
Professional Web Accessibility Auditing Made Easy

Professional Web Accessibility Auditing Made Easy

Essential Skills for Web Developers, Content Creators, and Designers

DIGITAL EDUCATION STRATEGIES, THE CHANG SCHOOL

GREG GAY

Professional Web Accessibility Auditing Made Easy by Digital Education Strategies, The Chang School is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License, except where otherwise noted.

Contents

Preface ix

Introduction

Introduction 3

Objectives and Activities 5

The Information Here Will Be Helpful To... 6

Choosing Your Learning Path 7

Why Learn About Web Accessibility Auditing? 9

Activity: Start Your Web Accessibility Auditing Toolkit 14

1. Aspects of Web Accessibility Auditing

Aspects of Web Accessibility Auditing 17

Types of Disabilities and Barriers 19

Common Sense 25

Things to Watch For 26

Automated Web Accessibility Testing 33

Manual Web Accessibility Testing 35

Introduction to User Testing 37

Introduction to Code Examination and Repair 38

ChromeVox Screen Reader 40

Activity: Experience Web Content From a Different Perspective 44

Self-Test 1 45

2. Introduction to WCAG

Introduction to WCAG 49

Objectives and Activities 52

The Evolution of Web Accessibility 53

WCAG Principles 55

WCAG Accessibility Conformance 59

10 Key Guidelines 63

WCAG Web Auditing Review Template 64

Activity: WCAG Scavenger Hunt 66

Self-Test 2 67

3. Automated Testing Tools

Automated Testing Tools 71

Objectives and Activities 72

Limitations of Automated Web Accessibility Checkers 73

AChecker Web Accessibility Checker 74

WAVE Accessibility Evaluation Tool 78

Other Notable Accessibility Review Tools 79

Colour Contrast Evaluation 80

Readability Testing 84

Markup Validation 86

Activity: Compare AChecker and WAVE 89

Self-Test 3 90

4. Manual Testing Strategies

Introduction to Manual Testing Strategies 95

Objectives and Activities 96

Tab Key Navigation Test 97

“Select All” Test 99

Code Examination and Repair 102

Media Review 104

Other Tools for Manual Testing 107

Activity: Chrome Tools 108

Self-Test 4 109

5. Assistive Technology Testing

Assistive Technology Testing 113

Objectives and Activities 115

Screen Reader Testing 116

Summary of Available Screen Readers 117

Other Assistive Technologies 121

Activity: Using ChromeVox to Find Accessibility Features 127

Self-Test 5 128

6. User Testing

User Testing 133

Objectives and Activities 134

Involving User Testers 135

Recruiting User Testers 138

Developing a Test Protocol 139

Recording Observations 142

Activity: Finding User Testers 143

Self-Test 6 144

7. Web Accessibility Reporting

Web Accessibility Reporting 149

Objectives and Activities 150

Choosing an Audit 151

Informal Reviews 152

Template Audit and Audit Walk-Through 154

General Audits 162

Detailed Audits 164

Follow-Up Audits 166

Tour of an Audit Report 167

Activity: Lulu's Lollipops Informal Review 171

Self-Test 7 172

8. Other Accessibility Standards

Other Accessibility Standards 177

Objectives and Activities 178

WCAG Relation to International Web Accessibility Guidelines 179

ATAG: Authoring Tool Accessibility Guidelines 185

UAAG: User Agent Accessibility Guidelines 187

ISO/IEC-24751 (AccessForAll) 189

WAI-ARIA: Web Accessibility Initiative - Accessible Rich Internet Applications 192

Activity: Web Accessibility in Your Part of the World 199

Self-Test 8 200

Content Recap 203

Acknowledgements 205

Answer Key 206

Web Accessibility Auditing Toolkit 222

Iframe Embedding Content from this Resource 223

Preface

This resource was created by the Digital Education Strategies (DES) team at the G. Raymond Chang School for Continuing

Education at Ryerson University to address a need for professional development training for web developers on web

accessibility. The topic is of critical importance for technical programs offered by post-secondary institutions, though

rarely covered in formal education.

This resource is an adaptation of the massive open online course (MOOC) of the same name, developed by The Chang

School, and offered through the Canvas Network in 2016/2017.

The Digital Education Strategies team was responsible for all aspects of this resource’s production, including

instructional design, web development, video production, and editing.

Special thanks go to DES team member Greg Gay for authoring the content. Greg has been in the web accessibility field

since the mid-1990s as an auditor and as the lead on many research and development projects that push the boundaries of

accessibility in information technology. He has been involved in e-learning just as long with more than 20 online courses

to his name.

Funding for this project was provided by the Government of Ontario’s Enabling Change Program. An advisory

committee made up of experts from the disability and accessibility community in the Toronto area provided feedback and

support in conceptualizing the offering.

Although the context for this resource is Ontario, Canada, and it includes some discussion of the Accessibility for

Ontarians with Disabilities Act (AODA), it will be relevant to a global audience. Accessibility as it applies to the AODA

applies in other jurisdictions through the Web Content Accessibility Guidelines (WCAG 2.0), which the AODA web

accessibility requirements are based upon.

Though aimed at educating web developers about accessibility, the learning materials here will be of interest to anyone

who wants to understand how barriers on the Web affect access for people with disabilities. What you’ll learn here goes

well beyond accommodating people with disabilities. Like many other so-called adaptations (e.g., curb cuts discussed in

Unit 1), efforts that go into making the Web more accessible to people with disabilities make it more usable for everyone.

Likewise, the business arguments for accessibility are about more than complying with the law or accommodating

people with disabilities. They are about reaching the broadest audience possible. People with disabilities have family and

friends who together will go elsewhere if they are unable to effectively access a website. When you consider that people

with disabilities make up nearly 15% of the population (WHO), including family, relatives, and acquaintances, that number

can reach 50% of the population. Most businesses can’t afford to serve only 50% of their potential customer base.

Web accessibility, and digital accessibility in general, just makes good sense, no matter how you look at it.

What are people saying?

• Hearing people from Australia, the U.K., Europe speak about accessibility and provide their insights was interesting; it

wasn’t just about people from Canada and particularly Ontario because this is where we happen to be.

• This course was much more than I expected. It was very comprehensive, provided a lot of relevant examples, and also

helped build some tools to continue to reinforce what I learned.

• The course is extremely thorough and covers a lot of information. It’s well organized and it shows dedication and

professionalism from the team that put it together. It’s a real jewel. I could not have found a better place to get up to

date on these topics. Moreover I’ve been collecting throughout the lessons a lot of documentation and tools that will be

very useful in the future. It’s an eye-opener.

Preface | ix

INTRODUCTION

Introduction | 1

Introduction

Learning Outcomes

Welcome to Professional Web Accessibility Auditing Made Easy! By the time you finish reviewing the materials here, and

trying the activities, you should be able to:

• Create an accessibility auditing toolkit

• Identify and apply key accessibility guidelines in WCAG 2.0/2.1

• Retrieve WCAG supporting documents when needed

• Employ web-based automated accessibility checkers

• Measure and/or assess web design elements such as colour contrast, readability, and more, using a range of

publicly available test tools

• Test for accessibility using assistive technologies such as the JAWS and ChromeVox screen readers

• Use a screen reader to navigate the Web

• Apply easy manual tests to quickly assess accessibility

• Select an appropriate type of web accessibility audit and corresponding reporting strategy aimed at the audience

being served

• Recognize relevant accessibility guidelines, standards, and specifications and integrate these into accessibility

review strategies based on international requirements

Required Technology

In order to practice what you’re learning as you follow along here, you will need to use the following software:

• Chrome web browser (and the ChromeVox screen reader, for which links and installation instructions will be

provided in unit 2)

• A word processing application (e.g., Microsoft Word, OpenOffice, or Google Docs)

• A PDF reader (e.g., Adobe Reader)

Beyond What You’ll Learn Here

For those who would like to go beyond what they’ve learned in the materials here, The Chang School has created a series

of resources on web accessibility for different audiences:

• Introduction to Web Accessibility (web ebook verison)

• Digital Accessibility as a Business Practice (web ebook version)

• Web Accessibility for Developers (web ebook version)

• Understanding Document Accessibility (web ebook version)

Introduction | 3

Disclaimer

The information presented here and any related materials referred to in the content are for instructional purposes

only and should not be construed as legal advice on any particular issue, including compliance with relevant laws. We

specifically disclaim any liability for any loss or damage any reader may suffer as a result of the information contained.

4 | Introduction

Objectives and Activities

Objectives

By the end of this unit, you should be able to:

• Identify the key strategies for using this learning resource.

Activities

• Begin to set up your Web Accessibility Auditing Toolkit

Objectives and Activities | 5

The Information Here Will Be Helpful To...

This is aimed at those who are responsible for implementing accessibility on an organization’s website. These people

tend to be web developers (sometimes referred to as webmasters) but may also include web content editors and web
designers who are comfortable using HTML, CSS, and to some degree, JavaScript.

Web Developers

Web developers should focus on understanding the technical content, but also be familiar with the general content.

That is, all of the information here will be relevant to you.

Everyone Else

If you are not a web developer, depending on your background and level of comfort with web technologies, you may

choose to skip over the technical parts, presented within the content in blue boxes and marked as Technical. Review the

Table of Contents for a full list of topics. You can focus your study on the general content, completing the activities and

setting up a Web Accessibility Auditing Toolkit, and, having made your way through all the reading and activities, come

away with a good understanding of the requirements for developing accessible web content.

6 | The Information Here Will Be Helpful To...

Choosing Your Learning Path

As we mentioned earlier, depending on your role in your company or organization, different parts of the material may be

more relevant to you than others. We’ve tried to identify the technical content in particular so you can pass over these

parts if they are less relevant to you or you are trying to budget your time. To help you navigate to the information most

relevant to your needs, we have colour-coded and labelled the technical content as follows. Content that does not appear

in coloured boxes is aimed at everyone.

Technical: Aimed more at web development staff, typically containing HTML code samples.

Lulu’s Lollipops Storyline

To support your understanding of the materials, the fictional story of an Ontario-based company, Lulu’s

Lollipops, has been weaved throughout the content to add a sense of realism. The story unfolds as Lulu investigates

the steps involved in improving the accessibility of the Lulu’s Lollipops website. In the story you will hear about

Lulu’s team members – people just like you who want to learn more about web accessibility. Imagine that Lulu’s

team have all downloaded this resource as a book. Lulu has a webmaster, who will closely follow the Technical
information that is shared. Lulu also has a number of Customer Service Representatives, who, as part of their role in

supporting clients, have a general interest in ensuring that the company and its website serve the needs of

everyone. Visit the current Lulu’s Lollipops Website to familiarize yourself with it. You will be conducting an

accessibility audit of the site in a later unit.

Your Web Accessibility Auditing Toolkit

Throughout the content, we’ve also identified elements that should be added to the Web Accessibility Auditing Toolkit

you will be assembling. These elements will include links to resource documents and online tools used during auditing

activities, as well as software or browser plugins that you may need to install. These will be identified in a green Toolkit

box like the following:

Toolkit: Provides useful tools and resources for your future reference.

Choosing Your Learning Path | 7

Key Points

Throughout you will see important or notable information highlighted and labelled in Key Point boxes like the one that

follows. These will include “must know” information, as well as less obvious considerations and interesting points.

Key Point: Must-know information and interesting points.

Try This

Try This boxes contain activities designed to get you thinking or give you firsthand experience with something you’ve just

read about.

Try This: Something to experience.

Readings and References

Readings and References: Links to various web resources for additional reading on the topics being discussed.

Try This: Skip ahead to the end of the materials here and read through the Content Recap for a high-level

summary of the topics covered.

8 | Choosing Your Learning Path

Why Learn About Web Accessibility Auditing?

Lulu’s Story Begins

Lulu’s Lollipops is a thriving business, with 52 employees, based out of Hamilton, Ontario, Canada. Lulu’s

business is primarily web-based and has been operating for ten years selling lollipops of various shapes, sizes,

colours, and flavours. A representative of a charitable organization has approached Lulu about placing a large

order for lollipops that would be part of an upcoming fundraising campaign. As part of the charity’s mandate, the

representative has asked about the accessibility of Lulu’s website to ensure that staff from different chapters of the

charity can easily place orders. Lulu realizes that she has never really considered the accessibility of her website and,

based on a recommendation from a friend, Lulu decides to enrol herself and a number of her team members in Web

Accessibility Auditing Made Easy.

As a business owner, Lulu understands that there are some provincial guidelines she should consider as she works

to accommodate the needs of her potential client (the charitable organization), but she still wonders why it makes

sense to modify the website that has already served her company so well for over 10 years. Lulu and her team need

to think about three important things: “curb cuts,” the business case, and the AODA. Read on to learn more about

these compelling factors related to investment in web accessibility. View the Lulu’s Lollipops website.

Curb Cuts

Think about “curb cuts,” a great example of what is often thought of as universal design. Curb cuts were originally added

to streets to accommodate those in wheelchairs so they could get from the road up onto a sidewalk and vice versa. But

curb cuts are helpful for many people — not just those in wheelchairs. A person pushing a baby stroller can now easily

get to the sidewalk. A person riding a bike can get more easily onto the sidewalk where the bike lockups are located. An

elderly person who may have difficulty stepping up on a curb or who may be using a walker now has a smooth gradient

and can walk onto the sidewalk rather than climb onto it. Curb cuts were designed to help those in wheelchairs but have

come to benefit many.

From a web accessibility perspective, most of the accessibility features you might add to a website will have that so-

called “curb cut effect.” For example, the text description one might include with an image to make the image’s meaning

accessible to a person who is blind also makes it possible for search engines to index the image and make it searchable. It

allows a person on a slow Internet connection to turn images off and still get the same information. Or, it allows a person

using a text-based browser, on a cell phone for instance, to access the same information as those using a typical visual

browser. Virtually every such feature that might be put in place in web content to accommodate people with disabilities

will improve access and usability for everyone else.

Key Point: Think of accommodations provided to improve web accessibility for people with disabilities as “curb

Why Learn About Web Accessibility Auditing? | 9

cuts.” They will very likely improve usability for everyone.

The Business Case for Web Accessibility

Karl Groves wrote an interesting series of articles in 2011 and 2012 that looked at the reality of business arguments for

web accessibility. He points out that any argument needs to answer affirmatively at least one of the following questions:

1. Will it make us money?

2. Will it save us money?

3. Will it reduce risk?

He outlines a range of potential arguments for accessibility:

• Improved search engine optimization: Customers will be able to find your site more easily because search engines

can index it more effectively.

• Improved usability: Customers will have a more satisfying experience and thus spend more on or return more often

to your site.

• Reduced website costs: Developing to standard reduces bugs and interoperability issues, reducing development

costs and problems integrating with other systems.

• People with disabilities have buying power: They won’t spend if they have difficulty accessing your site; they will go

to the competition that does place importance on accessibility.

• Reduced resource utilization: Building to standard reduces the use of resources.

• Support for low bandwidth: If your site takes too long to load, people will go elsewhere.

• Social responsibility: Customers will come if they see you doing good for the world and you think of people with

disabilities as full citizens.

• Support for aging populations: Aging populations also have money to spend and will come to your site over the less

accessible, less usable competition.

• Reduced legal risk: You may be sued if you prevent equal access for citizens/customers or discriminate against

people with disabilities.

What accessibility really boils down to is “quality of work,” as Groves states. So, in approaching web accessibility, one may

be better off not thinking so much in terms of reducing the risk of being sued or losing customers because your site takes

too long to load, but rather that the work you do is quality work and the website you present to your potential customers

is a quality website.

Video: The Business Case for Accessibility

10 | Why Learn About Web Accessibility Auditing?

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1152

Readings and References:
If you’d like to learn more about business cases, here are a few references:

• Developing a Web Accessibility Business Case for Your Organization (W3C)

• Chasing the Web Accessibility Business Case (Karl Groves, 2012) part 1

• Chasing the Web Accessibility Business Case (Karl Groves, 2012) part 2

• Chasing the Web Accessibility Business Case (Karl Groves, 2012) conclusion

• 2 Seconds as the New Threshold of Acceptability for eCommerce Web Page Response Times (Akamai, 2009)

• Releasing Constraints: The Impacts of Increased Accessibility on Ontario’s Economy (Summary)

• Releasing Constraints: Projecting the Economic Impacts of Increased Accessibility in Ontario (Full Report)

[PDF]

AODA Background

Video: AODA Background

Why Learn About Web Accessibility Auditing? | 11

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1152

For those in Ontario, Canada, we’ll provide occasional references to the Accessibility for Ontarians with Disabilities Act

(AODA). If you’re from outside Ontario, you might compare the AODA’s web accessibility requirements with those in your

local area. They will be similar in many cases, likely based on the W3C WCAG 2.0 Guidelines. The goal in Ontario is for

all obligated organizations to meet the Level AA accessibility requirements of WCAG 2.0 by 2021, which, ultimately, is the

goal of most international jurisdictions.

The AODA provided the motivation to create this resource, based on the MOOC course of the same name. All businesses

and organizations in Ontario with more than 50 employees (and all public sector organizations) are now required by law

to make their websites accessible to people with disabilities (currently at WCAG 2.0 Level A). Many businesses still don’t

know what needs to be done in order to comply with the new rules. This resource hopes to fill some of that need.

The AODA has its roots in the Ontario Human Rights Code, introduced in 1990. It essentially made it illegal to

discriminate based on disability (among other forms of discrimination). The development of the AODA began in earnest

in 1994 with the emergence of the Ontarians with Disabilities Act (ODA). Its aim was to legislate the removal and

prevention of barriers that inhibit people with disabilities from participating as full members of society, improving access

to employment, goods and services, and facilities. The act was secured as law in 2001.

With the election of a new government in 2003, the movement that brought us the ODA sought to strengthen the

legislation. The Accessibility Standards Advisory Council was established, and the AODA was passed as law in 2005, and

in July of 2011 the Integrated Accessibility Standards Regulation (IASR) brought together the five standards of the AODA,

covering Information and Communication, Employment, Transportation, and Design of Public Spaces, in addition to the

original Customer Service standard.

The AODA sets out to make Ontario fully accessible by 2025, with an incremental roll-out of accessibility requirements

12 | Why Learn About Web Accessibility Auditing?

over a period of 20 years. These requirements span a whole range of accessibility considerations — from physical spaces

to customer service, the Web, and much more.

Our focus here is on access to the Web. The timeline set out in the AODA requires government and large organizations

to remove all barriers in web content between 2012 and 2021. The timeline for these requirements is outlined in the table

below. Any new or significantly updated information posted to the Web must comply with the given level of accessibility

by the given date. This includes both Internet and intranet sites. Any content developed prior to January 1, 2012 is exempt.

Level A Level AA

Government January 1, 2012 (except live captions and audio description) January 1, 2016 (except live captions and audio
description), January 1, 2020 (including live captions
and audio description)

Designated
Organizations*

Beginning January 1, 2014, new websites and significantly
refreshed websites must meet Level A (except live captions
and audio description)

January 1, 2021 (except live captions and audio
description)

*Designated organizations means every municipality and every person or organization as outlined in the Public Service of Ontario
Act 2006 Reg. 146/10, or private companies or organizations with 50 or more employees, in Ontario.

For more about the AODA you can review the following references:

Readings and References:

• History of the Ontarians with Disabilities Act. (ODA) (David Lepofsky)

• Integrated Accessibility Standards Regulation

• Reg. 146/10: PUBLIC BODIES AND COMMISSION PUBLIC BODIES – DEFINITIONS

Why Learn About Web Accessibility Auditing? | 13

Activity: Start Your Web Accessibility Auditing
Toolkit

The Toolkit you will assemble will be made up of various tools and resources you can use when assessing web content.

It will include links to documents, tools, and examples you can refer to as needed while auditing.

For the first activity, create a folder in your browser’s bookmarks/favourites area called “Accessibility Toolkit.” You

will add the tools and resources introduced here to this folder.

Remember that suggestions for your Toolkit throughout the content will be highlighted in green and labelled “Toolkit.”

14 | Activity: Start Your Web Accessibility Auditing Toolkit

1. ASPECTS OF WEB ACCESSIBILITY AUDITING

1. Aspects of Web Accessibility Auditing | 15

Aspects of Web Accessibility Auditing

In this unit, in order to provide a foundation for your studies and activities, we identify and explain the key considerations

and aspects of web accessibility review work. This overview will include topics such as:

• Types of disabilities and common barriers encountered in web content

• The tools and testing strategies used in detailed web accessibility auditing

• Thinking beyond accessibility testing

• The W3C Web Content Accessibility Guidelines (WCAG 2.0)

We will look at numerous non-technical and technical aspects of web accessibility auditing. The following sections will

provide a foundation of understanding for the units that follow.

Watch the following video from the Government of Australia that summarizes web accessibility. Although the video is

from Australia, its ideas are applicable globally. Visit the YouTube site for the video to find the described transcript in full.

Video: Web Accessibility

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1166

© Department of Social Services, Australian Government.

Released under the terms of a Standard YouTube License. All rights reserved.

There are many ways to assess accessibility that are not technical in nature. Some of these will be introduced here and

Aspects of Web Accessibility Auditing | 17

expanded on in the units that follow. These strategies simply require some thought, reflection, and ultimately, common

sense.

18 | Aspects of Web Accessibility Auditing

Types of Disabilities and Barriers

Lulu is feeling very positive about the idea that her business, and the website of which she is so proud, could

soon be more accessible and easier for all of her customers to use. This brings her to the predictable question of

“Where do we begin?” Lulu should start by getting a firm grasp on “the big picture” in terms of what barriers people

might encounter on her website and why. From there she can begin to build practical knowledge that will support

her next steps. Take a look at the content that follows to better understand the foundation of information that Lulu

and her team will require. In order to understand what web accessibility auditing tests for and why, it is helpful to

have a basic understanding of a range of disabilities and their related barriers with respect to the consumption of

web content.

Not all people with disabilities encounter barriers on the Web, and those with different types of disabilities encounter
different types of barriers. For instance, if a person is in a wheelchair they may encounter no barriers at all in web

content. A person who is blind will experience different barriers than a person with limited vision. Different types of

disabilities and some of their commonly associated barriers are described here.

Watch the following video to see how students with disabilities experience the Internet.

Video: Experiences of a Student with Disabilities

Types of Disabilities and Barriers | 19

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1172

© Jared Smith. Released under the terms of a Standard YouTube License. All rights reserved.

In this video, David Berman talks about types of disabilities and their associated barriers.

Video: Web Accessibility Matters: Difficulties and Technologies: Avoiding Tradeoffs

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1172

© davidbermancom. Released under the terms of a Standard YouTube License. All rights reserved.

People Who Are Blind

People who are blind tend to face many barriers in web content, given the visual nature of the Web. They will often use a

screen reader to access their computer or device and may use a refreshable Braille display to convert text to Braille.

Common barriers for this group include:

• Visual content that has no text alternative

• Functional elements that cannot be controlled with a keyboard

20 | Types of Disabilities and Barriers

• Overly complex or excessive amounts of content

• Inability to navigate within a page of content

• Content that is not structured

• Inconsistent navigation

• Time limits (insufficient time to complete tasks)

• Unexpected actions (e.g., redirect when an element receives focus)

• Multimedia without audio description

For a quick look at how a person who is blind might use a screen reader like JAWS to navigate the Web, watch the following

video.

Video: Accessing the Web Using Screen Reading Software

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1172

© rscnescotland. Released under the terms of a Standard YouTube License. All rights reserved.

People with Low Vision

People with low vision are often able to see web content if it is magnified. They may use a screen magnification program

to increase the size and contrast of the content to make it more visible. They are less likely to use a screen reader than

Types of Disabilities and Barriers | 21

a person who is blind, though in some cases they will. People with low vision may rely on the magnification or text

customization features in their web browser, or they may install other magnification or text reading software.

Common barriers for this group include:

• Content sized with absolute measures that is not resizable

• Inconsistent navigation

• Images of text that degrade or pixelate when magnified

• Low contrast (inability to distinguish text from background)

• Time limits (insufficient time to complete tasks)

• Unexpected actions (e.g., redirect when an element receives focus)

See the following video for a description of some of the common barriers for people with low vision.

Video: Creating an Accessible Web

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1172

© Media Access Australia. Released under the terms of a Standard YouTube License. All rights reserved.

People Who Are Deaf or Hard of Hearing

Most people who are Deaf tend to face barriers where audio content is presented without text-based alternatives and

22 | Types of Disabilities and Barriers

encounter relatively few barriers on the Web otherwise. Those who are Deaf and blind will face many more barriers,

including those described for people who are blind. For those who communicate with American Sign Language (ASL)

or other sign languages, such as Langue des signes québécoise (LSQ), the written language of a website may produce

barriers similar to those faced when reading in a second language.

Common barriers for this group include:

• Audio without a transcript

• Multimedia without captions or transcript

• Lack of ASL interpretation (for ASL/Deaf community)

People with Mobility-Related Disabilities

Mobility-related disabilities are quite varied. As mentioned earlier, one could be limited to a wheelchair for getting around

and face no significant barriers in web content. Those who have limited use of their hands or who have fine motor

impairments that limit their ability to target elements in web content with a mouse pointer may not use a mouse at all.

Instead, they might rely on a keyboard or perhaps their voice, along with switches to control mouse clicks, to control

movement through web content.

Common barriers for this group include:

• Clickable areas that are too small

• Functional elements that cannot be controlled with a keyboard

• Time limits (insufficient time to complete tasks)

People with Learning or Cognitive Disabilities

Learning and cognitive-related disabilities can be as varied as mobility-related disabilities, perhaps more so. These

disabilities can range from a mild reading-related disability to very severe cognitive impairments that may result in

limited use of language and difficulty processing complex information. For most of the disabilities in this range, there are

some common barrier and others that only affect those with more severe cognitive disabilities.

Common barriers for this group include:

• Use of overly-complex/advanced language

• Inconsistent navigation

• Overly complex or excessive amounts of content

• Time limits (insufficient time to complete tasks)

• Unstructured content (no visible headings, sections, topics, etc.)

• Unexpected actions (e.g., redirect when an element receives focus)

More specific disability-related issues include:

• Reading: text justification (inconsistent spacing between words)

• Reading: images of text (not readable with a text reader)

• Visual: visual content with no text description

Types of Disabilities and Barriers | 23

• Math: images of math equations (not readable with a math reader)

Everyone

While we generally think of barriers in terms of access for people with disabilities, there are some barriers that impact

all types of users, though these are often thought of in terms of usability. Usability and accessibility go hand-in-hand.

Adding accessibility features improves usability for others. Many people, including those who do not consider themselves

to have a specific disability (such as those over the age of 50) may find themselves experiencing typical age-related loss

of sight, hearing, or cognitive ability. Those with varying levels of colour blindness may also fall into this group.

Some of these usability issues include:

• Link text that does not describe the destination or function of the link

• Overly complex content

• Inconsistent navigation

• Low contrast

• Unstructured content

To learn more about disabilities and associated barriers, read the following:

Readings and References: How People with Disabilities Use the Web

24 | Types of Disabilities and Barriers

Common Sense

Gaining awareness of the potential for barriers in web content takes many forms. Perhaps you read a book to educate

yourself. Maybe your workplace has sponsored training in this area. Or, you may know someone who experiences these

barriers firsthand and who has shared their frustrations or insights with you. In Lulu’s case, a prospective client drew her

attention to the issue. No matter how you gain your awareness, it is important that breaking down the barriers becomes

both common sense and common practice.

Key Point: Common sense may require personal experience before it becomes common sense. Seek out ways to

interact with assistive technology and those who use it.

If you’ve never used assistive technology yourself, or interacted with someone who does, take a moment for the video

below and visit his YouTube channel The Blind Film Critic for a humorous look at being blind.

Video: How a Blind Person Uses a Computer

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1194

© The Tommy Edison Experience. Released under the terms of a Standard YouTube License. All rights reserved.

Common Sense | 25

Things to Watch For

It is important for Lulu and her team to realize that the barriers that exist in their web content are not

necessarily unique and that one thing that simplifies the job of a web accessibility auditor is that there are a relatively

small number of issues that occur over and over again. Being aware of these common barriers means it is often

possible to quickly scan through content and identify most accessibility issues. Lulu and her webmaster should

become familiar with the following list of the top ten potential barriers to watch for, and you should too! It is by no

means a complete list, but represents the most common accessibility problems.

1. Images without a Text Description

Images without a text description will be inaccessible to those who are blind. Text descriptions are typically added

using the "alt" attribute with the HTML img element. Note that the length of alt text should be no longer than 125

characters. Screen readers will typically stop reading the text at that point. If a longer description is needed, there are

a variety of ways to describe the image further, either in the surrounding text, in a figure caption, or using the ARIA

attribute aria-describedby. ARIA will be discussed further in Unit 8. In each case alt would still be used to provide a brief

description and refer to the longer description elsewhere.

Technical: Using the alt attribute to refer to a longer description <img src="abelincoln.jpg" alt="Abraham
Lincoln at his desk, see description below" / >

26 | Things to Watch For

Source: Wikimedia Commons

In the image above, Abraham Lincoln is preparing the text for the Emancipation Proclamation. Several others are

seated around the desk, consulting with Lincoln on the document.

Images of text will also be inaccessible to blind users, and also potentially inaccessible to people with low vision, who

may attempt to magnify the image resulting in the text often degrading to the point that it becomes unreadable. People

with reading disabilities who use reading software may also have trouble with images of text as they cannot be read by

the software.

