Introduction to Electricity, Magnetism, and Circuits

Introduction to Electricity, Magnetism, and Circuits

Daryl Janzen

University of Saskatchewan, Distance Education Unit

Saskatoon, SK, Canada

Introduction to Electricity, Magnetism, and Circuits

Icon for the Creative Commons Attribution 4.0 International License

Introduction to Electricity, Magnetism, and Circuits by Daryl Janzen is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Unless otherwise noted, this book and its ancillaries is released under a Creative Commons Attribution 4.0 Unported License also known as a CC-BY license. This means you are free to copy, redistribute, modify or adapt this book and its ancillaries. Under this license, anyone who redistributes or modifies this textbook, in whole or in part, can do so for free providing they properly attribute the book as follows:

This work, Introduction to Electricity, Magnetism, and Circuits, is a derivative of University Physics Volume 2 by Samuel J Ling, Jeff Sanny, and William Moebs, used under a CC-BY 4.0 international license. Introduction to Electricity, Magnetism, and Circuits is licensed under a CC-BY 4.0 international license by Daryl Janzen, Department of Physics and Engineering Physics, University of Saskatchewan.

Additionally, if you redistribute this textbook, in whole or in part, in either a print or digital format, then you must retain on every physical and/or electronic page the following attribution:

Download this book for free at https://openpress.usask.ca/physics155

Cover image: “The Auroral Radar” by Ashton Reimer won first prize in the “Research in Action” category in the University of Saskatchewan 2016 Images of Research contest, and is used here with permission. It depicts the aurora borealis, or Northern Lights, seen over the Saskatoon SuperDARN (Super Dual Auroral Radar Network) radar. On December 20th, 2015, a large geomagnetic storm produced this show, which was caused by the impact of two successive coronal mass ejections from the Sun. While storms produce beautiful aurora, they also produce adverse effects on airplane communications systems, GPS, and the electrical power grid. SuperDARN radars measure the velocity of the aurora, in a manner similar to a police radar gun, and this radar data is an essential tool used in space weather forecasting, which can predict the intensity of these effects.

Introduction to Electricity, Magnetism, and Circuits by Daryl Janzen is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted

