2.1  What are formal methods of evaluation and why do we need them?

In chapter 1 we introduced the concept of validity and the informal test of validity.  According to that test, in order to determine whether an argument is valid we ask whether we can imagine a scenario where the premises are true and yet the conclusion is false.  If we can, then the argument is invalid; if we can’t then the argument is valid.  The informal test relies on our ability to imagine certain kinds of scenarios as well as our understanding of the statements involved in the argument.  Because not everyone has the same powers of imagination or the same understanding, this informal test of validity is neither precise nor objective.  For example, while one person may be able to imagine a scenario in which the premises of an argument are true while the conclusion is false, another person may be unable to imagine such a scenario.  As a result, the argument will be classified as invalid by the first individual, but valid by the second individual.  That is a problem because we would like our standard of evaluation of arguments (i.e., validity) to be as precise and objective as possible, and it seems that our informal test of validity is neither.  It isn’t precise because the concept of being able to imagine x is not precise—what counts as imagining x is not something that can be clearly specified.  What are the precise success conditions for having imagined a scenario where the premises are true and the conclusion is false?  But the informal test of validity also isn’t objective since it is possible that two different people who applied the imagination test correctly could come to two different conclusions about whether the argument is valid.  As I noted before, this is partly because people’s understanding of the statements differ and partly because people have different powers of imagination.  

The goal of a formal method of evaluation is to eliminate any imprecision or lack of objectivity in evaluating arguments.  As we will see by the end of this chapter, logicians have devised a number of formal techniques that accomplish this goal for certain classes of arguments.  What all of these formal techniques have in common is that you can apply them without really having to understand the meanings of the concepts used in the argument.  Furthermore, you can apply the formal techniques without having to utilize imagination at all.  Thus, the formal techniques we will survey in this chapter help address the lack of precision and objectivity inherent in the informal test of validity.  In general, a formal method of evaluation is a method of evaluation of arguments that does not require one to understand the meaning of the statements involved in the argument.  Although at this point this may sound like gibberish, after we have introduced the formal methods, you will understand what it means to evaluate an argument without knowing what the statements of the argument mean.  By the end of this chapter, if not before, you will understand what it means to evaluate an argument by its form, rather than its content.  

However, I will give you a sense of what a formal method of evaluation is in a very simple case right now, to give you a foretaste of what we will be doing in this chapter.  Suppose I tell you:

It is sunny and warm today.  

This statement is a conjunction because it is a complex statement that is asserting two things:

It is sunny today.

It is warm today.

These two statements are conjoined with an “and.”  So the conjunction is really two statements that are conjoined by the “and.”  Thus, if I have told you that it is both sunny and warm today, it follows logically that it is sunny today.  Here is that simple argument in standard form:

1. It is sunny today and it is warm today.
2. Therefore, it is sunny today.  (from 1)

This is a valid inference that passes the informal test of validity.  But we can also see that the form of the inference is perfectly general because it would work equally well for any conjunction, not just this one.  This inference has a particular form that we could state using placeholders for the statements, “it is sunny today” and “it is warm today”:

1. A and B
2. Therefore, A

We can see that any argument that had this form would be a valid argument.  For example, consider the statement:

	Kant was a deontologist and a Pietist.

That statement is a conjunction of two statements that we can capture explicitly in the first premise of the following argument:

1. Kant was a deontologist and Kant was a Pietist.
2. Therefore, Kant was a deontologist.  (from 1)

Regardless of whether you know what the statements in the first premise mean, we can still see that the inference is valid because the inference has the same form that I just pointed out above.  Thus, you may not know what “Kant” is (one of the most famous German philosophers of the Enlightenment) or what a “deontologist” or “Pietist” is, but you can still see that since these are statements that form a conjunction, and since the inference made has a particular form that is valid, this particular inference is valid.  That is what it means for an argument to be valid in virtue of its form.  In the next section we will delve into formal logic, which will involve learning a certain kind of language.  Don’t worry: it won’t be as hard as your French or Spanish class.


2.2  Propositional logic and the four basic truth functional connectives

Propositional logic (also called “sentential logic”) is the area of formal logic that deals with the logical relationships between propositions.  A proposition is simply what I called in section 1.1 a statement.[footnoteRef:1]  Some examples of propositions are: [1:  Some philosophers would claim that a proposition is not the same as a statement, but the reasons for doing so are not relevant to what we’ll be doing in this chapter.  Thus, for our purposes, we can treat a proposition as the same thing as a statement.] 


Snow is white

Snow is cold

Tom is an astronaut

The floor has been mopped

The dishes have been washed

We can also connect propositions together using certain English words, such as “and” like this:

The floor has been mopped and the dishes have been washed.

This proposition is called a complex proposition because it contains the connective “and” which connects two separate propositions.  In contrast, “the floor has been mopped” and “the dishes have been washed” are what are called atomic propositions.  Atomic propositions are those that do not contain any truth-functional connectives. The word “and” in this complex proposition is a truth-functional connective.  A truth-functional connective is a way of connecting propositions such that the truth value of the resulting complex proposition can be determined by the truth value of the propositions that compose it.  Suppose that the floor has not been mopped but the dishes have been washed.  In that case, if I assert the conjunction, “the floor has been mopped and the dishes have been washed,” then I have asserted something that is false.  The reason is that a conjunction, like the one above, is only true when each conjunct (i.e., each statement that is conjoined by the “and”) is true.  If either one of the conjuncts is false, then the whole conjunction is false.  This should be pretty obvious.  If Bob and Sally split chores and Bob’s chore was to both vacuum and dust whereas Sally’s chore was to both mop and do the dishes, then if Sally said she mopped the floor and did the dishes when in reality she only did the dishes (but did not mop the floor), then Bob could rightly complain that it isn’t true that Sally both mopped the floor and did the dishes!  What this shows is that conjunctions are true only if both conjuncts are true.  This is true of all conjunctions.  The conjunction above has a certain form—the same form as any conjunction.  We can represent that form using placeholders—lowercase letters like p and q to stand for any statement whatsoever.  Thus, we represent the form of a conjunction like this:

p and q

Any conjunction has this same form.  For example, the complex proposition, “it is sunny and hot today,” has this same form which we can see by writing the conjunction this way:

	It is sunny today and it is hot today.

Although we could write the conjunction that way, it is more natural in English to conjoin the adjectives “sunny” and “hot” to get “it is sunny and hot today.”  Nevertheless, these two sentences mean the same thing (it’s just that one sounds more natural in English than the other).  In any case, we can see that “it is sunny today” is the proposition in the “p” place of the form of the conjunction, whereas “it is hot today” is the proposition in the “q” place of the form of the conjunction.  As before, this conjunction is true only if both conjuncts are true.  For example, suppose that it is a sunny but bitterly cold winter’s day.  In that case, while it is true that it is sunny today, it is false that it is hot today—in which case the conjunction is false.  If someone were to assert that it is sunny and hot today in those circumstances, you would tell them that isn’t true.  Conversely, if it were a cloudy but hot and humid summer’s day, the conjunction would still be false.  The only way the statement would be true is if both conjuncts were true.  

In the formal language that we are developing in this chapter, we will represent conjunctions using a symbol called the “dot,” which looks like this: “⋅” Using this symbol, here is how we will represent a conjunction in symbolic notation:

p ⋅ q

In the following sections we will introduce four basic truth-functional connectives, each of which have their own symbol and meaning.  The four basic truth-functional connectives are: conjunction, disjunction, negation, and conditional.  In the remainder of this section, we will discuss only conjunction.

As we’ve seen, a conjunction conjoins two separate propositions to form a complex proposition.  The conjunction is true if and only if both conjuncts are true.  We can represent this information using what is called a truth table.  Truth tables represent how the truth value of a complex proposition depends on the truth values of the propositions that compose it.  Here is the truth table for conjunction:

	p
	q
	p ⋅ q

	T
	T
	T

	T
	F
	F

	F
	T
	F

	F
	F
	F



Here is how to understand this truth table.  The header row lists the atomic propositions, p and q, that the conjunction is composed of, as well as the conjunction itself, p ⋅ q.  Each of the following four rows represents a possible scenario regarding the truth of each conjunct, and there are only four possible scenarios: either p and q could both be true (as in row 1), p and q could both be false (as in row 4), p could be true while q is false (row 2), or p could be false while q is true (row 3).  The final column (the truth values under the conjunction, p ⋅ q) represents how the truth value of the conjunction depends on the truth value of each conjunct (p and q).  As we have seen, a conjunction is true if and only if both conjuncts are true.  This is what the truth table represents.  Since there is only one row (one possible scenario) in which both p and q are true (i.e., row 1), that is the only circumstance in which the conjunction is true.  Since in every other row at least one of the conjuncts is false, the conjunction is false in the remaining three scenarios.  

At this point, some students will start to lose a handle on what we are doing with truth tables.  Often, this is because one thinks the concept is much more complicated than it actually is.  (For some, this may stem, in part, from a math phobia that is triggered by the use of symbolic notation.)  But a truth table is actually a very simple idea: it is simply a representation of the meaning of a truth-functional operator.  When I say that a conjunction is true only if both conjuncts are true, that is just what the table is representing.  There is nothing more to it than that.  (Later on in this chapter we will use truth tables to prove whether an argument is valid or invalid.  Understanding that will require more subtlety, but what I have so far introduced is not complicated at all.)  

There is more than one way to represent conjunctions in English besides the English word “and.” Below are some common English words and phrases that commonly function as truth-functional conjunctions.  

	but
	yet
	also
	although

	however
	moreover
	nevertheless
	still






It is important to point out that many times English conjunctions carry more information than simply that the two propositions are true (which is the only information carried by our symbolic connective, the dot).  We can see this with English conjunctions like “but” and “however” which have a contrastive sense.  If I were to say, “Bob voted, but Caroline didn’t,” then I am contrasting what Bob and Caroline did.  Nevertheless, I am still asserting two independent propositions.  Another kind of information that English conjunctions represent but the dot connective doesn’t is temporal information.  For example, in the conjunction:

Bob brushed his teeth and got into bed

There is clearly a temporal implication that Bob brushed his teeth first and then got into bed.  It might sound strange to say:

Bob got into bed and brushed his teeth

since this would seem to imply that Bob brushed his teeth while in bed.  But each of these conjunctions would be represented in the same way by our dot connective, since the dot connective does not care about the temporal aspects of things.  If we were to represent “Bob got into bed” with the capital letter A and “Bob brushed his teeth” with the capital letter B, then both of these propositions would be represented exactly the same, namely, like this:

A ⋅ B

Sometimes a conjunction can be represented in English with just a comma or semicolon, like this:

While Bob vacuumed the floor, Sally washed the dishes.

Bob vacuumed the floor; Sally washed the dishes.

Both of these are conjunctions that are represented in the same way.  You should see that both of them have the form, p ⋅ q.  

Not every conjunction is a truth-function conjunction.  We can see this by considering a proposition like the following:

Maya and Alice are married.

If this were a truth-functional proposition, then we should be able to identify the two, independent propositions involved.  But we cannot.  What would those propositions be?  You might think two propositions would be these:

Maya is married

Alice is married

But that cannot be right since the fact that Maya is married and that Alice is married is not the same as saying that Maya and Alice are married to each other, which is clearly the implication of the original sentence.  Furthermore, if you tried to add “to each other” to each proposition, it would no longer make sense:

Maya is married to each other

Alice is married to each other

Perhaps we could say that the two conjuncts are “Maya is married to Alice” and “Alice is married to Maya,” but the truth values of those two conjuncts are not independent of each other since if Maya is married to Alice it must also be true that Alice is married to Maya.  In contrast, the following is an example of a truth-functional conjunction:

	Maya and Alice are women.

Unlike the previous example, in this case we can clearly identify two propositions whose truth values are independent of each other:

	Maya is a woman

Alice is a woman

Whether or not Maya is a woman is an issue that is totally independent of whether Alice is a woman (and vice versa).  That is, the fact that Maya is a woman tells us nothing about whether Alice is a woman.  In contrast, the fact that Maya is married to Alice implies that Alice is married to Maya. So the way to determine whether or not a conjunction is truth-functional is to ask whether it is formed from two propositions whose truth is independent of each other.    If there are two propositions whose truth is independent of each other, then the conjunction is truth-functional; if there are not two propositions whose truth is independent of each other, the conjunction is not truth-functional.

Exercise 8: Identify which of the following sentences are truth-functional conjunctions.  If the sentence is a truth-functional conjunction, identify the two conjuncts (by writing them down).

1. Jack and Jill are coworkers.
2. Tom is a fireman and a father.
3. Ringo Starr and John Lennon were bandmates.
4. Lucy loves steak and onion sandwiches.
5. Cameron Dias has had several relationships, although she has never married.
6. Bob and Sally kissed.
7. A person who plays both mandolin and guitar is a multi-instrumentalist.
8. No one has ever contracted rabies and lived.
9. Jack and Jill are cowboys.
10. Josiah is Amish; nevertheless, he is also a drug dealer.
11. The Tigers are the best baseball team in the state, but they are not as good as the Yankees.
12. Bob went to the beach to enjoy some rest and relaxation.
13. Lauren isn’t the fastest runner on the team; still, she is fast enough to have made it to the national championship.
14. The ring is beautiful, but expensive.
15. It is sad, but true that many Americans do not know where their next meal will come from.


2.3.  Negation and disjunction

In this section we will introduce the second and third truth-functional connectives: negation and disjunction.  We will start with negation, since it is the easier of the two to grasp.  Negation is the truth-functional operator that switches the truth value of a proposition from false to true or from true to false.  For example, if the statement “dogs are mammals” is true (which it is), then we can make that statement false by adding a negation.  In English, the negation is most naturally added just before the noun phrase that follows the linking verb like this:

Dogs are not mammals.

But another way of adding the negation is with the phrase, “it is not the case that” like this:

It is not the case that dogs are mammals.

Either of these English sentences expresses the same proposition, which is simply the negation of the atomic proposition, “dogs are mammals.”  Of course, that proposition is false since it is true that dogs are mammals.  Just as we can make a true statement false by negating it, we can also make a false statement true by adding a negation.  For example, the statement, “Cincinnati is the capital of Ohio” is false.  But we can make that statement true by adding a negation:

Cincinnati is not the capital of Ohio

There are many different ways of expressing negations in English.  Here are a few ways of expressing the previous proposition in different ways in English:

Cincinnati isn’t the capital of Ohio

It’s not true that Cincinnati is the capital of Ohio

It is not the case that Cincinnati is the capital of Ohio

Each of these English sentences express the same true proposition, which is simply the negation of the atomic proposition, “Cincinnati is the capital of Ohio.”  Since that statement is false, its negation is true.

There is one respect in which negation differs from the other three truth-functional connectives that we will introduce in this chapter.  Unlike the other three, negation does not connect two different propositions.  Nonetheless, we call it a truth-functional connective because although it doesn’t actually connect two different propositions, it does change the truth value of propositions in a truth-functional way.  That is, if we know the truth value of the proposition we are negating, then we know the truth value of the resulting negated proposition.  We can represent this information in the truth table for negation.  In the following table, the symbol we will use to represent negation is called the “tilde” (~).  (You can find the tilde on the upper left-hand side of your keyboard.)

	p
	~p

	T
	F

	F
	T



This truth table represents the meaning of the truth-functional connective, negation, which is represented by the tilde in our symbolic language.  The header row of the table represents some proposition p (which could be any proposition) and the negation of that proposition, ~p.  What the table says is simply that if a proposition is true, then the negation of that proposition is false (as in the first row of the table); and if a proposition is false, then the negation of that proposition is true (as in the second row of the table).