There are occasions where images are strictly decorative or contain no useful information. In such cases the alt

attribute should still be used, but its value left empty (i.e., alt=""). This forces a screen reader to ignore the image.

If an empty alt attribute is not included, screen readers will read the file name of the image, which can interfere with

comprehension of the surrounding information, or leave a screen reader user wondering if they are missing something in

the image.

Key Point: Be sure all images are adequately described using text.

2. Functional Elements That Only Work with a Mouse

People who are blind are not likely to use a mouse when operating a computer (though there are some that do). Most

rely exclusively on a keyboard to navigate through page features. Any element that only operates with a mouse will not

be accessible to blind users. People with limited mobility may rely on a keyboard. People with low vision may also rely on

keyboard access. “Power users” also tend to use a keyboard to navigate more than average users. Usability will be affected

for all of these people when keyboard access is missing.

Figure: Drag and Drop elements should be controlled by keyboard, or an equivalent alternate provided

Key Point: Be sure all functional elements operate with both a mouse and a keyboard.

3. Text That Looks Like a Heading, But Is Not

People who are blind and using a screen reader to navigate through web content will have a feature in the screen reader

to list the headings on a page, so they can potentially jump to any one of those headings and begin reading. The list

Things to Watch For | 27

of headings also provides a good overview of the content on the page, making it easier to find specific information.

When “heading-like” presentation of text is used (e.g., making the text bold and large), the structure provided by proper

headings will be missing, requiring these users to navigate through the entire page to discover its content. This greatly

increases the effort needed to move through web content. Always be sure proper HTML headings are used to represent

page sections instead of styled text.

Technical: Using proper headings:

Accessible:
<h1>The Last Chapter</h1>

Inaccessible:
<p style="font-size:22pt; font-weight:bold;">The Last Chapter</p>

Likewise, headings should not be used to style large bold text, where the text is not a heading or section title. This creates

confusion when listening to a heading list with a screen reader.

Key Point: Be sure all heading or section titles within web content are created using proper HTML heading

markup (h1, h2, etc.).

4. Links That Do Not Describe the Destination or Function

Like headings, screen readers can list all of the links on a page to gather a summary of the resources that lead from it. If

the link list is made up of meaningless phrases like “click here” or “this link” or “more”, little or no useful information is

provided to the screen reader user. For most users, meaningless links like this make content more difficult to use. If you

are able to see, imagine yourself coming across these links and having to read through the surrounding text to figure out

where the link leads, or having to click the link to discover its destination.

Key Point: Be sure all links describe the destination of the link, or its function if it is used to open a window or pop

up a dialog box, for instance.

5. Lists That Look Like Lists, But Are Not

Screen readers will recognize a properly-formatted list using HTML ordered or unordered list markup (OL or UL),

announcing the list and the number of list items, and indicating one’s position in the list while navigating through it. This

information helps with memory and comprehension. Without the proper list markup, more effort is often required to

comprehend a list of items.

Key Point: If a collection of items looks like a list, be sure HTML list markup is used to format it as a list. If the

28 | Things to Watch For

order of the items is important, an ordered list should be used; otherwise, use an unordered list.

6. Missing “Within-Page” Navigation

You have already been introduced to two potential ways to navigate within pages, using headings and links. There are

a variety of other ways to move around within pages, such as providing “bypass links,” often created to allow assistive

technology users to skip over repetitive elements like navigation menus, and jump to an anchor further down the page.

ARIA landmarks can also be used for this purpose, assigning specific roles to elements (e.g., banner, navigation, main)

that can be listed by screen readers and directly jumped to (e.g., <div role="main">...</div>). Without ways to

navigate within a page, screen reader users may be required to move through the content in sequence from beginning to

end to find the information they are looking for, which requires a lot of unnecessary effort.

Key Point: Be sure there are ways to navigate around within web content, using headings, bypass links or

landmarks, etc.

7. Poor Visibility, Contrast, or Use of Colour On Its Own

Providing good contrast between text and the background on which it appears is important for a variety of reasons. For

those with low vision, or for older readers, text may become unreadable if it does not contrast well with the background.

Using an image as a background can also be problematic, particularly when content resizes and text moves over various

shades of dark and light, making parts of the text difficult to read.

Key Point: Be sure there is good contrast between text and background colour.

The visibility of the cursor’s focus indicator is also important when navigating using a keyboard. Someone with low vision

who may have the screen magnified several times may find it easier to navigate with a keyboard than a mouse. If they are

unable to see where the keyboard focus is located, keyboard navigation becomes difficult or unusable.

Key Point: Be sure the cursor’s focus location is easily visible when navigating by keyboard.

As an example, you may come across a feature that uses a green start button and a red stop button. Some colour blind

users or those with low vision may not be able to tell the buttons apart. Adding the words “Start” to the green button, and

“Stop” to the red button provides the extra indicator in addition to colour.

Key Point: When colour is used to represent meaning, be sure there is some other indicator provided to express

that meaning.

Things to Watch For | 29

8. Video with No Captions (Or Automatic Captions)

It is quite common nowadays for organizations to host their video collections with services like YouTube or Vimeo. It is

important that any meaningful spoken dialogue in the videos be captioned so the content of the audio track is available

to those who cannot hear it. Obviously this will include people who are Deaf, but it might also include people watching

the video in a noisy environment, or watching with the sound turned down where quiet is necessary.

YouTube now provides automated captioning. It takes the audio track from the video and uses voice-recognition

technology to convert the sound to text. This can be a handy feature to quickly caption a video, but video producers must

not rely on automated caption to provide captions for their videos. The accuracy rate in many cases will be quite low, to

the point where the captions make no sense.

The automated captions can be used as a starting point for manually-generated captions, but are not considered to be

an acceptable alternative to the audio track in a video for accessibility purposes. There are a variety of free tools now

available, such as YouTube’s caption editor or the Amara caption editor, that make it relatively easy for anyone to create

captions.

Here’s an example of what can happen with automated captions.

Video: When YouTube Automatic Closed Captioning Goes Wrong

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1196

© McMaster Libraries. Released under the terms of a Standard YouTube License. All rights reserved.

30 | Things to Watch For

Key Point: Ensure that all video with meaningful spoken dialogue has human-generated captions. Do not rely on

automated captions.

9. Information That Updates without Reloading the Page

It is very common nowadays for parts of web pages to update automatically with new information, such as news feeds

or Twitter feeds, for example. Screen readers typically take a static snapshot of a web page before they start reading, so

any new information that might be added to a page after loading will generally go unnoticed. When updated content is

presented on a site, it must be formatted in such a way that screen reader users are informed of the changes.

Fortunately, with the emergence of ARIA, providing the updates to screen readers is relatively simple. Developers must

add a “live region” where updating information is present, using the “aria-live” attribute within the element containing

the updating information.

Technical: Presenting updating information:

A live region added to a div. <div aria-live="polite">updating information goes here</div>

Note that the value for aria-live specifies when the content of the region gets announced. The “polite” value in the

example means the updates are announced when the screen reader is not reading something else. You may also use the

value “assertive” which interrupts the screen reader to read the updating information. Developers can also add the aria-

relevant and aria-atomic attributes to define what gets read when a live region updates: aria-relevant set to “additions”

for new content, “removals” for items removed, and “all” to announce both, and aria-atomic set to “false” to announce

only the changes, or “true” to announce the live region as a whole.

Key Point: Ensure that any updating information on a webpage is formatted to be discoverable by screen readers

using aria-live.

10. Tables Presenting Data That Have No Row or Column Headers

When navigating through tables containing data using a screen reader, it is often necessary for screen reader users to

know the column or row headers to determine the meaning of data in a table data cell, particularly for larger tables where

it is difficult to track one’s location auditorily in the table. For table header cells to be readable from within a data cell (TD)

they must be marked as a proper table header cell (TH).

Key Point: Be sure tables that are used to lay out data are formatted with proper headings using the HTML TH

element.

Try This: Take a look at the demonstrations of accessible and inaccessible techniques used to create web content.

Things to Watch For | 31

You will revisit these demos in a later unit when we talk about screen reader testing.

For more detailed information and further reading, you may wish to review:

Readings and References:

• Web Accessibility

• Golden Rules of Accessible Web Design

⇧ Back to Top

32 | Things to Watch For

Automated Web Accessibility Testing

“What types of testing might a web accessibility auditor do on my site, and what should my webmaster and

I learn about them?” Lulu wonders. It is recommended practice to use both automated and manual testing when

reviewing the accessibility of web content. Let’s begin with automated testing.

There are many automated web accessibility testing tools available with varying degrees of accuracy and coverage. They

will be introduced here in general terms, and covered in more detail in the unit Automated Testing Tools.

Using automated tools to assess web accessibility does not take much technical knowledge, but one often must have
some understanding of web accessibility to be able to interpret the reports these tools generate.

Most automated testing tools will take a URL from a website, extract the HTML from the page at that URL, then run

a collection of test algorithms to detect the presence or absence of particular features in the HTML. For example, if a

checker detects an img element, it will run several tests on that element to determine if the “alt” attribute is present,

whether it is empty or not, how long the value is, and so on. What they cannot do is tell whether the alt text accurately

describes the image, or whether the image is an image of text. In most cases, when HTML is involved, automated checkers

are good at detecting missing accessibility features and detecting the presence of features that may create barriers. When

meaning is involved, automated checkers do not do well. A human will generally need to make those decisions.

Different automated accessibility checkers can do different things. Here are some examples:

• Some allow you to customize the checks or provide a list of the checks being done

• Some run scripts to ensure that any hidden HTML is also evaluated

• Some generate large reports covering entire websites; others report only on single pages

• Some monitor the accessibility of a site and send out reports when issues are identified

• Some are free, open-source applications that you can download, install and modify to suit your needs; others are

proprietary and charge licensing fees

Regardless of the features automated checkers have, you cannot rely on them to find all potential barriers in web content.

A human being must also be a part of the checking process and make decisions on potential issues, particularly when

meaning is involved.

Key Point: No automated web accessibility checker can identify all potential barriers.

Other Types of Accessibility Testing Tools

In addition to the typical web accessibility checkers, there are a variety of other tools you can use to test specific aspects

of accessibility.

Colour Contrast Checkers: Colour contrast checkers can be used to determine whether colour being used in web

content provides enough contrast to be readable for those with low vision or colour blindness. These tools take two

Automated Web Accessibility Testing | 33

colour codes (e.g., #ffffff for white, #000000 for black) and use a contrast algorithm to produce a colour contrast ratio.

Many colour testing tools can be found on the Web, others can be installed as a plugin for a browser, and still others are

built into web accessibility checkers.

Readability Testing Tools: There are also a variety of readability testing tools that can be used to determine the level of

education one might require to effectively understand the text in web content. These tools run a series of algorithms that

take characteristics of text like the length of words, the density of longer words, the length of sentences, the number of

clauses in sentences, etc., and generate a score. For public web content the recommended reading level is about grade 9,

or lower-level high school.

Markup Validation Tools: Markup validation tools are also available on the Web, and they are often found in HTML

authoring tools used to create content for the Web. These tools will determine whether the HTML is valid, or well-formed

and compliant with a formal grammar set out in HTML specifications. These tools essentially identify broken or incorrect

usage of HTML that could potentially affect assistive technologies’ ability to read web content effectively.

These tools and others will be looked at in more detail in the units following.

34 | Automated Web Accessibility Testing

Manual Web Accessibility Testing

In addition to the many automated tools you might use when auditing web accessibility, there are also a variety of manual

tests or strategies you can employ to identify potential barriers in web content. Some of these are very simple, quick, and

easily done by anyone.

Try This: Place the cursor in the location/URL area of a web browser, then press the Tab key repeatedly and

follow the cursor as it moves through elements on the page. Any functional elements like links, buttons, form

fields, etc. that don’t receive focus when “tabbing” through the page are likely going to be inaccessible to those

that require keyboard access (e.g., people who are blind, some low-vision users, others with mobility

impairments).

Tab key testing and other manual tests will be covered in the unit Manual Testing Strategies.

Screen Reader Testing

Another manual test strategy that should be used during web auditing is to navigate through web content with a screen

reader. Screen readers are useful for identifying accessibility and usability issues. You can easily determine that an image

is missing alt text, for instance, if the screen reader reads a file name, or reads nothing at all when it comes across the

image. Usability issues can also be identified that automated and manual tests may not identify. For example, if a dynamic

error message is injected into a page after some interaction fails, like the messages shown below each field in the login

form below, you may see the message but not hear it with the screen reader. In such a case the feedback may need ARIA

(discussed in Web Accessibility Initiative – Accessible Rich Internet Applications (WAI-ARIA)) added to make the message

readable, which might only be confirmed by listening to a screen reader’s output.

Manual Web Accessibility Testing | 35

Figure: Login form with dynamically injected error messages below form fields where required information is
missing

We will look at using screen readers and other assistive technologies during accessibility testing in more detail in the

unit Assistive Technology Testing.

36 | Manual Web Accessibility Testing

Introduction to User Testing

Though in many cases using automated and manual testing strategies is sufficient to identify and address potential

accessibility issues, it can be helpful to have users with disabilities, or others such as older users, use a site in addition to

the other auditing strategies. Actual users can turn up a variety of potential usability issues.

Depending on the audience a site serves, user testers might include a few different people with different accessibility

needs, such as a person who is blind using a screen reader, a person with low vision using a magnifier, or perhaps a person

with motor impairments using speech recognition and switches to navigate through web content.

User testing will be covered in depth in the unit User Testing.

Introduction to User Testing | 37

Introduction to Code Examination and Repair

Technical: The content on this page is aimed primarily at web developers and is technical in nature.

Code Examination

While you are testing with automated tools or other manual strategies, it is often helpful and sometimes necessary to

look at the HTML markup to confirm, or investigate further, potential barriers tools or strategies have turned up. All

browsers have a View Source feature (or something equivalent) to view the HTML underlying a web page. Though using

View Source is one potential way to view the HTML markup, it can be time-consuming to find specific bits of HTML

associated with potential barriers that have been identified.

A better strategy for examining code is to use the Inspect Element feature most browsers today provide. You can

typically right click on the element you want to view (such as an image), then choose “Inspect Element” to look at the

HTML and CSS used to display the image. Look at the markup of the image element to see whether the alt attribute is

present and what its value is, as well as what other attributes it might contain (e.g., ARIA attributes that may be present

to address a potential barrier a checker has identified).

A browser’s developer tools (e.g., Chrome’s DevTools or tools in Firefox Developer Edition) provide a whole variety of

information about the markup of a page in addition to being able to examine specific elements in the HTML.

Examining the code with the built-in inspector or with a plugin is a good way to find colour codes in the style sheets

associated with a web page when doing colour contrast evaluation.

We will look at code examination in more detail in the section Code Examination and Repair.

Code Repair

It is often necessary to adjust code manually while auditing, and to retest to come up with solutions to correct

accessibility issues. Using the browser’s developer tools, it’s possible to dynamically adjust the HTML markup and CSS to

test possible solutions, perhaps running potential fixes through a screen reader, before making recommendations. Firefox

Quantum (Developer Edition), Chrome, Internet Explorer, Edge, and Safari all have tools that allow you to dynamically

adjust code.

When writing web accessibility reports it can be helpful to provide small code snippets to demonstrate to developers

what needs to be done to correct an issue, or at least describe the code changes in written words. Having good knowledge

of HTML, CSS, and JavaScript is a prerequisite to providing solutions in your accessibility reports.

We will talk more about code repair in the section Code Examination and Repair. The video below provides an

introduction to code examination and repair using a browser’s Inspect view.

Video: Code Examination and Repair

38 | Introduction to Code Examination and Repair

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1240

Introduction to Code Examination and Repair | 39

ChromeVox Screen Reader

We will introduce you to ChromeVox, the screen reader we will be using, early on, so you have plenty of opportunity to

practice using it. It will be a key tool used in auditing the accessibility of web content, and will be used in the activity for

this unit.

For day-to-day screen reader testing, ChromeVox (particularly the ChromeVox plugin for the Chrome web browser)

is our screen reader of choice because of its simple installation and configuration, ability to work across computer

platforms, and the fact that it’s free and open source.

Technical: One reason ChromeVox works well for accessibility testing is its good support for ARIA. We will cover

ARIA in greater detail in the unit Other Accessibility Standards. ARIA is still a relatively new technology, and as of

late 2019, it is still being supported inconsistently across available screen readers. When developing for the Web,

do use ARIA as it is intended to be used as documented in the ARIA Specification, and test it with ChromeVox.

You will still want to test with JAWS or perhaps NVDA, as these are most likely to be used by blind users. You

may, however, find that what works in ChromeVox does not work with the other screen readers. So, for the time

being, it may be necessary to provide workarounds when developing custom web elements, so they will work across

technologies, with the assumption that these other technologies will catch up eventually.

While a relatively small number of screen reader users currently use ChromeVox, it is a highly effective tool for developers

when testing web content. Also, ChromeVox is tailored to work with elements of Google Drive, so even for users of other

screen readers, ChromeVox may be preferable when compiling Google Docs, Sheets, and Slides.

Toolkit: Visit the Chrome store while using the Chrome web browser to install the ChromeVox screen reader. It will

be a key element of your Toolkit.

Key Point: Though we recommend using ChromeVox for activities that follow, and as a tool that works well for

screen reader testing while accessibility auditing, you are free to use other screen readers if you prefer.

The videos below will help show you how to install and begin using ChromeVox.

Video: Installing ChromeVox

40 | ChromeVox Screen Reader

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1242

Video: ChromeVox Demo

ChromeVox Screen Reader | 41

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1242

© Google Open Online Education. Released under the terms of a Standard YouTube License. All rights reserved.

ChromeVox Testing and Associated Key Commands

Key Point: Download the ChromeVox Keyboard Commands [docx], outlined in the table below, print it, and have it

beside you when completing the activity in this unit. Also be sure you have set the ChromeVox modifier key*,

described in the following line, or you are going to have difficulty with the activity.

* The ChromeVox modifier key (i.e., Cvox) is set in Chrome’s Settings > Extensions > ChromeVox Options, typically set to

Alt or Ctrl.

42 | ChromeVox Screen Reader

Task Task Description Keyboard Command

Default Reading

When a webpage loads, ChromeVox will read the element that takes
focus on the page. Use the Cvox + arrow keys to read through content.
Listen to the spoken output and note any inconsistencies from what
one might expect to hear based on what is visible on the screen.

Cvox + up and down arrows

Tab Navigation

When a page has loaded, press the Tab key to navigate through
operable element of the page like links and forms. Listen to the output
when these elements are in focus, and note any elements that are
clickable, but not focusable with the keyboard.
Also listen for hidden elements such as bypass links or other elements
that are not visible but are read aloud by ChromeVox.

Tab, Shift Tab

Navigate Through
Headings

Step through all the headings on a page. Note whether all headings are
announced as expected. Note the heading level announced. Are they
sequenced to create semantic structure (i.e., nested in the proper
order)?

Cvox + L + H then up/down
arrows

Navigate Through
Landmarks

Step through the landmarks, key navigation points on a page. Are all
areas of the page contained in a landmarked region? Note any missing
Landmarks.

Cvox + L + ; (semi-colon) then
up/down arrows

List Links
List the links and navigate through them using the arrow keys, listen
for meaningfulness, or listen for context when links are otherwise
meaningless.

Cvox + L + L then up/down
arrows

Navigate Through Forms
Navigate to forms on a page, then press the Tab or F keys to listen to
each of the fields. Are fields announced effectively, including required
fields?

Cvox + L + F then up/down
arrows

Navigate Through
Tables

Navigate to Tables on a page, press Enter to go to a table, press up/
down arrow keys to move through cells in sequence (left to right, top to
bottom), press Ctrl + Alt + arrow to move to adjacent cells, press
Ctrl-Alt and 5 on the number pad to list column and row headers where
applicable. Note whether header cells are read or not. Are fieldset
labels announced, where applicable?

Cvox + L + T then up/down
arrows
then Enter to select Table
Cvox + arrow to move within
table
Cvox +TH to announce headers

ChromeVox Screen Reader | 43

Activity: Experience Web Content From a Different
Perspective

NOTE: If you are a regular day-to-day screen reader user (i.e., you are blind or have significant vision loss and must use

a screen reader) do the alternate activity below instead of this one. This first activity is for first-time, or novice, screen

reader users, and those who do not use a screen reader on a regular basis.

This exercise will help you understand accessibility firsthand, by experiencing the Web as someone who is blind might

experience it. If you have not already, go back to the ChromeVox section earlier in this unit, and setup ChromeVox

yourself.

Be sure to review the ChromeVox Keyboard Commands [docx] before completing this activity, or have it printed off
beside you for easy reference.

If you do not regularly use a screen reader, turn off your computer monitor while navigating through a familiar website

with ChromeVox to experience what it’s like to access web content by screen reader only. Note some of your thoughts

and feelings on this experience as self-reflection.

Screen Reader User Alternate Activity

NOTE: This alternate activity is for people who use a screen reader on a regular basis. You are likely blind or have

significant vision loss that requires you to use a screen reader to access your computer, and the Web. If you are not a

regular screen reader user, do the activity above instead of this one.

The goal of the activity above is to help people who do not use a screen reader better understand the challenges of

navigating the Web without being able to see what one is navigating through. If you are a regular screen reader user, you

already know these challenges. Here are a few questions to consider as self-reflection about your experience:

• What screen reader(s) do you use, and for how long?

• Which web browser do you typically use, and why?

• What are some of the most common barriers you encounter on the Web?

• How would you recommend non-screen reader users use screen readers in their accessibility auditing activities?

44 | Activity: Experience Web Content From a Different
Perspective

Self-Test 1

Question 1

Which of the following are automated accessibility checkers not good at identifying? Please select all that
apply.

a. missing text descriptions

b. if link text effectively describes the function or destination of the link

c. whether alt text describes an image effectively

d. whether alternatives are provided for inaccessible elements

e. if a Web page has a title or not

f. whether the title effectively describes a Web page

Question 2

Which of the following groups of people with disabilities are least likely to face barriers in Web content?
People who:

a. are Deaf

b. are blind

c. use a wheelchair

d. have limited hand mobility

e. are learning disabled

Question 3

Which of the following were mentioned as key things to watch for when auditing the accessibility of Web
content? Please select all that apply.

a. images without a text alternative

b. elements that work with a mouse but not with a keyboard

Self-Test 1 | 45

c. text too complex for some to understand

d. using bold large text to create headings

e. using text and background colours that do not contrast well

f. elements that flash or flicker

Answers to Self-Test 1

An interactive or media element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1247

46 | Self-Test 1

2. INTRODUCTION TO WCAG

2. Introduction to WCAG | 47

Introduction to WCAG

Now that Lulu has a better understanding of what a web accessibility audit entails and has decided with

certainty to move forward with one, she is seeking a recommended resource that might allow her webmaster to

familiarize herself more thoroughly with the features of accessible web content. Without a doubt, WCAG 2.0 is the

resource that she is looking for. Review the content below to understand the significance and purpose of this

critical element of Lulu’s, and your, toolkit.

Though it is possible to conduct informal accessibility reviews with basic understanding of the types of barriers faced by

people with disabilities, and knowledge of the common elements in web content that often produce barriers, a thorough,

professional review requires a solid understanding of the W3C Web Content Accessibility Guidelines (WCAG 2.0 or WCAG

2.1, aka ISO/IEC 40500:2012).

This unit will introduce you to WCAG (pronounced “wuh-kag”), which provides the basis for most international

accessibility rules and legislation, along with its supporting documents. WCAG should be a key element of your Web

Accessibility Auditing Toolkit. You should develop a basic understanding of WCAG to start, then use it and its supporting

documents as references while conducting your audits and build upon the basics as you go about auditing web content.

Toolkit: Add the W3C Web Content Accessibility Guidelines (WCAG 2.1) to your Web Accessibility Auditing

Toolkit. REQUIRED READING.

Key Point: As of June 5, 2018, WCAG 2.1 was released, extending WCAG 2.0 with one additional guideline, and 17

new success criteria, that address accessibility across devices and for people with cognitive disabilities. Readers

should refer to the newer version of the WCAG guidelines moving forward, though in many cases WCAG 2.0

remains the standard on which international legislation around web accessibility is based. WCAG 2.1 was designed

so that complying with it, includes compliance with WCAG 2.0.

Watch the following video for a brief overview of WCAG 2.0.

Video: WCAG-WAI Basics

Introduction to WCAG | 49

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1253

© Richard Fouchaux. Released under the terms of a Creative Commons Attribution license.

Documents Accompanying WCAG

Accompanying the WCAG specification itself are a variety of documents that expand on the guidelines. The two types of

documents we would like to draw your attention to are:

• Understanding Guidelines

• How to Meet WCAG (referred to as Success Criteria)

These documents are conveniently linked next to their corresponding guideline, as shown in the figure below.

Figure: Links to supporting documents appear next to each guideline in WCAG 2.0

50 | Introduction to WCAG

10 Key Guidelines

Required Reading: The 10 Key Guidelines of WCAG 2.0/2.1 have been summarized in a downloadable PDF document.

Download the 10 Key Guidelines [PDF] document, and read through it to familiarize yourself with the manner in

which WCAG 2.0/2.1 addresses the most common accessibility issues.

More About WCAG

Toolkit: If you would like to explore WCAG 2.1 in greater detail than this Unit provides, bookmark the

Introduction to Web Accessibility course.

Introduction to WCAG | 51

Objectives and Activities

Objectives

By the end of this unit, you will be able to:

• List and interpret the meaning of the four principles of web accessibility.

• List the three levels of WCAG conformance and recognize current targets that are implemented internationally.

• Examine in depth ten key WCAG Guidelines.

• Add relevant WCAG materials to your Web Accessibility Auditing Toolkit.

Activities

• Download and study WCAG 2.1 Audit Template

• Read a Completed Sample WCAG 2.0 Audit

• Update your Web Accessibility Auditing Toolkit

• Self-Test 2

52 | Objectives and Activities

The Evolution of Web Accessibility

If you are interested in knowing about the history behind WCAG, take a look at the timeline of milestones described

below.

An interactive or media element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1257

1995: Web Accessibility Begins

It was during the mid-1990s that web accessibility awareness began to take hold, first mentioned by Tim Berners-Lee

in his keynote speech at the 1994 Second International World Wide Web conference in Chicago. The Unified Web Site

Accessibility Guidelines were compiled shortly after that at the TRACE Centre at the University of Wisconsin-Madison in

1995. Version 8 of the Unified Web Site Accessibility Guidelines became the seed document for WCAG 1.0.

1999: WCAG 1.0 Released

It was not until 1999 that the first version of the Web Content Accessibility Guidelines (WCAG 1.0) was released by the

W3C’s Web Accessibility Initiative (WAI). This was a significant advancement in the promotion of an accessible web. With

WCAG 1.0 it was possible to assess accessibility based on a standard, without the need to use applications like JAWS. That

standard was also used by assistive technology (AT) developers (of screen readers, for instance) to better understand how

AT should interact with content on the Web. One could then judge accessibility based on what the WCAG specification

suggested should be done. But, there were problems with WCAG 1.0 that slowed its adoption. These problems would be

addressed with the release of WCAG 2.0.

2008: WCAG 2.0 Released

In 2008 WCAG 2.0 was released to address the shortcomings of its predecessor. One of the significant changes included

technology independence. This meant that what might previously have been associated with a barrier in HTML content

was now a barrier regardless of the technology used.

For example, “include alt text with images,” "alt" being an HTML attribute, became “include text alternatives for

visual content,” with no reference to the technology presenting the content. WCAG 2.0 addressed accessibility across a

whole range of web technologies, including things like Flash, Java, JavaScript, and other such technologies.

A second major change was the acceptance of JavaScript in WCAG 2.0 as a legitimate web technology. With WCAG

1.0, developers had to create alternatives to JavaScript elements they may have added to create interactivity in their

web content. In other words, a website needed to operate with the same functionality if JavaScript was turned off in

The Evolution of Web Accessibility | 53

a user’s browser. This severely limited what developers could do while complying with WCAG 1.0 and became another

contributing factor to the slow uptake of WCAG 1.0.

With the release of WCAG 2.0 this restriction was lifted. It is no longer a requirement to create alternatives to

scripted features, though it is still a requirement to make those features accessible – certainly doable for most JavaScript

interactivity we see in today’s websites.

2015: HTML5 & WAI ARIA

Today we have a number of new additions to the collection of accessibility standards with the introduction of

specifications such as WAI-ARIA (Accessible Rich Internet Applications). WAI-ARIA is an extension of HTML5, that allows

developers to add information about roles, states, and properties to custom features they might create using JavaScript,

that would have previously been inaccessible to AT users.

For example, a developer might wish to use a collection of <div> elements to create a form. This is certainly possible

with some script added, but a <div> was never intended to be used as a form element or to be interactive for that matter.

They have no role or states or properties that would indicate to an AT user they were in a form, unlike a <form> element

in HTML, which has all those semantic characteristics built in by default.

ARIA now allows developers to assign a role="form" to a <div> to identify it as a form. A <div> used to create

a checkbox could now have a role="checkbox" added, and aria-checked="true" set to have its role and state

(checked or not checked) announced to AT the same way the standard HTML form elements get announced. We’ll talk a

bit more about WAI-ARIA in unit 8, but for now know that it is perhaps the most significant accessibility technology to

emerge in recent years.

2018: WCAG 2.1 and Project Silver

When WCAG 2.0 was introduced in 2008, the iPhone had only just been released the year before, and it would not be until

2009 that it would be usable by blind individuals. WCAG 2.0 provided little guidance on developing accessible content to

be accessed through mobile devices.

