics not mentioned
here. In the past, I have used the book by Arora and Barak [2009] to teach
graduate students. Other fine advanced books include those by Kozen [2006]
and by Papadimitriou [1994].

ACKNOWLEDGEMENTS

THERE’S NOTHING QUITE LIKE writing a book to prompt you to reflect on
who drove you to this point to begin with. First and foremost, I must thank
my family and friends for their unyielding support and for reminding me
that there’s more to life than work. When it comes to work, I wouldn’t be
where I am today were it not for the professors who taught me the very

taylorjsmith.xyz/tocopen/

PREFACE xiii

subject I'm writing about: I thank Lucian Ilie and Helmut Jiirgensen of the
University of Western Ontario, Gregor Richards and Jeffrey Shallit of the
University of Waterloo, and particularly Kai Salomaa of Queen’s University,
who also served as my indefatigable doctoral supervisor and continues to
be my close colleague and confidant. I would also be remiss not to thank
Mark Daley of the University of Western Ontario for lending me his copy
of Hopcroft and Ullman (first edition, naturally) over the summer between
the first and second years of my bachelor’s degree, thereby being directly
responsible for me becoming a theorist.

I would like to express my gratitude to St. Francis Xavier University for
providing me with the means to write this book, and to the many students in
CSCI 356 and CSCI 541 who have learned (and hopefully continue to learn)
from my materials. While writing this book, I benefitted from research
funding support through the Natural Sciences and Engineering Research
Council of Canada Discovery Grant RGPIN-2024-04799.

Your feedback. Try as I might, I'm sure that there are mistakes lurking
in these pages that snuck past me, even after hundreds of read-throughs
and revisions. I'm doubly sure that there are sections of the text where I
could’ve explained something in a different, clearer, or just plain better way.
In my pursuit to expunge errors, obliterate omissions, take out typos, and
polish prose, I welcome comments from you, the reader. I will also happily
consider suggestions for topics you would like to see added to future editions.
I can be reached via email at tjsmith@stfx.ca.

Antigonish, Canada T.J.S.
September 2024

CHAPTER ONE

REGULAR LANGUAGES

IF YOU FREQUENTLY USE a Unix-based system with a terminal, you may
be familiar with utilities such as grep, which searches an input text file for
lines that match a specified format. For example, on your computer, you
can search the dictionary file (/usr/share/dict/words) for all words that
contain theory:

$ grep theory /usr/share/dict/words
countertheory

theory

theoryless

theorymonger

But, to be fair, doing something like that is a bit overkill when you could
just open the file in a text editor and use the Find tool to search for the
word “theory”. Where grep really shines is when you need to search for
text matching a pattern, like so:

$ grep "u.*ity$ /usr/share/dict/words
ubiquity

ultimity

ultrafilterability

usability
utility
utterability
uxoriality

In this example, we searched for all words in /usr/share/dict/words
that began with a u and ended with ity, such as university. The ubiquity
of this pattern in the English language is evident:

$ grep “u.*xity$ /usr/share/dict/words | wc -1
235

2 REGULAR LANGUAGES

Utilities like grep use patterns to perform fast searches in text files, and
the sequence of symbols that makes up such a pattern is known as regezx or,
formally, a regular expression.

1.1. REGEX AND REGULAR EXPRESSIONS

TO DEFINE REGULAR EXPRESSIONS, let’s think about the types of things
we can match. For example, as a base case, we might want to be able
to match nothing—this can be represented by a nonsensical regex like a~,
which attempts to match a symbol a that occurs before the start of a line.
We might also want to match an empty line (which is distinet from matching
nothing!), which can be done with the regex "$.

Let’s now actually attempt to match something more meaningful. The
smallest nonempty thing we can match is a single symbol, which can be
matched by a regex consisting of the symbol itself; say, a. From this, we
can build up more complicated regexes by joining together smaller ones.
For instance, we can match two regexes independently by joining them
together with a special union symbol; say, (a | b), which matches lines
that contain either an a, or a b, or both. We can also combine, or concatenate,
two regexes by simply putting them together—the regex ab matches an a
immediately followed by a b. Lastly, it would be nice to incorporate some
kind of repetition mechanism to match something never, once, or many
times. This can be done using a special “star” symbol such as that in the
trivial regex .*, which matches zero or more occurrences (represented by
the star, *) of any symbol (represented by the dot, .).

Now, since we’re in a mathematically oriented course, we should properly
formalize each of these match types. Fortunately, we can bring over notions
from mathematics to correspond to each match type. Matching nothing can
be denoted by an empty set symbol, (). Likewise, matching an empty line is
like matching a set that contains one element which has zero length—Ilet’s
denote this zero-length element by the symbol €. To denote the union of
two regular expressions, we could use U, but since we’re dealing with regular
expressions and (strictly speaking) not sets, we’ll instead use the symbol +.
Concatenation is straightforward; we’ll simply write the regular expressions
side-by-side. Finally, we can keep the star symbol as it is.

Taking this all together, we arrive at a formal definition for regular
expressions.

Definition 1.1 (Regular expressions)

Let ¥ be an alphabet. The class of regular expressions is defined
inductively as follows:

REGEX AND REGULAR EXPRESSIONS 3

1. » = 0 is a regular expression;
2. T = € is a regular expression;
For each a € ¥, r = a is a regular expression;

For regular expressions r; and 7o, 71 + 72 is a regular expression;

& &8

For regular expressions r; and 7o, 172 is a regular expression;
and

6. For a regular expression r, r* is a regular expression.

Note that our earlier regex examples used symbols like =, ., and $,
when Definition 1.1 didn’t define any of those symbols. This is because
regexes and regular expressions aren’t exactly the same thing. In fact, our
definition of a regular expression is the purely theoretic definition, meant
simply to give us the bare minimum needed to match simple patterns. It is
therefore different from a practical regex implementation, where we can use
special symbols to indicate the start or end of a word, match any symbol
instead of one specific symbol, and make back-references, among other
things. Appropriately, the literature sometimes refers to these practical
regex implementations as extended regular expressions, and this is what
you’ll encounter on most computers. In the context of this lecture, though,
when we refer to a regular expression, we will be following Definition 1.1.

1.1.1. Words, Languages, and Operations

Another way in which regular expressions stand apart is in the terminology
we use to refer to what we’re matching. Since we aren’t using a terminal to
write our theoretical regular expressions, we aren’t simply matching lines of
text in a text file. Instead, a regular expression corresponds more generally
to some collection of things that match a pre-specified pattern.

To describe what we can do with regular expressions (and other models
of computation we will see later), we will borrow some terminology from
linguistics, which happens to be the field from which much of early theoretical
computer science developed!

e The symbols we use, like {a,b} or {0,1}, come from an alphabet.
Often, we represent an alphabet by the symbol 3.

e Sequences of symbols are called words or strings. For exam-
ple, consider the English lowercase alphabet {a,b,...,z}. Some

4 REGULAR LANGUAGES

words we can create with this alphabet are cat, computer, and
pneumonoultramicroscopicsilicovolcanoconiosis. We often
use lowercase variables like w, x, y, or z to denote words, and we
use the symbol € to denote the special zero-length empty word.

e Sets of words are called languages. Much like with plain sets, we
can either list the words in a language explicitly, or we can describe
a language in terms of some property or properties of each word
therein. For example, over the English lowercase alphabet, the
language of words with three consecutive double letters is

bookkeep, bookkeeper, bookkeepers, bookkeeping;.
P per, 1% > ping

Also much like sets, languages can be either finite or infinite. We
often use uppercase variables like L to denote languages, and we
use the symbol () to denote the special empty language containing
no words.

Since languages are essentially sets, we can apply operations from set
theory directly to languages, and doing so allows us to produce new languages.
Indeed, we already saw three operations being applied not to languages, but
to regular expressions in Definition 1.1. This trio of operations has their
own name: the reqular operations.

Definition 1.2 (Regular operations)

Let L, Ly, and Lo be languages. The three regular operations are
defined as follows:

e Union: Ly ULy ={w|w € Ly or w € La};
e Concatenation: LijLy = {wv | w € Ly and v € Ly}; and
e Kleene star: L* = J;5, L', where

0= {¢},

L'=L, and

L' ={wv|we L and v € L}.

The union operation, naturally, works in exactly the same way for
languages as it does for sets. The concatenation operation takes two words
and “connects” the end of the first word to the beginning of the second
word. Lastly, the Kleene star operation—or, as we previously referred to it,

REGEX AND REGULAR EXPRESSIONS 5

the star operation—is simply repeated concatenation of all words with all
other words in some language.

Note that, since the Kleene star allows us to take zero copies of a word,
the empty word € is always included in the resulting language.

Example 1.3

Let Ly = {a,b} and Ly = {d,e}. Then

L1 @] L2 = {a,b, d, e},
LyLy; = {ad, ae, bd, be},
L} ={¢,a,b,aa, ab,ba,bb, aaa, aab, ...}, and

L; ={e,d,e,dd,de, ed, ee,ddd, dde, . .. }.

Empty Words and Empty Languages. The empty word € and the empty
language @) interact with operations a little differently than other words and
languages.

For the empty word e and any language L, we have that

LUe=¢€eUL# L in general;
Le =¢L = L; and
e = {e}.

For the empty language () and any language L, we have that

LUP=0UL=L;
L) = (0L = (; and
0 = {e}.

Other Operations. We may additionally define some shorthand to make our
notation look nicer, though strictly speaking, this notation is not “official”.
Recall that the star symbol matches zero or more occurrences of whatever
it’s associated with. If we wanted to match one or more occurrences, we
could write L™ = LL* = L*, and this is referred to as the “Kleene plus”
symbol. Similarly, as we did in Definition 1.2, we can use exponents to
denote iterated concatenation; that is, L* denotes L concatenated with itself
¢ times.

6 REGULAR LANGUAGES

1.1.2. Language of a Regular Expression

To tie everything together thus far, we can observe a direct correspondence
between regular expressions and languages. Every regular expression rep-
resents a language, and we denote the language represented by a regular
expression r by L(r). Note that each of the six basic regular expressions
correspond to their own language. If » = (), then L(r) = 0. Likewise, if
r = ¢, then L(r) = {e}, and if r = qa, then L(r) = {a}. The remaining
three regular expressions correspond exactly to the union, concatenation,
or repetition of their constituent languages. We will denote the class of
languages represented by some regular expression by RE.

Often, figuring out the language represented by a given regular expression
is as simple as reading through the regular expression and breaking it into
its constituent components.

Let ¥ = {a,b}, and consider the language
Logda = {w | w contains an odd number of as}.
This language is represented by the regular expression
Todda = b*(ab”ab®)*ab™.

The first component of r, b*, recognizes zero or more leading bs. The
middle component, (ab*ab*)*, recognizes zero or more pairs of as,
where each a is followed by zero or more bs. The last component, ab*,
recognizes an additional a to ensure the total number of as is odd,
followed by zero or more bs.

Note that regular expressions need not be unique; to illustrate, the
same language in Example 1.4 is recognized by the regular expression
T/ 44 = D*ab*(ab*ab*)*.

Working in reverse, we can take a regular expression and determine the
language it represents through a straightforward substitution process.

Example 1.5

Consider the regular expression r = (a + b)*b over the alphabet ¥ =
{a,b}. We can “decompose” the language represented by = in the

REGEX AND REGULAR EXPRESSIONS 7

following way:

L(r)

L((a+Db)"b)
L(a+b)"L(b) (
= (L(a) UL(b))*L(b) (rewriting as union of languages)
(
(

breaking apart concatenation)

rewriting as single-symbol languages)

= ({a} U {b})"{b}
= {a,b}*{b}.

Therefore, r represents the language L = {w | w ends with b}.

rewriting as union of symbols)

Operational Order of Precedence. Just like how mathematics has an order
of operations, regular expressions abide by their own order of precedence.
The star is always applied first, followed by concatenation, and then union.
If we want to, we can modify the order in which operations are applied
by adding parentheses to a regular expression, and this does not affect the
language represented by that regular expression.

Example 1.6

Consider the regular expressions
71 =0+ 110+ 1% and 7o = (0+ 1)*1(0 + 1)*.

Clearly, the only visual difference between r; and 7y is the addition of
parentheses. However, the languages represented by r; and 7o are quite
different:

e The expression r; represents the language containing (i) the word
0, (ii) all words consisting of at least one 1 with one 0 at the end,
and (iil) all words consisting of zero or more 1s.

e The expression 7 represents the language consisting of all words
that contain at least one 1.

Regular Languages. Going all the way back to Definition 1.2, why did we
refer to these three operations as the “regular” operations? As it turns
out, taking just these three operations is sufficient to allow us to define the
smallest class of languages that is interesting enough to study: the regular
languages.

8 REGULAR LANGUAGES

Definition 1.7 (Regular languages)

Let 3 be an alphabet. The class of regular languages is defined induc-
tively as follows:

1. The empty language 0 is regular.

2. The language {e} containing only the empty word is regular.
3. For each a € X, the language {a} is regular.

4. If Ly and Ly are regular, then L; U Ly is regular.

5. If L1 and Ly are regular, then L L5 is regular.

6. If L is regular, then L* is regular.

Remark. There is a smaller class called the class of finite languages.
However, it’s not too interesting: it consists only of languages with a
finite number of words. Introducing the Kleene star allows us to produce
infinite-size languages.

If we compare Definitions 1.1 and 1.7, we can start to convince ourselves
why we used the word “regular” to refer to both of these concepts. All
regular languages have a corresponding regular expression, and all regular
expressions correspond to a regular language! The similarities between
our two definitions mean that we can actually rewrite our definition of the
regular languages to draw a direct connection to regular expressions:

Definition 1.7’ (Regular languages)

If some regular expression r represents a language L, then L is regular.

Now, you might be asking yourself: from where did the word “regular”

arise to refer to these expressions and languages? Stephen Kleene introduced
the notion of a regular language in the 1950s, but his justification for the
terminology was basically that he couldn’t come up with any better name:

We would welcome any suggestions as to a more descriptive term.
— STEPHEN KLEENE

This, in turn, brings to mind another famous quote in computer science:

There are only two hard things in Computer Science:
cache invalidation and naming things.

— PHIL KARLTON

FINITE AUTOMATA 9

1.2. FINITE AUTOMATA

SOME MIGHT ARGUE that the entire point of studying computer science is to
determine exactly what computers are capable of. After all, humans created
computers so that we could pass off boring or repetitive work onto a machine
and give our brains a break! However, considering a full computer at the
very beginning of our studies is kind of like learning to swim by jumping
into the deep end of a pool. In order to learn without getting overwhelmed,
we will begin by considering a very simple model of computation that gives
us just enough power to actually perform an elementary computation.

If you’ve ever purchased something from a vending machine or waited
in your car at a traffic light, then you’ve interacted with a finite automaton.
Even the computer you use every day relies on a finite automaton to complete
its tasks. Consider the conceptual diagram of how a computer schedules
processes, depicted in Figure 1.1. When the computer needs a new process,
it creates one and enters the circle labelled “new”. The arrow labelled “start”
indicates that this is where the life of the process begins. When sufficient
memory is available, the computer admits the process by following the arrow
to the circle labelled “ready”. Then, the computer’s scheduler dispatches
the process and moves to the circle labelled “running”. At any time, the
computer can interrupt the process or wait for an event to occur; these
arrows take us to other circles in the diagram. Finally, when the process
is done, it exits to the circle labelled “finished”. This circle being doubled
indicates that this is where the life of the process ends.

We can use finite automata to model simple computations that can only
be in a single discrete mode at once and that don’t require us to remember
or store any information. The circles, or states, of the finite automaton
correspond to the current mode of computation we're in. For example,
did we just begin the computation, or are we midway through, or have we
almost wrapped up? The arrows, or transitions, of the finite automaton
take us between modes, depending on the arrow’s label. Thus, if we have
a running process, then interrupting that process will put us in a different
mode than telling the process to wait for some event to occur.

interrupt

wait for

occurs event

Figure 1.1. How a computer schedules processes.

10 REGULAR LANGUAGES

Formally speaking, a finite automaton is just a 5-tuple.

Definition 1.8 (Finite automaton)

A finite automaton is a tuple (@, X, d, go, F'), where
e () is a finite set of states;

e Y is an alphabet;

0: Q X X — @ is the transition function;

qo € Q is the initial or start state; and

F C @ is the set of final or accepting states.

Remark. There are occasions in these notes where some grammatical
pedantry is warranted, and here is one such occasion. One should always
use “finite automaton” to refer to a single instance of such a model;
writing “a finite automata” is never correct.

We're already familiar with alphabets, and we know a little bit about
states and transitions from our process scheduling example. The transition
function § is the mathematical formalization of the arrows in our diagram.
Given an ordered pair of state and symbol being read, the transition function
tells us which state to go to next. For example, if we had a very simple

finite automaton like
a

then the single transition would be represented by the function 6(qo, a) = ¢;.
If a finite automaton has a large number of transitions, then we can represent
each transition concisely in a table format rather than writing each transition
out individually.

Note that, since we’re dealing with a transition function, any pair of
state and symbol can map to at most one state. This condition ensures that
we always make the same transition on the same state/symbol pair.

Remark. Note that transition functions don’t always have to behave in
this way—just those that map to the state set Q). We’ll soon see what
happens if we don’t enforce such a strict condition on our transition
function, but for now, our finite automata will operate in this way.

As was the case in our process scheduling example, some states in our
very simple finite automaton have some special flair added to them. The
state gp has an arrow labelled “start” pointing to it, and the state ¢; has

FINITE AUTOMATA 11

doubled circles. This is how we denote initial and final states in a finite
automaton. Initial states have an incoming transition arrow pointing at the
state, while final states are double-circled. We typically have just one initial
state in a finite automaton, but it’s possible to have more than one. On the
other hand, we can have as many or as few final states as we want.

Example 1.9

Consider the finite automaton M; = (Q, %, d, qo, F)) where Q = {qo,¢1 },
¥ ={0,1}, qo is the initial state, F' = {q1}, and 9§ is defined as follows:

This finite automaton checks whether a binary word has odd parity;
that is, whether it contains an odd number of 1s.

Example 1.10

Consider the following diagram of a finite automaton:

This finite automaton checks whether every occurrence of b in an input
word is immediately followed by an occurrence of c.

Based on this diagram, we can establish that @ = {qo,q1,¢2}, ¥ =
{b, c}, qo is the initial state, F = {qo}, and ¢ is defined as follows:

12 REGULAR LANGUAGES

Figure 1.2. A film reel.

1.2.1. Computations and Accepting Computations

Now that we know how to define a finite automaton, what can we do with
it? Observe that, in our definition, we took care to specify the alphabet
Y. This alphabet specifies the kinds of input words a finite automaton is
expecting to receive. Giving an input word to a finite automaton is much
like typing input () in a Python program or scanf () in a C program; it
gives the computer something to read and work with.

We can imagine an input word is written on a reel of film, much like in
Figure 1.2, where each symbol in the word occupies its own frame. Now,
imagine the finite automaton is a film projector, but the rewind button
is broken. When we feed the film reel into the projector, the projector
can only show one frame at a time. Moreover, since the rewind button is
broken, once the projector pulls in the next frame, it can never return to the
previous one. This is essentially how a finite automaton processes its input:
starting with the first symbol of the input word, the finite automaton reads
the symbol, transitions to a state, and then moves to the next symbol.

Once the finite automaton reaches the end of its input word and has no
more symbols left to read, it must make a decision. Its decision depends
entirely on the state it finds itself in at the moment it reaches the end of
the word. If the finite automaton is in a final state when it runs out of
symbols, then it accepts the word. Otherwise, the finite automaton must be
in a non-final state, and it therefore rejects the word.

Going one step further, we can precisely define what it means for a
finite automaton to accept an input word by introducing the notion of an
accepting computation. An accepting computation is akin to a set of steps
showing us every state a finite automaton enters from the moment it starts
reading its input word to the moment it accepts its input. We don’t need
anything new to define this; we already have all the machinery we need.

Definition 1.11 (Accepting computation of a finite automaton)

Let M = (Q, %, 4, qo, F') be a finite automaton, and let w = wowy . . . wy—1
be an input word of length n where wg,ws, ... w,—1 € 3. The finite

FINITE AUTOMATA 13

automaton M accepts the input word w if there exists a sequence of
states g, 71, ...,y € @ satisfying the following conditions:

1. To = qo,
2. §(rs,w;) =riqq for all 0 <4 < (n —1); and

3. rp, € F.

In other words, the computation of a finite automaton must satisfy three
conditions in order to be considered an accepting computation: it must
start in the initial state, every subsequent state must be reachable by the
transition function in one computation step after reading one symbol, and
it must end in the final state.

1.2.2. Language of a Finite Automaton

The set of all input words that a finite automaton M accepts is called
the language of the finite automaton, denoted L(M), and it’s just like
any other language: it consists of words over some alphabet 3. If a finite
automaton M accepts (or recognizes) a language A, then L(M) = A. Note
that, although a finite automaton can accept possibly many input words, it
can only recognize one language.

Remark. For clarity’s sake, here the word “accept” will be reserved for
input words given to a finite automaton, while the word “recognize’
will be used to refer to the language of a finite automaton. Both words
essentially mean the same thing: the finite automaton has given us a
positive answer. Unfortunately, many authors and textbooks use these
words interchangeably.

Example 1.12

Let ¥ = {a,b}, and consider the language

)

Ljyj,<1 = {w | w contains at most one occurrence of the symbol b}.

This language is recognized by the following automaton:

If the input word w contains zero bs, then the finite automaton will
remain in the final state qg. Likewise, if w contains one b, then the

14 REGULAR LANGUAGES

finite automaton will enter and remain in the final state ¢;. Only if w
contains two or more bs does the finite automaton enter the state g,
where it becomes “stuck” and can no longer accept the input word.

Example 1.13

A finite automaton with no final states cannot accept any words, but it
is still able to recognize one language: the empty language (). This is
because the language of input words accepted by the finite automaton
is empty!

As a matter of notation, we will refer to the class of languages recognized
by some finite automaton by the abbreviation DFA. (What does the D
mean? We’ll find out in the next section...)

1.2.3. Nondeterminism

Remember how, when we were discussing the transition function earlier, we
mandated a condition that any pair of state and symbol must map to at
most one state? This condition ensured that if we gave the same input word
to the same finite automaton, we would end up with the same result. This
is known as deterministic computation. (And now you know what the D in
DFA stands for!)

While determinism isn’t inherently a bad thing, it can unfortunately
make our job harder if we're trying to construct a finite automaton that
recognizes certain “difficult” languages. For example, suppose we wanted
to construct a deterministic finite automaton that recognizes the language
of words over the alphabet ¥ = {0,1} where the third-from-last symbol
is 0. This finite automaton should accept input words like 011, 10010,
and 1010001010011000, but it should reject input words like 110 or 01.
Sounds easy to do, right? After all, we really just need to check one symbol:
the symbol in the third-from-last position. As it turns out, however, the
deterministic finite automaton in question ends up being rather complicated—
just take a look at Figure 1.3. Keep in mind also that this deterministic finite
automaton only works for input words where the third-from-last symbol is
0. If we wanted to, say, check the fourth-from-last symbol, we would need
to construct a whole new finite automaton—and as Figure 1.4 illustrates,
this finite automaton would have twice as many states as our previous one!

So, how do we make our job easier and our finite automata smaller? We
get rid of the determinism condition. Specifically, we allow for state/symbol
pairs to map to one or more states. We can preserve the “function” part of
our transition function by mapping each state/symbol pair not to multiple
different states individually, but rather to a subset of the state set Q.

FINITE AUTOMATA 15

start —{ 9o

Figure 1.3. A deterministic finite automaton accepting words whose third-from-
last symbol is 0.

If we get rid of the determinism condition, then the finite automaton can,
in a sense, “guess” which step to take at certain points in the computation.
If, in a given state, there is more than one transition out of that state on
the same symbol, then the finite automaton has multiple options for which
transition it can take. As you might have figured, this property is called
nondeterminism, and the definition of a nondeterministic finite automaton is
nearly identical to our earlier definition of a deterministic finite automaton.

Definition 1.14 (Nondeterministic finite automaton)

A nondeterministic finite automaton is a tuple (@, X, 0, qo, F'), where
e () is a finite set of states;
e Y is an alphabet;
e 0: Q x X — P(Q) is the transition function;
® o € @ is the initial or start state; and

e I C @ is the set of final or accepting states.

Following our earlier comment, the only change we had to make is in
the transition function: we now map to the power set P(Q) instead of the
state set). The element of the power set being mapped to is exactly the
subset of states that the nondeterministic finite automaton can transition
to from its current state and on its current symbol.

As an illustration of how nondeterminism can simplify the finite automata

16 REGULAR LANGUAGES

start —{ 9o ,® > g2 g3

[

q11 0

Figure 1.4. A deterministic finite automaton accepting words whose fourth-from-
last symbol is 0.

FINITE AUTOMATA 17

0,1
0 0
0
() (o L))
1 1

Figure 1.5. A nondeterministic finite automaton accepting words whose third-
from-last symbol is 0. Observe the two transitions leaving state qo, both labelled
by the symbol 0.

0,1
0 0 0
0
start —» ———>
1 1 1

Figure 1.6. A nondeterministic finite automaton accepting words whose fourth-
from-last symbol is 0. Contrast the size of this finite automaton to the one depicted
in Figure 1.4.

we construct, let’s bring back our example of the language of words whose
third-from-last symbol is 0. The nondeterministic version of the finite
automaton recognizing this language is illustrated in Figure 1.5. Here, the
state g is doing double duty: not only is it reading all of the symbols in
the input word up to the third-from-last symbol, but it’s also checking that
the third-from-last symbol is in fact 0. If it is, then we transition from state
Qo to state g1, and the remaining states simply read the last two symbols,
whatever they may be. Likewise, Figure 1.6 depicts a similar construction
for the “fourth-from-last” language.

The nondeterminism in these machines is limited to state qg, where we
have two outgoing transitions on the same symbol 0: one transition loops
back to the same state qg, while the other transition takes us to state ¢;. We
can represent this with the transition function by writing §(qg, 0) = {qo,q1},
and this abides by our definition since {qo,q1} € P(Q).

Example 1.15

The following finite automaton is nondeterministic, because states qg
and ¢; each have more than one outgoing transition on the same symbol:

18 REGULAR LANGUAGES

A nondeterministic finite automaton accepts an input word in exactly
the same way as a deterministic finite automaton: if the finite automaton is
in a final state and there are no more symbols of the input word left to read,
then the input word is accepted. If not, then the input word is rejected.
We will refer to the class of languages recognized by some nondeterministic
finite automaton by the abbreviation NFA.

The computation of a nondeterministic finite automaton, however, is
slightly different than in the deterministic case. Since the finite automaton
can take potentially many transitions from one state/symbol pair, at such a
point in the computation, the finite automaton “splits up” and runs multiple
copies of itself in parallel. If we were to visualize such a computation, we
would obtain a diagram that resembles a tree. In fact, such a visualization
is called a computation tree!

In each branch of the computation tree, the corresponding copy of the
finite automaton continues its computation until it either reaches the end
of the input word or finds itself with no more transitions to follow, which
could happen if the finite automaton reads a symbol in a state with no
outgoing transition on that symbol. If there are no transitions to follow, that
branch dies while the remaining branches continue with their computations.
Similarly, if there are no symbols left to read in the input word and that
copy of the finite automaton isn’t in a final state, that branch dies.

A computation of a nondeterministic finite automaton is therefore ac-
cepting only if there exists at least one branch of the computation where the
finite automaton is in a final state after reading every symbol of the input
word. Just as we did before, we can formalize the notion of an accepting
computation for nondeterministic finite automata; the only change we need
to make is in the second condition, to account for the change we made to

FINITE AUTOMATA 19

render the transition function nondeterministic.

Definition 1.16 (Accepting computation of a nondeterministic finite

automaton)

Let M =(Q, %, 4, qo, F) be a nondeterministic finite automaton, and let
W = Wow1 . .. W,_1 be an input word of length n where wq, w1, . .. w,_1 €
3. The finite automaton M accepts the input word w if there exists a
sequence of states rg,71,...,7, € @ satisfying the following conditions:

L. 70 = qo;
2. 741 € §(ry,w;) for all 0 <4 < (n—1); and

3. r, € F.

Observe that, compared to Definition 1.11, we substituted inclusion
for strict equality in the second condition—this is because the transition
function no longer needs to take us ezactly to state r;11. Rather, state ;1
needs only to be in the subset mapped to by the transition function.

Example 1.17

Recall the nondeterministic finite automaton from Example 1.15. Does
this automaton accept the input word 100107 Let’s check by drawing
the computation tree.

Each vertex indicates the current state of the finite automaton at a
given point in the computation, and the symbols remaining in the input
word at that point are listed on the right. A crossed-out vertex denotes
a rejecting computation, while the starred vertex denotes an accepting
computation.

10010
10010
10010
10010
19610
10010

Since there exists at least one branch of the computation tree where the

20 REGULAR LANGUAGES

finite automaton is in a final state after reading the entire input word,
the finite automaton accepts the word 10010.

1.2.4. Epsilon Transitions

Going one step further, we can take a nondeterministic finite automaton
and modify it so that it can transition not just after reading a symbol, but
whenever it wants. If a certain special transition called an epsilon transition
exists between two states ¢; and ¢;, a finite automaton in state ¢; can
immediately transition to state ¢; without reading the next symbol of the
input word. We call such a model a nondeterministic finite automaton with
epsilon transitions, and the class of languages recognized by this model is
denoted by e-NFA.

Example 1.18

The following nondeterministic finite automaton uses epsilon transitions:

b

qoam@b@

start —

This finite automaton accepts all input words starting with zero, one,
or two as followed by at least one b.

Example 1.19

The nondeterministic finite automaton in Figure 1.7 recognizes the
language of signed and unsigned floating-point numbers. Some words
in this language include 365.25E+2, -10E40, +2.5, and 42E-1. The
epsilon transitions in this finite automaton allow for words to omit the
decimal portion of the number, the sign in the exponent, or both.

Note that adding an epsilon transition to a deterministic finite automaton
inherently makes it nondeterministic. This is because we’ve given the finite
automaton the option to transition between two states with or without
reading a symbol. There cannot exist a “deterministic finite automaton
with epsilon transitions”.

We won’t spend too much time discussing further details of nondeter-
ministic finite automata with epsilon transitions, since the model is almost

21

FINITE AUTOMATA

‘sroquunu jutod-gurjeoy Jo oFengue] o) sozIUF0daI Jer) suonisuer) uorsdo Ym uojewone 931Uy SMISIUTULINIOPUOU {7 "2 T 24nSi4

SYUSIp [eWDI(

EJ

o=

22 REGULAR LANGUAGES

identical to the usual nondeterministic finite automaton model. However,
we mention it here because, as we will later see, epsilon transitions can make
certain constructions and proofs much easier for us.

1.3. EQUIVALENCE OF MODELS

BY NOW, WE’VE LEARNED about a handful of different models of computa-
tion: regular expressions, deterministic finite automata, nondeterministic
finite automata, and nondeterministic finite automata with epsilon tran-
sitions. Regular expressions give us a textual, language-oriented way of
reasoning about regular languages, while finite automata allow us to think
graphically in terms of machines. While these two approaches may seem far
apart, there actually isn’t as much difference between them as one might
think.

Let’s focus on finite automata for a moment. Going from deterministic
to nondeterministic models, we saw that we can construct finite automata
that both recognize the same language and are easier to understand—for
instance, by virtue of having fewer states or transitions. By introducing
epsilon transitions, we learned that we don’t even necessarily need to read
symbols in order to transition from one state to another.

It seems that this ongoing weakening of conditions keeps giving us models
that can “do more”. You may be surprised to learn, however, that all of
these models of computation are equivalent in terms of the languages they
can recognize! No matter what flavour of finite automaton we have, we
don’t actually gain any additional recognition power.

We will prove this automaton equivalence in two steps. First, we will
devise a procedure to convert from a nondeterministic finite automaton
with epsilon transitions to one without. Afterward, we will see how to
convert from a nondeterministic finite automaton to a deterministic finite
automaton.

1.3.1. «NFA = NFA

In our first procedure, we will use the notion of epsilon closure to remove
epsilon transitions from a nondeterministic finite automaton. The epsilon
closure of a state ¢ is the set of states where there exists some sequence of
epsilon transitions from ¢ to that state. Note that the epsilon closure of ¢
always includes ¢ itself.

Theorem 1.20

Given a nondeterministic finite automaton with epsilon transitions M,
we can convert it to a nondeterministic finite automaton M’ without

EQUIVALENCE OF MODELS 23

epsilon transitions.

Proof. Let M = (Q, X, 0, qo, F') be a nondeterministic finite automaton
with epsilon transitions. We will construct an equivalent nondeterminis-
tic finite automaton M’ = (Q’, X, ¢', q(, F’) without epsilon transitions
in the following way:

1. Take Q' to be the original state set @, and remove all states
having only epsilon transitions to that state. The initial state is
not removed, so take ¢ = qp. All final states in M remain final
states in M’ unless they were removed.

2. Take ¢’ to be the original transition function §, but with all epsilon
transitions removed. For all states removed in the previous step,
also remove all transitions from that state.

3. Add new transitions to the transition function §’ as follows:

e If there exists a “chain” of transitions in M beginning at
a state ¢; and ending at a state g;, where all but the last
transition is an epsilon transition and the last transition is
on some symbol a € X,

then replace this “chain” in M’ with a single transition on a

between ¢; and g;.

o If there exists a “chain” of epsilon transitions in M beginning
at a state ¢; and ending at a final state gy € F,

Q_e,;, €

then remove this “chain” from M’ and make ¢; a final state.

In this way, we have constructed a nondeterministic finite automaton
without epsilon transitions recognizing the same language as the original
finite automaton. [|

24 REGULAR LANGUAGES

Example 1.21

Consider the following nondeterministic finite automaton with epsilon
transitions highlighted:

We will use our construction to convert this to a nondeterministic finite
automaton without epsilon transitions.

1. First, we take our state set @’ and our initial state gj,. Since there
are no states in this finite automaton having only incoming epsilon
transitions, we don’t need to remove any states.

2. Next, we take our transition function ¢’ with all epsilon transitions
removed. We don’t need to remove any other transitions from
removed states, since we had no such states in the previous step.

3. Now, we add new transitions to ¢’ by considering any “chains” in
the original finite automaton:

e For epsilon transition chains ending in a transition on a
symbol, we have the following:
€ d . d
— q1 — qo — qo is replaced by ¢1 — qo;
- q1 5 Qo & q1 is replaced by ¢1 & qQ;
€ b . b
— ¢2 — q1 — q1 is replaced by g2 — q1;
— Qo 5 Q s q2 is replaced by g5 s q2;
€ € d . d
— @2 — q1 — qo — qo is replaced by g2 — qo; and
— Q2 5 Q 5 Qo 5 q1 is replaced by gs 5 Q-

EQUIVALENCE OF MODELS 25

e For epsilon transition chains ending at a final state, we have
the following:

— Q2 5 q1, so state go becomes a final state.

Adding these transitions and final states produces our nondeter-
ministic finite automaton without epsilon transitions:

1.3.2. NFA = DFA

In our next procedure, we will learn how to “simulate” nondeterminism in
a deterministic finite automaton. Recall that, in a nondeterministic finite
automaton, the transition function maps state/symbol pairs to an element of
P(Q). We can get around the issue of having multiple transitions from one
state on the same symbol not by changing our transitions, but by changing
our set of states: we simply need to create one state corresponding to each

element of P(Q)!

Theorem 1.22

Given a nondeterministic finite automaton A, we can convert it to a
deterministic finite automaton N”.

Proof. Let N = (Q, X, 4, qo, F') be a nondeterministic finite automaton.

We assume that A contains no epsilon transitions; if it does, then use

the construction of Theorem 1.20 to remove the epsilon transitions.
We will construct a deterministic finite automaton N’ = (Q’, X, &', q{,

F’) in the following way:

1. Take Q" = P(Q); that is, each state of N’ corresponds to a subset
of states of N. Note that our deterministic finite automaton may
not need to use all of these states; usually, we omit any inaccessible
states to make our diagram easier to follow.

2. For each ¢’ € Q' and a € 3, take

8 (¢ a)={qe Q| qeis,a) for some s € ¢'}.

26 REGULAR LANGUAGES

This is perhaps the most difficult step of the construction. Remember

that each state ¢’ of N’ corresponds to a subset of states of A'. Thus,
when we read a symbol a in state ¢’ of N/, the transition function 4’
takes us to the state in A/ that corresponds to whatever subset of states
q of N we could have transitioned to upon reading a in some previous
state s of N.

3. Take g, = {qo}; that is, the initial state of N’ corresponds to the
subset containing only the initial state of N.

4. Take F' = {¢' € Q' | ¢’ corresponds to a subset containing at least
one final state of N'}. In this way, N’ accepts only if NV would be
in a final state at the same point in its computation.

In this way, we have constructed a deterministic finite automaton recog-
nizing the same language as the original finite automaton. |

The procedure allowing us to convert from nondeterministic to deter-
ministic finite automata is known as the subset construction, because each
state of our deterministic finite automaton corresponds to a subset of states
from the original nondeterministic finite automaton.

Step 2 of the subset construction procedure is the most involved step.
Fortunately, we can obtain the transition function of our deterministic finite
automaton A using a tabular method via the following steps:

1. Construct a table where the rows are the states of A/ and the
columns are the symbols of the alphabet 3.

2. For each state ¢; and symbol a, write the set of states mapped to
by 4(gi,a) in the corresponding row/column entry.

3. After all entries are filled, take all sets of states listed in the
table that don’t yet have their own row, and create a new row
corresponding to that set of states.

4. Repeat steps 2 and 3 until no new rows can be added to the table.

Example 1.23

Consider the following nondeterministic finite automaton, where all
nondeterministic transitions from a state are highlighted:

EQUIVALENCE OF MODELS

We will use our tabular construction method to obtain the transition
function of our desired deterministic finite automaton. Our initial table
looks like the following:

‘ a b c d
q0
q1
q2

We fill in the initial table entries by consulting the transition function
of N, where — denotes no transition:

‘ a b c d
qo qo {q1,q2} — —
q — — {q0; @1} q2
q2 Q — —)

Note that there are now two entries in our table without corresponding

rows: {qo,q1} and {q1,q2}. We proceed to add these entries as rows to
our table and we fill in the entries for these new rows:

‘ a b c d
qo qo {q1, g2} —
@ — {qo, a1} q2
% | w2
{q0, a1} o {ar, a2} {qo0,qn} 2
{q17Q2} q1 {QO7(I1} q2

After filling in these new entries, we find that all entries now have
corresponding rows, so our table construction is complete. We can now
use this table to construct our deterministic finite automaton! Each row
of the table corresponds to an accessible state of our deterministic finite
automaton, and the table itself specifies our transition function.

Our resultant deterministic finite automaton is the following:

27

28 REGULAR LANGUAGES

Note that we don’t need to come up with procedures for the other direc-
tions of conversion: a deterministic finite automaton is a “nondeterministic
finite automaton” that doesn’t use nondeterminism, and a nondeterministic
finite automaton is a “nondeterministic finite automaton with epsilon tran-
sitions” that doesn’t use any epsilon transitions. Therefore, we can convert
in any direction between all three of our finite automaton models, and so
we conclude that all of our finite automaton models are equivalent in terms
of recognition power.

1.3.3. DFA=RE

Let’s now turn back to regular expressions. Since regular expressions are
entirely symbol-based, it might be easier for us in some cases to represent a
language using a regular expression. In other cases, it might be easier for
us to directly construct a finite automaton that recognizes the language.
However, is it always the case that, if we can do one, we can also do the
other?

We now know that all models of finite automata are equivalent in terms
of their recognition power, so all that remains is for us to discover how we
can bring regular expressions under this same umbrella. For this last step,
we will devise a procedure—actually, two procedures—that allows us to
convert a deterministic finite automaton into a regular expression and vice
versa.

One direction of our procedure, taking us from finite automaton to
regular expression, will systematically eliminate individual states until the
automaton is in a simpler standard form. From this standard form, we can

EQUIVALENCE OF MODELS 29

then translate each component of the finite automaton into a component of
an equivalent regular expression.

The other direction of our procedure, taking us from regular expression
back to finite automaton, will break down a regular expression into its
constituent parts and then build up an equivalent finite automaton piece-
by-piece.

Theorem 1.24

There exists a deterministic finite automaton M recognizing a language
A if and only if there exists a regular expression r representing the same
language A.

Proof. (=): To prove this direction of the statement, we will take a
deterministic finite automaton recognizing the language A, and then
convert the finite automaton to a regular expression. We will use a state
elimination algorithm to perform this conversion.

Note that, for this proof only, we will assume that the transitions
of our finite automaton can be labelled by regular expressions and not
just symbols.

Suppose that we are given a deterministic finite automaton M such
that L(M) = A. Further suppose, without loss of generality, that there
exists at most one transition between any two states of M; we can
make this assumption since multiple transitions between two states
on symbols aq,...,a, can be replaced by the single transition on the
regular expression aj + - -+ + a,.

If M contains no final state, then A = () and we are done. Otherwise,
if M contains multiple final states, convert them to non-final states and
add epsilon transitions from each former final state to a new single final
state. If the initial state is also a final state, make a similar change to
the initial state.

Now, we eliminate all states g, of M that are neither initial nor
accepting. Suppose that M contains the following substructure:

In this substructure, all transitions from states g; # ¢, to state ¢, are
labelled by a regular expression S;; all transitions from state g, to states

30 REGULAR LANGUAGES

gj # qu are labelled by a regular expression 773, and for all such states
¢; and g; the transition between these states is labelled by a regular
expression X;;, or () if no such transition exists. Lastly, any loop from
¢ to itself is labelled by a regular expression U, or) if no loop exists.

We may eliminate state ¢,, from M as follows: for each pair of states
¢; and gj, the regular expression X;; on the transition is replaced by

Xij = SiU*Tj

H@ ;@_.

We then repeat this procedure for all non-initial and non-final states
until the only states remaining in the finite automaton are the single
initial and final states.

Suppose that, at this stage of the algorithm, our finite automaton is
of the following form, where S, T', X, and Y are regular expressions:

S T
Y

start @

X

If any of these transitions do not exist, then we simply add them to the
finite automaton labelled by (). Then the language recognized by M is
represented by the regular expression S*X (T + Y S*X)*.