As we have seen, it is easy to form sentences in our symbolic language using the tilde.  All we have to do is add a tilde to left-hand side of an existing sentence.  For example, we could represent the statement “Cincinnati is the capital of Ohio” using the capital letter C, which is called a constant.  In propositional logic, a constant is a capital letter that represents an atomic proposition.  In that case, we could represent the statement “Cincinnati is not the capital of Ohio” like this: 

~C

Likewise, we could represent the statement “Toledo is the capital of Ohio” using the constant T.  In that case, we could represent the statement “Toledo is not the capital of Ohio” like this:

~T

We could also create a sentence that is a conjunction of these two negations, like this:

~C ⋅ ~T

Can you figure out what this complex proposition says?  (Think about it; you should be able to figure it out given your understanding of the truth-functional connectives, negation and conjunction.)  The propositions says (literally): “Cincinnati is not the capital of Ohio and Toledo is not the capital of Ohio.”  In later sections we will learn how to form complex propositions using various combinations of each of the four truth-functional connectives.  Before we can do that, however, we need to introduce our next truth-functional connective, disjunction.

The English word that most commonly functions as disjunction is the word “or.”  It is also common that the “or” is preceded by an “either” earlier in the sentence, like this:

	Either Charlie or Violet tracked mud through the house.

What this sentence asserts is that one or the other (and possibly both) of these individuals tracked mud through the house.  Thus, it is composed out of the following two atomic propositions:

Charlie tracked mud through the house

Violet tracked mud through the house

If the fact is that Charlie tracked mud through the house, the statement is true.  If the fact is that Violet tracked mud through the house, the statement is also true.  This statement is only false if in fact neither Charlie nor Violet tracked mud through the house.  This statement would also be true even if it was both Charlie and Violet who tracked mud through the house.  Another example of a disjunction that has this same pattern can be seen in the “click it or ticket” campaign of the National Highway Traffic Safety Administration.  Think about what the slogan means.  What the campaign slogan is saying is:

	Either buckle your seatbelt or get a ticket

This is a kind of warning: buckle your seatbelt or you’ll get a ticket.  Think about the conditions under which this statement would be true.  There are only four different scenarios:

	Your seatbelt is buckled
	You do not get a ticket
	True

	Your seatbelt is not buckled
	You get a ticket
	True

	Your seatbelt is buckled
	You get a ticket
	True

	Your seatbelt is not buckled
	You do not get a ticket
	False




The first and second scenarios (rows 1 and 2) are pretty straightforwardly true, according to the “click it or ticket” statement.  But suppose that your seatbelt is buckled, is it still possible to get a ticket (as in the third scenario—row 3)?  Of course it is!  That is, the statement allows that it could both be true that your seatbelt is buckled and true that you get a ticket.  How so?  (Think about it for a second and you’ll probably realize the answer.)  Suppose that your seatbelt is buckled but your are speeding, or your tail light is out, or you are driving under the influence of alcohol.  In any of those cases, you would get a ticket even if you were wearing your seatbelt.  So the disjunction, click it or ticket, clearly allows the statement to be true even when both of the disjuncts (the statements that form the disjunction) are true.  The only way the disjunction would be shown to be false is if (when pulled over) you were not wearing your seatbelt and yet did not get a ticket.  Thus, the only way for the disjunction to be false is when both of the disjuncts are false.  

These examples reveal a pattern: a disjunction is a truth-functional statement that is true in every instance except where both of the disjuncts are false.  In our symbolic language, the symbol we will use to represent a disjunction is called a “wedge” (v).  (You can simply use a lowercase “v” to write the wedge.)  Here is the truth table for disjunction:

	p
	q
	p v q

	T
	T
	T

	T
	F
	T

	F
	T
	T

	F
	F
	F










As before, the header of this truth table represents two propositions (first two columns) and their disjunction (last column).  The following four rows represent the conditions under which the disjunction is true.  As we have seen, the disjunction is true when at least one of its disjuncts is true, including when they are both true (the first three rows).  A disjunction is false only if both disjuncts are false (last row).

As we have defined it, the wedge (v) is what is called an “inclusive or.”  An inclusive or is a disjunction that is true even when both disjuncts are true.  However, sometimes a disjunction clearly implies that the statement is true only if either one or the other of the disjuncts is true, but not both.  For example, suppose that you know that Bob placed either first or second in the race because you remember seeing a picture of him in the paper where he was standing on a podium (and you know that only the top two runners in the race get to stand on the podium).  Although you can’t remember which place he was, you know that:

Bob placed either first or second in the race.

This is a disjunction that is built out of two different atomic propositions:

Bob placed first in the race

Bob placed second in the race

Although it sounds awkward to write it this way in English, we could simply connect each atomic statement with an “or”:

Bob placed first in the race or Bob placed second in the race.

That sentence makes explicit the fact that this statement is a disjunction of two separate statements.  However, it is also clear that in this case the disjunction would not be true if all the disjuncts were true, because it is not possible for all the disjuncts to be true, since Bob cannot have placed both first and second.  Thus, it is clear in a case such as this, that the “or” is meant as what is called an “exclusive or.”  An exclusive or is a disjunction that is true only if one or the other, but not both, of its disjuncts is true.  When you believe the best interpretation of a disjunction is as an exclusive or, there are ways to represent that using a combination of the disjunction, conjunction and negation.  The reason we interpret the wedge as an inclusive or rather than an exclusive or is that while we can build an exclusive or out of a combination of an inclusive or and other truth-functional connectives (as I’ve just pointed out), there is no way to build an inclusive or out of the exclusive or and other truth-functional connectives.  We will see how to represent an exclusive or in section 2.5.  

Exercise 9: Translate the following English sentences into our formal language using conjunction (the dot), negation (the tilde), or disjunction (the wedge).  Use the suggested constants to stand for the atomic propositions.

1. Either Bob will mop or Tom will mop.  (B = Bob will mop; T = Tom will mop)
2. It is not sunny today.  (S = it is sunny today)
3. It is not the case that Bob is a burglar.  (B = Bob is a burglar)
4. Harry is arriving either tonight or tomorrow night.  (A = Harry is arriving tonight; B = Harry is arriving tomorrow night)
5. Gareth does not like his name.  (G = Gareth likes his name)
6. Either it will not rain on Monday or it will not rain on Tuesday.  (M = It will rain on Monday; T = It will rain on Tuesday)
7. Tom does not like cheesecake.  (T = Tom likes cheesecake)
8. Bob would like to have both a large cat and a small dog as a pet.  (C = Bob would like to have a large cat as a pet; D = Bob would like to have a small dog as a pet)
9. Bob Saget is not actually very funny.  (B = Bob Saget is very funny)
10. Albert Einstein did not believe in God.  (A = Albert Einstein believed in God)


2.4  Using parentheses to translate complex sentences

We have seen how to translate certain simple sentences into our symbolic language using the dot, wedge, and tilde.  The process of translation starts with determining what the atomic propositions of the sentence are and then using the truth functional connectives to form the compound proposition.  Sometimes this will be fairly straightforward and easy to figure out—especially if there is only one truth-functional operator used in the English sentence.  However, many sentences will contain more than one truth-functional operator.  Here is an example:

Bob will not go to class but will play video games.

What are the atomic propositions contained in this English sentence?  Clearly, the sentence is asserting two things:

Bob will not go to class

Bob will play video games

The first statement is not an atomic proposition, since it contains a negation, “not.”  But the second statement is atomic since it does not contain any truth-functional connectives.  So if the first statement is a negation, what is the non-negated, atomic statement?  It is this:

Bob will go to class

I will use the constant C to represent this atomic proposition and G to represent the proposition, “Bob will play video games.”  Now that we have identified our two atomic propositions, how can we build our complex sentence using only those atomic propositions and the truth-functional connectives?  Let’s start with the statement “Bob will not go to class.”  Since we have defined the constant “C” as “Bob will go to class” then we can easily represent the statement “Bob will not go to class” using a negation, like this:

~C

The original sentence asserts that, but it is also asserts that Bob will play video games.  That is, it is asserting both of these statements.  That means we will be connecting “~C” with “G” with the dot operator.  Since we have already assigned “G” to the statement “Bob will play video games,” the resulting translation should look like this:

~C ⋅ G

Although sometimes we can translate sentences into our symbolic language without the use of parentheses (as we did in the previous example), many times a translation will require the use of parentheses.  For example:

	Bob will not both go to class and play video games.

Notice that whereas the earlier sentence asserted that Bob will not go to class, this sentence does not.  Rather, it asserts that Bob will not do both things (i.e., go to class and play video games), but only one or the other (and possibly neither).  That is, this sentence does not tell us for sure that Bob will/won’t go to class or that he will/won’t play video games, but only that he won’t do both of these things.  Using the same translations as before, how would we translate this sentence?  It should be clear that we cannot use the same translation as before since these two sentences are not saying the same thing.  Thus, we cannot use the translation:

	~C ⋅ G

since that translation says for sure that Bob will not go to class and that he will play video games.  Thus, our translation must be different.  Here is how to translate the sentence:

	~(C ⋅ G)

I have here introduced some new symbols, the parentheses.  Parentheses are using in formal logic to show groupings.  In this case, the parentheses represent that the conjunction, “C ⋅ G,” is grouped together and the negation ranges over that whole conjunction rather than just the first conjuct (as was the case with the previous translation).  When using multiple operators, you must learn to distinguish which operator is the main operator.  The main operator of a sentence is the one that connects the main groupings of the sentence.  In this case, the “connector” is the negation, since it “connects” the only grouping in this sentence.  In contrast, in the previous example (~C ⋅ G), the main operator was the conjunction rather than the negation.  We can see the need for parentheses in distinguishing these two different translations.  Without the use of parentheses, we would have no way to distinguish these two sentences, which clearly have different meanings.  

Here is a different example where we must utilize parentheses:

Noelle will either feed the dogs or clean her room, but she will not do the dishes.

Can you tell how many atomic propositions this sentence contains?  It contains three atomic propositions which are:

	Noelle will feed the dogs (F)

	Noelle will clean her room (C)

	Noelle will do the dishes (D)

What I’ve written in parentheses to the right of the statement is the constant that I’ll use to represent these atomic statements in my symbolic translation.  Notice that the sentence is definitely not asserting that each of these statements is true.  Rather, what we have to do is use these atomic propositions to capture the meaning of the original English sentence using only our truth-functional operators.  In this sentence we will actually use all three truth-functional operators (disjunction, conjunction, negation).  Let’s start with negation, as that one is relatively easy.  Given how we have represented the atomic proposition, D, to say that Noelle will not do the dishes is simply the negation of D:

	~D

Now consider the first part of the sentence: Noelle will either feed the dogs or clean her room.  You should see the “either…or” there and recognize it as a disjunction, which we represent with the wedge, like this:

	F v C

Now, how are these two compound propositions, “~D” and “F v C” themselves connected?  There is one word in the sentence that tips you off—the “but.”  As we saw earlier, “but” is a common way of representing a conjunction in English.  Thus, we have to conjoin the disjunction (F v C) and the negation (~D).  You might think that we could simply conjoin the two propositions like this:

F v C ⋅ ~D 

However, that translation would not be correct, because it is not what we call a well-formed formula.  A well-formed formula is a sentence in our symbolic language that has exactly one interpretation or meaning.  However, the translation we have given is ambiguous between two different meanings.  It could mean that (Noelle will feed the dogs) or (Noelle will clean her room and not do the dishes).  That statement would be true if Noelle fed the dogs and also did the dishes.  We can represent this possibility symbolically, using parentheses like this:

	F v (C ⋅ ~D)

The point of the parentheses is to group the main parts of the sentence together.  In this case, we are grouping the “C ⋅ ~D” together and leaving the “F” by itself.  The result is that those groupings are connected by a disjunction, which is the main operator of the sentence. In this case, there are only two groupings: “F” on the one hand, and “C ⋅ ~D” on the other hand.

But the original sentence could also mean that (Noelle will feed the dogs or clean her room) and (Noelle will not wash the dishes).  In contrast with our earlier interpretation, this interpretation would be false if Noelle fed the dogs and did the dishes, since this interpretation asserts that Noelle will not do the dishes (as part of a conjunction).  Here is how we would represent this interpretation symbolically:

	(F v C) ⋅ ~D

Notice that this interpretation, unlike the last one, groups the “F v C” together and leaves the “~D” by itself.  These two grouping are then connected by a conjunction, which is the main operator of this complex sentence.

The fact that our initial attempt at the translation (without using parentheses) yielded an ambiguous sentence shows the need for parentheses to disambiguate the different possibilities.  Since our formal language aims at eliminating all ambiguity, we must choose one of the two groupings as the translation of our original English sentence.  So, which grouping accurately captures the original sentence?  It is the second translation that accurately captures the meaning of the original English sentence.  That sentence clearly asserts that Noelle will not do the dishes and that is what our second translation says.  In contrast, the first translation is a sentence that could be true even if Noelle did do the dishes.  Given our understanding of the original English sentence, it should not be true under those circumstances since it clearly asserts that Noelle will not do the dishes.

Let’s move to a different example.  Consider the sentence:

Either both Bob and Karen are washing the dishes or Sally and Tom are.

This sentence contains four atomic propositions:

Bob is washing the dishes (B)

Karen is washing the dishes (K)

Sally is washing the dishes (S)

Tom is washing the dishes (T)

As before, I’ve written the constants than I’ll use to stand for each atomic proposition to the right of each atomic proposition.  You can use any letter you’d like when coming up with your own translations, as long as each atomic proposition uses a different capital letter.  (I typically try to pick letters that are distinctive of each sentence, such as picking “B” for “Bob”.)  So how can we use the truth functional operators to connect these atomic propositions together to yield a sentence that captures the meaning of the original English sentence?  Clearly B and K are being grouped together with the conjunction “and” and S and T are also being grouped together with the conjunction “and” as well:

(B ⋅ K)

(S ⋅ T)

Furthermore, the main operator of the sentence is a disjunction, which you should be tipped off to by the phrase “either…or.”  Thus, the correct translation of the sentence is:

(B ⋅ K) v (S ⋅ T)

The main operator of this sentence is the disjunction (the wedge).  Again, it is the main operator because it groups together the two main sentence groupings.

Let’s finish this section with one final example.  Consider the sentence:

Tom will not wash the dishes and will not help prepare dinner; however, he will vacuum the floor or cut the grass.

This sentence contains four atomic propositions:

	Tom will wash the dishes (W)

	Tom will help prepare dinner (P)

	Tom will vacuum the floor (V)

	Tom will cut the grass (C)

It is clear from the English (because of the “not”) that we need to negate both W and P.  It is also clear from the English (because of the “and”) that W and P are grouped together.  Thus, the first part of the translation should be:

	(~W ⋅ ~P)

It is also clear that the last part of the sentence (following the semicolon) is a grouping of V and C and that those two propositions are connected by a disjunction (because of the word “or”):

	(V v C)

Finally, these two grouping are connected by a conjunction (because of the “however,” which is a word the often functions as a conjunction).  Thus, the correct translation of the sentence is:

	(~W ⋅ ~P) ⋅ (V v C)

As we have seen in this section, translating sentences from English into our symbolic language is a process that can be captured as a series of steps:

Step 1: Determine what the atomic propositions are.  
Step 2: Pick a unique constant to stand for each atomic proposition.  
Step 3: If the sentence contains more than two atomic propositions, determine which atomic propositions are grouped together and which truth-functional operator connects them.  
Step 4: Determine what the main operator of the sentence is (i.e., which truth functional operator connects the groups of atomic statements together).
Step 5: Once your translation is complete, read it back and see if it accurately captures what the original English sentence conveys.  If not, see if another way of grouping the parts together better captures what the original sentence conveys.

Try using these steps to create your own translations of the sentences in exercise 10 below.

Exercise 10: Translate the following English sentences into our symbolic language using any of the three truth functional operators (i.e., conjunction, negation, and disjunction).  Use the constants at the end of each sentence to represent the atomic propositions they are obviously meant for. After you have translated the sentence, identify which truth-functional connective is the main operator of the sentence.  (Note: not every sentence requires parentheses; a sentence requires parentheses only if it contains more than two atomic propositions.)  