WCAG 2.1 is intended to fill that gap, producing guidelines to help developers comply with accessibility guidelines when

developing mobile web and responsive designs for web content, among other things. WCAG 2.1 was released in June of

2018, adding one new guideline, and 17 new success criteria.

Recent Article by Scott Hollier, on changes in WCAG 2.1: WCAG 2.1: Reflections on the New Guidelines and Success

Criteria.

In parallel with WCAG 2.1, project Silver has also been launched. Silver is the code name for WCAG 3.0. The focus

of Silver is on integrating accessibility standards into the emerging Internet of Things (IoT). With everything from

refrigerators, to home climate control systems, to security monitoring now connecting to the Internet, Silver is being

developed to ensure these emerging technologies are accessible to everyone.

Why Silver? Silver’s element symbol is Ag, which represents Accessibility Guidelines.

54 | The Evolution of Web Accessibility

WCAG Principles

The four guiding principles of WCAG say that web content must be Perceivable, Operable, Understandable, and Robust

(POUR) in order to be accessible to people with disabilities.

1. Perceivable – Information and user interface components must be presentable to users in ways they can

perceive.

◦ This means that users must be able to perceive the information being presented (it can’t be invisible to all of

their senses)

2. Operable – User interface components and navigation must be operable.

◦ This means that users must be able to operate the interface (the interface cannot require interaction that a

user cannot perform)

3. Understandable – Information and the operation of user interface must be understandable.

◦ This means that users must be able to understand the information as well as the operation of the user

interface (the content or operation cannot be beyond their understanding)

4. Robust – Content must be robust enough that it can be interpreted reliably by a wide variety of user agents,

including assistive technologies.

◦ This means that users must be able to access the content as technologies advance (as technologies and user

agents evolve, the content should remain accessible)

Source: Introduction to Understanding WCAG 2.0

Perceivable

For content to be perceivable it must be possible to perceive it through multiple senses. While there are a variety of ways

to provide alternatives perceivable through alternate senses (e.g., audio descriptions for visual content for those who are

blind, or sign language interpretation of audio content for those who are Deaf), text alternatives are generally the best

choice.

Text can be converted into a variety of forms. It can be read aloud by screen reading software or converted to braille

for those who are blind. It can be translated into other languages for those reading in a second language or it can be

magnified without losing its sharp appearance for those with low vision. Its colour can be changed easily to make it more

readable for those who are colour blind, or need high contrast.

Key Point: Plain text is the most adaptable alternate format because it can be easily converted into a variety of

WCAG Principles | 55

forms to make content perceivable across a wide range of accessibility needs.

Operable

In the context of web accessibility, operability generally means that something is functional using a keyboard. If functional

items are not keyboard operable, they will be inaccessible to many users.

Developers often create features that operate with a mouse, sometimes overlooking keyboard functionality. Most

people accessing the Internet do use a mouse, but many do not. A person who is blind is unlikely to use a mouse, but

will instead rely almost exclusively on keyboard access. Power users, often developers or programmers, also tend to be

keyboard users, so usability is lost for this group as well when keyboard access is not programmed in.

Operable can also mean functional using one’s voice. Some people with severe motor impairments use voice

recognition software along with switches (see figure below) to operate their computers and navigate the Web. This means

there must be text associated with functional elements like graphical buttons, so one can speak the text to bring focus to

an element, and those elements must be keyboard operable so a switch can be used to activate the element. Pressing a

switch is much like pressing the Enter key or Spacebar on a keyboard, or clicking a mouse.

Figure: A button switch used to replicate a mouse click
Source: Wikipedia

Key Point: All functional elements in web content that operate with a mouse must also operate with a keyboard.

Understandable

Understandable refers to comprehending both the content and features of a website. Content that uses more complex

or advanced language than is necessary may be difficult to understand for some people with disabilities, as well as those

56 | WCAG Principles

reading in a second language, or perhaps older users with diminishing cognitive abilities. Particularly for public access

sites, the reading level of the language used should be minimized, using simpler language wherever possible.

A second aspect of understanding relates to the consistency and ease of use of the navigation elements on a site,

reducing the number of navigation elements, and presenting these elements consistently throughout a website. This can

improve usability for many users, including those who are blind, those with cognitive or learning disabilities, and older

users.

A person who is blind and using a screen reader to navigate a site will often dedicate some effort to mapping to memory

the navigation structure of a site, much like one might visualize traveling from point A to point B through a building

or through city streets. If the navigation structure changes, it can often lead to confusion, and to having to map the

navigation structure over again. If the navigation stays consistent, it only needs to be learned once, after which cognitive

effort can focus on understanding the important content of a webpage or website.

Key Point: Use simple, consistent, predictable navigation elements throughout a website.

Robust

Robust, as described by W3C, means that content works well across a wide range of Web and assistive technologies. This

generally means using technology to standard. Web browsers and assistive technologies base their development around

standards such as HTML, and are able to interpret content that is created in a standard way. When content varies from

the standard, assistive technologies often have trouble interpreting it. Not all content must comply with the standards,

but when custom content is created that does not comply, a secondary standardized version should be provided so the

content “degrades gracefully.” Web content that degrades gracefully is intended to function best in the most current

browsers and assistive technologies, and then as older, less feature-rich technologies view it, it should degrade in a way

that is still functional, but with fewer features.

Technical: With the advent of WAI ARIA, it is now possible to veer from the standard, perhaps using HTML in

new ways that were not initially intended. ARIA attributes can be used to describe the role, states, and properties

of custom elements. For example, an HTML <div> element was never intended to be clickable, but with some

JavaScript it is possible to add click functionality, though from an assistive technology’s perspective the <div> is

just a container with no functionality.

A <div> has been used in a non-standard way in this case. ARIA can now be added to that customized <div>
to give it a role="button" for instance, and made focusable adding a tabindex attribute, and made clickable

by adding aria-pressed attribute to describe its state as pressed or not pressed, and so on.

There are other occasions where non-standard technologies such as embedded Flash objects or Java applets might be

used. Though it is possible to make these objects somewhat accessible, they are often challenging to access and operate

effectively with assistive technologies. In such cases alternatives are generally needed. Some Flash development tools,

for instance, provide an option to generate an HTML version, though these tend to be static representations of what

was interactive in the Flash. Where possible, HTML5, with CSS, scripting, and ARIA should be used to develop interactive

content for the Web.

HTML5 and ARIA will be discussed in greater detail in unit 8.

WCAG Principles | 57

Key Point: Where non-standard technologies are used, or where standard technologies are used in non-standard

ways, provide standardized alternatives to allow content to degrade gracefully.

58 | WCAG Principles

WCAG Accessibility Conformance

Lulu’s webmaster has been reading through WCAG 2.0 and at times finds it overwhelming. However, if

she understands the POUR principles, the 3 levels of conformance, and the success criteria associated with each

guideline, she will have a solid basis upon which to build her skills in the realm of web accessibility.

To help the webmaster further frame her understanding of conformance, she should be reminded that, as an

Ontario-based company, to achieve AODA compliance, Lulu’s Lollipops’ two main target years are 2014 (WCAG 2.0

Level A – except live captions and audio description), and 2021 (WCAG 2.0 Level AA – except live captions and audio

description).

For further information regarding the specifics of AODA compliance, a link that may be of use to the Lulu’s

webmaster and others in similar roles is the Integrated Accessibility Standards. For further information on WCAG

compliance levels, read on.

Conformance Levels

In addition to being grouped by principles, WCAG is also grouped by level of conformance. These levels are described by

W3C as follows:

1. Conformance Level: One of the following levels of conformance is met in full.

• Level A: For Level A conformance (the minimum level of conformance), the web page satisfies [definition] all

the Level A Success Criteria, or a conforming alternate version is provided.

• Level AA: For Level AA conformance, the web page satisfies all the Level A and Level AA Success Criteria, or a

Level AA conforming alternate version is provided.

• Level AAA: For Level AAA conformance, the web page satisfies all the Level A, Level AA and Level AAA Success

Criteria, or a Level AAA conforming alternate version is provided.

Note 1: Although conformance can only be achieved at the stated levels, authors are encouraged to report (in their

claim) any progress toward meeting success criteria from all levels beyond the achieved level of conformance.

Note 2: It is not recommended that Level AAA conformance be required as a general policy for entire sites because

it is not possible to satisfy all Level AAA Success Criteria for some content.

Source: Understanding Conformance

Conformance levels can be thought of in terms of their importance toward removing barriers with Level A being the

most important. It is helpful to think of levels as things you must do, should do, and could do.

• Level A: These issues must be resolved or some group will not be able to access the content. The issues at this level

WCAG Accessibility Conformance | 59

represent significant barriers that may not be overcome with work-arounds. An example of a Level A barrier is

missing alternative text to describe an image. There is little a blind person can do on their own to understand the

content of an image without a text description.

• Level AA: These issues should be resolved or some group will find it difficult to access or use the content. These

issues can often be circumvented with some effort, but will make using or understanding web content more

effortful. An example of a Level AA barrier is not being able to follow the focus of the cursor when navigating

through content with a keyboard. For a person with low vision navigating with a keyboard, or a fully able keyboard

user for that matter, navigating through content can be very difficult if one cannot see where the cursor is located

and is unable to tell when to press the Enter key to activate a link or button.

• Level AAA: These issues could be resolved to improve usability for all groups. Web content may be technically

accessible, but usability can be improved by resolving these issues. An example of a Level AAA barrier would be

presenting acronyms or abbreviations without providing their full wording. For a person who is blind, an acronym

read by a screen reader may sound like gibberish. For a fully able user who is not familiar with a short form, an

acronym or abbreviation may have no useful meaning, at least not without having to search out the meaning

elsewhere.

Selecting a Level of Conformance

While Level A conformance is an honourable accomplishment, and will allow most people to access the content of a

website, it is generally considered “minimal conformance.” If you are working with a limited budget (or no budget) this

may be an acceptable level of accessibility, but it is generally accepted that most sites should strive for Level AA, and

perhaps conform with a few of the Level AAA success criteria (defined below).

Key Point: Level AA is the generally agreed upon level of compliance websites should strive to meet.

If you are working on a new website, Level AA should be the goal from the start. Assuming the developers know what

needs to be done, there is very little extra effort required to jump from Level A to Level AA. If you are working with an

existing site that is receiving an accessibility retrofit, then you may want to first aim for Level A, then with time resolve all

Level AA issues. Generally speaking it is less costly to build a site to be accessible from the start, than it is to build a site

and retrofit it later to conform.

Level AAA conformance is unattainable for many websites. While it is possible to conform with some of the

requirements at this level, they can often be counter-productive or unnecessary. Take for instance the reading level

requirement (WCAG success criterion 3.1.5). Public sites will want to strive to meet this guideline, to reach the broadest

audience possible by reducing the reading level, but for other sites that focus on a particular, perhaps highly-educated

audience, it may be impossible or even inadvisable to comply with this requirement. Imagine an advanced course in

biomechanics written at a lower-level secondary school reading level required to satisfy this guideline. If it were possible,

replacing the advanced terminology and jargon with low level paraphrasing would likely make the content unusable by

the intended audience.

60 | WCAG Accessibility Conformance

Success Criteria and Techniques

Success criteria are essentially accessibility requirements. For example, the success criterion for an image conforming

with guideline 1.1 (see below), is providing an equivalent text alternative. Note the success criterion does not specify any

technology-specific solution or strategy on how that equivalent text should be provided.

Alternatives for an image can take different forms, hence the techniques for satisfying success criteria. For success

criterion 1.1.1 possible techniques might include providing alt text, including an image caption, or describing the image in

the surrounding text and referring to the description in the alt text for the image. Each of these techniques potentially

satisfies the requirements or success criteria of Guideline 1.1.

You may also notice techniques are grouped into Sufficient Techniques and Advisory Techniques. Sufficient

techniques are those that reliably satisfy success criteria, while an advisory technique may not reliably satisfy success

criteria but may be beneficial for improving usability or improving accessibility for specific users. Developers should apply

sufficient techniques to satisfy success criteria, and where feasible also apply advisory techniques to improve accessibility

or usability further.

There is a third category of techniques called Failures. These are not techniques to satisfy success criteria, but rather

techniques that introduce barriers and thus should be avoided.

Source: W3C – Understanding Techniques for WCAG Success Criteria

Other Conformance Considerations

In addition to meeting all the Level A or AA or AAA requirements before being able to claim conformance at one of these

levels, there are other conformance requirements, listed here:

• Full pages: Conformance applies to full web pages only. It cannot apply to parts of pages.

• Complete processes: When a conformance claim is being made on a collection of pages that make up a web

application, for instance, all pages in the collection must conform. If one were to claim “the discussion forum

conforms at Level AA,” all aspects of the forum must conform, from logging in, to reading posts, to posting new

messages, and so on.

• Accessibility supported: Techniques to implement accessibility requirements are done in a way that is supported by

assistive technologies. For instance, a linked image that is clicked to open a feature that does not have alt text to

describe the function of the image, but does include text nearby that says “click the button to open the feature,”

would not be accessibility supported even though the image has been described with text. The image has not been

described in a way that assistive technologies can make use of. Adding alt text to the image in this case would be

considered accessibility supported, because assistive technologies can read alt text. Accessibility support is a very

complex issue with many grey areas. Read through “Understanding Accessibility Support” for a discussion of other

things to consider when assessing accessibility support.

• Non-interference: When non-accessible technologies are used and accessible alternatives are provided, the

inaccessible version must not interfere with access to the accessible version. For instance, an embedded Flash

object may have a link to an accessible HTML version on the page following the object. If while navigating through

the page by keyboard or using an assistive technology, the cursor becomes trapped in the Flash object, it is

interfering with the accessible version that follows. In this case, even though an accessible version is provided, it

cannot be accessed; thus, the page does not conform. If a bypass link were provided to skip over the Flash object,

and users were able to back out of the object, the page would conform. Ideally, the Flash object should be created in

WCAG Accessibility Conformance | 61

a way that does not trap the cursor.

Making Conformance Claims

Once a website has addressed all the issues required for a certain level of conformance, it may be desirable to “claim”

conformance, though there is no requirement that a claim be made in order to conform.

Basic Conformance Claim

A basic claim must include the date the site was judged to be conformant. Because web content tends to change over

time, conformance can typically only be claimed for a specific date (with exceptions such as numbered versions of web

software). The basic claim must also include the specification or standard the site is claiming conformance with, and

must include the level of conformance. A basic conformance claim may look like the following:

On January 20, 2015 this site conformed with the Web Content Accessibility Guideline 2.0 at Level AA.

A conformance claim can be more extensive than just a basic claim like that described above. It can also provide

documentation about the accessibility features found on a site, so those accessing the site with assistive technologies can

read about these features rather than having to discover them on their own. This documentation is often found linked

prominently in the navigation elements of a website, usually near the start of a page so it is easily found by assistive

technology users, and is often labelled “Accessibility” or “Accessibility Statement.”

If the conformance claim does not apply to the whole site (e.g., there may be some older content that remains

inaccessible), the scope of the claim should also be specified. For instance, add to the basic claim above, “…for any content

added to the site after January 1, 2012.” The claim can also list known issues, if there are areas of the site that are known

to be inaccessible, perhaps because there isn’t a suitable accessible alternative to a particular technology being used. For

example, “…the video conferencing area of the site remains non-conformant due to the lack of an alternative accessible

conferencing system.”

62 | WCAG Accessibility Conformance

10 Key Guidelines

The Web Content Accessibility Guidelines (WCAG 2.1) include 13 guidelines, made up of 78 success criteria (or WCAG 2.0

has 12 guidelines, 61 success criteria). Not all of these guidelines are applicable to all websites, though there are some that

are more frequently relevant than others.

Required Reading: Earlier in this unit, we encouraged you to become familiar with 10 Key Guidelines [PDF] that we

provided in a downloadable document. If you have not already done so, please take the time now to download and

read this document.

10 Key Guidelines | 63

WCAG Web Auditing Review Template

Now that you have an understanding of WCAG, we will introduce you to an accessibility auditing template. You can use

the template to record issues when you conduct audits, but it also acts as a checklist to help commit the guidelines

to memory. For now, review the layout and elements of the Web Auditing Review Template and add it to your Web

Accessibility Auditing Toolkit.

Toolkit: Download the WCAG 2.1 review template[doc] and add it to your Toolkit. Create a “webaudits” file folder

on your hard drive, and save it there. As you complete audits, save them to subfolders you create here to organize

the audit reports you generate.

Elements of the Review Template

Title: This field should indicate the type of review, either General, Template, or Detailed (to be covered in greater detail

in the unit Web Accessibility Audit Reporting) and the guideline it is based on.

Location: The URL of the homepage of the site being reviewed.

Date: The date the review was finished.

Reviewer: The name of the person(s) who completed the review.

Guideline Reference: A link to the guideline(s) the review is based upon.

Tools Used During This Review: A list of the tools used in the review, including automated checkers, browsers, browser

plugins, readability test tool, colour contrast test tool, screen readers, and any other tools used. Be sure to mention

version numbers if applicable.

General Comments: An overview of the result of the WCAG 2.1 Review (below), outlining the key issues, why they are

issues, with brief mention of potential solutions. This section is written for a general audience, minimizing the use of

technical language.

WCAG 2.1 Review: The main content of the review. This is a list of WCAG 2.1 success criteria, each one’s conformance

level (A, AA, AAA), the evaluation received (Pass, Fail, Pass?, Fail? N/A), and comments associated with the evaluations.

These comments should identify accessibility issues relevant to the guideline, explain why an issue presents a barrier,

and offer potential solutions to resolve issues. The review should be aimed at the web developers who will be resolving

the issues identified and may contain technical language and sample code that can be replicated. Screenshots and other

graphics can be used to enhance explanations given in the text of the comments.

There will likely be cases when borderline issues are identified, where it could be argued that some element may

pass or fail the associated success criteria. In such cases “Pass?” (with the question mark) is used where the auditor is

leaning toward a pass, but others might argue it fails. And, use “Fail?” where the auditor is leaning toward a fail, though

others might argue it passes. One example might be a description for an image provided in an alt attribute that does

not fully describe the meaningful information in the image. In such cases it is often a subjective decision by the auditor,

commenting to the author of the alt text to review the text to determine whether it “adequately” describes the meaning

one should take away from the image if it were being viewed. Questionable pass or fail is described more thoroughly in

the example linked in the Toolkit box below.

Note that the AAA items are greyed out, as well as the two AA success criteria (1.2.4, 1.2.5) that are not required by

AODA (this is relevant to Ontario-based participants). If you are auditing in a jurisdiction that requires these guidelines,

64 | WCAG Web Auditing Review Template

you might choose to adjust the template by removing the grey for these two guidelines. Otherwise grey items are

optional, though when reviewing content issues associated with these guidelines, recommendations can still be made to

implement techniques associated with these guidelines to improve overall usability.

Other Notes: While not included in the template, there are occasions when a reviewer needs to comment on issues

not associated with the accessibility of the site being reviewed. For instance, a reviewer might mention potential bugs

that may have been identified, include information about posting an accessibility statement or provide details on next

steps following the review, such as planning a follow-up review after issues are addressed, or arranging a time to address

questions that arise from the report.

Appendix: While not included in the template, the Appendix should include a list of the pages sampled from the site

that was reviewed.

Example of a Completed Review

In 2012 a General Review of Canvas was posted by OCAD University in Toronto, which was in the process of selecting a

new LMS for the university. The review was posted publicly, so it works well as an example of what a completed review

might look like.

This review looked at a series of tasks, like reading a post in the forums and posting a reply, reviewing test results

and checking marks in the Gradebook, and so on (these scenarios were described in the appendices, missing from

the publicly-posted review). The result of these scenarios were combined into a General Review (see the unit Web

Accessibility Audit Reporting for a description of different types of reviews). Read through parts of the review to get an

idea of the types of information it contains.

Toolkit: Study the Canvas Accessibility Review 2012 [doc] for examples of the types of information that can be

found in a web accessibility review. Add it to your Toolkit as a reference.

You might ask, if there are so many issues, why did we use Canvas to deliver the online course version of the content

here? Following the publication of the review, Canvas did pay attention and put considerable effort into improving the

accessibility of their system. In 2014, Canvas accessibility had been much improved, though with still a few areas where

improvements could be made. Compared with other Learning Management Systems, the current version of Canvas fares

well in terms of accessibility.

WCAG Web Auditing Review Template | 65

Activity: WCAG Scavenger Hunt

Now that you have been introduced to the key guidelines you’ll refer to often when conducting accessibility reviews,

it will be necessary for you to expand on your understanding of WCAG 2.1 by eventually reading through the full

specification (if possible, before completing the reading and activities here).

To become comfortable with WCAG 2.1 and its associated documentation, try this Scavenger Hunt challenge. Below is

a list of barriers that you’ll likely see on many websites. For each barrier, find a relevant guideline and match a sufficient

technique (with its ID) to remove the barrier. How to Meet WCAG 2.1 is a good reference.

Happy hunting!

Example

Barrier: Pre-recorded video does not audibly describe meaningful visual activity

Technique ID: G78: Providing a second, user-selectable, audio track that includes audio descriptions.

List of Barriers

1. Image has no text alternative

2. Video has no captions

3. Colour is used on its own to represent meaning

4. Contrast between text and background colours is insufficient (<4.5:1)

5. Form button is not keyboard operable

6. Page redirects to another before contents can be read

7. Webpage does not have a descriptive title

8. No means is provided to skip past large main menu on a webpage

9. The language of a page is not defined

10. Page redirects when a form radio button receives focus

Suggested Answers to Activity

66 | Activity: WCAG Scavenger Hunt

Self-Test 2

Question 1

Which WCAG 2.0 level of conformance is considered the generally agreed upon level that organizations
should aim for when addressing the accessibility of their websites?

a. Level A

b. Level AA

c. Level AAA

Question 2

Which TWO of these guidelines are considered the most important in terms of reducing the greatest
number of potential barriers, according to “10 Key Guidelines” introduced in Unit 2?

a. 1.1.1 Non-Text Content

b. 2.1.1 Keyboard Accessible

c. 2.4.1 Bypass Blocks

d. 3.1.1 Language of Page

e. 3.1.5 Reading Level

f. 4.1 Parsing

Question 3

Which of the following are NOT principles of WCAG 2.0? Please select all that apply.

a. Perceivable

b. Operable

c. Understandable

d. Reproducible

Self-Test 2 | 67

e. Predictable

f. Robust

Answers to Self-Test 2

An interactive or media element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1298

68 | Self-Test 2

3. AUTOMATED TESTING TOOLS

3. Automated Testing Tools | 69

Automated Testing Tools

In this unit and the next, we will move from the general overview to look more closely at the necessary tools and

strategies for assessing the accessibility of web content. Specifically, we will examine:

• Automated web accessibility testing tools (i.e., accessibility checkers)

• Tools for evaluating colour contrast, validating HTML markup, and determining the reading level of web content

• Assistive technologies (AT)

• Manual testing strategies

Building on the general understanding of automated review tools introduced in the unit Aspects of Web Accessibility

Auditing, this unit focuses on a few specific tools that you will want to add to your toolkit. We won’t cover all the potential

tools you might use, but rather focus on learning how to use some of the popular tools. Feel free to explore beyond those

introduced here.

The first group of tools we will look at are automated accessibility checkers. These are typically web-based tools that

take a URL or a copied HTML page, scan through the HTML and run a variety of tests to determine the presence or

absence of accessibility features. We will look at:

• AChecker, developed at the Inclusive Design Research Centre at OCAD University in Toronto

• The WAVE Accessibility Evaluation Tool, developed by the WebAIM group at the Center for Persons with Disabilities

at Utah State University

We’ll list a few others too, that you may want to investigate on your own.

After familiarizing yourself with the automated accessibility testing tools, we’ll look at a few other automated tools for:

• Testing colour contrast

• Evaluating reading level

• Validating HTML markup

Automated Testing Tools | 71

Objectives and Activities

Objectives

By the end of this unit, you will be able to:

• Practice using one or more automated web content accessibility checkers.

• Evaluate the strengths and limitations of automated web content accessibility checkers.

• Select the automated web content accessibility checker that you wish to include in your Web Accessibility Auditing

Toolkit.

• Operate other tools used in accessibility testing.

Activities

• View walk-through/screencast videos of AChecker and WebAIM tools

• Test websites you are familiar with

• Test for colour contrast conformance

• Test for readability conformance

• Build your Toolkit (add bookmarks for tools introduced)

• Self-Test 3

72 | Objectives and Activities

Limitations of Automated Web Accessibility
Checkers

Automated accessibility checkers are a must in your Web Accessibility Auditing Toolkit, though it is important to

understand their limitations. Think of an automated accessibility checker like a spell checker in a word processor. Though

a good start for identifying misspelled words, a person must still read through the text to ensure words have been

used correctly (e.g., where “there” is used in place of “their”). For now, human judgement must also be involved for

any potential barriers that involve assessing meaning. For example, automated checkers can identify ambiguous phrases

like “click here” or “this link” used as link text, but a person needs to determine whether this text accurately describes

the link’s destination or function. Similarly, a person must decide whether alt text or a long description for an image

accurately describes the meaningful information in the image, something automated checkers cannot currently do.

You may also want to make use of multiple accessibility checkers and compare results. See the Activity at the end of

this unit for an exercise comparing automated accessibility checkers.

Try This: Can you think of other instances where human judgement is required to assess the full extent of a

barrier in web content?

Another limitation worth noting is that automated checkers are unlikely to identify with certainty whether accessible

equivalents are available for web content that has been flagged as a potential barrier. A human perspective is required

to make the association between equivalent elements. However, the site provider may offer an accessible HTML version

of the page as well. An automated checker would not recognize the connection between the barrier and its accessible

alternative, but a person would.

Limitations of Automated Web Accessibility Checkers | 73

AChecker Web Accessibility Checker

Toolkit: Add the public version of AChecker Web Accessibility Checker to your Toolkit.

In the public version, you can set up an account and do your automated accessibility testing. See below for details

on downloading and installing your own version.

Overview

Fun Fact! AChecker was originally developed as an Enabling Change project, the same fund that supported the

development of the materials here.

First released in 2005, AChecker was created with the goal of providing an accessibility checking tool that was 100%

transparent, interactive, customizable, and free. AChecker makes use of the Open Accessibility Checks (OAC), which is

a collection of checks based on all web accessibility guidelines available globally. Currently, there are a total of 310 OAC

checks employed by AChecker.

AChecker Features

AChecker has specific features for public users, registered users, administrators, and developers. To take advantage of

these features, you should first create an account on the public AChecker site, if you are not planning to install a version of

your own (see below). Follow the link you added to your Toolkit above, and click “Register” to create an account. Creating

an account will allow you to save your accessibility reviews, and generate an AChecker seal for sites that pass its review.

74 | AChecker Web Accessibility Checker

Figure: AChecker screenshot showing the main interface for conducting accessibility reviews
For more about using AChecker, watch the following video:

Video: Using AChecker to Test Web Accessibility

AChecker Web Accessibility Checker | 75

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1311

© Greg Gay. Released under the terms of a Standard YouTube License. All rights reserved.

Set Up Your Own AChecker

Technical
Download AChecker

Installation Instructions

• Unzip the master.zip file downloaded from GitHub into a php-enabled, web-accessible directory.

• Open the installer in your browsers at http://[yourserver.com]/AChecker/install

• Follow the instructions provided by the installer.

Installing from GitHub or If You Plan to Contribute
If you are familiar with using GitHub, you can clone the most current source code from there. This version often

has new features not available yet in the public site, or in the downloadable version of the software, though it may

be less stable than the publicly-distributed version. If you would like to participate in AChecker’s development, or

76 | AChecker Web Accessibility Checker

you would like to add your own accessibility checks, or perhaps fix a bug you’ve found, working from GitHub is the

way to have your work added to the public source code.

AChecker Source Code

AChecker Web Accessibility Checker | 77

WAVE Accessibility Evaluation Tool

Overview

Another popular free accessibility checker is WAVE, developed by WebAIM at the Center for Persons with Disabilities

at Utah State University. It is a web service, similar to AChecker, though without much of the interactivity and

customizability. Those who prefer a visual presentation of the issues, as opposed to the list presentation of AChecker,

may find WAVE easier to use.

WAVE Features

WAVE is similar to AChecker in the following respects:

• WAVE can take a URL and assess the page it leads to

• It evaluates one page at a time

WAVE produces a report by reproducing the page that was reviewed, inserting a variety of icons into the content to

identify errors (known problems) and alerts (potential problems), as well as the accessibility features that are present.

Clicking on any of the icons will provide a brief description and a link to additional information.

Toolkit: Add the WAVE Chrome Extension to your Toolkit.

78 | WAVE Accessibility Evaluation Tool

Other Notable Accessibility Review Tools

Explore the links listed here to get an idea of the range of accessibility checkers currently available, and the variation in

these types of tools. Add them to your Web Accessibility Auditing Toolkit if you find them useful.

Free Tools

For basic accessibility testing, you may find these free tools useful.

• Cynthia Says

• FAE (Functional Accessibility Evaluator)

• aXe (Chrome plugin)

• aXe (Firefox plugin)

• Vamola (Italian version of AChecker)

Proprietary (Fee for License)

For larger sites, or for in-depth testing across a website, these enterprise level accessibility testing tools may be helpful.

• HiSoftware Compliance Sheriff

• Siteimprove

• PowerMapper Accessibility Testing Tools

• Tenon

Even More Tools

Collections of accessibility testing tools can be found through the following resources.