(«<): To prove this direction of the statement, we will take a regular
expression r where L(r) = A and convert it into a nondeterministic finite
automaton M using a construction known as the McNaughton—Yamada—
Thompson algorithm [McNaughton and Yamada, 1960; Thompson, 1968].
We consider each of the basic regular expressions:

1. If » = (), then L(r) = @ and this language is recognized by the
following nondeterministic finite automaton:

start @

2. If r = ¢, then L(r) = {€} and this language is recognized by the
following nondeterministic finite automaton:

start %

EQUIVALENCE OF MODELS 31

3. If r = a for some a € X, then L(r) = {a} and this language is
recognized by the following nondeterministic finite automaton:

start @ a

4. If r = r1+ 7, for some regular expressions 71 and 75, construct two
finite automata M; and My recognizing L(r1) and L(r3), respec-
tively. Then L(r) is recognized by the following nondeterministic
finite automaton with epsilon transitions:

5. If » = r17ry for some regular expressions r; and 79, construct two
finite automata M; and My recognizing L(ry) and L(r3), respec-
tively. Then L(r) is recognized by the following nondeterministic
finite automaton with epsilon transitions:

start % My }—6" My |

6. If »r = r] for some regular expression r;, construct a finite au-
tomaton M recognizing L(ry). Then L(r) is recognized by the
following nondeterministic finite automaton with epsilon transi-
tions:

€

st @ M}

In each case, we can convert the basic regular expression to a nondeter-
ministic finite automaton, and we can then determinize the overall finite
automaton using our procedure from Theorem 1.22. We therefore end
up with a deterministic finite automaton recognizing the same language
represented by the original regular expression.]

Remark. If the finite automaton constructions in Cases 4, 5, and 6 of the
previous proof aren’t entirely convincing to you, or feel a bit hand-wavy,
worry not. In the following section, we will work through a series of far
more precise constructions for each of these automata.

32 REGULAR LANGUAGES

As an illustration of the state elimination algorithm we used in one
direction of our proof, let us consider a small example of converting a
deterministic finite automaton to a regular expression.

Example 1.25

Consider the following deterministic finite automaton M:

0 0

start a

This finite automaton recognizes the language
L(M) = {w | w contains an even number of 1s}.

Since the initial state of M is also a final state, we begin by creating
a new final state, converting the initial state to be nonaccepting, and
adding an epsilon transition from the initial state to our new final state.

We now use our state elimination algorithm to remove g;, which
is the only state that is neither initial nor accepting. There exists a
single transition from ¢o to ¢; and a single transition from ¢; to qo.
Let So =1, To = 1, Xo0 = 0, and U = 0. We can then eliminate
the state g1 by relabelling the loop on gy to use the regular expression
Xoo + SoU*Ty = 0+ 10*1.

0+ 10*1

€
start @

EQUIVALENCE OF MODELS 33

We add the missing transitions to obtain a finite automaton of the
form specified in the proof of Theorem 1.24:

0+ 10*1 0

Consequently, the regular expression corresponding to this finite automa-
ton is (04 10*1)*e(() + 0(0 + 10*1)*e)*. Using our rules for operations
applied to empty words and empty languages, this regular expression
simplifies to (0 + 10*1)*.

1.3.4. Kleene’s Theorem

Let’s now review all that we’ve done by drawing a Scutum Fidei-esque
diagram connecting each of our models of computation:

DFA
>

Tw

NFA e-NFA

In our diagram, a solid line indicates that we have a method of directly
converting between two models of computation, while a dashed line indicates
that we have an indirect method—say, by performing two consecutive
conversion steps.

All of our conversions considered apart may seem like nothing more
than mechanical procedures or unimportant intermediate steps that we can
employ in some larger system. However, taken together as we did in our
diagram, these conversions reveal what might reasonably be called the most
important theorem in the entire study of regular languages.

Theorem 1.26 (Kleene’s theorem)

A language R is regular if it satisfies any of the following equivalent
properties:

1. There exists a deterministic finite automaton Mp such that

34 REGULAR LANGUAGES

L(Mp) = R;

2. There exists a nondeterministic finite automaton My such that

L(MN) = R;

3. There exists a nondeterministic finite automaton with epsilon
transitions Mg such that L(Mg) = R; or

4. There exists a regular expression r such that L(r) = R.

Note that we don’t need to prove anything here—the proof of Kleene’s
theorem is baked into the descriptions of each of our conversion procedures!

1.4. CLOSURE PROPERTIES

ANOTHER IMPORTANT CONSIDERATION when we discuss any model of
computation is that of closure properties, since they allow us to determine
whether we can apply certain operations to words or languages while still
allowing the same model to accept or recognize the result.

We say that a set S is closed under an operation o if, given any two
elements a,b € S, we have that aob € S as well. You might be familiar
with the notion of closure from elsewhere in mathematics: for example, the
set of integers is closed under the operations of addition, subtraction, and
multiplication, since for all integers a and b, we know that a + b, a — b, and
a x b are integers. On the other hand, the set of integers is not closed under
the operation of division, since (for example) 1,2 € Z but 1/2 ¢ Z.

We can prove all kinds of closure results for the class of regular languages,
but here we will focus only on a few basic operations: the regular operations
of union, concatenation, and Kleene star, together with two new set-inspired
operations, complement and intersection, which will come in handy later.
For each result, we will follow the same general style of proof to establish
closure. If the operation o is binary, as is the case for union, concatenation,
and intersection, then we will take two finite automata M and N recognizing
languages L(M) and L(N) and directly construct a new finite automaton
recognizing the operation language L(M) o L(A). On the other hand, if
the operation is unary, as is the case for Kleene star and complement, then
we need only take one finite automaton M recognizing the language L(M)
and directly construct a new finite automaton recognizing the operation
language L(M)°.

Union. We begin by considering the union operation. To determine whether
some input word belongs to the union of two languages L(A) and L(B), we
must check that the word is accepted by either A or B, or by both. Thus,

CLOSURE PROPERTIES 35

we must essentially perform two parallel “subcomputations” for each of
these finite automata. This parallelism means we must also incorporate
nondeterminism into our computation, since we don’t know in advance
which of the two finite automata will accept the word.

Theorem 1.27

The class of regular languages is closed under the operation of union.

Proof. Suppose we are given two finite automata, denoted A = (Q 4, %,
04,904, Fa) and B = (@B, %, 08, go,s, FB). We construct a nondetermin-
istic finite automaton with epsilon transitions C recognizing the language
L(A) U L(B) in the following way:

e Take Qc = Q4 U Qs U {q}

o Take go, = qo.

e Take Fo = F 4 U Fp.

e Define d¢ such that, for all ¢ € Q¢ and for all @ € ¥ U {e},
dalg,a) if g€ Qa;

Sc(g,a) =< 8p(q,a) if ¢ € Qp; and n
{QOA7QOB} if g=¢qp and a = e.

The “union” finite automaton C is depicted in Figure 1.8a. Note that,
since we now know that all of our models of finite automata are equivalent
to one another (and equivalent to regular expressions), the fact that we
used nondeterministic finite automata with epsilon transitions in our proof
is irrelevant. We did so mainly because it makes the construction easier on
us.

Concatenation. Next, we consider the concatenation operation. To de-
termine whether some input word belongs to the concatenation language
L(A)L(B), we again need to perform two “subcomputations” on both finite
automata A and B, but this time in series. The first part of the word should
take us to a final state of A, at which point we will jump to B to read the
remaining second part of the word. However, since we don’t know where
this “jumping point” is within the word, we again need nondeterminism to
guess when we have reached a final state of A.

36 REGULAR LANGUAGES

Theorem 1.28

The class of regular languages is closed under the operation of concate-
nation.

Proof. Suppose we are given two finite automata, denoted A = (Q 4, %,
04,904, Fa) and B = (@B, %, 08, go,s, F). We construct a nondetermin-
istic finite automaton with epsilon transitions C recognizing the language
L(A)L(B) in the following way:

e Take Qc = Q4 U Q5.
o Take go, = qo,,-
e Take Fp = Fp.

e Define d¢ such that, for all ¢ € Q¢ and for all @ € ¥ U {e},

64(g;a) if g € Qaand g ¢ Fy;
Sc(q,a) = da(q,a) if g€ Fy and a # ¢ n
) = da(q,a)U{qo,} if g€ Fy and a =¢; and
05(q, a) if g € Qp.

The “concatenation” finite automaton C is depicted in Figure 1.8b.
Again, the fact that we used nondeterministic finite automata with epsilon
transitions in this proof does not matter, since any regular language model
of computation will work equally well.

Kleene Star. For our next result, pertaining to the Kleene star, we consider
just one finite automaton instead of two. However, the construction process
is similar to that which we just saw for concatenation. Since the Kleene
star is essentially repeated concatenation, upon reaching a final state of the
finite automaton A, we will jump backward to allow us to cycle through
the computation again if we desire.

There is one technicality, though: we can’t jump backward directly
to the original initial state of A, since if that initial state has a looping
transition, we might be able to mistakenly accept words not in the original
language. Thus, we will jump backward to a new state, and from there we
can transition to the original initial state of A.

CLOSURE PROPERTIES 37

Theorem 1.29

The class of regular languages is closed under the operation of Kleene
star.

Proof. Suppose we are given a finite automaton, denoted A = (Q 4,3, 4,
4o 4, F4). We construct a nondeterministic finite automaton with epsilon
transitions A’ recognizing the language L(.A)* in the following way:

o Take Qu = Q4 U {qo}-
e Take qo,, = qo-
o Take Flqr = {qo}-

e Define § 4 such that, for all ¢ € Q4 and for all a € ¥ U {e},

6a(g,a) if ge Qa and g & Flu;

S u(q,a) = 64(g,a) ?quFA and a # ¢ -
5A((I70J) U {QO} if g € F4q and a = ¢; and
{204} if g=¢qo and a = e.

The “Kleene star” finite automaton A’ is depicted in Figure 1.8c and,
again, the usual disclaimer about nondeterministic finite automata with
epsilon transitions applies to this proof.

Complement. Having established closure for each of the regular operations,
we can now shift our focus toward other common language operations, and
we will begin by considering the operation of complement. Much like with
sets, the complement of a language L is a language containing all words
that do not belong to L; that is,

L={w|w¢gL}.

Thus, to say that regular languages are closed under complement means
that, if we were to take a regular language L and consider all words that do
not belong to L, the resultant language would also be regular: perhaps a
surprising result at first, but one with a rather easy proof!

Theorem 1.30

The class of regular languages is closed under the operation of comple-
ment.

Proof. Suppose we are given a deterministic finite automaton A =

38 REGULAR LANGUAGES

(c) Finite automaton recognizing the Kleene star of a language.

Figure 1.8. Finite automaton constructions for each of the three regular operations.

CLOSURE PROPERTIES 39

(Q,%,6,q0, F). The language of this automaton, L(.A), consists of all
words that take us from the initial state gg to a final state in the subset
F. Therefore, the complement of L(.A) consists of all words that do not
take us to a final state.

We construct a finite automaton A’ = (Q, %, J, qo, F’) recognizing
the language L(A) by taking F' = @ \ F; that is, all non-final states in
A are final states in A’, and vice versa. [|

Take careful note that, unlike in the previous three closure proofs for
union, concatenation, and Kleene star, the closure proof for complement
requires that we start with a deterministic finite automaton. We cannot
simply swap the final and non-final states in a nondeterministic finite
automaton and expect the construction to go through with no issues. To
see why this is the case, consider the following nondeterministic finite
automaton:

Observe that this finite automaton recognizes the singleton language L =
{a}, and so the complement of this finite automaton must not include the
word a in its language. However, applying our complement construction
directly to the nondeterministic finite automaton produces the following
result:

Clearly, this “complement” finite automaton still accepts the word a! Thus,
in order for us to correctly complement a nondeterministic finite automaton,
we must first convert it into its equivalent deterministic form.

40 REGULAR LANGUAGES

Intersection. For our last closure result, we will look at the operation of
intersection. Recall that, with the union operation, we had to check whether
some input word belonged to either of the languages L(A) or L(B). With
the intersection operation, on the other hand, we must check whether the
input word belongs to both languages.

We could establish closure via a nice construction known as a product
automaton, but this isn’t strictly necessary. In fact, we can get this new
intersection closure result using a couple of the closure results we have
already established! This is all thanks to De Morgan’s laws, one of which
allows us to reformulate intersection in terms of both union and complement:

L(A) N L(B) = L(A) U L(B).

Since we already know that the regular languages are closed under union
and complement, we get the proof of closure under intersection for free.

Theorem 1.31

The class of regular languages is closed under the operation of intersec-
tion.

Proof. Suppose we are given two deterministic finite automata A and
B recognizing languages L(A) and L(B), respectively. Since L(A) and
L(B) are regular, we know that L(A) and L(B) are regular by closure
under complement. We also know that L(.A)U L(B) is regular by closure

under union. Therefore, L(.A) U L(B) is regular again by closure under
complement, and so L(A) N L(B) is regular. [|

o Eventually, I will detail an alternative approach using the so-called
I product automaton.

1.5. PROVING A LANGUAGE IS NONREGULAR

AT THIS POINT, it should be evident that finite automata and regular
expressions are nice models to use when discussing computation in the
abstract. They’re easy to define, easy to reason about, and they have a
lot of nice properties that we can use in proofs. However, they are not the
be-all and end-all of theoretical computer science. (Otherwise, this would
be a rather short course!)

Both finite automata and regular expressions suffer the drawback of not
having any way to store or recall data. Finite automata don’t have any
storage mechanism, and regular expressions don’t allow for lookback. As we
said in the section introducing finite automata, once the finite automaton

PROVING A LANGUAGE IS NONREGULAR 41

Figure 1.9. A “finite” automaton supposedly recognizing the language L.—p.

reads a symbol and transitions to a state, it can never return to that symbol.
For all intents and purposes, the symbol is lost forever, and the finite
automaton doesn’t even remember having read it. Likewise, once a regular
expression matches a symbol in a word and moves on to the next symbol, it
has no way of remembering any previous symbols that were matched.

Naturally, this means that there exist some languages that cannot be
recognized by a finite automaton (or, equivalently, represented by a regular
expression), and therefore such languages cannot be regular. For instance,
this is the canonical example of a language that no finite automaton can
recognize:

Lo, = {a"p" | n > 0}.

In this language, every word has an equal number of as and bs, and all
occurrences of a appear before the first occurrence of b. Some examples of
words in this language are ab, aaabbb, aaaaaabbbbbb, and €.

Why can’t any finite automaton recognize this language? Because of
that word finite. A finite automaton consists of a finite number of states,
but in order to recognize this language, we would need to add a “chain”
consisting of 2n + 1 states to accept the word a™b" for every n > 0; such a
construction is illustrated in Figure 1.9. Since n has no upper bound, we
would need an infinite number of states! No finite automaton can recognize
this language, because no finite automaton has a way of keeping track of
the value n or counting the symbols using only a finite number of states.

However, we can’t totally rely on the claim that a finite automaton is
incapable of recognizing a language if it has to count symbols. For instance,
consider the language

L,={a" | n>0}.

This language contains an infinite number of words: one word for each
n > 0, exactly like in L,_},. But it’s easy for a finite automaton to recognize
L., and using only one state!

start a

42 REGULAR LANGUAGES

Thus, it should hopefully be clear that we need to take a slightly more
intricate approach in order to prove a language is not regular. There are
many more nonregular languages than there are regular languages, so instead
of focusing on some sort of property that a nonregular language might have,
let’s instead find a property every regular language must have. We can then
prove a language is nonregular by showing that the language doesn’t have
that property.

1.5.1. The Pumping Lemma for Regular Languages

The property of regular languages that we will make use of is the following:
for every regular language, if we take a word in the language of sufficient
length, then we can repeat (or pump) a middle portion of that word an
arbitrary number of times and produce a new word that belongs to the
same regular language. This fact is known, appropriately enough, as the
pumping lemma for regular languages.

Lemma 1.32 (Pumping lemma for regular languages)

For all regular languages L, there exists p > 1 where, for all w € L with
|w| > p, there exists a decomposition of w into three parts w = xyz
such that

1. |yl > 0;
2. |zy| < p; and

3. for all i >0, 23’z € L.

Clearly, the pumping lemma contains a lot of notation and terminology
to take in at once—not to mention four alternating quantifiers in a row!
Let’s take a closer look at the lemma from three different perspectives.

An Informal Description. We’ll begin by breaking the pumping lemma
down piece-by-piece to see what it tells us.

e For all regular languages L,
We can take any regular language L, and it will satisfy the pumping
lemma.

e there exists p > 1
Depending on the language L, the pumping lemma claims that
there exists a constant p for that language. We call p the pumping
constant.

PROVING A LANGUAGE IS NONREGULAR 43

(If you’re curious, p is the number of states in the finite automaton
recognizing L.)

e where, for all w € L with |w| > p,
We can take any word from L with length at least p, and it will
satisfy the pumping lemma.

e there exists a decomposition of w into three parts w = xyz
Depending on the word w, the pumping lemma claims that w can
be split into three parts, labelled z, y, and z. The y part is what
we will use to do the pumping; the z and z parts are just the start
and end parts of w that don’t get pumped.

e such that 1. |y| > 0;
This condition ensures that the y part of w is nonempty, so that
we have something to pump.

o 2. |xy| < p;
This condition ensures that there exists some state in the finite
automaton recognizing L that is visited more than once, and
furthermore, we will visit that state during the computation before
we finish reading the part y.

(This condition is essentially an application of the pigeonhole
principle.)

e and 3. for all i >0, xy'z € L.
This is the actual pumping part of the pumping lemma. This
condition ensures that, no matter how many copies of the y part
we include in our word (even zero copies), the resulting word will
still belong to the language.

A Formal Proof. Now that we have a greater understanding of what the
pumping lemma says, let’s take a look at the proof of the lemma. Remember,
the property of all regular languages that we're relying on is that if we take
a word of sufficient length from the language, then we can pump a middle
portion of that word arbitrarily many times and always obtain a word
that still belongs to the language. This means that if we consider a finite
automaton recognizing that language, there must exist a loop somewhere
within that automaton.

44 REGULAR LANGUAGES

Proof of Lemma 1.32. Let M = (Q, X, 0, qo, F') be a deterministic finite
automaton recognizing the language L, and let p denote the number of
states of M.

Take a word w = wiws ... w, of length n from L, where n > p, and
let r1,...,7,41 be the accepting computation of M on w. Specifically,
let ;11 = 6(r;, w;) for all 1 < i < n. Clearly, this accepting computation
has length n+1 > p+ 1.

By the pigeonhole principle, there must exist at least two states in
the first p + 1 states of the accepting computation that are the same.
Say that the first occurrence of the same state is 7; and the second
occurrence is rp. Since rp occurs within the first p + 1 states of the
accepting computation, we know that £ < p + 1.

Decompose the word w into parts ¢ = wy ... wj—1, ¥y = wj ... we—1,
and 2 = wy...w,. As the part z is read, M transitions from state r{
to state r;. Likewise, as y is read, M transitions from r; to r;, and
as z is read, M transitions from r; to r,41. Since we are considering
an accepting computation, 7,11 is a final state, and so M must accept
the word zy'z for all i > 0. Moreover, we know that j # £, so |y| > 0.
Lastly, since £ < p + 1, we have that |xy| < p. Therefore, all three
conditions of the pumping lemma are satisfied. [|

Diagrammatically, this proof can be approximated by Figure 1.10. The
wavy transition lines in the figure denote some chain of transitions starting
at one state and ending at another state, where we don’t care about the
states in between. From the figure, we can see that all of the states of the
finite automaton between r and r; are used to read the part z, all of the
states between r; and 7,4 are used to read the part z, and there exists a
loop of states that both starts and ends with r; that is used to read the part
y. We can take this loop as many times as we want while reading the input
word, and taking one journey around the loop corresponds to “pumping”
the word once.

Y
start H
T z

Figure 1.10. The pumping lemma for regular languages, presented diagrammati-
cally.

PROVING A LANGUAGE IS NONREGULAR 45

Rules of the Pumping Lemma Game

1. Your opponent chooses p > 1 and claims it is the pumping constant for L.

2. You choose a word w € L with |w| > p and claim this word can’t be
decomposed into parts w = xyz that satisfy the three conditions of the
pumping lemma.

3. Your opponent chooses a decomposition w = zyz such that |y| > 0 and
|zy| < p, satisfying the first two conditions automatically, and claims that
this decomposition will also satisfy the third condition.

4. You choose i > 0 such that xy’z & L.

If you complete Step 4, then you win the game!

If you can’t find any 7 > 0 in Step 4, then you lose the game.

If any of the claims in Steps 1-3 are false, then the person who made the claim
loses the game.

Figure 1.11. The pumping lemma game.

A Fun Game. Alternatively, we can think of the pumping lemma as an
adversarial game, where we're trying to show that some language L is
nonregular while our opponent is trying to show that L is, in fact, regular.
If we win the game, then L is nonregular, while if our opponent wins, then
L is regular. The rules of this game are given in Figure 1.11, so that you
can play it at the next party you attend.

Using the Pumping Lemma. As we noted, every regular language must
satisfy the pumping lemma, and so any language that does not satisfy the
pumping lemma must not be regular. This means that we can use the
lemma to prove a language is nonregular by contradiction: assuming the
language were regular, it should satisfy the pumping lemma, but if we can
somehow pump a sufficently long word to produce a word that does not
belong to the language, our assumption of regularity must not hold.

Even though the pumping lemma looks complex, reducing it to a series
of steps as we did here reveals that any proof of the nonregularity of a
language simply has to follow each of the steps. As a result, all nonregularity
proofs tend to share a similar structure.

Let’s take a look at an example of a pumping lemma proof using our
canonical nonregular language, L.—y,.

Example 1.33

Let ¥ = {a,b}, and consider the language L,—, = {a"b" | n > 0}. We
will use the pumping lemma to show that this language is nonregular.

46 REGULAR LANGUAGES

Assume by way of contradiction that the language is regular, and
let p denote the pumping constant given by the pumping lemma. We
choose the word w = aPbP. Clearly, w € L,—1, and |w| > p. Thus, there
exists a decomposition w = zyz satisfying the three conditions of the
pumping lemma.

We consider three cases, depending on the contents of the part y of
the word w:

1. The part y contains only as. In this case, pumping y once to
obtain the word xy?z results in the word containing more as than
bs, and so xy?z & L,—y. This violates the third condition of the
pumping lemma.

2. The part y contains only bs. In this case, since the first p symbols
of w are as, we must have that |zy| > p. This violates the second
condition of the pumping lemma.

3. The part y contains both as and bs. Again, in this case, since
the first p symbols of w are as, we must have that |zy| > p. This
violates the second condition of the pumping lemma.

In all cases, one of the conditions of the pumping lemma is violated. As
a consequence, the language cannot be regular.

Let’s step through each component of this proof. We began by assuming
our language was regular. From this assumption, the pumping lemma tells
us that there exists some value p > 1 that we can use in our next step:
choosing an appropriate word from the language. We choose a word w that
is sufficiently long; that is, of length at least p. (We chose aPb? here, which
makes for a good strategy: try to incorporate the value p into the chosen
word in some way.) The pumping lemma then tells us that, since our word
w is long enough, there exists some decomposition w = zyz that satisfies
the three conditions of the lemma. From here, the remainder of the proof
consists of us checking every possible decomposition of w and finding some
violated condition for each decomposition.

Two of the most common mistakes when using the pumping lemma

are fixing a specific value for p and choosing a specific decomposition
w = xyz. We must not do either of these! Fixing a specific value for p is not
allowed because the statement of the pumping lemma tells us only that there
exists a value p, not what this value is specifically. Likewise, choosing a
specific decomposition is not allowed because the pumping lemma again tells
us only that there exists a decomposition that satisfies the three conditions.
Observe that the example we just saw keeps things as general as possible: it
doesn’t fix a specific value for p, and it considers all possible decompositions

PROVING A LANGUAGE IS NONREGULAR 47

before arriving at a conclusion.

A language doesn’t necessarily have to count symbols in order to be
nonregular. Since finite automata don’t have any form of storage, they can’t
remember symbols they read earlier in an input word. This means that
finite automata can’t recall parts of a word, and so they can’t recognize
languages like Lgouble = {ww | w € *}. Here, we prove that a similar
language is nonregular: the language of palindromes, ww®. (The notation
w® denotes the reversal of the word w.) Palindromes are words that read
the same backward as they do forward.

Example 1.34

Let ¥ = {a,b}, and consider the language Ly, = {ww® | w € X*}. We
will use the pumping lemma to show that this language is nonregular.

Assume by way of contradiction that the language is regular, and
let p denote the pumping constant given by the pumping lemma. We
choose the word w = aPbbaP. Clearly, w € Ly, and |w| > p. Thus,
there exists a decomposition w = zyz satisfying the three conditions of
the pumping lemma.

Since the second condition of the pumping lemma tells us that
|zy| < p, it must be the case that, in any decomposition, we have
xry = a* for some k < p. Consequently, we have y = a’ for some
1</<k.

If we pump y once to obtain the word zy?z, then we obtain the
word aPt‘bbaP, which is no longer a palindrome. This violates the
third condition of the pumping lemma. As a consequence, the language
cannot be regular.

Lastly, recall the third condition of the pumping lemma: for all i > 0,
xy'z € L. The third condition allows us not only to pump up by adding
copies of y to the word, but also to pump down by removing y from the
word. In some cases, pumping down can help us to prove a language is
nonregular.

Example 1.35

Let ¥ = {a, b}, and consider the language L,~1, = {a’t’/ | i > j}. We
will use the pumping lemma to show that this language is nonregular.

Assume by way of contradiction that the language is regular, and
let p denote the pumping constant given by the pumping lemma. We
choose the word w = aP*!bP. Clearly, w € L,~y, and |w| > p. Thus,
there exists a decomposition w = zyz satisfying the three conditions of
the pumping lemma.

48 REGULAR LANGUAGES

Since the second condition of the pumping lemma tells us that
|zy| < p, it must be the case that, in any decomposition, we have
xy = a* for some k < p. Consequently, we have y = a’ for some
1</<Ek.

If we pump y one or more times, then we will always end up with a
word that contains more as than bs, and this word will always belong
to the language La~1,.

However, if we pump y down to obtain the word 2y°z = xz, then our
word will be of the form a?™1—bP. Since £ > 1, our resultant word has
at most as many as as bs, and so it no longer belongs to the language
L,~p. This violates the third condition of the pumping lemma. As a
consequence, the language cannot be regular.

1.5.2. The Myhill-Nerode Theorem <

=\ Following our discussion of the pumping lemma for regular languages,

I will reveal that the pumping lemma doesn’t actually work for all lan-
guages: there exist nonregular languages that satisfy the lemma’s conditions.
(See, e.g., Ehrenfeucht, Parikh, and Rozenberg [1981] and Johnsonbaugh
and Miller [1990].) This is because the pumping lemma merely gives a
necessary, but not sufficient, condition for regularity. To rectify this, I will
talk about the Myhill-Nerode theorem, which gives both necessary and
sufficient conditions for regularity.

Summary. Now that we’ve established that there exist both regular lan-
guages and nonregular languages, we can draw a diagram to represent the
theory world as we know it currently. At this point, we’re only familiar with
two language classes: the class of regular languages and the class of finite
languages, which is a subclass of the regular languages that we mentioned
very briefly. We also only know about one machine model: finite automata.

Remark. Finite languages are recognized by a special kind of deterministic
finite automaton with no cycles.

As a result, our diagram in Figure 1.12 admittedly isn’t very interesting
right now, but as we continue through future chapters, we will expand and
add to it.

CHAPTER NOTES

MANY OF THE REFERENCES given here and in later chapters, especially
those that pertain to early work in formal languages and automata theory,

CHAPTER NOTES 49

L(L>b a"b" wwR

Regular Languages

aUba {a,b}*c 01*U1

X Finite Languages a"
{eb {a} 0
Acyclic DFAs

Finite Automata

Figure 1.12. The hierarchy of language classes and models of computation, as we
know it currently.

were sourced from the remarkable and comprehensive survey article written
by Greibach [1981]. For readers who understand French, another in-depth
survey article has been published by Perrin [1995].

The book chapter by Yu [1997] provides an excellent starting point for
those wanting to learn more about the class of regular languages.

1.1. Regular expressions originated in the work of Kleene [1951, 1956], who
framed the idea in terms of “regular events”, which are now known as
regular languages. Kleene defined three operations on events E and
F: their “sum”, denoted E V F; their “product”, denoted E'F'; and
the “iterate of £ on F”, denoted E*F. These, in turn, became the
regular operations with which we are familiar.

Brzozowski [1962] has published a detailed survey on the major results
pertaining to regular expressions, many of which we discussed in this
chapter.

Although we have used € here to denote the empty word, some other
authors use symbols like A or A instead. Likewise, you may see the
notation {} being used to denote the empty language instead of (.

Extended regular expressions, or what we here have called regex, have
also been studied in the literature under the name of “practical regular
expressions”; see, for example, the work of Campeanu, Salomaa, and
Yu [2003]. There is a vast body of material on extended regular
expressions and their use in the professional world; see, for example,
the book by Friedl [2006]. Cox [2007] discusses how regular expression
matching algorithms are implemented and gives a comparative analysis
of the performance of such implementations in various programming
languages and software tools.

50

1.2.

REGULAR LANGUAGES

The word “Kleene” in “Kleene star” and “Kleene plus” is pronounced
/'klemi/ (KLAY-nee), as that’s how Stephen Kleene pronounced his
last name.

As far as | am aware this pronunciation is incorrect
in all known languages. | believe that this novel
pronunciation was invented by my father.

— KEN KLEENE

The study of finite automata has its origins, of all places, in biology.
McCulloch and Pitts [1943] were the first to develop a mathematical
model of nervous system activity using ideas from propositional logic.
Their work on “nerve nets” laid the foundation for modern research
into the applications of neural networks to artificial intelligence.

It seems the first use of the phrase “theory of automata” came in a sym-
posium talk delivered by von Neumann [1951], where he discussed the
direction and future of the then-nascent field. The published version
of von Neumann’s talk is interesting since it is followed by a discussion
between him and symposium attendees, including McCulloch—one of
the authors of the aforementioned “nerve nets” paper! Von Neumann
spent the final years of his life studying automata theory; for details
about his contributions, see the memorial survey written by Shannon
[1958].

Kleene [1951, 1956] drew a direct connection between the nerve nets
of McCulloch and Pitts and the idea of a finite automaton, and
established the fundamental result that a language is “representable
by a nerve net” (i.e., recognized by a finite automaton) if and only if
it is a regular language.

Huffman [1954a,b] formalized the notions of states and transition
tables (which he called “flow tables”) in the context of analyzing
electronic circuits; this work originally appeared in his 1953 doctoral
thesis. You may know Huffman better from his work in coding theory
and his discovery of Huffman coding, which he made as a graduate
student.

Building upon Huffman’s work, both Mealy [1955] and Moore [1956]
investigated further properties of electronic circuits and abstracted
the study from circuits to “representations of circuit requirements”,
otherwise known as flow charts or finite automata.

Nondeterministic finite automata were introduced by Rabin and Scott
[1959], and for this paper Rabin and Scott jointly received the Turing
Award in 1976.

CHAPTER NOTES 51

1.3.

As we observed in comparing Figures 1.3 and 1.4 to Figures 1.5 and
1.6, respectively, recognizing the language of words whose nth-from-
last symbol is 0 requires n + 1 states in the nondeterministic case
and 2" states in the deterministic case. Rabin and Scott [1959] first
observed an exponential upper bound in the number of states between
nondeterministic and deterministic finite automata recognizing the
same language, but were uncertain whether this upper bound could be
improved. Moore [1971] showed that the finite automata recognizing
these “nth-from-last” languages meet this upper bound exactly. The
question of how the size of a finite automaton is affected by converting
between models or applying language operations gives rise to the study
of descriptional complexity, also known as state complexity. For more
details about this area of research, see the surveys by Holzer and
Kutrib [2011] and by Gao, Moreira, Reis, and Yu [2016].

Nondeterministic finite automata with epsilon transitions were studied
by Ott and Feinstein [1961], although in their paper they referred
to such machines as “improper state diagrams”. (For the curious, a
“proper state diagram” to Ott and Feinstein is a deterministic finite
automaton.)

McNaughton [1961] surveys many of the early major results in au-
tomata theory that we have covered here, and also discusses extensions
of the model such as probabilistic automata. Readers who would like
a more applied introduction to finite automata, with an eye to pro-
gramming applications and connections to other areas of computer
science, may be interested in the survey by Barnes [1972].

The idea of using epsilon closure to convert a nondeterministic finite
automaton with epsilon transitions into one without was proposed
by Ott and Feinstein [1961].

The subset construction for converting a nondeterministic finite au-
tomaton to a deterministic finite automaton is due to Rabin and
Scott [1959]. Interestingly, the same fundamental idea was explored
independently by Chomsky and Miller [1958], one year before the
notion of a nondeterministic finite automaton was formalized!

The state elimination algorithm presented here for converting a finite
automaton to a regular expression is inspired by that given by Brzo-
zowski and McCluskey [1963].

The McNaughton—Yamada—Thompson algorithm for converting a regu-
lar expression to a finite automaton was first published by McNaughton
and Yamada [1960] in a purely theoretical context and was later re-
discovered by Thompson [1968] in the context of compiler theory. In
their same paper, McNaughton and Yamada also gave a matrix-based

92

1.4.

1.5.

REGULAR LANGUAGES

procedure to convert a finite automaton back to a regular expression,
but their approach shares the same fundamental idea as the state
elimination algorithm.

Kleene’s theorem is so named because Kleene established an early
equivalence between regular expressions and finite automata in his
1951 report. Copi, Elgot, and Wright [1958] give clearer explications
and proofs of Kleene’s “analysis and synthesis theorems” establishing
the equivalence. Lee [1960] obtained a result matching Kleene’s, but
using a different abstract machine framework.

Closure of the class of regular languages under union, concatenation,
Kleene star, complement, and intersection was established by Rabin
and Scott [1959]. In their paper, Rabin and Scott referred to the
concatenation operation as the “complex product” and the Kleene
star operation, perhaps confusingly, as “closure”.

The pumping lemma for regular languages was first given by Rabin
and Scott [1959], and also appears in a different form in the paper
of Bar-Hillel, Perles, and Shamir [1961].

Ritchie [1963] proved that the language of binary squares
L2 = {(n®)2 | (n)s is the binary representation of n € N}

is not a regular language; as an intermediate step, he shows that the
language {1"0"*11 | n > 0} is nonregular. Huzino and Shibata [1977]
give an alternative proof of Ritchie’s result.

Minsky and Papert [1966] show more generally that any language
consisting of a set of binary representations of numbers is nonregular
if it violates certain asymptotic density properties; specific examples
of nonregular languages they give are

Ly = {(n*)2 | n € Nand k > 1} and

Lpyimes2 = {(p)2 | p is a prime number}.

Although the pumping lemma for regular languages provides only a
necessary, but not sufficient, condition for a language to be regular,
Jaffe [1978] established a pumping condition for regularity that is both
necessary and sufficient.

CHAPTER TWO

CONTEXT-FREE LANGUAGES

RECALL THAT, in our discussion on regular languages, we introduced the
notion of a regular expression. This expression essentially performed a kind
of pattern matching to accept text in a certain form and reject all other
text not of that form.

We can take this idea of matching patterns in text and modify it to work
not just for individual words, but for the structure and composition of the
entire text. This ability comes in the form of grammars, which provide us
with a set of rules that we can follow to produce words that belong to a
certain language. If a grammar produces all and only those words belonging
to a certain language, then we say the grammar generates that language.

The idea of creating grammars for languages is nothing new; linguists
have been using grammars to study natural languages for centuries, dating
all the way back to the work of the ancient grammarian Panini [c. 500 BCE],
who created an early grammar for Sanskrit. Mathematicians developed
rewriting rules in the early 1900s to transform strings of symbols, and with
the mid-century advent of computer science, grammars began to be applied
to formal languages and programming languages.

If you look at the specification manual for any programming language,
you will likely find tucked away somewhere in the documentation a grammar
for that language. This grammar, which could number into the tens of pages,
describes precisely what the structure of a program written in that language
should look like. In fact, this grammar is exactly what the compiler relies
on to check for syntax errors in your program!

As an example, let’s consider the excerpt depicted in Figure 2.1, taken
from the grammar found in the Java Language Specification [Gosling, Joy,
Steele, and Bracha, 2005, chapter 18]. This part of the grammar checks code
blocks such as if-else statements, for and while loops, and so on. Every ital-
icized word corresponds to another rule in the grammar, while monospaced
words are language keywords. For instance, the if rule checks that every
if-else block in a program follows the syntax that the compiler expects:
it begins with the keyword if together with a parenthesized expression,
followed by a statement, and ending with an optional else block.

53

54 CONTEXT-FREE LANGUAGES

Statement:
Block
assert Euxpression [: Expression] ;
if ParEzpression Statement [else Statement]
for (ForControl) Statement
while ParEzpression Statement
do Statement while ParFExpression ;
try Block (Catches | [Catches] finally Block)
switch ParEzpression { SwitchBlockStatementGroups }
synchronized ParEzpression Block
return [Fxpression] ;
throw Expression ;
break [Identifier/
continue [Identifier]
StatementFExpression ;
Identifier : Statement

Figure 2.1. An excerpt from the grammar in the Java Language Specification.

2.1. CONTEXT-FREE GRAMMARS

THE JAVA GRAMMAR is an example of a contezt-free grammar. Such a
grammar consists of a set of rules that we can use, in this instance, to
generate valid programs in Java. These rules take on a very general form:
observe, for example, that we can replace a Statement by a Block, or by
the line return [Expression] ;, or by a number of other combinations of
keywords and rules, all of which are specified by the lines of the grammar
following the Statement label.

Before we look at some more examples, let’s formalize the notion of a
context-free grammar. To construct a grammar, we need only four elements.

Definition 2.1 (Context-free grammar)

A context-free grammar is a tuple (V, 3, R, S), where
e V is a finite set of elements called nonterminal symbols;

e Y is a finite set of elements called terminal symbols, where XNV =

0;

e R is a finite set of rules, where each rule consists of a nonterminal
on the left-hand side and a combination of nonterminals and
terminals on the right-hand side; and

CONTEXT-FREE GRAMMARS 55

e S €V is the start nonterminal.

In a context-free grammar, the set of nonterminal symbols V' correspond
to parts of a word that we have yet to “fill in” with terminal symbols from
3. The set of rules R tell us how we can perform this “filling in”. If we have
a rule of the form A — «, then we can replace any instance of the symbol
A in our word with whatever symbols make up «. The start nonterminal .S
is self-explanatory; it is the first thing in our word that we “fill in”.

Returning to our Java grammar excerpt in Figure 2.1, we see that (for
example) some of the nonterminals in the grammar include Statement, Block,
Identifier, and ParFEzxpression, while some of the terminals include if, while,
for, and ; (semicolon).

Importantly, we have in our definition of a context-free grammar that
YNV = @; that is, the set of terminals and the set of nonterminals must
be disjoint. This is to prevent the grammar from confusing terminals
and nonterminals, and this is exactly why the Java language designers
used uppercase letters in their nonterminals and lowercase letters in their
terminals.

2.1.1. Language of a Context-Free Grammar

The sequence of rule applications we follow beginning with the start non-
terminal S and ending with a completed word containing symbols from ¥
is called a derivation. Each word of the form (V' UX)* produced during a
derivation is sometimes referred to as a sentential form.

For any nonterminal A and terminals u, w, and v, if we have a rule
A — w in our grammar and some step of our derivation takes us from uAv
to uwv, then we say that uAv yields uwv and we write uAv = uwv. We
can represent a sequence of “yields” relations using similar notation; given
words = and y, if z = y or if there exists a sequence x1,xs, ..., T, Where
k > 0 such that

T = X1 => Ty = =T =Y,

then we write x =* y. This is very similar to the Kleene star notation,
where the star indicates zero or more “yields” relations taking us from z to
V.

With this, we can define the language of a grammar G over an alphabet
Y by L(G) = {w € ¥* | S =* w}. In other terms, the language of a
grammar contains all words that can be derived by that grammar beginning
with the start nonterminal S.

56 CONTEXT-FREE LANGUAGES

Example 2.2

Counsider the context-free grammar where V = {S, A}, ¥ = {a,b}, and
R contains two rules:

S — aAb
A — aAb|e

Using this context-free grammar, we can generate words like

S = adb = aeb=ab,
S = adAb = a aAbb = aa e bb = aabb, and

S = adAb = a aAbb = aa aAb bb = aaa ¢ bbb = aaabbb,

and so on. For each step, the highlighted symbols indicate which
symbols were added at that step. We get things started by replacing the
S nonterminal by aAb, and from there we may replace the A nonterminal
as many times as we like.

This context-free grammar generates all words over the alphabet
Y = {a,b} where the number of as is equal to the number of bs, where
there is at least one a and one b, and where all as come before any bs in
the word. Thus, the language of this grammar is Ly—y, = {a"b"™ | n > 1}.

Observe that the rule A in Example 2.2 included a vertical bar. This is
simply a shorthand for writing multiple rules where each rule contains A on
the left-hand side. Writing A — aAb | ¢ is therefore equivalent to writing

A — aAb
A— e

There are very few limitations we must abide by when we write rules for
a context-free grammar. All we need to ensure is that the left-hand side of
each rule consists of exactly one nonterminal by itself. The right-hand side
of each rule can contain any combination of terminals and nonterminals,
including the empty word e.

Example 2.3

Consider the context-free grammar where V = {S}, ¥ = {(,)}, and R
contains one rule:

S = (8) |85 | €

This rule allows us to surround an occurrence of S with parentheses, to

CONTEXT-FREE GRAMMARS 57

“duplicate” an occurrence of S, or to replace some occurrence of S with
€, effectively removing that occurrence of S from the derivation.
Using this context-free grammar, we can generate a word like

S= 88
= (8 S
= ((8))HS
= ((e))S
= (S
= (0) (8)

= (0)(Ce) =(OD)O.

Again, the highlighted symbols indicate which symbols were added at a
given step.

This context-free grammar generates all words over the alphabet
Y = {(,)} where each word contains balanced parentheses: every open-
ing parenthesis is matched by a closing parenthesis, and each pair of
parentheses is correctly nested. We can express the language of the
grammar as

Lo ={w e {()}" | all prefixes of w contain no more)s than (s,

and |w|¢ = |wly}.

Remark. Languages of balanced symbols are also known as Dyck lan-
guages, named for the mathematician Walther von Dyck, who studied
the word problem for free groups. This problem can be thought of as
a language where we must balance both parentheses () and brackets
[1. In the computer science context, such languages were originally
called D-events [Schiitzenberger, 1962] before later being termed Dyck
sets [Schiitzenberger, 1963].

Context-Free Languages. With our notion of a context-free grammar, it’s
easy for us to define a context-free language. Just like we defined a regular
language to be a language represented by a regular expression, we can define
a context-free language in terms of a context-free grammar.

58 CONTEXT-FREE LANGUAGES

Definition 2.4 (Context-free language)

If some language L is generated by a context-free grammar, then L is
context-free.

Thus, both the language of words ab™ and the language of balanced
parentheses are context-free languages. As a shorthand, we denote the class
of languages generated by a context-free grammar by CFG.