1. Bob does not know how to fly an airplane or pilot a ship, but he does know how to ride a motorcycle.  (A, S, M)
2. Tom does not know how to swim or how to ride a horse.  (S, H)
3. Theresa writes poems, not novels.  (P, N)
4. Bob does not like Sally or Felicia, but he does like Alice. (S, F, A)
5. Cricket is not widely played in the United States, but both football and baseball are.  (C, F, B)
6. Tom and Linda are friends, but Tom and Susan aren’t—although Linda and Susan are.  (T, S, L)
7. Lansing is east of Grand Rapids but west of Detroit.  (E, W)
8. Either Tom or Linda brought David home after his surgery; but it wasn’t Steve.  (T, L, S)
9. Next year, Steve will be living in either Boulder or Flagstaff, but not Phoenix or Denver.  (B, F, P, D)
10. Henry VII of England was married to Anne Boleyn and Jane Seymour, but he only executed Anne Boleyn.  (A, J, E)
11. Henry VII of England executed either Anne Boleyn and Jane Boleyn or Thomas Cromwell and Thomas More.  (A, J, C, M)
12. Children should be seen, but not heard.  (S, H)


2.5  “Not both” and “neither nor”

Two common English phrases that can sometimes cause confusion are “not both” and “neither nor.”  These two phrases have different meanings and thus are translated with different symbolic logic sentences.  Let’s look at an example of each.

Carla will not have both cake and ice cream.

Carla will have neither cake nor ice cream.

The first sentence uses the phrase “not both” and the second “neither nor.”  One way of figuring out what a sentence means (and thus how to translate it) is by asking the question: What scenarios does this sentence rule out?  Let’s apply this to the “not both” statement (which we first saw back in the beginning of section 2.4).   There are four possible scenarios, and the statement would be true in every one except the first scenario:

	Carla has cake
	Carla has ice cream
	False

	Carla has cake
	Carla does not have ice cream
	True

	Carla does not have cake
	Carla has ice cream
	True

	Carla does not have cake
	Carla does not have ice cream
	True



To say that Carla will not have both cake and ice cream allows that she can have one or the other (just not both).  It also allows that she can have neither (as in the fourth scenario).  So the way to think about the “not both” locution is as a negation of a conjunction, since the conjunction is the only scenario that cannot be true if the statement is true.  If we use the constant “C” to represent the atomic sentence, “Carla has cake,” and “I” to represent “Carla has ice cream,” then the resulting symbolic translation would be:

	~(C ⋅ I)

Thus, in general, statements of the form “not both p and q” will be translated as the negation of a conjunction:

	~(p ⋅ q)

Note that the main operator of the statement is the negation.  The negation applies to everything inside the parentheses—i.e., to the conjunction.  This is very different from the following sentence (without parentheses):

	~p ⋅ q

The main operator of this statement is the conjunction and the left conjunct of the conjunction is a negation.  In contrast with the “not both” form, this statement asserts that p is not true, while q is true.  For example, using our previous example of Carla and the cake, the sentence

	~C ⋅ I

would assert that Carla will not have cake and will have ice cream.  This is a very different statement from ~(C ⋅ I) which, as we have seen, allows the possibility that Carla will have cake but not ice cream.  Thus, again we see the importance of parentheses in our symbolic language.  

Earlier (in section 2.3) we made the distinction between what I called an “exclusive or” and an “inclusive or” and I claimed that although we interpret the wedge (v) as an inclusive or, we can represent the exclusive or symbolically as well.  Since we now know how to translate the “not both,” I can show you how to translate a statement that contains an exclusive or.  Recall our example:

	Bob placed either first or second in the race.  

As we saw, this disjunction contains the two disjuncts, “Bob placed first in the race” (F) and “Bob placed second in the race” (S).  Using the wedge, we get:

	F v S

However, since the wedge is interpreted as an inclusive or, this statement would allow that Bob got both first and second in the race, which is not possible.  So we need to be able to say that although Bob placed either first or second, he did not place both first and second.  But that is just the “not both” locution.  So, to be absolutely clear, we are asserting two things:

	Bob placed either first or second.

and

	Bob did not place both first and second.

We have already seen that the first sentence is translated: “F v S.”  The second sentence is simply a “not both F and S” statement:

	~(F ⋅ S)

Now all we have to do is conjoin the two sentences using the dot:

	(F v S) ⋅ ~(F ⋅ S)

That is the correct translation of an exclusive or.  Notice that when conjoining the “F v S” to the “~(F ⋅ S)” I needed to put parentheses around the “F v S” to show that it was grouped together.  Thus, it would have been incorrect to write:

	F v S ⋅ ~(F ⋅ S)

since that is not a well-formed formula.  The problem, as before, is that this sentence is ambiguous between two sentences that have different meanings:

	F v (S ⋅ ~(F ⋅ S))

	(F v S) ⋅ ~(F ⋅ S)

While both of these sentences are well-formed, only the latter is the correct translation of the exclusive or.  

Let’s move on to the English locution “neither…nor” as in:

	Carla will eat neither cake nor ice cream.

This statement might be true if, for example, Carla was on a diet (and was sticking to her diet).  Using the same method I introduced earlier, we can ask under what conditions the statement would be true or false.  As before, there are only four possibilities, which I represent symbolically this time:
	C
	I
	False

	C
	~I
	False

	~C
	I
	False

	~C
	~I
	True











There is only one circumstance in which this statement is true and that is the one in which it is false that Carla eats cake and false that Carla eats ice cream.  That should be obvious from the meaning of the “neither nor” locution.  Thus, the correct translation of a “neither nor” statement is as a conjunction of two negations:

	~C ⋅ ~I

The main operator of this statement is the dot, which is conjoining the ~C with the ~I.  Thus, the form of any “neither nor” statement can always be translated as a conjunction of two negations:

	~p ⋅ ~q

As we will see in a later section (where we will prove it), this statement is also equivalent to a negation of a disjunction:

	~(p v q)

Thus, the English locution “neither nor” can also be translated using this statement form.

Exercise 11: For each of the following, write out what atomic proposition each constant stands for.  Then translate the sentences using the constants you have defined.  Finally, after you have translated the sentence, identify which truth-functional connective is the main operator of the sentence.

1. Coral is not both a plant and an animal.  (P, A)
2. Although protozoa and chimpanzees are both eukaryotes, they are not both animals.  (There are four atomic propositions here; just use A, B, C, and D for each different proposition.)
3. Neither chimpanzees nor protozoa are prokaryotes.  (C, P)
4. China has not signed the Kyoto Protocol and neither has the United States.  (C, U)
5. Either Chevrolet or McDonald’s will support the Olympic team, but they won’t both support it.  (C, M)
6. Peter Jennings is either a liar or has a really bad memory.  (L, M)
7. Peter Jennings is neither a liar nor has a really bad memory.  (L, M)
8. Peter Jennings is both a liar and has a really bad memory.  (L, M)
9. Peter Jennings is not both a liar and a person with a really bad memory.  (L, M)
10. Chevrolet won’t support the Olympic team this year, and McDonald’s won’t either.  (C, M)
11. Mother Theresa may be a saint.  Even so, she has not been canonized yet by the Catholic Church.  (S, C)
12. The best distance runner of the last two decades is either Paul Tergat or Haile Gebrselassie, but it certainly isn’t Jim Ryun.  (T, G, R)
13. Jim Ryun was the best high school miler of all time, but he ran a slower time than Alan Webb.  (R, W)
14.  Neither Paul Tergat nor Haile Gebrselassie knows how to play hockey, but they both know how to play soccer.  (A, B, C, D)
15. Ethiopians are neither good bobsledders nor tennis players, but they are excellent distance runners.  (B, T, D)
16. Before Helen Keller met Annie Sullivan, she could neither speak, read, nor communicate.  (S, R, C)
17. Although Helen Keller learned to communicate, she never learned to play soccer or baseball.  (C, S, B)
18. Tom is allowed to play football or soccer, but not both.  (F, S)
19. Tom will major in either engineering and physics, or business and sociology.  (E, P, B, S)
20. Cartman is both xenophobic and racist, but he isn’t a murderer or a thief.  (X, R, M, T)


2.6  The truth table test of validity

So far, we have learned how to translate certain English sentences into our symbolic language, which consists of a set of constants (i.e., the capital letters that we use to represent different atomic propositions) and the truth-functional connectives.  But what is the payoff of doing so?  In this section we will learn what the payoff is.  In short, the payoff will be that we will have a purely formal method of determining the validity of a certain class of arguments—namely, those arguments whose validity depends on the functioning of the truth-functional connectives.  This is what logicians call “propositional logic” or “sentential logic.”  

In the first chapter, we learned the informal test of validity, which required us to try to imagine a scenario in which the premises of the argument were true and yet the conclusion false.  We saw that if we can imagine such a scenario, then the argument is invalid.  On the other hand, if it is not possible to imagine a scenario in which the premises are true and yet the conclusion is false, then the argument is valid.  Consider this argument:

1. The convict escaped either by crawling through the sewage pipes or by hiding out in the back of the delivery truck.
2. But the convict did not escape by crawling through the sewage pipes.
3. Therefore, the convict escaped by hiding out in the back of the delivery truck.

Using the informal test of validity, we can see that if we imagine that the first premise and the second premise are true, then the conclusion must follow.  However, we can also prove this argument is valid without having to imagine scenarios and ask whether the conclusion would be true in those scenarios.  We can do this by a) translating this sentence into our symbolic language and then b) using a truth table to determine whether the argument is valid.  Let’s start with the translation.  The first premise contains two atomic propositions.  Here are the propositions and the constants that I’ll use to stand for them:

	S = The convict escaped through the sewage pipes

	D = The convict escaped by hiding out in the back of the delivery van

As we can see, the first premise is a disjunction and so, using the constants indicated above, we can translate that first premise as follows:

	S v D

The second premise is simply the negation of S:

	~S

Finally, the conclusion is simply the atomic sentence, D.  Putting this all together in standard form, we have:

1. S v D
2. ~S 
3. ∴ D

We will use the symbol “∴“ to denote a conclusion and will read it “therefore.”

The next thing we have to do is to construct a truth table.  We have already seen some examples of truth tables when I defined the truth-functional connectives that I have introduced so far (conjunction, disjunction, and negation).  A truth table (as we saw in section 2.2) is simply a device we use to represent how the truth value of a complex proposition depends on the truth of the propositions that compose it in every possible scenario.  When constructing a truth table, the first thing to ask is how many atomic propositions need to be represented in the truth table.  In this case, the answer is “two,” since there are only two atomic propositions contained in this argument  (namely, S and D).  Given that there are only two atomic propositions, our truth table will contain only four rows—one row for each possible scenario.  There will be one row in which both S and D are true, one row in which both S and D are false, one row in which S is true and D is false, and one row in which S is false and D is true.

	D
	S
	S v D
	~S
	D

	T
	T
	
	
	

	T
	F
	
	
	

	F
	T
	
	
	

	F
	F
	
	
	



The two furthest left columns are what we call the reference columns of the truth table.  Reference columns assign every possible arrangement of truth values to the atomic propositions of the argument (in this case, just D and S).  The reference columns capture every logically possible scenario.  By doing so, we can replace having to use your imagination to imagine different scenarios (as in the informal test of validity) with a mechanical procedure that doesn’t require us to imagine or even think very much at all.  Thus, you can think of each row of the truth table as specifying one of the possible scenarios.  That is, each row is one of the possible assignments of truth values to the atomic propositions.  For example, row 1 of the truth table (the first row after the header row) is a scenario in which it is true that the convict escaped by hiding out in the back of the delivery van, and is also true that the convict escaped by crawling through the sewage pipes.  In contrast, row 4 is a scenario in which the convict did neither of these things.

The next thing we need to do is figure out what the truth values of the premises and conclusion are for each row of the truth table.  We are able to determine what those truth values are because we understand how the truth value of the compound proposition depends on the truth value of the atomic propositions.  Given the meanings of the truth functional connectives (discussed in previous sections), we can fill out our truth table like this:

	D
	S
	S v D
	~S
	D

	T
	T
	T
	F
	T

	T
	F
	T
	T
	T

	F
	T
	T
	F
	F

	F
	F
	F
	T
	F



To determine the truth values for the first premise of the argument (“S v D”) we just have to know the truth values of S and D and the meaning of the truth functional connective, the disjunction.  The truth table for the disjunction says that a disjunction is true as long as at least one of its disjuncts is true.  Thus, every row under the “S v D” column should be true, except for the last row since on the last row both D and S are false (whereas in the first three rows at least one or the other is true).  The truth values for the second premise (~S) are easy to determine: we simply look at what we have assigned to “S” in our reference column and then we negate those truth values—the Ts becomes Fs and the Fs becomes Ts.  That is just what I’ve done in the fourth column of the truth table above.  Finally, the conclusion in the last column of the truth table will simply repeat what we have assigned to “D” in our reference column, since the last conclusion simply repeats the atomic proposition “D.”  

The above truth table is complete.  Now the question is: How do we use this completed truth table to determine whether or not the argument is valid?  In order to do so, we must apply what I’ll call the “truth table test of validity.”  According to the truth table test of validity, an argument is valid if and only if for every assignment of truth values to the atomic propositions, if the premises are true then the conclusion is true.  An argument is invalid if there exists an assignment of truth values to the atomic propositions on which the premises are true and yet the conclusion is false.   It is imperative that you understand (and not simply memorize) what these definitions mean.  You should see that these definitions of validity and invalidity have a similar structure to the informal definitions of validity and invalidity (discussed in chapter 1).  The similarity is that we are looking for the possibility that the premises are true and yet the conclusion is false.  If this is possible, then the argument is invalid; if it isn’t possible, then the argument is valid.  The difference, as I’ve noted above, is that with the truth table test of validity, we replace having to use your imagination with a mechanical procedure of assigning truth values to atomic propositions and then determining the truth values of the premises and conclusion for each of those assignments.  

Applying these definitions to the above truth table, we can see that the argument is valid because there is no assignment of truth values to the atomic propositions (i.e., no row of our truth table) on which all the premises are true and yet the conclusion is false.  Look at the first row.  Is that a row in which all the premises are true and yet the conclusion false?  No, it isn’t, because not all the premises are true in that row.  In particular, “~S” is false in that row.  Look at the second row.  Is that a row in which all the premises are true and yet the conclusion false?  No, it isn’t; although both premises are true in that row, the conclusion is also true in that row.  Now consider the third row.  Is that a row in which all the premises are true and yet the conclusion false?  No, because it isn’t a row in which both the premises are true.  Finally, consider the last row.  Is that a row in which all the premises are true and yet the conclusion false?  Again, the answer is “no” because the premises aren’t both true in that row.  Thus, we can see that there is no row of the truth table in which the premises are all true and yet the conclusion is false.  And that means the argument is valid.

Since the truth table test of validity is a formal method of evaluating an argument’s validity, we can determine whether an argument is valid just in virtue of its form, without even knowing what the argument is about!  Here is an example:

1. (A v B) v C
2. ~A
3. ∴ C

Here is an argument written in our symbolic language.  I don’t know what A, B, and C mean (i.e., what atomic propositions they stand for), but it doesn’t matter because we can determine whether the argument is valid without having to know what A, B, and C mean.  A, B, and C could be any atomic propositions whatsoever.  If this argument form is invalid then whatever meaning we give to A, B, and C, the argument will always be invalid.  On the other hand, if this argument form is valid, then whatever meaning we give to A, B, and C, the argument will always be valid.