• Paciello Group Accessibility Testing Tools

• W3C WAI Accessibility Evaluation Tools List

Other Notable Accessibility Review Tools | 79

Colour Contrast Evaluation

Colour Blindness Simulations

Try This: To experience how colour blindness affects people’s ability to see colour, experiment with the Coblis –
Color Blindness Simulator.

Colour Contrast Testers

A quick search of the Internet for “colour contrast test” should turn up a variety of tools you can use to test contrast.

Here, we will mention the WebAIM Color Contrast Checker, but if you prefer another, you can add it to your Toolkit.

Toolkit: Bookmark the WebAIM Color Contrast Checker and add it to your Toolkit.

Why Colour Contrast Is Important

You may recall from the unit Introduction to WCAG 2.0 that WCAG 2.0 Guidelines 1.4.3 and 1.4.6 address accessibility

issues associated with colour contrast. These two guidelines are presented below. Note the contrast ratios at each level

(4.5:1 & 3:1 at Level AA and 7:1 & 4.5:1 at Level AAA for smaller and larger text respectively).

1.4.3 Contrast (Minimum): The visual presentation of text and images of text has a contrast ratio of at least 4.5:1,

except for the following (Level AA):

• Large Text: Large-scale text and images of large-scale text have a contrast ratio of at least 3:1

• Incidental: Text or images of text that are part of an inactive user interface component, that are pure

decoration, that are not visible to anyone, or that are part of a picture that contains significant other visual

content, have no contrast requirement.

• Logotypes: Text that is part of a logo or brand name has no minimum contrast requirement.

1.4.6 Contrast (Enhanced): The visual presentation of text and images of text has a contrast ratio of at least 7:1, except

for the following (Level AAA):

80 | Colour Contrast Evaluation

• Large Text: Large-scale text and images of large-scale text have a contrast ratio of at least 4.5:1.

• Incidental: Text or images of text that are part of an inactive user interface component, that are pure

decoration, that are not visible to anyone, or that are part of a picture that contains significant other visual

content, have no contrast requirement.

• Logotypes: Text that is part of a logo or brand name has no minimum contrast requirement.

Some accessibility checkers will have colour contrast evaluation built into them (e.g., AChecker), but others will not.

Technical:
There are many colour contrast evaluators from which you may choose to support your contrast testing (see

some suggestions below). Using any of these tools requires gathering the colour codes from the elements being

evaluated. There are a variety of ways to find these codes, though the easiest is to use a browser’s “Inspect” feature.

You can inspect the colours in the right frame, as shown in the figure below.

Figure: Inspect panel showing the colour codes in the Style pane to the right
Once you’ve tested a few colour combinations you’ll quickly develop a “feel” for good contrast, and be able to

quickly scan a page and identify where contrast may not be sufficient. You can test the specific colours associated

with those elements you’ve identified in a scan. There are tools, however, that will evaluate all the colours on a page

(e.g., AChecker) – this may be preferable if you are reviewing a site that seems to have multiple contrast issues.

For a walk through the WebAIM colour contrast checker, watch the following video:

Video: Checking Colour Contrast

Colour Contrast Evaluation | 81

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1317

The Anatomy of a Colour Contrast Results Screen

In the figure below you can see the foreground colour (#007ac6) and background colour (#ffffff) codes entered into the

respective fields. Below that you will see the compliance status for Normal and Large text, at Level AA and Level AAA. In

this case the colours contrast well enough to pass at Level AA (4.57:1), but for smaller text the contrast ratio fails at Level

AAA. Sites should aim for Level AA contrast, but if feasible try for Level AAA compliance.

Note the lighten and darken links next to the colour input field. You can click these (on the test site) to adjust the

colours so they will pass, then take the resulting colour codes and replace the existing codes to adjust the colour on the

site being evaluated so it complies.

82 | Colour Contrast Evaluation

Figure: The WebAIM Colour Contrast Checker

Other Contrast Testers

Here are a few other colour contrast testers you may want to experiment with:

• Acart Communications Contrast Checker

Colour Contrast Evaluation | 83

Readability Testing

Why Is Readability Testing Important?

Web content authors should use the simplest language possible for the following reasons:

• Plain language will translate more easily for those who may wish to read the site in a different language.

• Plain language will be more accessible to those with lower levels of literacy.

• For a general audience, most readers will appreciate simpler language over the unnecessary use of complex words.

Though appropriate reading level is identified as a Level AAA requirement in WCAG 2.0, this is one Level AAA guideline

that most public sites should aim to meet in order to reach the broadest possible audience.

The WCAG 2.0 guideline that is relevant to readability is 3.1.5:

3.1.5 Reading Level: When text requires reading ability more advanced than the lower secondary education level after

removal of proper names and titles, supplemental content, or a version that does not require reading ability more

advanced than the lower secondary education level, is available. (Level AAA)

Reading Level Test Tools

Automated accessibility checkers like AChecker and WAVE do not test for readability.

You can find a variety of readability test tools by searching the Web for “readability test.” These tools run a variety of

algorithms that measure things like word length, number of syllables per word, and sentence length, to come up with a

readability score. We have selected one example here for you to include in your Toolkit: The Readability Test Tool.

Toolkit: Bookmark The Readability Test Tool to add it to your Toolkit.

This tool, like most others, will allow you to enter a URL to a webpage, or paste text into a text area. The output from the

test appears in the figure below. In this case the reading level is about grade 10, in the range acceptable to pass Guideline

3.1.5. The first area lists a series of readability indices, calculated using various combinations of the characteristics of the

text on the page. If you visit the tool’s site, the measures for these indices are listed. Below the indices is a list of the

characteristics of the text content. All of these elements are averaged to come up with an average grade level score.

84 | Readability Testing

Figure: Readability Test Results from the Readability Test Tool

Other Readability Testers

• Readability Calculator

• Juicy Studio Readability Test

Readability Testing | 85

Markup Validation

Many HTML editing tools will have markup validation built into them, so you can test the validity of the code while

creating it, but since most sites are dynamically assembled parts, these built-in validators have limited usefulness. It

is necessary to validate markup after the code has been generated into a webpage using tools like the W3C’s HTML

Validator. This is a tool you should add to your Toolkit.

Toolkit: Bookmark the W3C Markup Validation Service to add it to your Toolkit.

Technical: The content that follows is intended for a technical audience.

The WCAG 2.0 Guideline that deals with markup validation is Guideline 4.1.1. Note that Parsing is a Level A requirement,

so despite the fact that some “careless” code may get by without affecting accessibility, markup validation needs to be

done in order to comply with WCAG 2.0. The guideline is reproduced below for your reference.

4.1.1 Parsing: In content implemented using markup languages, elements have complete start and end tags, elements

are nested according to their specifications, elements do not contain duplicate attributes, and any IDs are unique,

except where the specifications allow these features. (Level A)

Note: Start and end tags that are missing a critical character in their formation, such as a closing angle bracket or

a mismatched attribute value quotation mark are not complete.

Why Perform Markup Validation?

Markup validation ensures that the HTML of web content is well formed, and used in a way that is compliant with the

HTML specifications. It is important that HTML be clean and properly structured for the following reasons:

• Assistive technologies, such as screen readers, generally rely on the HTML to properly interpret content.

Technologies will attempt to correct markup errors themselves, but there are some markup errors that will trip up

assistive technologies, such as table cells that are not closed, or duplicate IDs used on a page.

• Clean markup is a sign of quality work, and validating HTML should be something developers do consistently.

• Clean markup ensures that barriers are not introduced inadvertently because of broken code.

When to Perform Markup Validation?

Markup validation should be done as early as possible in the web accessibility auditing process. It can help rule out

apparent barriers when testing content with assistive technologies, so it is helpful to validate the HTML before doing any

screen reader testing. We’ll talk more about screen reader testing in the section Screen Reader Testing.

86 | Markup Validation

Notable Constraints of Markup Validation

In reality it can be difficult to achieve 100% validation, and sometimes it may be necessary to let markup errors go. Below

are some examples of situations that might require a developer’s and/or auditor’s judgement.

ARIA in an XHTML document: Developers may wish to use ARIA in an XHTML document, which will fail validation

because ARIA is not a part of the XHTML specification (it’s part of HTML5). Using ARIA in XHTML can enhance

accessibility, so as an auditor you may choose to ignore these validation errors.

HTML5 Elements: If HTML5 elements such as nav are being used to create a navigation bar, validation will produce

warnings if the ARIA role="navigation" is used in that element. The nav element is supposed to already have a

role of navigation built in. In reality, though, there is still inconsistent support for the nav element, so developers will

often add role="navigation" as a fallback for technologies that do not identify nav correctly. From an accessibility

perspective, it does not hurt to have the redundant roles in HTML5 elements.

External Services: Another common validation issue occurs when developers use external services within markup that

injects third party HTML into the code of a site. Google ads from Adwords, for instance, tend to introduce validation

errors, though these errors have no bearing on accessibility.

In all of the above cases, judgement is needed to decide whether the invalid markup creates a potential barrier or not,

and whether these errors should be reported in a web accessibility audit. Such errors can cause a site to fail at Level A,

which can have legal implications in jurisdictions that require Level A compliance. They can also have implications for

auditors who choose to ignore these errors and pass a site at Level A, despite the HTML not validating.

Key Point: If a site is given Level A compliance with any of these validation errors present, an explanation must be

provided in the audit report.

How Validators Work

Much like the automated accessibility checkers, it is possible to have the validator assess markup via URL, file upload, or

by pasting in HTML. Note that the HTML must be a full HTML document, with all the necessary components including

a DOCTYPE declaration, an opening HTML element, a HEAD element and Title, as well as opening and closing BODY

elements and a closing HTML element at the end of the document.

When running the validator there are a variety of settings that can be adjusted, though the default settings are usually

sufficient. One option you may want to enable is “Show Source” which prints out the HTML of the page, making it easier

to identify exactly where issues occur in the page. This option and others are shown in the screenshot of the W3C

Validator that follows. The W3C Validator will also identify some accessibility issues, such as images missing alt text or

use of duplicate IDs within the content.

Markup Validation | 87

Figure: The W3C Markup Validation Service opening screen, with various options displayed
⇧ Back to Top

88 | Markup Validation

Activity: Compare AChecker and WAVE

If you have had an opportunity to begin experimenting with the AChecker and/or WAVE automated accessibility review

tools, consider these questions for self-reflection:

• What advantages/disadvantages have you found for each of these tools?

• What features do you find most useful?

• How do they compare in the reports they generate? Do you get the same result? If not, how do they differ?

• If you have used other accessibility checkers not listed in the course, how do they compare to WAVE and AChecker?

Activity: Compare AChecker and WAVE | 89

Self-Test 3

Question 1

Please follow the directions below and then select all applicable options:

• Open a new browser window.
• Launch one of the one of the colour contrast testing tools presented in Unit 3.
• Once you have opened the tool, enter each pair of colour identifiers (foreground, background) listed

below in the appropriate fields pair, and identify which ones provide sufficient contrast to pass
Guideline 1.4.3. Assume the foreground text is a 12 point font.

• Select all pairs below that pass Guideline 1.4.3.

a. 0000ff, ffffff

b. 9a9aff, efefef

c. 9a9aff, 7a4fef

d. 000000, 8f6bf1

e. 5c5c5c, 63f1af

f. 4c4c4c, 11c973

g. 4d4d4d, c9a1c1

Question 2

Please follow the directions below and then select the correct option:

• Open a new browser window.
• Launch the readability test tool.
• Once you have opened the tool, evaluate the following block of text (do not include the quotes

surrounding the paragraph).
• Determine the overall reading grade level required to effectively understand the paragraph.
• Select the average grade level range from the list below.

“Though reading level is a Level AAA requirement in WCAG, this is one Level AAA guideline that
most public sites should aim for to reach the broadest possible audience. Generally speaking Web content
authors should use the simplest language possible (within reason). Simple text will translate more easily for
those who may wish to read the site in a different language. It will be more accessible to those with lower
levels of education, or for those reading in a second language. And for a general audience, most readers will

90 | Self-Test 3

appreciate simpler language over unnecessary use of “big” words. Being able to explain things in simple
language for most, is a more intelligent use of language than loading it with jargon, complex terminology, and
unnecessarily complicated words and sentences.”

a. 6 to 7

b. 8 to 9

c. 10 to 11

d. 12 to 13

e. 14 to 15

f. 16 to 17

g. 18 to 19

Question 3

Please follow the directions below and then select the correct option:

• Launch AChecker
• Launch WAVE
• In each checking tool, enter the following Web page: Web Accessibility Auditing Showcase: Images
• Identify the number of “Known” problems flagged by each tool.
• What is the difference between the number of known problems identified in AChecker and the

number of errors identified by WAVE?
• Select the correct answer from the options below.

a. none

b. one

c. two

d. three

e. four

f. five

Question 4

Based on the evaluations that you did in the Question 3, which of the following issues did both checkers
identify? Please select all that apply.

Self-Test 3 | 91

a. missing form label

b. headings used improperly

c. image missing alt text

d. colour contrast is insufficient

e. link text may not be meaningful

f. duplicate IDs were found

g. image may contain text that is not in the alt text

Answers to Self-Test 3

An interactive or media element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1325

92 | Self-Test 3

4. MANUAL TESTING STRATEGIES

4. Manual Testing Strategies | 93

Introduction to Manual Testing Strategies

In addition to automated testing and testing with assistive technologies (AT), manual testing is an important part of web

accessibility auditing. A number of simple manual tests will be introduced so you can quickly get a general sense of the

accessibility of a website and identify key issues with just a cursory scan. For the developers taking this course, more

complex manual testing will also be introduced, involving the examination of source code and dynamically tweaking code

to test potential solutions.

The manual testing strategies discussed in this module include:

• Tab Key Navigation Test

• “Select All” Test

• Code Examination and Repair

• Media Review

Introduction to Manual Testing Strategies | 95

Objectives and Activities

Objectives

By the end of this unit, you will be able to:

• Use manual accessibility tests to quickly identify potential barriers.

• Identify a variety of tools that can assist with web accessibility auditing.

• Identify potential barriers in multimedia content.

• Utilize basic code examination strategies to identify and confirm potential accessibility barriers.

• Implement code changes in live webpages to test potential solutions to accessibility barriers.

Activities

• Install and explore browser add-on tools

• Reflect on your preferences, pros and cons, and other possible tools for manual testing

• Self-Test 4

96 | Objectives and Activities

Tab Key Navigation Test

The Tab Key Navigation test is often used with the “Select All” test (discussed on the next page) to confirm whether items

that were not selected are keyboard operable, but this test can also be used on its own. Place the cursor at the very

start of the HTML content (sometimes tricky), or in the browser’s location field or address bar, then press the Tab key

repeatedly and watch as the cursor moves through the content of the page. Make the following observations:

1. Are you able to see the cursor’s area of focus as you move through elements of the page? If not, this will violate

Guideline 2.4.7 Focus Visible (Level AA). When reporting on the issue, recommend adding a focus indicator so it is

possible to visually follow the cursor as it moves through the page.

2. As you navigate with the Tab key through elements on the page, do all functional elements such as links, buttons or

forms receive focus? If not, those elements that do not receive focus are going to be inaccessible to some people,

violating Guideline 2.1.1 Keyboard (Level A).

Technical: These elements are often custom features built with non-standard HTML and JavaScript. In such cases

you can recommend the use of standard HTML where possible or suggest the developer add keyboard focus for

the element by adding tabindex="0" to the HTML, and add keyboard events, in addition to the existing mouse

events, to the programming that controls the functionality of the feature.

3. When navigating with the Tab key through elements of the page, is the path followed through these elements the

standard left to right, top to bottom sequence? If the cursor’s focus jumps around, moving to places on the page

outside where you might logically expect the cursor to go by viewing the layout of elements on the page, it may

violate Guideline 2.4.3 Focus Order (Level A). By default the focus order will be standard, so in cases where the order

is irregular, it is because the developer has purposely changed the order. You may recommend removing the

irregular tab sequence or adjusting it to follow a more meaningful path.

4. While navigating with the Tab key through menus, and other features that one can operate with a mouse, do these

features also operate with a keyboard? If they do not, they will be inaccessible to those who use only a keyboard to

move through web content. In the figure below, the submenus that drop down when one of the main navigation

elements is clicked cannot be opened with a keypress. These types of menus may use the arrow keys to open and

navigate through submenus, or they may operate using the Tab key. Arrow keys are preferred, though Tab key

navigation will satisfy the success criteria associated with keyboard operability.

For drop down menus like those described in #4 above, also watch for Tab key navigation moving through the items in the

submenus, but the submenus not visibly opening. This will be confusing for low vision keyboard users who are following

the focus indicator to keep track of where they are within the page.

Tab Key Navigation Test | 97

Figure: Scenario in which the menus only function with a mouse click (see Lulu’s Lollipops)

98 | Tab Key Navigation Test

“Select All” Test

The “Select All” test can help identify elements in web content that are not keyboard accessible. The key command for

“Select All” in Windows is Ctrl-A, and for Mac is Command-A.

How to Perform a “Select All” Test

After pressing the “select all” key command for the operating system you are using to select the content of a webpage,

scan over the page looking for elements that are not selected. In the two screenshots below, the first has nothing yet

selected, and the second is the result of pressing the “select all” key combination.

Compare “Before Select All” above, with “After Select All” below and notice the elements that do not have the blue
background colour in the latter version.

“Select All” Test | 99

Before Select All

Figure: Screenshot prior to selecting to compare with the screenshot below

100 | “Select All” Test

After Select All

Figure: Screenshot after selecting showing elements that do not appear to be selected
In the second screenshot, the Feedback tab located on the right does not appear to be selected and is missing the blue

background colour that appears when other elements are selected. That tab should be investigated further to see if it

is keyboard operable. The appearance of not being selected does not necessarily mean such elements are not keyboard

operable, but warrants further testing. This testing can be done by using the Tab Key Navigation test described on the

previous page. Using Tab key navigation you can confirm that the Feedback tab on the right is indeed not keyboard

operable. It may then be appropriate to identify the tab as a potential barrier when reporting on the site. Do search the

screen for other ways to get to the Feedback form. There may be an accessible alternative elsewhere on the page, in

which case it may be acceptable for the Feedback tab to be inaccessible, as long as the alternative is relatively easy to

access.

“Select All” Test | 101

Code Examination and Repair

Technical: The content on this page is intended for a technical audience.

Toolkit: If your preferred browser is Firefox, you may wish to install Firefox for Developers, with extended

developer tools. You can also use the standard Inspect Element tool found in most browsers’ context menu by

right clicking on an element and selecting it from the menu.

Once you have discovered a potential barrier, you can identify where the problem is occurring in the HTML markup. In

the screenshot below, the feedback tab (1) on the right of the screen is examined by right clicking and choosing “Inspect

Element with Firebug”” (2). Note: Firebug is now deprecated, but you can do the same thing with selecting “Inspect

Element” from the menu. You will notice the code associated with the feature is highlighted in the code window (3) to the

lower left. Click on the Edit button (4) to edit that HTML to test possible solutions.

Figure: Steps to examine and modify code to test potential accessibility solutions
In the case above, the Tab Key Navigation test revealed that the Feedback tab would not receive focus, thus could not

be operated with a keyboard. A simple fix for this is to add tabindex="0" to the main element containing the tab. Once

added, without reloading the page, the Tab Key Navigation test is conducted again to see if the tab now takes keyboard

focus. It does, though it is still not possible to operate the tab, which requires modifying the associated JavaScript.

102 | Code Examination and Repair

Figure: Result of adding tabindex="0"
After clicking the Edit button, the selected code from above is opened for editing. In this case tabindex="0" has

been added to test whether this adds keyboard focus to the Feedback tab (which it does).

For a look at other tools for examining code, watch the following video on the Chrome accessibility audits.

Video: The new way to test accessibility with Chrome DevTools

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1349

© Google Chrome Developers. Released under the terms of a Creative Commons Attribution license.

Code Examination and Repair | 103

Media Review

Another element of web content that is typically examined manually is multimedia. There are three potential

accommodations that can be found with various media: captions, audio description, and transcripts (and combinations of

these, depending on the media).

Video

All video with meaningful spoken dialogue must include captions that reproduce the verbal elements of the video.

Depending on the jurisdiction you are in, video may also require audio description (referred to as described video for

television) – an audio track added to the video that describes the action or context of the video that one would not be

able to determine by listening. The third element is an optional transcript, made available as a separate file that can be

downloaded or reviewed online on its own.

Key Point: In Ontario, audio description is only required from government organizations as of 2020, despite being

a Level A requirement in WCAG 2.0. For other organizations in Ontario it is not required. Audio description,

however, can be an important accommodation for people who are blind, so smaller organizations should still

attempt to provide audio description when needed.

Adding captions to a video is a fairly straightforward process, with the right tools. Services like YouTube provide built-in

tools that allow video producers to add captions directly through the YouTube video manager. Many video production

programs also include tools for creating captions. The Amara caption editor, which will also caption YouTube videos, can

be used to caption videos from other sources on the Web. It generates a caption file that can be imported into video

editors or players, to quickly add captions. It is also relatively straightforward to convert the caption file into a transcript,

by removing the time codes from the caption file.

Toolkit: Add the Amara Caption Editor to your Toolkit, familiarize yourself with how it works, and provide the link

to it in your audit reports where missing captions have been identified.

One word of caution regarding services that provide automated captions: these captions do not satisfy the success

criterion associated with Guideline 1.2.2 Captions (Prerecorded) Level A. They may be a helpful strategy to consider in

cases when a video must be posted in a hurry; however, in many cases these automated captions have a very high error

rate, and provide little accommodation for those who require them. Only human-generated captions are acceptable to

meet the requirements of this guideline. One of the most useful aspects of automated captions is that they are a good

starting point for human-generated captions. They can be exported from YouTube into Amara where they can be refined,

then exported back to YouTube. However, the more errors automated captions have in them, the less useful they become

as a starting point for human-generated captions. With an error rate of about 35% or worse, you are better off captioning

from scratch.

Key Point: Automated captioning output is not considered an acceptable text alternative for audio. Captions must

104 | Media Review

be created by a human being.

For more on how to use the YouTube and Amara caption editors, view the videos below.

Video: How to Add Closed Caption Subtitles on YouTube 2015

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1351

© Noah’s World!!!. Released under the terms of a Standard YouTube License. All rights reserved.

Video: Captioning with Amara Caption Editor

Media Review | 105

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1351

© Amara Subtitles. Released under the terms of a Standard YouTube License. All rights reserved.

Audio

Examining the accessibility of audio content is straightforward. When audio with meaningful spoken information is

presented, a transcript must be provided.

It is also possible in some cases to caption an audio track if it is being presented in a player that supports captioned

audio. Provide captioned audio where possible, but also be sure to include a transcript.

Figure: Example of captioned audio

106 | Media Review

Other Tools for Manual Testing

You may also find the following tools useful when auditing web accessibility. Though we won’t go into any detail here, you

may optionally install these add-ons and extensions and explore their capabilities.

Firefox Add-ons

• Firefox Web Developer ToolBar

• HeadingsMap (Firefox Add-on)

• AInspector

• WCAG Contrast Checker

Chrome Extensions

• WAVE Chrome Extension

• aXe (Accessibility Testing for Chrome Developer Tools)

• ColorPick Eyedropper

Other Tools for Manual Testing | 107

Activity: Chrome Tools

For this activity you will need the Chrome web browser. Be sure to install it now if you have not

already. You will need it in the next unit as well. Visit the Chrome Web Store using the Chrome web browser, and install

the ColorPick Eyedropper and the WAVE Chrome Extension. Explore the features of these tools and think about how they

might be used during web accessibility auditing activities.

108 | Activity: Chrome Tools

Self-Test 4

Question 1

The “Tab Key Navigation test” is useful for identifying a variety of potential barriers. From those uses listed
below, select all that the Tab Key Navigation test would identify.

a. Focus visibility

b. Keyboard operability

c. Missing alt text

d. Focus order

e. Descriptive feedback

Question 2

Which of the following potential barriers would the “Select All test” be useful in identifying? Select all that
apply.

a. Focus visibility

b. Keyboard operability

c. Missing alt text

d. Focus order

e. Descriptive feedback

Question 3

To examine the HTML markup associated with a potential barrier that has been identified using the Tab
Key Navigation or Select All tests, a recommended approach would be to use:

a. The browser’s “View Source” function

b. The Browser’s “Inspect Element” function

c. Install and use the “Examine Markup” browser plugin

Self-Test 4 | 109

d. The W3C Markup Validator

e. Use the WebAIM toolbar’s view source feature

Question 4

When reviewing video content for accessibility, which of the following alternatives does WCAG 2.0 suggest
should be provided? Select all that apply.

a. An alternative slideshow for those who do not have a video player

b. Captioning

c. A downloadable PDF version

d. A downloadable slideshow version

e. A transcript

f. Audio description

Answers to Self-Test 4

An interactive or media element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1357

110 | Self-Test 4

5. ASSISTIVE TECHNOLOGY TESTING

5. Assistive Technology Testing | 111

Assistive Technology Testing

In this unit we will look more closely at assistive technology testing, and particularly testing with a screen reader, and

in the next unit we will look at strategies for including people with disabilities as part of a web accessibility audit.

Specifically, we will examine:

• Screen readers as an accessibility testing tool

• ChromeVox screen reader and learning to use it

• Screening user testers

• Developing user testing protocols

Many of Lulu’s potential clients might use assistive technology to access her site, so to help ensure the

success of Lulu’s “barrier-breaking” efforts, it is important to assess how the site and these devices interact.

There is a wide range of assistive technologies (AT) that people use to access the Web, from browser-based tools for

magnifying text, to screen readers that read back text content, to various types of hardware such as braille displays, or

switches and scanners that can be used by those with limited physical mobility to control keyboard and mouse actions.

Figure: Examples of assistive technology
Source: Intro2AT

Assistive Technology Testing | 113

Why Learn About Assistive Technologies?

While web accessibility guidelines are written to be technology neutral, and intended to remove the need for testing

with specific AT, there are times when manual testing with AT may be necessary. Screen readers are most commonly

used for manual AT testing. You were introduced to the ChromeVox screen reader in the section ChromeVox Screen

Reader. We will introduce you to some other common screen readers and discuss their strengths and limitations. We

will also examine their compatibility across web browsers, operating systems, devices, and with various web accessibility

technologies.

114 | Assistive Technology Testing

Objectives and Activities

Objectives

By the end of this unit, you will be able to:

• Use basic features of desktop screen readers such as JAWS and NVDA.

• Use basic features of mobile screen readers such as VoiceOver and Talkback.

• Identify assistive technologies other than screen readers that might be used in web accessibility testing.

Activities

• Practice using ChromeVox screen reader for day-to-day screen reader testing

• Experience web navigation with a screen reader as your primary means of accessing content

• Self-Test 5

Objectives and Activities | 115

Screen Reader Testing

In this course, we focus specifically on the ChromeVox screen reader add-on for the Chrome web browser because of its

simplicity, support for standards, and its availability across platforms and being free, open source software. We will also

introduce you to a number of other screen readers and provide a summary of the main keyboard commands you might

use during screen reader testing.

For new or inexperienced users, learning to operate a screen reader can be difficult, particularly if you are not using

one on a regular basis. Memorizing the basic commands provided in the upcoming pages is often enough for screen

reader testing purposes, though there is much more functionality in screen readers that is not discussed here. You are

encouraged to explore the full range of features screen readers have to offer as time allows.

ChromeVox is ideal for developers and auditors, though it does have its limitations, and it is a good idea to do final

screen reader testing with one of the more broadly used screen readers like JAWS, Window Eyes, NVDA, or VoiceOver, and

across multiple browsers and devices. What may seem accessible with one combination of browser and screen reader,

may not necessarily have the same accessibility across other combinations.

116 | Screen Reader Testing

Summary of Available Screen Readers

There are a variety of screen readers available for different operating systems, whether you are using Windows, Mac,

Linux, iOS, or Android, and there are a few web-based screen readers. The more common screen readers are listed below

for reference.

Screen readers should not be confused with Text-to-Speech (TTS) applications. Though both read text content aloud,

TTS only reads content text, such as the text on this page, and not the menus or interface of the browser or reader

application displaying the page. Screen readers also read content text, but they also read aloud elements of the browser’s

interface and elements of the operating system, as well as provide ways to navigate the content, with features for listing

headings, links, or tables, for example. These features are not typically found in TTS applications.

Windows (Commercial)

• JAWS (Freedom Scientific)

• Window Eyes (GW Micro) – discontinued

• Dolphin (Dolphin)

• ZoomText (Ai Squared)

Windows (Free Open Source)

• NVDA (NV Access)

Mac

• VoiceOver (built into Macs)

Linux (Free Open Source)

• Orca (GNOME)

• Speakup (Speakup)

iOS

• VoiceOver (built into iOS devices)

Summary of Available Screen Readers | 117

Android (Free Open Source)

• Talkback (built into Android devices)

Browser-Based (Free Open Source)

• ChromeVox (Google, requires the Chrome browser)

For a more thorough list of screen readers, see Wikipedia’s Screen Reader entry.

Important to Note: Many of the listings at this Wikipedia link are not actually screen readers, but rather Text-to-Speech

(TTS) programs. The two should not be confused. TTS programs generally only read text selected from content, while

screen readers tend to read all elements of the operating system they run on, or all elements in web content.

Screen Reader Usage Trends

It is rarely possible to test with every screen reader available, so it is a good idea to choose the screen readers you use

strategically. Understanding screen reader usage patterns can help you decide which one(s) to test with.