The class of context-free languages is remarkably less restrictive than
the class of regular languages and, as we’ve seen, context-freeness allows us
to perform certain simple actions like counting or matching symbols. Let’s
now consider a couple of other examples of context-free languages and their
gramimars.

Example 2.5

Consider the language L = {a*b’c/™2 | 4,5 > 0} over the alphabet
Y ={a,b,c}. Here, we can see that the counts of as and bs are related,
while the number of cs is independent of the number of as and bs.
Let’s construct a context-free grammar generating words in L. Ev-
idently, we will need two kinds of rules: one rule will generate the as
and bs together, while the other rule will generate the cs. We can use
the start nonterminal to apply these rules in the correct order. Our
context-free grammar will therefore look like the following;:

S—=UV
U — aalUb | €
V—=cV|cc

Let’s now take a look at each rule in turn.

e The first rule, S, ensures that we apply the U rule before the V
rule. This in turn ensures that all as and bs occur before the cs
in the generated word.

e The second rule, U, either recursively produces two as and one b
or produces the empty word. This ensures that we maintain the
correct count of 27 as and 7 bs.

e Finally, the third rule, V, either recursively produces one c or
produces the symbols cc. This ensures that we have exactly j + 2
cs in our generated word.

CONTEXT-FREE GRAMMARS 59

Example 2.6

Recall our context-free language Lo—p, = {a"b™ | n > 1}. Here, let’s
consider a more general language:

Lmixcda:b = {w S {aab}* | |U)|a = |w|b}

Observe that the main difference with this language is that the order of
as and bs no longer matters; we just need the same count of as and bs.
Can we construct a context-free grammar for Lixeda=b’

Since order no longer matters, we just need our context-free grammar
to generate a pair of as and bs each time we add terminal symbols. For
this, we can use essentially the same rule as we used in our context-free
grammar for L,—,: S — aSb | bSa. We also need a rule that allows
us to mix the order of as and bs; for instance, to place two as or two
bs next to each other, or to generate words with matching first and
last symbols (like abba). For this, we can use a rule similar to one we
included in our context-free grammar for L: S — SS.

Thus, our context-free grammar will look like the following:

S — SS|aSb|bSa|e

As an aside, one very common and popular question asks why these
grammars and languages are given the name “context-free”. To understand
where this name comes from, we must take a closer look at the form of any
rule in a context-free grammar. Definition 2.1 states that each rule in a
context-free grammar consists of “a nonterminal on the left-hand side and a
combination of nonterminals and terminals on the right-hand side”, and if
we were to represent this using symbols, we would get rules that are of the
form

A= a,

where A € V and o € (V UX)*. Now, if during some derivation we wish to
replace an occurrence of the nonterminal A with whatever symbols are in «,
we can just substitute A for the symbols in « directly. In other words, the
symbols surrounding A (also known as the context) don’t have any effect on
the substitution, and so the process of replacing A with « is free of context!
By contrast, if we had rules of the form

BAy — Bar,

where A€V, a e (VUX)t, and 8,7 € (V UX)*, then we could replace A
with « only when A appears within the context S~. This gives rise to
the notions of contert-sensitive grammars and context-sensitive languages,

60 CONTEXT-FREE LANGUAGES

S
NP VP
Det Nom A% NP
the /\ illustrated
Adj N Det Nom
\ \ \
intelligent professor a Adj N

beautiful tree

Figure 2.2. A parse tree for an English sentence.

which are interesting in their own right but omitted from our discussion
here.

2.1.2. Ambiguity

If we are given a derivation of a word for some context-free grammar, we
need not always represent it in a linear fashion like we did in previous
examples. We could alternatively represent it as a tree structure, where the
root of the tree corresponds to the start nonterminal S and each branch of
the tree adds a new nonterminal or terminal symbol. We refer to such trees
as parse trees.

Parse trees are very familiar to linguists: the idea is used all the time
to break down sentences or phrases into their constituent components, like
nouns, verbs, and so on. In doing so, linguists are able to study the structures
of sentences in different languages. For example, consider the parse tree
for an English sentence depicted in Figure 2.2. In this tree, the sentence
(S) is broken down into a noun phrase (NP) and a verb phrase (VP); the
noun phrase is broken down further into a determiner (Det) and a nominal
(Nom); and so on. There are all kinds of rules specifying exactly how we
can break down English sentences in this way.

In every parse tree, the root of the tree is the start nonterminal S, the
leaves of the tree contain terminal symbols from ¥ (or €), and all other
vertices of the tree contain nonterminal symbols from V. If a parse tree
contains an internal (non-leaf) vertex A, and all the children of the vertex
A are labelled a1, ao,...,a,, then the underlying grammar’s rule set must
contain a rule of the form A4 — ajas...a,.

For most grammars we deal with, there exists exactly one way to generate
any given word in the language of the grammar, and thus exactly one parse

CONTEXT-FREE GRAMMARS 61

tree for each word. However, this is not always the case. There are some
grammars that allow us to generate the same word in more than one way.

Perhaps one of the most well-known examples where this is the case—
namely, from viral posts online that ask you to simplify 8 = 2(2 + 2) or
something similar—is the grammar generating the language of arithmetic
expressions. If you recall grade school mathematics, you’ll remember that
there is an order of operations that specify the order in which we should apply
arithmetic operations in a given expression. We first evaluate expressions in
parentheses, then exponents, then multiplications and divisions, and finally
additions and subtractions.

Let’s consider a simplified set of operations, where we only use paren-
theses, addition, and multiplication. The grammar generating the language
of arithmetic expressions using these three operators together with the
standard set of numbers is as follows:

S — (S)
S—>S5+S8
S—=>8x8
S — num

(2.1)

If we consider the expression num X num + num, we discover that there
exists more than one way to generate this expression, depending on whether
we apply the + rule or the x rule first. This is evidenced by the fact that
there exist two parse trees for the same expression:

S S
S + S S X S
T | | T
S x S num num S + S
\ \ \ \
num num num num

We don’t need to do anything tricky in order to obtain these different
parse trees. In fact, both parse trees can be obtained simply by applying
rules to each nonterminal from left to right; that is, at some level of the
parse tree where there exists two nonterminals, we apply a rule to the first
(left) nonterminal before the second (right) nonterminal. This process is
known as a leftmost derivation.

If there exists some word in the language of a grammar for which there
is more than one leftmost derivation of that word, then we say that the
word is derived ambiguously. Likewise, the grammar producing that word is
itself ambiguous.

62 CONTEXT-FREE LANGUAGES

Definition 2.7 (Ambiguous context-free grammar)

A context-free grammar G is ambiguous if there exists some word
w € L(G) that can be derived ambiguously.

Example 2.8

The grammar from Example 2.3 generating our language of words with
balanced parentheses is ambiguous. Consider again the word (()) ().
There exist two different parse trees corresponding to leftmost derivations
of this word:

5] 5]
A s :
/’\(S) /\ T
« S)‘ S S C S)
T : | |
«C S) e/’\ €
\ (s)
€ T
«c S)
\
€

Reducing and Removing Ambiguity. In certain cases, if we have an am-
biguous context-free grammar, then we can create a context-free grammar
for the same language that has reduced, or even no, ambiguity.

As an example, recall our three-operation arithmetic grammar:

S — (S)
S—S+5

S—85x%x8
S — num

(2.1)

Nothing in this grammar forces us to use one rule before another, so we
end up being able to derive the same word via different sequences of rule
applications. However, we can construct an unambiguous grammar simply
by adding a little more structure to our rules—specifically, by adding a few

CONTEXT-FREE GRAMMARS 63

more nonterminals:
S—FE
E—-E+T|T
T—sTxF|F
F — (E) | num

(2.2)

Now, each nonterminal plays a particular role. The nonterminal S, as
usual, serves as our starting point and produces an expression, E. Each
expression consists of subexpressions E or additive terms T'. Likewise, each
term consists of subterms 7" or multiplicative factors F'. Finally, each factor
can be either a num or a parenthesized subexpression, starting the whole
process over again.

Our revised grammar now allows us to draw one unambiguous parse tree
for the expression num X num + num:

S
£
I
E + T
*)
T x F m‘lm
P mm
nl‘lm

We won’t verify here that this grammar is in fact equivalent to our original
one, though we can intuit that they both generate the same language. Suffice
it to say that, with this revised grammar, we’re able to guarantee that the
addition rule is always applied before the multiplication rule.

Remark. The reason why we didn’t verify that our two context-free
grammars are equivalent is because the problem of determining the
equivalence of context-free grammars is impossible for a computer to
solve in general. We will discuss this in greater depth in Sections 5.4
and 5.5.

Inherent Ambiguity. Unfortunately, there is no general procedure or al-
gorithm for removing ambiguity from a context-free grammar; indeed, it
isn’t even possible to remove ambiguity in some cases. Some context-free
languages are inherently ambiguous, meaning that any grammar generating
the language will have some unavoidable ambiguous component to it.

64 CONTEXT-FREE LANGUAGES

Example 2.9

Let ¥ = {a,b, c}, and consider the language
Liwoequal = {a0c” | 4,5,k > 0 and i = j or j = k}.

This language contains all words that have either the same number of
as and bs or the same number of bs and cs.
We can generate this language using the following grammar:

S — 51|52
S1— Sic| A
A — aAb|e
Sy — aSy | B
B — bBc | €

The rules S7 and A generate words of the form a"b”c™ and the rules
So and B generate words of the form a™b"c", each where m,n > 0.

Now, consider words of the form a”b"c™, where n > 0. All words of
this form belong to the language Liwoequal, but each such word has two
distinct derivations in this grammar: it can be generated either by the
rules S; and A, or by the rules S; and B.

While the formal proof that this language is inherently ambiguous
is quite long, we can intuitively see that (for instance) any grammar
generating this language must have rules similar to S; and A to produce
balanced pairs of as and bs followed by some number of cs. We can
make a similar argument for the rules Sy and B. Thus, any grammar
for this language will include some degree of ambiguity.

2.1.3. Normal Forms

Up to now, we’'ve imposed no restrictions on the form of each rule in our
context-free grammars. As long as each rule of our context-free grammar
looked like A — «, where A is a nonterminal symbol and « is a combination
of terminal and nonterminal symbols, we were happy.

However, computers (and, by extension, the people who program com-
puters) like having structure. For instance, a compiler for a programming
language usually incorporates a context-free grammar into its workflow at
some point during the compilation of a program, and having a structured
grammar makes the compiler’s job both easier and faster.

Therefore, at times, we might like to transform a context-free grammar
into a more-structured normal form; that is, to modify the grammar in such
a way that each rule takes a canonical form. There are a number of normal

CONTEXT-FREE GRAMMARS 65

forms to choose from, and each one comes with its own benefits.

2.1.3.1. Chomsky Normal Form. The Chomsky normal form, as the name
suggests, was first studied by the linguist Noam Chomsky [1959a] as he
attempted to develop a model for natural language using grammars. A
grammar in Chomsky normal form is one where each rule either has two
nonterminal symbols or one terminal symbol on the right-hand side.

Definition 2.10 (Chomsky normal form)

A context-free grammar is in Chomsky normal form if every rule in the
grammar is of one of the two following forms:

1. A— BC for A,B,C € V with B,C # S; or
2. A—aforAeV and a € X.

Additionally, we may allow the rule S — e.

The main benefit of converting a grammar into Chomsky normal form
comes in how we can represent and store derivations of words in memory.
Since each rule derives either two nonterminal symbols or one terminal
symbol, every parse tree will have a branching factor of either 2 or 1. This
fact allows us to use efficient data structures for representing binary trees in
memory, as well as to apply efficient algorithms to process parse trees and
derivations. Moreover, the number of steps in a derivation using a grammar
in Chomsky normal form is easy to bound: if the grammar generates a word
w, then the derivation of w will contain |w| — 1 applications of a rule of the
first form and |w| applications of a rule of the second form.

Example 2.11

Let ¥ = {a, b}, and consider the following two grammars. Each grammar
generates words consisting of one b surrounded on either side by zero or
more as. The grammar on the left is not in Chomsky normal form. The
grammar on the right is in Chomsky normal form, and it is equivalent
to the grammar on the left.

S — AbA So—TA|BA| AB |b
A— Aale T — AB
A— AC | a
B—b

C —a

66 CONTEXT-FREE LANGUAGES

Every context-free grammar can be converted into a context-free gram-
mar in Chomsky normal form, and the conversion process consists of five
steps:

1. START: Replace the start nonterminal.

Add a new start nonterminal Sy together with a new rule Sy — S,
where S is the start nonterminal of the original grammar.

This ensures that the new start nonterminal Sy will not occur on
the right-hand side of any rule.

2. TERM: Remove nonsolitary terminals from the right-hand side
of all rules.

For each rule of the form A — «ay...a...a,, where A € V,
a,...,ap, € VU and a € 3, add a new rule 7, — a and
replace the existing rule with one of the form A — By ... T, ... B,.
If multiple terminals appear on the right-hand side of the rule,
replace all terminals simultaneously.

This ensures that the right-hand sides of all rules consist either of
a single terminal or some number of nonterminals.

3. BIN: Split up groups of three or more nonterminals on the right-
hand side of all rules.

For each rule of the form A — By B5 ... B, where A, By,..., B, €
V and n > 3, replace the existing rule with the set of rules

A— B11417
Ay — ByAy,

An72 — anlB'nn

This ensures that every parse tree produced by the resultant
grammar will have a bounded branching factor.

4. DEL: Remove epsilon rules.

Remove all rules of the form A — €, where A # Sy. For all
rules of the form A — BC where A, B,C € V and either B or
C is nullable (i.e., where there exists a rule B — ¢ or C' — ¢),
replace the existing rule with one where the nullable nonterminal
is removed.

CONTEXT-FREE GRAMMARS 67

5. UNIT: Remove unit rules.

For each pair of rules of the form A — B and B — C, where
A,B €V and C € VT, replace the existing rule A — B with one
of the form A — C, unless this replacement produces a unit rule
that has previously been removed.

The process of converting a context-free grammar to Chomsky normal
form can be lengthy and tedious, so the job is often automated by a
subroutine within a compiler or a similar program. However, we’re here
to learn, and learning is best done by doing. Thus, let’s work through an
example of this conversion process step by step.

Example 2.12

Consider the following grammar not in Chomsky normal form:

S — ASB
A—aAS|a]le
B — SbS | A|bb

We will convert this grammar to an equivalent grammar in Chomsky
normal form.

1. START: Replace the start nonterminal.

We begin by adding a new start nonterminal and the rule Sy — S,
which gives us the following:

So — S

S — ASB
A—aAS |ale
B — SbS| A|bb

2. TERM: Remove nonsolitary terminals from the right-hand side
of all rules.

We have three rules to handle here: A — aAS, B — SbS, and
B — bb. Adding the new rules T, — a and T, — b and making

68 CONTEXT-FREE LANGUAGES

the appropriate substitutions gives us the following:
Sop — S
S — ASB
A — T,AS |ale
B — STRS | A| Ty
T, — a
T, — b

3. BIN: Split up groups of three or more nonterminals on the right-
hand side of all rules.

Again, we have three rules to split up: S — ASB, A — T,AS,
and B — STy,S. Splitting these rules gives us the following:

SQ_>S
S — AS; S1 — SB
A—)TaAl‘a|6 A1—>AS

B - SB, |A|TT, B — TS

T, — a
T, — Db

4. DEL: Remove epsilon rules.

This grammar has one obvious epsilon rule, which is A — e.
However, we must also modify the rules that contain the nullable
nonterminal A: these rules are S — AS;, A — AS, and B — A.
For each of these rules, we add a new rule that is of the same form,
but with the nonterminal A removed.

Sy — S

S — AS1| Sy S; — SB

A TA |alf A - AS| S
B — SB; |A| e | T B — T,S
T, — a

T, — b

CONTEXT-FREE GRAMMARS 69

Observe that removing the nullable nonterminal A from the rule
B — A produced another epsilon rule, B — €, so we must remove
that rule as well. This also means that B is a nullable nonterminal,
and so we must modify rules containing B: the only rule affected
here is S; — SB. For this rule, we again add a new rule that is
of the same form, but with the nonterminal B removed.

So— S

S — AS; | S1 Sy —SB| S
A—T,A | a A — AS | S
B— SBy | A| /| LT, By —» TS
T, — a

T, — b

5. UNIT: Remove unit rules.
Lastly, we handle all of the unit rules in this grammar. We’ll begin
by removing the unit rule Sy — S to obtain the following:

So — AS1 | S1

S — AS; | S1 S1—SB|S
A—T,A | a A — AS| S
B— SB; | A| LTy B1 — TS
T, — a

T, — b

In removing this rule, we added a new unit rule Sy — S1, so let’s
take care of that rule next. Note that straightforwardly performing
the substitution on the right-hand side would again produce the
unit rule Sy — S that we already removed, so we omit that rule

and obtain the following:

SO —>A51 | SB

S — AS; | S1 S1—SB|S
A—T,A | a A — AS| S
B— SB; | A| LTy By —» Ty S
T, — a

Tb%b

70 CONTEXT-FREE LANGUAGES

We now remove the unit rule S — S;. Performing the substitution
on the right-hand side would produce the (useless) unit rule S — S,
so we omit that rule and obtain the following:

So — AS1 | SB

S — AS,| SB S1 = SB|S
A—>T,A | a A — AS| S
B — SB; | A| Ty B1 — T,S
Te — a

T, — Db

We can now remove the unit rules S; — S and A; — S, which
both have the nonterminal S on the right-hand side. This produces

the following:

So — AS1 | SB

S — AS, | SB S; — SB| AS;
A—T,A | a Ay — AS| AS, | SB
B — SB; | A| vy B — TS

T, — a

T, — b

Lastly, we remove the unit rule B — A, which gives us our

Chomsky normal form grammar:

So — AS1 | SB

S — AS, | SB S1 — SB | AS;
A—T,A | a Ay — AS | AS; | SB
B — SB; | T4 | a |/, By - T,S

T, — a

T, — b

2.1.3.2. Greibach Normal Form ¢.
2\ Together with the section on Chomsky normal form, I would also like
 to write a discussion of Greibach normal form [1965], its benefits, and

how we can convert a context-free grammar into GNF.

PUSHDOWN AUTOMATA 71

2.2. PUSHDOWN AUTOMATA

WHEN WE FIRST INTRODUCED finite automata as a computational model
for regular languages, we emphasized the facts that finite automata have
no method of storage and no ability to return to a previously read symbol.
Naturally, these restrictions limited the kinds of languages the model is able
to recognize, and we showed that such restrictions resulted in the model
recognizing exactly the class of regular languages.

At the end of the previous lecture, we saw that there exist languages
that are not regular, and therefore are not recognized by finite automata.
We know now that the next “step” of our language hierarchy is the class
of context-free languages. Thus, a new question arises: what kind of
computational model is capable of recognizing context-free languages?

Since every context-free language is generated by a context-free grammar,
and since we know that context-free grammars must “remember” which
nonterminal and terminal symbols are being manipulated over the course of
a derivation, any model of computation recognizing context-free languages
must include a form of memory. What is the best form of memory to use in
this situation? If we view a derivation as a parse tree, then the derivation
progresses as we go deeper into the parse tree, and we can easily model the
depth of a derivation using stack memory.

As a brief review, a stack is a data structure with two operations that
manipulate data: push and pop. Pushing a symbol to a stack adds it to the
top of the stack, above all other symbols already in the stack. Conversely,
popping a symbol from a stack removes it from the top of the stack, leaving
all other symbols untouched. (See Figure 2.3 for an example of pushing and
popping.) As a result, a stack provides last-in-first-out, or LIFO, storage—
by comparison, a data structure like a queue provides first-in-first-out, or
FIFO, storage. We can view the symbol at the top of the stack at any time
during a computation, but we cannot view any other symbols in the stack
unless we pop the symbol currently at the top of the stack.

Since we’re dealing with an abstract model of computation and not a
real-world computer, we can make the assumption that our stack size is
unbounded; that is, we can push as many symbols to the stack as we want
without worrying about running out of space.

push a push b - pop b push ¢ . push a
b
2] 2]

Figure 2.3. Pushing symbols to and popping symbols from a stack. At each step,
the currently visible symbol at the top of the stack is highlighted.

72 CONTEXT-FREE LANGUAGES

Now that we have our form of storage established, we can define our
model of computation. At its core, this model is a finite automaton with a
stack added to it. Since the automaton is now able to push symbols to a
stack, we give it an appropriate name: a pushdown automaton.

Remark. The name “pushdown automaton” doesn’t specifically come
from its ability to push symbols, but rather from an older term for a
stack: a pushdown store.

In addition to reading a symbol of its input word on a transition, a
pushdown automaton can read from and write to the stack on the same
transition. In order to perform this mixture of input and stack actions,
we specify two alphabets for a pushdown automaton: the input alphabet,
which contains symbols used in the input word, and the stack alphabet,
which contains symbols the pushdown automaton can use in its stack. This
allows us to combine actions on the input word and actions on the stack
in a single transition, without risking confusion over the meaning of any
particular alphabet symbol. The transitions of a pushdown automaton may
additionally use € in place of either the input word action (i.e., when we
don’t read a symbol of the input word) or the stack action (i.e., when we
don’t push to/pop from the stack). Just like we denoted a finite automaton’s
alphabet by ¥, we will use ¥ to denote a pushdown automaton’s input
alphabet. Likewise, we will use I' to denote the stack alphabet.

In order for our model of computation to use two alphabets at once,
we must modify its transition function accordingly. Recall that a finite
automaton (with epsilon transitions) transitions on a pair (g, a), where
g € Q and a € ¥ U {¢e}. By comparison, a pushdown automaton transitions
on a tuple (g, a,b), where ¢ € @, a € X U{e}, and b € I' U {e}. Thus, a
pushdown automaton uses both the current symbol of its input word (or €)
as well as the top symbol of its stack (or €) to determine the state to which
it will transition. After transitioning, the pushdown automaton will be in a
possibly different state, and it will have a possibly different symbol at the
top of its stack.

Lastly, a pushdown automaton has no inherent mechanism for detecting
whether its stack is empty. To make our lives easier when it comes to
keeping track of the stack contents, we can incorporate a special “bottom
of stack” symbol L into the transitions of a pushdown automaton in such a
way that L is both the first symbol pushed to the stack and the last symbol
popped from the stack.

Remark. We don’t require this special symbol, since pushdown automata
can accept either by being in a final state or by having an empty stack
after reaching the end of its input word. As it turns out, these two
methods of acceptance are equivalent, and our approach effectively
combines the two.

PUSHDOWN AUTOMATA 73

Finite
Stack automaton Input word

n i @101101110

Figure 2.4. An illustration of a pushdown automaton.

Having established all of the technical details, we can now formulate
the definition of a pushdown automaton. Since a pushdown automaton is
essentially just a finite automaton with a stack, we can start by copying
the text from Definition 1.14 and adding to it the necessary components for
handling the stack: the stack alphabet, a mechanism for popping symbols
(if necessary) from the stack, and a mechanism for pushing symbols (if
necessary) to the stack.

Definition 2.13 (Pushdown automaton)

A pushdown automaton is a tuple (Q, X, T, d, qo, F'), where
e () is a finite set of states;
e Y is the input alphabet;
e I is the stack alphabet;

e 5: Qx (ZU{e}) x (TU{e}) = P(Q x (T'U{e})) is the transition
function;

e o € Q is the nitial or start state; and

e [C @ is the set of final or accepting states.

Figure 2.4 illustrates how we might visualize a pushdown automaton. Ob-
serve that our definition doesn’t mention the “bottom of stack” symbol L,
since it isn’t strictly necessary. However, since we will use it to aid in our
understanding, we will assume that | € I" and that L is not used in any
transition of § except for those exiting gy and those entering any final state.

Remark. Here is another moment for grammatical pedantry. Just like
the distinction between the singular “finite automaton” and the plural
“finite automata”, it is never correct to write something like “a pushdown
automata” in reference to a single instance of such a model.

74 CONTEXT-FREE LANGUAGES

Example 2.14

Consider a pushdown automaton M where Q = {qo,q1,¢2,93}, X =
{a,b}, T' = {L,A}, g0 = qo, F = {g3}, and 0 is defined as follows:

DI a b €

' 1 A € 1 A € 1 A €

Q@ | — — — — — — — — {(q, D)}
o | — — (@8} | — {(ez,9)} — — — —
@ | — — — — {l@29} — | {(g39)} — —

q3 - — — — - — — -

In the transition function table, the top row indicates the input symbol
being read and the second-from-top row indicates the symbol to be
popped from the stack. Each entry of the table is an ordered pair
where the first element is the state being transitioned to and the second
element is the symbol being pushed to the stack.

The pushdown automaton M can be represented visually as follows:

a,er— A b, A€

€,€— | % b,A— € AG,L'—)E
start —{ 9o ‘@ ‘@ qs3

Notice that each transition has a label of the form a, B — C; this means
that, upon reading an input symbol ¢ and popping a symbol B from
the stack, the pushdown automaton pushes a symbol C' to the stack.

Between states ¢ and ¢;, the pushdown automaton pushes the
symbol | to the stack to mark the bottom. In state g;, the pushdown
automaton reads some number of as and pushes the same number of
As to the stack. Between states g; and ¢z, as well as in state gz, the
pushdown automaton reads some number of bs and pops the same
number of As from the stack. Finally, between states ¢ and g3, the
pushdown automaton pops L from the stack only if there are no more
input symbols to read and no more stack symbols to process.

After some observation, we can see that our pushdown automaton
accepts all input words of the form a"b™ where n > 1.

You may have noticed in our definition that the transition function maps
to the power set of state/stack symbol pairs, which makes the pushdown
automaton nondeterministic. This was not done by mistake. Unlike finite au-
tomata, where the deterministic and nondeterministic models are equivalent
in terms of recognition power, deterministic pushdown automata actually

PUSHDOWN AUTOMATA 75

recognize fewer languages than nondeterministic pushdown automata. In
the interest of full generality, then, we take all of our pushdown automata
to be nondeterministic, even if we don’t need to use nondeterminism.

2.2.1. Computations and Accepting Computations

Let us now consider precisely what it means for a pushdown automaton to
accept an input word. As we had with finite automata, one of the main
conditions for acceptance is that there exists some sequence of states through
the automaton where it begins reading its input word in an initial state and
finishes reading in an accepting state. Since pushdown automata also come
with a stack, though, we must account for the contents of the stack over the
course of the computation. Specifically, we assume that the stack is empty
at the beginning of the computation and, on each transition, the pushdown
automaton can modify the top symbol of its stack appropriately.

Definition 2.15 (Accepting computation of a pushdown automaton)

Let M = (Q,%,T,9,qo, F) be a pushdown automaton, and let w =
Wow1 . . . Wy_1 be an input word of length n where wg, w1y, ..., w,_1 € X.
The pushdown automaton M accepts the input word w if there exists a
sequence of states ro,r1,...,7, € @ and a sequence of stack contents
50,51, - - - ,5n € I'* satisfying the following conditions:

1. 70 = qo and sg = ¢;

2. (1i41,b") € 0(ri, w;, b) for all 0 <4 < (n — 1), where s; = bt and
Si+1 = b't for some b, b’ € T U {e} and t € I'*; and

3. r, €F.

The second condition is rather notation-heavy, but the underlying idea
describes exactly how a pushdown automaton transitions between states:
starting in a state r; with a symbol b at the top of the stack, the pushdown
automaton reads an input symbol w; and pops the symbol b from the stack.
The transition function then sends the pushdown automaton to a state r;41
and pushes the symbol &’ to the stack.

Indeed, the second condition corresponds exactly to having the following
transition in the pushdown automaton:

@ wi,bwb’;@

76 CONTEXT-FREE LANGUAGES

2.2.2. Language of a Pushdown Automaton

Pushdown automata recognize languages just as finite automata do, and
the set of all input words accepted by a pushdown automaton is referred
to as the language of that automaton. We denote the class of languages
recognized by a pushdown automaton by PDA.

Example 2.16

Consider Ly, our language of balanced parentheses from earlier. Sup-
pose ¥ = {(,)} and I' = {1 ,P}. A pushdown automaton recognizing
this language is as follows:

(,e—P
€,€— L % €, 1L —e
start do —\% ~(g2
),P—¢€

As the transitions show, after pushing the symbol L to the stack, the
pushdown automaton reads left and right parentheses. Every time a
left parenthesis (is read, the pushdown automaton pushes a symbol
P to the stack. Likewise, every time a right parenthesis) is read, the
pushdown automaton pops a symbol P from the stack to account for
some left parenthesis being matched.

Note that, if the input word contains more right parentheses than
left parentheses, then the pushdown automaton will not be able to pop
a symbol P from the stack. Similarly, if the input word contains more
left parentheses than right parentheses, then it will not be able to pop
the symbol | from the stack. In either case, it becomes stuck in state
¢q1 and unable to accept the input word.

Example 2.17

Let ¥ = {a,b, c}, and consider the language

Liwoequal = {2'07c¥ | i,5,k >0 and i = j or j = k}.

A pushdown automaton recognizing Liwoequal must have two “branches”:
one branch to handle the case where ¢ = j, and one branch to handle
the case where j = k. Since we don’t know in advance which branch
we will need to take, we can use the nondeterminism inherent in the
pushdown automaton model.

EQUIVALENCE OF MODELS 7

A pushdown automaton recognizing this language would therefore
look like the following, where the upper branch handles the case i = j
and the lower branch handles the case j = k:

a,e— A b,A— € C,E> €

€,€E> € QE,LI—)G
€,€— | @ 'qu \ ©

6,6'—>J_ €€ € o €, €€ @eL»—m@D

a,eEr—¢€ b,e+— B c,Br—e¢

start

2.3. EQUIVALENCE OF MODELS

YOU MAY RECALL from our discussion of regular languages that we proved
a number of exciting results: deterministic and nondeterministic finite
automata are equivalent in terms of recognition power, regardless of whether
epsilon transitions are involved, and each of these models is itself equivalent
in recognition power to regular expressions. These results allowed us to
establish Kleene’s theorem, which characterized the class of regular languages
in terms of several different models of computation.

Now that we’re focusing on context-free languages, and now that we
have two ways of representing context-free languages—namely, context-
free grammars and pushdown automata—it would be nice to establish a
connection between the two representations. This brings us to yet another
exciting result, which will be the focus of this section. Since the overall
proof is quite lengthy, we will split the proof of the main result into two
parts.

2.3.1. CFG = PDA

For the first half of our main result, we will show that we can convert any
context-free grammar into a pushdown automaton recognizing the language
generated by the grammar. Specifically, given a context-free grammar G,
we will construct a pushdown automaton M that functions as a top-down
parser on its input word w; that is, beginning with the start nonterminal .S,
M will repeatedly apply rules from R to check whether w can be generated
via a leftmost derivation. If so, then M will accept w.

78 CONTEXT-FREE LANGUAGES

Remark. We could alternatively construct M to act as a bottom-up parser,
where it applies rules backward starting from the input word w to see
if the start nonterminal S can be reached. The outcome is the same,
though, so we will not discuss this alternative construction here.

Note that, for the purposes of this proof, we will “condense” multiple
transitions of our pushdown automaton into one transition; that is, if we
have some sequence of transitions

A— B D
@m, — ‘/\ e,eHC‘/\ €, € > ‘@
N N

then we will depict this sequence of transitions as one single transition of

the form
(n)

and we replace the symbol A on the stack with the symbols BC'D, in that
order from bottom to top.

Lemma 2.18

Given a context-free grammar G generating a language L(G), there
exists a pushdown automaton M such that L(M) = L(G).

Proof. Suppose we are given a context-free grammar G = (V,Xq, R, S).
We construct a pushdown automaton M = (@, 3, T, §, qo, F) that recog-
nizes the language generated by G in the following way:

e The set of states is @ = {qs,qr}- The first state, qg, corresponds
to the point during the computation at which the context-free
grammar G begins to generate the word. The second state, qg,
corresponds to the remainder of the computation where G applies
rules from its rule set.

e The input alphabet is ¥ = ¥Xg. If M accepts its input word, then
the word could be generated by G, and therefore it must consist
of terminal symbols.

e The stack alphabet is I' = V U Xg. We will use the stack of M to
keep track of where we are in the leftmost derivation of the word.

e The initial state is gy = ¢s.
e The final state is F' = {qr}.

e The transition function § consists of three types of transitions:

EQUIVALENCE OF MODELS 79

1. Initial transition: §(gs,€,€) = {(¢r,S)}. This transition
initializes the stack by pushing to it the start nonterminal
S, and then moves to the state qr for the remainder of the
computation.

2. Nonterminal transition: 0(qg, €, 4) = {(qr, @y ... a20q)}
for each rule of the form A — aqas...a,, where A € V and
a; € V UXg for all 4. Transitions of this form simulate the
application of a given rule by popping the left-hand side (A)
from the stack and pushing the right-hand side (c1as ... ay)
to the stack in its place in reverse order. Pushing the symbols
in reverse ensures that the next symbol we need to read (o)
is at the top of the stack.

Note that if n = 0, then the transition will be of the form
6(qr, €, A) = {(gr,€)}-

3. Terminal transition: §(qr,c,¢) = {(¢r,€)} for each ter-
minal symbol ¢ € Y. Transitions of this form compare
a terminal symbol on the stack to the current input word
symbol. If the two symbols match, then the computation
continues.

During the computation, after the initial transition is followed, M
follows either nonterminal transitions or terminal transitions until its
stack is empty or it runs out of input word symbols. If a nonterminal
symbol A is at the top of the stack, M nondeterministically chooses one
of the rules for A and follows the corresponding transition. If a terminal
symbol c is at the top of the stack, M performs the comparison between
input and stack symbol as described earlier.

By this construction, we can see that M finishes its computation
with an empty stack and no input word symbols of w left to read
whenever S =* w, and so M accepts the input word w if w can be
generated by the context-free grammar G. Therefore, L(M) = L(G) as
desired.]

Visually, we can think of the pushdown automaton constructed in the
proof of Lemma 2.18 in the following way, where the number of each
transition corresponds to its type:

Lee—sS 2.6, Ay ... o0
start — 2.6,A—¢€
3.c,c— €

Note that we don’t require the symbol L here, since we're only using
the stack to keep track of where we are in the grammar’s derivation.

80 CONTEXT-FREE LANGUAGES

Example 2.19

Consider the following context-free grammar G, where V = {S, A} and
Yo ={0,1,#}:
S—0S1]|A
A—#
This grammar generates words of the form 0"#1", where n > 0.
We convert the context-free grammar G to a pushdown automaton

M. Take Q = {gs,qr}, X =2¢, I =V U3q, qo = ¢s, and F = {qr}.
Finally, add the following transitions to §:

e 5(gs,€e,¢) = {(qr,S)}. This initial transition pushes the start
nonterminal S to the stack.

e d(qr,€,5) ={(qr,1590), (gr, A)}. These nonterminal transitions
account for the S rules.

e d(qr,€,A) = {(qgr,#)}. This nonterminal transition accounts for
the A rule.

L (S(QR,0,0) = {(qR76)}a 6(qR7 17 1) = {(QR76)}7 and 6(qRa#7#) =
{(qr,€)}. These terminal transitions match the terminal symbols
on the stack to the input word symbols.

This pushdown automaton M looks like the following:

cers S €S+ 150 0,0~ ¢
start @ ' 6S— A 1,1ee
e, A—# ##—ec

As an illustration of the computation of M, let’s look at the stack
as M reads an example input word 00#11. We can see that G generates
this word by the derivation S = 051 = 00511 = 00411 = 00#11.

0
-

00#11 00#11 00#11 (O#11 gOo#11 Oo#11

gow1l ggw1l gg#IL Og#IL OpLL

EQUIVALENCE OF MODELS 81

2.3.2. PDA = CFG

Now, we consider the other half of our main result. In order to convert
a pushdown automaton to a context-free grammar, we must first ensure
the pushdown automaton has certain properties: namely, the pushdown
automaton must have a single accepting state, it must empty its stack
before accepting, and each transition of the pushdown automaton must
either push to or pop from the stack, but not both simultaneously. Let
us refer to a pushdown automaton with these properties as a simplified
pushdown automaton.

Fortunately, it’s easy to convert from a pushdown automaton to a
simplified pushdown automaton.

e To ensure the pushdown automaton has a single accepting state, we
make each original accepting state non-accepting and add epsilon
transitions from those states to a new single accepting state.

e To ensure the pushdown automaton empties its stack before ac-
cepting, we add a state immediately before the accepting state
that removes all symbols from the stack.

e, A€
for each A €T

@ 8 €, €€ C

e To ensure that each transition of the pushdown automaton either
pushes to or pops from the stack, but not both, we split each
transition that both pushes and pops into two separate transitions.

:x,AHBQ — Qx,AHG—O e,eHBVO

Additionally, if we have an epsilon transition that neither pushes
nor pops, then we replace it with two “dummy” transitions that
push and then immediately pop the same stack symbol.

82 CONTEXT-FREE LANGUAGES

: T,€> € Q — Om,eHA‘O €7AH€‘O

With a simplified pushdown automaton, we can now perform the con-
version to a context-free grammar.

Lemma 2.20

Given a simplified pushdown automaton M recognizing a language
L(M), there exists a context-free grammar G such that L(G) = L(M).

Proof. Suppose we are given a simplified pushdown automaton M =
(Q,%3,T,6, 90, gaccept). We will construct a context-free grammar G =
(V,Xq, R, S) that generates the language recognized by M.

For each pair of states p and ¢ in M, our grammar will include a
rule Ay, that simulates the computation of M starting in state p with
some stack contents and ending in state ¢ with the same stack contents.
(Note that the stack may be manipulated during this computation; we
just ensure that the contents of the stack are the same at the beginning
and the end.)

We construct G in the following way:

e The set of nonterminal symbols is V = {A4,, | p,q, € Q}.
e The set of terminal symbols is Xg = 2.

e The start nonterminal is S = Ayyq....,. (i-e., the rule corresponding
to the computation starting in state gop and ending in state gaccept)-

e The set of rules R consists of three types of rules:

1. For each state g € @, add the rule A,; — € to R.

@

2. For each triplet of states p,q,r € @, add the rule A, —

ApgAgr to R.
@D (D)

3. For each quadruplet of states p,q,r,s € @, input symbols
a,b € Y U {e}, and stack symbol T € T, if (¢,T) € d(p, a, ¢€)
and (s, €) € 6(r,b, T), then add the rule A,; — aA,b to R.

EQUIVALENCE OF MODELS 83

: a,e—~T
: b, T+— € @

)

The first type of rule is a “dummy” rule that essentially corresponds
to staying in the state ¢ and adding nothing to the derivation. The
second type of rule breaks down the overall computation into smaller
components, taking into account intermediate states. Finally, the third
type of rule adds terminal symbols to the derivation depending on the
components of the overall computation.

With these rules, we can establish that the rule Agq,..... generates
a word w if and only if, starting in the state gy with an empty stack,
the computation of M on w ends in the state gaccept also with an empty
stack. Therefore, w is generated by the context-free grammar G if M
accepts w, and L(G) = L(M) as desired. [|

Example 2.21

Consider the following simplified pushdown automaton M, where ¥ =
{0,1} and T = {X, Y}:

0,e =X
l,e—Y

€,€— L
start
e, e~ X

0,Y— €
1,X—€

This pushdown automaton recognizes words of the form w - W%, where
w is w with Os and 1s swapped.

84 CONTEXT-FREE LANGUAGES

We convert the pushdown automaton M to a context-free grammar
G. Let V. = {Apo, Ao1, Aoz, Aos, Aoa, A1, A2, A1z, Ara, Asg, Ags, Aoy,
Ass, Asy, Ay} and take X = 3. We also take S = Agy, since gq is the
initial state and ¢4 is the accepting state of M. Finally, we add the
following rules to the rule set R:

° Type 1 rules: AOO — €, A11 — €, A22 — €, A33 — €, and A44 — €.
e Type 2 rules:

Aot — AgoAor | Ao1Ann

Az = Ago Aoz | Ao1 A1z | Ap2 A2z

Aoz — AooAos | Ao1Ais | Aoz A2z | AgzAss

Aoy — AgoAos | Aot Ars | Aoz Azy | AozAszy | ApsAys
Ajg = A Ao | AigAg

Az = A Az | A1p Aoz | A13Ass

Ay — An1Aiy | A1pAgy | A13Aszy | ArgAyy

Agz — AgaAgs | Aoz Ass

Agy — AgoAgy | Aoz Asy | AogAys

Azy — Az3Azy | Az4Ass

e Type 3 rules:
A13 — 0A131 | 1A130 | 6A226 (OI‘ just Agg)

A04 = 6A13€ (OI‘ just Alg)

As an illustration, let’s see how G derives an example input word
001011. Beginning from the start nonterminal A = Ay, the
derivation proceeds in the following way:

qoGaccept

Aoy = A1
= 0431
= 0 04131 1
= 00 14,30 11
= 001 Ay 011

= 001 € 011 = 001011.

EQUIVALENCE OF MODELS 85

2.3.3. CFG =PDA

Since we know by Definition 2.4 that a language is context-free if there
exists a context-free grammar generating the language, we can combine the
previous two lemmas to get the main result of this section.

Theorem 2.22

A language C' is context-free if it satisfies any of the following equivalent
properties:

1. There exists a context-free grammar G such that L(G) = C; or

2. There exists a pushdown automaton M such that L(M) = C.

We can think of this result as the final piece to obtain the context-free
analogue of Kleene’s theorem for the regular languages. Since context-free
grammars generate context-free languages, and since context-free grammars
can be converted to pushdown automata and vice versa, both models
correspond to the exact same language class. Unfortunately, this result
doesn’t get a nice name like Kleene’s theorem did, but perhaps the lack of a
name is justified when you consider the diagram we get isn’t as interesting
as the one we had for the regular languages:

CFG

PDA

(Not exactly a Scutum Fidei as before, but maybe a Gladius Fidei?)

We’re not yet finished, though. Thanks to the equivalence between
context-free grammars and pushdown automata, we can establish an impor-
tant result that relates the class of context-free languages to the class of
regular languages.

Theorem 2.23

Every regular language is also a context-free language.

Proof. Every regular language is recognized by some finite automaton.
Since a finite automaton is a pushdown automaton that does not use
the stack, every regular language is also recognized by some pushdown
automaton. Furthermore, by Theorem 2.22, every regular language
is generated by some context-free grammar. Therefore, every regular
language is context-free.]

Of course, we already know that there exist some context-free languages
that are not regular, so this inclusion only works in one direction.

86 CONTEXT-FREE LANGUAGES

2.4. CLOSURE PROPERTIES

@ Much like in the chapter on regular languages, here I intend to summarize
 the closure properties of various operations applied to context-free
languages. This section may prove to be more interesting, since certain

operations turn out not to be closed for the class of context-free languages.

Intersection. While it is true that context-free languages are closed under
union, it is in fact not true that they’re also closed under intersection.

Theorem 2.24

The class of context-free languages is not closed under intersection.