The first thing to recognize about this argument is that there are three atomic propositions, A, B, and C.  And that means our truth table will have 8 rows instead of only 4 rows like our last truth table.  The reason we need 8 rows is that it takes twice as many rows to represent every logically possible scenario when we are working with three different propositions.  Here is a simple formula that you can use to determine how many rows your truth table needs:

	2n (where n is the number of atomic propositions)

You read this formula “two to the n-th power.”  So if you have one atomic proposition (as in the truth table for negation), your truth table will have only two rows.  If you have two atomic propositions, it will have four rows.  If you have three atomic propositions, it will have 8 rows.  The number of rows needed grows exponentially as the number of atomic propositions grows linearly.  The table below represents the same relationship that the above formula does:



	Number of atomic propositions
	Number of rows in the truth table

	1
	2

	2
	4

	3
	8

	4
	16

	5
	32






So, our truth table for the above argument needs to have 8 rows.  Here is how that truth table looks:


	A
	B
	C
	(A v B) v C
	~A
	C

	T
	T
	T
	
	
	

	T
	T
	F
	
	
	

	T
	F
	T
	
	
	

	T
	F
	F
	
	
	

	F
	T
	T
	
	
	

	F
	T
	F
	
	
	

	F
	F
	T
	
	
	

	F
	F
	F
	
	
	




Here is an important point to note about setting up a truth table.  You need to make sure that your reference columns capture each distinct possible assignment of truth values.  One way to make sure you do this is by following the same pattern each time you construct a truth table.  There is no one right way of doing this, but here is how I do it (and recommend that you do it too).  Construct the reference columns so that the atomic propositions are arranged alphabetically, from left to right.  Then on the right-most reference column (the C column above), alternate true and false each row, all the way to the bottom.  On the reference column to the left of that (the B column above), alternate two rows true, two rows false, all the way to the bottom.  On the next column to the left (the A column above), alternate 4 true, 4 false, all the way to the bottom.  

The next step is to determine the truth values of the premises and conclusion.  Note that our first premise is a more complex sentence that consists of two disjunctions.  The main operator is the second disjunction since the two main grouping, denoted by the parentheses, are “A v B” and “C”.  Notice, however, that we cannot figure out the truth values of the main operator of the sentence until we figure out the truth values of the left disjunct, “A v B.”  So that is where we need to start.  Thus, in the truth table below, I have filled out the truth values directly underneath the “A v B” part of the sentence by using the truth values I have assigned to A and B in the reference columns.  As you can see in the truth table below, each line is true except for the last two lines, which are false, since a disjunction is only false when both of the disjuncts are false.  (If you need to review the truth table for disjunction, please see section 2.3.)



	A
	B
	C
	(A v B) v C
	~A
	C

	T
	T
	T
	             T
	
	

	T
	T
	F
	             T
	
	

	T
	F
	T
	             T 
	
	

	T
	F
	F
	             T 
	
	

	F
	T
	T
	             T
	
	

	F
	T
	F
	             T
	
	

	F
	F
	T
	             F
	
	

	F
	F
	F
	             F
	
	



Now, since we have figured out the truth values of the left disjunct, we can figure out the truth values under the main operator (which I have emphasized in bold in the truth table below).  The two columns you are looking at to determine the truth values of the main operator are the “A v B” column that we have just figured out above and the “C” reference column to the left.  It is imperative to understand that the truth values under the “A v B” are irrelevant once we have figured out the truth values under the main operator of the sentence.  That column was only a means to an end (the end of determining the main operator) and so I have grayed those out to emphasize that we are no longer paying any attention to them.  (When you are constructing your own truth tables, you may even want to erase these subsidiary columns once you’ve determined the truth values of the main operator of the sentence.  Or you may simply want to circle the truth values under the main operator to distinguish them from the rest.)


	A
	B
	C
	(A v B) v C
	~A
	C

	T
	T
	T
	             T     T
	
	

	T
	T
	F
	             T     T
	
	

	T
	F
	T
	             T     T
	
	

	T
	F
	F
	             T     T
	
	

	F
	T
	T
	             T     T
	
	

	F
	T
	F
	             T     T
	
	

	F
	F
	T
	             F     T
	
	

	F
	F
	F
	             F     F
	
	



Finally, we will fill out the remaining two columns, which is very straightforward.  All we have to do for the “~A” is negate the truth values that we have assigned to our “A” reference column.  And all we have to do for the final column “C” is simply repeat verbatim the truth values that we have assigned to our reference column “C.”

	A
	B
	C
	(A v B) v C
	~A
	C

	T
	T
	T
	             T     T
	F
	T

	T
	T
	F
	             T     T
	F
	F

	T
	F
	T
	             T     T
	F
	T

	T
	F
	F
	             T     T
	F
	F

	F
	T
	T
	             T     T
	T
	T

	F
	T
	F
	             T     T
	T
	F

	F
	F
	T
	             F     T
	T
	T

	F
	F
	F
	             F     F
	T
	F



The above truth table is now complete.  The next step is to apply the truth table test of validity in order to determine whether the argument is valid or invalid.  Remember that what we’re looking for is a row in which the premises are true and the conclusion is false.  If we find such a row, the argument is invalid.  If we do not find such a row, then the argument is valid.  Applying this definition to the above truth table, we can see that the argument is invalid because of the 6th row of the table (which I have highlighted).  Thus, the explanation of why this argument is invalid is that the sixth row of the table shows a scenario in which the premises are both true and yet the conclusion is false.   


Exercise 12: Use the truth table test of validity to determine whether or not the following arguments are valid or invalid.
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1.
1. A v B
2. B
3. ∴ ~A

2.
1. A ⋅ B
2. ∴ A v B

3.
1. ~C
2. ∴ ~(C v A)

4.
1. (A v B) ⋅ (A v C)
2. ~A
3. ∴ B v C

5.
1. R ⋅ (T v S)
2. T
3. ∴ ~S

6.
1. A v B
2. ∴ A ⋅ B

7.  
1. ~(A ⋅ B)
2. ∴ ~A v ~B

8.
1. ~(A v B)
2. ∴ ~A v ~B


9.
1. 
2. (R v S) ⋅ ~D
3. ~R
4. ∴ S ⋅ ~D



2.7  Conditionals

So far, we have learned how to translate and construct truth tables for three truth functional connectives.  However, there is one more truth functional connective that we have not yet learned: the conditional.[footnoteRef:2]  The English phrase that is most often used to express conditional statements is “if…then.”  For example, [2:  Actually, there is one more truth functional connective that we will not be learning and that is what is called the “biconditional” or “material equivalence.”  However, since the biconditional is equivalent to a conjunction of two different conditionals, we don’t actually need it. Although I will discuss material equivalence in section 2.9, we will not be regularly using it.] 


	If it is raining then the ground it wet.

Like conjunctions and disjunctions, conditionals connect two atomic propositions.  There are two atomic propositions in the above conditional:

	It is raining.

	The ground it wet.

The proposition that follows the “if” is called the antecedent of the conditional and the proposition that follows the “then” is call the consequent of the conditional.  The conditional statement above is not asserting either of these atomic propositions.  Rather, it is telling us about the relationship between them.  Let’s symbolize “it is raining” as “R” and “the ground is wet” as “G.”  Thus, our symbolization of the above conditional would be:

	R ⊃ G

The “⊃” symbol is called the “horseshoe” and it represents what is called the “material conditional.”  A material conditional is defined as being true in every case except when the antecedent is true and the consequent is false.  Below is the truth table for the material conditional.  Notice that, as just stated, there is only one scenario in which we count the conditional false: when the antecedent is true and the consequent false.

	p
	q
	p ⊃ q

	T
	T
	T

	T
	F
	F

	F
	T
	T

	F
	F
	T



Let’s see how this applies to the above conditional, “if it is raining, then the ground is wet.” As before, we can think about the meaning of the truth functional connectives by asking whether the sentences containing those connectives would be true or false in the four possible scenarios.  The first two are pretty easy.  If I assert the above conditional “if it is raining then the ground is wet” when it is both raining and the ground is wet (i.e., the first line of the truth table below), then the conditional statement would be true in that scenario.  However, if I assert it and it is raining but the ground isn’t wet (i.e., the second line of the truth table below), then my statement has been shown to be false.  Why?  Because I’m asserting that any time it is raining, the ground is wet.  But if it is raining but the ground isn’t wet, then this scenario is a counterexample to my claim—it shows that my claim is false.  Now consider the scenario in which it is not raining but the ground is wet.  Would this scenario show that my conditional statement is false?  No, it wouldn’t.  The reason is that the conditional statement R ⊃ G is only asserting something about what is the case when it is raining.  So this conditional statement isn’t asserting anything about those scenarios in which it isn’t raining.  I’m only saying that when it is raining, the ground is wet.  But that doesn’t mean that the ground couldn’t be wet for other reasons (e.g., a sprinkler watering the grass).  So the meaning of the material conditional should count a statement true whenever its antecedent is false.  Thus, in a scenario in which it is neither raining nor the ground is wet (i.e., the fourth line of the truth table), the conditional statement should still be true.  Would the fact of a sunny day and dry ground show that the conditional R ⊃ G is false?  Of course not!  Thus, as we’ve seen, the material conditional is false only when the antecedent is true and the consequent is false.




	R
	G
	R ⊃ G

	T
	T
	T

	T
	F
	F

	F
	T
	T

	F
	F
	T



It is sometimes helpful to think of the material conditional as a rule.  For example, suppose that I tell my class:

	If you pass all the exams, you will pass the course.

Let’s symbolize “you pass all the exams” as “E” and “you pass the course” as “C.”  We would then symbolize the conditional as:

	E ⊃ C

Under what conditions would my statement E ⊃ C be shown to be false?  There are four possible scenarios:

	E
	C
	E ⊃ C

	T
	T
	T

	T
	F
	F

	F
	T
	T

	F
	F
	T



Suppose that you pass all the exams and pass the class (first row).  That would confirm my conditional statement E ⊃ C.  Suppose, on the other hand, that although you passed all the exams, you did not pass the class (second row).  This would should my statement is false (and you would have legitimate grounds for complaint!).  How about if you don’t pass all the exams and yet you do pass the course (third row)?  My statement allows this to be true and it is important to see why.  When I assert E ⊃ C I am not asserting anything about the situation in which E is false.  I am simply saying that one way of passing the course is by passing all of the exams; but that doesn’t mean there aren’t other ways of passing the course.  Finally, consider the case in which you do not pass all the exams and you also do not pass the course (fourth row).  For the same reason, this scenario is compatible with my statement being true.  Thus, again, we see that a material conditional is false in only one circumstance: when the antecedent is true and the consequent is false.

There are other English phrases that are commonly used to express conditional statements.  Here are some equivalent ways of expressing the conditional, “if it is raining then the ground is wet”:

It is raining only if the ground is wet

The ground is wet if is raining

Only if the ground is wet is it raining

That it is raining implies that the ground is wet

That it is raining entails that the ground is wet

As long as it is raining, the ground will be wet

So long as it is raining, the ground will be wet

The ground is wet, provided that it is raining

Whenever it is raining, the ground is wet

If it is raining, the ground is wet

All of these conditional statements are symbolized the same way, namely R ⊃ G.  The antecedent of a conditional statement always lays down what logicians call a sufficient condition.  A sufficient condition is a condition that suffices for some other condition to obtain.  To say that x is a sufficient condition for y is to say that any time x is present, y will thereby be present.  For example, a sufficient condition for dying is being decapitated; a sufficient condition for being a U.S. citizen is being born in the U.S.  The consequent of a conditional statement always lays down a necessary condition.  A necessary condition is a condition that must be in present in order for some other condition to obtain.  To say that x is a necessary condition for y is to say that if x were not present, y would not be present either.  For example, a necessary condition for being President of the U.S. is being a U.S. citizen; a necessary condition for having a brother is having a sibling.  Notice, however, that being a U.S. citizen is not a sufficient condition for being President, and having a sibling is not a sufficient condition for having a brother.  Likewise, being born in the U.S. is not a necessary condition for being a U.S. citizen (people can become “naturalized citizens”), and being decapitated is not a necessary condition for dying (one can die without being decapitated).

Exercise 13:  Translate the following English sentences into symbolic logic sentences using the constants indicated.  Make sure you write out what the atomic propositions are.  In some cases this will be straightforward, but not in every case.  Remember: atomic propositions never contain any truth functional connectives—and that includes negation!  Note: although many of these sentences can be translated using only the horseshoe, others require truth functional connectives other than the horseshoe.

1. The Tigers will win only if the Indians lose their star pitcher.  (T, I)
2. Tom will pass the class provided that he does all the homework.  (P, H)
3. The car will run only if it has gas.  (R, G)
4. The fact that you are asking me about your grade implies that you care about your grade.   (A, C)
5. Although Frog will swim without a bathing suit, Toad will swim only if he is wearing a bathing suit.   (F, T, B)
6. If Obama isn’t a U.S. citizen, then I’m a monkey’s uncle.   (O, M)
7. If Toad wears his bathing suit, he doesn’t want Frog to see him in it.  (T, F)
8. If Tom doesn’t pass the exam, then he is either stupid or lazy.  (P, S, L)
9. Bekele will win the race as long as he stays healthy.  (W, H)
10. If Bekele is either sick or injured, he will not win the race.  (S, I, W)
11. Bob will become president only if he runs a good campaign and doesn’t say anything stupid.  (P, C, S)
12. If that plant has three leaves then it is poisonous.  (T, P)
13. The fact that the plant is poisonous implies that it has three leaves.  (T, P)
14. The plant is poisonous only if it has three leaves.  (T, P)
15. The plant has three leaves if it is poisonous.  (T, P)
16. Olga will swim in the open water as long as there is a shark net present.  (O, N)
17. Olga will swim in the open water only if there is shark net.  (O, N)
18. The fact that Olga is swimming implies that she is wearing a bathing suit.  (O, B)
19. If Olga is in Nice, she does not wear a bathing suit.  (N, B)
20. If Terrence pulls Philip’s finger, something bad will happen.  (T, B)


2.8  “Unless”

The English term “unless” can be tricky to translate.  For example,

	The Reds will win unless their starting pitcher is injured.

If we use the constant “R” to stand for the atomic proposition, “the Reds will win” and “S” to stand for the atomic proposition, “the Reds’ starting pitcher is injured,” how would we translate this sentence using truth functional connectives?  Think about what the sentence is saying (think carefully).  Is the sentence asserting that the Reds will win?  No; it is only saying that 

The Reds will win as long as their starting pitcher isn’t injured.  

“As long as” denotes a conditional statement.  In particular, what follows the “as long as” phrase is a sufficient condition, and as we have seen, a sufficient condition is always the antecedent of a conditional.  But notice that the sufficient condition also contains a negation.  Thus, the correct translation of this sentence is:

	~S ⊃ R

One simple trick you can use to translate sentences which use the term “unless” is just substitute the phrase “if it’s not the case that” for the “unless.”  But another trick is just to substitute an “or” for the “unless.”  Although it may sound strange in English, a disjunction will always capture the truth functional meaning of “unless.”  Thus, we could also correctly translate the sentence like this:

	S v R

In the next section we will show how we can prove that these two sentences are equivalent using a truth table.



2.9  Material equivalence

As we saw in the last section, two different symbolic sentences can translate the same English sentence.  In the last section I claimed that “~S ⊃ R” and “S v R” are equivalent.  More precisely, they are equivalent ways of capturing the truth-functional relationship between propositions.  Two propositions are materially equivalent if and only if they have the same truth value for every assignment of truth values to the atomic propositions.  That is, they have the same truth values on every row of a truth table.  The truth table below demonstrates that “~S ⊃ R” and “S v R” are materially equivalent.

	R
	S
	~S ⊃ R
	S v R

	T
	T
	          F   T
	T

	T
	F
	          T   T 
	T

	F
	T
	          F   T
	T

	F
	F
	          T   F
	F



If you look at the truth values under the main operators of each sentence, you can see that their truth values are identical on every row.   That means the two statements are materially equivalent and can be used interchangeably, as far as propositional logic goes.  