WebAIM has been conducting screen reader user surveys since 2009, with the latest results from October 2019 (as of

this writing). The 2019 WebAIM Screen Reader User Survey notes that 72.5% of respondents used more than one desktop/

laptop screen reader on a regular basis, with NVDA (72.4%), JAWS (61.7%), and VoiceOver (47.1%) in the lead. This was

the first year NVDA usage exceeded JAWS usage. With built-in screen readers like VoiceOver on Mac, and free open

source screen readers like NVDA – both much improved in recent years – many users are opting for these less expensive

options. JAWS, though highly functional, is expensive software and can be out of reach for some who need screen reader

technology.

Microsoft’s Narrator first made an appearance in the 2017 survey with 21.4% respondents reporting using it commonly

on a desktop/laptop. In 2019, Microsoft Narrator usage increased to 30.3%. In 2015 its usage was so low that it wasn’t

even mentioned by name, but because of significant improvements in Windows 10 it has been gaining users.

The previous 2015 survey reflected a significant dip in JAWS and NVDA usage in favour of Window-Eyes and ZoomText

that isn’t repeated in the 2017 or 2019 results. The 2017 survey attributes the difference to the respondents’

demographics: “What happened in 2015? Essentially, the survey was distributed to a much broader audience, with many

ZoomText and Window-Eyes users recruited to respond. Window-Eyes was also offered freely with Microsoft Office

before the 2015 survey, but has since been discontinued.”

118 | Summary of Available Screen Readers

Figure: Usage patterns of commonly used screen readers
Source: WebAIM Screen Reader User Survey #8

Mobile screen reader usage has increased exponentially over the years, from just 12% in 2009 to 88% in 2017 (statistic

not available in 2019). VoiceOver is a clear market leader on mobile platforms (commonly used by 69% of respondents in

2017, up to 71.2% in 2019), followed by TalkBack for Android (29.5% in 2017, up to 33% in 2019). Keep this in mind when

screen reader testing. Testing with mobile screen readers should be considered.

The following table from WebAIM shows changes in screen readers commonly used for desktop and laptop computers

between 2009 and 2019.
Which of the following desktop/laptop screen readers do you commonly use?

Screen Reader 2009 2015 2017 2019

JAWS 75.2% 43.7% 66.0% 61.7%

NVDA 25.6% 41.4% 64.9% 72.4%

VoiceOver 14.6% 30.9% 39.6% 47.1

Window-Eyes 23.5% 29.6% 4.7% 1.2%

ZoomText 7.5% 27.5% 6.0% 5.5%

System Access or System Access To Go 22.3% 6.9% 4.0% 3.5%

ChromeVox n/a 2.8% 5.1% 4.7%

Narrator n/a n/a 21.4% 30.3%

Other 7.7% 6.5% 6.4% 6.0%

Summary of Available Screen Readers | 119

Other Screen Readers to Consider

Readings and References: Here is a list of Other Screen Readers to Consider [PDF] when screen reader testing.

120 | Summary of Available Screen Readers

Other Assistive Technologies

While screen readers are the most common assistive technology used in web accessibility testing, there are others that

merit consideration when performing web accessibility audits. Fortunately, when AT testing is required, the issues that

are identified while testing with a screen reader are often similar to issues that may arise with other AT.

Listed below are some of the more common assistive technologies that may be included in accessibility testing, perhaps

as part of user testing, covered in the unit User Testing, to gather additional usability feedback across a range of diverse

users.

Magnification

Screen magnification software is often used by people with low vision to make text and images larger and more

visible. Some screen magnifiers, such as ZoomText, function much like a screen reader, with audio output in addition

to magnifying the content. Issues that create barriers for those using screen readers often also arise with screen

magnification.

For a sampling of different brands and types of magnifiers, you may wish to review the videos below.

Video: Introducing ZoomText 11

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1381

Other Assistive Technologies | 121

© aisquared. Released under the terms of a Standard YouTube License. All rights reserved.

Video: Windows 7 Magnifier

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1381

© Better Living Through Technology. Released under the terms of a Standard YouTube License. All rights reserved.

Video: Mac OS X Accessibility – Magnifier

122 | Other Assistive Technologies

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1381

© Todd Boniface. Released under the terms of a Standard YouTube License. All rights reserved.

Technical: Operating systems such as Mac, Windows, as well as iOS and Android, have screen magnification

programs built into them. While they don’t have all the capabilities of a full-fledged screen magnifier such as

ZoomText, they are often sufficient to meet the needs of low vision users. In terms of potential accessibility

issues, there are relatively few because these tools magnify the screen, as opposed to the content itself, so the

content magnifies regardless of whether it was created in a way that would allow it to be resized. What may be

problematic for magnifier users are low grade images, particularly those containing text, which tend to degrade

when magnification is applied.

Another type of magnification is built into web browsers. Until recently, browser magnification would increase

the size of text only, leaving images and other elements of the content at their original size. Now however, most

browser magnification works like the screen magnifiers mentioned above, magnifying the entire browser window

as opposed to the content within the window. As a result text and images, and other content elements, magnify

at the same rate. At least for the short term, until all older browsers are replaced by newer ones that magnify the

window instead of just the text, some users will still have trouble with magnification.

When testing content magnification with a browser, test with just the text magnified. In Firefox for instance,

in the ViewZoom menu there is an option to Zoom the text only. If when testing in this mode the text does not

increase in size, or the text size increases but other elements on the page do not, this may be an indication that

elements have been sized with absolute measures using pixel (px) or point (pt) measures, rather than using relative

Other Assistive Technologies | 123

measures such as percent (%) or “em” measures. The latter relative measures applied to content elements will

resize these elements at the same rate as the text when using browser text magnification, while those sized with

absolute measures typically will remain the same size.

Voice Recognition

Voice recognition is being built into a range of systems and is not only for those who require it as an assistive technology.

Take Siri, for instance, on iOS devices. Windows has built-in speech recognition and even Google allows you to simply

speak your search terms. So, creating content that will be accessible by voice means that all operable elements in web

content should include text that is readable by AT.

A range of users who are perhaps unable to use a mouse or keyboard can use voice recognition software instead to

operate their computers. Within web content it is also possible to speak commands. To activate a link or a button, one

would speak the text of these elements to bring focus to and activate the element. Barriers occur when these elements

do not contain readable text, such as an image used as a button without alt text, or a navigation element created with

images, again without alt text.

One of the more popular voice recognition applications is Dragon NaturallySpeaking. It can be used to navigate through

web content or to control a computer’s operating system. The following NaturallySpeaking Demo will give you a brief look

at how voice recognition works.

Video: Web Accessibility 101 Dragon NaturallySpeaking Demo

124 | Other Assistive Technologies

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1381

© Ilana Benish. Released under the terms of a Standard YouTube License. All rights reserved.

Alternative Input

By alternative input we mean devices or software other than a mouse and keyboard, which allow users to control their

computer and navigate the Web. You have already been introduced to voice recognition, which takes one’s voice as input.

There are many devices that can take the place of a mouse and a keyboard; voice recognition, onscreen keyboards, a

head mouse, and various types of switches. The following video will give you an idea of how these technologies are used.

The person in the video has no use of his arms and legs and uses his computer to perform complex tasks with the help of

an onscreen keyboard, a sip and puff switch, and a head mouse.

Video: Head-Designed

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1381

© AssistiveWare. Released under the terms of a Standard YouTube License. All rights reserved.

Other Assistive Technologies | 125

In terms of identifying accessibility issues that affect those using alternative input, there are relatively few when

compared to barriers that might be faced by screen reader users. A few to watch for include:

• Small target areas that might be difficult to position a mouse pointer over. Targeting a radio button for instance, can

be made easier if a proper label is used, making the label itself clickable to activate the button.

• Well designed error feedback can also improve usability by reducing the effort needed to recover when an error

occurs. For example, if an email address is entered incorrectly, identify this error before the form submits, and send

the cursor to the email field so it can be corrected after the error message is acknowledged.

126 | Other Assistive Technologies

Activity: Using ChromeVox to Find Accessibility
Features

NOTE: If you are a regular day-to-day screen reader user (i.e., you are blind or have significant vision loss) use your own

screen reader for this activity instead of ChromeVox.

Ideally, accessibility features will be invisible to typical users so they do not interfere with their user experience. In

addition to using a screen reader to identify accessibility problems, it is an important tool for identifying features that

add to the accessibility of a website, so when reporting you are not identifying potential barriers that may have hidden

alternatives.

In this activity practice using ChromeVox to identify hidden accessibility features in a website. Refer back to

ChromeVox Screen Reader in the section ChromeVox Screen Reader, and have the keyboard commands list beside you

when completing this activity.

1. Open the Showcase Demo Site in Chrome, and turn on ChromeVox.

2. Leave your monitor turned on so you can see what you are doing.

3. Put your mouse away, and use only your keyboard to navigate through the site.

4. Create a list of all the hidden accessibility features on the site. You may also list the visible accessibility features if

there are any.

5. In addition to listing the accessibility features, if relevant, describe what the screen reader announces when it

encounters the accessibility features in your list.

Hint: Some of the features to listen for are WAI-ARIA enabled elements. You may need to examine the HTML source to

determine what they are, or use the Chrome Inspect tool to see how WAI-ARIA is being used.

Suggested answers to Activity

Activity: Using ChromeVox to Find Accessibility Features | 127

Self-Test 5

Question 1

According to the data from the WebAIM Screen Reader Survey, when it comes to screen readers commonly
used, which of the following screen readers experiences the least usage?

a. JAWS

b. NVDA

c. ChromeVox

d. VoiceOver

e. Window-Eyes

f. Talkback

Question 2

Based on your Chapter 5 readings, which screen reader makes use of a rotor for accessing different
features of Web content, such as headings, lists, tables and links?

a. JAWS

b. NVDA

c. ChromeVox

d. VoiceOver

e. Window-Eyes

f. Talkback

Question 3

Which of the screen readers introduced in this Unit are open source software? Choose all that apply.

a. JAWS

b. NVDA

128 | Self-Test 5

c. ChromeVox

d. VoiceOver

e. Window-Eyes

f. Talkback

Answers to Self-Test 5

An interactive or media element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1393

Self-Test 5 | 129

6. USER TESTING

6. User Testing | 131

User Testing

While user testing is not a necessary element of a web accessibility audit, it can still be of value. This is because user

testing can provide useful information about the usability of web content that an expert accessibility auditor may not

discover through a technical audit.

Going back to the “Curb Cut” discussion introduced in the section Why Learn about Web Accessibility Auditing?, user

testing with people with disabilities is a good way to identify usability issues in general, that affect all users. Issues are

typically “amplified” for people with disabilities, making them easier to identify than might be the case with other users

who may work around usability issues.

There are a variety of ways to approach user testing, ranging from having colleagues with disabilities provide feedback

on web content to highly controlled scientific studies that recruit randomly sampled control and experimental groups,

exposing them to content that is and is not accessible to study the difference in their behaviour.

While we will not address testing at the level of scientific studies, this unit will look at the benefits and challenges

associated with user testing, and provide some guidelines to help you design user testing scenarios that provide useful

feedback on accessible designs without incurring extensive additional costs.

User Testing | 133

Objectives and Activities

Objectives

By the end of this unit, you will be able to:

• Identify instances where user testing is needed.

• Recruit and screen user testers.

• Develop a test protocol, including observation and recording.

Activities

• Identify possible agencies in your area that might assist with user testing

• Develop a possible test protocol for users of Lulu’s Lollipops website

• Self-Test 6

134 | Objectives and Activities

Involving User Testers

User testing in web accessibility auditing projects is a good idea, though who to include and when needs some thoughtful

consideration. You should not attempt to generalize results when only a small number of users are involved. Testing with

users will help identify issues for a particular user, or groups of users with similar disabilities, but may not be relevant to

people with other types of disabilities, those with the same disabilities who use different assistive technologies (AT), or

those with different levels of expertise with the Web and their AT. Nonetheless, involving just a few experienced AT users

can provide valuable input for your audit.

When to Involve Users

If you plan to involve user testers in the auditing process, they should be included after the auditing against all relevant
standards has been done, and the resulting recommendations have been implemented. At that point the accessibility of

the site should be relatively good, so the focus can be aimed at improving usability.

In some cases, if web accessibility auditing involves incremental testing during the development of a new website or a

web application, it is useful to include user testers from the start of the development process. This can help avoid costly

issues later on in the development by identifying accessibility and usability problems early on in the design phase of a

development project.

How to Select the Types of Users to Recruit

In most cases user testers should have average to expert web and AT knowledge to produce the best feedback. This helps

reduce issues that arise due to not knowing how to use AT effectively. Later in this unit we’ll look at screening user testers.

There are cases however, when you may want to include novice AT users, if for instance you are working with a site that

caters to specific disability groups. Sites such as these are often visited by novice users, thus should be functional with

just basic web and AT experience.

When choosing user testers, it is helpful to select a group based on the assistive technology they are using. Choose

screen reader users, magnifier users, alternative input users, text to speech users, voice recognition users, and so on,

rather than choosing based on disability. You might also choose people who do not use assistive technologies. For

example, some people may use browser-based adaptations to access web content, and older users can provide useful

information about common age-related visual, auditory, physical, and cognitive changes that affect their ability to access

the Web.

A Note on Working with People with Disabilities

It is not uncommon for people who have not previously worked with people with disabilities to feel a little unsure of

themselves, sometimes uncertain how to interact, or worried about saying the wrong thing. The best approach, not

surprisingly, is simply to interact as you would with anyone:

Involving User Testers | 135

• Introduce yourself

• Speak normally

• Ask before attempting to help

• Ask before touching a guide animal

• Don’t be afraid of using non-disabled words (e.g. “…as you’ll see” to a blind person)

• Talk to the person, not their companion or helper

• Use people first language (e.g., person who is blind, rather than a blind person)

• Avoid offensive language (use “person who is blind” or “…with a visual impairment”)

• Be aware of personal space

For more about interacting with people with disabilities see the following resources:

Readings and References: Interacting with People with Disabilities

Video: Disability Sensitivity Training Video

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1402

© dcgovernment. Released under the terms of a Standard YouTube License. All rights reserved.

Video: Stupid Questions Not to Ask a Disabled Person

136 | Involving User Testers

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1402

© BBC Three. Released under the terms of a Standard YouTube License. All rights reserved.

Involving User Testers | 137

Recruiting User Testers

It’s relatively easy to find user testers through social media groups, disability and accessibility mailing lists, university

accessibility services, or organizations that serve people with disabilities. People with disabilities tend to be receptive to

testing when you are improving accessibility, and are often willing to refer you to other potential testers.

After all the work that she and her team have done, Lulu realizes that one potential source of referrals for user

testers may in fact be the organization who approached Lulu’s Lollipops to inquire about their accessibility in the

first place!

Initial Screening

It is important that user testers be screened for particular characteristics, including good understanding of web

technologies, as well as proficiency using their respective AT. This is necessary, in most cases, to ensure that issues that

testers’ experience during testing are attributable to problems with the web content or application being tested, and not

the result of inexperience with the Web or limited expertise with the AT being used.

There are a number of questions that you can ask that will help gauge a user tester’s level of knowledge.

The two main categories of questions to cover in screening user testers are:

• Web Knowledge

• Assistive Technology Expertise

Toolkit: Download the User Tester Screening Questions [docx] and add it to your Toolkit. Note that the template

includes instructional commentary that you should remove if you distribute the questions to potential users.

Though these questions can be a good indicator of a tester’s level of understanding, keep in mind that users may

exaggerate their experience or not be aware of their level of understanding. Additional questions or observation

may be needed once the user is in front of a computer using their assistive technology.

For another approach to screening users for accessibility testing, visit the following resource: Recruiting Screener.

138 | Recruiting User Testers

Developing a Test Protocol

Thanks to some helpful referrals from her client, Lulu has reached out and contacted a number of people

to assist with user testing. Now she is ready to plan her testing. To conduct your user testing, in most cases you will

want to develop a “test protocol” that details the activities and the steps taken to test a particular set of features.

Most testing sessions with users should not exceed one hour, so a test protocol should provide a number of relatively

short scenarios that can be completed in 5-10 minutes, allowing time between each scenario for a few questions to

probe the user’s experience.

Talk Aloud Protocol

One of the best ways to gather information about a user’s experience using your web content is to have them talk aloud

as they complete tasks. Record verbal responses as well as any emotional responses or facial expression in a log. You

can also ask simple questions like “what were you thinking when…?” to determine their thoughts. It may be preferable to

video or audio record sessions and analyze them afterwards so you as the observer can focus your attention on guiding

and probing the tester’s thoughts.

Note: If you plan to video or audio record testing sessions, always be sure to inform user testers of this fact.

Test Protocol Example – The Lake Devo Website

As an example of a potential user testing protocol, we will look at the plans put together to user test Lake Devo, a web-

based role playing game used by students at Ryerson University to design and play out various scenarios related to their

subject of study. The Lake Devo website has recently undergone extensive improvements for accessibility.

The User Testers

A couple of screen reader users who had not used Lake Devo previously were recruited to complete a series of tasks that

would test the accessibility and usability of key features in the software. Both were skilled JAWS users and knowledgeable

about web technology. They were both also students in online courses at the university.

The testers were told they would receive compensation in the form of a $100 CAD prepaid credit card. Regardless of

whether the testers completed all the scenarios, they received their compensation.

Developing a Test Protocol | 139

Pre-Test Tasks

Before starting the testing session, the Observer (in this case the web developer) provided a description of Lake Devo, its

purpose, its main features, and an overview of how it might be used to develop a role playing movie. Each user tester was

informed at the start of the session that if at anytime they needed a break, felt uncomfortable or wished to discontinue

testing, they were free to do so.

Then the Observer introduced the scenarios the tester would be asked to complete and how the session would unfold.

For each of the scenarios, the Observer essentially “trained” the user testers by doing the following:

• Reading out the scenario in full

• Walking through the scenario him/herself describing aloud the steps taken to complete the task

• Modelling the talk aloud protocol

Lake Devo Test Scenarios

Scenario 1: Watch the web accessibility movie and answer a skill-testing question

[no login required] low effort

1. Find the Gallery link in the Lake Devo main navigation and open the Gallery.

2. On the Gallery screen enter the words “Lake Devo Accessibility” into the search field and submit the search.

3. In the search results choose the “Lake Devo Accessibility” movie and click or keypress to open the movie.

4. On the movie player screen that opens, find the play button and explore the other options available in the player

toolbar.

5. Return to the play button and click or keypress the button to start the movie.

6. Listen to the movie as it plays, and pay attention so you can answer the question about the movie that will follow.

7. Answer the question the Observer asks you.

Scenario 2: Create a new character

[login required] medium effort

1. Log in to Lake Devo with the account created for you, using the login link at the top right of the screen, then fill in

the login form, and press the Login button.

2. In the MyStudio screen that opens, find the Access Team community and click or keypress to open the list of movies

created by community members (of which you are one).

3. In that list of movies, find the Learning About Accessibility movie, and click or keypress that movie to open it in the

script editor.

4. Find the Movie Settings button in the Script Editor, and press it to open the Movie Setting tabpanel, consisting of

Movie Info, Character, and Scenes tabs.

5. Click or keypress the Characters tab to open the list of current characters in the movie.

6. In the Create New Character area, open the character editor.

7. Observer describes the character editor: The character editor consists of two main panels, with the preview of the

character on the left, and a series of tab panels on the right from which to choose characteristics for the character.

These include: info, face, nose, hair, shirt, outerwear, and accessories.

8. To begin creating your character, fill in the name, description, choose male or female, adult or child, and if desired

140 | Developing a Test Protocol

check the checkbox “This character requires a wheelchair.” These are all elements of the form that opens under the

info tab.

9. After entering the character info, return to the tabs, navigate to the faces tab and choose a face shape and a face

colour.

10. Next open the Nose tab and choose a nose.

11. Optionally, choose hair and a hair colour, a shirt and shirt colour, outerwear, and accessories from the other tabs.

12. After choosing characteristics for your character, press the Save button to save the character.

13. Your character is now created and you will be returned to the list of characters. Find the character you created and

click or keypress the Edit link to reopen the character editor.

14. Navigate back to the preview panel of the character editor and listen to the description provided to confirm the

characteristics of your character.

You will note that each of the scenarios carefully step the user testers through a specific process on the Lake Devo

website. In cases like this one, existing documentation such as the “Help” area of the website often provides a good

starting point for writing up the steps involved in a given test scenario.

Developing a Test Protocol | 141

Recording Observations

There are a range of ways you can record your own observations when watching user testers complete activities. You

might use an informal strategy, like taking anecdotal notes, then expand on those notes after the session. As mentioned

previously, you may wish to videotape the sessions, then after the sessions are complete, watch the videos and create

notes. Or, you could create a blended observation strategy, recording specific behaviours in a spreadsheet based on the

scenarios, with codes to indicate particular behaviours or observations, with space to add anecdotal notes, and perhaps

in addition record the sessions so it is possible to go back through the session later to provide clarifications on recorded

observations.

The following is an example of a record sheet, based on the Lake Devo Testing – Scenario 1 introduced on the previous

page. Notice a short description of the task in the first column, a coded level of effort in the second column ranging from

1 (no difficulty) to 5 (unable to complete task). In the third column record the tester’s comments as they think aloud, and

in the final column record the observer’s comments.

Toolkit: Download the Observation Notes Template [docx] and add it to your Toolkit.

142 | Recording Observations

Activity: Finding User Testers

Spend a few moments with your favorite search engine and find agencies or resources in your area that might help you

find people with disabilities to assist with user testing. Document three potential sources in your area, including the name

of the organization, and why you think it would be a good source. Some sources might include:

• Associations for the blind

• University accessibility services

• Services for veterans

• Services for those with cognitive or developmental disabilities

• Associations for those with severe physical disabilities

• First Nations disability association

Activity: Finding User Testers | 143

Self-Test 6

Question 1

When selecting user testers, which of the following prerequisite skills or knowledge should recruits have?
Choose all that apply.

a. Ability to read HTML

b. Knowledge of WCAG

c. Good understanding of web technologies

d. Ability to use multiple assistive technologies

e. Moderate to expert skill using their own assistive technology

f. Fluent English speaker

g. Touch typing skill

Question 2

When developing a test protocol, which of the following features should it have? Choose all that apply.

a. Can be completed in one hour

b. Multiple short tasks to complete

c. Coverage of the whole website or application being tested

d. Time between tasks to ask questions

e. Printed out on paper for tester to read

f. Provided in electronic form so it can be read by assistive technologies

Question 3

When recording observations during a user testing session, which of the following strategies might be
used. Choose all that apply.

a. Anecdotal notes

144 | Self-Test 6

b. Video taping

c. Audio taping

d. Recording in a spreadsheet

Question 4

During a user testing session which of the following should an observer not do? Choose all that apply.

a. Ask questions about what a tester is thinking

b. Provide hints to make a task easier

c. Help a tester complete a task if they get stuck

d. Remain quiet

e. Answer a phone call

f. Describe to a tester how a task is done

g. Pay the tester for their time and expenses

Answers to Self-Test 6

An interactive or media element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1421

Self-Test 6 | 145

7. WEB ACCESSIBILITY REPORTING

7. Web Accessibility Reporting | 147

Web Accessibility Reporting

Having greatly improved their awareness of how to identify and test for barriers in their web content, Lulu

and her team quickly realized that proper documentation of this work would be necessary in order to make the most

of their accessibility improvement efforts. As such, they next turned their attention to tracking and reporting. The

first six units introduced you to web accessibility auditing, went through the WCAG 2.0 guidelines, and covered the

tools and methods for conducting accessibility reviews.

Building on this foundation, this unit will explore what to do with the results of the accessibility testing tools. Specifically,

we will look at:

• Reporting strategies – different types of auditing reports, when to use each, and the elements of such reports

• Web accessibility around the world and the relationship between international regulations and WCAG 2.0

• Other accessibility guidelines and standards that complement WCAG 2.0, that you may need to consider while

performing audits

After identifying accessibility issues, the next step is to inform the website’s owner or developer so that they may begin

to remove barriers. This is accomplished by producing an audit report.

This unit will introduce reporting strategies that can be used to:

• Document potential barriers

• Provide the reasoning to help consumers understand the importance of “barrier free” web content

• Prioritize issues

• Recommend strategies to correct potential barriers

Web Accessibility Reporting | 149

Objectives and Activities

Objectives

By the end of this unit, you will be able to.

• Identify factors to be considered when choosing a type of audit.

• Perform a quick informal review.

• Produce a Template Audit.

• Produce a General Audit.

• Produce a Detailed Audit.

• Create graphical enhancements for audit reports.

• Write an effective executive summary for an audit report.

• Assemble appendices for audit reports.

Activities

• Examine a completed audit report

• Conduct an informal review of the Lulu’s Lollipops website

• Walk through the steps of a Template Audit

• Self-Test 7

150 | Objectives and Activities

Choosing an Audit

Different situations will require different types of web accessibility audits or reviews. More detailed information on each

type of review is provided in the pages that follow. However, here are some questions that may assist you when deciding

what type of audit to conduct:

• Is this an internal or external review? Depending on your audience, a review may be more or less formal. If you are

providing feedback to a developer in your organization, it may be sufficient to provide point form notes in an email.

If you are reporting to senior management, or perhaps to an external organization, a more formal review is likely

more appropriate.

• What is the budget for the review? If you are working with a small company, or even a larger company with limited

resources committed to web accessibility, a quick informal review may be appropriate. A template review may also

be desirable in such cases. These tend to be completed quickly and produce the biggest effect on accessibility for

the effort and cost expended. If you are working with a larger budget, then a combination of formal reviews and

user testing might be conducted.

• What is the client’s motivation for the audit? For jurisdictions that have legislated web accessibility requirements,

more detailed reviews may be desirable to ensure that organizations are in compliance. On the other hand,

organizations may be in jurisdictions where there is no obligation to make their web content accessible and may not

be willing to invest in an audit. A quick, informal review may open their eyes to the benefits of an inclusive website,

acting as a loss leader for a formal review. And, there will be other organizations that just want to be good corporate

citizens, who will be more open to a thorough review of their web content.

Balancing context, motivation, and budget will often guide the approach you’ll take as an auditor, giving clients what will

serve them best. Depending on the answers to the questions above, it may happen that a series of reviews are offered to

a client, beginning informally and building to more detailed reviews.

Lulu is interested in making improvements to the accessibility of her web content for both compliance-

related and business reasons. If Lulu was your client, what types of audits and related reports might you offer her in

order to optimize the accessibility outcomes for her website?

Choosing an Audit | 151

Informal Reviews

An informal review is a quick scan of a website to identify obvious accessibility issues. While these reviews do not

represent exhaustive audits, they are useful for a variety of purposes.

Purpose of Review

An informal review is often attached to a quote for a formal accessibility audit, providing some introductory information

to a client to give them a better idea of the types of issues on their website before they commit to the formal review. An

informal review can be helpful in justifying a formal review.

Process of Review

Informal reviews often occur as part of a conversation, perhaps with a member of an organization who is responsible

for managing an organization’s image, or with a developer who is planning or reviewing design activities. These reviews

will often involve a couple of quick tests, like the Tab Key Navigation test, or passing a page through an automated

accessibility checker, or quickly examining the code where suspected issues may be present, or running a page through

a screen reader. These quick reviews often turn up a number of potential barriers that help get a discussion started on

next steps toward making web content accessible.

Reporting Results from the Review

The following is an example of the types of issues that might be documented in an informal review. Characteristics of an

informal review could include (in this example):

1. Type of site: a registration system with integrated eCommerce

2. Timing of review: prior to going live

3. Duration of review: about 30 minutes

4. Audience: the developer of the User Interface (UI) created over a third party eCommerce system

5. Style of Report:

1. Provided by email to the developer and the developer’s management team

2. Brief and succinct

3. Written in a way that the developer would understand, already being familiar with the UI, and already being

familiar with the technical language being used

4. A few non-accessibility related issues identified as a courtesy

5. Not too detailed if the review is intended to elicit a formal review

152 | Informal Reviews

Sample Informal Review by Email

Hi John,

Here’s a quick summary of the potential issues found on your registration site. If you like, we can arrange a

time to talk about these issues, and the possibility of conducting a formal review that will address these and

other potential issues in more detail to ensure that as many people as possible are able to access your site

and to register.

I’ve identified some issues and offered suggestions for possible fixes where applicable:

• Associate labels with form fields by matching the for attribute in the label with the id attribute in the

input element.

• Add aria-required="true" to the required input fields.

• Use aria-describedby="[id]" to associate the description in the hidden spans with the

respective input field.

• The Yes/No inputs look like checkboxes, but function like radio buttons. Maybe not an issue, but

inconsistent with what most people might expect.

• For the footnote numbers next to Price and Group, aria-describedby could be used to associate the

footnote with the number, or the numbers could be linked to an anchor next to the associated

footnote.

• Because there are two levels of table header cells in the tickets table, they should use headers/id to

associate both levels of header, though in this case this is a trivial issue given the small size of the table.

• The checkbox looking button beside the credit cards accepted line is a bit confusing. It shows a hand

cursor which suggests it should be clickable, but it’s not.

• When an error message is displayed, include role="alert" in the div containing the message.

• When an error occurs, send focus to the first field that has an error.

• It was possible to submit the form for payment without the ticket holder email being valid.

• Clicking “return to form” in the credit card popup hangs, apparently trying to access Google

Analytics.

• In the credit card popup, focus should be trapped in the dialog in a loop until either Pay Now, Back to

Form, or the Escape key is pressed.