Proof. Consider the languages

L; = {a"b"c™ | m,n > 0} and
Ly = {a™b"c™ | m,n > 0}.

Both of these languages are context-free, so if the class of context-free
languages were closed under intersection, the language L; N Lo must
also be context-free. However, we can see that

Ll N L2 = {a”b”c" | n 2 0}

This language is not context-free, and we can reason informally about
this fact as follows: we can use the stack of a pushdown automaton to
count n as and match these symbols to n bs, but after this point we can
no longer use the stack to count an equal number of cs.]

Remark. In the following section, we will formally prove that the language
Ly N Ly ={a™"c™ | n > 0} is non-context-free.

Complement. We saw in our study of regular language closure properties
that, if closure holds under both union and intersection, then closure must
also hold under complement by De Morgan’s laws. Since the class of context-
free languages is not closed under intersection, it is therefore also not closed
under complement.

Theorem 2.25

The class of context-free languages is not closed under complement.

Proof. Follows as a consequence of non-closure of context-free languages

PROVING A LANGUAGE IS NON-CONTEXT-FREE 87

under intersection. [|

2.5. PROVING A LANGUAGE IS NON-CONTEXT-FREE

AT THE END of our discussion on regular languages, we saw that there
exist certain languages that are nonregular, and we also saw that we can
prove a language is nonregular by using the pumping lemma. One of the
biggest obstacles we observed that results in a language being nonregular
was, broadly speaking, having to count or otherwise keep track of symbols.
Fortunately, by augmenting our machine model with a stack and creating a
pushdown automaton, we were able to overcome this obstacle. Surely, this
means that we can now recognize any language we want, right?

Well, not exactly. While the stack goes a long way in helping us to
recognize more than just the class of regular languages, it isn’t the magic
solution we need in order to recognize any language. Consider, for example,
the language

Lo—p=c ={2"b"c" | n > 0}.

We know that a pushdown automaton can accept words of the form a"b™ by
pushing one symbol to the stack for each a that is read, and then popping
one symbol from the stack for each b that is read. When it comes to
recognizing words of the form a™b"c”, however, we run into a problem:
after we read all of the bs in the word, our stack will be empty and we will
therefore have forgotten the value of n by the time we have to count the cs!
We also can’t cheat our way around this problem by, for example, pushing
two symbols to the stack for each a we read; if we try that, then reading
either b or ¢ would require us to pop the same symbol, and we can draw a
conclusion that such an approach would result in the pushdown automaton
accidentally accepting words where bs and cs are either out of order or
having mismatched counts.

Thus, there do indeed exist languages that are not context-free, and
so we require a technique to prove the non-context-freeness of a language.
Fortunately, we’re mostly familiar with such a technique already: the
pumping lemma for regular languages is a special case of the more general
pumping lemma for context-free languages.

2.5.1. The Pumping Lemma for Context-Free Languages

You might be wondering at this point what we mean by the pumping lemma
for regular languages being a “special case”. Since regular languages are, in
a sense, simpler than context-free languages, our formulation of the pumping
lemma for regular languages was accordingly simpler: pumping the middle
portion of any sufficiently long word in a regular language results in us

88 CONTEXT-FREE LANGUAGES

U v T Y z

Figure 2.5. A path through a parse tree that visits some nonterminal symbol R
more than once.

obtaining another word that also belongs to the language. Pumping this
middle portion of the word essentially corresponds to us traversing a loop
somewhere in the finite automaton recognizing the language.

With context-free languages, however, we can’t just pump one portion
of the word. To understand why not, recall that we can represent the
derivation of a word in a context-free language using a parse tree. If our
word is sufficiently long, then the parse tree will be rather deep. Then, since
we have only a finite number of both rules and nonterminal symbols, the
pigeonhole principle tells us that there must exist some path from the root
of the parse tree to a leaf of the parse tree where some nonterminal symbol
R appears more than once along that path.

Remark. “Sufficiently long” in this context is measured in terms of both
the maximum number of symbols on the right-hand side of any rule of
the context-free grammar and the size of the set of nonterminal symbols.

Suppose that we decompose our word w not into three parts as we did
with the regular languages, but into five parts, denoted uvzyz. This decom-
position, represented as a parse tree, is shown in Figure 2.5. Considering
the subtree rooted at the first occurrence of R, we can regard everything
“outside of” this subtree as the w and z portions of the word, while everything
“inside of” this subtree comprises the vxy portion of the word. Since we
know that R reappears at some point within this subtree, we can further
consider the subtree rooted at the second occurrence of R, where everything
“inside of” this subtree is the middle x portion of the word. Observe that
we can repeat the first subtree rooted at R as many times as we want by
appending the subtree to some later occurrence of R. In doing this, we are
effectively pumping the segment of the subtree “between” both occurrences
of R when we perform this repetition; that is, we are pumping the v and y
portions of the word together, as depicted in Figure 2.6.

PROVING A LANGUAGE IS NON-CONTEXT-FREE 89

u z

(a) “Pumping” the parse subtree rooted at R zero times.

U v x Yy z

(b) “Pumping” the parse subtree rooted at R one time.

v € Y
(c) “Pumping” the parse subtree rooted at R two times.

Figure 2.6. Three examples of the pumping lemma for context-free languages
applied to the parse tree depicted in Figure 2.5.

90 CONTEXT-FREE LANGUAGES

With this idea in mind, the formal statement of the pumping lemma for
context-free languages is quite similar to that of the pumping lemma for
regular languages, modulo the appropriate changes.

Lemma 2.26 (Pumping lemma for context-free languages)

For all context-free languages L, there exists p > 1 where, for all w € L
with |w| > p, there exists a decomposition of w into five parts w = uvzyz
such that

1. |vy| > 0;
2. |vay| < p; and

3. for all i > 0, wv'ay’z € L.

=\ I plan on adding a little more motivation for the proof here, before we
 jump right into the fine details.

Proof of Lemma 2.26. Let G = (V, X, R, S) be a context-free grammar
such that L(G) = L, and let b > 2 denote the branching factor of G;
that is, the maximum number of terminal and nonterminal symbols
occurring on the right-hand side of any rule of G. If the height of some
parse tree of G is h, then the length of any word derived using that
parse tree will be at most b".

Let n = |V| denote the number of nonterminal symbols of G, and
take p = b"*!. By our earlier observation, any word generated by G
whose parse tree contains no path with a repeated nonterminal must
have length at most b”. Moreover, since b > 2, we must have that
bt > pn.

Let w be any word in L(G) where |w| > p, and let T' be a parse tree
for w of minimal size. We know, again by our earlier observation, that
T must have a height of at least n 4+ 1. Choose some path in 7" with
length at least n + 1, and take R to be the deepest nonterminal in the
parse tree that occurs more than once in this path.

Decompose the word w into five parts, uvzyz, such that the subtree
rooted at the upper occurrence of R has height at most n + 1 and the
parts u and z are outside of the subtree rooted at the upper occurrence
of R. We must have that |vy| > 0, since otherwise there would exist
a smaller parse tree for w, which contradicts our assumption that 7'
was of minimal size. Furthermore, the yield of this subtree, vzy, is a
subword with length at most p = b"*!. Finally, the word uzz is in L
since we could replace the subtree rooted at the upper occurrence of R

PROVING A LANGUAGE IS NON-CONTEXT-FREE 91

with the subtree rooted at the lower occurrence of R that yields only
the part =, and for ¢ > 1, all words of the form wv’zy’z are in L since
we can place copies of the subtree rooted at the upper occurrence of R
at each subsequent occurrence of R. Therefore, all three conditions of
the pumping lemma are satisfied.]

Using the Pumping Lemma. Just like before, we can write a proof that
some language is non-context-free by simply following a common set of steps.
As a consequence, all non-context-freeness proofs share a similar structure.
To see such an example of a proof, let’s revisit the language we introduced
at the beginning of this section.

Example 2.27

Let X = {a,b, c}, and consider the language
Ly—p—c = {a"0"c" | n > 0}.

We will use the pumping lemma to show that this language is non-
context-free.

Assume by way of contradiction that the language is context-free,
and let p denote the pumping constant given by the pumping lemma. We
choose the word w = aPbPcP. Clearly, w € Lo—p—. and |w| > p. Thus,
there exists a decomposition w = wvzryz satisfying the three conditions
of the pumping lemma.

Observe that the first condition of the pumping lemma requires that
either part v or part y is nonempty; potentially both could be nonempty.
We consider two cases, depending on the contents of the parts v and y
of the word w:

1. Both part v and part y contain some number of a single alphabet
symbol; that is, v contains only as, only bs, or only cs, and likewise
for y. (Note that v and y do not need to contain the same alphabet
symbol; for example, v could contain only as and y could contain
only bs.)

In this case, pumping v and y once to obtain the word uv?zy?z
results in the word containing unequal numbers of as, bs, and cs.
This violates the third condition of the pumping lemma.

2. Either part v or part y contains some number of multiple alphabet
symbols; that is, either v or y contains both as and bs, or both bs
and cs.

92 CONTEXT-FREE LANGUAGES

In this case, pumping v and y once to obtain the word uv?zy?z
results in the word containing symbols out of order. This violates
the third condition of the pumping lemma.

In all cases, one of the conditions of the pumping lemma is violated.
As a consequence, the language cannot be context-free.

By a similar line of reasoning, we can show that the language
Loy—c/b—a = {a"d™c"d™ [m,n > 1}

is non-context-free, since there’s no way for us to separate the counts of
as/cs and bs/ds using only one stack.

Recall that, before, we used the pumping lemma for regular languages
to show that the language Ly = {ww® | w € ¥*} was nonregular. We can
easily show that the language of palindromes is context-free. However, sup-
pose we modify the language of palindromes so that the reversed occurrence
of the word w is instead just a repetition of w. This “doubled” language
has an almost identical structure to the language of palindromes, but it
happens to be non-context-free!

Example 2.28

Let ¥ = {a,b}, and consider the language
Ldouble = {ww ‘ w e E*}

We will use the pumping lemma to show that this language is non-
context-free.

Assume by way of contradiction that the language is context-free,
and let p denote the pumping constant given by the pumping lemma. We
choose the word s = aPbPaPb?. Clearly, s € Lgouple and |s| > p. Thus,
there exists a decomposition s = uvxyz satisfying the three conditions
of the pumping lemma.

Observe that the second condition of the pumping lemma requires
that |vzy| < p. Here, we will consider two cases, depending on the
contents of the middle portion vxy of the word s:

1. If vay occurs entirely within the first half of s (that is, within
the first occurrence of aPbP), then as a consequence of the fact
that |vzy| < p, we must have one of the following subcases: vay
contains all as, vzy contains all bs, or vaxy contains both as and
bs, where all as occur before bs.

In any of these three subcases, pumping v and y once to obtain the
word uv?xy?z results in the first half of the word differing from

CHAPTER NOTES 93

the second half of the word. We can make an analogous argument
if vaxy occurs entirely in the second half of s. This violates the
third condition of the pumping lemma.

2. If vay straddles both halves of s, then v and y must contain
different symbols as a consequence of the fact that |vzy| < p.
Pumping v and y down to obtain the word uwv®zy°z = uzz results
in the first half containing fewer bs than the second half, and the
second half containing fewer as than the first half. This violates
the third condition of the pumping lemma.

In all cases, one of the conditions of the pumping lemma is violated.
As a consequence, the language cannot be context-free.

2.5.2. Ogden’s Lemma ¢

2\ Sometimes the pumping lemma fails in that non-context-free languages

I may satisfy the lemma’s conditions (see, e.g., Wise [1976] and Horvdth
[1978]). Ogden’s lemma [1968] is a stronger formulation of the pumping
lemma and, although it is still imperfect (see, e.g., Boasson and Horvéth
[1978], Bader and Moura [1982], and Kracht [2004]), it allows us to estab-
lish non-context-freeness for more languages as well as to prove inherent
ambiguity rather more easily.

Summary. At this point, let’s now revisit the diagram we introduced in
Figure 1.12 and add to it the class of context-free languages. On the
one hand, we know that all of the languages we previously showed to be
nonregular belong to our new context-free class, but on the other hand, we
also now know that there exist languages that aren’t context-free. Therefore,
sadly, our diagram is still incomplete, but the end is in sight: we will take
care of the final classes in the next chapter.

CHAPTER NOTES

A COMPREHENSIVE EARLY SURVEY of the theory of context-free languages
can be found in the book by Ginsburg [1966].

2.1. The study of context-free grammars has its origins in the more general
study of phrase structure grammars, which are a means of performing
immediate constituent analysis; that is, dividing up a sentence into
constituent parts, much like we did with the parse tree in Figure 2.2.
In linguistics, immediate constituent analysis dates back to the work

94

CONTEXT-FREE LANGUAGES

ww anbncn anbmcndm

Regular Languages
aUba {a,b}*c 01*U1

n

X Finite Languages a
{e} {a} 0
Acyclic DFAs

Finite Automata

Figure 2.7. The hierarchy of language classes and models of computation, as we
know it currently.

of Bloomfield [1933], and attempts to formalize the notion were made
by Harris [1946] and Wells [1947]. One can argue that the point at
which linguistics and mathematics merged began with the work of
Chomsky [1956], which was inspired by the earlier canonical systems
of Post [1943] and the string rewriting systems of Thue [1914].

The name “context-free” seems to be due to Chomsky [1959b], although
this terminology took some time to catch on: Chomsky previously
referred to context-free grammars as “type 2 grammars” [1959a], while
Bar-Hillel, Perles, and Shamir [1961] called them “simple phrase
structure grammars” and Ginsburg and Rice [1962] referred to the
languages generated by such grammars as “definable sets”.

Parikh [1961] was the first to demonstrate the existence of inherently
ambiguous context-free grammars; specifically, he showed that no
unambiguous grammar exists for the context-free language

{a"b™a" b™ | m,n,n’ > 1} U{a"b™a"b™ | m,m’,n > 1}.

As we noted, Chomsky normal form was introduced by Chomsky
[1959a]. In fact, Chomsky proved an even stronger result in his paper:
every context-free language has a context-free grammar where not
only do all rules take the form A — a or A — BC, where A, B,C € V,
a € ¥, and B # C, but also if the grammar has rules of the form
A — a1 Bas and A — v B7ys, then either o =y, =€ or ag = v =¢.

CHAPTER NOTES 95

2.2,

2.3.

2.4.

Lange and Leif} [2009] observed a connection between the order in
which steps are applied to convert a grammar to Chomsky normal form
and the size of the resultant grammar, where size is measured in terms
of the number of symbols needed to write the grammar. If we denote
the size of the original grammar by |G|, a suboptimal ordering of steps
(specifically, where DEL comes before BIN) produces a resultant
grammar having a size of 22/¢! in the worst case, while the order in
which we apply the steps here produces a grammar of size |G|? in
the worst case. It turns out we cannot do better than this quadratic
factor, which is incurred via the UNIT step.

The earliest mention of a machine that uses pushdown storage to
perform a computation seems to be in an article by Burks, Warren,
and Wright [1954], where the authors give an algorithm to check
the well-formedness of a parenthesis-free Boolean formula; that is, a
formula written in the Polish notation of Lukasiewicz [1929]. A more
explicit construction of a machine using pushdown storage was given
by Newell and Shaw [1957], who described a machine that manages
memory usage by keeping addresses of free memory locations on an
“available-space list”. The addresses of recently freed memory locations
are pushed to the front of this list, and memory needs are handled by
popping addresses, again, from the front of the list. (On an unrelated
note, this so-called “Logic Theorist” machine described by Newell,
Shaw, and Herbert A. Simon was the first description of a computer
that makes use of automated reasoning, and is considered by some to
be the first-ever implementation of artificial intelligence.)

The term “pushdown store” itself is due to Oettinger [1961]. The
first use of pushdown storage pertaining to the class of context-free
languages seems to be due to Chomsky [1962].

We observed that nondeterministic pushdown automata are more
powerful than deterministic pushdown automata in that the nondeter-
ministic model recognizes more languages. The study of deterministic
context-free languages was initiated by Ginsburg and Greibach [1966].

The equivalence in recognition power between context-free grammars
and pushdown automata was established by Chomsky [1962] and
Chomsky and Schiitzenberger [1963], and independently by Evey
[1963a,b]. However, each of their approaches to showing equivalence
is rather more complex than the one presented here.

Closure of the class of context-free languages under union, as well
as non-closure under intersection and complement, was established
by Scheinberg [1960].

96 CONTEXT-FREE LANGUAGES

2.5. The pumping lemma for context-free languages is due to Bar-Hillel,
Perles, and Shamir [1961].

We know from the previous chapter that the language of binary
representations of prime numbers, Lprimes2, is nonregular. Hartmanis
and Shank [1968] further established that this language cannot be
accepted by any pushdown automaton, and therefore it is also non-
context-free. The same result, proved via a different approach, was
published independently by Schiitzenberger [1968].

CHAPTER THREE

DECIDABLE AND SEMIDECIDABLE
LANGUAGES

WHEN WE INTRODUCED pushdown automata, we saw that augmenting our
machine with a stack gave it a rudimentary form of memory, and it could
use this memory to recognize a larger set of languages. However, despite
the fact that the stack has an unbounded capacity (and is therefore able to
store as many symbols as it wants), we are still limited by the fact that it’s
a stack, meaning it can only access the top symbol at any given time.

So, how do we overcome this limitation? Let’s try adding not one but
two stacks to our machine! It may not sound like a huge or meaningful
change—after all, what can we get with another stack that we didn’t already
have with the first stack?—but, just like with heads, it turns out that two
stacks are better than one.

Suppose we now have two stacks available for us to use. For the purposes
of this example, the stacks have been initialized with some symbols already
in them.

Even with two stacks, we can still only access the top symbol of each stack:
in the first stack, we can access the symbol o, and in the second stack, we
can access the symbol s.

But what happens if we use the two stacks in tandem? Suppose we pop
one symbol from the second stack, say s, and push it to the first stack.

97

98 DECIDABLE AND SEMIDECIDABLE LANGUAGES
I

/
H
5]
o]

Now, we have access to the symbol t that was previously beneath s in the
second stack, and we haven’t lost the symbol s since it’s safely stored in the
first stack! Similarly, if we pop that symbol t from the second stack and
push it to the first stack, we can get access to the symbol a in the second
stack.

It’s looking like having two stacks is far more meaningful than we might’ve
initially thought. We can push and pop symbols between the two stacks in
order to get access to any symbol we’ve stored in the machine’s memory,
instead of only the most recent symbol at the top.

Indeed, if we took our two stacks and we aligned them horizontally in
such a way that the “bottoms” of each stack were on the left and right
edges. ..

...we would get a new form of storage: a tape.

With a tape, we can move left and right through each cell and access
each symbol stored on the tape whenever we want. Indeed, this is exactly
what we were doing when we pushed and popped symbols between our two
stacks: whatever symbol we're reading on our tape is the symbol found at
the top of our second stack.

Just like our stacks have unbounded capacity, our tape has infinite length.
We can write as many symbols to the tape as we want, and we can write
them to either the left side or the right side of the tape.

o[[[ef#[o]s]efa]x[s]s[a]]2]p[e] | ||

TURING MACHINES 99

Since we can now access any symbol of the tape that we want, tape cells
that do not contain a symbol become an important consideration. With
stacks, we need not worry about blank spaces: since we can only push to or
pop from the top of a stack, we have no opportunity to leave gaps and so
we never encounter a situation where two symbols are separated by a blank
space. If we remove a symbol from a tape, however, the symbols to the
left and to the right of the removed symbol do not adjust their positions to
compensate. Thus, we notate blank spaces on a tape using the symbol |, .

L fslsle]w]o]s]e]a]x]u]=[u]®[a]p[e[s]s]]

Now that we know the basics of working with tapes, we're ready to
replace the stack on our machine with a tape. In doing so, we will obtain
one of the most powerful abstract models of computation possible: even
more powerful than any real-world computer!

3.1. TURING MACHINES

THE FOCUS OF THIS SECTION, the Turing machine, is a model of compu-
tation that consists of three main components: a finite automaton and an
infinite-length tape, connected to one another by an input head. The finite
automaton keeps track of where we are in the computation, while the tape
serves as the machine’s memory throughout the computation.

At the beginning of a computation, the tape holds the input word given
to the Turing machine, and all other cells of the tape are blank. Since the
input word is initially stored on the tape, we can assume that the input
alphabet ¥ is a subset of the tape alphabet I'. The input head of the Turing
machine starts on the leftmost symbol of the input word. It can move along
the tape, and it can both read from and write to cells of the tape. In this
way, we can use the tape to store and modify not only the input word, but
also any auxiliary information we need to use during the computation.

To model the movement of the Turing machine’s input head along the
tape, we must account for the direction of movement in the transition
function. To figure out the next step of the computation, our transition
function will take as input our current state and the tape symbol the input
head reads in the current cell, and it will produce as output the state we
will transition to, the tape symbol the input head will write to the current
cell, and the direction in which the input head will move: one cell leftward
(L) or one cell rightward (R).

Another key difference that sets Turing machines apart from finite
automata and pushdown automata is in how they accept or reject input
words. Unlike finite automata or pushdown automata, which eventually run
out of symbols by reaching the end of the input word, a Turing machine
could possibly read the symbols on its tape as many times as it wants.

100 DECIDABLE AND SEMIDECIDABLE LANGUAGES

Finite
automaton Input head

y
I— [fofofefoft]s]o]u] -]

Tape

Figure 3.1. An illustration of a Turing machine.

Therefore, we must fix two special “accept” and “reject” states where, if
the computation of the Turing machine ever enters one of those states, it
immediately halts the computation and accepts or rejects the input word
accordingly. Note that if the Turing machine doesn’t enter either of these
states during its computation, then it will continue to compute indefinitely.

Apart from these changes, the formal definition of a Turing machine is
quite similar to our definitions for finite automata and pushdown automata.

Definition 3.1 (Turing machine)

A Turing machine is a tuple (@, 3,T", 6, go, Gaccept s Greject)s Where

e () is a finite set of states;

Y is the input alphabet (where |, & X);
T is the tape alphabet (where , € T and ¥ C T');

0 1 (@ \ {qaccepts Greject }) X I' = Q x T x {L, R} is the transition
function;

® gy € Q is the initial or start state;
® Gaccept € @ is the final or accepting state; and

® Greject € @ is the rejecting state, where greject 7 Gaccept-

Figure 3.1 depicts a typical visualization of a Turing machine.

Remark. Now is a good point for one more moment of grammatical
pedantry. The present model of computation is called a “Turing ma-
chine”, as it was named after the famed mathematician and father of
computer science, Alan Turing. Unfortunately, for whatever reason, a
nonzero percentage of the computer science community refers to this
model as a “Turning machine”. This is, of course, incorrect, and offenders
should be given a biography of Turing to read immediately.

TURING MACHINES 101

Example 3.2

Consider the language L,—, = {2"b"™ | n > 1}. Even though we know
this language is context-free, and is therefore recognized by a pushdown
automaton, let’s construct a Turing machine recognizing the language.

The idea behind our Turing machine is as follows. Given an input
word of the form a™b™ on the tape, the input head will move back and
forth, replacing all as with Xs and all bs with Ys. In a sense, the input
head is “marking” as and bs as it sees them. Each time the input head
replaces an a with an X, it will move rightward in an attempt to find a
matching b that it can replace with a Y. The input head will then move
leftward and repeat the process until no more as remain.

We formally define the Turing machine as follows:

o Q=1{q0,91,92,93, 94 qR};
¥ ={a,b};

F = {a7b7X7Y7 I.I}v

® do = qo;

Gaccept = 44;

Greject = 4R; and

0 is specified by the following table:

I a b X Y U
qo (QI, X, R) - T (q37 Y0, R) -
q1 (q17 a, R) (q27 Y, L) T (qla Vi, R) T
q2 (q25a7 L) T (qo,X,R) (q2aY3 L) T
q3 — — — (q37 Y, R) (q47 L R)
q4 X X X X X
qr X X X X X

Note that we can’t have any transitions from either state g4 or gg,
since those are the accepting and rejecting states, respectively. Thus,
we fill those rows with the symbol x. Also, instead of indicating all
undefined transitions explicitly, we just assume that any undefined
transition in the table (—) automatically leads to state gg.

We can draw this Turing machine graphically, just like a finite au-
tomaton or a pushdown automaton. To reduce the number of transitions
we need to draw, we will omit the state gr and all transitions leading
to it, and we will just assume (again) that all transitions not included
automatically lead to state qgr. The Turing machine looks like the
following:

102 DECIDABLE AND SEMIDECIDABLE LANGUAGES

X=X R

start

Y=Y R

Y=Y R @
UHUaR

Now, suppose we give the input word aaabbb to this Turing machine.
The actions of the Turing machine are depicted in Figure 3.2. The input
head starts its computation in state gy on the leftmost symbol of the
input word and, moving from the top to the bottom of each column, we
highlight the state of the machine and the input head’s current tape
cell at each step. Since the computation halts in the accepting state gq4,
we know that the machine accepts the word aaabbb.

3.1.1. Configurations and Accepting Configurations

You may have noticed in Figure 3.2 that the computation of the Turing
machine on the given input word took up a lot of space on the page. This is
because we had to draw the current state, the entire tape, and the position
of the input head on the tape, all at each step. Fortunately, however, there
is a more concise way to present this information.

All we need to specify a particular stage of the computation is the
current state, the current tape contents, and the current input head posi-
tion, and we can represent all of this using a single sequence of symbols.
This sequence is called a configuration of the Turing machine. If the
Turing machine is currently in a state ¢, its tape contains the symbols
X1 Xo--- X; 1X;--- X,,_1X,, and its input head is at cell i of the tape,
then the configuration of the Turing machine at this moment is written

D CP.CREED. CRET/D. CREED. CHED, %

If we can get from a configuration C; to a configuration C;;; in a single
computation step, then we say that C; yields C;y1 and we write C; - C;11.
Formally, given a,b,c € I', u,v € I'*, and ¢;,q; € Q, we say that uag;bv
yields uacg;v if §(¢;,b) = (¢;, ¢, R). We can define the notion of “yields” for
leftward moves similarly.

103

TURING MACHINES

Figure 3.2. A trace of the behaviour of the Turing machine recognizing the

language La—1, from Example 3.2.

104 DECIDABLE AND SEMIDECIDABLE LANGUAGES

Example 3.3

Recalling the Turing machine’s computation from Example 3.2, the first
five configurations of the machine are

qoaaabbb - Xg;aabbb | Xaq; abbb - Xaag; bbb - XagsaYbb - - - -

By our earlier definition, we know that a Turing machine includes dedi-
cated accept and reject states, and we know that the machine’s computation
either accepts or rejects once it enters the appropriate state. With the
notion of configurations, we can specify exactly what it means for a Turing
machine to accept or reject its input word.

If we have a Turing machine M and an input word w, then we say that
the start configuration of M on w is qow. In this configuration, M is in its
initial state qg, and the input head of M is on the leftmost symbol of the
input word.

Likewise, an accepting configuration is one where the current state of M
iS Gaccept, and a rejecting configuration is one where the current state of M
is @reject- Note that, in either configuration, we only care about the state
and not the tape contents. This is because once we enter the accepting or
rejecting state, the computation immediately halts, and so the tape contents
don’t have any effect on the accepting or rejecting configuration.

We can now formally define what it means for the Turing machine M
to accept its input word w.

Definition 3.4 (Accepting computation of a Turing machine)

Let M = (Q,X%,T,9, qo, Gaccept, Greject) be a Turing machine, and let w
be an input word. The Turing machine M accepts the input word w if
there exists a sequence of configurations Cy,Cs, ...,), satisfying the
following conditions:

1. C is the start configuration of M on w;
2. C;F Ciyq forall 1 <i<(n—1); and

3. (), is an accepting configuration.

We can write a similar definition for a rejecting computation of a Turing
machine by considering rejecting configurations in the third condition.
3.1.2. Language of a Turing Machine

Just as with other types of automata, every Turing machine recognizes some
language. The set of all input words accepted by a Turing machine M is

TURING MACHINES 105

referred to as the language of the machine M, written L(M). However, the
class to which some Turing machine’s language belongs is determined by
the machine’s behaviour on each input word.

We noted earlier on that, unlike with finite automata and pushdown
automata, a Turing machine cannot run out of input symbols. Indeed, it
can read the symbols on its tape as many times as it wants. The machine’s
computation immediately halts once the machine enters either the accepting
or the rejecting state, but there’s no guarantee that it will ever enter either
of these states during its computation. We must account for the possibility
that the machine simply never ends its computation; that is, the machine
enters a loop.

Taking this outcome into account, we see that Turing machines can
recognize two “types” of languages: languages where the Turing machine
always gives us an accept/reject answer for each input word, and languages
where the Turing machine might enter a loop and give no answer for certain
input words.

Decidable Languages. Let’s first focus on the scenario where the machine
always either accepts or rejects every input word its given. If the Turing
machine accepts all words that belong to its language and rejects all words
that don’t belong to its language, then we say that the machine decides its
language.

Definition 3.5 (Decidable language)

Given a Turing machine M, we say that the language L(M) is decidable
if

e whenever w € L(M), then M accepts w; and

e whenever w & L(M), then M rejects w.

We denote the class of decidable languages by D. In the literature,
the class of decidable languages is sometimes called the class of recursive
languages, where the term “recursive” comes from the origins of computer
science and its connections to recursive functions and sets.

Example 3.6

Consider the language L,—p—. = {a"b"c™ | n > 1}. We know that
this language is non-context-free, so we can’t construct a pushdown
automaton recognizing the language. Let’s instead construct a Turing
machine recognizing the language.

Our Turing machine will function in much the same way as the

106 DECIDABLE AND SEMIDECIDABLE LANGUAGES

machine we constructed to recognize words of the form ab”; moving

from left to right, we will match symbols up to one another by replacing
the symbols on the tape.

Suppose our alphabets are ¥ = {a,b,c} and I' = {a,b, ¢, X, Y, Z, ,}.
The Turing machine, then, will look like the following:

X=X R

start — ‘@ q2
aHX,R\EfbHY,R c—Z, L
Y=Y R a—a,R b+—b, R ara,L
Y=Y R Z—Z,R Y—Y L

b+— b, L

Y— Y, R 77 I

Z—Z,R

This Turing machine decides the language L,—1,—. because (i) if some
input word w belongs to this language, then the machine will accept it;
and (ii) if some input word w does not belong to this language, then
the machine will (implicitly) go to the rejecting state greject-

Example 3.7

Consider the language Laoublez = {w#w | w € £*}. This language is
very similar to the language Lqgouple, which we previously showed was
non-context-free. The key difference with this language, though, is the
presence of a separator symbol # between the two occurrences of w.

Let’s construct a Turing machine for the language Lqouble. The
idea behind this Turing machine is to move back and forth between
each copy of w, marking off each symbol in the first copy and using
the states of the machine to “remember” this symbol as we move to
the second copy. If the machine is able to match every symbol in both
copies of the word, then it accepts. Otherwise, it (implicitly) rejects.

Suppose our alphabets are ¥ = {a,b} and I" = {a,b,X,}. The
Turing machine will look like the following:

TURING MACHINES 107

ar—a, R
b—b, R X=X R
#—# R
ar— a,L
b+ b, L
Q X—X L
> N
{{
#—# R =, R
start v@u = v@
7 &
X—X R 0
O ONNG
a—a,R X=X R
b—b R ar—ra, L
x b—b, L
X—X R

This Turing machine decides the language Lqgoubles because it accepts
all words of the form w#w and (implicitly) rejects all other words.

Just like we were able to prove in the previous chapter that every regular
language is context-free by showing that each regular language is recognized
by some finite automaton, we can similarly prove that every context-free
language is decidable by showing that for any context-free language we're
given, there exists some Turing machine capable of deciding that language.

Theorem 3.8

Every context-free language is also a decidable language.

I still need to write this proof.
i

Semidecidable Languages. As we mentioned before, unlike with finite
automata and pushdown automata where the computation of the machine
immediately ends after running out of input symbols to read, there’s no
requirement specifying that the computation of a Turing machine must
come to an end. It’s possible that, given certain input words, the machine

108 DECIDABLE AND SEMIDECIDABLE LANGUAGES

could find itself in an infinite loop as it never transitions to its accepting or
rejecting states. In this case, the Turing machine still has a language—as
always, it’s the set of input words for which the Turing machine has an
accepting computation—but we can’t say that the Turing machine decides
this language, since it may not explicitly reject all words not belonging
to its language. If this is the case, then we instead say that the machine
semidecides its language.

Definition 3.9 (Semidecidable language)

Given a Turing machine M, we say that the language L(M) is semide-
cidable if,

e whenever w € L(M), then M accepts w; and

e whenever w ¢ L(M), then either M rejects w or M enters an
infinite loop.

)

Remark. The prefix “semi-” comes from a Latin prefix meaning “half”.
Thus, the word “semidecidable” can be taken to mean “half decidable”,
in that a Turing machine that semidecides its language is only capable
of properly deciding half of the possible outcomes: acceptance, but not
rejection.

We denote the class of semidecidable languages by SD. In the litera-
ture, the class of semidecidable languages is sometimes called the class
of recognizable languages or recursively enumerable languages. The term
“recursively enumerable” again comes from a connection to mathematics and
the notion of recursively enumerable sets. In a machine-oriented context, a
recursively enumerable language is one for which a Turing machine can list
(or enumerate) every word in the language.

We can come up with any number of artificial examples of semidecidable
languages, but few such examples are interesting; in fact, it’s often the
case that making a small change to the Turing machine recognizing such a
language results in that language becoming decidable anyway. Therefore,
we'll skip the examples for now. In the next lecture, we’ll focus on some
more natural examples of semidecidable languages, where “natural” means
that the language models some inherent property or quality of the machine
that recognizes it.

For now, though, we can still prove some nice properties about this class
of languages. Directly from the definitions, we get a connection between
decidable and semidecidable languages.

TURING MACHINES 109

Theorem 3.10

Every decidable language is also a semidecidable language.

Proof. Both decidable languages and semidecidable languages are rec-
ognized by Turing machines. If some Turing machine M decides its
language, then by Definition 3.5, every input word w € L(M) is ac-
cepted by M and every input word w ¢ L(M) is rejected by M. But
this behaviour exactly matches that specified in Definition 3.9, and so
we can say that M semidecides its language as well.]

3.1.3. Computing Functions

When we think about the definition of a Turing machine, we realize that
it has all the components we would expect a standard computer to have:
a Turing machine can receive input, it can process this input, it can store
data on its tape, and it can produce output by writing something to its tape
before finishing its computation. It is evident that Turing machines are a
step above our previous models of finite automata and pushdown automata.
While these weaker models can receive input, the most they can do with
that input is read the symbols and eventually give us one of two answers:
“accept” or “reject”. In essence, finite automata and pushdown automata
are more recognizers than they are computers.

Since a Turing machine can do much more than recognize its input, we
might as well use it to its full potential by performing actual computations,
and among the simplest of computations is taking a value n and producing
a value f(n) for some mathematical function f. This gives rise to the notion
of computable functions, which, as the name suggests, are functions that
can be computed on a Turing machine.

Definition 3.11 (Computable function)

A function f: ¥* — X* is computable if there exists some Turing
machine that, given an input word w, finishes its computation with
f(w) written to its input tape and nothing else.

There are many examples of computable functions. Just to name a
few: every constant function, arithmetic functions such as addition and
multiplication, number-theoretic functions such as greatest common divisor
and least common multiple, and every function with a finite domain are all
computable.

Let’s now consider some concrete examples of how a Turing machine
computes a function.

110 DECIDABLE AND SEMIDECIDABLE LANGUAGES

Example 3.12

The function f(n) = 2n is a computable function. A Turing machine
M, can take as input a word consisting of n copies of 1 and produce
as output a word consisting of 2n copies of 1 in the following way:

1. Erase the leftmost 1 from the tape.

2. Move rightward past the remaining 1s in the input word, plus one
blank cell, plus any existing 1s in the output word.

3. Write a 1 to the rightmost blank cell, then move rightward and
write a second 1.

4. Move leftward to the leftmost 1 in the input word.

5. Repeat these steps n times.

=\ I plan to add a couple more examples of computable functions here; say,
(computing f(n) = n!, or showing how a Turing machine would add two
numbers together.

Many computer scientists have written about the “right” kind of charac-
terization, or set of properties, that ensures a function is computable by a
Turing machine. For example, Enderton [1977] specifies three properties a
function must possess in order for it to be computable:

1. The description of how to compute the function must be a finite-
length list of exact instructions.

2. Given an input w in the domain of the function, the computation
must produce the output f(w) after a finite number of computation
steps.

3. Given an input w not in the domain of the function, the compu-
tation may loop forever or get stuck, but it must not produce an
incorrect output.

Looking back at our examples, we can see that each of the functions
we studied obeys these three criteria, and so we can reasonably call these
functions computable. The exercise of determining what makes a function
computable straddles the border between computer science and philosophy;
in Section 3.6, we’ll dive into a much deeper discussion of what exactly a
Turing machine is capable of computing.

VARIANTS OF TURING MACHINES 111

3.2. VARIANTS OF TURING MACHINES

THE DEFINITION OF a Turing machine that we gave earlier in this lecture is
by no means a canonical definition. When we chose to give our machine a
deterministic transition function, or a single tape, or a two-way infinite tape,
we made those choices simply to fix some definition of a Turing machine.
Since we are just introducing Turing machines for the first time in this
lecture, we decided to go with a relatively easy-to-understand definition: the
single, two-way infinite tape allowed us to use our “two stacks” perspective
to motivate the definition, and deterministic transition functions are more
straightforward to reason about.

Just like we defined different types of finite automata, nothing is stopping
us from modifying our definition of a Turing machine. However, one of the
most remarkable results in theoretical computer science is that we can make
pretty much any modification to our definition of a Turing machine, and it
won’t affect the recognition power of the model. The Turing machine is, in
a sense, the Platonic form of a computer; nearly any variant definition we
choose grants us sufficient power to recognize the large classes of decidable
and semidecidable languages.

To illustrate, here we will make a number of modifications to our Turing
machine definition, and we will then prove that each modified definition
is equivalent to our original definition. This will give us a wide array of
variant Turing machine models that we can choose from when we’re trying
to recognize certain languages.

3.2.1. Nondeterministic Turing Machines

The first natural modification we can make to our definition is to take the
transition function § to be nondeterministic. Just like with our other models
of computation, a nondeterministic transition function for a Turing machine
will map a pair of state and tape symbol to the power set of tuples of state,
tape symbol, and input head movement.

Definition 3.13 (Nondeterministic Turing machine)

A nondeterministic Turing machine is a tuple (Q,%,T,0,qo,
Qaccept s Qreject), Where everything is defined as in Definition 3.1 except
for the transition function, which is

J: (Q \ {qacccpt)qrcjcct}) xI' =P (Q x I' x {LvR}) °

We saw that deterministic and nondeterministic finite automata are
equivalent in terms of recognition power, while nondeterministic pushdown
automata are able to recognize more languages than deterministic push-

112 DECIDABLE AND SEMIDECIDABLE LANGUAGES

down automata. With Turing machines, we return to equivalence: adding
nondeterminism to a Turing machine does not give it more recognition
power.

Theorem 3.14

Given a nondeterministic Turing machine M, we can construct a deter-
ministic Turing machine M’ such that L(M') = L(M).

Proof. Let M = (Q,%,T,6, o, qaccept: dreject) be @ nondeterministic
Turing machine. We will construct a deterministic Turing machine M’
that uses three tapes to simulate the nondeterministic computation of

M.

e The first tape will be the input tape, and it will contain the input
word given to M. The contents of the input tape will not be
changed during the computation.

e The second tape will be the simulation tape, and it will simulate
the contents of M’s tape as M performs its nondeterministic
computation.

e The third tape will be the address tape, and it will keep track of
where we are in the nondeterministic computation tree of M.

Before we proceed, let’s consider how we can represent the nondetermin-
istic computation tree of M on a linear form of storage like a tape. If
we take b to denote the maximum number of branches in the tree (that
is, the maximum number of nondeterministic transitions M can follow
at any given point in its computation), then we can assign a unique
address to each vertex of the tree over the alphabet ¥, = {1,2,...,b}.
The address is determined by tracing the branches we must follow in
order to get from the root to that vertex; for example, the vertex with
address 123 can be reached by starting at the root of the tree and taking
the first branch, followed by the second branch, followed by the third
branch. As a consequence of this convention, the root of the tree receives
the address e.

/\ e
/\\

122 123 22

b—‘\

22

VARIANTS OF TURING MACHINES 113

The address tape, then, contains symbols from the alphabet 3.
Each symbol on the address tape will tell M’ which branch of the
nondeterministic computation tree it must follow in its next computation
step. Note that the contents of the address tape do not necessarily need
to correspond to a vertex of the tree; if the address tape contains an
invalid address, then M’ simply aborts its attempted simulation of that
branch.

Having defined the three tapes, we can describe how M’ simulates
the computation of M:

1. Initialize the tapes in the following way:

(a) Copy the contents of the input tape to the simulation tape;
that is, write the input word w given to M to the simulation
tape.

(b) Leave the address tape empty.
2. Use the simulation tape to perform the following steps:

(a) For each computation step of M, read the next symbol of
the address tape to determine which branch of the nondeter-
ministic computation tree to follow.

(b) If there are no more symbols remaining on the address tape,
or if the address tape contains an invalid address, or if M
enters a rejecting configuration, then abort the attempted
simulation of this branch and go to step 3.

(c) If M enters an accepting configuration, then accept w.

3. Write to the address tape the sequence of symbols over X, that
comes next in lexicographic order and go to step 2.]

Since every deterministic Turing machine is a nondeterministic Turing
machine that doesn’t use nondeterminism during its computation, we imme-
diately obtain the other direction of the relationship between these models.
Therefore, we can conclude that deterministic and nondeterministic Turing
machines are equivalent.

3.2.2. Multitape Turing Machines

In the proof of Theorem 3.14, we saw that we could simulate the computation
of a nondeterministic Turing machine using a deterministic Turing machine
with multiple tapes. It’s natural to wonder whether including additional
tapes gave us some kind of advantage in this simulation process—after all,
giving our computational model two stacks instead of one stack led us to

114 DECIDABLE AND SEMIDECIDABLE LANGUAGES

Lul#lalblblalalbl#|0]|1]|1]|0]|#]|c

Figure 3.3. Simulating the computation of a k-tape Turing machine (top) with a
single-tape Turing machine (bottom). The positions of the k& physical input heads
are indicated by highlighted cells, while the corresponding k virtual input heads
are indicated by dots.

the idea of a Turing machine—but as it turns out, we can perform exactly
the same computations using only a single tape.

First, let’s define our multitape Turing machine model. Again, we only
need to modify the transition function: instead of mapping a pair of state
and one tape symbol to a tuple of state, one tape symbol, and one input
head movement, we will transition on k tape symbols and %k input head
movements, where k& denotes the number of tapes used by the machine.