Let’s demonstrate material equivalence with another example.  We have seen that we can translate “neither nor” statements as a conjunction of two negations.  So, a statement of the form, “neither p nor q” can be translated:

	~p ⋅ ~q

But another way of translating statements of this form is as a negation of a disjunction, like this:

	~(p v q)

We can prove these two statements are materially equivalent with a truth table (below).




	p
	q
	~p ⋅ ~q
	~(p v q)

	T
	T
	          F   F   F
	         F    T

	T
	F
	          F   F   T
	         F    T

	F
	T
	          T   F   F
	         F    T

	F
	F
	          T   T   T
	         T    F



Again, as you can see from the truth table, the truth values under the main operators of each sentence are identical on every row (i.e., for every assignment of truth values to the atomic propositions).

In fact, there is a fifth truth functional connective called “material equivalence” or the “biconditional” that is defined as true when the atomic propositions share the same truth value, and false when the truth values different.  Although we will not be relying on the biconditional, I provide the truth table for it below.  The biconditional is represented using the symbol “≡” which is called a “tribar.”

	p
	q
	p ≡ q

	T
	T
	T

	T
	F
	F

	F
	T
	F

	F
	F
	T



Some common ways of expressing the biconditional in English are with the phrases “if and only if” and “just in case.”  If you have been paying close attention (or do from now on out) you will see me use the phrase “if and only if” often.  It is most commonly used when one is giving a definition, such as the definition of validity and also in defining the “material equivalence” in this very section.  It makes sense that the biconditional would be used in this way since when we define something we are laying down an equivalent way of saying it. 


Exercise 14: Construct a truth table to determine whether the following pairs of statements are materially equivalent.

1. A ⊃ B and ~A v B
2. ~(A ⋅ B) and ~A v ~B
3. A ⊃ B and ~B ⊃ ~A
4. A v ~B and B ⊃ A
5. B ⊃ A and A ⊃ B 
6. ~(A ⊃ B) and A ⋅ ~B
7. A v B and ~A ⋅ ~B
8. A v (B ⋅ C) and (A v B) ⋅ (A v C)
9. (A v B) ⋅ C and A v (B ⋅ C) 
10.  ~(A v B) and ~A v B


2.10  Tautologies, contradictions and contingent statements

Can you think of a statement that could never be false?  How about a statement that could never be true?  It is harder than you think, unless you know how to utilize the truth functional operators to construct a tautology or a contradiction.  A tautology is a statement that is true in virtue of its form.  Thus, we don’t even have to know what the statement means to know that it is true.  In contrast, a contradiction is a statement that is false in virtue of its form.  Finally, a contingent statement is a statement whose truth depends on the way the world actually is.  Thus, it is a statement that could be either true or false—it just depends on what the facts actually are.  In contrast, there is an important sense in which the truth of a tautology or the falsity of a contradiction doesn’t depend on how the world is.  As philosophers would say, tautologies are true in every possible world, whereas contradictions are false in every possible world.  Consider a statement like:

	Matt is either 40 years old or not 40 years old.

That statement is a tautology, and it has a particular form, which can be represented symbolically like this:

	p v ~p

In contrast, consider a statement like:

	Matt is both 40 years old and not 40 years old.

That statement is a contradiction, and it has a particular form, which can be represented symbolically like this:

	p ⋅ ~p

Finally, consider a statement like:

	Matt is either 39 years old or 40 years old

That statement is a contingent statement.  It doesn’t have to be true (as tautologies do) or false (as contradictions do).  Instead, its truth depends on the way the world is.  Suppose that Matt is 39 years old.  In that case, the statement is true.  But suppose he is 37 years old.  In that case, the statement is false (since he is neither 39 or 40).  We can use truth tables to determine whether a statement is a tautology, contradiction or contingent statement.  In a tautology, the truth table will be such that every row of the truth table under the main operator will be true.  In a contradiction, the truth table will be such that every row of the truth table under the main operator will be false.  And contingent statements will be such that there is mixture of true and false under the main operator of the statement.  

The following two truth tables are examples of tautologies and contradictions, respectively.

	A
	B
	(A ⊃ B) v A

	T
	T
	               T      T

	T
	F
	               F      T

	F
	T
	               T      T

	F
	F
	               T      T




	A
	B
	(A v B) ⋅ (~A ⋅ ~B)

	T
	T
	         T     F   F    F   F 

	T
	F
	         T     F   F    F   T

	F
	T
	         T     F   T    F   F

	F
	F
	         F     F   T    F   T



Notice that in the second truth table, I had to do quite a lot of work before I could figure out what the truth values of the main operator were.  I had to first determine the left conjunct (A v B) and then the right conjunct (~A ⋅ ~B), but in order to figure out the truth values of the right conjunct (which is itself a conjunct), I had to determine the negations of A and B.  Constructing truth tables can sometimes be a chore, but once you understand what you are doing (and why), it certainly isn’t very difficult.

Exercise 15: Construct a truth table to determine whether the following statements are tautologies, contradictions or contingent statements.

1. [bookmark: _GoBack]A ⊃ (A ⋅ B)
2. (A ⋅ B) ⊃ (~A ⊃ ~B)
3. (A ⋅ ~A) ⊃ B
4. (A ⊃ A) ⊃ (B ⋅ ~B)
5. (A ⋅ B) ⊃ (A v B)
6. (A v B) ⊃ (A ⋅ B) 
7. (~A ⊃ ~B) ⊃ (~B ⊃ ~A)
8. (A ⊃ B) ⊃ (~B ⊃ ~A)
9. (B v ~B) ⊃ A
10. (A v B) v ~A


2.11  Proofs and the 8 valid forms of inference

Although truth tables are our only formal method of deciding whether an argument is valid or invalid in propositional logic, there is another formal method of proving that an argument is valid: the method of proof.  Although you cannot construct a proof to show that an argument is invalid, you can construct proofs to show that an argument is valid.  The reason proofs are helpful, is that they allow us to show that certain arguments are valid much more efficiently than do truth tables.  For example, consider the following argument:

1. (R v S) ⊃ (T ⊃ K)
2. ~K
3. R v S	/∴ ~T

(Note: in this section I will be writing the conclusion of the argument to the right of the last premise—in this case premise 3.  As before, the conclusion we are trying to derive is denoted by the “therefore” sign, “∴”.)  We could attempt to prove this argument is valid with a truth table, but the truth table would be 16 rows long because there are four different atomic propositions that occur in this argument, R, S, T, and K.  If there were 5 or 6 different atomic propositions, the truth table would be 32 or 64 lines long!  However, as we will soon see, we could also prove this argument is valid with only two additional lines.  That seems a much more efficient way of establishing that this argument is valid.  We will do this a little later—after we have introduced the 8 valid forms of inference that you will need in order to do proofs.  Each line of the proof will be justified by citing one of these rules, with the last line of the proof being the conclusion that we are trying to ultimately establish.  I will introduce the 8 valid forms of inference in groups, starting with the rules that utilize the horseshoe and negation.

The first of the 8 forms of inference is “modus ponens” which is Latin for “way that affirms.”  Modus ponens has the following form:

1. p ⊃ q
2. p
3. ∴ q

What this form says, in words, is that if we have asserted a conditional statement (p ⊃ q) and we have also asserted the antecedent of that conditional statement (p), then we are entitled to infer the consequent of that conditional statement (q).  For example, if I asserted the conditional, “if it is raining, then the ground is wet” and I also asserted “it is raining” (the antecedent of that conditional) then I (or anyone else, for that matter) am entitled to assert the consequent of the conditional, “the ground is wet.”  

As with any valid forms of inference in this section, we can prove that modus ponens is valid by constructing a truth table.  As you see from the truth table below, this argument form passes the truth table test of validity (since there is no row of the truth table on which the premises are all true and yet the conclusion is false).  


	p
	q
	p ⊃ q
	p
	q

	T
	T
	T
	T
	T

	T
	F
	F
	T
	F

	F
	T
	T
	F
	T

	F
	F
	T
	F
	F




Thus, any argument that has this same form is valid.  For example, the following argument also has this same form (modus ponens):

1. (A ⋅ B) ⊃ C
2. (A ⋅ B)
3. ∴ C

In this argument we can assert C according to the rule, modus ponens.  This is so even though the antecedent of the conditional is itself complex (i.e., it is a conjunction).  That doesn’t matter.  The first premise is still a conditional statement (since the horseshoe is the main operator) and the second premise is the antecedent of that conditional statement.  The rule modus ponens says that if we have that much, we are entitled to infer the consequent of the conditional.    

We can actually use modus ponens in the first argument of this section:

1. (R v S) ⊃ (T ⊃ K)
2. ~K
3. R v S	/∴ ~T
4. T ⊃ K	Modus ponens, lines 1, 3

What I have done here is I have written the valid form of inference (or rule) that justifies the line I am deriving, as well as the lines to which that rule applies, to the right of the new line of the proof that I am deriving.  Here I have derived “T ⊃ K” from lines 1 and 3 of the argument by modus ponens.  Notice that line 1 is a conditional statement and line 3 is the antecedent of that conditional statement.  This proof isn’t finished yet, since we have not yet derived the conclusion we are trying to derive, namely, “~T.”  We need a different rule to derive that, which we will introduce next.

The next form of inference is called “modus tollens,” which is Latin for “the way that denies.” Modus tollens has the following form:

1. p ⊃ q
2. ~q
3. ∴ ~p

What this form says, in words, is that if we have asserted a conditional statement (p ⊃ q) and we have also asserted the negated consequent of that conditional (~q), then we are entitled to infer the negated antecedent of that conditional statement (~p).  For example, if I asserted the conditional, “if it is raining, then the ground is wet” and I also asserted “the ground is not wet” (the negated consequent of that conditional) then I am entitled to assert the negated antecedent of the conditional, “it is not raining.”  It is important to see that any argument that has this same form is a valid argument.  For example, the following argument is also an argument with this same form:

1. C ⊃ (E v F)
2. ~(E v F)
3. ∴ ~C

In this argument we can assert ~C according to the rule, modus tollens.  This is so even though the consequent of the conditional is itself complex (i.e., it is a disjunction).  That doesn’t matter.  The first premise is still a conditional statement (since the horseshoe is the main operator) and the second premise is the negated consequent of that conditional statement.  The rule modus tollens says that if we have that much, we are entitled to infer the negated antecedent of the conditional.

We can use modus tollens to complete the proof we started above:

1. (R v S) ⊃ (T ⊃ K)
2. ~K
3. R v S	/∴ ~T
4. T ⊃ K	Modus ponens, lines 1, 3
5. ~T		Modus tollens, lines 2, 4

Notice that the last line of the proof is the conclusion that we are supposed to derive and that each statement that I have derived (i.e., lines 4 and 5) has a rule to the right.  That rule cited is the rule that justifies the statement that is being derived and the lines cited are the previous lines of the proof where we can see that the rule applies.  This is what is called a proof.  A proof is a series of statements, starting with the premises and ending with the conclusion, where each additional statement after the premises is derived from some previous line(s) of the proof using one of the valid forms of inference.  We will practice this some more in the exercise at the end of this section.

The next form of inference is called “hypothetical syllogism.”  This is what ancient philosophers called “the chain argument” and it should be obvious why in a moment.  Here is the form of the rule:

1. p ⊃ q
2. q ⊃ r
3. ∴ p ⊃ r

As you can see, the conclusion of this argument links p and r together in a conditional statement.  We could continue adding conditionals such as “r ⊃ s” and “s ⊃ t” and the inferences would be just as valid.  And if we lined them all up as I have below, you can see why ancient philosophers referred to this valid argument form as a “chain argument”:

			p ⊃ q
			       q ⊃ r
				   r ⊃ s
				         s ⊃ t
				    ∴ p ⊃ t

Notice how the consequent of each preceding conditional statement links up with the antecedent of the next conditional statement in such a way as to create a chain.  The chain could be as long as we liked, but the rule that we will cite in our proofs only connects two different conditional statements together.  As before, it is important to realize that any argument with this same form is a valid argument.  For example,

1. (A v B) ⊃ ~D
2. ~D ⊃ C
3. ∴ (A v B) ⊃ C

Notice that the consequent of the first premise and the antecedent of the second premise are exactly the same term, “~D”.  That is what allows us to “link” the antecedent of the first premise and the consequent of the second premise together in a “chain” to infer the conclusion.  Being able to recognize the forms of these inferences is an important skill that you will have to become proficient at in order to do proofs.  

The next four forms of inference we will introduce utilize conjunction, disjunction and negation in different ways.  We will start with the rule called “simplification,” which has the following form:

1. p ⋅ q
2. ∴ p

What this rule says, in words, is that if we have asserted a conjunction then we are entitled to infer either one of the conjuncts.  This is the rule that I introduced in the first section of this chapter.  It is a pretty “obvious” rule—so obvious, in fact, that we might even wonder why we have to state it.  However, every form of inference that we will introduce in this section should be obvious—that is the point of calling them basic forms of inference.  They are some of the simplest forms of inference, whose validity should be transparently obvious.  The idea of a proof is that although the inference being made in the argument is not obvious, we can break that inference down in steps, each of which is obvious.  Thus, the obvious inferences ultimately justify the non-obvious inference being made in the argument.  Those obvious inferences thus function as rules that we use to justify each step of the proof.  Simplification is a prime example of one of the more obvious rules.  

As before, it is important to realize that any inference that has the same form as simplification is a valid inference.  For example,

1. (A v B) ⋅ ~(C ⋅ D)
2. ∴ (A v B)

is a valid inference because it has the same form as simplification.  That is, line 1 is  a conjunction (since the dot is the main operator of the sentence) and line 2 is inferring one of the conjuncts of that conjunction in line 1.  (Just think of the “A v B” as the “p” and the “~(C ⋅ D)” as the “q”.)

The next rule we will introduce is called “conjunction” and is like the reverse of simplification.  (Don’t confuse the rule called conjunction with the type of complex proposition called a conjunction.)  Conjunction has the following form:

1. p
2. q
3. ∴ p ⋅ q

What this rule says, in words, is that if you have asserted two different propositions, then you are entitled to assert the conjunction of those two propositions.  As before, it is important to realize that any inference that has the same form as conjunction is a valid inference.  For example,

1. A ⊃ B
2. C v D
3. ∴ (A ⊃ B) ⋅ (C v D)

is a valid inference because it has the same form as conjunction.  We are simply conjoining two propositions together; it doesn’t matter whether those propositions are atomic or complex.  In this case, of course, the propositions we are conjoining together are complex, but as long as those propositions have already been asserted as premises in the argument (or derived by some other valid form of inference), we can conjoin them together into a conjunction.

The next form of inference we will introduce is called “disjunctive syllogism” and it has the following form:

1. p v q
2. ~p
3. ∴ q

In words, this rule states that if we have asserted a disjunction and we have asserted the negation of one of the disjuncts, then we are entitled to assert the other disjunct.  Once you think about it, this inference should be pretty obvious.  If we are taking for granted the truth of the premises—that either p or q is true; and that p is not true—then is has to follow that q is true in order for the original disjunction to be true.  (Remember that we must assume the premises are true when evaluating whether an argument is valid.)  If I assert that it is true that either Bob or Linda stole the diamond, and I assert that Bob did not steal the diamond, then it has to follow that Linda did.  That is a disjunctive syllogism.  As before, any argument that has this same form is a valid argument.  For example,

1. ~A v (B ⋅ C)
2. ~~A
3. ∴ B ⋅ C

is a valid inference because it has the same form as disjunctive syllogism.  The first premise is a disjunction (since the wedge is the main operator), the second premise is simply the negation of the left disjunct, “~A”, and the conclusion is the right disjunct of the original disjunction.  It may help you to see the form of the argument if you treat “~A” as the p and “B ⋅ C” as the q.  Also notice that the second premise contains a double negation.  Your English teacher may tell you never to use double negatives, but as far as logic is concerned, there is absolutely nothing wrong with a double negation.  In this case, our left disjunct in premise 1 is itself a negation, while premise 2 is simply a negation of that left disjunct.