• In the credit card popup, the initial checkbox and other form fields should be associated with the

respective labels using the Label element (with matching for/id).

• For the error message that appears in the credit card popup, add role="alert" to the span

containing the message.

• The close X should have title text added such as title="close credit card details" .

• After submitting the credit card form, the screen hangs, again trying to access Google analytics.

• Unable to see the output after making a credit card submission, to determine if there are any issues

at the final step.

• Unable to see how the tickets are issued, perhaps via email. Not sure if there are any issues there.

Informal Reviews | 153

Template Audit and Audit Walk-Through

A Template Audit is perhaps the most impactful of the different types of audits that will be discussed here.

Purpose of Audit

These audits focus on the common elements throughout a website, such as the navigation, header, footer, menus, and

the layout in general. They are often quick to complete, taking only a few hours, and often involve looking at only a single

page. There are occasions when multiple templates might be reviewed, such as the home page, which often differs from

other pages, as well as one or two unique layouts from other pages on a website.

Process of Audit

In the screenshot below you can see the areas of a page outlined. For a Template Audit, the Main Navigation, the Header

(i.e,. Banner), the Side Menu, and the Footer area are reviewed. The Main Content Area would be ignored for now, to be

reviewed as part of a General Audit.

154 | Template Audit and Audit Walk-Through

Figure: Typical template elements include the header, the side menu, banner, main content area, complementary
content, and the footer

Key Point: Before reading further, download the WCAG2 Review Template [doc], if you have not already, and open

it in Microsoft Word, or another word processor that supports .doc files.

Audit Procedure

Using the sample site template displayed in the figure above, examine all the features except the main content area. The

following series of tests can be followed to audit the common elements of the template. This same series of tests would

Template Audit and Audit Walk-Through | 155

be used for General and Detailed Audits as well, but rather than focusing on elements of a single page in the case of a

Template Audit, these steps would be followed for each page that is being reviewed as part of an audit.

Visit the Web Accessibility Showcase to follow along while we walk through a page audit. Open the audit template so

you can add notes to it as you are following along. Each of the following test strategies include a multimedia alternative

to the text of the walk through.

Note regarding the following videos: The videos that appear in the section below are considered to be “media

alternatives for text” and as such they do not require captions. The text itself provides the text equivalents for the

videos (See Guideline 1.2.2). Nonetheless, we have captioned them here. If you encounter videos used in this way, without

captions, they need not be identified in an audit report as a potential barrier, as long as they are listed as media

alternatives.

Tab Key Navigation Test

Video: Tab Key Accessibility Testing

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1438

1. Place the cursor in the top left corner of the page. Begin by pressing the Tab key repeatedly and following the

cursor’s path through the template elements. Look for bypass links at the top of the page, and if they are not visible,

look at the browser’s status bar at the bottom of the browser window to see if hidden bypass links are present. The

URL displayed there should have “#content” on the end of it, or something similar prefixed with the number sign, or

156 | Template Audit and Audit Walk-Through

hash (#) as it is often referred to. Follow the bypass link(s) by pressing the enter key when they receive focus, to

ensure they lead to the main content area, or in some cases to the side menu. If these bypass links are not present,

look for other means to navigate through the content such as landmarks, as described in the screen reader test

below or by examining the HTML markup to find them, or look for good use of headings. (Guideline 2.4.1, Level A)

2. Ensure that the path the cursor takes is visible. (Guideline 2.4.7, Level AA)

3. Look for access to an accessibility statement somewhere near the top of the template, and that it appears early in

the Tab sequence. (Guideline 3.3.5, Level AAA)

4. Ensure the menus down the left of the page open and elements in the submenus can be accessed by keyboard. This

may require using the arrow keys, or they may open using the Tab key or space bar. (Guideline 2.1.1, Level A)

5. Ensure there is a way to skip past the menus, particularly if they contain many items in the sub-menus. Typically

the Tab key brings focus to the menu, the arrow keys are used to navigate through it, and the Tab key is pressed to

exit the menu, and in this case move on to the banner area to the right. (Guideline 2.4.1, Level A)

6. After the banner area, the cursor should move into the main content area. Again ensure the focus is visible through

elements in the main content. Notice the tabpanels in the main content area. Ensure that it is possible to move

between the tabs in the tabpanel, typically using the arrow keys, and to move directly from a tab to its associated

panel, typically using the Tab key. Keyboard functionality for tabpanels may vary somewhat from site to site.

(Guidelines 2.4.7, Level AA, Guideline 2.1.1, Level A, Guideline 2.4.1, Level A)

7. After reaching the end of the side menu, the cursor should move into the main content area. We’ll ignore testing the

elements within the main content area for now, and come back to these when we discuss General Audits. (Guideline

1.3.2, Level A)

8. After tabbing through the main content area, the cursor should move to the right side complimentary content.

Again ensure the focus is visible while navigating through its elements, and that the toggles used to open and close

the accordion menu operate with a keypress, and that they do so without reloading the page, or without losing

focus on the toggles when their state changes (e.g., open to closed). Ensure that elements in the opened submenus

are keyboard operable. (Guideline 1.3.2, Level A, Guideline 2.4.7, Level AA, Guideline 3.2.2, Level A, Guideline 2.1.1,

Level A)

9. After passing through the complimentary content area with the Tab key, the cursor should move into the footer

area. Again ensure that the focus is visible, and that functional elements, in this case links, all receive keyboard focus

and operate with a keypress. (Guideline 1.3.2, Level A, Guideline 2.4.7, Level AA, Guideline 2.1.1, Level A)

10. Having reached the end of the page, note whether the path the cursor took through the page was a logical path,

crossing from left to right, moving from top to bottom. (Guideline 1.3.2, Level A)

11. Also note whether all of the elements the focus passed through are meaningful on their own, and/or within the

context of other functional elements on the page. (Guideline 2.4.9, Level AAA, Guideline 2.4.4, Level A

Using an Automated Accessibility Checker

Video: Automated Accessibility Checking

Template Audit and Audit Walk-Through | 157

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1438

1. We will use AChecker here for demonstration purposes, though you might choose to use another automated

accessibility testing tool.

2. Either test the page through its URL, or if the site is not publicly available, view the source of the page, typically

found in the browser’s View menu, select all the markup displayed in the view source window (e.g., press Ctrl-A),

copy the markup (e.g., press Ctrl-C) to the system’s clipboard, then paste the markup from the clipboard (Ctrl-V)

into the Paste HTML Markup area of the accessibility checker.

3. Open the Options Menu in AChecker, and select Show Source, WCAG 2.0 (Level AA), and View by Guideline. Or,

adjust these options as needed. You might choose WCAG 2.0 (Level AAA), though issues identified at this level are

typically optional.

4. After selecting options, press the “Check It” button to run the checker, and wait for a few moments while the report

is generated.

5. Note the number of Known, Likely, and Potential problems the checker identifies, focusing on the Known Problems

to start. Examine the Known Problems to ensure they are not false positives. You may need to follow the Line

number link next to a problem to examine the surrounding markup. If the issues are actual, note them with the

appropriate guideline in your developing audit report. You can also examine other information about issues by

following the link next to each check that is listed in the checker’s report.

6. After documenting the Known Issues in your developing audit report, switch to the Likely Problems tab in the

checker, if there are any, and scan through these issues to confirm whether issues are actual or not. These issues

may be actual, though often they are not, when accessible alternatives are provided. Scan through the content of

the page to ensure items marked as likely have an accessible alternative. If these turn out to be actual issues, note

158 | Template Audit and Audit Walk-Through

them with the appropriate guideline in your developing audit report.

7. Finally scan through the issues presented under the Potential Problems tab. These quite often are not problems at

all, but because the checker is unable to identify these issues with certainty, a human has to make a decision. If

these turn out to be actual problems, identify them in your developing audit report.

Markup Validation

Video: HTML Validation

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1438

1. As with AChecker, submit the URL or paste a copy of the HTML source of the page into the W3C HTML Validator to

assess the validity of the HTML to ensure that markup errors are not causing potential barriers. Like AChecker you

can also select Options, though the default settings are typically sufficient.

2. Pay attention to the errors identified in the report the validator generates, and don’t be concerned with the

warnings. Pay particular attention to duplicate IDs, elements that are not closed, and elements that are incorrectly

nested. These issues run the risk of confusing screen readers.

3. If the page does not validate (most won’t) provide a general statement along with Guideline 4.1.1 (Level A) in your

audit report that validation should be conducted to remove potential barriers that may arise when assistive

technologies encounter broken markup, and provide a link to the validator. There is no need to document all the

markup errors, apart from those mentioned above.

Template Audit and Audit Walk-Through | 159

Screen Reader Scan

Video: Testing Accessibility with ChromeVox

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1438

1. For screen reader testing we will use ChromeVox, turn it on then continue.

2. Repeat the Tab Key Navigation test with the screen reader running, and listen carefully to what the screen reader

announces. Is what you hear meaningful? Document in your audit report where additional description could be

provided. Are all functional elements able to receive focus, and operate with a keypress. (Guideline 3.3.2, Level A,

Guideline 2.1.1, Level A)

3. List the headings on the page using the screen reader list headings command (Cvox-L-H) and use the down arrow

key to cycle through the list. Are headings present, and structured in a meaningful way? Is there text that appears to

be a heading but it not recognized by the screen reader (e.g., large bold fonts instead of proper headings)?

Document these issues in your report if they are relevant (Guideline 1.3.1, Level A, Guideline 2.4.6, Level AA,

Guideline 2.4.10, Level AAA). If bypass links are not present, headings are provided to allow navigation through

content (Guideline 2.4.1, Level A)

4. List the landmarks on the page using the screen reader’s list landmarks command (Cvox-L-;) and use the down

arrow key to cycle through the landmarked regions. Are all areas of the page contained within a landmarked region?

Are landmarks present if bypass links or headings are not? Document these issues in your report if relevant. Suggest

including them regardless of other ways to navigate through the page being present. (Guideline 2.4.1, Level A)

5. List the links on the page using the screen reader’s list link command (Cvox-L-L). Are all the links meaningful in

160 | Template Audit and Audit Walk-Through

context, or not in context? (Guideline 2.4.4, Level A, Guideline 2.4.9, Level AAA)

Other Tests

Video: Check Colour Contrast

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1438

Scan the page for potential colour contrast issues. Though the page should not have any, the grey text on the grey

background in the footer area appears suspicious. Determine the colour codes, using your browser’s Inspect Element

feature, and run those colours through a colour contrast tester to confirm they provide sufficient contrast. (Guideline

1.4.3, Level AA, Guideline 1.4.6, Level AAA)

Template Audit and Audit Walk-Through | 161

General Audits

Purpose of Audit

A General Audit is a review of a sample of content from the main content areas of a website, the results of which are

generalized to the whole site. It is usually too time-consuming and expensive to review all pages on a website; many

pages would be similar which would result in a very long repetitive report. Generalizing results to the whole site should

be emphasized in the audit report.

Process of Audit: Selecting a Review Sample

Reviewing a representative sample of pages is the most efficient approach for a General Audit. When choosing pages for

the sample, be sure to include pages that are key to the operation of the website, such as:

• the home page

• a registration page

• a product purchase page, etc.

Also choose pages with different types of content such as:

• a page with multimedia

• a page presenting data laid out in a table

• a form-based page

• pages with embedded objects such as Java or Flash

• a page with a structured article, etc.

The sample should provide a complete cross-section of the different types of content on the site.

Depending on the size of the site, and the different types of content it contains, a sample might include 10 pages for a

smaller site, and up to 20–25 pages for a larger site with a broad variety of content. For more information about choosing

a representative sample, refer to the Website Accessibility Conformance Evaluation Methodology produced by the W3C.

When choosing pages for the sample, a thorough scan of the site should be done by methodically clicking from page

to page, viewing the content quickly, and copying the URL and title for each of the pages that will be included in the

sample. It is often helpful to choose the sample pages in cooperation with the developers of the website, who will have a

better idea of the types of content found on the site, and where they might be located within a complex site structure.

Alternatively, you can scan through the site yourself, gather the sample, and send that list to the owner of the site for

their confirmation of whether the sample is representative of the content on the site.

162 | General Audits

Additional Scope Considerations

If a Template Audit has not been conducted, elements of the template will need to be included as part of the General

Audit. A Template Audit should be recommended to a client to avoid complicating a General Audit.

Time Required for the Audit

You should estimate how much of your time will be required for the audit before beginning. Your general sense of the

complexity of the content on the sample pages, the number of issues identified while assembling the sample, whether a

Template Audit will accompany the General Audit, as well as the effort required to gather the sample will all help you to

establish a rough time-per-page estimate. A simple site with basic content may take 10–15 minutes per page, while larger,

more complex sites may take an hour or more per page. Performing a review and writing a report on 15 website pages

might take a total of 10 to 15 hours.

With your first few audits, time estimates will likely be higher. As you begin accumulating reports, there will be

elements that can be reused to save time. For example, the executive summary will tend to follow the same format,

introducing the report, providing a description of the report and how to use it, with just the summary of key issues

changing from report to report. You will also find that similar issues will arise from website to website, and the

descriptions for those issues can also be reused in many cases. Likewise, when describing solutions to issues within

reports, the time you initially invest to develop solutions is time you will save later on.

Audit Procedure

Assuming a Template Audit is being conducted along with the General Audit, the audit procedure will be much like that

of a Template Audit, but in this case will focus on the main content area of each of the sampled pages (see figure on the

previous “Template Audits” page). The high level procedures are reiterated here; refer back to the procedure outlined

with the Template Audit for details.

• Tab Key Navigation test

• Use an automated accessibility checker

• Markup validation

• Screen reader scan

• Other test (colour, readability)

In most cases testing the main content is much simpler than testing the templates. The main content tends to be less

complex so it is likely that a quick scan will yield no issues. For example, an article presented on a website may simply

be a collection of headings and paragraph text; checking the headings to be sure they are HTML headings and nested

properly takes only a few moments. On the other hand, if the site has more complex elements and there are issues with

those elements, it may take just a few moments to discover the issues, but significantly more time to describe them.

For a more detailed look at web accessibility auditing methods, see the following resource.

Readings and References: W3C Website Accessibility Conformance Evaluation Methodology

General Audits | 163

Detailed Audits

A third type of web accessibility audit is a Detailed Audit. This type of audit is conducted on a particular feature of a

website or on a particular process. All aspects of the accessibility of the feature or process are examined.

Purpose of Audit

Detailed Audits may be part of a series of audits that include a Template and General Audit or they may be conducted on

their own. A Detailed Audit may be conducted on a standalone web application as a whole, where a vendor or developer

wishes to certify the accessibility of their product. Alternatively, a Detailed Audit may be conducted on a particular

collection of pages that serve a particular purpose within a site.

Process of Audit

The procedure for conducting a Detailed Audit is much like that of a Template or General Audit, with the added review of

the process or transition elements of the process associated with a feature or application.

A Detailed Audit begins by identifying all pages or screens associated with the feature(s) to be reviewed. Think of this

collection of pages as representing a path through the site a visitor might take to reach an ultimate destination. For

example, consider a shopping cart application used within a larger community website. The community site may include

a registration screen, a login screen, a user home page, and the cart itself may include a product selection page, an invoice

page, a checkout page, and a credit card submission page, among others. All of these pages together represent a process

that must be accessible as a whole before the cart application can be judged conformant.

Each page of the process of making a purchase with the cart application is reviewed independently and as part of

the whole process. Individual pages are evaluated much like a content page would be assessed in a General Audit. For

example, can a screen reader user easily navigate through a collection of products and make a selection from the product

page?

It is also important to evaluate the transitions between screens in the process of making a purchase. For example, if

a user wants to find out more details about a product and opens a details window, once the user has finished with the

details window and closes it, are they able to easily find their way back to their position in the products page from which

the details were opened? Or, after making a selection from the product screen and being directed to the checkout screen,

is there sufficient feedback provided to indicate the product selection was successful, without having to spend too much

time searching through the content of the checkout screen to make that determination? These types of accessibility

issues are part of the process, rather than part of the content. Both content and process need to be considered as a whole

in a Detailed Audit.

Time Required for Audit

The scope of a Detailed Audit can vary quite significantly from audit to audit. Assessing the accessibility of a whole web

application, for instance, can take weeks or more to complete. When estimating the time required to complete a Detailed

164 | Detailed Audits

Audit, a strategy similar to the sampling process in a General Audit is helpful. Create a list of each of the pages or screens

to be reviewed, do some initial informal review to get a sense of the level of accessibility and the complexity of the

elements to be reviewed. Come up with a base time-per-page and multiply that by the number of pages to be assessed to

estimate the effort required for the audit.

Conformance Considerations

When conducting Detailed Audits of web applications, it is important to note a software version number in the report.

A Detailed Audit will only apply to a specific version of the software or to a specific feature on a website on a particular

date. Because software and websites change over time, it is only appropriate to assign conformance on a particular “date

identified” snapshot of the features or functionality being reviewed.

Key Point: A conformance claim following a Detailed Audit applies only to a particular version of software, or to a

particular feature of a website at a specific point in time.

Detailed Audits | 165

Follow-Up Audits

Purpose of Audit

The final type of audit to be introduced here is a Follow-Up Audit, which occurs some time after the initial Template,

General, or Detailed Audits have been issued. After the site’s developers have gone through the audit to understand

the issues and the steps needed to address accessibility problems, you will likely want to arrange a time to answer any

questions that arise. Once their questions are answered, developers will go ahead and fix the issues in your report and

will likely want a Follow-Up Audit to confirm that the fixes have successfully removed the barriers identified and that no

new barriers have been introduced.

Often just a single Follow-Up Audit is required, though there may be a need for multiple audits. When estimating time

required for questions and the follow-up review(s), an hour or two is usually enough for questions and a follow-up or two

adds about 20% to the cost of the project.

Process of Audit

As the reviewer, start a new audit with a fresh copy of the audit template and go through the issues identified in the initial

audit report, confirming that each has been addressed. While confirming, watch out for any new issues that may have

been introduced. Document any remaining or new issues in the Follow-Up Audit report.

Conformance Confirmation

Assuming the outcome of the Follow-Up Audit confirms that all of the issues identified in the initial audit report have

been addressed, you may choose to issue a conformance claim; this might include a conformance seal, either those issued

by the W3C or perhaps your own company seal. Refer to the “WCAG 2.0 Conformance Levels” in unit 2 for additional

details on issuing conformance claims.

Publicly posting conformance claims is optional and not posting a claim does not in any way affect conformance. Many

organizations choose not to make public claims. They should still, however, provide documentation on the accessibility

features found on the site and describe their goal to reach and maintain Level AA conformance.

166 | Follow-Up Audits

Tour of an Audit Report

In the unit Introduction to WCAG 2.0, you were introduced to the “Web Auditing Review Template” and the elements it

contains. Here we will look more closely at the “WCAG 2.0 Review” elements of the report: the Executive Summary and

the Appendices. Download a copy of the Canvas LMS General Review [PDF] and follow along.

The General Comments or Executive Summary

The General Comments in the Canvas LMS audit can also be thought of as the Executive Summary, and provides an

overview of the report.

General Comments or an Executive Summary will commonly include:

• The scope of the audit

• A description of key issues

• Terms used to evaluate issues

In this case the scope of the audit is the student facing components of the LMS, presented below:

Scope:
“This evaluation looks at the accessibility and usability of the student facing components of the Canvas LMS. It is

not an exhaustive review of all features, but rather more general coverage of the accessibility and usability of the

student features as a whole.”

Following the scope comes a description of the key issues that have been identified in the report. These are typically

the more significant Level A issues that would result in barriers to access for a given group of users, or issues that are

recurring throughout the site or application being reviewed. Depending on the scope of the review, this can be anywhere

from a few paragraphs to a few pages.

Finally, the General Comments describe the Evaluation terms, before leading into the full WCAG 2.0 Review.

Evaluation Terms:
“In places throughout the review, “Fail?” or “Pass?” have been used where a fail or pass is questionable. “Pass?”

is used in places where a single instance of a barrier has been identified, perhaps an oversight, or where it could

be argued that an item might fail or pass, typically a minor issue, leaning toward a Pass. “Fail?” is used in cases

where an item could be argued as a fail or pass, leaning toward a fail. In all cases, developers should consider the

recommendations made to remove any potential argument.”

Tour of an Audit Report | 167

The WCAG 2.0 Review

The WCAG 2.0 Review area of an audit report is a table formatted into 4 columns and 62 rows. Each row represents one

of the WCAG 2.0 guidelines. The four columns present the following key elements of the review:

• Success Criterion: The guideline numbers and a brief description of the guideline.

• Level: The conformance level for the associated guideline, i.e., A, AA, or AAA. Note that the AAA requirements are

greyed out, indicating that these are optional requirements. You may also notice that Guidelines 1.2.4 and 1.2.5 are

also greyed out; these are optional requirements for Ontario organizations, though may be required in other

jurisdictions.

• Evaluation: This is the outcome of the evaluation of a particular guideline, and there are 4 options.

◦ “Pass” is specified if the success criteria for a guideline are met.

◦ “Pass?” indicates that you have dismissed an issue as trivial, though it should still be considered when making

accessibility updates to the site. For example, if just one image on a website is missing alt text, while all others

include it, a questionable pass would be specified.

◦ “Fail” is specified when the success criteria for a guideline are clearly not met.

◦ “Fail?” is used when it could be argued that a strategy arguably meets the success criteria, but there are perhaps

better approaches. In either case, questionable pass or fail, a subjective judgement is being made. This should

be clearly stated in the General Comments.

◦ “N/A” marks those guidelines that are not applicable in the current context.

• Comments: This is the “meat” of a web accessibility audit. Here, potential barriers are described with enough detail

so that readers familiar with the site being reviewed are able to reproduce or find the barriers themselves. Reading

through the Comments section of the Canvas LMS review, you can gather a sense of the detail provided.

The Comments Area – Use of Graphics

Continuing to look at the Comments section in more detail, you will see that some graphics have been added to explain

issues more clearly, particularly where the written explanations may be too complicated or technical for some people to

understand, or in places where a key issue needs to be highlighted. And, there are times when just pointing to an issue in

a graphic is more effective than trying to describe it in words.

Graphics to Enhance Explanations and Summarize Main Issues

Take Success Criterion 1.4.3 in the Canvas LMS review for instance. In the explanation of the first issue, it can be difficult

to pinpoint exactly which colours are problematic. An added graphic explanation, like the figure below, makes it clear

which colours are being referred to almost instantly upon viewing the image. In fact, one may be able to understand the

issue based on the graphic without needing to read the text explanation.

168 | Tour of an Audit Report

Figure: Example of a graphic used to enhance the explanation of an issue
The collection of graphics in the report as a whole can act as a summary of the main issues. If you scan through just the

graphics in the report, you will notice they address most of the main issues.

Reading and References: If you would like more information on tools that can be used to create graphics, see

Tools for Creating Graphic Enhancements [PDF].

The Comments Area – Issue Descriptions

When describing an issue, always include:

• a brief description of the issue itself

• the reason why it is an issue

• one or more potential solutions to correct the issue

For each type of issue, reasoning need only be provided once. Examine the following description of an issue and note

these elements in the description.

Issue described

Tour of an Audit Report | 169

Reason why it’s an issue

Potential solution(s)

In the main calendar view, the days of the week that appear in the top row should be marked up with table headers

(th). Currently when navigating the data cells for each day, Assistive Technology users hear only the number, with no

indication of the day of the week. The scope="col" attribute could be added in each header cell to help ensure

day of the week is announced with each number.

Appendices

For a General Review, the Appendices should include a list of the pages sampled for the review, including the page title

and URL.

For a Detailed Review, the Appendices should include a list of page titles and their associated URLS for the process or

feature being reviewed. This might include a description of a user scenario that was tested, such as the process of making

a purchase (described earlier).

The Appendices may also contain information not directly related to the accessibility review, such as pointing out

potential bugs, providing recommendations on processes for addressing issues outlined in the report, or outlining

strategies to address accessibility of web content as part of everyday business practice.

170 | Tour of an Audit Report

Activity: Lulu's Lollipops Informal Review

Based on what you learned in this unit, conduct an informal review of the Lulu’s Lollipops website,

and write a brief report (maximum two pages). Re-read the Sample Informal Review from earlier in this unit to

understand what, and how much information to include in your Informal Review. The goal should be to encourage a

formal review.

Suggested Answer to Activity

Activity: Lulu's Lollipops Informal Review | 171

Self-Test 7

Question 1

Which of the following is not a type of audit that was covered in this Chapter? Please select all that apply.

a. Informal

b. Template

c. Navigation

d. Content

e. General

f. Detailed

g. Follow-Up

Question 2

What is the time limit on the validity of a Web accessibility conformance review for a website?

a. Two years

b. A year

c. Six months

d. A month

e. A week

f. None of the above

Question 3

Which of the following elements would be reviewed in a Template Audit? Please select all that apply.

a. Main Navigation

b. Header

c. Side Menu

172 | Self-Test 7

d. Main Content Area

e. Footer

f. None of the above

Question 4

Which of the following elements would be reviewed in a General Audit, assuming a Template Audit had
already been conducted? Please select all that apply.

a. Main Navigation

b. Header

c. Side Menu

d. Main Content Area

e. Footer

f. None of the above

Answers to Self-Test 7

An interactive or media element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1478

Self-Test 7 | 173

8. OTHER ACCESSIBILITY STANDARDS

8. Other Accessibility Standards | 175

Other Accessibility Standards

At a recent planning meeting with her management team, Lulu was reminded of one additional

consideration with respect to her website. Lulu hopes to expand her business more widely to international markets.

She wonders if her website is in compliance with accessibility requirements in other jurisdictions. Because the

learning and work that Lulu and her team have been doing is anchored in the WCAG 2.0 guidelines, she will meet

the compliance requirements of most regions across North America and the rest of the world. However, it would be

beneficial for those at Lulu’s Lollipops and for you to become familiar with a few additional guidelines that may be

relevant in specific contexts and situations.

So far WCAG 2.0 has been the main guideline we have used for auditing web accessibility. In most cases it will be the

guideline of choice, though there are others to be aware of that might also be referenced as part of web accessibility

auditing projects. In this unit we will look at:

• The W3C Authoring Tool Accessibility Guidelines (ATAG)

• User Agent Accessibility Guidelines (UAAG)

• WAI’s Accessible Rich Internet Applications Guidelines (WAI-ARIA)

• The ISO 24751 Access for All standards

We will also look at how rules and legislation around the world have adopted WCAG 2.0 as the basis for various

international laws that dictate web accessibility requirements in many countries. As a result of this adoption, it is possible

through courses like this one to train developers and auditors with one set of instructions. Ultimately, the good news is

that what you learn in this course will be applicable for a broad range of country-specific accessibility requirements.

Other Accessibility Standards | 177

Objectives and Activities

Objectives

By the end of this unit, you will be able to:

• Identify a range of accessibility guidelines and standards and relate them to relevant business contexts and

jurisdictions.

Activities

• Identify any relevant accessibility guidelines that may be in place in your jurisdiction

• Compare WAI-ARIA implementation strategies using the ChromeVox screen reader

• Self-Test 8

178 | Objectives and Activities

WCAG Relation to International Web Accessibility
Guidelines

The W3C Web Content Accessibility Guideline (WCAG 2.0) has become broadly accepted as the definitive source for web

accessibility rules around the world, with many jurisdictions adopting it verbatim, or with minor adjustments, as the basis

for accessibility laws that remove discrimination against people with disabilities on the web. The following is a listing of

some of the countries that have adopted WCAG 2.0.

Canada

Accessibility for Ontarians with Disabilities Act (AODA)

This course has been created in the context of the AODA, which came into effect in 2005 with the goal of making Ontario

the most inclusive jurisdiction in the world by 2025. Part of this 20 year rollout involved educating businesses in Ontario,

many of which are now obligated by the Act to make their websites accessible, first at Level A between 2012 and 2014, and

at Level AA between 2016 and 2021.

The AODA adopts WCAG 2.0 for its web accessibility requirements, with the exception of two guidelines:

1. Ontario businesses and organizations are not required to provide captioning for live web-based broadcasts (WCAG

2.0 Guideline 1.2.4, Level A)

2. Ontario businesses and organizations are not required to provide audio description for pre-recorded web-based

video (WCAG 2.0 Guideline 1.2.5, Level AA)

Otherwise, AODA adopts WCAG 2.0 verbatim.

Readings and References: For key information on the adoption of WCAG 2.0 in the context of the AODA, refer to

The Integrated Accessibility Standards (of the AODA).

Canadian Government Standard on Web Accessibility

In 2011, the Government of Canada (GOC) introduced its most recent set of web accessibility standards, made up of four

sub-standards that replace the previous Common Look and Feel 2.0 standards. The Standard on Web Accessibility adopts

WCAG 2.0 as its web accessibility requirements, with the exception of Guideline 1.4.5 Images of Text (Level AA) in cases

where “essential images of text” are used, in cases where “demonstrably justified” exclusions are required, and for any

archived web content. The standard applies only to Government of Canada websites.

WCAG Relation to International Web Accessibility Guidelines | 179

Readings and References: For full details of the Government of Canada accessibility requirements, read the

Standard on Web Accessibility.

Accessibility 2024

In 2014 the British Columbia government released Accessibility 2024, a 10-year action plan designed around 12 building

blocks intended to make the province the most progressive in Canada for people with disabilities. Accessible Internet is

one of those building blocks. The aim is to have all B.C. government websites meet WCAG 2.0 AA requirements by the end

of 2016.

Readings and References: For additional details visit the Accessibility 2024 website.