Definition 3.15 (k-tape Turing machine)

A k-tape Turing machine is a tuple (@, %, T, 9, qo, Gaccept, Greject), Where
everything is defined as in Definition 3.1 except for the transition
function, which is

0: (Q \ {qaccepta Qreject}) X Fk — Q X Fk X {Lv R}k

The idea allowing us to establish one direction of the equivalence between
multitape and single-tape Turing machines is that we can simulate having
many tapes T; by storing all of the contents on a single tape T" and separating
“tape 77 from the other “tapes” using a special symbol. Since our single tape
has only one input head, we will also simulate the position of each input
head on “tape ¢” using a special marker on the corresponding tape symbol
to act as a virtual input head.

Theorem 3.16

Given a k-tape Turing machine M, we can construct a single-tape
Turing machine M’ such that L(M') = L(M).

Proof. Suppose the given Turing machine M has k tapes, and the

VARIANTS OF TURING MACHINES 115

tape alphabet is denoted by I'. Our single-tape Turing machine M’
will simulate M’s computation on an input word w = wj . ..w, in the
following way:

1. Take the tape alphabet of M’ to be IV = T' U Tu {#}, where r
consists of all alphabet symbols of I" augmented with a dot and #
is a special boundary marker.

2. Write the boundary marker # and the symbols of w to the tape of
M, including the dotted symbol w;. Then, write k + 1 copies of
each separated by a dotted blank space.

Lo folelin] o Jwa [#]o]e]o]e]

3. For each step of the computation, M’ scans its entire tape from
the first occurrence of # to the (k + 1)st occurrence of # to read
the symbols on all k tapes of M. Then, M’ makes a second
pass along its tape to update any symbols that were changed
by the transition function of M. This update includes changing
occurrences of dotted symbols in accordance with the changed
positions of each virtual input head.

If any of the virtual input heads of M’ move onto an occurrence of
#, then M must have moved the corresponding input head of that
tape onto a blank space. In this case, M’ writes a blank space to
this cell of its tape and shifts the symbols of all subsequent cells
rightward by one position. |

The process of condensing the contents of all k tapes onto a single tape
is illustrated in Figure 3.3. Naturally, a k-tape Turing machine can simulate
the computation of a single-tape Turing machine by using only one of its k
tapes. This again gives us the other direction of the relationship between
the models, and again establishes the equivalence of the models.

3.2.3. One-Way Infinite Tape Turing Machines

In our definition of a Turing machine, we assumed that the tape used by the
machine is two-way infinite; that is, there is an infinite number of cells to
the left and to the right of the input head, and the input head can therefore
move to an infinite number of positions of the tape in either direction.

We didn’t have to define our storage in this way, though. We could
have alternatively defined the tape to act more like the stack of a pushdown
automaton: just like the stack has a fixed bottom boundary forcing us to

116 DECIDABLE AND SEMIDECIDABLE LANGUAGES

Figure 3.4. Simulating the computation of a one-way infinite tape Turing machine
(top) with a two-way infinite tape Turing machine (bottom).

push symbols only above that boundary, the tape could have a fixed left
boundary forcing us to write symbols only to the right of that boundary.
We call such a tape one-way infinite, since at any position along the tape,
the input head has a finite number of cells to its left and an infinite number
of cells to its right.

Because of the way the computation of the Turing machine begins, the
initial position of the input head of a Turing machine with a one-way infinite
tape will be on the first symbol of the input word, and the left boundary of
the tape will be to the input head’s immediate left. In this cell, the input
head cannot make a leftward move; if the transition function tells the input
head to move left, then the input head will simply remain in the same cell
by making a rightward move immediately followed by a leftward move.

Remark. Some authors alternatively assert that, if the input head of a
one-way infinite tape Turing machine moves beyond the left boundary
of the tape, then the machine “crashes” and the computation cannot
continue.

If we want to simulate the computation of a one-way infinite tape Turing
machine using a two-way infinite tape Turing machine, then the required
conversion seems straightforward: we just need to write a special symbol to
one cell of the two-way infinite tape to act as the left boundary, and modify
the transition function to handle the case where the input head moves onto
this left boundary marker.

Theorem 3.17

Given a one-way infinite tape Turing machine M, we can construct a
two-way infinite tape Turing machine M’ such that L(M’) = L(M).

Proof. Suppose the given one-way infinite tape Turing machine M
receives as input a word w = wjy ... w, and has a tape alphabet I". Our
two-way infinite tape Turing machine M’ will simulate M’s computation
on w in the following way:

1. Take the tape alphabet of M’ to be I' =T" U {F}, where F is a

VARIANTS OF TURING MACHINES 117

Figure 3.5. Simulating the computation of a two-way infinite tape Turing machine
(top) with a one-way infinite tape Turing machine (bottom).

special left boundary marker.

2. Write the symbols of w to the tape of M’, and write the left
boundary marker F in the cell to the immediate left of the cell
containing wy.

3. Take the transition function of M’ to be §' = § and, for each state
q € @, add a new transition ¢’(¢,F) = (¢,F, R) to the transition
function of M’.

4. Create new states ¢yecepe and ¢,, and add new transitions to the
transition function of M’ as follows:

° 6/(qaccepta '_) = (q;cceptv |_7 R)7
® 0'(Gaccepts ¢) = (¢}, ¢, R) for all c € I\ {F}; and
o (g, d) = (qéccept, d,L) for all d e T\ {F}.
Also, create new states gyqj..; and gy, and add similar transitions

on these states. Take the accepting and rejecting states of M’ to
be Goecept AN Goject, TESPECtively. m

The construction described in Theorem 3.17 is illustrated in Figure 3.4.

To obtain the other direction of the equivalence—that is, to simulate
the computation of a two-way infinite tape Turing machine with a one-way
infinite tape Turing machine—we can use our previous result establishing
the equivalence of single-tape and multitape Turing machines.

While we won’t go through the full proof here, the idea is to split the
two-way infinite tape into a pair of one-way infinite tapes, where the “split
point” occurs between the first symbol of the input word and the infinite
blank spaces to the left of the input word. This action produces two one-way
infinite tapes: one containing the input word, and one containing only blank
spaces. Then, we modify the transition function of the one-way infinite
tape Turing machine to operate on either the first or second tape, switching
between the tapes each time the input head of the two-way infinite tape

118 DECIDABLE AND SEMIDECIDABLE LANGUAGES

Turing machine crosses the “split point” on its tape.

Splitting the two-way infinite tape into a pair of one-way infinite tapes
gives us the setup depicted in Figure 3.5, where the two-way infinite tape is,
in effect, folded in half. Ultimately, this construction completes the proof
and establishes the equivalence between one-way and two-way infinite tape
Turing machines.

3.3. CLOSURE PROPERTIES ¢

=\ As with the previous chapters, I eventually plan to write a section

 summarizing the closure properties of various operations applied to the
classes of decidable and semidecidable languages. Since Turing machines
are so powerful, it’s not surprising that nearly all operations are closed for
both decidable and semidecidable languages, but it’s worth explaining that
semidecidable languages happen not to be closed under complement.

3.4. ENCODINGS OF TURING MACHINES ¢

=\ In advance of the section on universal Turing machines, I plan to write a
I short exposition on arithmetization and ways in which we might encode
a description of a Turing machine as a string of symbols (M).

3.5. UNIVERSAL TURING MACHINES

Up TO NOow, we have had to construct different specific Turing machines
for each language we wished to recognize. In fact, we have had to construct
specific machines for every language we wished to recognize in this course,
whether that machine be a finite automaton, or a pushdown automaton, or
indeed, a Turing machine.

However, we know that Turing machines are capable of performing
quite complicated computations, and we know also that we can construct
Turing machines that can simulate the computations of other variant Turing
machines. What if we took this idea and generalized it as much as possible?
That is, what if we constructed some Turing machine that could simulate
the computation of any other Turing machine?

Alan Turing considered this exact idea in the paper that introduced the
model of computation that would eventually be named after him. Turing
described the process of constructing a machine U that is capable of sim-
ulating the computation of any other machine M, so long as we give an
appropriate encoding of M as part of the input to U:

UNIVERSAL TURING MACHINES 119

It is possible to invent a single machine which can be used

to compute any computable sequence. If this machine U

is supplied with a tape on the beginning of which is written
the S.D. [standard description] of some computing machine M,
then U will compute the same sequence as M.

— ALAN TURING

Here, like Turing did before us, we will show how to construct such a machine
U, which is nowadays called a universal Turing machine.

Remark. It’s important to note that, in this context, “universal” does not
mean that the Turing machine & can compute everything. It only means
that & can compute whatever other Turing machines can compute.

The main benefit of having such a machine is that we will no longer have
to construct specific Turing machines for each language we consider; now, we
can just give a high-level description of the Turing machine’s computation,
and we can feasibly “program” the universal Turing machine to perform its
computation in a similar way. These high-level descriptions will be quite
similar to what we saw in the proofs of Theorems 3.14, 3.16, and 3.17, where
we simply listed the steps of the machine’s computation instead of explicitly
writing out each component of the machine.

Suppose that the input we give to our universal Turing machine U is of
the form (M, w), where M is an encoding of the Turing machine we wish
to simulate and w is the input word given to M. Given an input of this
form, our machine &/ must satisfy three criteria:

1. U halts its computation on input (M, w) if and only if M halts
its computation on input w;

2. U enters its accepting state if and only if M enters its accepting
state; and

3. U enters its rejecting state if and only if M enters its rejecting

state.

We now go through with the construction of this machine U.

Theorem 3.18

There exists a universal Turing machine ¢/ that, given an input (M, w),
is capable of simulating the computation of a Turing machine M on an
input word w.

Proof. We will construct ¢ in the form of a multitape Turing machine,

120 DECIDABLE AND SEMIDECIDABLE LANGUAGES

just as we did in our procedure to determinise a nondeterministic Turing
machine.
For this construction, we need only three tapes:

e The first tape will initially contain the input (M, w), and after
the computation of U begins, it will simulate the contents of the
tape of M.

e The second tape will contain the encoding of the machine M.

e The third tape will keep track of which state we are currently in
during the computation of M by maintaining the current state as
a binary number.

At the beginning of its computation, &/ will contain only the input
(M, w) on its first tape, and its other two tapes will be blank.

NGB E A O
ERnnEnEnEnEnnE
0 S T S B M

Now, we can describe how U simulates the computation of M on w:
1. Initialize the tapes in the following way:

(a) Transfer the encoding of M from the first tape to the second
tape by writing (M) to the second tape and erasing it from
the first tape.

(b) Read the encoding of M on the second tape to determine the
number of states in M. If M contains k states, then write
[logy (k)] copies of 0 to the third tape.

(Remember, the current state is being maintained as a binary
number, so we need a logarithmic amount of bits to represent
a given state’s number k.)

After initialization, the tape will look like the following:

’ ‘U‘<HMH>HUHU‘U‘ ‘
"H‘OHOHOH'—'H'—"'—" ‘

THE CHURCH—TURING THESIS 121

2. Move the input head of the first tape to the first symbol of w.
Move the input head of the second tape to the first symbol of
(M). Move the input head of the third tape to the first symbol of
the sequence of Os.

3. Repeat the following steps until M halts:

(a) For each computation step of M, scan the second tape to
find a transition that matches the current input symbol and
state written on the first and third tapes, respectively.

(b) Modify the contents of the first and third tapes to reflect the
transition that was just taken.

(¢) If no transition exists for the current state/symbol pair, then
halt and go to step 4.

4. Transition to gaccept if M transitioned to its accepting state. Tran-
sition to greject if M transitioned to its rejecting state. [|

Let’s now verify that this construction does, in fact, satisfy the three
criteria we laid out earlier. First, we require that ¢/ halts its computation
on input (M, w) if and only if M halts its computation on input w. Since
U uses the description of M to see what it would do after reading each
symbol of w, U behaves in a manner identical to M, and so U halts on its
input if and only if M also halts on its input. Second, we require that
accepts if and only if M accepts, and we see immediately that this happens
by Step 4 of the simulation procedure. In fact, U can’t reach its accepting
state unless M has done the same. Third, we require the same behaviour
for rejecting inputs, and the argument in this case is nearly identical to the
one we had for accepting inputs. Therefore, the universal Turing machine
U satisfies all of our criteria and performs a correct simulation of any other
Turing machine we provide as input!

3.6. THE CHURCH-TURING THESIS

LONG AGO, before digital computers as we know them existed and even
before the phrase “computer science” entered the lexicon of humanity,
mathematicians and logicians wanted to know whether it was possible to
use mechanical procedures to solve mathematical problems. The desire for
such procedures dates back to the 17th century and the time of Gottfried
Wilhelm Leibniz, who dreamt of constructing a machine he called a calculus
ratiocinator to automate the task of performing general mathematical
calculations. (Although Leibniz is well-known for his work on the calculus
of infinitesimals that one often learns in school, the word “calculus” in this

122 DECIDABLE AND SEMIDECIDABLE LANGUAGES

sense refers more generally to a system for performing calculations.)

Leibniz’s ratiocinator was to use a formal language he called character-
istica universalis—Latin for “universal character”—which he intended to
be a general framework for expressing mathematical concepts in symbols.
Indeed, the characteristica universalis might be considered the first pro-
gramming language! Although Leibniz never succeeded in constructing his
ratiocinator, his dream formed the precursor for much of the work done in
the formalization of mathematics throughout the 19th and 20th centuries.

At the turn between these two centuries, David Hilbert delivered a
presentation to the International Congress of Mathematicians [1900; 1901]
wherein he outlined 10 (and later, an additional 13) unsolved problems that
would come to guide the new century’s study of mathematics. Of Hilbert’s
23 problems, three remain unsolved to this day, while two are considered
too vague to ever have a proper solution. But one problem in particular
is relevant to our current topic: the second problem, which asks to prove
that the axioms of arithmetic over the real numbers are consistent; that is,
incapable of producing logical contradictions.

Much like Leibniz dreamt of a machine to solve any mathematical
problem, Hilbert dreamt of a purely logical formal system where, starting
from a given set of axioms, one would be able to prove any mathematical
statement. Indeed, this dream motivated his second problem: if the axioms
of arithmetic are consistent, then we can use pure logical rules to solve any
mathematical problem we come across.

We hear within us the perpetual call:
There is the problem. Seek its solution.
You can find it by pure reason, for

in mathematics there is no ignorabimus.

— DAVID HILBERT

In the following decades, Hilbert devoted considerable time to trying to
establish a positive answer for his second problem. Unfortunately for him,
Kurt Gédel would show via his incompleteness theorems [1931] not just that
a proof of consistency for even a simpler system like the Peano arithmetic
over the natural numbers is impossible to attain within the system itself,
but also that such arithmetic systems must contain statements that can
be neither proved nor disproved. In resolving the second problem in the
negative, Godel dealt a crushing blow to Hilbert’s dream: in mathematics,
it turns out there is some ignorabimus. Despite this substantial setback,
Hilbert and others persisted in looking forward, and researchers continued
pursuing modified and constrained forms of Hilbert’s dream—even if we can’t
formalize all of mathematics, we can at least formalize some of mathematics.

A few years before Godel announced his groundbreaking results, Hilbert—
together with his doctoral student Wilhelm Ackermann—posed a more
concrete question in their book, Grundziige der theoretischen Logik [1928].

THE CHURCH—TURING THESIS 123

Their question, closer in spirit to Leibniz’s dream, asked for

[. .] a method which permits us to decide for any given formula
in which domains of individuals it is universally valid (or satisfiable)
and in which it is not.

— DAVID HILBERT AND WILHELM ACKERMANN

In other words, Hilbert and Ackermann wanted to know whether there exists
a general procedure that takes a predicate logic formula and gives a “yes” or
“no” answer as to whether that formula is true, no matter which predicates
are used or which values are assigned to variables within the formula. Their
question would come to be known as the FEntscheidungsproblem, which
is German for “decision problem”. Although Gdédel’s work had brought
down Hilbert’s second problem, researchers at the time noted that, strictly
speaking, the Entscheidungsproblem had not suffered the same fate. There
remained, at least for the time being, a glimmer of hope.

The issue, however, was that there was not yet a universally agreed-
upon definition of a “procedure” that could decide such a thing as the
Entscheidungsproblem. The most appropriate definition was eventually
taken to be that of an effective method. If we’re given a class of problems,
then a method for that class of problems is called effective if

1. the method consists of a finite number of exact instructions; and

2. the method always terminates and produces a correct answer when
it is applied to a problem from its class.

In principle, an effective method is one that a human can perform on
paper in a purely mechanical manner; it requires no creative thought or
insight to arrive at an answer. It is computation in its purest form. If we
view the class of problems in a way that allows us to map individual inputs
to “yes” and “no” outputs, then we obtain a function for that class, and we
say that such a function is effectively calculable.

Remark. Compare our characterization of an effectively calculable func-
tion to the properties of a computable function given by Enderton [1977]
in Section 3.1.3. Criteria 1 and 2 match almost exactly!

But what specific properties does an effectively calculable function
possess? In a lecture given in 1934, whose notes were published decades
later by Davis [1965], Gédel proposed that the notion of effective calculability
could be captured by the so-called general recursive functions. In doing so,
he provided at least an initial characterization of what it means for a function
to be effectively calculable. However, this was to be only the first step in a

124 DECIDABLE AND SEMIDECIDABLE LANGUAGES

series of consequential results pertaining to the Entscheidungsproblem.
The first major breakthrough for the Entscheidungsproblem came in
a series of papers by Alonzo Church, who framed the idea of effective
calculability in terms of his lambda calculus. The lambda calculus is a
logical system that allows us to express computations in terms of functions
and their applications. As it turns out, the class of effectively calculable
functions corresponds to the class of functions that are expressible in the
lambda calculus; this was formally established by both Church [1936b] and
Kleene [1936a,b]. Church ultimately proved that there does not exist any
procedure to decide whether a given formula has an equivalent particular
normal form in the lambda calculus [1936a; 1936b]. From this observation,
Church struck at Hilbert’s dream once again and concluded the following:

The general case of the Entscheidungsproblem
of the engere Funktionenkalkiil is unsolvable.

— ALONZO CHURCH

The second breakthrough came with a presentation by Alan Turing to
the London Mathematical Society [1936]. Like Church, Turing showed:

[. .] the Hilbertian Entscheidungsproblem can have no solution.
— ALAN TURING

However, Turing relied on a different formalization: a machine model, which
later came to be known as our familiar Turing machine. The crux of Turing’s
argument was that the Entscheidungsproblem could be reformulated, or
reduced, to a problem pertaining to a property of his machine, and one
could then show that this problem is also unsolvable. Turing was aware of
Church’s work—indeed, he raced to deliver his presentation shortly after
learning about Church’s work in that same year—and Turing added as an
appendix to his published paper a proof sketch showing that his machine
formalization was equivalent to Church’s lambda calculus, and therefore to
the class of effectively calculable functions. Turing would go on to earn his
doctorate under the supervision of Church just a couple of years later.

Despite this flurry of results and the fall of the Entscheidungsprob-
lem, there remained a question: Godel had the general recursive functions,
Church had the lambda calculus, and Turing had his machines, but which
of these formulations is best to use when we refer to effective calculabil-
ity? This question was not truly settled until the following decade, when
Stephen Kleene made the claim that any of these formulations is suitable.
Kleene [1943] began by introducing what he calls Church’s thesis:

Every effectively calculable function
(effectively decidable predicate)
is general recursive.

— STEPHEN KLEENE

THE CHURCH—TURING THESIS 125

Church’s thesis connects the class of general recursive functions to the
lambda calculus by stating, in our terminology, that any problem for which
there exists a procedure that returns an answer on each input belonging to
the problem’s language is semidecidable.

Kleene later introduced in his book Introduction to Metamathemat-
ics [1952] a companion statement, which he calls Turing’s thesis:

[...] that every function which would naturally be regarded
as computable under [Turing’s] definition, i.e. by one of
his machines, is equivalent to Church’s thesis |...]

— STEPHEN KLEENE

Turing’s thesis is Kleene’s encapsulation of what Turing himself expressed
in the appendix of his paper: that his machine formalization is equivalent to
the lambda calculus formalization given by Church. Consequently, anything
that a Turing machine can do is effectively calculable, and therefore it is
semidecidable.

Taken together, these two statements give us the Church—Turing thesis:
the unifier between effective methods and Turing machines. In modern
language, we can express the thesis as follows.

Church—Turing thesis

Any function that can be computed by an algorithm can also be com-
puted on a Turing machine.

Note that we refer to this result as a “thesis” and not as a “theorem”, since
it is more definitional rather than a statement that we can formally prove.

Turing-Completeness. In recent times, the Church—Turing thesis has al-
lowed researchers to prove that all sorts of formal models are capable of
behaving like a machine running an algorithm. If some model of computa-
tion or some system of rules can be used in a way that allows it to simulate
the computation of any Turing machine, then we say that model or system
is Turing-complete.

We've already seen one example of something that is Turing-complete—
the universal Turing machine. But since that is itself a kind of Turing
machine, we shouldn’t be too surprised. Instead, there are many more (and
much weirder) examples of Turing-complete things in our daily lives:

e Most general-purpose programming languages, and some special-
ized languages (like ITEX, the typesetting system used to create
this book!)

126 DECIDABLE AND SEMIDECIDABLE LANGUAGES

Microsoft Excel and Microsoft PowerPoint

Conway’s Game of Life and other cellular automata

Enzyme-based DNA computers

The cells of the human heart

e The Dwarf Fortress, Minecraft, and Minesweeper video games

The Magic: The Gathering card game

The x86 assembler instruction mov, by itself

You might now reasonably wonder whether the computers we use every
day are Turing-complete. Well, the answer—strictly speaking—is no! This
comes down to one simple reason: nobody has figured out how to equip
a real-world computer with an infinite amount of memory. Thus, when
we speak about something being Turing-complete, we often set aside the
limitation of finite memory and focus on the computational power of the
thing itself.

3.7. THE CHOMSKY HIERARCHY

=\ I plan to expand this short section about the Chomsky hierarchy to tie
 together all that we have learned about language classes and models of
computation.

The Chomsky hierarchy was initially proposed by Noam Chomsky [1956;
1959a] and further refined in Chomsky’s joint work with the mathematician
Marcel-Paul Schiitzenberger [1963]. There are two major differences between
the hierarchy we developed and Chomsky’s hierarchy: in our hierarchy, we
included the class of finite languages as a subset of the regular languages,
while Chomsky’s hierarchy includes the class of context-sensitive languages
that we briefly discussed, but otherwise left aside.

CHAPTER NOTES

3.1. The model of computation that bears Alan Turing’s name was first
presented in his groundbreaking 1936 paper, although in this paper
Turing referred to his model as an a-machine (or automatic machine).
It wasn’t until the following year that the name “Turing machine” was
bestowed on the model by Church [1937].

CHAPTER NOTES 127

Table 3.1
THE CHOMSKY HIERARCHY
Language class Model of computation Grammar
Recursively enumerable Turing machines Type 0
Context-sensitive Linear-bounded automata Type 1
Context-free Pushdown automata Type 2
Regular Finite automata Type 3

Semide ble Langu
Tr

Decidable Languages

'Z,.U#’U! apnc”

Regular Languages

aUba {a,b}*c o01*U1

X Finite Languages a”
{e¢ {a} 0
Acyclic DFAs

Finite Automata

VIIIIIII I I I 7777777777 777777 7777777777777 777777
100000070002200220020072002 20022272227 2422 221222724777

Tumng Machmes
555558

Figure 3.6. Our hierarchy of language classes and models of computation, based
on the Chomsky hierarchy.

128

3.2.

3.3.
3.4.

DECIDABLE AND SEMIDECIDABLE LANGUAGES

The book by Petzold [2008] breaks down Turing’s 1936 paper sentence
by sentence, providing a remarkably clear and detailed explanation
of the techniques Turing used along with a wealth of background
information and pointers to further readings, while another book
edited by Copeland [2004] collects a number of Turing’s influential
writings from across his career.

For those seeking a biography of Alan Turing, the standard reference
is the book by Hodges [1983], which also formed the basis for the 2014
film The Imitation Game. Other biographies have been written by
Turing’s mother, Sara [1959], and his nephew, Dermot [2015].

We indicated that the class of decidable languages was once known
as the class of “recursive languages”. While this terminology was
commonplace in the early days of computer science, the word “recur-
sive” is now strongly associated with the idea of recursion in algorithm
design. Soare [1996] gives a historical accounting of the development of
this terminology and makes an argument for why the word “recursive”
should no longer be used to mean “decidable”. Despite this, some
authors continue to refer to the class of “recursive languages” to this
day!

Nondeterministic Turing machines were introduced alongside the de-
terministic model in Turing’s 1936 paper, though Turing called his
nondeterministic model a c-machine (or choice machine) and only
referred to the machine in an offhand remark.

The study of multitape Turing machines seems to have originated with
the work of Minsky [1961], who used a special kind of 2-tape Turing
machine to show that Post’s decision problem for tag systems [1943] is
undecidable. Minsky’s work was inspired by that of Rabin and Scott
[1959], who studied problems relating to finite automata receiving two
tapes as input. Supposing that we have a k-tape Turing machine that
halts on its input word in 7" computation steps, Hartmanis and Stearns
[1965] showed that we may construct a 1-tape Turing machine that can
simulate the original computation in at most T2 computation steps,
while Hennie and Stearns [1966] showed that a 2-tape Turing machine
can simulate the computation in at most T log(7T) computation steps.

One-way infinite tape Turing machines, believe it or not, also first
appeared in Turing’s 1936 paper; Turing described an example com-
putation in which the first three symbols on the tape are fixed to be
“000”, and where the input head does not move leftward past the two
o symbols.

Chapter notes will be added when this section is written.

Chapter notes will be added when this section is written.

CHAPTER NOTES 129

3.9.

3.6.

As we noted, the idea of the universal Turing machine was put forth in
Turing’s 1936 paper. Although our construction here uses three tapes,
we could instead use two tapes by the result of Hennie and Stearns
[1966] or one tape by the result of Hartmanis and Stearns [1965], each
with a commensurate impact on the time required to complete our
computation.

Many researchers have considered the question of how small a universal
Turing machine can be while still retaining its universality property.
(Note that, in measuring size, we just count the number of states
plainly and assume the universal Turing machine does not require
distinguished accepting or rejecting states.) Given a universal Turing
machine with n states and m alphabet symbols, Shannon [1956] proved
that it is possible to construct an equivalent universal Turing machine
having only two states and at most 4mn + m alphabet symbols, or
alternatively one having only two alphabet symbols and (2 — 1)n
states, where £ is the smallest integer such that m < 2¢. Shannon
also established in the same paper that it is impossible to construct
a one-state universal Turing machine. Using the notation (n,m) to
denote an n-state, m-symbol universal Turing machine, Minsky [1962]
constructed a (7,4) machine while Rogozhin [1996] constructed seven
small universal Turing machines, all the way down to a (2, 18) machine.
Wolfram [2002, chapter 11, section 12] described a (2, 5) machine that is
similar but, strictly speaking, not directly comparable to our universal
Turing machine model, and he further conjectured the universality of
a (2,3) machine. Five years later, Wolfram’s conjecture was verified
by Alex Smith, who was at the time an undergraduate student; Smith
received a $25000 prize and, after protracted discussions about the
correctness of his proof, published his results [2020]. Woods and Neary
[2009] give a far more detailed account of the history of small universal
Turing machines in their survey article.

Much has been written about Leibniz and his work in mathematics
and logic; see, for example, the papers of Jourdain [1916] and Lenzen
[2018] as well as the book by Davis [2000, chapter 1].

More information about Hilbert’s dream and the quest to solve his
second problem—more properly called Hilbert’s program—is available
in the survey by Zach [2007], who gives both historical and philosoph-
ical perspectives on Hilbert’s early work in the 1890s, through to the
consequences of Godel’s incompleteness theorems in the 1930s and
1940s, and leading up to modern results.

For an incredibly detailed discussion of the origins of computability
theory and the development of the Church-Turing thesis, see the
article by Soare [1996].

130

3.7.

DECIDABLE AND SEMIDECIDABLE LANGUAGES

Although our focus in this section was on the work of Church and
Turing, other contributions from this era should not be overlooked.
Post [1936] proposed a model of computation that he called “Formu-
lation 17, and his model behaves in a manner basically equivalent
to that of a Turing machine. Remarkably, Post completed his work
without having any knowledge of Turing’s paper, which appeared in
the same year. However, Post was aware of the work of both Godel
and Church, indicating that he expected his model to be logically
equivalent to their formulation of effective calculability via general
recursive functions.

Many unconventional models of computation have been shown to be
Turing-complete. Microsoft Excel was studied by Gordon and Peyton
Jones [2021] and Microsoft PowerPoint was studied by Wildenhain
[2017]. Berlekamp, Conway, and Guy investigated the Game of Life in
their well-known book [2004, chapter 25]. Cook [2004] established the
computational universality of elementary cellular automata. Shapiro
[2012] and Scarle [2009] put a biological spin on computation with
their studies on enzyme-based DNA computers and human heart cells,
respectively. The Turing-completeness of the Dwarf Fortress video
game was established via a game map constructed by a player known
as Jong89 [2009]; Minecraft was suggested to be Turing-complete
in a Bytejacker interview with the game’s creator, Markus “Notch”
Persson [2010]; and Kaye [2000] showed that an infinite variant of
Minesweeper possessed the property of Turing-completeness. Churchill,
Biderman, and Herrick [2021] concluded a nearly decade-long study
of the Magic: The Gathering card game. Lastly, Dolan [2013] showed
that the mov instruction on its own is sufficient to compute anything
a Turing machine can compute.

Noam Chomsky is perhaps best known for his work in linguistics, and
his hierarchy was originally intended to act as a mathematical model
for natural language. Although Chomsky’s first work on formalizing
natural language using mathematics appeared in 1956, the hierarchy
proposed in his first paper does not correspond to the Chomsky
hierarchy as we know it today and instead had more of a linguistic
focus. Chomsky would later fix mathematical definitions in a technical
report [1958] before publishing his full paper [1959a], which proposes
a hierarchy that more closely resembles the one we have seen.

In the intervening decades, criticisms have been levelled against the
Chomsky hierarchy, for example, from those claiming that the lan-
guage classes are too coarse. In fact, this is something Chomsky
himself recognized, remarking that the class of regular languages is
too restrictive to contain a grammar for English [1956] while the

CHAPTER NOTES 131

class of recursively enumerable languages is so broad that it is of no
interest [1959a]. For further discussion of criticisms from a linguistic
perspective, see the book chapter by Seuren [2013].

Some researchers have proposed refinements of the Chomsky hierarchy
that include “in-between” classes such as the subregular languages or
the mildly context-sensitive languages; see, for instance, the work of
Jéager and Rogers [2012].

CHAPTER FOUR

DECISION PROBLEMS

A FUNDAMENTAL ASPECT of studying various models of computation is
determining precisely what kinds of questions about that model can be
answered algorithmically. For example, does there exist an algorithm that
can tell us whether or not a deterministic finite automaton accepts a given
input word? It seems obvious—after all, such an algorithm only needs to
figure out whether the finite automaton, given the input word, would end
up in an accepting state or not—but it’s still something that we need to
establish formally.

In the previous chapter, we introduced the notions of decidable and
semidecidable languages. Using much of the same terminology we devel-
oped for reasoning about languages, we can talk more generally not just
about languages but about problems pertaining to our various models of
computation, and we can formally prove which problems can be decided in
much the same way as languages can be decided.

A decision problem is a problem for which each input instance corresponds
to either a “yes” or a “no” answer. At its core, a decision problem is
a language, and the elements of the language are input instances that
correspond to a “yes” answer. Each element of the language is an encoding
of whatever model of computation we're considering, in some cases with an
input word given to that model: in the case of regular languages, we use
encodings of finite automata, and so on.

If there exists a decision algorithm that produces the correct “yes” or
“no” answer for any instance of a given decision problem, and the algorithm
halts on all inputs, then we say that the decision problem is decidable. If
no such decision algorithm exists, then we say that the decision problem is
undecidable.

Remark. Note that “undecidable” doesn’t mean the decision problem is
impossible; “undecidable” only means “not decidable”, as in “no decision
algorithm exists that always halts and gives a yes/no answer”.

There are a number of common decision problems that we can ask about a
model of computation X € {RE, DFA, NFA, e-NFA, CFG,PDA, TM, ...}, and

133

134 DECISION PROBLEMS

Table 4.1
COMMON DECISION PROBLEMS AND THEIR DEFINITIONS

Membership Ax = {(B,w) | B is an X that accepts input word w}
Emptiness Ex ={(B) | Bisan X and L(B) = (i}

Universality Ux = {(B) | B is an X and L(B) = ¥*}

Equivalence EQx = {(B,C) | B and C are both X and L(B) = L(C)}
Inclusion INx = {(B,C) | B and C are both X and L(B) C L(C)}

these problems are summarized in Table 4.1. In this chapter, we will get
our first taste of “programming” Turing machines to solve each of these
decision problems. Note that we no longer need to construct a specific
Turing machine for a particular decision problem, because (as we now know)
the Church—Turing thesis tells us that any function that can be computed
by an algorithm can also be computed by a Turing machine.

The study of computation doesn’t end with decision problems. As

1 Table 4.2 illustrates, a number of types of computational problems exist
depending on what specifically we would like to know about a problem.
Decision problems are the most common formulation, but I will eventually
write a few paragraphs about these other problem types, as they will appear
in later chapters.

4.1. DECIDABLE PROBLEMS FOR REGULAR LANGUAGES

WE BEGIN BY CONSIDERING our common decision problems applied to
models of computation that recognize the class of regular languages. Regular
languages (and the associated models that recognize such languages) are very
useful for practical applications since, as we will see, each of the common
decision problems are decidable for this class. The downside, of course, is
that the class of regular languages is much smaller than the other language
classes we know, which in turn limits our expressive power.

Membership Problem

The membership problem is a fundamental decision problem for any model
of computation, since so much that pertains to decidability boils down to
simply being able to figure out whether some model accepts some input
word. Here, we will obtain our first decidability result by showing that
there exists an algorithm that allows us to determine whether or not some
deterministic finite automaton B accepts its input word w.

The technique we will apply in the proof of this result (and others)
involves the use of a Turing machine to simulate the computation of the

135

DECIDABLE PROBLEMS FOR REGULAR LANGUAGES

1€ < €6
:10%0e] swirid 1se3rer

€91
:SI0J0R] [RIALIJUOU JO #

{(¢'9)(z‘9)} <9
:SI00%J [RTALIJUON

{(2¥ x €v‘1202)} «+ 1202

{UOIYRZLI0)DR] SUWILI

Pouwrd ‘soh, +— g
:8urysey Ayewitig

[ewrxew /fewturu st () f
Feul gons K 3 T pulq

{"v > A g > (i) | (i)} =1
+X D & I0J suormjos jo jes = ¥

LXLXDY

{*vafigs(fitw)|(iw)y=1
+X D T I0J suommjos Jjo 198 = 7

LKXLXDOY

(@) f @)} =1
KK

fi=@/fl.x32}=1
{10} <+ . :f

SUOIIN[OS J[qISed]
[® Jo 08 & Suowe
uonnos srqissod

159, 9} SI IOMSUY

weqoxd yoress
UOAIS © 0} SUOIIN[oS JO
IoqUINU T[] ST IoMSUY

sired UOIIN[OS-90UR)SUL
JO TUOTJR[OI © SI ToMSUY

Cormye
Akogd Y 2@@%3 9 ﬁv
Areurq ALIessooou jou
ST I ‘SISIXd 9OURISUI
AT0A0 0] Tomsuy

O, 10
(SOA,, T8I0 ST 90UR)SUI
AToAd 07 Tomsuy

we(qoad uorjeziwd(

we[qord Surpuno))

werqoid oIy

EQMQOHQ uonounyg

waqoxd uoIsIa(]

o[duwrexy

uorjenurioy [edrdAT,

uo1ydraosa(

wa[qoad jo odAf,

SINHTdOYd TVNOILVLNAINOD A0 SHdAL

¢'valqel

136 DECISION PROBLEMS

finite automaton. Then, whether the finite automaton accepts or doesn’t
accept the input word, the Turing machine returns the same result.

Theorem 4.1

Apfa is decidable.

Proof. Construct a Turing machine Mapra that takes as input (B, w),
where B is a deterministic finite automaton and w is the input word to
B, and performs the following steps:

MADFA

1. Simulate B on input w.

2. If the simulation ends in an accepting state of B, then accept.
Otherwise, reject.

This Turing machine accepts its input (B,w) if and only if the
deterministic finite automaton B accepts its input w, and the Turing
machine rejects if and only if B rejects. Since the length of w, and
therefore the simulation of B, is finite, the Turing machine will never
become trapped in an infinite computation. Thus, Mapga decides the
membership problem for deterministic finite automata. [|

Since we know also that we can convert from nondeterministic finite
automata to deterministic finite automata, and from regular expressions to
deterministic finite automata, we get similar positive decidability results for
these models.

Corollary 4.2

Anra and Agg are decidable.

Proof. Given a nondeterministic finite automaton B, we can convert
it to an equivalent deterministic finite automaton B’ and run Mapra
from the proof of Theorem 4.1 on the input (B’, w).

Likewise, given a regular expression R, we can convert it to an
equivalent deterministic finite automaton & and run Mapgra on the
input (S, w). |

Indeed, one consequence of Kleene’s theorem is that a decision problem
being decidable for the class DFA implies that it is also decidable for the
classes NFA and RE (as well as the class e-NFA, though this arguably already
falls under the “nondeterministic” umbrella). Thus, going forward in this
section, we will only focus on full proofs for the class DFA.

DECIDABLE PROBLEMS FOR REGULAR LANGUAGES 137

Emptiness Problem

Let’s now turn to the emptiness problem. What does it mean for the
language of a finite automaton to be empty? Obviously, it means the finite
automaton doesn’t accept any input words, but under what condition is
this the case? Since any accepting computation of a finite automaton must
conclude in a final state, we can reason that a finite automaton is incapable
of accepting any input words only if there exists no path from its initial
state to a final state.

We will use this reasoning in the algorithm to decide the emptiness
problem for deterministic finite automata. Since every finite automaton has
a finite set of states, we can traverse the transitions of the finite automaton
starting from the initial state and mark each state as we encounter it. If,
by the end of this traversal, we never mark a final state, then this implies
there exists no path from the initial state to any final state.

Theorem 4.3

FEpra is decidable.

Proof. Construct a Turing machine Mgpra that takes as input (B),
where B is a deterministic finite automaton, and performs the following
steps:

MEDFA

1. Mark the initial state of B.

2. Mark all states that have an incoming transition from any
previously marked state. Repeat until no new states are marked.

3. If no final state of B is marked, then accept. Otherwise, reject.

This Turing machine accepts its input (B) if and only if the deter-
ministic finite automaton B has no possible computation path leading
from its initial state to a final state, and the Turing machine rejects
if and only if an accepting computation path exists in B. Since the
number of states of B that could be marked is finite, the Turing machine
will never become trapped in an infinite computation. Thus, Mgpga
decides the emptiness problem for deterministic finite automata. |

Naturally, following the same lines of reasoning we developed for the
membership problem, we can establish the following corollary.

138 DECISION PROBLEMS

Corollary 4.4

Enea and Ege are decidable.

Universality Problem

The universality problem goes hand in hand with the emptiness problem we
just studied. Indeed, the two problems are complementary: if L = X*, then
L = (), where L denotes the complement of the language L as we saw before.
Intuitively, this makes sense: if a finite automaton accepts every input word,
then the complement of that finite automaton must accept no input words.
Because of this complementary relationship, all we need to do in order
to decide the universality problem is complement the language of our given
deterministic finite automaton. Then, we can simply reuse the Turing ma-
chine Mgppa and the algorithm that we developed to decide the emptiness
problem on the complemented finite automaton. In other words, in order to
decide whether L(B) = ¥*, we simply need to decide whether L(B) = 0.

Theorem 4.5

Ubka 1s decidable.

Proof. Construct a Turing machine Mypra that takes as input (B),
where B is a deterministic finite automaton, and performs the following
steps:

Mupra

1. Convert B to a deterministic finite automaton B’ recognizing the
language L(B) using the construction from the proof of
Theorem 1.30.

2. Run Mgpra from the proof of Theorem 4.3 on input (B’).

3. If Mgpra accepts, then accept. Otherwise, reject.

This Turing machine accepts its input (B) if and only if Mgpra
accepts its input (B’), where B’ is the complement of the deterministic
finite automaton B. This occurs only when the language of B’ is empty,
and thus B must accept all input words in this case. Likewise, the
Turing machine rejects if and only if Mgpra rejects, which means that
the language of B’ is not empty and there exists at least one input word
not accepted by B. Since both the conversion process to obtain B’ as
well as the process of running Mgpga are finite, the Turing machine
will never become trapped in an infinite computation. Thus, Muypra

DECIDABLE PROBLEMS FOR REGULAR LANGUAGES 139

Figure 4.1. The symmetric difference of two languages L(B) and L(C).

decides the universality problem for deterministic finite automata. H

Additionally, the following corollary holds as we would expect.

Corollary 4.6

Unra and Ugg are decidable.

Equivalence Problem

Given two deterministic finite automata B and C, how can we test whether
L(B) = L(C)? In theory, we could give all the words in L(B) as input to
C and test their membership using our Turing machine Mapra, and vice
versa. However, this won’t work out very well if either of L(B) or L(C) is
infinite.

Instead, we can make the following useful observation: if L(B) = L(C),
then every word in L(B) and every word in L(C) must appear in the
intersection of the two languages. Equivalence means that no word belongs
only to one of the two languages, and so in order to test whether two
languages are equivalent, we need only test whether the non-intersecting
parts of each language are empty: another application for our emptiness-
testing Turing machine Mgpga!

The “non-intersecting part” of two languages is more properly referred
to as the symmetric difference of the languages. Given two languages L(B)
and L(C), their symmetric difference is the language

L(B) A L(C) = (L(B) N m) U (m N L(C)) .

The symmetric difference of L(B) and L(C) is illustrated by the shaded
regions of the Venn diagram shown in Figure 4.1.

Since we know from earlier that the class of regular languages is closed
under union, complement, and intersection, we can combine all of these

140 DECISION PROBLEMS

closure properties to construct a deterministic finite automaton D whose
language is L(D) = L(B) A L(C). We will use this finite automaton D in
our decision algorithm for the equivalence problem.

The idea behind this decision algorithm, as we mentioned before, is
to test equivalence by testing the emptiness of the symmetric difference
language. If L(D) is empty, then we know that all words belong to the
intersection of L(B) and L(C), and therefore L(B) = L(C).

Theorem 4.7

EQpea is decidable.