The next rule we’ll introduce is called “addition.”  It is not quite as “obvious” a rule as the ones we’ve introduced above.  However, once you understand the conditions under which a disjunction is true, then it should be obvious why this form of inference is valid.  Addition has the following form:

1. p
2. ∴ p v q

What this rule says, in words, is that that if we have asserted some proposition, p, then we are entitled to assert the disjunction of that proposition p and any other proposition q we wish.  Here’s the simple justification of the rule.  If we know that p is true, and a disjunction is true if at least one of the disjuncts is true, then we know that the disjunction p v q is true even if we don’t know whether q is true or false.  Why?  Because it doesn’t matter whether q is true or false, since we already know that p is true.  The hardest thing to understand about this rule is why we would ever want to use it.  The best answer I can give you for that right now is that it can help us out when doing proofs.[footnoteRef:3]   [3:  A better answer is that we need this rule in order to make this set of rules that I am presenting a sound a complete set of rules.  That is, without it there would be arguments that are valid but that we aren’t able to show are valid using this set of rules.  In more advanced areas of logic, such as metalogic, logicians attempt to prove things about a particular system of logic, such as proving that the system is sound and complete.] 


As before, is it important to realize that any argument that has this same form, is a valid argument.  For example,

1. A v B
2. ∴ (A v B) v (~C v D)

is a valid inference because it has the same form as addition.  The first premise asserts a statement (which in this case is complex—a disjunction) and the conclusion is a disjunction of that statement and some other statement.  In this case, that other statement is itself complex (a disjunction).  But an argument or inference can have the same form, regardless of whether the components of those sentences are atomic or complex.  That is the important lesson that I have been trying to drill in in this section.  

The final of our 8 valid forms of inference is called “constructive dilemma” and is the most complicated of them all.  It may be most helpful to introduce it using an example.  Suppose I reasoned thus:

The killer is either in the attic or the basement.  If the killer is in the attic then he is above me.  If the killer is in the basement then his is below me.  Therefore, the killer is either _________________ or _________________.

Can you fill in the blanks with the phrases that would make this argument valid?  I’m guessing that you can.  It should be pretty obvious.  The conclusion of the argument is the following:

The killer is either above me or below me.  

That this argument is valid should be obvious (can you imagine a scenario where all the premises are true and yet the conclusion is false?).  What might not be as obvious is the form that this argument has.  However, you should be able to identify that form if you utilize the tools that you have learned so far.  The first premise is a disjunction.  The second premise is a conditional statement whose antecedent is the left disjunct of the disjunction in the first premise.  And the third premise is a conditional statement whose antecedent is the right disjunct of the disjunction in the first premise.  The conclusion is the disjunction of the consequents of the conditionals in premises 2 and 3.  Here is this form of inference using symbols:

1. p v q
2. p ⊃ r
3. q ⊃ s
4. ∴ r v s

We have now introduced each of the 8 forms of inference.  In the next section I will walk you through some basic proofs that utilize these 8 rules.

Exercise 16:  Fill in the blanks with the valid form of inference that is being used and the lines the inference follows from.  Note: the conclusion is written to the right of the last premise, following the “/∴“ symbols.

Example 1:

1. M ⊃ ~N
2. M
3. H ⊃ N		/∴ ~H
4. ~N	Modus ponens, 1, 2
5. ~H	Modus tollens, 3, 4

Example 2:
1. A v B
2. C ⊃ D
3. A ⊃ C
4. ~D		/∴  B
5. A ⊃ D		Hypothetical syllogism, 3, 2
6. ~A		Modus tollens, 5, 4
7. B		Disjunctive syllogism, 1, 6


# 1
1. A ⋅ C	/∴ (A v E) ⋅ (C v D)
2. A	_________________
3. C	_________________
4. A v E	_________________
5. C v D	_________________
6. (A v E) ⋅ (C v D) ______________

# 2
1. A ⊃ (B ⊃ D)
2. ~D
3. D v A		/∴ ~B
4. A	_________________
5. B ⊃ D	_________________
6. ~B	_________________

# 3
1. A ⊃ ~B
2. A v C
3. ~~B ⋅ D	/∴ C
4. ~~B	_________________
5. ~A	_________________
6. C	_________________

#4
1. A ⊃ B
2. A ⋅ ~D
3. B ⊃ C	     /∴ C ⋅ ~D
4. A	_________________
5. A ⊃ C	_________________
6. C	_________________
7. ~D	_________________
8. C ⋅ ~D  _________________

#5
1. C
2. A ⊃ B
3. C ⊃ D
4. D ⊃ E		/∴ E v B
5. C ⊃ E	_________________
6. C v A	_________________
7. E v B	_________________

#6
1. (A v M) ⊃ R
2. (L ⊃ R) ⋅ ~R
3. ~(C ⋅ D) v (A v M)     /∴ ~(C ⋅ D)
4. ~R		_______________
5. ~(A v M)	_______________
6. ~(C ⋅ D)           _______________

#7
1. (H ⋅ K) ⊃ L
2. ~R ⋅ K
3. K ⊃ (H v R)	/∴ L
4. K	_________________
5. H v R	_________________
6. ~R	_________________
7. H	_________________
8. H ⋅ K	_________________
9. L	_________________

#8
1. C ⊃ B
2. ~D ⋅ ~B
3. (A ⊃ (B ⊃ C)) v D            
4. A v C		/∴ B ⊃ C
5. ~D     _________________
6. A ⊃ (B ⊃ C) _____________
7. ~B       _________________
8. ~C       __________________
9. A        __________________
10. B ⊃ C  __________________
11. ~B      __________________
12.  (B ⊃ C) v B  __________________


13. 



2.12  How to construct proofs

You can think of constructing proofs as a game.  The goal of the game is to derive the conclusion from the given premises using only the 8 valid rules of inference that we have introduced.  Not every proof requires you to use every rule, of course.  But you may use any of the rules—as along as your use of the rule is correct.  Like most games, people can be better or worse at the “game” of constructing proofs.  Better players will be able to a) make fewer mistakes, b) construct the proofs more quickly, and c) construct the proofs more efficiently.  In order to construct proofs, it is imperative that you internalize the 8 valid forms of inference introduced in the previous section.  You will be citing these forms of inference as rules that will justify each new line of your proof that you add.  By “internalize” I mean that you have memorized them so well that you can see those forms manifest in various sentences almost without even thinking about it.  If you internalize the rules in this way, constructing proofs will be a pleasant diversion, rather than a frustrating activity.  In addition to internalizing the 8 valid forms of inference, there are a couple of different strategies that can help when you’re stuck and can’t figure out what to do next.  The first is the strategy of working backwards.  When we work backwards in a proof, we ask ourselves what rule we can use to derive the sentence(s) we need to derive.  Here is an example:

1. R ⋅ S
2. T		/∴ (T v L) ⋅ (R ⋅ S)

The conclusion, which is to the right of the second premise and follows the “/∴” symbol, is a conjunction (since the dot is the main operator).  If we are trying to “work backwards,” the relevant question to ask is: What rule can we use to derive a conjunction?  If you know the rules, you should know the answer to that question.  There is only one rule that allows us to derive (infer) a sentence that is a conjunction.  That rule is called “conjunction.”  The form of the rule conjunction say that in order to derive a conjunction, we need to have each conjunct on a separate line.  So, what are the two conjuncts that we would need in order to derive the conjunction that is the conclusion (i.e., “(T v L) ⋅ (R ⋅ S)”).  We would need both “T v L” on a line and “R ⋅ S” on a separate line.  But look at premise 1—we already have “R ⋅ S” on its own line!  So the only other thing we need to derive is the sentence “T v L”.  Once we have that on a separate line, then we can use the rule conjunction to conjoin those two sentences to get the conclusion!  So the next question we have to ask is: How can I derive the sentence “T v L”?  Again, if we are working backwards, the relevant question to ask here is: What rule allows me to derive a disjunction?  There are only two: constructive dilemma and addition.  However, we know that we won’t be using constructive dilemma since none of the premises are conditional statements, and constructive dilemma requires conditional statements as premises.  That leaves addition.  Addition allows us to disjoin any statement we like to an existing statement.  Since we have “T” as the second premise, the rule addition allows us to disjoin “L” to that statement.  The first new line of the proof should thus look like this:

3. T v L	Addition 2

What I have done is number a new line of the proof (continuing the numbering from the premises) and then have written the rule that justifies that new line as well as the line(s) from which that line was derived via that rule.  In this case, since addition is a rule that allows you to derive a sentence directly from just one line, I have cited only one line.  The next step of the proof should be clear since we have already talked through it above.  All we have to do now is go directly to the conclusion, since the conclusion is a conjunction and we now have (on separate lines of the proof) each conjunct.  Thus, the final line of this (quite simple) proof should look like this:

4. (T v L) ⋅ (R ⋅ S)	Conjunction  1, 3

Again, all I’ve done is the write the new line of the proof (continuing the numbering from the previous line) and then have written the rule that justifies that new line as well as the line(s) from which that line was derived via that rule.  In this case, the rule conjunction requires that we cite two lines (i.e., each conjunct that we are conjoining).  So, I have to find the lines that contained “T v L” and “R ⋅ S” and cite those lines.  It does not matter the order in which you cite the lines as along as you have cited the correct lines (e.g., I could have equally well have written, “Conjunction 3, 1” as the justification).  Thus the complete proof should look like this:

1. R ⋅ S
2. T		/∴ (T v L) ⋅ (R ⋅ S)
3. T v L		Addition 2
4. (T v L) ⋅ (R ⋅ S)	Conjunction 1, 3

That’s it.  That is all there is to constructing a proof.  The last line of the proof is the conclusion to be derived: check.  Each line of the proof follows by the rule and the line(s) cited: check.  Since both of those requirements check out, our proof is complete and correct.

I have just walked you through a simple proof using the strategy of working backwards.  This strategy works well as long as the conclusion we are trying to derive is complex—that is, if it contains truth functional connectives.  However, sometimes our conclusion will simply be an atomic statement.  In that case, we will not as easily be able to utilize the strategy of working backwards.  But there is another strategy that we can utilize: the strategy of working forward.  To utilize the strategy of working forward, we simply ask ourselves what rules we can apply to the existing premises to derive something, even if it isn’t the conclusion we are ultimately trying to derive.  As a part of this strategy, we should typically break apart a conjunction whenever we have one as a premise of our argument.  Doing this can help to see where to go next.  (If you’ve ever played Scrabble, then you can think of this as rearranging your Scrabble tiles in order to see what words you can build.)  Here is an example of a proof where we should utilize the strategy of working forward:

1. A ⋅ B
2. B ⊃ C	/∴ C

Notice that since the conclusion is atomic, we cannot utilize the strategy of working backwards.  Instead, we should try working forward.  As part of this strategy, we should break apart conjunctions by using the rule “simplification.”  That will be the first step of our proof:

1. A ⋅ B
2. B ⊃ C	/∴ C
3. A		Simplification 1
4. B		Simplification 1

The first two lines of the proof is just breaking down the conjunction in line 1, where line 3 is just the left conjunct and line 4 is just the right conjunct.  Both lines 3 and 4 follow by the same rule and the same line, in this case.  The next question we ask when utilizing the strategy of working forward is: what lines of the proof we can apply some rule to in order to derive something or other?  Look at the conditional on line 2.  We haven’t used that yet.  So what rule can we apply that that line?  You should be thinking of the rules that utilize conditional statements (modus ponens, modus tollens, and hypothetical syllogism).  We can rule out hypothetical syllogism since here we have only one conditional and the rule hypothetical syllogism requires that we have two.  If you look at line 4 (that we have just derived) you should see that it is the antecedent of the conditional statement on line 2.  And you should know that that means we can apply the rule, modus ponens.  So our next step is to do that:

1. A ⋅ B
2. B ⊃ C	/∴ C
3. A		Simplification 1
4. B		Simplification 1
5. C		Modus ponens 2, 4

But now also notice that the line that we have just derived is in fact the conclusion of the argument.  So our proof is finished.

Before the close of this section, let’s work through a bit longer proof.  Remember: any proof, long or short, is the same process and utilizes the same strategy.  It is just a matter a keeping track of where you are in the proof and what you’re ultimately trying to derive.  So here is a bit more complex proof:

1. (~A v B) ⊃ L
2. ~B
3. A ⊃ B
4. L ⊃ (~R v D)
5. ~D ⋅ (R v F)	/∴ (L v G) ⋅ ~R

The conclusion is a conjunction of “L v G” and “~R” so we know that if we can get each of those sentences on a separate line, then we can use the rule conjunction to derive the conclusion.  That will be our long range goal here (and this is utilizing the strategy of working backwards).  However, we cannot see how to directly get there from here at this point, so we will begin utilizing the strategy of working forward.  The first thing we’ll do is simplify the conjunction on line 5:

6. ~D		Simplification 5
7. R v F	Simplification 5

Look at lines 2 and 6: they are both negated atomic propositions.  Another part of the strategy of working forward is to utilize either atomic or negated atomic sentences.  We should look for how we can utilize modus tollens or disjunctive syllogism by plugging these negated atomic sentences into other lines of the proof.  Look at lines 2 and 3.  You should see a modus tollens there.  That will be our next step:

8. ~A		Modus tollens 2, 3

The next step of this proof can be a bit tricky.  There are a couple different ways we could go.  One would be to utilize the rule “addition.”  Can you see how we might helpfully utilize this rule using either line 6 or 8?  If not, I’ll give you a hint: what if we were to use addition on line 8 to derive “~A v B”?  Can you see how we could then plug that into line 1?  In fact, “~A v B” is the antecedent of the conditional in line 1, so we could then use modus ponens to derive the consequent.  Thus, let’s try starting with the addition on line 8:

9. ~A v B	Addition 8

Next, we’ll utilize line 9 and line 1 with modus ponens to derive the next line:

10.  L		Modus ponens 1, 9

Notice at this point that what we have derived on line 10 is “L” and what we earlier said we needed as one of the conjuncts was “L v G”.  You should recognize that we have a rule that will allow us to infer directly from “L” to “L v G”.  That rule is addition (again).  That will be the next line of the proof:

11.  L v G	Addition 10

At this point, our strategy should be to try to derive the other conjunct, “~R”.  Notice that “~R” is contained within the sentence on line 4, but it is embedded.  How can we “get it free”?  Start by noticing that the ~R is a part of a disjunction, which is itself a consequent of a conditional statement.  Also notice that we have already derived the antecedent of that conditional statement, which means that we can use modus ponens to derive the consequent:

12.  ~R v D	Modus ponens 4, 10

The penultimate step is to use a disjunctive syllogism to derive “~R”.  

13.  ~R	Disjunctive syllogism 6, 12

The final step is simply to conjoin lines 11 and 13 to get the conclusion:

14.  (L v G) ⋅ ~R	Conjunction 11, 13

Thus, here is the completed proof:

1. (~A v B) ⊃ L
2. ~B
3. A ⊃ B
4. L ⊃ (~R v D)
5. ~D ⋅ (R v F)	/∴ (L v G) ⋅ ~R
6. ~D		Simplification 5
7. R v F	Simplification 5
8. ~A		Modus tollens 2, 3
9. ~A v B	Addition 8
10.  L		Modus ponens 1, 9
11.  L v G	Addition 10
12.  ~R v D	Modus ponens 4, 10
13.  ~R	Disjunctive syllogism 
14. (L v G) ⋅ ~R   Conjunction 11, 13

Constructing proofs is a skill that takes practice.  The following exercises will give you some practice with constructing proofs.