United States

Americans with Disabilities Act (ADA)

The ADA does not have any specific technical requirements upon which it requires websites to be accessible; however,

there have been a number of cases where organizations that are considered to be “places of public accommodation” have

been sued due to the inaccessibility of their websites (e.g., Southwest Airlines, AOL), where the defendant organization

was required to conform with WCAG 2.0 Level A and Level AA guidelines.

There is a proposed revision to Title III of the ADA (Federal Register Volume 75, Issue 142, July 26, 2010) that would, if

passed, require WCAG 2.0 Level A and AA conformance to make web content accessible under ADA.

Readings and References: See: Nondiscrimination on the Basis of Disability; Accessibility of Web Information and

Services of State and Local Government Entities and Public Accommodations

Section 508 (of The Rehabilitation Act, U.S.)

Section 508 is part of the U.S. Rehabilitation Act and its purpose is to eliminate barriers in information technology,

applying to all Federal Agencies that develop, procure, maintain, or use electronic and information technology. Any

company that sells to the U.S. Government must also provide products and services that comply with the accessibility

guidelines Section 508 describes in the Act.

These guidelines were originally based on a subset of the WCAG 1.0 guidelines, which was recently updated to adopt

WCAG 2.0 Level A and AA guidelines as new requirements for those obligated through Section 508.

180 | WCAG Relation to International Web Accessibility Guidelines

Readings and References:

• Section 508 Refresh (Jan 18, 2018)

• Section 508 – 1194.22 (Old 508)

• Comparison Table of WCAG 2.0 to Existing 508 Standards

• Section 508 Proposed Update (February 18, 2015 – See section B of Major Issues)

United Kingdom

Equality Act 2010

The Equality Act in the UK does not specifically address how web accessibility should be implemented, but does, through

Section 29(1), require that those who sell or provide services to the public must not discriminate against any person

requiring the service. Effectively, preventing a person with a disability from accessing a service on the web constitutes

discrimination.

Sections 20 and 29(7) of the Act make it an ongoing duty of service providers to make “reasonable adjustments” to

accommodate people with disabilities. To this end the British Standard Institution (BSI) provides a code of practice (BS

8878) on web accessibility, based on WCAG 1.0.

Readings and References:

• Equality Act 2010

• Equality Act 2010: Guidance

• Website accessibility and the Equality Act 2010

For more about BSI efforts, watch the following video:

Video: BSI Documentary – Web Accessibility World Standards Day

WCAG Relation to International Web Accessibility Guidelines | 181

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1486

© BSI Group. Released under the terms of a Standard YouTube License. All rights reserved.

Europe

Throughout Europe a number of countries have their own accessibility laws, each based on WCAG 2.0. In 2010 the

European Union itself introduced web accessibility guidelines based on WCAG 2.0 Level AA requirements. The EU

Parliament passed a law in 2014 that requires all public sector websites, and private sector websites that provide key

public services, to conform with WCAG 2.0 Level AA requirements, with new content conforming within one year, existing

content conforming within three years, and multimedia content conforming within five years.

This does not mean, however, that all countries in the EU must now conform. The law now goes before the EU Council,

where heads of state will debate it, which promises to draw out adoption for many years into the future, if it gets adopted

at all.

Readings and References:

• The EU Internet Handbook: Web Accessibility

182 | WCAG Relation to International Web Accessibility Guidelines

• New European Standard on accessibility requirements for public procurement of ICT products and services

(ETSI EN 301 549)

• Standard – EN 301 549

Italy

In Italy the Stanca Act 2004 (Disposizioni per favorire l’accesso dei soggetti disabili agli strumenti informatici) governs

web accessibility requirements for all levels of government, private firms that are licensees of public services, public

assistance and rehabilitation agencies, transport and telecommunications companies, as well as ICT service contractors.

The Stanca Act has 22 technical accessibility requirements originally based on WCAG 1.0 Level A guidelines, updated in

2013 to reflect changes in WCAG 2.0.

Readings and References: Stanca 2013 Requirements (Italian)

Germany

In Germany, BITV 2.0 (Barrierefreie Informationstechnik-Verordnung), which adopts WCAG 2.0 with a few modifications,

requires accessibility for all government websites at Level AA (i.e., BITV Priority 1).

Readings and References: BITV (Appendix 1)

France

Accessibility requirements in France are specified in Law No 2005-102, Article 47, and its associated technical

requirements are defined in RGAA 3 (based on WCAG 2.0). It is mandatory for all public online communication services,

public institutions, and the State, to conform with RGAA (WCAG 2.0).

Readings and References:

• Law No 2005-102, Article 47 (French)

• Référentiel Général d’Accessibilité pour les Administrations (RGAA) (French)

WCAG Relation to International Web Accessibility Guidelines | 183

Spain

The web accessibility laws in Spain are Law 34/2002 and Law 51/2003, which require all government websites to conform

with WCAG 1.0 Priority 2 guidelines. More recently UNE 139803:2012 adopts WCAG 2.0 requirements, and mandates

government and government funded organizations, as well as organizations larger than 100 employees, or with a trading

column greater than 6 million Euros, or those providing financial, utility, travel/passenger, or retail services online to

comply with WCAG Level AA requirements.

(see: Legislation in Spain)

Readings and References:

• Law 34/2002 – Information Society and Electronic Commerce Services Act PDF (Spanish)

• UNE 139803:2012: Web content accessibility requirements (supersedes 139803:2004)

• Law 51/2003 – Equality of opportunities, non-discrimination, and universal accessibility for people with

disabilities (Spanish)

Australia

Though not specifically referencing the Web, the Disability Discrimination Act of 1992 section 24 makes it unlawful for a

person who provides goods, facilities or services to discriminate on the grounds of disability. This law was tested in 2000,

when a blind man successfully sued the Sydney Organizing Committee for the Olympic Games (SOCOG) when its website

prevented him from purchasing event tickets.

The Australian Human Rights and Equal Opportunity Commission (HREOC) shortly after released World Wide Web

Access: Disability Discrimination Act Advisory Notes. These were last updated in 2014 and though they do not have direct

legal force, they do provide web accessibility guidance for Australians on how to avoid discriminatory practices when

developing web content, based on WCAG 2.0.

Readings and References: World Wide Web Access: Disability Discrimination Act Advisory Notes

For more about international web accessibility laws, see the following resources:

Readings and References:

• Chapter 17 – Web Accessibility (2006)

• Policies Relating to Web Accessibility (W3C)

• Government accessibility standards and WCAG 2

• World Laws WebAIM

184 | WCAG Relation to International Web Accessibility Guidelines

ATAG: Authoring Tool Accessibility Guidelines

Authoring tools come in many forms. Some familiar web-based examples of authoring tools include blogs (e.g.,

WordPress), wikis (e.g., Mediawiki), content management systems (e.g., Drupal), learning management systems (e.g.,

Canvas), document authoring tools (e.g., Google Docs), and video production environments (e.g., YouTube). Some other

tools that are not web-based include HTML editors (e.g., Adobe Dreamweaver), video authoring tools (e.g., Camtasia

Studio), and document authoring tools (e.g., Microsoft Word) that are all capable of creating content for the Web.

In addition to providing guidance on developing web content that is accessible through WCAG 2.0, the Web

Accessibility Initiative (WAI) has introduced the Authoring Tool Accessibility Guidelines (ATAG 2.0) which provide

guidance for web authoring tool developers to ensure that:

1. Tools are accessible to be used by people with disabilities

2. Tools make it possible to create WCAG 2.0 conformant Web content

Conformance

ATAG 2.0 guidelines are sorted by levels of importance, much like WCAG 2.0. Because ATAG 2.0 covers tools that are not

web-based, it does not specifically refer to “accessibility supported” requirements like those of WCAG 2.0 because those

refer to web-based strategies that are supported by assistive technology.

ATAG 2.0 conformance for authoring tools is more complex than WCAG 2.0 conformance for web content, as it

subsumes WCAG 2.0 and adds a range of requirements specific to authoring tools.

Partial ATAG 2.0 process component conformance is also possible in cases where additional add-on components

would be needed to claim full conformance. For example, if the tool does not provide accessibility checking capability (a

requirement for ATAG 2.0 conformance), it can claim partial conformance if it is possible to add a plugin that provides

accessibility checking. Partial conformance can also be claimed when the platform limits compliance. For example, if a

tool runs on multiple operating systems, and conformance is possible on one platform (e.g., Windows) that has an add-on

accessibility checking service available, but a similar service is not available for the system run on on a different platform

(e.g., Linux), a platform limitation conformance claim can be made.

More details about conformance claims can be found in the ATAG 2.0 specifications itself:

Readings and References: ATAG 2.0 Conformance Claims

ATAG 2.0 Part A

Part A of ATAG 2.0 provides guidance on making the authoring tool user interface accessible. Generally speaking, these

guidelines reflect WCAG 2.0 with the addition of accessibility requirements for tools that are not web-based.

The four top level guidelines in Part A are as follows:

• Principle A.1: Authoring tool user interfaces follow applicable accessibility guidelines

ATAG: Authoring Tool Accessibility Guidelines | 185

• Principle A.2: Editing-views are perceivable

• Principle A.3: Editing-views are operable

• Principle A.4: Editing-views are understandable

ATAG 2.0 Part B

Part B of ATAG 2.0 focuses on guidelines for creating tools that are able to generate WCAG 2.0 conformant web content.

It too has four top level guidelines, and a series of sub-guidelines for each. For a full listing of these guidelines, refer to

the the full ATAG specification.

• Principle B.1: Fully automatic processes produce accessible content

◦ This set of guidelines refers to functions within the authoring tool that automatically generate web content.

Technical: For example, if a tool automatically generates a basic HTML template when authoring a new

page, that template must include a DOCTYPE declaration, a proper <head> area and <title>
element, as well as a <body> area, and it must validate based on a given HTML specification.

◦ When existing content is being edited in the authoring tool, it must provide a means to preserve any

accessibility information contained within the original content.

• Principle B.2: Authors are supported in producing accessible content

◦ If, for example, the tool provides a means to add images, it must also provide a means to add a text alternative,

and that means must be prominent.

◦ If, for example, an image is added but no alt text has been provided, the tool prompts the author to include it,

and explains why it is necessary.

◦ If existing accessibility information is available in previously existing content, a means is provided to edit that

information.

◦ The tool does not attempt to automatically repair existing accessibility information, unless specific issues are

identified, such as default alt text like “image”.

◦ Accessible templates provided by the system are identified as such.

• Principle B.3: Authors are supported in improving the accessibility of existing content

◦ Tools are provided to check the accessibility of the authored content against WCAG 2.0 or other accessibility

specifications.

◦ Guidance is provided where manual checking is required.

◦ If issues are found, the tool provides suggestions to repair the issues.

• Principle B.4: Authoring tools promote and integrate their accessibility features

◦ Accessibility features in the tool are enabled by default.

◦ Tool does not have an option to turn off accessible authoring features.

◦ If accessibility features can be turned off, a warning is provided explaining the potential dangers of doing so.

◦ Documentation is provided on authoring accessible content.

186 | ATAG: Authoring Tool Accessibility Guidelines

UAAG: User Agent Accessibility Guidelines

In cases where you may be auditing a browser application like Chrome or Firefox, a plugin, a web-based mobile app,

or perhaps a video or audio player like Quicktime or Windows Media Player, UAAG 2.0 (currently in draft form) should

be referenced. These guidelines are aimed primarily at the developers of web browsers, browser extensions, and media

players, but also at assistive technology developers so they understand the types of accessibility information to expect

from UAAG 2.0 compliant user agents.

The UAAG 2.0 specifications are structured much like WCAG 2.0 and ATAG 2.0 are, and include principles, guidelines,

and success criteria. Conformance levels are also much the same, with Levels A (minimum), AA (recommended) and

AAA (advanced). WCAG 2.0, ATAG 2.0, and UAAG 2.0 are a collection of guidelines, together guiding the development of

accessible web content, tools for creating accessible web content, and tools for viewing web content in accessible ways.

Though UAAG 2.0 is currently a W3C draft specification, it should be used instead of UAAG 1.0, as it reflects the

advances in web technologies since UAAG 1.0 was released in 2002. Changes may still occur in the specification, though

these are not anticipated to be significant.

UAAG 2.0 Principles

UAAG 2.0 has 5 principles:

• Principle 1 ensures that the user agent is perceivable, so users can access user agent output.

• Principle 2 ensures that the user agent is operable, so users can communicate with the user agent.

• Principle 3 ensures that the user agent is understandable, so users know how to use the user agent.

• Principle 4 ensures that assistive technologies can access user agent controls.

• Principle 5 ensures that user agents comply with other accessibility specifications (e.g., WCAG 2.0, ATAG 2.0) and

platform conventions (e.g., Windows, iOS, Linux, Blackberry).

UAAG 2.0 Guidelines

In the primary guidelines listed below, you will see that many directly reflect WCAG 2.0 recommendations. For example,

WCAG 2.0 requires that visual elements in web content have text alternatives (WCAG 2.0 – G1.1.1) and UAAG 2.0 requires

that user agents (browsers, etc.) provide access to those alternatives (UAAG 2.0 – G1.1).

• Principle 1: Perceivable

◦ Guideline 1.1: Provide access to alternative content

◦ Guideline 1.2: Repair missing content

◦ Guideline 1.3: Provide highlighting for selection, keyboard focus, enabled elements, visited links

◦ Guideline 1.4: Provide text configuration

◦ Guideline 1.5: Provide volume configuration

◦ Guideline 1.6: Provide synthesized speech configuration

◦ Guideline 1.7: Enable configuration of user stylesheets

UAAG: User Agent Accessibility Guidelines | 187

◦ Guideline 1.8: Help users to orient within, and control, windows and viewports

◦ Guideline 1.9: Provide Alternative views

◦ Guideline 1.10: Provide element Information

• Principle 2: Operable

◦ Guideline 2.1: Ensure full keyboard access

◦ Guideline 2.2: Provide sequential navigation

◦ Guideline 2.3: Provide direct navigation and activation

◦ Guideline 2.4: Provide text search

◦ Guideline 2.5: Provide structural navigation

◦ Guideline 2.6: Configure and store preference settings

◦ Guideline 2.7: Customize display of graphical controls

◦ Guideline 2.8: Allow time-independent interaction

◦ Guideline 2.9: Help users avoid flashing that could cause seizures

◦ Guideline 2.10: Provide control of time-based media

◦ Guideline 2.11: Support other input devices

• Principle 3: Understandable

◦ Guideline 3.1: Help users avoid and correct mistakes

◦ Guideline 3.2: Document the user agent user interface including accessibility features

◦ Guideline 3.3: Make the user agent behave in predictable ways

• Principle 4: Programmatic access

◦ Guideline 4.1: Facilitate programmatic access to assistive technology

• Principle 5: Specifications and conventions

◦ Guideline 5.1: Comply with applicable specifications and conventions

For a look at the full set of UAAG 2.0 recommendations, visit the draft specification and resources at the following links:

Readings and References:

• User Agent Accessibility Guidelines

• UAAG 2.0 Reference: Explanations, Examples, and Resources for User Agent Accessibility Guidelines 2.0

188 | UAAG: User Agent Accessibility Guidelines

ISO/IEC-24751 (AccessForAll)

Individualized Adaptability and Accessibility in E-Learning, Education and Training

In 2008, the ISO/IEC (International Standards Organization/International Electrotechnical Commission) released the

initial version of the AccessForAll (AFA) standards. AFA is based on the AccessForAll 2.0 work undertaken at the IMS Global

Learning Consortium, along with the Inclusive Design Research Centre at OCAD University in Toronto. For those familiar

with Universal Design for Learning (UDL) principles, AFA is similar in its approach. It sets out guidelines for developing

adaptable learning content that matches how different learners learn, often creating the same learning experience in

multiple forms.

The goal of AFA is to match learning content to the specific needs of each learner and this concept is not new. Where

learning content is involved, web accessibility audits might include recommendations to provide multiple versions of the

same content, so a wider range of people can access the content depending on their individual needs. Here are some

examples:

• If instructions are presented as a list of ordered steps, providing a multimedia version demonstrating those same

steps would make the content more usable by more people.

• Providing alt text for an image is a text adaptation for visual content.

• Adding captions to a video in the UDL context does not imply that the learner has a hearing-related disability in the

traditional sense, but rather that the learner, for whatever reason, is unable to hear. For example, one might be

learning in a noisy environment and unable to hear the audio clearly, or may be working on a system that does not

have speakers, or may be working in a place where quiet is required.

In terms of evaluating web accessibility based on AccessForAll, it may be too early to start making AFA recommendations,

given very few systems have yet implemented the standards. AFA is a rather complex set of standards, given the range

of potential needs and preferences and the variety of ways content can be presented. The following is an overview of the

three standards that make up AccessForAll.

• Part 1: Framework and Reference Model

◦ This part of AFA provides common language for describing users’ personal needs and preferences on the one

hand, and describing characteristics of digital resources on the other. This part of the standard provides the

framework for additional parts, described below.

• Part 2: “Access for all” Personal Needs and Preferences (PNP) for Digital Delivery

◦ Personal Needs and Preferences describe the needs of the learner. For example, a learner may require text

alternatives for visual elements, or require audio alternatives to textual elements, or require sign language

alternative to spoken audio, and so on. PNP does not specifically define needs based on disability, but rather

learning needs within particular contexts. A person may define multiple PNPs that are applied in different

situations.

• Part 3: “Access for all” Digital Resource Description (DRD)

◦ A Digital Resource Description describes the characteristics of learning content. A DRD can include a range of

information on a particular piece of content, including the form of the original content as well as the

ISO/IEC-24751 (AccessForAll) | 189

adaptations of the content that are available. This information is used to match content adaptations with

learners’ specific needs as defined in their PNP profile. If, for instance, a learner specifies they require text

alternatives with visual elements, the AFA compliant system would identify visual elements in the content, and

if text alternatives are available and described in the DRD for that piece of content, it would append or replace

the visual content with equivalent text.

Watch the following video for a demonstration of AccessForAll in ATutor and AContent. AFA enhanced content is easily

created in either system, and easily moved between the systems.

Video: IMS common Cartridge with AccessForAll

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1510

© atutorspaces. Released under the terms of a Creative Commons Attribution license.

The AccessForAll Standards can be downloaded from the ISO website, for those who wish to investigate further:

Readings and References:

• ISO/IEC-24751-1 Part 1: Framework and reference model

• ISO/IEC-24751-2 Part 2: “Access for all” personal needs and preferences for digital delivery

• ISO/IEC-24751-3 Part 3: “Access for all” digital resource description

• IMS Global Learning Consortium – AccessForAll

190 | ISO/IEC-24751 (AccessForAll)

Try This: If you would like to experience AccessForAll firsthand, download the Optional AccessForAll Activity, for

a look at how the ATutor learning management system has implemented Personal Needs and Preferences, and

Digital Resource Descriptions.

ISO/IEC-24751 (AccessForAll) | 191

WAI-ARIA: Web Accessibility Initiative - Accessible
Rich Internet Applications

WAI-ARIA is perhaps the most significant web accessibility technology to come along since the introduction of WCAG 1.0.

It allows developers of web applications or custom web interactivity to define specific roles, states, and properties for

custom made interactions that assistive technologies are able to understand. Though WAI-ARIA is aimed primarily at
developers, others should at least understand where and when it gets used.

WAI-ARIA is a W3C specification that defines a collection of attributes that can be used within HTML elements to add

semantic information. For example, a developer may want to create a navigation menu, often using HTML list markup to

structure the menu items and JavaScript to control which elements of the menu to display at any given time. Without

using WAI-ARIA, such a menu may be accessible in the sense that an AT user could navigate through its elements and

open menu items, but they will be announced by the AT as a collection of nested lists. By adding ARIA menu roles to

these list elements, AT will announce them as parts of a menu, whether they are opened or closed, and whether they have

submenus, and so on.

When auditing custom web interactivity, a screen reader like ChromeVox should be used to navigate through a tool or

widget to determine whether WAI-ARIA has been used to add roles, states and properties to the feature. You can also

examine the code using the Inspect tool in various browsers, to see what ARIA is being used to operate the tool and watch

the ARIA update dynamically, as states and properties change. In audit reports, recommendations can be made to use

ARIA to make elements more meaningful, thus more usable by AT users. Refer to Guideline 4.1.2 (Level A).

The full WAI-ARIA specification and WAI-ARIA authoring practices can be found on the W3C website. At least scan

through these documents to familiarize yourself with their contents so you can refer back to them in your audits when

making ARIA related recommendations.

Toolkit: Bookmark these two documents to add them to your tool kit.

• Accessible Rich Internet Applications (WAI-ARIA 1.1)

• WAI-ARIA Authoring Practices

WAI-ARIA in Action

The following is an HTML excerpt from a large main navigation menu that has been marked up with WAI-ARIA. The

markup contains the basic ARIA attributes used to create an AT usable main menu. Read through the comments in the

box below, and examine the markup it describes to develop your understanding of how WIA-ARIA is used.

Technical: An example of a main menu created with HTML unordered list markup.

The first line of markup below creates a container around the menu, gives it a role of navigation, is describe with

the text in the menu_keys span element below referenced using aria-describedby, and is made keyboard focusable

192 | WAI-ARIA: Web Accessibility Initiative - Accessible Rich
Internet Applications

with tabindex="0" . When accessed with a screen reader, it announces itself as navigation and describes to the

user how to navigate through the menu.

<div role="navigation" aria-describedby="menu_keys" tabindex="0">

Main Menu: Use arrow keys to move left and right and
up and down through menus

The menu itself is a basic nested unordered list. JavaScript injects the ARIA dynamically. The ULs are given a role of

menubar, list items are given a role of menuitem. Where a nested list occurs (which is a submenu) aria-haspopout

is set to true to indicate to the screen reader that a submenu is present. The aria-activedescendant is set to the ID

of the parent element of the submenu that currently has focus.

<ul id="nav" role="menubar" aria-describedby="menukeys">
<li role="menuitem">Home
<li id="activeItem" role="menuitem" aria-haspopout="true">

Courses and Programs
<ul role="menubar" aria-activedescendant="activeItem">

<li role="menuitem" aria-haspopout="true">Areas of Interest

<li role="menuitem">Information Technology
<li role="menuitem">Communication and Media
<li role="menuitem">Business Systems and Strategies
…

…

…

</div>

To see the menu in action, view the following video. Listen closely to how the menu is announced by ChromeVox.

Video: WIA-ARIA Main Navigation

WAI-ARIA: Web Accessibility Initiative - Accessible Rich Internet Applications | 193

A YouTube element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1512

The menu in the video above uses the MooTools accessible dropdown menu scripts to inject the appropriate ARIA

attributes when they are needed. Fortunately many of the common interactions, like menus, accordions, and tabpanels

for instance, have open source scripts available to quickly add in the appropriate ARIA.

Toolkit: Bookmark the open source WAI-ARIA Examples used in ARIA workshops for developers at Ryerson

University. These examples can be referred to when making recommendations where ARIA is needed in web

accessibility audits.

When to Use ARIA

Though ARIA is a necessity for developers who create custom interactivity for the Web, there are times when it should

and should not be used.

Do use ARIA:

• When HTML is being used in a non-standard way (e.g., making a checkbox out of a div)

• When within page navigation is needed (use ARIA landmarks)

• When creating web widgets like sliders, datepickers, tooltips, tabpanels, accordions, etc.

194 | WAI-ARIA: Web Accessibility Initiative - Accessible Rich Internet Applications

Do not use ARIA:

• When there is a way to create the same interactivity with standard HTML

• When HTML is being used in a standard way (e.g., an HTML form does not need role=“form” added because it has

that role by default)

Key ARIA Attributes

Technical: Here are some WAI-ARIA attributes that are used often and are relatively easy to understand.

aria-describedby

This attribute is very useful for adding instructions or descriptions of web elements for AT users. In the menu

example above, aria-describedby is used to provide instructions on using the menu, in that case referencing a

hidden span element containing a description of keyboard navigation.

It could also be used to provide extra information about a particular feature, such as describing the format

for a password form field. If the password must include numbers, letters, and special characters, that text might

be positioned after the password field in a span element and through its ID attribute, referenced using aria-

describedby in the input element for the password field. With the example markup below, a screen reader would

announce the label for the password field, followed by format for the password. Without referencing the format

span element, this information may go unnoticed by AT users.

<label for="pass">Password</label>
<input type="password" id="pass" aria-describedby="format">

must contain numbers, letters, and special characters

aria-live vs. alert role

The aria-live attribute, often referred to as a live region, must be used in places where information is dynamically

updating on a page, without the page itself reloading. Otherwise AT users are unlikely to notice that changes are

occurring. The aria-live attribute can be set to “polite,” as seen in the code snippet below, in which case a screen

reader will wait until a break in the screen reader’s output to read the content. Or, aria-live can be set to “assertive”

in which case a screen reader will interrupt whatever is being read to read the changes within the live region.

Live regions are useful for things like news feeds (e.g., Twitter or news sites), live chat applications, social media

streams, rotating banners or other kinds of auto-updating information.

WAI-ARIA: Web Accessibility Initiative - Accessible Rich Internet Applications | 195

<div id="news_feed" aria-live="polite">
//updating content goes here

</div>

On the other hand, the role="alert" attribute, often called an ARIA alert, is a special type of assertive live

region, that should be used in places where feedback is being presented. If, for example, a required field in a form is

left empty, and an error message is injected immediately below the field to indicate the error (like that in the code

snippet below), these types of feedback messages are good candidates for ARIA alerts. Otherwise such messages

may go unnoticed by AT users. Or, after successfully submitting a form to register, for instance, the message that

appears on the page after submitting the form indicating the registration was successful, would also be a good

candidate for an ARIA alert.

<div id="username_feedback" role="alert">
<p style="color:red;">Username field cannot be empty.</p>

</div>

roles and landmarks

ARIA provides a whole range of roles that can be used to assign a functional application to particular HTML

elements. You have already been introduced to the the “alert” role, and the roles associated with a navigation menu.

There is a particular set of roles that are referred to as landmarks. These should be used carefully throughout a

user interface to define regions throughout that UI. Screen readers are able to list these landmarks and users can

jump to any one of them to navigate directly to a relevant area of a page.

Where landmarks are used, all areas of a page should be contained within a landmarked region. These regions,

introduced back in Unit 2 (2.4.1 Provide Ways to Navigate), are presented again here:

Full list of landmark roles:

• banner: Associated with the header area of a page. There should only be one banner landmark per page.

• complementary: A section of content that complements the main content but also retains its meaning when

separated from the main content. Often used with a region containing advertising or promo items aligned

down the right side of the page. There can be multiple areas defined as complementary.

• contentinfo: Contains the content usually found in the footer of a page, like copyright and privacy

statements. There should only be one contentinfo landmark per page.

• form: Contains form input elements that can be edited and submitted by the user. Multiple elements can have

the form role.

• main: The main content of the page. There should only be one main landmark per page.

• navigation: A collection of navigation links used to navigate the site or page. There can be multiple elements

with the role navigation.

• search: A search tool.

• application: Represents a unique functional unit, and keyboard commands are handled by the application

rather than the browser or the assistive technology itself. An embedded movie player, a calendar widget, or

196 | WAI-ARIA: Web Accessibility Initiative - Accessible Rich Internet Applications

other customized software embedded in web content are examples where the application role might be used.

This role should be used sparingly as it can create some confusion for screen reader users when key

commands begin working differently.

tabindex

Though the HTML tabindex attribute has been around since HTML4, for use with specific HTML elements, with

HTML5 it can be used with any element to add keyboard focus to elements that do not normally receive focus,

using tabindex="0" .

In the code for the menu above, you will notice tabindex in the opening div element. Normally divs do not receive

keyboard focus. In the case of the menu, adding focus to the container div is needed for the description referred

to by aria-describedby to be read. When the div receives focus, the screen reader will announce “Main Menu: Use

arrow keys to move left and right and up and down through menus.”

aria-expanded

The aria-expanded state is used for menus that have toggles to open and close submenus, and also to inform

AT users whether a menu item has a submenu, and whether that submenu is open or not.

The following markup is from a side menu, with toggles to open and close sections of the menu. You will notice

that aria-expanded is set to true, indicating to AT that a submenu is open following this element. If the submenu

were closed, aria-expanded would be set to false, updated dynamically by the JavaScript that controls interactivity

of the side menu.

<span id="acc_tab_2170"
class="navtoggler active"
tabindex="0"
aria-expanded="true"
role="tab"
aria-selected="false">
Archived Calendars

aria-label

When forms are formatted in a way that prevents the use of the HTML label element to explicitly associate a label

with a form field, only then should aria-label be used to label the form element. If label can be used, it should be

used instead of the ARIA version.

WAI-ARIA: Web Accessibility Initiative - Accessible Rich Internet Applications | 197

A good example of a case where aria-label might be used is on a search form. These forms usually do not include

a label element.

<form>
<input type="text" id="search" aria-label="Enter search terms" />

</form>

aria-labeledby

This attribute can be used with non-standard forms to associate a label or multiple labels with a form field. For

example, you may have a data entry form laid out in a table, like that in the figure below, in which the content of

the table header cells provides labels for multiple input fields.

Consider the following table, in which the content of the header cells provides labels for each form input field in

the column below. In the markup that follows the figure, you can see how aria-labelledby has been used to assign

the values in the header cells as labels for each form element.

Name Email Login

John Smith js@smail.com jsmith

Figure: A table used to layout a data entry form.