Proof. Construct a Turing machine Mgqpra that takes as input (B,C),
where B and C are deterministic finite automata, and performs the
following steps:

MEQDFA

1. Construct a deterministic finite automaton D recognizing the
language L(D) = L(B) A L(C).

2. Run Mgpra from the proof of Theorem 4.3 on input (D).

3. If Mgpra accepts, then accept. Otherwise, reject.

This Turing machine accepts its input (B,C) if and only if Mgpra
accepts its input (D), where D is the deterministic finite automaton
recognizing the symmetric difference language. This occurs only when
the symmetric difference language is empty, and thus all of the words in
both L(B) and L(C) appear in the intersection of these two languages;
that is, L(B) = L(C). Likewise, the Turing machine rejects if and only if
MEpra rejects, which means that the symmetric difference language is
nonempty and so L(B) # L(C). Since both the process of constructing
D and the process of running Mgpra are finite, the Turing machine
will never become trapped in an infinite computation. Thus, Mgqpra
decides the equivalence problem for deterministic finite automata. W

Of course, we immediately have the usual corollary to accompany this
result.

Corollary 4.8

EQnea and EQge are decidable.

DECIDABLE PROBLEMS FOR CONTEXT-FREE LANGUAGES 141

Inclusion Problem

2\ Soon enough, we’ll have a positive decidability result for the inclusion
. problem to go along with our collection of other positive decidability
results.

4.2. DECIDABLE PROBLEMS FOR CONTEXT-FREE LANGUAGES

MOVING ON TO THE CLASS of context-free languages, we will again consider
each of the common decision problems in turn, but here we must make a
decision: much like we chose to prove regular language decidability results
with the deterministic finite automaton model, do we prove context-free
decidability results with the pushdown automaton model or with the context-
free grammar model?

If we were to go with the pushdown automaton approach, we would have
the familiarity in our proofs of simulating the computation of a simpler
machine on a Turing machine, exactly as we did in the previous section. On
the other hand, we would need to devise some way of managing the stack
of this machine as we simulate its computation, and this added complexity
would make our proofs somewhat more difficult.

By contrast, going with the context-free grammar approach, we can
easily simulate a derivation (which is a computation in disguise) just by
manipulating the rules of the context-free grammar in an appropriate manner.
Since we know that context-free grammars and pushdown automata are
equivalent in terms of recognition power, we lose nothing by selecting the
grammar model over the automaton model, and so we will make our lives
easier and take the grammar approach in this section.

Membership Problem

As before, we begin with the simplest of decision problems. If we’re given
an input (G, w), where G is a context-free grammar and w is a word over
the grammar’s terminal alphabet 3, the membership problem asks whether
G is capable of generating the word w.

The naive approach to determining whether G generates w would have
us check every possible derivation using the rules of G. However, this isn’t
a good approach, since in the worst case our algorithm may need to check
infinitely many derivations. In fact, if we tried this approach and G actually
couldn’t generate w, then our algorithm would keep checking derivations
fruitlessly and would never halt! Thus, while the naive approach semidecides
the problem, it doesn’t decide the problem.

We must somehow ensure that we only check some finite number of
derivations in the process of testing membership. Thinking back to our

142 DECISION PROBLEMS

discussion of Chomsky normal form, we made one important observation
that will help us greatly: recall that if a context-free grammar in Chomsky
normal form generates a word w, then the derivation of w will take 2|w| — 1
steps. This allows us to place an upper bound on the length of the derivation
and, therefore, a limit on the number of steps performed by our membership-
testing algorithm!

Using this observation, our decision algorithm will first convert its given
context-free grammar G to Chomsky normal form and then only check
candidate derivations of w that take 2|w| — 1 steps. If w can indeed be
generated by G, then its derivation will be found by the algorithm.

Theorem 4.9

Ackg is decidable.

Proof. Construct a Turing machine M acrg that takes as input (G, w),
where G is a context-free grammar and w is a word, and performs the
following steps:

Macra

1. Convert G to an equivalent grammar G’ in Chomsky normal form.

2. Check the length of w:

e If |w| = 0, then list all derivations using G’ that take a single
step.

o If |w| > 1, then list all derivations using G’ that take 2|w| — 1
steps.

3. If any of these derivations generate w, then accept. Otherwise,
reject.

This Turing machine accepts its input (G,w) if and only if the
context-free grammar G is capable of generating the word w; that is,
if and only if w € L(G). Likewise, the Turing machine rejects if and
only if no derivation exists that allows G to generate wj; that is, if
and only if w ¢ L(G). Since the process of converting G to Chomsky
normal form as well as the process of listing all derivations of a given
length are finite, the Turing machine will never become trapped in an
infinite computation. Thus, Macrg decides the membership problem
for context-free grammars. [|

Unsurprisingly, the same positive decidability result holds for the push-
down automaton model.

DECIDABLE PROBLEMS FOR CONTEXT-FREE LANGUAGES 143

Corollary 4.10

Appa is decidable.

Proof. Given a pushdown automaton P, we can convert it to an equiv-
alent context-free grammar G and run Macpg from the proof of Theo-
rem 4.9 on the input (G, w). []

Reviewing our proof of Theorem 4.9 may make it more evident why
we chose context-free grammars as our model in this section instead of
pushdown automata: with grammars, we can obtain a concrete upper bound
on how much work our Turing machine has to do before producing an
answer.

On the other hand, if we’re given a pushdown automaton as input, then
we know we can simulate the computation of this automaton on a Turing
machine in a rather straightforward manner. However, there’s no way for us
to predict in advance whether some branch of the pushdown automaton’s
computation tree will go on forever without accepting. Consider, for example,
the branch of the computation tree that corresponds to following these two
transitions repeatedly:

€,e— A

€, A e

If our Turing machine naively simulates the computation of the pushdown
automaton by descending into individual branches of the computation tree
one-by-one, then it could fall into this infinite-length branch trap. As a
consequence, we can’t guarantee that our Turing machine decides whether
or not the pushdown automaton accepts its input word, and so we can’t
establish a positive decidability result for the membership problem unless
we put in the additional work to avoid infinite-length branches in the
computation tree.

By comparison, doesn’t our context-free grammar approach seem so
much more appealing?

Emptiness Problem

For the emptiness problem, we again have a naive approach to check whether
L(G) = 0 for some context-free grammar G: for all words w over the terminal
alphabet 3, verify that there exists no derivation S =* w from the start
nonterminal S to some sequence of terminal symbols w. This is, of course,

144 DECISION PROBLEMS

not a good approach for the same reason as before: the pesky notion of
infinity gets in our way. There is an infinite number of words over ¥ for
which we must test membership, so if the language L(G) truly were empty,
an algorithm following this approach would never halt. We would just keep
checking and rejecting candidate words!

Instead, we will take an opposite approach to testing the emptiness of
the grammar’s language. Instead of checking that no sequence of terminal
symbols is generated by the grammar, we will check, for each nonterminal
symbol, whether that individual symbol yields some sequence of previously
marked terminal symbols. If this is the case, then we will mark that
nonterminal symbol. Then, whenever a marked nonterminal symbol appears
in a derivation, we know that some sequence of terminal symbols will appear
later in the derivation, and thus the grammar’s language is nonempty.

Our decision algorithm for Fcpg works a lot like our decision algorithm
for Eppa, except backwards: while the algorithm for Eppa marked states
starting from the initial state and leading to a final state, our algorithm for
Ecpe will mark symbols starting from the terminal symbols and returning
to the start nonterminal.

Theorem 4.11
FEckc is decidable.

Proof. Construct a Turing machine Mgcrg that takes as input (G),
where G is a context-free grammar, and performs the following steps:

MeEgcra

1. Mark all terminal symbols in G.

2. If G has a rule of the form A — a1 ...ax and each symbol
ai, - .. ,ar has already been marked, then mark the symbol A.
Repeat until no new symbols are marked.

3. If the start nonterminal of G has not been marked, then accept.
Otherwise, reject.

This Turing machine accepts its input (G) if and only if there exists
no derivation S =* w in the context-free grammar G from the start
nonterminal S to some sequence of terminal symbols w, and the Turing
machine rejects if and only if such a derivation exists in G. Since the
number of terminal symbols to mark and the number of rules of G to
check are both finite, the Turing machine will never become trapped in
an infinite computation. Thus, Mgcrg decides the emptiness problem
for context-free grammars. [|

AN UNDECIDABLE PROBLEM FOR TURING MACHINES 145

As we have come to expect, the same result holds for pushdown automata.

Corollary 4.12

FEppa is decidable.

4.3. AN UNDECIDABLE PROBLEM FOR TURING MACHINES

AFTER STUDYING SO MANY decision problems with positive decidability
results, one might become convinced that our models of computation are
capable of deciding anything we throw at it. Unfortunately, this is not the
case: our regular and context-free models happen to be just simple enough
to allow us to obtain the positive decidability results we saw in the previous
sections, but turning to our strongest model of computation—the Turing
machine—things begin to come apart.

But wait, since Turing machines are so powerful, doesn’t that mean
they can solve all kinds of problems? Indeed, that’s true, but they can’t
decide many problems. Remember, in order to decide a problem, the Turing
machine must always halt and either accept or reject the input word it was
given. As we observed earlier, the most common issue the Turing machine
may encounter comes in the “halt” step, since there’s no guarantee that the
machine will halt on every input word.

Indeed, even the most basic of decision problems is rendered undecidable
on a Turing machine, simply because of that fundamental limitation that
the machine may get caught in an infinite loop during its computation.
We’ve proved that the membership problems for regular languages and for
context-free languages are both decidable by virtue of the fact that the
models recognizing such classes of languages always halt and either accept
and reject their input words. For Turing machines, though, we lose this
valuable decidability property.

Before we continue, let’s review the notions of decidability and semide-
cidability from the previous chapter. Suppose that M is a Turing machine
recognizing a language L(M). Recall that:

o L(M) is decidable if

— whenever w € L(M), M accepts w, while
— whenever w ¢ L(M), M rejects w; and

o L(M) is semidecidable if

— whenever w € L(M), M accepts w, while

146 DECISION PROBLEMS

— whenever w € L(M), M either rejects w or enters an infinite
loop.

It’s quite straightforward to show that the membership problem for
Turing machines, A1y, is at least semidecidable. All we need to do is simulate
the computation of M on w! No matter what M does—accept, reject, or
loop forever—its behaviour matches our definition of semidecidability.

Theorem 4.13

ATwm is semidecidable.

Proof. Construct a Turing machine My that takes as input (M, w),
where M is a Turing machine and w is a word, and performs the
following steps:

Matm

1. Simulate M on input w.

2. If M ever enters its accepting state gaccept, then accept. If M ever
enters its rejecting state greject, then reject.

This Turing machine accepts its input (M, w) if and only if the
Turing machine M accepts its input w, and the Turing machine rejects
if and only if M rejects. If M enters an infinite loop on the input w,
then Mty will likewise loop forever. Thus, Mty semidecides the
membership problem for Turing machines.]

The machine M a1y that we constructed in the proof of Theorem 4.13
looks quite similar to the machine Mapga we constructed in the proof of
Theorem 4.1 to decide Apga. However, unlike the machine M apra, this
machine My only semidecides ATy, since it has no way of explicitly
rejecting its input word if it gets caught in an infinite loop. The machine
Marm can’t even guess that it’s looping infinitely and “short circuit” its
computation to automatically reject, for the plain reason that if the machine
has performed 1 000 000 steps, say, then there’s no general way of determining
whether it will reach the accepting or rejecting state on step 1000 001.

Note also that Mary is the canonical example of a universal Turing
machine, since we can give it an encoding of any Turing machine M and any
input word w and it will simulate the computation of that Turing machine
on that input word.

Now, getting back to our main point, we must prove that Aty is un-
decidable; that is to say, Atm is not decidable. The technique we will use

AN UNDECIDABLE PROBLEM FOR TURING MACHINES 147

is essentially a proof by contradiction: we will assume that we have some
machine capable of deciding A1y, and then show that the existence of such
a machine leads to a logical absurdity when we give a nefariously crafted
input word to that machine.

Theorem 4.14

Atwm is undecidable.

Proof. Assume by way of contradiction that Aty is decidable, and
suppose that My is a Turing machine that decides Aty. Given an
encoding of a Turing machine M and an input word w, M produces
the same answer that M would produce:

o M, accepts (M, w) if M accepts w; and
o My rejects (M, w) if M rejects w.

Note that we don’t know exactly how M decides the membership
problem: we only assume that it is capable of doing it.

We now construct a new Turing machine X that relies on using M a
as an intermediate step of its computation. The machine X takes as
input (M), where M is a Turing machine, and performs the following
steps:

Ea

1. Run Ma on input (M, (M)).
2. If Ma accepts, then reject. If Ma rejects, then accept.

Here, we see that X gives as input to M exactly what M expects to
receive as input: an encoding of a Turing machine M, together with
an input word to M that happens to be the encoded description of the
Turing machine M itself. This is allowed, since an encoded description
of a Turing machine is nothing more than a sequence of symbols just
like any other input word. After M halts and produces its answer, X
produces the opposite answer to whatever M gave:

o X accepts (M) if M rejects (M); and
o X rejects (M) if M accepts (M).

Figure 4.2 depicts the behaviour of X visually. Observe in this figure
that M4 is a “black box”, because as we remarked earlier, we don’t
know exactly how M decides Atpy.

148 DECISION PROBLEMS

M accepts (M)

X My accepts (M, (M)) X rejects (M)

M rejects (M) o
Ma rejects (M, (M) X accepts (M)

Figure 4.2. The Turing machine X from the proof of Theorem 4.14.

Now, consider what happens when we give X an encoding of itself
as input. Suppose we give X’ the input (X), so that X runs M on the
input (X, (X)). Tracing through the behaviour of M, followed by X,
we can see that:

e X accepts (X) if X rejects (X); and
e X rejects (X) if X accepts (X).

In either case, the actual computation of X on the input (X) must
return the opposite answer as the simulated computation of X on the
input (X), which is of course impossible! As a result, we obtain a
contradiction. Since the only assumption in our proof is about the
existence of M, we conclude that no such machine M can exist to
decide Atwm. [|

Diagonalization. The underlying concept that makes the proof of Theo-
rem 4.14 work is Cantor’s diagonal argument, named for the mathematician
Georg Cantor, who used the argument to demonstrate the existence of
uncountably infinite sets [1891]. An uncountably infinite set is one whose
elements cannot be placed into a bijection with the countably infinite set of
natural numbers N.

The crux of the diagonal argument is as follows: if we take a set T' of all
infinite-length binary words and assume that this set is countably infinite,
then we can enumerate (that is, count) all of the elements of T', and we can
denote this by writing something like T' = {¢q, t1, t2, ... }. However, using
the set T itself, we can construct a new word s that doesn’t belong to T
by taking the ith symbol of s to be the complement of the ith symbol in

AN UNDECIDABLE PROBLEM FOR TURING MACHINES 149

th = 0000000000
tt = 1111111111
ty = 0010110111
t3, = 0110100110
t4 = 1010101010
ts = 1100110011
ts = 0001110001
t7/ = 1001011001
ts = 0101010101
ty = 1001001110
s = 1001001111

Figure 4.3. Constructing a new word s that doesn’t belong to the set T' using
Cantor’s diagonal argument.

the word ¢;. This means that if the ¢th symbol in the word ¢; is 0, then we
set the ¢th symbol of s to be 1, and vice versa. This construction process is
illustrated in Figure 4.3.

In the process of constructing this new word s, we can see that it differs
from every other word in T in at least one position; namely, s differs from
t; at least in position i. (For example, compare s to tg in Figure 4.3.)
Therefore, it’s impossible for s to have already been included in T'. Since s is
not an element of T, we could not have accounted for s in our enumeration
of T'. Moreover, since we can create an infinite number of new words in this
way, and none of these new words is accounted for in our enumeration, T’
must not be countably infinite.

Cantor’s diagonal argument is popularly used to prove that the set of real
numbers R is uncountably infinite, but the same argument can be applied
to Turing machines in order to prove that Aty is undecidable. If we could
enumerate all Turing machines, then we could construct a table where each
row corresponds to a Turing machine M; and each column corresponds to
an encoding of a Turing machine (M,). Then, the entries of the table could
be taken to be the result of running our supposed machine M4 on the input
(M, (M;)), where each entry is either “accept” or “reject” depending on
the answer that M produced.

Mo) (My) (M) (Ms)
My | accept accept reject reject
M, | accept reject reject accept
Mo reject reject accept accept
M3z | accept accept accept reject

150 DECISION PROBLEMS

By the fact that X itself is a Turing machine, we know that A must
appear somewhere in our enumerated list, and thus in our table. We also
know each entry in the row corresponding to X: since X produces the
opposite answer to whatever M produces on the input (M;, (M,)), the
entry in column ¢ must be the opposite of the entry at position (i,7) of the
table. But again, therein lies the problem: what is the table entry at the
position corresponding to (X, (X))?

Mo) (My) M) Ms) - (X)
Moy | accept accept reject reject accept
M;i | accept reject reject accept reject
Moy | reject reject accept accept reject
M3z | accept accept accept reject accept
X reject accept reject accept ?

The entry at this position of the table somehow needs to be the opposite
of itself, and so we arrive at the same contradiction as before. The Turing
machine X cannot exist, which means that the Turing machine M cannot
exist, which means that Aty is undecidable.

4.4. A NON-SEMIDECIDABLE PROBLEM FOR TURING MACHINES

NOW THAT WE KNOW the membership problem Aty is semidecidable but
not decidable, we can be fairly sure that obtaining a positive decidability
result for other Turing machine decision problems is hopeless. After all,
if we can’t even decide the membership of a word in a Turing machine’s
language, what other questions about the language can we hope to decide?

In order to crush our spirits even further, let’s prove another fact about
languages and their relation to Turing machines. Earlier, we showed that the
class of decidable languages was a proper subset of the class of semidecidable
languages by proving that Aty is semidecidable, but not decidable. The
semidecidable languages are the “largest” class we’ve studied thus far in
this book. However, semidecidability is not the upper limit when it comes
to language classes! We can in fact show via a familiar argument that there
exist languages that lie even outside of the class of semidecidable languages.

Theorem 4.15
There exist languages that are not semidecidable.

Proof. In order for a language to be (at least) semidecidable, it must
be recognized by some Turing machine. Recall that we can describe

A NON-SEMIDECIDABLE PROBLEM FOR TURING MACHINES 151

any Turing machine M with a unique encoding (M). Although there
is an infinite number of Turing machines, each of these encodings has
a finite length, so we can enumerate them (say, lexicographically). By
associating each encoding with a natural number according to that
encoding’s position in our enumeration, we obtain a bijection between
encodings and the set of natural numbers N, which means that the set
of all Turing machines is countably infinite.

Now, consider the set of all words over some alphabet 3. Again,
even though this set is infinite, each of these words has a finite length, so
we can enumerate them (say, lexicographically); denote the enumerated
set by {wp, w1, ws,...}. From this, we can define languages in terms of
the words w; that belong to the language: we represent each language
as an infinite-length binary word where the ith symbol of the word is 1
if w; € L, and 0 otherwise.

However, the set of all languages cannot be countably infinite: by
Cantor’s diagonal argument, if we could enumerate all of the infinite-
length binary words representing every language, then it would be
possible to construct a new infinite-length word representing a language
not included in our enumeration. Therefore, the set of all languages
must be uncountably infinite, and so there must exist languages that
are not recognized by any Turing machine. []

Looking a bit more closely at our proof, we find ourselves confronted
by a perhaps-uncomfortable fact: not only do non-semidecidable languages
exist, but uncountably many non-semidecidable languages exist. Thus, if we
were to choose a language uniformly at random from the set of all languages,
that language will—in the probabilistic sense—almost never be decidable by
any Turing machine. In other words, the probability that a computer can
solve the problem corresponding to our randomly chosen language is zero!

Theorem 4.15 is an example of a theorem having a non-constructive proof:
the proof tells us that there exist languages that are not semidecidable, but
it doesn’t actually give us an example of such a language. We will, of course,
see such an example momentarily, but first we must come up with one more
definition.

Co-Semidecidability. The property of semidecidability, at its core, is non-
symmetric. Recall the decision problem Aty: we are guaranteed to get an
answer in the positive case, if the Turing machine accepts its input, but in
the negative case if the Turing machine loops forever, we will never end up
with an answer.

What if we wanted to guarantee answers in the negative case, though?
Consider how we might define a “looping” decision problem, where we want

152 DECISION PROBLEMS

to decide whether a Turing machine will loop forever on some input. In
the positive case, if the Turing machine does in fact loop forever, we will
again never end up with an answer. But in the negative case, if the Turing
machine halts, we are guaranteed to get an answer! We can’t reasonably call
this new decision problem semidecidable, since its behaviour doesn’t line up
with our definition of semidecidability. We need some new terminology.

Let L denote the complement of a language L. If we know something
about this language L—namely, that it is semidecidable—then we can draw
a straightforward conclusion about the complement of this language.

Definition 4.16 (Co-semidecidable language)

If a language L is semidecidable, then we say that the complement of
this language, L, is co-semidecidable.

Alternatively, given a Turing machine M, we say that the language
L(M) is co-semidecidable if,

e whenever w € L(M), then either M accepts w or M enters an
infinite loop; and

e whenever w ¢ L(M), then M rejects w.

Observe that the definition of co-semidecidability takes the non-symmetric
definition of semidecidability and flips it around: now, we are guaranteed
an answer in the negative case when w ¢ L(M), whereas semidecidability
guaranteed us an answer in the positive case when w € L(M).

Saying that L is co-semidecidable is another way of saying that we can
semidecide the complement of L: that is, we can semidecide L = L.

One might wonder, if we have a Turing machine that semidecides some
language L, whether we need a separate Turing machine to co-semidecide L?
In fact, we don’t always need a new machine: the original language L and
the language of all words not in the complement language L are one and the
same. (Think about why this is the case.) Thus, if we want to, we can use
the existing Turing machine M that semidecides L also to co-semidecide L:
if M accepts some input, then we know that input cannot belong to L, and
SO we can treat it as if it were rejected.

Going a step further, if we know something about the co-semidecidability
of a language, does this say anything about the semidecidability of the same
language? By Definition 4.16, we know that L is co-semidecidable whenever
L is semidecidable, but this in itself does not suggest or imply that L is
semidecidable. If we could further show that L were also semidecidable,
then L would be co-semidecidable, again by our definition. In this situation

A NON-SEMIDECIDABLE PROBLEM FOR TURING MACHINES 153

Mbp

Mgp accepts w Mp accepts w

Msp >

Mosp accepts w Mp rejects w

MCOSD >

Figure 4.4. The Turing machine Mp from the proof of Theorem 4.17.

where L is both semidecidable and co-semidecidable, we can “upgrade” the
class to which L belongs.

Theorem 4.17

A language L is decidable if and only if L is both semidecidable and
co-semidecidable.

Proof. (=): Suppose L is decidable. Since all decidable languages are
also semidecidable, we have that L is semidecidable. If we take the
Turing machine deciding L and exchange the accepting and rejecting
outputs, then we get a machine that decides L. Thus, L is semidecidable,
and so L is co-semidecidable.

(«<): Suppose L is both semidecidable and co-semidecidable. Then
there exists a Turing machine Mgp semideciding L and a Turing machine
Mosp co-semideciding L. Using these two Turing machines, we can
construct a Turing machine Mp that takes as input a word w and
performs the following steps:

o

1. Run both Mgsp and Mcosp on the input word w in parallel.

2. If Mgp accepts, then accept. If Mcosp accepts, then reject.

Figure 4.4 depicts the behaviour of Mp visually.

Since every word w must belong to either L or L, either Mgp or
Mosp must accept w. Moreover, since Mp halts whenever either
Msp or Mcosp accepts, we have that Mp decides L, and so L is
decidable. [|

154 DECISION PROBLEMS

The Non-membership Problem. To motivate our study of co-semidecidability,
we considered a “looping” decision problem, but our formulation of this
problem was rather ad hoc and imprecise. Since co-semidecidability is
fundamentally a property of the complement of a language, let’s further
motivate our study by taking an existing decision problem that we have
already formally defined and studying its complement. Namely, consider
the Turing machine “non-membership” problem:

Arm = {{M,w) | M is a Turing machine that
does not accept input word w}.

Taking all that we know about decidability, we can say that a decidable
problem is one where we can always obtain an answer for both the problem
itself and for the complement of the problem. Because both Appa and Acpg
are decidable, their Turing machines always halt and either accept or reject
any input word given to them. This means that the corresponding “non-
membership” problems Appa and Acpg are also decidable, since we can use
the same Turing machines to decide these problems by exchanging accept
and reject outputs, and so studying these complementary decision problems
isn’t too interesting. The Turing machine “non-membership” problem
Atwm, on the other hand, is different, since Aty is only semidecidable. A
semidecidable problem is one where we can always obtain an answer for
the problem itself, but not necessarily for the complement of the problem.
Thus, it makes sense for us to study Atm independently of Atym.

So, what is the decidability status of Aty? Instead of approaching a
proof from first principles, as we did in showing that Aty was undecidable,
we will use a different (and easier!) approach with Aty that focuses on
what we already know about Aty.

Since Theorem 4.13 tells us that Aty is semidecidable, we know that
Aty is co-semidecidable by Definition 4.16. However, if Aty were also
semidecidable, then Definition 4.16 would likewise tell us that Aty is co-
semidecidable, and this would present quite a problem! Therefore, we can
conclude the following.

Theorem 4.18

Atwm is not semidecidable.

Proof. Assume by way of contradiction that Aty is semidecidable. Then
Atm would be co-semidecidable, and by Theorem 4.17, Aty would be
decidable, which contradicts Theorem 4.14. [|

This theorem reveals a remarkable fact: Aty is not only undecidable as
we might expect, but it’s also non-semidecidable, and so it lies in an entirely
different part of our language hierarchy!

CHAPTER NOTES 155

As we observed at the beginning of the section, uncountably many non-
semidecidable languages exist, and so we shouldn’t be too surprised by the
fact that we found an example of such a language. In the next chapter, we’ll
see a number of other examples of languages that are neither decidable nor
semidecidable; in some cases, these languages are co-semidecidable, while in
other cases, not even co-semidecidability holds.

CHAPTER NOTES

4.1.

4.2.

4.3.

4.4.

The decidability of the membership problem for the class of regular
languages is practically folklore, in that the result follows immediately
from simply giving an input word to a finite automaton. The decidabil-
ity of the (non-)emptiness problem was established by Moore [1956],
who used an argument different from ours that essentially resembles
the pumping lemma for regular languages. As we observed, the de-
cidability of the universality, equivalence, and inclusion problems all
follow from the positive answer for the emptiness problem.

Bar-Hillel, Perles, and Shamir [1961] showed that both the membership
problem (or “the property of sentencehood” in their terminology) and
the emptiness problem are decidable for the class of context-free
languages.

It can be said that the undecidability of Aty was established by
Turing [1936], although he didn’t prove this exact result. Turing
instead proved the undecidability of the printing problem, which takes
a machine M and asks “whether M ever prints a given symbol (0
say)”. We can, however, easily draw a connection between the printing
problem and the membership problem by, for instance, modifying a
given machine to write some special symbol “a” to its tape before
reaching Gaccept-

Although Cantor’s diagonal argument appeared in 1891, it was not
Cantor’s first proof pertaining to uncountability. Two decades earlier,
Cantor published a paper [1874] demonstrating, among other things,
the uncountability of the set of real numbers using an approach inspired
by Liouville’s argument for the existence of transcendental numbers.
For further details about Cantor’s proofs, see the article by Gray
[1994].

The argument we employed in the proof of Theorem 4.15 is essentially
identical to that used by Cantor [1891], but applied to languages
instead of general sets.

Theorem 4.17, on the relationship between decidability, semidecidabil-
ity, and co-semidecidability, is due to Post [1944].

CHAPTER FIVE

PROVING UNDECIDABILITY

THUS FAR, WE ONLY HAVE a couple of examples of decision problems that
are undecidable, but these examples are big ones: the membership and
non-membership problems for Turing machines. These particular problems
being undecidable presents a huge issue for us, since the simple matter of
testing membership of an input word in a Turing machine’s language is
fundamental to answering nearly any other question about the capabilities
of a Turing machine.

We know that other undecidable languages exist—in fact, as we observed
earlier, there are uncountably many such languages! And, as we might
expect, many decision problems for Turing machines fall into this category.
So how do we prove such problems truly are undecidable?

In the previous chapter, we combined the techniques of arithmetization
and diagonalization to obtain our first undecidability result. Arithmetization
is a fancy word that describes the process of encoding the behaviour of a
Turing machine as a string of symbols; say, taking a 1 as the ith symbol
if some Turing machine accepts the description of another Turing machine
(M;) and 0 if it rejects the description. We then know from our discussion
of diagonalization how these strings of symbols can be manipulated to
produce a new string that leads to some absurd and undefined behaviour.
But admittedly, undecidability proofs via diagonalization are lengthy and
tedious. Is there some other (hopefully easier) way to prove that a decision
problem is undecidable?

Enter the notion of reducibility. A reduction is a way for us to relate
the difficulty of one decision problem to the difficulty of another. If we
know how to turn one problem into another, then we can use an existing
Turing machine or algorithm for the second problem also to decide the
first problem. On the other hand, if we know how to turn one problem
into another and we know that the first problem cannot be decided by any
Turing machine or algorithm, then we can conclude that it’s hopeless for
us to decide the second problem. Therein lies the other (easier) way for
us to prove undecidability: if we can turn either of our known-undecidable
problems Aty or Aty into some new problem, then we have our proof!

157

158 PROVING UNDECIDABILITY

If a reduction seems a bit abstract based on what you’ve read so far,
consider that you encounter examples of reductions in your daily life without
even realizing it. For example, if you've recently gone to the library to sign
out a book you want to read, the problem of locating that book in the
stacks is no more difficult than the problem of searching for that book in
the library’s catalog. If you know how to use the library’s catalog, then you
know how to acquire the classification number of the book and where to
find it on the shelf.

In this chapter, we will use reductions to prove that many decision prob-
lems for Turing machines are undecidable, including one of the most famous
problems in all of computer science. Each of our proofs of undecidability will
have a very similar structure, highlighting the versatility of this approach
over our more tedious and ad hoc diagonalization approach. We will then
put a spin on the idea of reducibility in order to go one step further and
prove that certain decision problems pertaining to context-free languages
are likewise undecidable.

5.1. MANY-ONE REDUCTIONS

IN OUR PROOF showing that Aty was undecidable, we constructed a Turing
machine X that took as input (M), the encoding of a Turing machine M,
converted that input to the form (M, (M)), and gave that converted input
to another Turing machine M. The machine X then used the output of
M to determine what its own output should be. This was the ad hoc
diagonalization approach: what we wish to avoid going forward.

Generalizing this notion—that is, the notion of a Turing machine taking
an input corresponding to some decision problem X, converting it into an
input corresponding to some other decision problem Y, and then giving that
converted input to another Turing machine for Y—gives us the foundation
for proving undecidability using many-one reductions or, more generally,
just reductions.

Remark. There exist other kinds of reductions that we will study later
in this book. In this chapter, though, we will only consider many-one
reductions, so we will often use the word “reduction” here as a shorthand
to refer to many-one reductions.

Computationally speaking, a many-one reduction is the middle step in
our aforementioned generalization that converts the instance of the problem
X into an instance of the other problem Y. The reason why this step is
called a “many-one” reduction is because the conversion process is performed
by a computable function, to which we were introduced in Section 3.1.3. If
a computable function exists that gets us from X to Y, then we say that X
is many-one reducible (or just reducible) to Y.

MANY-ONE REDUCTIONS 159

Decider for X

Instance flw) ey
w of X Fredlieiiem f(w) iffwe X
from X to Y

Figure 5.1. A Turing machine for X using the reduction X <, Y.

Definition 5.1 (Many-one reduction)

Given two decision problems X and Y over alphabets 3 and I, respec-
tively, problem X is many-one reducible to problem Y if there exists a
computable function f: ¥* — I'* where, for all w € ¥*, w € X if and
only if f(w) € Y.

Having a reduction tells us not only that we can transform every instance
w of X into an instance f(w) of Y, but also that we cannot transform non-
instances of X into instances of Y or vice versa. Moreover, since w € X if
and only if f(w) € Y, we know that the transformed instance will produce
the same output as the original instance—since we’re dealing with decision
problems, this means that both w and f(w) will give us either a “yes” answer
or a “no” answer. This observation reveals something very useful indeed:
since we’ll get the same answer for the instance of Y as we would for the
instance of X, we can use a reduction along with a decision algorithm for
problem Y to decide the original problem X.

We denote a reduction from X to Y by the notation X <., Y. Figure 5.1
illustrates how such a reduction works, while Figure 5.2 shows how the
computable function f maps elements from one set to another.

Reductions are in general not reversible, so the direction of a reduction

is important: if X <., Y, then we say that we reduce from X to Y.
Mixing up the direction of a reduction is a very common mistake made by
the novice and the expert alike, so don’t feel discouraged if it happens to
you at least once.

If we have a reduction from X to Y, then we can make some claims
about the relative difficulty of X based on what we know about Y, or vice
versa. The existence of a reduction from X to Y implies that finding an
answer to X is no more difficult than finding an answer to Y, or equivalently,
finding an answer to Y is at least as difficult as finding an answer to X.
This is because, as Figure 5.1 illustrates, we must use the decider for Y
as an intermediate step in the overall decider for X. Thus, we have the

160 PROVING UNDECIDABILITY

2 / I~

—

f

Figure 5.2. How a reduction X <,, Y maps elements. All elements in X are
mapped by f to some element in Y, while all other elements in ¥*\ X are mapped
by f to some other element in T'* \ Y.

following rules of thumb:

e if X reduces to Y and Y is “easy”, then we know that X must
similarly be “easy”; and

e if X reduces to Y and X is “hard”, then we know that Y must
similarly be “hard”.

We can intuit about both of these rules of thumb as follows. If Y is
“easy”, then we already have a decider for Y, and we need only build the
decider for X around the decider for Y. On the other hand, if X is “hard”,
then everything inside a supposed decider for X—including the decider for
Y—must be “hard” for us to solve.

It’s worth emphasizing once more that directionality is crucial with
reductions. It wouldn’t make sense for us to reduce from an “easy” problem
to a “hard” problem, since our Turing machine could just decide the “easy”
problem directly while skipping over the supposed decider for the “hard”
problem: we don’t need the reduction at all in this case.

If you are taller than someone who is tall, then you must be tall.
But if someone tall is taller than you, you might be
short or tall—we wouldn’t yet know.

— JOEL DAVID HAMKINS

For now, we write “easy” and “hard” in quotation marks, since these

notions are still informal. Soon, we will introduce complexity classes and
define more precise notions of easiness and hardness for decision problems.

MANY-ONE REDUCTIONS 161

5.1.1. Properties of Reductions

Let’s now establish some basic facts about the many-one reduction relation
itself. We’ve already observed that reductions are in general not reversible,
so we can say that the many-one reduction relation is not symmetric: if
X < Y, then it is not always the case that Y <., X as well. However, we
can prove two other nice properties.

Lemma 5.2

The many-one reduction relation <,, is reflexive and transitive.

Proof. Let X, Y, and Z be arbitrary decision problems.

To show that <, is reflexive, take f(x) = = as our computable
function. Then X <., X for all decision problems X.

To show that <, is transitive, suppose that X <., Y by way of some
computable function f and Y <, Z by way of some other computable
function g. Then X <, Z by taking h(z) = g(f(z)) as our computable
function. |

Another fact about reductions that will come in handy for us later is
that the many-one reduction relation is closed under complement.

Lemma 5.3

Given two decision problems X and Y, X <., Y if and only if X <, Y.

Proof. Since X <., Y, we know by Definition 5.1 that there exists some
computable function f where, for all w, w € X if and only if f(w) € Y.

If we X, then w ¢ X, so f(w) €Y and thus f(w) € Y. Similarly,
if w ¢ X, then w € X, so f(w) € Y and thus f(w) ¢ Y. Therefore,
w € X if and only if f(w) € Y, and the same computable function f
gives us the reduction X <, Y. []

5.1.2. Reductions, Decidability, and Semidecidability

We can combine the notion of a decidable problem with that of a reduction
to allow us to characterize an unknown problem in terms of another known
problem.

Theorem 5.4

If Y is decidable and X <,, Y, then X is decidable.

Proof. Since Y is decidable, there exists a Turing machine My that de-

162 PROVING UNDECIDABILITY

cides instances of Y. Moreover, since X <., Y, there exists a computable
function f that reduces instances of X to instances of Y.

We construct a Turing machine M x that takes as input a word w
and performs the following steps:

iy |

1. Compute f(w) using the reduction X <, Y.
2. Run My on the result f(w).
3. If My accepts, then accept. If My rejects, then reject.

The computable function f—that is, our reduction from X to Y—
tells us that if f(w) € Y, then it must be the case that w € X. On the
other hand, if f(w) ¢ Y, then w ¢ X. In either case, we can use the
answer produced by the Turing machine My to obtain an answer for
our original decision problem X and its original input w.]

The main benefit of Theorem 5.4 is that, as long as we know two things—
namely, that Y is decidable and that there exists a reduction X <, Y—we
don’t need to construct an entirely new Turing machine just to decide X.
We can just sit back and let the existing Turing machine My do all the
work on the reduced instance of X!

Of course, the main focus of this chapter is proving undecidability, and
so it makes sense for us to connect reductions to this notion as well. By
taking the contrapositive of Theorem 5.4, we get the following important
result that we will use frequently in future proofs.

Corollary 5.5

If X is undecidable and X <., Y, then Y is undecidable.

Indeed, if we have an undecidable problem X and a reduction X <., Y to
some other decision problem Y we wish to prove undecidable, Corollary 5.5
gives us a general template for such a proof:

1. Assume by way of contradiction that Y is decidable by some Turing
machine My .

2. Construct the following Turing machine M x that takes as input
a word w and supposedly decides X using the machine My:

THE HALTING PROBLEM 163

i |

1. Compute f(w) using the reduction X <,, Y.
2. Run My on the result f(w).
3. If My accepts, then accept. If My rejects, then reject.

3. Since X is undecidable, conclude that such machines Mx and
My cannot exist, and so Y cannot be decidable either.

The key part of any proof of undecidability that uses reductions comes
in the first step of the description of M x, which we have emphasized in
boldface. We must develop the reduction X <,;, Y specifically for the
decision problems X and Y under consideration in the proof, and so this
step is the one that most often requires creative thinking and customization.
Thankfully, the rest of the proof is mostly boilerplate and can be reused.

Another warning about the directionality of reductions: take careful

note of the wordings of Theorem 5.4 and Corollary 5.5. If X is decidable
and X <;, Y, then we can’t make any conclusions about the decidability of
Y. It’s possible that Y may be undecidable even if X is decidable.

We can make similar claims about semidecidability instead of decidability
by using essentially the same proof as in Theorem 5.4. The difference here,
of course, is that we no longer have the guarantee that our Turing machine
My will always halt.

Theorem 5.6

If Y is semidecidable and X <., Y, then X is semidecidable.

Again, taking the contrapositive gives us another important result that
will come in handy later.

Corollary 5.7

If X is not semidecidable and X <., Y, then Y is not semidecidable.

5.2. THE HALTING PROBLEM

MoOST, IF NOT ALL, of the code we write in our daily lives has the desirable
behaviour that it eventually ends its computation and produces an output.
For example, the following code can easily be seen to stop after some time:

164 PROVING UNDECIDABILITY

41

for 2 < j <10 do
141X

return ¢

On the other hand, the following code will never stop, ceaselessly churning
on and on until either the user intervenes or the computer shuts off:

1+ 0
while true do
1+ 1+1

Does it happen to be the case that any useful code we write exhibits the
behaviour of eventually stopping and producing something for us? Let’s
consider one more block of code, which has both a “while true” infinite loop
and a “return” statement within that loop giving us a possible avenue to
stop computing:

14
while true do
if 7 is not the sum of two prime numbers then
return false
else
print the two prime numbers that sum to ¢
14 1+2

The utility of this code might be up for debate if you’re not in any pressing
need to know whether a number can be represented as a sum of two primes,
but mathematicians would argue that this code is very useful: it will reach
that internal “return” statement if and only if the Goldbach conjecture is
false! So, will this code ever stop and return false? The Goldbach conjecture
has been verified to hold for all even numbers up to 4 x 10'8—an incredibly
large value—but no general proof or disproof is yet known. Thus, if we
could determine whether this code will ever come to a halt (and assuming
it doesn’t do so due to a computer bug), it would be very big news in the
mathematical world.

The question of whether code halts has deep connections and implications
across computer science, from the most abstract theory to the most applied
software engineering. Some infinite-looping behaviour is desirable in code—
say, in software that polls the status of a computer—but in other code, it
is very important for us to know whether or not we’ll eventually get the

THE HALTING PROBLEM 165

answer we desire. This has led to the halting problem becoming one of the
most famous problems in all of computer science.

Although we have framed our discussion so far in terms of code, the
halting problem formally asks whether the computation of a Turing machine
halts on some given input word. Of course, thanks to the Church—Turing
thesis in Section 3.6, we know that code and Turing machines are “the
same” in the sense that code implements algorithms and algorithms can be
computed on Turing machines. Thus, we can formulate the halting problem
precisely as follows:

Hryv = {{(M,w) | M is a Turing machine that halts on input w}.

Observe that the formulation of Hty looks very similar to that of Ary.
However, there exists a subtle difference between the two problems: Aty
asks not only whether a given Turing machine halts, but also whether it
accepts a given input word. By contrast, Htym only cares about whether the
machine halts.

We can at least say that Hrty is semidecidable, since we can construct
a Turing machine that takes as input a description of a Turing machine
M along with an input word w and accepts if and only if the simulated
computation of M on w halts.

Theorem 5.8

Htw is semidecidable.

Proof. Construct a Turing machine Myt that takes as input (M, w),
where M is a Turing machine and w is a word, and performs the
following steps:

Mut™m

1. Run M on the input word w.
2. If M halts, then accept.

This Turing machine accepts its input (M, w) if and only if the
Turing machine M halts when given its input w. If M enters an infinite
loop on the input w, then Mpgry will likewise loop forever. Thus,
Muyry semidecides the halting problem. [|

Now, we will prove the undecidability of Hry by way of reduction from
our known-undecidable problem Aty. Note that reducing from Atm to Hrm
means that we can turn instances of Aty into instances of Hty, and since
we know that Aty is undecidable, this must mean that Hyy is similarly
undecidable by Corollary 5.5.

166 PROVING UNDECIDABILITY

Theorem 5.9

Htw is undecidable.

Proof. Assume by way of contradiction that Hty is decidable, and
suppose that My is a Turing machine that decides Hyp.