Exercise 17:  Construct proofs for the following valid arguments.  The first fifteen proofs can be complete in three or less additional lines.  The next five proofs will be a bit longer.  It is important to note that there is always more than one way to construct a proof.  If your proof differs from the answer key, that doesn’t mean it is wrong.



#1
1. A ⋅ B
2. (A v C) ⊃ D	/∴ A ⋅ D

#2
1. A
2. B	/∴ (A v C) ⋅ B

#3
1. D ⊃ E
2. D ⋅ F		/∴ E

#4
1. J ⊃ K
2. J	/∴ K v L

#5
1. A v B
2. ~A ⋅ ~C	/∴ B

#6
1. A ⊃ B
2. ~B ⋅ ~C	/∴ ~A

#7
1. D ⊃ E
2. (E ⊃ F) ⋅ (F⊃  D)  /∴D ⊃ F

#8
1. (T ⊃ U) ⋅ (T ⊃ V)
2. T		/∴ U v V

#9
1. (E ⋅ F) v (G ⊃ H)
2. I ⊃ G
3. ~(E ⋅ F)	/∴ I ⊃ H


#10
1. M ⊃ N
2. O ⊃ P
3. N ⊃ P
4. (N ⊃ P) ⊃ (M v O)  /∴N v P

#11
1. A v (B ⊃ A)
2. ~A ⋅ C		/∴ ~B

#12
1. (D v E) ⊃ (F ⋅ G)
2. D		/∴ F

#13
1. T ⊃ U
2. V v ~U
3. ~V ⋅ ~W	/∴ ~T

#14
1. (A v B) ⊃ ~C
2. C v D
3. A		/∴ D

#15
1. L v (M ⊃ N)
2. ~L ⊃ (N ⊃ O)
3. ~L		/∴ M ⊃ O

#16
1. A ⊃ B
2. A v (C ⋅ D)
3. ~B ⋅ ~E	/∴ C

#17
1. (F ⊃ G) ⋅ (H ⊃ I)
2. J ⊃ K
3. (F v J) ⋅ (H v L)   /∴ G v K

#18
1. (E v F) ⊃ (G ⋅ H)
2. (G v H) ⊃ I
3. E		/∴ I

#19
1. (N v O) ⊃ P
2. (P v Q) ⊃ R
3. Q v N
4. ~Q      /∴ R

#20
1. J ⊃ K
2. K v L
3. (L ⋅ ~J) ⊃ (M ⋅ ~J)
4. ~K		/∴ M



	

2.13  Short review of propositional logic

So far in this chapter we have learned a formal method for determining whether a certain class of arguments (i.e., those that utilize only truth functional operators) are valid or invalid.  That method is the truth table test of validity.  We have also learned a formal method for proving arguments are valid or invalid (the method of proof).  The other important skill we have learned in this chapter so far is translating sentences into propositional logic.  Thus, there are three different skills that you should know how to do:


1. Translate sentences from English into propositional logic
2. Construct truth tables in order to determine whether an argument is valid or invalid
3. Construct proofs to prove an argument is valid

It is important to reiterate that truth tables are the only formal method that allow us to determine whether an argument is valid or invalid; proofs can only show that an argument is valid, but not that it is invalid.  You might think that you can use proofs to show that an argument is invalid—for example, if you are unable to construct a proof for an argument, that means that the argument is invalid.  However, this doesn’t follow.  There could be many reasons why you are unable to construct a proof, including that you just aren’t skilled enough to construct proofs.  But the fact that you aren’t skilled enough to find a proof for an argument wouldn’t mean that the argument is invalid, it would just mean that you weren’t skilled enough to show that it is valid!  So we cannot use one’s inability to construct a proof for an argument to establish that the argument is invalid.  Again, only the truth table test of validity can establish that an argument is invalid.

The study of propositional logic has given us a way of understanding what “formal” means in the phrase, “formal logic.”  We can see this clearly with the truth table test of validity.  After we translate an argument into propositional logic using constants and the truth functional connectives, we don’t need to know what the constants mean in order to know whether the argument is valid or invalid.  We simply have to fill out the truth table in the mechanical way we have learned and then apply the truth table test of validity (which is also a mechanical procedure).  Thus, once an argument has been translated into propositional logic, determining whether an argument passes the truth table test of validity is something a computer could easily do.  The translation from English to symbolic format is not as easy for a computer to do because successfully doing so depends on understanding the nuances of English.  Although today there are computer programs that are pretty good at doing this, it has taken many years to get there.  In contrast, any simple computer program from half a century ago could easily construct and evaluate a truth table using the truth table test of validity because this doesn’t take any understanding—it is simply a mechanical procedure.  There are many different programs, many of which are readily available on the web, that allow you to construct and evaluate truth tables.  

In contrast, the informal test of validity (from chapter 1) requires that we understand the meaning of the statements involved in the argument in order for us to be try to imagine the premises as true and the conclusion as false.  Since this test requires the use of our imagination, it clearly also requires that we understand the meanings of the statements in the argument.  The truth table test of validity does not require any of this.  Since the truth table method does not require understanding of the meaning of the statements involved in the argument, but only an awareness of their logical form, we refer to it as a formal logic.  Formal logic is a kind of logic that looks only at the form, rather than the content (meaning) of the statements.  We can easily see this by constructing an argument where the atomic propositions use silly, made-up words, such as those from Lewis Carroll’s “Jabberwocky”:

1. If toves are slithy, then the borogoves are mimsy
2. Borogoves are not mimsy
3. Therefore, toves are not slithy

If we translate “toves are slithy” at “T” and “borogoves are mimsy” as “B” then the form of this argument is clearly modus tollens, which is one of the 8 valid forms of inference:

1. T ⊃ B
2. ~B
3. ∴ ~T

We can thus see that this argument is valid even though we have no idea what “toves” or “borogoves” are or what “slithy” and “mimsy” mean.  Thus, propositional logic, which includes the truth table test of validity, is a kind of formal logic, whereas the informal test of validity is not.  There are other kinds of formal logic besides propositional logic.  In the next section I will introduce another kind of formal logic: categorical logic.








2.14  Categorical logic

Consider the following argument:

1. All humans are mortal
2. All mortal things die
3. Therefore, all humans die

If we were to apply the informal test of validity (from chapter 1) to this argument, we would see that the argument is valid because it is not possible to imagine a scenario in which the premises are true and yet the conclusion is false.  However, look at what happens if we try to translate it using propositional logic.  Since “all humans are mortal” is atomic, (i.e., it does not contain any truth functional operators) we can translate it using the constant “H.”  The second premise, “all mortal things die,” is also atomic, so we can translate it using the constant, “M.”  Finally, the conclusion, is yet another atomic statement, “All humans die,” which we can translate “D.”  But then the form of our argument is just this:

1. H
2. M
3. ∴ D

The problem is that this argument is not valid, which we can clearly see by constructing a truth table.  Since there are three different atomic components, our truth table will be 8 rows.  (In the following truth table, since the reference columns would just be identical to the premise and conclusion columns, I just collapsed the two in order to make the truth table less redundant.)

	H
	M
	D

	T
	T
	T

	T
	T
	F

	T
	F
	T

	T
	F
	F

	F
	T
	T

	F
	T
	F

	F
	F
	T

	F
	F
	F



Notice the second row of the truth table (which I have bolded).  The premises are both true on that row and yet the conclusion is false.  That means that this argument does not pass the truth table test of validity and so is invalid.  But clearly this argument is valid.  If it is true that all humans are mortal and that all mortal things die, then it must be true that all humans die.  What this argument reveals is one of the limitations of propositional logic.  There are some arguments that are intuitively valid (such as this one) but that cannot be shown to be valid using the methods of propositional logic.  This shows that we need other kinds of formal logic to be able to capture a wider range of logically valid inferences.  Categorical logic allows us to supplement propositional logic with a formal method that will handle arguments like this that propositional logic is unable to handle.

Categorical logic is the logic that deals with the logical relationship between categorical statements.  A categorical statement is simply a statement about a category or type of thing.  For example, the first premise of the above argument is a statement about the categories of humans and things that are mortal.  The second premise is a statement about the categories of things that are mortal and things that die.  Finally, the conclusion is a statement about humans and things that die.  Although you may think that this argument as a similar form as a hypothetical syllogism, it is distinct from a hypothetical syllogism because the premises are not composed of two different atomic propositions.  Rather, each premise contains only one atomic proposition.      

In categorical logic, the logical terms (analogous to the truth functional operators of propositional logic) are the terms “all” and “some.”  In contrast with propositional logic, in categorical logic we will use capital letters to stand for categories of things in the world, rather than for atomic propositions.  Thus, we can represent the statement:

	All humans are mortal

as

	All H are M

where “H” stands for the category of “humans” and “M” stands for the category, “things that are mortal.”  Notice that the categories are nouns or noun phrases.  Thus, instead of saying that the category is “mortal” I said the category is “things that are mortal.”  It is important to recognize the difference between how the capital letters are being used in categorical logic and how they were used in propositional logic.  In categorical logic, the capital letters stand for noun phrases that denote categories of things in the world—for example, “cars” or “things that are man-made” or “mammals” or “things that are red.”  

In categorical logic, we will use what are called Venn diagrams to represent the logical relationships between the different kinds of categorical statements.  A Venn diagram is simply a way of graphically representing the logical relationship between two different categorical statements.  Below is a Venn diagram that represents the statement, “all humans are mortal.”  
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Here is how to understand this Venn.  There are two circles that represent the two categories, “humans” and “things that are mortal.”  These two categories are overlapping so that the intersection of those two categories (i.e. the place where the two circles overlap) represents things that are both human and mortal.  Any shaded portions of the Venn diagram (by “shaded” I will mean “blacked out”) represent that there is nothing in that area of the category.  So the above Venn says that there is nothing in the category “humans” that is not also in the category “things that are mortal.”  The above Venn also allows that there are things that are in the category “things that are mortal” but that aren’t in the category “humans” (which is as it should be since, of course, dogs are mortal and yet not human).  So the reason the category “things that are mortal” is left unshaded is that in saying “all humans are mortal” I leave open the possibility that there are things that are not human and yet mortal.

As noted above, the statement, “all humans are mortal,” has a particular form:

All H are M.  

This is one of the four categorical forms.  The way we will represent these categorical forms generally are with an “S” (which stands for “subject term”) and a “P” (which stands for “predicate term”).  Thus, the categorical statement, “all humans are mortal,” has the following categorical form:

	All S are P

The way we interpret statements of this form are as follows: everything in the category S is also in the category P.  This statement form is what we call a “universal affirmative,” since it is a universal statement that does not contain a negation.  There are three other categorical statement forms that you will have to become familiar with in order to do categorical logic.  Here they are (with the name of the type of statement in parentheses to the right:

	No S are P  		(universal negative)

	Some S are P  	(particular affirmative)

	Some S are not P  	(particular negative)

Here are three examples of statements that have these three forms (respectively):

No reptiles give live birth

Some birds are taller than President Obama

Some birds don’t fly

Notice that although these three statements don’t have exactly the same form as the statement forms above, they can be translated into those same forms.  All we have to do is figure out the noun phrase that describes each category that the statement is referring to.  Let’s start with “no reptiles give live birth.”  This categorical statement refers to two different categories: the category of “reptiles” and the category of “things that give live birth.”  Notice, again, that I added “things that…” to the predicate of the sentence (“give live birth”) because “give live birth” is not a description of a category.  Rather, the way of describing the category is with the noun phrase, “things that give live birth.”  Using these two category descriptions, we can translate this sentence to have the same form as its categorical form.  All we have to do is substitute in the name of the subject category (i.e., the “S” term) and the description of the predicate category (i.e., the “P” term).  Doing that will yield the following sentence:

	No reptiles are things that give live birth

Although this sentence sounds strange in English, it has the same form as the categorical form, no S are P, and this translation allows us to clearly see that it does and thus to see what the two categories are.  Here is what the Venn diagram for this statement looks like:
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This Venn diagram represents that there is nothing in the intersection of the two categories, “reptiles” and “things that give live birth.”  If you think about it, this is exactly what our original statement was saying: there isn’t anything that is both a reptile and gives live birth.

Let’s look at the next statement, “some birds are taller than President Obama.”  This is a statement not about all birds, but about some birds.  What are the two categories? One category is clearly “birds.”  The other category is “things that are taller than President Obama.”  That may sound like a strange category, but it is perfectly legitimate category.  It includes things like adult ostriches, large grizzly bears standing on their hind legs, giraffes, the Flatiron Building, a school bus, etc.  Here is how we’d translate this sentence using our two categories:

	Some birds are things that are taller than President Obama.

Again, although this sentence sounds strange in English, it has the same form as the categorical form, some S are P, and it allows us to clearly see what the two categories are.  Below is the Venn diagram for this statement:
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By convention, an asterisk on the Venn diagram means that there is at least one thing in that category.  By putting the asterisk in the intersection of the two categories, we are saying that there is at least one thing that is a bird and is taller than President Obama, which is exactly what our original sentence was saying.

Finally, let’s consider the statement, “some birds don’t fly.”  How would we translate this sentence to have the “some S are not P” form?  The first step is to get the descriptions of the two categories using either nouns or noun phrases.  The “S” term is easy; it is just “birds” again.  But we have to be a bit more careful with the “P” term, since its predicate contains a negation.  We do not want any of our categories to contain a negation.  Rather, the negation is contained in the form (i.e., the “not”).  The category cannot be simply “fly” or even “flies” since neither of these are a category of thing.  We have to use our trick of turning the predicate into a noun phrase, i.e., “things that fly.”  Given these two category descriptions, we can then translate the sentence to have the categorical form, some S are not P:

	Some birds are not things that fly

Again, although the English sounds clunky here, it has the same form as the categorical form, some S are not P, and it allows us to clearly see what the two categories are.  Below is the Venn diagram for this statement:
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By convention, an asterisk on the Venn diagram means that there is at least one thing in that category.  By putting the asterisk inside the “birds” category, but outside the “things that fly” category, we are representing that at least one thing that is a bird isn’t a thing that flies.  This is exactly what our original sentence was saying.

Translating categorical statements into their categorical form can by tricky.  In fact, it is probably one of the trickier things you’ll do in formal logic.  There is no simple way of doing it other than asking yourself whether your translation accurately captures the meaning of the original English sentence.  Here is an example of a tricky categorical statement:

	Nobody loves me but my mother.

This is a categorical statement, but which of the four categorical forms does it have?  The first step is to ask what two categories are being referred to in this sentence.  Here are the two categories: “things that love me” and “things that are my mother.”  Notice that the category couldn’t just be “my mother” since that isn’t a category; it’s a particular thing.  Again, this sounds strange, but it is important to remember that we are describing categories of things.  The next question is: what is this sentence saying is the relationship between these two categories?  Hint: it has to be one of the four categorical forms (since any categorical statement can be translated into one of these four forms).  The sentence is saying that the only things that love me are things that are my mother.  The categorical form of the statement is the “all S are P” form.   Thus, the sentence, translated into the correct categorical form would be:

	All things that love me are things that are my mother.

We will end this section with one last example.  Consider the following categorical statement:

	The baboon is a fearsome beast.

Which of the four categorical forms does this statement have?  Although the article “the,” which often denotes particulars, may lead one to think that this is a particular affirmative form (some S are P), it is actually a universal affirmative form (all S are P).  This English sentence has the sense of “baboons are fearsome beasts” rather than of “that (particular) baboon is a fearsome beast.”  English is strange, which is what makes translation one of the trickiest parts of logic.  So, the two categories are: “baboons” and “fearsome beasts.”  Notice that since “fearsome beasts” is already a noun phrase, we don’t have to add “things that are…” to it.  Using the two category descriptions, the translation into the “all S are P” categorical form is thus:

	All baboons are fearsome beasts.