<table>
<tr>

<th id="name_label">Name</th>
<th id="email_label">Email</th>
<th id="login_label">Login</th>

</tr>
<tr>

<td><input type="text" id="name" aria-labelledby="name_label"/></td>
<td><input type="text" id="email" aria-labelledby="email_label"/></td>
<td><input type="text" id="loginl" aria-labelledby="login_label"/></td>

</tr>
…
</table>

If there is the option to use the label element over using aria-labelledby, then label should be used. If both label and

aria-labelledby are used on the same input element, aria-labelledby will override the label.

198 | WAI-ARIA: Web Accessibility Initiative - Accessible Rich Internet Applications

Activity: Web Accessibility in Your Part of the World

Spend a few moments researching relevant (if any) web accessibility compliance requirements in

the jurisdiction where you live.

Activity: Web Accessibility in Your Part of the World | 199

Self-Test 8

Question 1

Match the following accessibility rules and regulations with their respective jurisdictions:

a. Ontario

b. USA

c. United Kingdom

d. Italy

e. France

f. Australia

i. Section 508

ii. Disability Discrimination Act 1992

iii. AODA

iv. Stanca Act

v. Disability Discrimination Act 1995

vi. RGAA

Question 2

Which of the following are elements of the ISO/IEC 24751 AccessForAll Standards? Please select all that
apply.

a. Personal Needs and Preferences

b. Accessible Rich Internet Applications

c. Hypertext Markup Language

d. Digital Resource Descriptions

e. Extensible Markup Language

f. Accessibility Evaluation and Repair

200 | Self-Test 8

Question 3

Which of the following are W3C specifications? Please select all that apply.

a. WAI-ARIA

b. ATAG

c. ISO/IEC 24751

d. UAAG

e. WCAG

f. RGAA

Answers to Self-Test 8

An interactive or media element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=1524

Self-Test 8 | 201

Content Recap

Congratulations! You have reached the end.

The goal of Professional Web Accessibility Auditing Made Easy has been to build your knowledge and develop your skills

so you will be able to:

• Audit the accessibility of websites

• Report issues and make informed recommendations

• Understand thoroughly the aspects of web accessibility

Unit 1: Aspects of Web Accessibility Auditing

Unit 1 provided an overview of the many aspects of web accessibility auditing, creating a foundation that the rest of the

materials here are built upon. You started assembling your Web Accessibility Auditing Toolkit, which would grow into a

collection of tools, references, and resources to support your accessibility auditing activities.

Unit 2: Introduction to WCAG 2.0

Unit 2 introduced you to the W3C Web Content Accessibility Guidelines (WCAG 2.0). First the four principles were

introduced, which state that web content must be: Perceivable, Operable, Understandable, and Robust. You were also

introduced to conformance levels and success criteria: Level A are criteria that must be addressed or barriers will be

created; Level AA are criteria that should be addressed or content will be difficult to use for some; and Level AAA are

criteria that could be addressed to improve usability further. With that in mind, the 10 Key Guidelines were introduced

to familiarize you with the more common accessibility issues found in web content.

Unit 3: Automated Testing Tools

Unit 3 covered a variety of automated tools that support web auditing activities. First, the AChecker and WAVE

accessibility checkers were compared, and a variety of other similar tools were introduced for you to explore. You were

also introduced to tools for evaluating colour contrast, for validating HTML markup, and for determining the reading
level that visitors to a website would need to effectively understand the content.

Unit 4: Manual Testing Strategies

Unit 4 introduced a number of manual test strategies that complement automated tests, and assistive technology

reviews. You were introduced to the Tab Navigation and the Select All tests, useful for quickly identifying keyboard

Content Recap | 203

accessibility issues and other potential barriers. Tools such as Developer Tools were introduced as a means of examining
HTML markup to help identify specific issues in the code of a website.

Unit 5: Assistive Technology Testing

Unit 5 looked at Assistive Technologies (AT), focusing on getting set up with ChromeVox as a tool for doing day-to-day

screen reader testing. You also learned about other popular screen readers like JAWS, NVDA, and VoiceOver, as well as

other types of AT such as magnification programs, voice recognition, and alternative input devices.

Unit 6: User Testing

Unit 6 showed us aspects of web accessibility that go beyond the typical web accessibility audit, addressing

considerations associated with user testing. User testing can provide valuable information about the usability of web
content, though there are a number of considerations that must be addressed when selecting user testers (such as

experience with web content and level of assistive technology expertise) to ensure results are meaningful. Strategies

were also introduced for developing user testing protocols, and observing and recording testers’ behaviours during user

testing sessions.

Unit 7: Web Accessibility Audit Reporting

Unit 7 explored the next step in the auditing process after testing: accessibility reporting. Different types of audit
reports were covered, including Informal, Template, General, and Detailed reports, each of which serve different

purposes depending on the needs of the organization and the type of web content being reviewed. You took a tour of the
Canvas 2012 General Review, which introduced the elements of an accessibility audit report.

Unit 8: Other Accessibility Standards

Unit 8 built on what you learned about accessibility guidelines in Unit 2, introducing international standards and
regulations based on WCAG 2.0. You were also introduced to other types of accessibility standards for authoring tools
(ATAG 2.0), user agents such as browsers and assistive technologies (UAAG 2.0), and WAI-ARIA, which provides tools

developers can use to create accessible custom web interactions.

204 | Content Recap

Acknowledgements

This resource has been made possible with the help of many others.

Funding for this project was provided by the Government of Ontario’s Enabling Change Program.

Human resources were provided by the Digital Education Strategies team at the G. Raymond Chang School for

Continuing Education at Ryerson University in Toronto, Canada, including an instructional designer, web developer, and

production editor. Contributors include:

• Greg Gay (Subject Matter Expert)

• Maureen Glynn (Instructional Designer)

• Kelvin Kong (Production Editor)

• Igor Karasyov (Web Developer)

• Marta Kule (Web Technology Analyst)

Acknowledgements | 205

Answer Key

Self-Test 1

Question 1

Which of the following are automated accessibility checkers not good at identifying? Please select all that
apply.

a. [incorrect] missing text descriptions

b. [correct] if link text effectively describes the function or destination of the link

c. [correct] whether alt text describes an image effectively

d. [correct] whether alternatives are provided for inaccessible elements

e. [incorrect] if a web page has a title or not

f. [correct] whether the title effectively describes a web page

Feedback: Checkers are not good at assessing meaning, such as the meaningfulness of link text, image

descriptions, or page titles. They are good at identifying issues that can be determined by searching the HTML

code for missing elements or attributes, like the lack of an alt attribute with an image, or a title element with no

content in it.

Question 2

Which of the following groups of people with disabilities are least likely to face barriers in web content?
People who:

a. [incorrect] are Deaf

b. [incorrect] are blind

c. [correct] use a wheelchair

d. [incorrect] have limited hand mobility

e. [incorrect] are learning disabled

Feedback: People who use a wheelchair will often face no barriers in web content, assuming they have use of

their hands.

206 | Answer Key

Question 3

Which of the following were mentioned as key things to watch for when auditing the accessibility of web
content? Please select all that apply.

a. [correct] images without a text alternative

b. [correct] elements that work with a mouse but not with a keyboard

c. [incorrect] text too complex for some to understand

d. [correct] using bold large text to create headings

e. [correct] using text and background colours that do not contrast well

f. [incorrect] elements that flash or flicker

Feedback: Missing text alternatives for images, elements that lack keyboard access, headings created using

bold text instead of proper heading markup, and text that does not contrast well with its background are

common barriers thus have been listed as key issues to watch for. Text that is too complex is less frequent and is

a less critical Level AAA issue, and content that flashes or flickers is uncommon, so these have not been listed as

key issues. These latter issues should still be considered, however.

Back to Self-Test 1

Activity: WCAG Scavenger Hunt

In typical circumstances, the following techniques are generally most relevant. However, others are

possibly better in different situations. Likewise, there are some techniques that may be listed with the

relevant guideline for a particular barrier that are not relevant to the barrier being addressed (FLASH and SL

techniques for instance).

1. Barrier: Image has no text alternative
Technique ID: H37: Using alt attributes on img elements

2. Barrier: Video has no captions
Technique ID: G87: Providing closed captions

3. Barrier: Colour is used on its own to represent meaning
Technique ID: G182: Ensuring that additional visual cues are available when text color differences are

used to convey information

4. Barrier: Contrast between text and background colours is insufficient (<4.5:1)
Technique ID: G18: Ensuring that a contrast ratio of at least 4.5:1 exists between text (and images of

text) and background behind the text

Answer Key | 207

5. Barrier: Form button is not keyboard operable
Technique ID: H91: Using HTML form controls and links

6. Barrier: Page redirects to another before contents can be read
Technique ID: G198: Providing a way for the user to turn the time limit off

7. Barrier: Webpage does not have a descriptive title
Technique ID: H25: Providing a title using the title element

8. Barrier: No means is provided to skip past large main menu on a webpage
Technique ID: G1: Adding a link at the top of each page that goes directly to the main content area

9. Barrier: The language of a page is not defined
Technique ID: H57: Using language attributes on the html element

10. Barrier: Page redirects when a form radio button receives focus
Technique ID: G107: Using “activate” rather than “focus” as a trigger for changes of context

Back to Activity

Self-Test 2

Question 1

Which WCAG 2.0 level of conformance is considered the generally agreed upon level that organizations
should aim for when addressing the accessibility of their websites?

a. [incorrect] Level A

b. [correct] Level AA

c. [incorrect] Level AAA

Feedback: Most jurisdictions now suggest aiming for Level AA conformance for web content. And, where

feasible, organizations should implement as many Level AAA strategies as possible.

Question 2

Which TWO of these guidelines are considered the most important in terms of reducing the greatest
number of potential barriers, according to “10 Key Guidelines” introduced in unit 2?

208 | Answer Key

a. [correct] 1.1.1 Non-Text Content

b. [correct] 2.1.1 Keyboard Accessible

c. [incorrect] 2.4.1 Bypass Blocks

d. [incorrect] 3.1.1 Language of Page

e. [incorrect] 3.1.5 Reading Level

f. [incorrect] 4.1 Parsing

Feedback: As described in the 10 Key Guidelines, providing text alternatives for Non-Text Content and

ensuring that all functional elements are Keyboard Accessible will reduce the greatest number of potential

barriers.

Question 3

Which of the following are NOT principles of WCAG 2.0? Please select all that apply.

a. [incorrect] Perceivable

b. [incorrect] Operable

c. [incorrect] Understandable

d. [correct] Reproducible

e. [correct] Predictable

f. [incorrect] Robust

Feedback: The four WCAG 2.0 principles are: Perceivable, Operable, Understandable, and Robust.

Reproducible and Predictable are not WCAG 2.0 principles.

Back to Self-Test 2

Self-Test 3

Question 1

Identify which pairs of foreground and background colours provide sufficient contrast to pass Guideline
1.4.3. Assume the foreground text is a 12 point font.

Answer Key | 209

a. [correct] 0000ff, ffffff

b. [incorrect] 9a9aff,efefef

c. [incorrect] 9a9aff,7a4fef

d. [correct] 000000, 8f6bf1

e. [correct] 5c5c5c, 63f1af

f. [incorrect] 4c4c4c,11c973

g. [incorrect] 4d4d4d, c9a1c1

Question 2

The overall reading grade level required to effectively understand the paragraph.

“Though reading level is a Level AAA requirement in WCAG, this is one Level AAA guideline that most
public sites should aim for to reach the broadest possible audience. Generally speaking web content authors
should use the simplest language possible (within reason). Simple text will translate more easily for those
who may wish to read the site in a different language. It will be more accessible to those with lower levels of
education, or for those reading in a second language. And for a general audience, most readers will appreciate
simpler language over unnecessary use of ‘big’ words. Being able to explain things in simple language for
most, is a more intelligent use of language than loading it with jargon, complex terminology, and
unnecessarily complicated words and sentences.”

a. [incorrect] 6 to 7

b. [incorrect] 8 to 9

c. [incorrect] 10 to 11

d. [correct] 12 to 13

e. [incorrect] 14 to 15

f. [incorrect] 16 to 17

g. [incorrect] 18 to 19

Question 3

The difference between the number of known problems identified in AChecker and the number of errors
identified by WAVE?

a. [correct] none

b. [incorrect] one

c. [incorrect] two

210 | Answer Key

d. [incorrect] three

e. [incorrect] four

f. [incorrect] five

Question 4

Based on the evaluations that you did in the Question 3, which of the following issues did both checkers
identify? Please select all that apply.

a. [incorrect] missing form label

b. [incorrect] headings used improperly

c. [correct] image missing alt text

d. [incorrect] colour contrast is insufficient

e. [incorrect] link text may not be meaningful

f. [incorrect] duplicate IDs were found

g. [incorrect] image may contain text that is not in the alt text

Back to Self-Test 3

Self-Test 4

Question 1

The “Tab Key Navigation test” is useful for identifying a variety of potential barriers. From those uses listed
below, select all that the Tab Key Navigation test would identify.

a. [correct] Focus visibility

b. [correct] Keyboard operability

c. [incorrect] Missing Alt text

d. [correct] Focus order

e. [incorrect] Descriptive feedback

Feedback: The Tab Key Navigation test is useful for identifying focus visibility. You should be able to see the

focus move through the content as you press the Tab key. It is also useful for identifying elements that are not

Answer Key | 211

keyboard operable (i.e., those that are skipped over while pressing the Tab key). While following the focus, it is

possible to observe the focus order, which should move from left to right and top to bottom.

Question 2

Which of the following potential barriers would the “Select All test” be useful in identifying? Select all that
apply.

a. [incorrect] Focus visibility

b. [correct] Keyboard operability

c. [incorrect] Missing alt text

d. [incorrect] Focus order

e. [incorrect] Descriptive feedback

Feedback: The Select All test is good for identifying elements that are not keyboard operable, though it should

be combined with the Tab Key Navigation test to confirm that elements not selected do not actually operate

with a keyboard.

Question 3

To examine the HTML markup associated with a potential barrier that has been identified using the Tab
Key Navigation or Select All tests, a recommended approach would be to use:

a. [incorrect] The browser’s “View Source” function

b. [correct] The Browser’s “Inspect Element” function

c. [incorrect] Install and use the “Examine Markup” browser plugin

d. [incorrect] The W3C Markup Validator

e. [incorrect] Use the WebAIM toolbar’s view source feature

Question 4

When reviewing video content for accessibility, which of the following alternatives does WCAG 2.0 suggest
should be provided? Select all that apply.

a. [incorrect] An alternative slideshow for those who do not have a video player

212 | Answer Key

b. [correct] Captioning

c. [incorrect] A downloadable PDF version

d. [incorrect] A downloadable slideshow version

e. [correct] A transcript

f. [correct] Audio description

Back to Self-Test 4

Activity: Using ChromeVox to Find Accessibility Features

Sample Answer

This is a list of many of the accessibility features collected from the Showcase Demo Site homepage. There

may be others.

• “Skip to Main Content” becomes visible on focus, leading to an anchor at the top of the content area

and skipping past the navigation

• Accessibility statement (top right, under construction)

• role="banner" landmark is set for header area

• role="navigation" + aria-label="showcase" announces “Showcase Navigation”

• aria-live="polite" on the ik-menu-mobile and ik-menu divs announce instructions for

using the side menu: “Use tab key to enter menu, up and down arrow keys to navigate, left and right to

open or collapse submenues, space or enter to select.”

• role="menu" and tabindex="0" announce sidemenu as a menu and adds keyboard focus

• role="menuitem" is added to describe list items as menu items in the side menu

• aria-haspopup="true" is used to indicate menuitems with a submenu

• aria-hidden="true" is used to hide submenus when inactive

• aria-labels describe menu items instead of the href they contain, which are set to

tabindex="-1" to remove them from the tab order

• aria-live="assertive" starts the carousel announcing labels while rotating, and announcing

navigation instructions when focus is received

• aria-live="off" stops the carousel from announcing after focus is removed

• role="presentation" and aria-hidden="true" are used to hide carousel dot navigation from

screen readers

• aria-label provides text descriptions for each slide in the carousel on the home page

• tabindex="0" toggles with tabindex="-1" to control focus in the side menu

Answer Key | 213

• role="main" landmark and tabindex="0" announce the main content area and make it

focusable

• aria-hidden="true" (or false) and tabindex="0" show and hide tabpanels

• aria-labelledby uses the heading above to label the accordion panels

• role="tablist" and aria-multiselectable="true" are used with a definition list (<dl>) to

define the accordion with multiple sections that can be opened simultaneously

• aria-controls and role="tab" are used with <dt> to define as a tab, which control an

associated <dd>
• aria-expanded is used to announce the <dd> state as expanded or collapsed

• aria-hidden="true" (and false) is used when accordion tabpanels are visible or hidden

• tabindex="0" is added to <dd> tabpanels to make them focusable

• role="tabpanel" is added to <dd> to define is as tabpanel in the accordion

• role="complimentary" landmark is added to the right-side accordion

• role="contentinfo" landmark is added to the footer area

Back to Activity

Self-Test 5

Question 1

According to the data from the WebAIM Screen Reader Survey, when it comes to screen readers commonly
used, which of the following screen readers experiences the least usage?

a. [incorrect] JAWS

b. [incorrect] NVDA

c. [correct] ChromeVox

d. [incorrect] VoiceOver

e. [incorrect] Window-Eyes

f. [incorrect] Talkback

214 | Answer Key

Question 2

Based on your unit 5 readings, which screen reader makes use of a rotor for accessing different features of
web content, such as headings, lists, tables and links?

a. [incorrect] JAWS

b. [incorrect] NVDA

c. [incorrect] ChromeVox

d. [correct] VoiceOver

e. [incorrect] Window-Eyes

f. [incorrect] Talkback

Question 3

Which of the screen readers introduced in this unit are open source software? Choose all that apply.

a. [incorrect] JAWS

b. [correct] NVDA

c. [correct] ChromeVox

d. [incorrect] VoiceOver

e. [incorrect] Window-Eyes

f. [correct] Talkback

Back to Self-Test 5

Self-Test 6

Question 1

When selecting user testers, which of the following prerequisite skills or knowledge should recruits have?
Choose all that apply.

a. [incorrect] Ability to read HTML

b. [incorrect] Knowledge of WCAG

Answer Key | 215

c. [correct] Good understanding of web technologies

d. [incorrect] Ability to use multiple assistive technologies

e. [correct] Moderate to expert skill using their own assistive technology

f. [incorrect] Fluent English speaker

g. [incorrect] Touch typing skill

Feedback: User testers should have good knowledge of web technologies, and be able to use their assistive

technology proficiently.

Question 2

When developing a test protocol, which of the following features should it have? Choose all that apply.

a. [correct] Can be completed in one hour

b. [correct] Multiple short tasks to complete

c. [incorrect] Coverage of the whole website or application being tested

d. [correct] Time between tasks to ask questions

e. [incorrect] Printed out on paper for tester to read

f. [incorrect] Provided in electronic form so it can be read by assistive technologies

Feedback: A test protocol should be made up a series of short tasks that can be completed in an hour or less.

Question 3

When recording observations during a user testing session, which of the following strategies might be
used? Choose all that apply.

a. [correct] Anecdotal notes

b. [correct] Video taping

c. [correct] Audio taping

d. [correct] Recording in a spreadsheet

Feedback: All of these strategies might be used for recording observations.

216 | Answer Key

Question 4

During a user testing session which of the following should an observer not do? Choose all that apply.

a. [incorrect] Ask questions about what a tester is thinking

b. [incorrect] Provide hints to make a task easier

c. [incorrect] Help a tester complete a task if they get stuck

d. [correct] Remain quiet

e. [correct] Answer a phone call

f. [incorrect] Describe to a tester how a task is done

g. [incorrect] Pay the tester for their time and expenses

Feedback: An observer need not remain quiet, but instead ask questions and probe the tester’s thoughts where

appropriate. Answering a phone call during a user testing session would be disrespectful of the tester.

Back to Self-Test 6

Activity: Lulu’s Lollipops Informal Review

The following is an example of an informal review submitted by a participant in the MOOC version of this

book. There are many possible solutions for this activity. Key elements of an informal review should include:

• An informal introduction

• The suggestion of conducting a formal review

• Not too much detail

• About 8 to 10 potential issues listed (no more than 15)

The goal of the informal review is to sell the idea of conducting a more thorough, formal audit.

Sample Answer

Hi Lulu,

Included please find a quick summary of the potential issues I found on your website, Lulu’s Lollipops. At

your convenience, I suggest we arrange a time to go over these issues and talk about a possible formal

review. By going into detail with the issues and resolving them, your website will become more accessible to

your customers. Below is a list of some of the main issues with possible solutions.

Answer Key | 217

• There are several images that are missing alt text, including your logo, link buttons, and your

products (solution: provide an alt attribute, either text or [alt=””] for images that do not convey content)

• Form labels missing (solution: provide form labels for all form fields by adding text to the label

element)

• Page title missing or uninformative (solution: add a brief, descriptive page title by adding a title

element to the head section of the document)

• Document language missing (solution: identify the document language using <html lang> attribute.

This also helps automatic translation of content)

• Website has heading structure errors (solution: provide clear and consistent heading structure

including sub-headings)

• Suspicious link (solution: reword the link text so it describes the destination when read out of

context)

• Redundant link (solution: combine the links into one link and remove any redundant text or alternate

text)

• Device dependent events (solution: make critical functionality and content accessible by both a

keyboard and mouse by adding an onblur handler instead of onmouseout handler and add an onfocus

handler instead of onmouse handler to the script)

Lulu, thank you for reviewing the above information. I look forward to meeting with you to discuss further

how more users can access your website and buy your products.

Back to Activity

Self-Test: Unit 7

Question 1

Which of the following is not a type of audit that was covered in this unit? Please select all that apply.

a. [incorrect] Informal

b. [incorrect] Template

c. [correct] Navigation

d. [correct] Content

e. [incorrect] General

f. [incorrect] Detailed

g. [incorrect] Follow-Up

Feedback: “Navigation” and “Content” reviews were not covered in this unit.

218 | Answer Key

Question 2

What is the time limit on the validity of a Web accessibility conformance review for a website?

a. [incorrect] Two years

b. [incorrect] A year

c. [incorrect] Six months

d. [incorrect] A month

e. [incorrect] A week

f. [correct] None of the above

Feedback: A conformance claim for a website is only valid on the date conformance was confirmed.

Question 3

Which of the following elements would be reviewed in a Template Audit? Please select all that apply.

a. [correct] Main Navigation

b. [correct] Header

c. [correct] Side Menu

d. [incorrect] Main Content Area

e. [correct] Footer

f. [incorrect] None of the above

Feedback: The Main Content Area would be reviewed as part of a General Audit.

Question 4

Which of the following elements would be reviewed in a General Audit, assuming a Template Audit had
already been conducted? Please select all that apply.

a. [incorrect] Main Navigation

b. [incorrect] Header

c. [incorrect] Side Menu

d. [correct] Main Content Area

e. [incorrect] Footer

f. [incorrect] None of the above

Answer Key | 219

Feedback: The other elements would be part of the Template Audit.

Back to Self-Test 7

Self-Test: Unit 8

Question 1

Match the following accessibility rules and regulations with their respective jurisdictions:

a. Ontario = iii. AODA

b. USA = i. Section 508

c. United Kingdom = v. Disability Discrimination Act 1995

d. Italy = iv. Stanca Act

e. France = vi. RGAA

f. Australia = ii. Disability Discrimination Act 1992

Question 2

Which of the following are elements of the ISO/IEC 24751 AccessForAll Standards? Please select all that
apply.

a. [correct] Personal Needs and Preferences

b. [incorrect] Accessible Rich Internet Applications

c. [incorrect] Hypertext Markup Language

d. [correct] Digital Resource Descriptions

e. [incorrect] Extensible Markup Language

f. [incorrect] Accessibility Evaluation and Repair

Feedback: Personal Needs and Preferences and Digital Resource Descriptions are Part 2 and Part3 of the ISO/

IEC 24751 standards. Accessible Rich Internet Applications (ARIA), Hypertext Markup Language (HTML),

Extensible Markup Language (XML) are W3C specifications, and Accessibility Evaluation and Repair are W3C

techniques for implementing accessibility checkers and repair tools.

220 | Answer Key

Question 3

Which of the following are W3C specifications? Please select all that apply.

a. [correct] WAI-ARIA

b. [correct] ATAG

c. [incorrect] ISO/IEC 24751

d. [correct] UAAG

e. [correct] WCAG

f. [incorrect] RGAA

Feedback: WAI-ARIA, ATAG, UAAG, and WCAG are all W3C specifications. ISO/IEC 24751 is an ISO standard,

and RGAA are the accessibility guidelines for France.

Back to Self-Test 8

Answer Key | 221

Web Accessibility Auditing Toolkit

Elements in Your Toolkit

Toolkit:

• Web Content Accessibility Guidelines (WCAG 2.0)

• WCAG2 Review of the Canvas Lms [PDF]

• WCAG2 Review Template [doc]

• AChecker Web Accessibility Checker

• WAVE Chrome Extension

• WebAIM Color Contrast Checker

• Readability Testing Tool

• W3C Markup Validation Service

• ChromeVox Screen Reader Extension for Chrome

• Firefox Developer Edition

• Amara Caption Editor

• FireShot Screen Capture Add-On

• Accessible Rich Internet Applications (WAI-ARIA 1.0)

• WAI-ARIA Authoring Practices

• WAI-ARIA Examples

• User Testing Screening Questions [docx]

• Observation Notes Template [docx]

• Web Accessibility Auditing Toolkit Download [PDF]

222 | Web Accessibility Auditing Toolkit

Iframe Embedding Content from this Resource

The pages of this open education resource (OER) can be embedded directly into existing web pages using a standard

iframe, or using a tool like the H5P iframe embedder if available. Once embedded, the navigation elements associated with

Pressbooks, where the original version resides, and the title of the page are removed to provide a seamless integration.

The CSS associated with the iframe should set the width to 100%, and the height set manually for each page to remove

the typical scrollbar that appears with an iframe.

The following example markup can be adapted. Or, in the case below, the content recap is embedded using the H5P

iframe embedder:

<iframe src="https://pressbooks.library.ryerson.ca/pwaa/back-matter/book-recap/"
style="border:none; width:100%;height:2800px;></iframe>

An interactive or media element has been excluded from this version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/pwaa/?p=2427

Iframe Embedding Content from this Resource | 223

	Professional Web Accessibility Auditing Made Easy
	Professional Web Accessibility Auditing Made Easy
	Contents
	Preface
	Introduction
	Introduction
	Objectives and Activities
	The Information Here Will Be Helpful To...
	Choosing Your Learning Path
	Why Learn About Web Accessibility Auditing?
	Activity: Start Your Web Accessibility Auditing Toolkit

	1. Aspects of Web Accessibility Auditing
	Aspects of Web Accessibility Auditing
	Types of Disabilities and Barriers
	Common Sense
	Things to Watch For
	Automated Web Accessibility Testing
	Manual Web Accessibility Testing
	Introduction to User Testing
	Introduction to Code Examination and Repair
	ChromeVox Screen Reader
	Activity: Experience Web Content From a Different Perspective
	Self-Test 1

	2. Introduction to WCAG
	Introduction to WCAG
	Objectives and Activities
	The Evolution of Web Accessibility
	WCAG Principles
	WCAG Accessibility Conformance
	10 Key Guidelines
	WCAG Web Auditing Review Template
	Activity: WCAG Scavenger Hunt
	Self-Test 2

	3. Automated Testing Tools
	Automated Testing Tools
	Objectives and Activities
	Limitations of Automated Web Accessibility Checkers
	AChecker Web Accessibility Checker
	WAVE Accessibility Evaluation Tool
	Other Notable Accessibility Review Tools
	Colour Contrast Evaluation
	Readability Testing
	Markup Validation
	Activity: Compare AChecker and WAVE
	Self-Test 3

	4. Manual Testing Strategies
	Introduction to Manual Testing Strategies
	Objectives and Activities
	Tab Key Navigation Test
	“Select All” Test
	Code Examination and Repair
	Media Review
	Other Tools for Manual Testing
	Activity: Chrome Tools
	Self-Test 4

	5. Assistive Technology Testing
	Assistive Technology Testing
	Objectives and Activities
	Screen Reader Testing
	Summary of Available Screen Readers
	Other Assistive Technologies
	Activity: Using ChromeVox to Find Accessibility Features
	Self-Test 5

	6. User Testing
	User Testing
	Objectives and Activities
	Involving User Testers
	Recruiting User Testers
	Developing a Test Protocol
	Recording Observations
	Activity: Finding User Testers
	Self-Test 6

	7. Web Accessibility Reporting
	Web Accessibility Reporting
	Objectives and Activities
	Choosing an Audit
	Informal Reviews
	Template Audit and Audit Walk-Through
	General Audits
	Detailed Audits
	Follow-Up Audits
	Tour of an Audit Report
	Activity: Lulu's Lollipops Informal Review
	Self-Test 7

	8. Other Accessibility Standards
	Other Accessibility Standards
	Objectives and Activities
	WCAG Relation to International Web Accessibility Guidelines
	ATAG: Authoring Tool Accessibility Guidelines
	UAAG: User Agent Accessibility Guidelines
	ISO/IEC-24751 (AccessForAll)
	WAI-ARIA: Web Accessibility Initiative - Accessible Rich Internet Applications
	Activity: Web Accessibility in Your Part of the World
	Self-Test 8

	Content Recap
	Acknowledgements
	Answer Key
	Web Accessibility Auditing Toolkit
	Iframe Embedding Content from this Resource