We construct a new Turing machine M 4 for the membership problem
Atwm that uses the reduction Aty <. Hrm. The machine M takes as
input (M, w), where M is a Turing machine and w is an input word,
and performs the following steps:

iy |

1. Define a computable function f that takes as input (M, w) and
produces as output (M’ w), where M’ behaves as follows:

M|

1. Run M on the input word given to M’.

2. If M accepts, then accept. If M rejects, then loop
forever.

2. Run My on the result (M’ w) produced by f.
3. If My accepts, then accept. If My rejects, then reject.

Observe that if (M, w) € Atm, then M accepts w and M’ likewise
accepts and therefore halts, meaning that (M’, w) € Hyy. Otherwise, if
(M, w) & A1y, then M either rejects w or loops forever, and in either
case M’ loops forever, meaning that (M’ , w) € Hrwm.

If the machine My existed to decide Hry, then we could decide Aty
using the machine M. However, we know that Aty is undecidable.
Thus, My must not exist, and so Hyp must be undecidable. [|

In our proof that Hty is undecidable, we constructed a Turing machine
M that ostensibly decides Aty and is composed of two parts: a reduction
that computes a function f turning instances of Aty into instances of Hr,
and a black-box Turing machine My that decides Hypy. As before, the
Turing machine using this reduction from Aty to Htym is illustrated in
Figure 5.3.

We don’t know how the black-box Turing machine My decides Htwv;
we only assume that it exists. However, we do know how the reduction
works—this is step 1 in our procedure! The function f takes the description
of the input Turing machine M and converts it into a new Turing machine
M’ that halts on its input word if and only if M accepts the same input

THE HALTING PROBLEM 167

My
. (M, w) € Hru
(M, w) Reduction (M, w) iff (M, w) € Arm
—— > from Atwm >
to HTM

Figure 5.3. A Turing machine for Aty using the reduction Aty <m Htm-

word.

At this point, you may ask yourself: doesn’t this reduction implicitly
decide ATy, since it has to figure out whether M accepts or rejects its input
word? This is a reasonable question, since if the reduction did work in this
way, we would find ourselves trapped in a snare of circular logic. Fortunately
for us, we avoid such a trap, since the reduction does no deciding on its
own: it only modifies the description of M. Namely,

o if (M) has a transition leading t0 gaccept, then the reduction leaves
this transition as is; and

o if (M) has a transition leading to greject, then the reduction modi-
fies this transition to instead enter a new “infinite loop” state and
render ¢reject unreachable.

Thus, the reduction only changes how certain transitions of M behave,
and it doesn’t consider the output of M on any particular input word.

Ultimately, our construction establishes that M accepts w if and only if
M’ halts on w (i.e., (M, w) € Ay if and only if (M’ w) € Hrm). At the
same time, M does not accept w or M loops forever on w if and only if M’
loops forever on w (i.e., (M, w) & Aym if and only if (M', w) & Hrm).

You may be wondering whether we needed such a complicated proof
to show that the halting problem is undecidable, and strictly speaking, we
didn’t. In fact, we can return to the code-oriented approach with which
we started this section! Strachey [1965] showed that there can exist no
function that behaves like our Turing machine Mg using just a few lines
of code. In his approach, Strachey takes T[R] to be a Boolean function
receiving an arbitrary program R as input, where R has no free variables
as arguments. (In other words, such a program R is “fixed” in the sense
that it will always exhibit the same behaviour when run.) The function
T behaves in the following way: for all programs R, T[R] returns true if
R terminates when run, and T[R] returns false otherwise. Then, Strachey

168 PROVING UNDECIDABILITY

writes the following program P:

rec routine P
§ L: if T[P] go to L
return §

Unless you're familiar with the programming language CPL, this code may
look a little obscure to you, but we can look beyond the syntax to tease
out the general idea of what the code is doing. As we noted, T'[P] checks
whether or not P terminates when run, and it returns either true or false.
If T[P] returns true, then we will enter the body of the if statement and
jump to the line labelled L, which puts us back at the beginning of the if
statement; that is, P loops forever. On the other hand, if T[P] returns false,
then we will skip over the if statement entirely and return an empty output;
that is, P halts. In either case, P behaves in a manner opposite to what
T'[P] indicated, and so the function T cannot exist!

| have never actually seen a proof of this in print, and

though Alan Turing once gave me a verbal proof (in a railway
carriage on the way to a Conference at the NPL in 1953),

| unfortunately and promptly forgot the details.

— CHRISTOPHER STRACHEY

5.3. MORE UNDECIDABLE PROBLEMS FOR TURING MACHINES

AT THIS POINT, our collection of undecidable problems is slowly growing;:
we know now that each of A1y, Atm, and Hyy is undecidable. Using these
facts together with the power of reducibility, we can prove many other
problems for Turing machines are undecidable.

Emptiness Problem

Let’s start by considering the familiar emptiness problem for Turing ma-
chines, Fry. In the previous section, we showed that Hty is undecidable by
reducing from Atpy, since both of these decision problems rely in some way
on halting: Htwm just focuses on a Turing machine halting on some input
word, while for A1y, we know that a Turing machine must necessarily halt
in the process of accepting some input word.

The decision problem Fry is different, though: if a Turing machine’s
language is empty, then it must not accept any input words we give to it.
Therefore, it doesn’t make much sense for us to involve Aty in our proof of
undecidability, since this decision problem relies on accepting! Instead, since
we’re focused on not accepting, let’s go with the complementary decision
problem Atpy.

MORE UNDECIDABLE PROBLEMS FOR TURING MACHINES 169

M/

Arbitrary

M accepts w = M’ accepts x
input word x “, P P 2

-7 = M "

M rejects w M’ rejects x

>

Figure 5.4. The Turing machine M’ from the proof of Theorem 5.10.

Recall that Fry expects to receive a description of a Turing machine as
input, while Aty expects to receive as input both a description of a Turing
machine and an input word to give to that machine. Our reduction therefore
must have the property that, for any Turing machine M and input word w,
(M,w) € Aty if and only if (M’) € Ety for some Turing machine M’.

The big question is: what is M’, and how can we ensure M’ doesn’t
accept any input words if and only if M doesn’t accept w? Our approach
for this proof will be to construct M’ in such a way that, no matter what
input word it receives, it completely ignores that word and only checks the
behaviour of M on the specific input word w. Then, whatever answer M
gives for w will become the answer given by M’. (See Figure 5.4 for an
illustration of what M’ is doing.) In essence, M’ generalizes the answer
given by M: if M does not accept w, then M’ will accept nothing, while if
M accepts w, then M’ will accept everything.

At this point, we can start to see how the proof will come together. Our
reduction will turn the encoding (M, w) into an encoding (M), where the
behaviour of M’ depends solely on the behaviour of M given w. Then,
supposing we can test the emptiness of the language L(M’), we can also
determine whether w ¢ L(M).

Theorem 5.10

FErm is undecidable.

Proof. Assume by way of contradiction that Fry is decidable, and
suppose that Mg is a Turing machine that decides Frpy.

We construct a new Turing machine My for the non-membership
problem Aty that uses the reduction Aty <m Erm. The machine My
takes as input (M, w), where M is a Turing machine and w is an input
word, and performs the following steps:

170 PROVING UNDECIDABILITY

1. Define a computable function f that takes as input (M, w) and
produces as output (M), where M’ behaves as follows:

M

1. Run M on the input word w.

2. If M accepts w, then accept. If M rejects w, then
reject.

2. Run Mg on the result (M’) produced by f.
3. If Mg accepts, then accept. If Mg rejects, then reject.

Observe that if (M, w) € Aty, then M does not accept w and M’
will not accept any input word given to it, meaning that (M’) € Ery.
Otherwise, if (M, w) € Atm, then M accepts w and M’ will accept
every input word given to it, meaning that (M’) & Frp.

If the machine My existed to decide Etwm, then we could decide Atm
using the machine Mx. However, we know that Atwm is undecidable.
Thus, Mg must not exist, and so Ety must be undecidable. [|

The careful reader might have noticed that the construction we used
to prove Theorem 5.10 in fact goes one step further in telling us about
the properties of Ery. Since we know that Aty is non-semidecidable by
Theorem 4.18, the reduction Aty <m Frm combined with Corollary 5.7
allows us to establish the following even stronger fact about Fry.

Corollary 5.11

Frm is not semidecidable.

On the other hand, we at least have a glimmer of hope when it comes to
handling instances of the Turing machine “non-emptiness” problem FErp.

Theorem 5.12

Frwm is semidecidable.

Proof. Construct a Turing machine Mgpyp that takes as input (M),
where M is a Turing machine, and performs the following steps:

MORE UNDECIDABLE PROBLEMS FOR TURING MACHINES 171

Mt

1. Enumerate all words over X*, producing a list {w1, w2, ws, ... }.

2. For all ¢ € {1,2,3,...}, simulate ¢ steps of the computation of M
on the first 7 words w1 to w;.

3. If M ever enters its accepting state gaccept On any of the words,
then accept.

Observe first that since ¥* is a countably infinite union of finite sets,
it is itself countably infinite, and so we can perform the enumeration
specified in Step 1 of Mgy

This Turing machine accepts its input (M) if and only if the Turing
machine M accepts at least one input word w; where j € {1,2,3,...},
and if no word is accepted by M, then the Turing machine loops
forever. Thus, Mgz semidecides the non-emptiness problem for Turing
machines. |

As a consequence of Theorem 5.12, we can also say that Fry is co-
semidecidable.

Unfortunately, semidecidability is all that we can hope for with Fry:
since reductions are closed under complement by Lemma 5.3, knowing that
Atm <m Frm also tells us that Atm <m Ftm, and since Ay is undecidable,
we conclude that Ety must also be undecidable.

Before we continue, let’s revisit our choice to use the decision problem
Aty in our reduction showing that Ery is undecidable. Even though we saw
an earlier justification for why it didn’t make much sense for us to use Atm
in this situation, would it nevertheless have been possible for us to reduce
Atm to Ervm as an alternative proof? Interestingly, no! Using many-one
reductions, there is in fact no way for us to reduce Aty to Etm, and the
proof follows directly from what we already know about both problems.

Theorem 5.13

Atm £m Erwm.

Proof. Assume by way of contradiction that Aty <. FErm, and let
f be the computable function performing such a reduction. Since
reductions are closed under complement by Lemma 5.3, we also have
that Atm <m Frm by the same computable function f.

We know by Theorem 5.12 that Ery is semidecidable, so by The-
orem 5.6, this implies that Aty is also semidecidable. However, this
contradicts Theorem 4.18, so no such reduction can exist. [|

172 PROVING UNDECIDABILITY

Theorem 5.13 raises a fascinating point about many-one reductions:
sometimes, a many-one reduction between two decision problems simply
cannot exist! This, in turn, highlights the importance of creatively construct-
ing our reductions: if we wanted to prove directly that Ery was undecidable,
and we focused on using the classic undecidable problem Aty in our proof,
then we would’ve quickly hit a brick wall. Introducing the complementary
problems Fry and Aty to our suite of undecidable problems gives us more
flexibility.

Remark. Confusingly, some textbooks and learning materials purport to
give a “reduction” from Aty to Fry in their proof of the undecidability
of Frm. These proofs typically use an informal notion of reducibility
that disguises the fact that the reduction is actually from Aty to Erm.

Universality Problem

Let’s now move on to the universality problem for Turing machines, Utpy.
Since this decision problem asks whether the language of a Turing machine
contains all words, one might think (as we did with finite automata) that Urm
is just the opposite of Fry, and so we can immediately draw a connection
to our complementary decision problem Fry. Unfortunately, things aren’t
so easy when it comes to Turing machines, as the class of semidecidable
languages isn’t closed under complement! A positive answer to an instance
of Frm only tells us that the Turing machine in question accepts at least
one word, not that it accepts all words.

This doesn’t mean we need to start from scratch, though: we can in fact
reuse some of the ideas we had in showing that Ety is undecidable to prove
that Uty is undecidable. If a Turing machine’s language is universal, then
it must accept every word we give to it. This statement sounds very similar
to Atm, which asks whether a Turing machine accepts whatever specific
word we gave to it. Thus, just like we reduced Atm to Erwm in the previous
section, it seems promising here for us to reduce Aty to Urwm.

Recall that Uty expects to receive a description of a Turing machine as
input, while Aty expects to receive as input both a description of a Turing
machine and an input word to give to that machine. Thus, our reduction
must have the property that, for any Turing machine M and input word
w, (M, w) € Arwm if and only if (M’) € Urm for some Turing machine M’.
As before, we must construct a Turing machine M’ that accepts all input
words if and only if M accepts w.

It’s no coincidence that we denoted this Turing machine by M’ again:
it turns out that we can use the exact same approach that we used with the
Turing machine emptiness problem! Again, we will ensure that no matter
what input word M’ receives, it will ignore that word and instead simulate
the computation of M on its input word w. Then, whatever answer M gives

MORE UNDECIDABLE PROBLEMS FOR TURING MACHINES 173

for w will become the answer given by M’. We're following the same idea
by having M’ generalize the answer given by M: if M accepts w, then M’
will accept everything, while if M rejects w, then M’ will accept nothing.

Our reduction will therefore behave identically to our previous reduction
for Erm: we will turn the encoding (M, w) into an encoding (M), where
the behaviour of M’ depends solely on the behaviour of M given w. Then,
supposing we can test the universality of the language L(M), we can also
determine whether w € L(M).

Theorem 5.14

Utn is undecidable.

Proof. Assume by way of contradiction that Uty is decidable, and
suppose that My is a Turing machine that decides Uty .

We construct a new Turing machine M 4 for the membership problem
Atm that uses the reduction Atm <. Urm. The machine M, takes as
input (M, w), where M is a Turing machine and w is an input word,
and performs the following steps:

iy |

1. Define a computable function f that takes as input (M, w) and
produces as output (M), where M’ behaves as follows:

M

1. Run M on the input word w.

2. If M accepts w, then accept. If M rejects w, then
reject.

2. Run My on the result (M) produced by f.
3. If My accepts, then accept. If My rejects, then reject.

Observe that if (M, w) € Ay, then M accepts w and M’ will accept
every input word given to it, meaning that (M’) € Ury. Otherwise, if
(M, w) & Atm, then M does not accept w and M’ will not accept any
input word given to it, meaning that (M’) & Ury.

If the machine My existed to decide Utp, then we could decide Atm
using the machine M. However, we know that Aty is undecidable.
Thus, My must not exist, and so Uy must be undecidable. [|

Now, even if we have a negative decidability result, we know that Aty
is semidecidable, so does the reduction Aty <, Utm give us any clue as to
the status of semidecidability for Uty? No—and be careful to remember

174 PROVING UNDECIDABILITY

the wording of Theorem 5.6! If we have a reduction X <, Y and we know
that Y is semidecidable, then we can conclude that X is semidecidable, but
we can’t conclude anything about Y in the case where X is semidecidable.

To tackle the question of semidecidability for Urm, let us introduce
another decision problem known as the totality problem for Turing machines:

Ttm = {{M) | M is a Turing machine that halts on all input words}.

By analogy, if Hrwm is the “halting only” version of Atm, then Tty is the
“halting only” version of Utpy. Naturally, since both Hty and Tty talk
about halting, we can reduce one to the other in a rather straightforward
way, and our reduction again uses our tried-and-true Turing machine M’.

Lemma 5.15
Hrv <m T7m-

Proof. Define a computable function f that takes as input (M, w) and
produces as output (M’), where M’ behaves as follows:

M]

1. Run M on the input word w.

2. If M accepts w, then accept. If M rejects w, then reject.

Observe that if (M, w) € Hry, then M halts on w and M’ will halt
on any input word given to it, meaning that (M’) € Tty. Otherwise, if
(M, w) € Hry, then M does not halt on w and M’ will likewise loop
forever, meaning that (M’) & Trwm. []

Since we know that reductions are closed under complement, Lemma 5.15
tells us that Hrpm < T7wm as well. At the same time, we can also reduce
the complement of the halting problem, Hy, directly to Trm. Of course,
since we’re attempting to test mon-halting with this reduction, we must be
careful not to fall into the trap of looping forever by bounding the length of
our Turing machine’s computation.

Lemma 5.16

Hrv <m Trme

Proof. Define a computable function f that takes as input (M, w) and
produces as output (M’), where M" behaves as follows:

MORE UNDECIDABLE PROBLEMS FOR TURING MACHINES 175

v

1. Run M on the input word w for |z| computation steps, where |z]|
is the length of the input word 2 given to M.

2. If M halts on w within those |z| computation steps, then loop
forever. Otherwise, accept.

Observe that if (M, w) € Hrm, then M will not halt on w and M”
will halt on any input word given to it, meaning that (M"”) € Tru.
Otherwise, if (M, w) & Hym, then M will halt on w in some number of
computation steps s and M” will not halt on any input word of length
at most s, meaning that (M") & Try. [|

You might be wondering at this point why we’ve introduced the comple-
ment of the halting problem, Hty, and what this has to do with the totality
problem for Turing machines. We haven’t forgotten about our question of
semidecidability for Uty; all of this is just building up to the answer.

Recall from Theorem 5.9 that there exists a reduction Aty <m Htm.
Since reductions are (as we well know by now) closed under complement, this
means that there also exists a reduction Aty <y Hrm. But Theorem 4.18
tells us that Ay is not semidecidable, and therefore Hypy must not be
semidecidable either. Now, everything begins to fall into place: since
Hry < Ttm and Hrm <m T7wM, it must be the case that neither TTy nor
‘Trwm is semidecidable.

Completing this line of reasoning by connecting Tty to Urm gives us the
final remarkable result: Uty is not just undecidable, but it is also neither
semidecidable nor co-semidecidable, and so it falls completely outside of our
language hierarchy!

Theorem 5.17

Utwm is neither semidecidable nor co-semidecidable.

Proof. We begin by demonstrating the existence of a reduction Ty <,
Urm. Define a computable function f that takes as input (M) and
produces as output (N), where A/ behaves as follows:

a

1. Behave exactly as M behaves, except redirect all transitions to
Qreject t0 instead go tO Gaccept-

Observe that if (M) € Ttm, then M halts on every input word

176 PROVING UNDECIDABILITY

and either accepts or rejects. Thus, A will also halt on every input
word, but it will always accept, meaning that (N) € Ury. Otherwise, if
(M) & Trm, then M must not halt on at least one input word, and so
N will likewise never accept that input word, meaning that (N) & Urm.

From the reduction Tty <m Utm, we know also that Tty <m
Urm. However, since neither Ty nor Ttwm is semidecidable, it must
be the case that neither Uty nor Uty is semidecidable. Saying that
Urw is not semidecidable is equivalent to saying that Uty is not co-
semidecidable. |

Equivalence Problem

Recall that the equivalence problem for Turing machines, EQty, asks
whether the languages of two Turing machines are equivalent; that is,
whether no word belongs to one language but not the other.

As we might reasonably expect by this point, EQ+ty is an undecidable
problem, just like all of the other problems we’ve studied thus far for Turing
machines. But in each of our previous undecidability proofs, the underlying
decision problems focused only on a single Turing machine: Aty and Hyym
both took as input an encoding of the form (M, w), while each of Erwm,
Urm, and Tty took as input an encoding of the form (M). The problem
EQ+y, by contrast, takes as input (M, N), where both M and N are
Turing machines.

How, then, can we prove that EQ+y is undecidable via some many-one
reduction? We just need to use a little cleverness in our construction. Take,
for example, the problem Utpy. Going back to the definition of this problem,
we have that (M) € Uqy if and only if L(M) = ¥*. Look at what we
just used in that definition: an equals sign! If we construct a new Turing
machine specially designed to accept all input words, then we can compare
the language of our original Turing machine M to the language of this new
Turing machine, and therein lies the foundation for our reduction.

Theorem 5.18

EQ+\ is undecidable.

Proof. Assume by way of contradiction that EQt), is decidable, and
suppose that Mgq is a Turing machine that decides EQy.

We construct a new Turing machine My for the universality problem
Urm that uses the reduction Uty <m EQty. The machine My takes as
input (M), where M is a Turing machine, and performs the following
steps:

MORE UNDECIDABLE PROBLEMS FOR TURING MACHINES 177

iy |

1. Define a computable function f that takes as input (M) and
produces as output (M, Mx-«), where My« behaves as follows:

M

1. Accept.

2. Run Mgq on the result (M, Ms«) produced by f.
3. If Mgq accepts, then accept. If Mgq rejects, then reject.

Observe that if (M) € Urwm, then M accepts every input word given
to it. Therefore, L(M) is equal to L(Msx+), meaning that (M, Ms«) €
EQty- Otherwise, if (M) ¢ Utm, then M does not accept at least
one input word, and therefore its language cannot be equal to L(Mx«),
meaning that (M, Ms+) &€ EQ1y.-

If the machine MEgq existed to decide EQ+),;, then we could decide
Utm using the machine My. However, we know that Uty is undecidable.
Thus, Mgq must not exist, and so £Q1), must be undecidable. |

Keen readers might have noticed that we could alternatively prove
Theorem 5.18 via the reduction Frpm <y, EQ1y-. In this case, the computable
function f would construct a Turing machine My that rejects all input
words, but the rest of the proof would be otherwise identical.

There’s a good reason why we chose to reduce from Uty, though: this
reduction provides an immediate proof that the equivalence problem for
Turing machines is neither semidecidable nor co-semidecidable, giving us
a second decision problem that falls completely outside of our language
hierarchy.

Theorem 5.19

EQ1y is neither semidecidable nor co-semidecidable.

Proof. We demonstrated the existence of a reduction Urm <m EQty
in the proof of Theorem 5.18, and since Uty is not semidecidable by
Theorem 5.17, EQ+y is likewise not semidecidable.

From the reduction Urm <, EQtpm, we know also that UM <m
EQty, and since Uty is not semidecidable by Theorem 5.17, EQ1y is
likewise not semidecidable. Saying that E£Q1y is not semidecidable is
equivalent to saying that EQyy is not co-semidecidable. |

178 PROVING UNDECIDABILITY

Inclusion Problem

> As we might expect, the inclusion problem is also undecidable for Turing
 machines, and this is a fact that will soon be proven in this section.

5.4. REDUCING FROM TURING MACHINE COMPUTATIONS

AT THIS POINT, we're nearly done with our exploration of decision problems
applied to our common models of computation. We’ve seen that all of the
common decision problems about finite automata and other regular models
are decidable, while all of the common decision problems about Turing
machines are undecidable—and, in some cases, not even semidecidable.
However, there remain three omissions from our landscape of decidability
results: we haven’t yet taken a closer look at the universality, equivalence,
or inclusion problems for context-free languages.

As we will see, the class of context-free languages is interesting in that it
presents a sort-of middle ground where not every problem is decidable, but
where we can still decide certain problems. We observed this in the previous
chapter by proving that both Acgg and Ecrg (as well as their pushdown
automaton analogues) are decidable. Unlike the class of regular languages,
where the decidability of Upga followed via a combination of the decidability
of Epga and closure of the regular languages under complement, the question
of decidability for Ucgg isn’t as straightforward. This is primarily because, as
we know, the class of context-free languages isn’t closed under complement.
This may suggest to us that Ucpg is undecidable, but at the same time,
how can we prove the undecidability of Ucgg if the only tool we have at
our disposal is a many-one reduction from an undecidable problem for a
completely different model?

While pondering this same question, Juris Hartmanis made a fascinating
discovery that relates context-free languages to Turing machines [1967]. If
we take all of the configurations of a Turing machine as it processes some
input word, we can combine these configurations into something called a
computation history, which is effectively a complete record of everything
the Turing machine did over the course of its computation. Hartmanis’ key
discovery was that the computation history of any Turing machine is itself
a context-free language!

What this means for us is that, if we wish to prove that a decision
problem for context-free languages is undecidable, we no longer need to
rely on coming up with a much-too-powerful many-one reduction from an
undecidable problem for Turing machines. Instead, we can reframe the
undecidable Turing machine problem in terms of the computation histories
of some Turing machine, and if we could construct a context-free grammar
that generates these computation histories, then that grammar would allow

REDUCING FROM TURING MACHINE COMPUTATIONS 179

b—b, R a—a, R
Cy:qgpabaay

Cy:agibaa
tart —
star C3:abgypaay

Cy:abagiay

I_I'_>|_I) I_I’_>|_|7R

(b) The computation history

(a) A Turing machine M. of M on w = abaa.

Cs:abaaq
Cs:abaa g

goabaa, #,aabqg;a # abggaa , # ,aq1aba# abaaq;, # g3 aaba

(c) The computation history of M on w = abaa, represented as a string.
Observe that every second configuration is reversed.

Figure 5.5. An example of a Turing machine and its computation history on an
input word.

us to answer the undecidable problem. Essentially, we're using a more
informal notion of a “reduction” from Turing machine computation histories
to context-free grammars.

Before we continue along this line of thought, let’s reacquaint ourselves
with some Turing machine definitions. Recall from Section 3.1.1 that we took
the configuration of a Turing machine to be a representation of the current
state, tape contents, and input head position of that Turing machine at some
point in its computation. In other terms, a configuration is a “snapshot”
of the Turing machine mid-computation. Depending on the current state
of the machine, a configuration may be a start configuration if the current
state is g, an accepting configuration if the current state is gaccept, Or a
rejecting configuration if the current state is grejoct-

Taking a sequence of configurations together, we get the aforementioned
computation history, which we may represent either as a set of individual
configurations or as a single string of concatenated configurations; examples
of each are depicted in Figure 5.5.

Definition 5.20 (Computation history)

Given a Turing machine M and an input word w, a computation history
for M on w is a string of the form

Cr#(Co)R#Cs#(Cy)R# ...,

where # ¢ I is a special boundary marker, C; is the ith configuration of

180 PROVING UNDECIDABILITY

M, and (C;)™ denotes the reversal of configuration C;.

Note that a computation history for a Turing machine M only exists
when M halts on its input word w. As a result, the sequence of configura-
tions Cq,Cy, ..., C, always has a finite number of elements. Deterministic
computations have exactly one computation history per input word, while
nondeterministic computations may have multiple computation histories for
the same input word.

Just like how code may or may not contain syntax errors, we can have
either valid or invalid computation histories depending on the configurations
themselves and the order in which the configurations are sequenced. A valid
computation history is one whose configurations satisfy four criteria.

Definition 5.21 (Valid computation history)

Given a Turing machine M and an input word w, a valid computation
history for M on w is a computation history where all of the following
are true:

1. For all 1 < i < n, each configuration C; is of the form I'*qI'™*,
where ¢ € Q) is a state of M;

2. The configuration C; is a start configuration of the form gow,
where qq is the initial state of M and w € ¥*;

3. The configuration C, is either an accepting configuration or a re-
jecting configuration of the form I'*q;T™*, where ¢; € {qaccept; Greject };
and

4. Forall1<i<(n-—1),C;F Ciyq.

Naturally, then, an invalid computation history belongs to the comple-
ment of the language of valid computation histories; to be precise, an invalid
computation history is one whose configurations do not satisfy at least one
of the four criteria provided in Definition 5.21.

Definition 5.22 (Invalid computation history)

Given a Turing machine M and an input word w, an invalid computation
history for M on w is a computation history where at least one of the
following is true:

1. For some 1 < ¢ < n, configuration C; is not of the form I'*ql™,
where g € @ is a state of M; or

REDUCING FROM TURING MACHINE COMPUTATIONS 181

2. The configuration C is not a start configuration; or

3. The configuration C), is neither an accepting configuration nor a
rejecting configuration; or

4. For some 1 < i< (n—1), C; i Ciy1.

We put a particular emphasis on invalid computation histories here
since they will be the key to obtaining our desired undecidability results
for context-free languages. Indeed, to draw the same connection between
Turing machines and context-free languages as Hartmanis did, we can prove
that each of the four violated Turing machine configuration conditions is
recognized by some context-free model of computation.

Lemma 5.23

Given a Turing machine M and an input word w, the set of invalid
computation histories of M on w is a context-free language.

Proof. We will prove this statement by showing that each of the four
individual violated criteria corresponds to some context-free language.

1. Where some configuration C; is not of the form I'*¢I'*, we can
construct a finite automaton that checks whether a nondeterminis-
tically selected configuration does not consist of a (possibly empty)
prefix of symbols from T, followed by an encoding of a state in
M, and finally a (possibly empty) suffix of symbols from I". Since
all regular languages are context-free, the set of configurations
violating the first criterion is context-free.

2. Where the configuration C; is not a start configuration, we can
again construct a finite automaton that checks whether this con-
figuration does not consist of the encoding of the state gy followed
by a (possibly empty) suffix of symbols from . For the same
reason as before, the set of configurations violating the second
criterion is regular, and therefore context-free.

3. Where the configuration C,, is neither an accepting nor a rejecting
configuration, we can once more construct a finite automaton that
functions much like in the first case, except it checks specifically
for encodings of either of the states gaccept Or Greject- Thus, the
set of configurations violating the third criterion is regular, and
therefore context-free.

182 PROVING UNDECIDABILITY

4. To check whether C; If C;1; for some i, due to the way the
computation history string is formatted, we must consider two
possible subcases based on whether configuration C; is odd-indexed
or even-indexed:

(a) Where C; If C; 41 for some odd i, we can construct a push-
down automaton that receives as input both the encoding of
M as well as the computation history of M on w. This push-
down automaton then nondeterministically reads an even
number of boundary markers # from the computation history
before beginning to read the configuration C;. As the push-
down automaton reads Cj, it consults the encoding of M
to determine some configuration C’ such that C; = C’, and
pushes the symbols of C’ to its stack. Once the pushdown
automaton reads another boundary marker # from the com-
putation history, it compares the configuration (C;;1)® to C”
symbol-by-symbol, and if there is any mismatch in symbols,
it accepts.

(b) Where C; I C;11 for some even i, we use essentially the same
pushdown automaton construction as in the first subcase,
making the appropriate modifications to handle (C;)R.

In either case, as a consequence of the existence of these pushdown
automata, the set of configurations violating the fourth criterion
is context-free.

Since the class of context-free languages is closed under union, taking the
union of these individual context-free languages gives us our result. H

5.5. UNDECIDABLE PROBLEMS FOR CONTEXT-FREE LANGUAGES

HAVING ESTABLISHED WHAT IT MEANS for a computation history to be
invalid, and having showed that there exists a connection between the invalid
computation histories of a Turing machine and our context-free models of
computation, we have all we need to establish the undecidability of our
remaining decision problems for context-free languages.

Universality Problem

When we established the decidability of the universality problem for regular
languages, we relied on Theorem 1.30, which showed that the class of regular
languages was closed under complement. Taking the complement of a given
finite automaton’s language allowed us to use our existing decision procedure

UNDECIDABLE PROBLEMS FOR CONTEXT-FREE LANGUAGES 183

for Epga to decide Upga, as shown in Theorem 4.5.

For context-free languages, we know by Theorem 4.11 that Ecrg is
decidable, so one may be tempted to try a similar approach to establish
the supposed decidability of Ucgg. However, Theorem 2.25 tells us that the
class of context-free languages is not closed under complement, and so this
approach is a non-starter.

Instead, using a straightforward argument that relies on the connection
between invalid computation histories and context-free languages, we can
show that Ucgg is in fact undecidable—the first such result we have for a
model weaker than Turing machines!

Theorem 5.24

Uckg is undecidable.

Proof. Suppose that M is an arbitrary Turing machine. By Lemma 5.23,
we can construct a context-free grammar G having the property that
L(G) = ¥* if and only if L(M) = (. This is because if M accepts
no input words, then every input word given to M would produce an
invalid computation history, and the aforementioned lemma tells us that
the set of invalid computation histories of M is a context-free language.

However, if it were possible for us to check whether L(G) = ¥*, then
it would also become possible for us to decide whether L(M) = (), and
we know by Theorem 5.10 that Ety is undecidable. Therefore, Uckg
must also be undecidable. |

At this point, take a moment to reflect on the argument we just used
to establish the undecidability of Ucgg. Unlike our previous undecidability
proofs using many-one reductions, we didn’t need to construct any Turing
machines here. Rather, we simply relied on a property that is true of any
Turing machine: the set of invalid computation histories is a context-free
language, and so we can construct a grammar for this language.

Note that nowhere did we say the language of our grammar G is X*;

all we said is that L(G) = X* if and only if L(M) = 0. The language
of G depends on whatever arbitrary Turing machine M we are given, but
if we had a method of deciding whether the language of G was universal,
then that same method could decide whether the language of this Turing
machine M is empty.

Naturally, since context-free grammars and pushdown automata are
equivalent, this negative decidability result transfers over to our other
context-free model of computation.

184 PROVING UNDECIDABILITY

Corollary 5.25

Uppa is undecidable.

Equivalence Problem

Recall that we can test the equivalence of two languages Ly and Lo by testing
the emptiness of their symmetric difference, where the symmetric difference
operation is defined in terms of union, intersection, and complement:

LiALy=(LiNLy)U(LiNLy).

Now, again, we know by Theorem 4.11 that we can test the emptiness of a
context-free grammar, so we can test emptiness for two individual, separate
context-free grammars just as easily. However, the class of context-free
languages is not closed under intersection (by Theorem 2.24), nor is it closed
under complement (by Theorem 2.25). Thus, we have no way of testing the
emptiness of the symmetric difference of two context-free grammars, and so
it is hopeless for us to expect that we can decide the equivalence problem
for context-free grammars.

But how do we formally prove the undecidability of EQcrg? We need
only fix one of our two context-free grammars to be “special”, which will
then allow us to use what we know about Ucgg to arrive at our desired
outcome.

Theorem 5.26

EQ kg is undecidable.

Proof. Let G; be an arbitrary context-free grammar, and let G5 be a
context-free grammar that generates all words over its alphabet 3. If
it were possible for us to check whether L(G;1) = L(G3), then it would
also become possible for us to decide whether L(G;) = ¥*, and we know
by Theorem 5.24 that Ucrg is undecidable. Therefore, EQcrg must also
be undecidable. []

In this proof, we have reduced in the sense that we made an instance of
the decision problem EQ g appear like an instance of the decision problem
Ucrg, and since the latter problem is undecidable, so too must the former
problem be undecidable.

As we would expect, the same outcome holds for pushdown automata.

Corollary 5.27

EQppp is undecidable.

CHAPTER NOTES 185

Inclusion Problem

Yes, the inclusion problem is also undecidable for context-free languages.
. This fact will be proved in due time.

5.6. POST'S CORRESPONDENCE PROBLEM o

>\ I plan to write a short section on Post’s correspondence problem [1946],
I its undecidability, and its applicability to showing other problems are
undecidable.

5.7. RICE’'S THEOREM o

> To close this chapter, I'll discuss Rice’s theorem [1953]: a generalization
 of the halting problem that reveals every nontrivial semantic property
of Turing machines is undecidable! Hopefully, by this point, the reader’s
hope will not have been totally wiped out before getting to later chapters.

CHAPTER NOTES

THE BODY OF WORK pertaining to undecidability is vast, and the papers
therein are often dense with mathematical and logical notation. Davis
[1965] collects many of the major papers in his anthology and provides brief
commentaries for each paper.

5.1. Many-one reductions were first studied by Post [1944]. As we noted,
the name “many-one” reflects the fact that a reduction is a function,
but Post chose this particular name to set this notion of reducibility
apart from his more restrictive notion of one-one reducibility, where
the function is constrained to be injective. Shapiro [1956] later studied
ideas similar to those of Post, but referred to many-one reducibility
as strong reducibility.

Other authors refer to many-one reductions under a different name;
for instance, Sipser [2013] calls them mapping reductions.

The result stated in Lemma 5.2 follows more or less directly from the
definition of a many-one reduction, but Shapiro [1956] explicitly lists
these same properties in his paper.

5.2. The Goldbach conjecture was first formulated in a letter from Christian
Goldbach to Leonhard Euler written in 1742. In our discussion, we
noted that the conjecture was verified for all even numbers up to

186

5.3.

PROVING UNDECIDABILITY

4 x 10'8. This verification was performed by Oliveira e Silva, Herzog,
and Pardi [2014].

The earliest mention of a decision problem that asks about “a machine
which [...] eventually stops” appears in Kleene’s book [1952, chapter
XIII, section 71]; there, Kleene further asserts that the problem is
undecidable. The term “halting problem” was introduced by Davis
[1958, chapter 5, section 2], who again proved that the problem is
undecidable. For more information, Lucas [2021] has written a detailed
survey on the history of the halting problem.

Although a number of authors claim that Alan Turing originally
studied the halting problem in his 1936 paper, this is not the case!
While Turing did prove the undecidability of a satisfactoriness problem
in his paper, and while this problem does ask whether a given machine
M is “circular” or “circle-free”, this problem is not equivalent to the
halting problem. Indeed, using the notion of degrees of unsolvability
[Post, 1944], we note that while the halting problem belongs to the
class of recursively enumerable sets of numbers (i.e., Hry is of degree
0’), the satisfactoriness problem belongs to a strictly larger class (i.e.,
satisfactoriness is of degree 0”). See the aforementioned survey by
Lucas [2021] for a proof of this fact.

An alternative, more Seussical proof of the undecidability of the halting
problem was published by Pullum [2000].

No program can say what another will do.

Now, | won't just assert that, I'll prove it to you:

| will prove that although you might work till you drop,
you can't predict whether a program will stop.

— GEOFFREY PULLUM

There are many (many) more undecidable problems than those we have
discussed in this section. The book chapter by Davis [1977] provides
a nice overview of a number of undecidable problems in computer
science and fields beyond, including group theory, combinatorics, and
number theory. Harkleroad [1996] gives a gentler introduction to some
of the same undecidability results.

5.4. As we noted, Hartmanis [1967] was the first to draw a connection

between context-free languages and the computations of Turing ma-
chines. In tandem with the result that all invalid computation histories
of a Turing machine are context-free, Hartmanis further showed that
all valid computation histories of a Turing machine can be represented
as the intersection of two context-free languages.

PROVING UNDECIDABILITY 187

5.5. Both the equivalence problem and the inclusion problem were shown to
be undecidable by Bar-Hillel, Perles, and Shamir [1961], whose proofs
relied on a reduction from the Post correspondence problem. The
undecidability of the universality problem follows from its relationship
to the equivalence problem. Hartmanis [1967] gave alternative proofs
of these same facts by reducing from the halting problem rather than
the Post correspondence problem.

5.6. Chapter notes will be added when this section is written.

5.7. Chapter notes will be added when this section is written.

APPENDIX A

MATHEMATICAL BACKGROUND

TO SAY THAT computer science and mathematics are closely related would
be an understatement. Indeed, some of the pioneering work in computer
science was done by career mathematicians in a time before “computer
scientists” even existed. The bond between these two subjects is perhaps
strongest when it comes to the theory of computing: flip to any page in this
book and you’ll find some kind of mathematical terminology or notation.

Comfort with mathematics is necessary for success in computer science.
In this appendix, we will review some of the important notions one should
know in order to learn and understand the theory of computing.

A.1. SETS AND SEQUENCES

THE CONCEPTS underpinning almost everything we cover in this book are
some of the most elementary in all of mathematics: sets and sequences.

Sets, Operations, and Properties

Let us begin with a very simple definition: that of a set.

Definition A.1 (Set)

A set is a collection of elements.

If an element a belongs to a set S, then we write a € S. Otherwise, we
write a € S. Elements of a set are unique; for example, two indistinguishable
copies of an element a cannot belong to the same set S. If we require that
some set contain more than one indistinguishable copy of some element,
then we say that set is a multiset.

We may describe sets either by listing their elements explicitly, or by
describing some property or properties possessed by each element in the set.
Of course, if the set is infinite, we typically prefer to use the latter method.

189

190 MATHEMATICAL BACKGROUND

R

Figure A.1. Some common sets and their relationships.

Example A.2

Let’s come up with some basic examples of sets:

e The set of all Canadian host cities of the Olympics is

Colympics = {Montréal, Calgary, Vancouver}.

e The set of all years in the 20th century in which the summer
Olympics were held is

O1000s = {1904, 1908, 1912, 1920, 1924, 1928, 1932,
1936, 1948, 1952, 1956, 1960, 1964, 1968,
1972, 1976, 1980, 1984, 1988, 1992, 1996 }.

e The set of all prime numbers less than 20 is

Pooo = {2,3,5,7,11,13,17,19}.

e The set of all positive odd integers is

Sodd:{n|n:2k+1,k20}.

There are some sets that we use frequently enough to warrant their own
notation. The set of natural numbers is N = {0,1,2,...}, and the set of
integers is Z ={...,—2,—1,0,1,2,... }. Occasionally, we also refer to the
set of real numbers, denoted R, although their definition is better left for a
book on real analysis. Computer scientists in particular are often interested
in the set of binary digits or bits, sometimes denoted B = {0,1}. These
common sets and their relationships are depicted in Figure A.1.

SETS AND SEQUENCES 191

The cardinality or size of a set S, denoted |S|, is equal to the number
of elements in S. If |S| = n for some finite n > 0, then we say that S is
a finite set. Otherwise, we say that S is an infinite set. We say that an
infinite set S is countably infinite if we can associate each element of S to
exactly one natural number in N, and each natural number is associated
with exactly one element of S; if no such association is possible, then we
say that S is uncountably infinite.

The unique set with cardinality zero is called the empty set, and we denote
it by . At the other extreme, the set of all elements under consideration is
the universal set or just the universe, and is occasionally written U.

There are a number of elementary and useful operations we can apply
to sets. The union of two sets S and T', denoted S UT, is the set containing
all elements that are in S or in T' (or in both). The intersection of S and
T, denoted SN T, is the set containing all elements that are in both S and
T. The complement of a set S, denoted S, is the set containing all elements
from our universe that are not in S. Lastly, the difference of S and T,
denoted S\ T, is the set of all elements of S that are not also in 7.

Example A.3

Suppose U = N. The set of all positive even integers is
Seven = Soaa =N \ Sodd~

We can see that Soqq U Seven = U, While Spqq N Seven = 0.

From our example, we see that we can define our complement operation
in terms of our difference operation by taking S=U\S. As a consequence,
we have that both &/ = () and () = U.

Given two sets S and T, if every element of S is also an element of T', we
say that S is a subset of T" and we write S C T'. If, additionally, T' contains
at least one element that S does not contain, then we say that S is a proper
subset of T" and we write S C T'. If no element of S is an element of T" and
vice versa, then we say that S and T are disjoint.

Example A.4

Each of the following relationships between sets holds:

e The set S,qq is a proper subset of both N and Z, while the sets
Sodd and Seyven are disjoint.

e It is possible to have chains of subsets, such as B C N C Z C R.

e For all sets S,) C S CU.

192 MATHEMATICAL BACKGROUND

Remark. The notation for indicating subset and proper subset relation-
ships is, annoyingly, inconsistent across the literature. Here, we denote a
subset relationship by the symbol C, analogous to how the “less than or
equal to” symbol < indicates that the object on the right-hand side may
be the same as the object on the left-hand side. Likewise, we denote
a proper subset relationship by the symbol C, analogous to how the
“less than” symbol < indicates that the object on the right-hand side is
strictly larger than the object on the left-hand side.

We can go one step further by defining set equality in terms of subsets:
we say that two sets S and T are equal if both S CT and T'C S.