In this section we have learned what categorical statement are, how to translate categorical statements into one of the four categorical forms, and how to construct Venn diagrams for each of the four categorical forms.  The following exercises will give you some practice with the translation part; in subsequent sections we will learn how to use Venn diagrams as a formal method of evaluating a certain class of arguments.

Exercise 18:  Translate each of the following sentences into one of the four categorical forms (universal affirmative, universal negative, particular affirmative, particular negative).  Make sure that the descriptions of the two categories are nouns or noun phrases (rather than adjectives or verbs).

1. 
2. Real men wear pink.
3. Dinosaurs are not birds.
4. Birds evolved from dinosaurs.
5. Some mammals are not predators.
6. Some predators are not mammals.
7. Not all who wander are lost.
8. All presidents are not women.
9. Boxers aren’t rich.
10. If someone is sleeping then they aren’t conscious.
11.  If someone is conscious then they aren’t sleeping.
12.  All’s well that ends well.
13.  My friends are the only ones that care.
14.  Someone loves you.
15.  Jesus loves everyone.
16.  Jesus loves the little children.
17.  Some people don’t love Jesus.
18.  Only pedestrians may use the Appalachian Trail.
19.  Only citizens can be president.
20.  Anyone who is a Hindu believes in God.
21.  Anything that is cheap is no good.
22.  Some expensive things are no good.
23.  Not all mammals have legs.
24.  There are couples without children.
25.  There are no people who hate chocolate.
26.  There are people who hate cats.
27.  Nothing that is sharp is safe.
28.  No poodle could run faster than a cheetah.
29.  No professional runner is slow.
30.  Baboons aren’t friendly.
31.  Pigs will eat anything.



2.15  The Venn test of validity for immediate categorical inferences

In the last section, we introduced the four categorical forms.  Those forms are below.
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We can use Venn diagrams in order to determine whether certain kinds of arguments are valid or invalid.  One such type of argument is what we will call “immediate categorical inferences.”  An immediate categorical inference is simply an argument with one premise and one conclusion.  For example:

1. Some mammals are amphibious.
2. Therefore, some amphibious things are mammals.

If we construct a Venn diagram for the premise and another Venn diagram for the conclusion, we will see that the Venn diagrams are identical to each other.
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That is, the information that is represented in the Venn for the premise, is exactly the same information represented in the Venn for the conclusion.  This argument passes the Venn test of validity because the conclusion Venn contains no additional information that is not already contained in the premise Venn.  Thus, this argument is valid.  Let’s now turn to an example of an invalid argument.

1. All cars are vehicles.
2. Therefore, all vehicles are cars. 

Here are the Venns for the premise and the conclusion, respectively:
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In this case, the Venns are clearly not the same.  More importantly, we can see that the conclusion Venn (on the right) contains additional information that is not already contained in the premise Venn.  In particular, the conclusion Venn allows that a) there could be things in the “car” category that aren’t in the “vehicle” category and b) that there cannot be anything in the “vehicle” category that isn’t also in the “car” category.  That is not information that is contained in the premise Venn, which says that a) there isn’t anything in the category “car” that isn’t also in the category “vehicle” and b) that there could be things in the category “vehicle” that aren’t in the category “car.”  Thus, this argument does not pass the Venn test of validity since there is information contained in the conclusion Venn that is not already contained in the premise Venn.  Thus, this argument is invalid. 

The Venn test of validity is a formal method, because we can apply it even if we only know the form of the categorical statements, but don’t know what the categories referred to in the statements represent.  For example, we can simply use “S” and “P” for the categories—and we clearly don’t know what these represent.  For example:

1. All S are P
2. No P are S
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The conclusion (on the right) contains information that is not contained in the premise (on the left).  In particular, the conclusion Venn explicitly rules out that there is anything that is both in the category “S” and in the category “P” while the premise Venn allows that this is the case (but does not require it).  Thus, we can say that this argument fails the Venn test of validity and thus is invalid.  We know this even though we have no idea what the categories “S” and “P” are.  
This is the mark of a formal method of evaluation.  

Exercise 19:  Apply the Venn test of validity in order to determine whether the following categorical inferences are valid or invalid.

1. All S are P; therefore, all P are S
2. Some S are P; therefore, some P are S
3. Some S are P; therefore, some P are not S
4. Some S are P; therefore, all P are S
5. No S are P; therefore, no P are S
6. No P are S; therefore, some S are P
7. Some S are not P; therefore, some P are not S
8. All S are P; therefore some P are not S


2.16  Universal statements and existential commitment

Consider the following inference:

1. All S are P
2. Therefore, some S are P

Is this inference valid or invalid?  As it turns out, this is an issue on which there has been much philosophical debate.  On the one hand, it seems that many times when we make a universal statement, such as “all dogs are mammals,” we imply that there are dogs—i.e., that dogs exist.  Thus, if we assert that all dogs are mammals, that implies that some dogs are mammals (just as if I say that everyone at the party was drunk, this implies that at least someone at the party was drunk).  In general, it may seem that “all” implies “some” (since some is encompassed by all).  This reasoning would support the idea that the above inference is valid: universal statements imply certain particular statements.  Thus, statements of the form “all S are P” would imply that statements of the form “some S are P.”  This is what is called “existential commitment.”  

In contrast to the reasoning just laid out, modern logicians reject existential commitment; they do not take statements of the form “all S are P” to imply that there exists anything in the “S” category.  Why would they think this?  One way of understanding why universal statements are interpreted in this way in modern logic is by considering laws such as the following:

	All trespassers will be fined.

	All bodies that are not acted on by any force are at rest.

	All passenger cars that can travel 770 mph are supersonic. 

The “S” terms in the above categorical statements are “trespassers,” “bodies that are not acted on by any force,” and “passenger cars that can travel 770 mph.”  Now ask yourself: do these statements commit us to the existence of either trespassers or bodies not acted on by any force?  No, they don’t.  Just because we assert the rule that all trespassers will be fined, we do not necessarily commit ourselves to the claim that there are trespassers.  Rather, what we are saying is anything that is a trespasser will be fined.  But this can be true, even if there are no trespassers!  Likewise, when Isaac Newton asserted that all bodies that are not acted on by any force remain at rest, he was not committing himself to the existence of “bodies not acted on by any force.”  Rather, he was saying that anything that is a body not acted on by any force will remain in motion.  But this can be true, even if there are no bodies not acted on by any force!  (And there aren’t any such bodies, since even things that are stationary like your house or your car parked in the driveway are still acted on by forces such as gravity and friction.)  Finally, in asserting that all passenger cars that can travel 770 mph are supersonic, we are not committing ourselves to the existence of any such car.  Rather, we are only saying that were there any such car, it would be supersonic (i.e., it would travel faster than the speed of sound).

For various reasons (that we will not discuss here), modern logic treats a universal categorical statement as a kind of conditional statement.  Thus, a statement like,

	All passenger cars that can travel 770 mph are supersonic

is interpreted as follows:

For any x, if x is a passenger car that can travel 770 mph then x is supersonic.

But since conditional statements do not assert either the antecedent or the consequent, the universal statement is not asserting the existence of passenger cars that can travel 770 mph.  Rather, it is just saying that if there were passenger cars that could travel that fast, then those things would be supersonic.  

We will follow modern logic in denying existential commitment.  That is, we will not interpret universal affirmative statements of the form “All S are P” as implying particular affirmative statements of the form “some S are P.”  Likewise, we will not interpret universal negative statements of the form “no S are P” as implying particular negative statements of the form “some S are not P.”  Thus, when constructing Venn diagrams, you can always rely on the fact that if there is no particular represented in the premise Venn (i.e., there is no asterisk), then if the conclusion Venn represents a particular (i.e., there is an asterisk), the argument will be invalid.  This is so since no universal statement logically implies the existence of any particular.  Conversely, if the premise Venn does represent a particular statement (i.e., it contains an asterisk), then if the conclusion doesn’t contain particular statement (i.e., doesn’t contain an asterisk), the argument will be invalid.

Exercise 20:  Construct Venn diagrams to determine which of the following immediate categorical inferences are valid and which are invalid.  Make sure you remember that we are not interpreting universal statements to imply existential commitment.

1. All S are P; therefore, some S are P
2. No S are P; therefore, some S are not P
3. All S are P; therefore, some P are S
4. No S are P; therefore, some P are not S


2.17  Venn validity for categorical syllogisms

A categorical syllogism is just an argument with two premises and a conclusion, where every statement of the argument is a categorical statement.  As we have seen, there are four different types (forms) of categorical statement:

	All S are P  		(universal affirmative)
	No S are P  		(universal negative)
	Some S are P  	(particular affirmative)
	Some S are not P  	(particular negative)

Thus, any categorical syllogism’s premises and conclusion will be some mixture of these different types of statement.  The argument I gave at the beginning of section 2.13 was a categorical syllogism.  Here, again, is that argument:

1. All humans are mortal
2. All mortal things die
3. Therefore, all humans die

As we can see now that we have learned the four categorical forms, each one of the statements in this syllogism is a “universal affirmative” statement of the form, “all S are P.”  Let’s first translate each statement of this argument to have the “all S are P” form:

1. All humans are things that are mortal.
2. All things that are mortal are things that die.
3. All humans are things that die.

In determining the validity of categorical syllogisms, we must construct a three category Venn diagram for the premises and a two category Venn diagram for the conclusion.  Here is what the three category Venn looks like for the premises:
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We need a three category Venn for the premises since the two premises refer to three different categories.  The way you should construct the Venn is with the circle that represents the “S” category of the conclusion (i.e., the category “humans”) on left, the circle that represents the “P” category of the conclusion (i.e., the category “things that die”) on the right, and the remaining category (“things that are mortal”) in the middle, as I have done above.  Constructing your three category Venn in this way will allow you to easily determine whether the argument is valid.

The next thing we must do is represent the information from the first two premises in our three category Venn.  We’ll start with the first premise, which says “all humans are things that are mortal.”  That means that we must shade out anything that is in the “human” category, but that isn’t in the “things that are mortal” category, like this:
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The next thing we have to do is fill in the information for the second premise, all things that are mortal are things that die.  That means that there isn’t anything that is in the category “things that are mortal” but that isn’t in the “things that die” category.  So we must shade out all of the parts of the “things that are mortal” category the lie outside the “things that die” category, like this:
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The next thing we have to do is construct a two category Venn for the conclusion and then compare the information represented by the three category Venn for the premises to the two category Venn for the conclusion.
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The conclusion represents the information that there is nothing in the “humans” category that isn’t also in the “things that die” category.  It also allows that there are things that die, but that aren’t humans.  The premise Venn also includes this same information, since every part of the “humans” category that is outside the “things that die” category is shaded out.  Thus, this argument passes the Venn test of validity and is thus valid since there is no information represented in the conclusion Venn that is not also represented in the premise Venn.  Notice that it doesn’t matter that the premise Venn contains more information than the conclusion Venn.  That is to be expected, since the premise Venn is representing a whole other category that the conclusion Venn isn’t.  This is perfectly allowable.  What isn’t allowable (and thus would make an argument fail the Venn test of validity) is if the conclusion Venn contained information that wasn’t already contained in the premise Venn.  However, since this argument does not do that, it is valid.

Let’s try another one.

1. All pediatricians are doctors
2. All pediatricians like children
3. Therefore, all doctors like children.

The first step is to identify the three categories referred to in this categorical syllogism.  They are:

	Pediatricians
	Doctors
	Things that like children

The next step is to fill out the three category Venn for the premises and the two category Venn for the conclusion.  
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This argument does not pass the Venn test of validity because there is information contained in the conclusion Venn that is not contained in the premise Venn.  In particular, the conclusion says that there is nothing in the “doctors” category that is outside the “things that like children category.”  However, the premises do not represent that information, since the section of the category “doctors” that lies outside of the intersection of the category “things that like children” is unshaded, thus representing that there can be things there.

Sometimes when filling in particular statements on a three category for the premises, you will encounter a problem that requires another convention in order to accurately represent the information in the Venn.  Here is an example where this happens:

1. Some mammals are bears
2. Some two-legged creatures are mammals
3. Therefore, some two-legged creatures are bears

There are three categories referred to in this categorical syllogism:

	Mammals
	Bears
	Two-legged creatures

As always, we will put the “S” term of the conclusion on the left of our three category Venn, the “P” term on the right, and the remaining term in the middle, as follows:
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Now we need to represent the first premise, which means we need to put an asterisk in the intersection of the “mammals” and “bears” categories.  However, here we have a choice to make.  Since the intersection of the “bears” and “mammals” categories contains a section that is outside the “two-legged creatures” category and a section that is inside the “two-legged creatures” category, we must choose between representing the particular as part of the “two-legged creatures” category or not. 
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But neither of these can be right, since the first premise says nothing at all about whether the thing that is both a bear and a mammal is two-legged!  Thus, in order to accurately represent the information contained in this premise, we must adopt a new convention.  That convention says that when we encounter a situation where we must represent a particular on our three category Venn, but the premise says nothing about a particular category, then we must put the asterisk on the line of that category as I have done below.  When we do this, it will represent that the particular is neither inside the category or outside the category.
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We must do this same thing for the second premise, since we encounter the same problem there.  Thus, when putting the asterisk in the intersection of the “two-legged creatures” and “mammals” categories, we cannot put the asterisk either inside or outside the “bears” category.  Instead, we must put the asterisk on the line of the “bears” category.  Thus, using this convention, we can represent the premise Venn and conclusion Venn as follows:
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Keeping in mind the convention we have just introduced, we can see that this argument fails the Venn test of validity and is thus invalid.  The reason is that the conclusion Venn clearly represents an individual in the intersection of the “two-legged creatures” and “bears” categories, whereas the premise Venn contains no such information.  Thus, the conclusion Venn contains information that is not contained in the premise Venn, which means the argument is invalid.

We will close this section with one last example that will illustrate an important strategy.  The strategy is that we should always map universal statements before mapping particular statements.  Here is a categorical syllogism that illustrates this point.  This time I am going to switch to just using the capital letters S, P, and M to represent the categories.  Recall that we can do this because the Venn test of validity is a formal evaluation method where we don’t have to actually understand what the categories represent in the world in order to determine whether the argument is valid.

1. Some S are M
2. All M are P
3. ∴ Some S are P

If we think about mapping the first premise on our three category Venn, it seems that we will have to utilize the convention we just introduced, since the first premise is a particular categorical statement that mentions only the categories S and M and nothing about the category P:
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However, as it turns out, we don’t have to use this convention because when we map premise 2, which is a universal statement, this clears up where the asterisk has to go:
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We can see that once we’ve mapped the universal statement onto the premise Venn (on the left), there is only one section where the asterisk can go that is in the intersection of S and M.  The reason is that once we have mapped the “all M are P” premise, and have thus shaded out any portion of the M category that is outside the P category, we know that that asterisk cannot belong inside the M category, given that it has to be inside the P category.  When we apply the Venn test of validity to the above argument, we can see that it is valid since the conclusion Venn does not contain any information that isn’t already contained in the premise Venn.  The conclusion simply says that there is some thing that is both S and P, and that information is already represented in our premise Venn.  Thus, the argument is valid.  The point of strategy here is that we should always map our universal statements onto our three category Venns before mapping our particular statements.  The reason is that the universal can determine how we map our particular statements (but not vice versa).


Exercise 21: Use the Venn test of validity to determine whether the following syllogisms are valid or invalid.

1. 
2.      All M is P
All M is S
∴ All S is P

2.  	All P is M
	All M is S
	∴ All S is P


3.	All M is P
	Some M is S
	∴ Some S is P

4.	All P is M
	Some M is S
	∴ Some S is P


5.	All P is M
	Some S is M
	∴ Some S is P

6. 	All P is M
	Some S is not M
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