Lastly, the power set of a set S, denoted P(.S), is the set of all subsets of
S. For all sets S, it is the case that |\S| < |P(9)[; specifically, if S is a finite
set, then |P(S)| = 2/5l. The power set of an infinite set always has infinite
cardinality, but the power set of a countably infinite set has an uncountably
infinite cardinality.

Example A.5

Let S ={1,2,3}. Then

P(S) = {{0}, {1}, {2}, {3}, {1, 2}, {1,3},{2,3},{1,2,3}},
and [P(S)| = 22 = 8.

Note that, for every set S, the power set P(S) always contains the
elements {@} and S itself. It is also worth noting that () and {#} are not
the same: () is the unique set with zero elements, while {0} is a set with
cardinality 1 containing the element 0.

Sequences and Operations

In a set, ordering does not matter: as long as two sets contain the same
elements, they are equal. For example, the sets {1,2,4,8} and {2,8,4,1}
are equal, despite their elements not appearing in the same order. If we
need to maintain or preserve some ordering in a collection of elements, we
must instead use a sequence.

Definition A.6 (Sequence)

A sequence is an ordered set of elements.

We distinguish notationally between sets and sequences in the following
way: sets are surrounded by {braces}, while sequences are surrounded by
(parentheses). We further distinguish sets from sequences by appending to

SETS AND SEQUENCES 193

the sequence’s label a subscripted n; thus, while we may denote a set by
something like S, we will denote a sequence by something like A,,. Given a
sequence A, = (ag, a1, as,...), we say that the element a; is the ith term
of the sequence.

We occasionally refer to a sequence having a finite length as a tuple, or
as a k-tuple if we know the sequence contains k terms. A sequence having a
length of two is called an ordered pair.

Unlike sets, a sequence may contain non-unique or repeated terms.

Example A.7

Let’s come up with some basic examples of sequences:

e The sequence L,, of the digits in the decimal representation of the
speed of light ¢, in metres per second, is

L,=(2,9,97,9,2,4,5,8).

e The Fibonacci sequence F, is defined as follows: fix Fy = F; = 1.
Then, for each n > 2, F,, = F,,_1 + F,,_5. The first few terms of
the Fibonacci sequence are

F, =(1,1,2,3,5,8,13,21,34,...).

e The Thue-Morse sequence T, is defined as follows: for all n > 0,
T, = 0 if the number of ones in the binary representation of n
is even, and 7}, = 1 if the number of ones is odd. The first few
terms of the Thue—Morse sequence are

T, = (0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,...).

Remark. The study of integer sequences is of keen interest to some
mathematicians and computer scientists. The On-line Encyclopedia
of Integer Sequences, accessible at https://oeis.org, contains over
375000 examples of sequences, many of which include relationships to
other sequences, code snippets to generate terms of the sequence, and
citations to the literature.

Using the notion of sequences, we can define another set operation: the
Cartesian product. Given two sets S and T, their Cartesian product, denoted
S x T, is the set of all ordered pairs where the first element of the pair
comes from S and the second element comes from 7. Formally speaking,
SxT={(a,b)|a€SandbeT}.

https://oeis.org

194 MATHEMATICAL BACKGROUND

Example A.8
Let S ={1,2,3} and T = {2,4,6}. Then

SxT={(1,2),(1,4),(1,6),(2,2),(2,4),(2,6), (3,2),(3,4),(3,6)}.

We can, of course, take the Cartesian product of a set S with itself: we
denote this by S x S = S2. We can further take $2 x § = § x §% = §3,
and so on. In general, taking the Cartesian product of a set S with itself &k
times is denoted S*.

Example A.9

Taking Z x Z = 7Z? yields the set of all ordered pairs of integers, which
gives us the Cartesian coordinate system (otherwise known as the “zy-
plane”).

A.2. RELATIONS AND FUNCTIONS

By TAKING THE IDEA of the Cartesian product further, we can define
relations and functions, which associate elements of one set S to elements of
another set T. The set S is called the domain, while the set T is called the
codomain. Not all elements of T' need be associated to some element of S;
elements that are associated constitute the range of the relation or function.

Relations

A relation consists of ordered pairs from the Cartesian product S x T'. If
a € S and b € T, then the ordered pair (a,b) relates a and b.

Definition A.10 (Relation)

A relation R from a set S to a set T is a subset of S x T.

Example A.11

There are many classic examples of relations:

e The equality relation is taken to be
R_ ={(a,b) e Rx R |a=0}.
e The less-than relation is taken to be

R. ={(a,b) e R xR |a < b}.

RELATIONS AND FUNCTIONS 195

e The divides relation is taken to be

Raiv = {(a,b) € Z x Z | b = ac for some ¢ € Z}.

e The rock-paper-scissors relation is taken to be

R.ps = {(a,b) € {r,p,s} x {r,p,s} | a beats or ties b}.

We have assumed in our examples that relations are between two sets;
that is, they are binary relations. We can generalize from binary relations
to k-ary relations in the usual way.

Example A.12

Let’s come up with some examples of relations having an arity greater
than two:

e Let P be the set of professors, let C' be the set of courses, and let
T = {fall, winter} be the set of academic terms. Define a relation
Rscheda € P x C x T where a tuple (p, ¢,t) € Rsched indicates that
professor p is teaching course c in term t.

(Finding the complete set of tuples in Rgcheq is left as an exercise
for the Registrar’s Office.)

e Let N be the set of names of people, let O be the set of origin
airports, let D be the set of destination airports, and let F' be the
set of flight numbers. Define a relation Rgight € N X O x D x F
where a tuple (n,0,d, f) € Rpign indicates that person n flew
from airport o to airport d via the flight f.

We can define a number of properties of a relation R depending on which
ordered pairs belong to the relation. Let a, b, and ¢ each be elements. Then

R is reflexive if, for all a, (a,a) € R;
e R is symmetric if (a,b) € R implies (b, a) € R;

R is antisymmetric if (a,b) € R and (b,a) € R implies a = b; and

e R is transitive if (a,b) € R and (b, ¢) € R implies (a,c) € R.

Despite their names, the properties of symmetry and antisymmetry are not
mutually exclusive. A relation may be both symmetric and antisymmetric.

196 MATHEMATICAL BACKGROUND

Example A.13

Returning to our classic relations from Example A.11, we see that:
e the equality relation R_ is

— reflexive since a = a for all a,
— symmetric since a = b implies b = a for all a and b,

— antisymmetric since both @ = b and b = a implies that a and
b are the same element, and

— transitive since a = b and b = ¢ implies that a = c for all a,
b, and c;

e the less-than relation R is

— not reflexive since a £ a for any a,

— not symmetric since a < b does not imply that b < a for any
a or b,

— not antisymmetric since it is impossible to have both a < b
and b < a, and

— transitive since a < b and b < ¢ implies that a < ¢ for all a,
b, and c;

e the divides relation Rg;, is

— reflexive since a divides a for all a,

— not symmetric since a dividing b does not imply that b divides
a for all a and b,

— antisymmetric since both a dividing b and b dividing a implies
that a and b are the same element, and

— transitive since a dividing b and b dividing ¢ implies that
¢ = kb = k(la) = (kf)a for some k, ¢ € Z; and

e the rock-paper-scissors relation R, is

— reflexive since a ties a for all a,

— not symmetric since a beating or tying b does not imply that
b beats or ties a for all a and b,

— antisymmetric since both a tying b and b tying a implies that
a and b are the same element, and

— not transitive since (for example) rock beating scissors and
scissors beating paper does not imply that rock beats paper.

RELATIONS AND FUNCTIONS 197

Functions

A function from a set S to a set T is a special kind of relation where each
element of S is mapped to exactly one element of 7. All functions are
relations, but not all relations are functions.

Definition A.14 (Function)

A function f from a set S to a set 7" is a subset of S x T such that, for
each a € S, there exists exactly one b € T such that (a,b) € f.

If f is a function from a set S to a set T', then we often denote this by
the shorthand notation f: S — T, where the colon is taken to mean “from”
and the arrow is taken to mean “to”. If (a,b) € f, then we write f(a) = b.

Example A.15
There are many classic examples of functions f: N — N:

e The constant function, f(z) = ¢ for some ¢ € N, where

fO)=c, f(D)=c, f2)=c, fB)=c, f(4) =¢, f(5) =¢ ...

e The integer division function, f(z) = |z/2], where

f(0)=0,f1)=0,f2) =1, f3) =1, f(4) =2, f(6) =2, ...

e The linear function, f(z) = x, where

e The quadratic function, f(x) = 22, where

f0)=0, f(1) =1, f(2) =4, f(3) =9, f(4) =16, f(5) = 25, ...

e The exponential function, f(z) = 2%, where

fO)=1,f1) =2, f(2) =4, f(3) =8, f(4) =16, f(5) =32, ...

Functions are sometimes expressed visually by way of a bubble diagram,
wherein the two sets S and T are represented by two large ellipses and
elements within each set are represented by smaller circles. If f(a) = b for
some elements a € S and b € T, then this is depicted by an arrow in the
bubble diagram. An example of a bubble diagram is shown in Figure A.2.

Similar to relations, we can define a number of properties of a function
f from a set S to a set T

o f is injective (or one-to-one) if, for all ay,as € S where a1 # as,

fla1) # f(az);

198 MATHEMATICAL BACKGROUND

S T
a @ ®n
a2 @ ® b

as @ ® b
Figure A.2. An example of a bubble diagram.

o f is surjective (or onto) if, for all b € T, there exists a € S such
that f(a) = b; and

e f is bijective if it is both injective and surjective.

Examples of each type of function are illustrated in Figure A.3.

Example A.16

Returning to our classic functions from Example A.15, we see that:

e the constant function, f(x) = ¢ for some ¢ € N, is not injective
and not surjective;

e the integer division function, f(x) = |z/2], is surjective but not
injective;
e the linear function, f(x) = x, is both injective and surjective (and

thus, bijective);

e the quadratic function, f(z) = 22, is injective but not surjective;
and

e the exponential function, f(x) = 2%, is also injective but not
surjective.

Remark. If you need a handy little mnemonic to remember how to
associate injective/surjective with one-to-one/onto, just remember that
“sur” is the French word for “on”, so a surjective function is onto.

RELATIONS AND FUNCTIONS 199

(a) A function that is injective, but not surjective.

(b) A function that is surjective, but not injective.

(c) A function that is both injective and surjective; that is, bijective.

Figure A.3. Examples of different kinds of functions.

200 MATHEMATICAL BACKGROUND

A.3. GRAPHS

MANY IDEAS IN MATHEMATICS and computer science have a natural visual
representation in the form of a graph. A graph in this context is not a plot
or a chart (as in, say, “the graph of a function”); rather, it is a structure that
consists of two components: vertices—also called nodes—that are connected
to one another by edges. Indeed, we may define a graph solely in terms of
its vertex set and edge set.

Definition A.17 (Graph)

A graph G = (V, E) counsists of a set of vertices V' and a set of edges F,
where each element e € E is a pair {u,v} of vertices u,v € V.

If there exists an edge e = {u, v} between two vertices u and v, then we
say that these two vertices are adjacent to one another. At the same time,
we say that both u and v are incident to the edge e.

Definition A.17 is worded in a very general way on purpose, since we want
graphs to be able to model potentially many different ideas. For example,
our definition allows for constructions such as multiple edges between the
same pair of vertices, or edges that join a vertex to itself (called loops).

Example A.18

Each of the following is a graph:

Kk - L

Note that Definition A.17 also supposes that the set of edges E consists
of unordered pairs. By our definition, if an edge exists between vertices u
and v, then this means that another edge implicitly exists between v and wu.

If we instead require that E consists of ordered pairs, then the existence
of an edge between vertices u and v does not necessarily imply the existence
of an edge between v and u. We say that such graphs are directed, because
the direction of each edge in the set F matters when we move between
vertices.

Example A.19

Of the following graphs, the two leftmost graphs are undirected, while
the two rightmost graphs are directed. In fact, the rightmost graph is

GRAPHS 201

the directed equivalent of the leftmost graph.

If a graph, whether undirected or directed, has the property that we can
reach any vertex from any other vertex by way of following some sequence of
edges, then we say that graph is connected. Determining whether a directed
graph is connected is somewhat more difficult than in the undirected case,
since we may not be able to follow the same sequence of directed edges
between vertices v and u as we could between u and v.

If we have two graphs G = (V, E) and H = (V', E’) where V' C V and
E’ C E, then we say that H is a subgraph of G. In other words, H is a
copy of G with vertices or edges (or both) removed. Note that if we remove
some vertex, then we must also remove any edges that were incident to the
removed vertex.

Example A.20

The leftmost graph contains the two rightmost graphs as subgraphs.
Observe that the five edges connecting the inner subgraph to the outer
subgraph were removed and do not appear in either subgraph.

By kU

Given a graph G = (V, E), two vertices u,v € V, and a number n € N, a
path of length n from vertex u to vertex v is a sequence of edges (e1, ..., e,)
such that ey = {u, w1}, ea = {wy, w2}, ..., and e, = {w,_1,v}, where
Wi, ..., Wy—1 € V. We can define paths in directed graphs by making the
appropriate changes to the individual edges.

We say that a path of length n from a vertex u to a vertex v is called a
circuit (or a cycle) if w =v and n > 0.

If no edge in the path or circuit is included more than once, then we say
that the path or circuit is simple.

202 MATHEMATICAL BACKGROUND

Example A.21

In the following graph, we see that (among many others) there exist
e paths a—b, a—c—e—g, c-e—c—a, and f—g—f;
e simple paths b—a—c—e, d-a—b, and f-e—c;
e circuits a—c—e—c—a and a—d-b—a—c—a; and

e simple circuits a—b—d—a and e—f—g—e.

APPENDIX B

THE GREEK ALPHABET

IF SOME OF THE SYMBOLS in this book are Greek to you, then the following
table may help. Below, you will find the uppercase and lowercase forms of
all 24 Greek letters, together with selected examples of how these letters
are used in the theory of computing.

Table B.1
THE GREEK ALPHABET

Alpha
Beta
Gamma,
Delta
Epsilon
Zeta
Eta
Theta
Iota
Kappa
Lambda
Mu

Nu

Xi
Omicron
Pi

Rho
Sigma
Tau
Upsilon
Phi

Chi

Psi
Omega

A tape alphabet, or a generic second alphabet
A transition function
The empty word

Asymptotic tight bound

Asymptotic upper bound (alt. using Latin O/0)

An input alphabet, or a generic alphabet

DEXRBSHMYTEHOUNZE>R—~Oo0INTDD =W
ER€EX DS I ATV I OMIYT >FI & I N 2

Asymptotic lower bound

203

BIBLIOGRAPHY

Sanjeev Arora and Boaz Barak. Computational Complezity: A Modern
Approach. Cambridge University Press, Cambridge, 2009.

Christopher Bader and Arnaldo Moura. A generalization of Ogden’s lemma.
Journal of the ACM, 29(2):404-407, 1982.

Yehoshua Bar-Hillel, Micha Perles, and Eliahu Shamir. On formal prop-
erties of simple phrase structure grammars. Zeitschrift fiir Phonetik,
Sprachwissenschaft und Kommunikationsforschung, 14(2):143-172, 1961.

Bruce H. Barnes. A programmer’s view of automata. ACM Computing
Surveys, 4(4):221-239, 1972.

Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways
for Your Mathematical Plays, volume 4. A K Peters, Wellesley, second
edition, 2004.

Leonard Bloomfield. Language. Henry Holt, New York, 1933.

Luc Boasson and Séndor Horvath. On languages satisfying Ogden’s lemma.
RAIRO Informatique théorique/Theoretical Computer Science, 12(3):201—
202, 1978.

Janusz A. Brzozowski. A survey of regular expressions and their applications.
IRE Transactions on FElectronic Computers, 11(3):324-335, 1962.

Janusz A. Brzozowski and Edward J. McCluskey, Jr. Signal flow graph
techniques for sequential circuit state diagrams. IEEE Transactions on
Electronic Computers, 12(2):67-76, 1963.

Arthur W. Burks, Don W. Warren, and Jesse B. Wright. An analysis of a
logical machine using parenthesis-free notation. Mathematical Tables and
Other Aids to Computation, 8(46):53-57, 1954.

Bytejacker. Minecraft - Notch Interview! https://www.youtube.com/
watch?v=rqUDam_KJno, 2010.

205

https://www.youtube.com/watch?v=rqUDam_KJno
https://www.youtube.com/watch?v=rqUDam_KJno

206 BIBLIOGRAPHY

Cezar Campeanu, Kai Salomaa, and Sheng Yu. A formal study of practical
regular expressions. International Journal of Foundations of Computer
Science, 14(6):1007-1018, 2003.

Georg Cantor. Ueber eine Figenschaft des Inbegriffes aller reellen alge-
braischen Zahlen [On a property of the set of real algebraic numbers].
Journal fiir die reine und angewandte Mathematik, 77:258-262, 1874.
Translation: [Ewald, 1996, pages 839-843].

Georg Cantor. Ueber eine elementare Frage der Mannigfaltigkeitslehre [On
an elementary question in the theory of manifolds]. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 1:75-78, 1891. Translation: [Ewald,
1996, pages 920-922].

Noam Chomsky. Three models for the description of language. IRE Trans-
actions on Information Theory, 2(3):113-124, 1956.

Noam Chomsky. Some properties of phrase structure grammars. Research
Laboratory of Electronics Quarterly Progress Report 49:108-111, Mas-
sachusetts Institute of Technology, 1958.

Noam Chomsky. On certain formal properties of grammars. Information
and Control, 2(2):137-167, 1959a.

Noam Chomsky. A note on phrase structure grammars. Information and
Control, 2(4):393-395, 1959b.

Noam Chomsky. Context-free grammars and pushdown storage. Research
Laboratory of Electronics Quarterly Progress Report 65:187-194, Mas-
sachusetts Institute of Technology, 1962.

Noam Chomsky and George A. Miller. Finite state languages. Information
and Control, 1(2):91-112, 1958.

Noam Chomsky and Marcel-Paul Schiitzenberger. The algebraic theory
of context-free languages. In P. Braffort and D. Hirschberg, editors,
Computer Programming and Formal Systems, volume 26 of Studies in
Logic and the Foundations of Mathematics, pages 118-161. North-Holland
Publishing Co., Amsterdam, 1963.

Alonzo Church. A note on the Entscheidungsproblem. Journal of Symbolic
Logic, 1(1):40-41, 1936a.

Alonzo Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58(2):345-363, 1936b.

Alonzo Church. Review of “On computable numbers, with an application to
the Entscheidungsproblem” by A. M. Turing. Journal of Symbolic Logic,
2(1):42-43, 1937.

BIBLIOGRAPHY 207

Alex Churchill, Stella Biderman, and Austin Herrick. Magic: The Gathering
is Turing complete. In M. Farach-Colton, G. Prencipe, and R. Uehara,
editors, Proceedings of the 10th International Conference on Fun with
Algorithms (FUN 2021), volume 157 of Leibniz International Proceedings
in Informatics, pages 9:1-9:19, Sicily, 2021. Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik.

Matthew Cook. Universality in elementary cellular automata. Complex
Systems, 15:1-40, 2004.

B. Jack Copeland, editor. The FEssential Turing: Seminal Writings in
Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life,
plus The Secrets of Enigma. Clarendon Press, Oxford, 2004.

Irving M. Copi, Calvin C. Elgot, and Jesse B. Wright. Realization of events
by logical nets. Journal of the ACM, 5(2):181-196, 1958.

Russ Cox. Regular expression matching can be simple and fast (but is
slow in Java, Perl, PHP, Python, Ruby, ...). https://swtch.com/~rsc/
regexp/regexpl.html, 2007.

Martin Davis. Computability and Unsolvability. McGraw-Hill, New York,
1958.

Martin Davis, editor. The Undecidable: Basic Papers on Undecidable
Propositions, Unsolvable Problems and Computable Functions. Raven
Press, Hewlett, 1965.

Martin Davis. Unsolvable problems. In J. Barwise, editor, Handbook of
Mathematical Logic, volume 90 of Studies in Logic and the Foundations of
Mathematics, pages 567-594. North-Holland Publishing Co., Amsterdam,
1977.

Martin Davis. The Universal Computer: The Road from Leibniz to Turing.
W. W. Norton, New York, 2000.

Stephen Dolan. mov is Turing-complete. https://drwho.virtadpt.net/
files/mov.pdf, 2013.

Andrzej Ehrenfeucht, Rohit J. Parikh, and Grzegorz Rozenberg. Pumping
lemmas for regular sets. SIAM Journal on Computing, 10(3):536-541,
1981.

Herbert B. Enderton. Elements of recursion theory. In J. Barwise, editor,
Handbook of Mathematical Logic, volume 90 of Studies in Logic and the
Foundations of Mathematics, pages 527-566. North-Holland Publishing
Co., Amsterdam, 1977.

https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html
https://drwho.virtadpt.net/files/mov.pdf
https://drwho.virtadpt.net/files/mov.pdf

208 BIBLIOGRAPHY

Jeff Erickson. Algorithms. Self-published open educational resource, first
edition, 2019. http://algorithms.wtf.

R. James Evey. Application of pushdown-store machines. In J. D. Tupac,
editor, Proceedings of the Fall Joint Computer Conference, volume 24
of AFIPS Conference Proceedings, pages 215-227, Las Vegas, 1963a.
American Federation of Information Processing Societies.

R. James Evey. The Theory and Applications of Pushdown Store Machines.
Doctoral thesis, Harvard University, 1963b.

William Ewald. From Kant to Hilbert: A Source Book in the Foundations
of Mathematics, volume 2. Clarendon Press, Oxford, 1996.

Jeffrey E. F. Friedl. Mastering Regular Ezpressions. O'Reilly Media, Se-
bastopol, third edition, 2006.

Yuan Gao, Nelma Moreira, Rogério Reis, and Sheng Yu. A survey on
operational state complexity. Journal of Automata, Languages and Com-
binatorics, 21(4):251-310, 2016.

Seymour Ginsburg. The Mathematical Theory of Context Free Languages.
McGraw-Hill, New York, 1966.

Seymour Ginsburg and Sheila Greibach. Deterministic context free languages.
Information and Control, 9(6):620-648, 1966.

Seymour Ginsburg and Henry G. Rice. Two families of languages related to
ALGOL. Journal of the ACM, 9(3):350-371, 1962.

Kurt Gédel. Uber formal unentscheidbare Sétze der Principia Mathematica
und verwandter Systeme I [On formally undecidable propositions of Prin-
cipia Mathematica and related systems I|. Monatschefte fir Mathematik
und Physik, pages 173-198, 1931. Translation: [Van Heijenoort, 1967,
pages 596-616].

Kurt Godel. On undecidable propositions of formal mathematical systems.
In M. Davis, editor, The Undecidable: Basic Papers on Undecidable
Propositions, Unsolvable Problems and Computable Functions, pages 39—
74. Raven Press, Hewlett, 1965.

Andy Gordon and Simon Peyton Jones. LAMBDA: The ultimate Excel work-
sheet function. https://www.microsoft.com/en-us/research/blog/
lambda-the-ultimatae-excel-worksheet-function/, 2021.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley, Boston, third edition, 2005.

http://algorithms.wtf
https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/
https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/

BIBLIOGRAPHY 209

Robert Gray. Georg Cantor and transcendental numbers. American Mathe-
matical Monthly, 101(9):819-832, 1994.

Sheila A. Greibach. A new normal-form theorem for context-free phrase
structure grammars. Journal of the ACM, 12(1):42-52, 1965.

Sheila A. Greibach. Formal languages: Origins and directions. Annals of
the History of Computing, 3(1):14-41, 1981.

Leon Harkleroad. How mathematicians know what computers can’t do.
College Mathematics Journal, 27(1):37-42, 1996.

Zellig S. Harris. From morpheme to utterance. Language, 22(3):161-183,
1946.

Juris Hartmanis. Context-free languages and Turing machine computations.
In J. T. Schwartz, editor, Mathematical Aspects of Computer Science,
volume 19 of Proceedings of Symposia in Applied Mathematics, pages
42-51. American Mathematical Society, Providence, 1967.

Juris Hartmanis and Herbert Shank. On the recognition of primes by
automata. Journal of the ACM, 15(3):382—-389, 1968.

Juris Hartmanis and Richard E. Stearns. On the computational complexity
of algorithms. Transactions of the American Mathematical Society, 117:
285-306, 1965.

Frederick C. Hennie and Richard E. Stearns. Two-tape simulation of
multitape Turing machines. Journal of the ACM, 13(4):533-546, 1966.

David Hilbert. = Mathematische Probleme [Mathematical problems].
Nachrichten von der Kéniglichen Gesellschaft der Wissenschaften zu
Géttingen, pages 253-297, 1900. Reprint: [Hilbert, 1901]. Transla-
tion: [Hilbert, 1902].

David Hilbert. Mathematische Probleme [Mathematical problems]. Archiv
der Mathematik und Physik, s3-1:44—63 and 213-237, 1901.

David Hilbert. Mathematical problems. Bulletin of the American Math-
ematical Society, 8(10):437-479, 1902. Translated by Mary Winston
Newson.

David Hilbert and Wilhelm Ackermann. Grundzige der theoretischen Logik.
Springer-Verlag, Berlin, 1928.

Andrew Hodges. Alan Turing: The Enigma. Simon & Schuster, New York,
1983.

210 BIBLIOGRAPHY

Markus Holzer and Martin Kutrib. Descriptional and computational com-

plexity of finite automata — a survey. Information and Computation, 209
(3):456-470, 2011.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, 1979.

Séandor Horvath. The family of languages satisfying Bar-Hillel’s lemma.
RAIRO Informatique théorique/Theoretical Computer Science, 12(3):193—
199, 1978.

David A. Huffman. The synthesis of sequential switching circuits. Journal
of the Franklin Institute, 257(3):161-190, 1954a.

David A. Huffman. The synthesis of sequential switching circuits, part II.
Journal of the Franklin Institute, 257(4):275-303, 1954b.

Seiiti Huzino and Ryoko Shibata. An elementary proof of R.W. Ritchie’s
theorem on the set of squares. Memoirs of the Faculty of Science, Kyushu
University, Series A, 31(1):9-14, 1977.

Jeffrey Jaffe. A necessary and sufficient pumping lemma for regular languages.
ACM SIGACT News, 10(2):48-49, 1978.

Gerhard Jager and James Rogers. Formal language theory: refining the
Chomsky hierarchy. Philosophical Transactions of the Royal Society B:
Biological Sciences, 367:1956-1970, 2012.

Richard Johnsonbaugh and David P. Miller. Converses of pumping lemmas.
ACM SIGCSE Bulletin, 22(1):27-30, 1990.

Jong89. DF map archive: Razorlength - 1036 Early Winter. https://
mkv25.net/dfma/map-8269, 2009.

Philip E. B. Jourdain. The logical work of Leibniz. The Monist, 26(4):
504-523, 1916.

Richard Kaye. Infinite versions of Minesweeper are Turing complete. School
of Mathematics preprint 2000/15, University of Birmingham, 2000.

Stephen C. Kleene. General recursive functions of natural numbers. Mathe-
matische Annalen, 112(1):727-742, 1936a.

Stephen C. Kleene. A-definability and recursiveness. Duke Mathematical
Journal, 2(2):340-353, 1936b.

Stephen C. Kleene. Recursive predicates and quantifiers. Transactions of
the American Mathematical Society, 53(1):41-73, 1943.

https://mkv25.net/dfma/map-8269
https://mkv25.net/dfma/map-8269

BIBLIOGRAPHY 211

Stephen C. Kleene. Representation of events in nerve nets and finite
automata. Research memorandum RM-704, RAND Corporation, 1951.
Reprint: [Kleene, 1956].

Stephen C. Kleene. Introduction to Metamathematics. D. Van Nostrand,
Princeton, 1952.

Stephen C. Kleene. Representation of events in nerve nets and finite
automata. In C. E. Shannon and J. McCarthy, editors, Automata Studies,
volume 34 of Annals of Mathematics Studies, pages 3—42. Princeton
University Press, Princeton, 1956.

Dexter C. Kozen. Automata and Computability. Undergraduate Texts in
Computer Science. Springer-Verlag, New York, 1997.

Dexter C. Kozen. Theory of Computation. Texts in Computer Science.
Springer-Verlag, London, 2006.

Marcus Kracht. Too many languages satisfy Ogden’s lemma. In S. Arunacha-
lam, M. Baranowski, U. Horesh, I. Ross, T. Sanchez, T. Scheffler, S. Sun-
daresan, and A. Williams, editors, Proceedings of the 27th Annual Penn
Linguistics Colloguium, volume 10 of University of Pennsylvania Working
Papers in Linguistics, pages 115-121, Philadelphia, 2004. University of
Pennsylvania.

Martin Lange and Hans Leiff. To CNF or not to CNF? An efficient yet
presentable version of the CYK algorithm. Informatica Didactica, 8, 2009.

Chester Y. Lee. Automata and finite automata. Bell System Technical
Journal, 39(5):1267-1295, 1960.

Wolfgang Lenzen. Leibniz and the calculus ratiocinator. In S. O. Hansson,
editor, Technology and Mathematics: Philosophical and Historical Inves-
tigations, volume 30 of Philosophy of Engineering and Technology, pages
47-78. Springer-Verlag, Cham, 2018.

Salvador Lucas. The origins of the halting problem. Journal of Logical and
Algebraic Methods in Programming, 121:100687, 2021.

Jan Lukasiewicz. O znaczeniu i potrzebach logiki matematycznej [On the
meaning and needs of mathematical logic]. Nauka Polska, 10:604—620,
1929.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4):
115-133, 1943.

212 BIBLIOGRAPHY

Robert McNaughton. The theory of automata, a survey. Advances in
Computers, 2:379-421, 1961.

Robert McNaughton and Hisao Yamada. Regular expressions and state
graphs for automata. IRE Transactions on Electronic Computers, 9(1):
39-47, 1960.

George H. Mealy. A method for synthesizing sequential circuits. Bell System
Technical Journal, 34(5):1045-1079, 1955.

Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and
other topics in theory of Turing machines. Annals of Mathematics, 74(3):
437-455, 1961.

Marvin L. Minsky. Size and structure of universal Turing machines using
tag systems. In J. C. E. Dekker, editor, Recursive Function Theory,
volume 5 of Proceedings of Symposia in Pure Mathematics, pages 229-238.
American Mathematical Society, Providence, 1962.

Marvin L. Minsky and Seymour Papert. Unrecognizable sets of numbers.
Journal of the ACM, 13(2):281-286, 1966.

Edward F. Moore. Gedanken-experiments on sequential machines. In
C. E. Shannon and J. McCarthy, editors, Automata Studies, volume 34
of Annals of Mathematics Studies, pages 129-153. Princeton University
Press, Princeton, 1956.

Frank R. Moore. On the bounds for state-set size in the proofs of equivalence
between deterministic, nondeterministic, and two-way finite automata.
IEEE Transactions on Computers, 20(10):1211-1214, 1971.

Trygve Nagell, Atle Selberg, Sigmund Selberg, and Knut Thalberg, editors.
Selected Mathematical Papers of Axzel Thue. Universitetsforlaget, Oslo,
1977.

Allen Newell and John C. Shaw. Programming the logic theory machine. In
J. L. Barnes, editor, Proceedings of the Western Joint Computer Confer-
ence, pages 230-240, Los Angeles, 1957. Institute of Radio Engineers.

Anthony G. Oettinger. Automatic syntactic analysis and the pushdown
store. In R. Jakobson, editor, Structure of Language and its Mathematical
Aspects, volume 12 of Proceedings of Symposia in Applied Mathematics,
pages 104-129. American Mathematical Society, Providence, 1961.

William Ogden. A helpful result for proving inherent ambiguity. Mathemat-
ical Systems Theory, 2(3):191-194, 1968.

BIBLIOGRAPHY 213

Tomas Oliveira e Silva, Siegfried Herzog, and Silvio Pardi. Empirical
verification of the even Goldbach conjecture and computation of prime
gaps up to 4 - 108, Mathematics of Computation, 83(288):2033-2060,
2014.

Gene Ott and Neil H. Feinstein. Design of sequential machines from their
regular expressions. Journal of the ACM, 8(4):585-600, 1961.

Panini. Astadhyayt [The book of eight chapters], ¢. 500 BCE. Transla-
tion: [Sharma, 2002].

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
Reading, 1994.

Rohit J. Parikh. Language-generating devices. Research Laboratory of Elec-
tronics Quarterly Progress Report 60:199-212, Massachusetts Institute of
Technology, 1961. Reprint: [Parikh, 1966].

Rohit J. Parikh. On context-free languages. Journal of the ACM, 13(4):
570-581, 1966.

Dominique Perrin. Les débuts de la théorie des automates [The beginnings
of automata theory]. Technique et Science Informatique, 14:409-433,
1995.

Charles Petzold. The Annotated Turing: A Guided Tour through Alan
Turing’s Historic Paper on Computability and the Turing Machine. Wiley
Publishing, Indianapolis, 2008.

Emil L. Post. Finite combinatory processes—formulation 1. Journal of
Symbolic Logic, 1(3):103-105, 1936.

Emil L. Post. Formal reductions of the general combinatorial decision
problem. American Journal of Mathematics, 65(2):197-215, 1943.

Emil L. Post. Recursively enumerable sets of positive integers and their
decision problems. Bulletin of the American Mathematical Society, 50(5):
284-316, 1944.

Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of the
American Mathematical Society, 52(4):264-269, 1946.

James F. Power. Thue’s 1914 paper: a translation. https://arxiv.org/
abs/1308.5858, 2013.

Geoffrey K. Pullum. Scooping the loop snooper. Mathematics Magazine, 73
(4):319-320, 2000. Corrigendum: [Pullum, 2022].

https://arxiv.org/abs/1308.5858
https://arxiv.org/abs/1308.5858

214 BIBLIOGRAPHY

Geoffrey K. Pullum. Scooping the loop snooper. http://www.lel.ed.ac.
uk/~gpullum/loopsnoop.html, 2022.

Michael O. Rabin and Dana Scott. Finite automata and their decision
problems. IBM Journal of Research and Development, 3(2):114-125,
1959.

Henry G. Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, T4(2):
358-366, 1953.

Elaine Rich. Automata, Computability, and Complezity: Theory and Appli-
cations. Pearson Prentice Hall, Upper Saddle River, 2008.

Robert W. Ritchie. Finite automata and the set of squares. Journal of the
ACM, 10(4):528-531, 1963.

Yurii Rogozhin. Small universal Turing machines. Theoretical Computer
Science, 168(2):215-240, 1996.

Simon Scarle. Implications of the Turing completeness of reaction-diffusion
models, informed by GPGPU simulations on an XBox 360: Cardiac
arrhythmias, re-entry and the Halting problem. Computational Biology
and Chemistry, 33(4):253-260, 2009.

Stephen Scheinberg. Note on the boolean properties of context free languages.
Information and Control, 3(4):372-375, 1960.

Marcel-Paul Schiitzenberger. Certain elementary families of automata. In
J. Fox, editor, Proceedings of the Symposium on Mathematical Theory of
Automata, volume 12 of Microwave Research Institute Symposia Series,
pages 139-153, New York, 1962. Polytechnic Institute of Brooklyn.

Marcel-Paul Schiitzenberger. On context-free languages and push-down
automata. Information and Control, 6(3):246-264, 1963.

Marcel-Paul Schiitzenberger. A remark on acceptable sets of numbers.
Journal of the ACM, 15(2):300-303, 1968.

Pieter A. M. Seuren. The Chomsky hierarchy in perspective. In From Whorf
to Montague: Ezplorations in the Theory of Language, chapter 6, pages
205-238. Oxford University Press, Oxford, 2013.

Claude E. Shannon. A universal Turing machine with two internal states.
In C. E. Shannon and J. McCarthy, editors, Automata Studies, volume 34
of Annals of Mathematics Studies, pages 157-165. Princeton University
Press, Princeton, 1956.

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

BIBLIOGRAPHY 215

Claude E. Shannon. Von Neumann’s contributions to automata theory.
Bulletin of the American Mathematical Society, 64(3):123-129, 1958.

Ehud Shapiro. A mechanical Turing machine: Blueprint for a biomolecular
computer. Interface Focus, 2:497-503, 2012.

Norman Shapiro. Degrees of computability. Transactions of the American
Mathematical Society, 82(2):281-299, 1956.

Rama Nath Sharma. The Astadhyayr of Panini. Munshiram Manoharlal
Publishers, New Delhi, second edition, 2002. Six volumes.

Michael Sipser. Introduction to the Theory of Computation. Cengage
Learning, Boston, third edition, 2013.

Alex Smith. Universality of Wolfram’s 2, 3 Turing machine. Complex
Systems, 29(1):1-44, 2020.

Robert I. Soare. Computability and recursion. Bulletin of Symbolic Logic, 2
(3):284-321, 1996.

Christopher Strachey. An impossible program. The Computer Journal, 7
(4):313, 1965.

Ken Thompson. Programming techniques: Regular expression search algo-
rithm. Communications of the ACM, 11(6):419-422, 1968.

Axel Thue. Probleme tiber Verinderungen von Zeichenreihen nach gegebenen
Regeln [Problems concerning the transformation of symbol sequences
according to given rules|. Skrifter udgivne af Videnskabs-Selskabet i
Christiania, I. Mathematisk-naturvidenskabelig Klasse, 10:1-34, 1914.
Reprint: [Nagell, Selberg, Selberg, and Thalberg, 1977, pages 493-524].
Translation: [Power, 2013].

Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
$2-42(1):230-265, 1936. Corrigendum: [Turing, 1937].

Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. A correction. Proceedings of the London Mathe-
matical Society, s2-43(1):544-546, 1937.

Dermot Turing. Prof: Alan Turing Decoded. The History Press, Gloucester-
shire, 2015.

Sara Turing. Alan M. Turing. W. Heffer & Sons, Cambridge, 1959.
Reprint: [Turing, 2012].

216 BIBLIOGRAPHY

Sara Turing. Alan M. Turing: Centenary Edition. Cambridge University
Press, Cambridge, 2012.

Jean van Heijenoort, editor. From Frege to Gédel: A Source Book in
Mathematical Logic, 1879-1931. Harvard University Press, Cambridge,
1967.

John von Neumann. The general and logical theory of automata. In L. A.
Jeffress, editor, Cerebral Mechanisms in Behavior: The Hizon Symposium,
pages 1-31. John Wiley & Sons, New York, 1951.

Rulon S. Wells. Immediate constituents. Language, 23(2):81-117, 1947.

Tom Wildenhain. On the Turing completeness of MS PowerPoint. In Pro-
ceedings of the 11th Annual Intercalary Robot Dance Party in Celebration
of Workshop on Symposium about 2°th Birthdays; in particular, that of
Harry Q. Bovik (SIGBOVIK 2017), pages 102-106, Pittsburgh, 2017.
Association for Computational Heresy.

David S. Wise. A strong pumping lemma for context-free languages. Theo-
retical Computer Science, 3(3):359-369, 1976.

Stephen Wolfram. A New Kind of Science. Wolfram Media, Champaign,
2002.

Damien Woods and Turlough Neary. The complexity of small universal
Turing machines: A survey. Theoretical Computer Science, 410(4-5):
443-450, 2009.

Sheng Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, pages 41-110. Springer-Verlag,
Berlin, 1997.

Richard Zach. Hilbert’s program then and now. In D. Jacquette, editor,
Philosophy of Logic, volume 5 of Handbook of the Philosophy of Science,
pages 411-447. North-Holland Publishing Co., Amsterdam, 2007.

THEORY OF COMPUTING: AN OPEN INTRODUCTION
Taylor J. Smith

What is the theory of computing? Computers are machines made by
humans, so surely we should know all about how they work. However, all
the day-to-day work we do with our computers belies the reality of
computation itself and all of its intricacies. For even if we were to remove
all of the physical components of a computer, producing an abstract
machine that has unlimited processing power and unlimited memory, we
would still encounter problems that are impossible for even this machine to
solve in general.

In this « pre-publication edition, we learn what it means for a computer to
compute by starting with one of the simplest models of computation: the
finite automaton. We then augment this model with forms of
storage—namely, a stack and a tape, which give us the pushdown
automaton and the famous Turing machine, respectively. After studying
the fundamental properties of these three models, we shift our focus to
what these models are capable of solving, and we eventually reach the
edges of computability itself by investigating undecidable problems.

This book is suitable for courses on the theory of computing at both the
undergraduate and graduate levels, and for self-study. It is published under
a Creative Commons BY-SA license and is available for free, forever.

Taylor J. Smith is an assistant professor in
the Department of Computer Science and
the director of the Formal Languages and
Automata Research Lab at St. Francis
Xavier University. His research and teaching
specialties are in formal languages and
automata theory. He earned his PhD in
2021 from Queen’s University.

©@®O

creativecommons.org

	Preface
	Regular Languages
	Regex and Regular Expressions
	Words, Languages, and Operations
	Language of a Regular Expression

	Finite Automata
	Computations and Accepting Computations
	Language of a Finite Automaton
	Nondeterminism
	Epsilon Transitions

	Equivalence of Models
	NFA= NFA
	NFA= DFA
	DFA= RE
	Kleene's Theorem

	Closure Properties
	Proving a Language is Nonregular
	The Pumping Lemma for Regular Languages
	The Myhill–Nerode Theorem

	Chapter Notes

	Context-Free Languages
	Context-Free Grammars
	Language of a Context-Free Grammar
	Ambiguity
	Normal Forms
	Chomsky Normal Form
	Greibach Normal Form

	Pushdown Automata
	Computations and Accepting Computations
	Language of a Pushdown Automaton

	Equivalence of Models
	CFGPDA
	PDACFG
	CFG= PDA

	Closure Properties
	Proving a Language is Non-Context-Free
	The Pumping Lemma for Context-Free Languages
	Ogden's Lemma

	Chapter Notes

	Decidable and Semidecidable Languages
	Turing Machines
	Configurations and Accepting Configurations
	Language of a Turing Machine
	Computing Functions

	Variants of Turing Machines
	Nondeterministic Turing Machines
	Multitape Turing Machines
	One-Way Infinite Tape Turing Machines

	Closure Properties
	Encodings of Turing Machines
	Universal Turing Machines
	The Church–Turing Thesis
	The Chomsky Hierarchy
	Chapter Notes

	Decision Problems
	Decidable Problems for Regular Languages
	Decidable Problems for Context-Free Languages
	An Undecidable Problem for Turing Machines
	A Non-Semidecidable Problem for Turing Machines
	Chapter Notes

	Proving Undecidability
	Many-One Reductions
	Properties of Reductions
	Reductions, Decidability, and Semidecidability

	The Halting Problem
	More Undecidable Problems for Turing Machines
	Reducing from Turing Machine Computations
	Undecidable Problems for Context-Free Languages
	Post's Correspondence Problem
	Rice's Theorem
	Chapter Notes

	Mathematical Background
	Sets and Sequences
	Relations and Functions
	Graphs

	The Greek Alphabet
	Bibliography