Introduction

1

Acknowledgements

2

Appendices

I

A - Units

102

Quantity Common Symbol Unit Unit in Terms of Base SI Units
Acceleration \vec{\mathbf{a}} \mathrm{m/s}^2  \mathrm{m/s}^2
Amount of substance n mole  \mathrm{mol}
Angle \theta,~\phi radian (\mathrm{rad})
Angular acceleration \vec{\pmb{\upalpha}} \mathrm{rad/s}^2 \mathrm{s}^{-2}
Angular frequency \omega \mathrm{rad/s} \mathrm{s}^{-1}
Angular momentum \vec{\mathbf{L}} \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{s} \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{s}
Angular velocity \vec{\pmb{\upomega}} \mathrm{rad/s} \mathrm{s}^{-1}
Area A \mathrm{m}^2 \mathrm{m}^2
Atomic number Z
Capacitance C farad (\mathrm{F}) \mathrm{A}^2\cdot\mathrm{s}^4/\mathrm{kg}\cdot\mathrm{m}^2
Charge Q,~Q,~e coulomb (\mathrm{C}) \mathrm{A}\cdot\mathrm{s}
Charge density:
    Line \lambda \mathrm{C/m} \mathrm{A}\cdot\mathrm{s/m}
    Surface \sigma \mathrm{C/m}^2 \mathrm{A}\cdot\mathrm{s/m}^2
    Volume \rho \mathrm{C/m}^3 \mathrm{A}\cdot\mathrm{s/m}^3
Conductivity \sigma 1/\Omega\cdot\mathrm{m} \mathrm{A}^2\cdot\mathrm{s}^3/\mathrm{kg}\cdot\mathrm{m}^3
Current I ampere \mathrm{A}
Current density \vec{\mathbf{J}} \mathrm{A/m}^2 \mathrm{A/m}^2
Density \rho \mathrm{kg/m}^3 \mathrm{kg/m}^3
Dielectric constant \kappa
Electric dipole moment \vec{\mathbf{p}} \mathrm{C}\cdot\mathrm{m} \mathrm{A}\cdot\mathrm{s}\cdot\mathrm{m}
Electric field \vec{\mathbf{E}} \mathrm{N/C},~\mathrm{V/m} \mathrm{kg}\cdot\mathrm{m/A}\cdot{s}^3
Electric flux \Phi \mathrm{N}\cdot\mathrm{m}^2/\mathrm{C} \mathrm{kg}\cdot\mathrm{m}^3/\mathrm{A}\cdot{s}^3
Electromotive force \mathcal{E} volt (\mathrm{V}) \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{A}\cdot{s}^3
Energy E,~U,~K joule (\mathrm{J}) \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{s}^2
Entropy S \mathrm{J/K} \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{s}^2\cdot\mathrm{K}
Force \vec{\mathbf{F}} newton (\mathrm{N}) \mathrm{kg}\cdot\mathrm{m}/\mathrm{s}^2
Frequency F,~\nu hertz (\mathrm{Hz}) \mathrm{s}^{-1}
Heat Q joule (\mathrm{J}) \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{s}^2
Inductance L henry (\mathrm{H}) \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{s}^2\cdot\mathrm{s}^2
Length: \ell,~L metre \mathrm{m}
    Displacement \Delta x,~\Delta\vec{\mathbf{r}}
    Distance d,~h
    Position x,~y,~z,~\vec{\mathbf{r}}
Magnetic dipole moment \vec{\pmb{\upmu}} \mathrm{N}\cdot\mathrm{J/T} \mathrm{A}\cdot\mathrm{m}^2
Magnetic field \vec{\mathbf{B}} tesla (\mathrm{T})=(\mathrm{Wb/m}^2) \mathrm{kg/A}\cdot\mathrm{s}^2
Magnetic flux \Phi_{\mathrm{m}} weber (\mathrm{Wb}) \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{A}\cdot\mathrm{s}^2
Mass m,~M kilogram \mathrm{kg}
Molar specific heat C \mathrm{J/mol}\cdot\mathrm{K} \mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{s}^2\cdot\mathrm{mol}\cdot\mathrm{K}
Moment of inertia I \mathrm{kg}\cdot\mathrm{m}^2 \mathrm{kg}\cdot\mathrm{m}^2
Momentum \vec{\mathbf{p}} \mathrm{kg}\cdot\mathrm{m/s} \mathrm{kg}\cdot\mathrm{m/s}
Period T \mathrm{s} \mathrm{s}
Permeability of free space \mu_0 \mathrm{N/A}^2=\mathrm{H/m} \mathrm{kg}\cdot\mathrm{m/A}^2\cdot\mathrm{s}^2
Permittivity of free space \epsilon_0 \mathrm{C}^2/\mathrm{N}\cdot\mathrm{m}^2=\mathrm{F/m} \mathrm{A}^2\cdot\mathrm{s}^4/\mathrm{kg}\cdot\mathrm{m}^3
Potential V volt (\mathrm{V}=\mathrm{J/C}) \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{A}\cdot\mathrm{s}^3
Power P watt (\mathrm{W}=\mathrm{J/s}) \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{s}^3
Pressure p pascal (\mathrm{Pa}=\mathrm{N/m}^2) \mathrm{kg/m}\cdot\mathrm{s}^2
Resistance \rho ohm (\Omega=\mathrm{V/A}) \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{A}^2\cdot\mathrm{s}^3
Specific heat c \mathrm{J/kg}\cdot\mathrm{K} \mathrm{m}^2/\mathrm{s}^2\cdot\mathrm{K}
Speed v \mathrm{m/s} \mathrm{m/s}
Temperature T kelvin \mathrm{K}
Time t second \mathrm{s}
Torque \vec{\pmb{\uptau}} \mathrm{N}\cdot\mathrm{m} \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{s}^2
Velocity \vec{\mathbf{v}} \mathrm{m/s} \mathrm{m/s}
Volume V \mathrm{m}^3 \mathrm{m}^3
Wavelength \lambda \mathrm{m} \mathrm{m}
Work W joule (\mathrm{J}=\mathrm{N}\cdot\mathrm{m}) \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{s}^2
Table A1 Units Used in Physics (Fundamental units in bold)

B - Conversion Factors

103

\mathbf{m} \mathbf{cm} \mathbf{km}
1 metre 1 10^2 10^{-3}
1 centimetre 10^{-2 1 10^{-5}
1 kilometre 10^3 10^5 1
1 inch 2.540\times10^{-2} 2.540 2.540\times10^{-5}
1 foot 0.3048 30.48 3.048\times10^{-4}
1 mile 1609 1.609\times10^4 1.609
1 angstrom 10^{-10}
1 fermi 10^{-15}
1 light-year 9.460\times10^{12}
\mathbf{in.} \mathbf{ft} \mathbf{mi}
1 metre 39.37 3.281 6.214\times10^{-4}
1 centimetre 0.3937 3.281\times10^{-2} 6.214\times10^{-6}
1 kilometre 3.937\times10^{4} 3.281\times10^3 0.6214
1 inch 1 8.333\times10^{-2} 1.578\times10^{-5}
1 foot 12 1 1.894\times10^{-4}
1 mile 6.336\times10^4 5280 1
Table B1 Length 

Area

1~\mathrm{cm}^2=0.155~\mathrm{in.}^2

1~\mathrm{m}^2=10^4~\mathrm{cm}^2=10.76~\mathrm{ft}^2

1~\mathrm{in.}^2=6.452~\mathrm{cm}^2

1~\mathrm{ft}^2=144~\mathrm{in.}^2=0.0929~\mathrm{m}^2

Volume

1~\mathrm{litre}=1000~\mathrm{cm}^3=10^{-3}~\mathrm{m}^3=0.03531~\mathrm{ft}^3=61.02~\mathrm{in.}^3

1~\mathrm{ft}^3=0.02832~\mathrm{m}^3=28.32~\mathrm{litres}=7.477~\mathrm{gallons}

1~\mathrm{gallon}=3.788~\mathrm{litres}

\mathbf{s} \mathbf{min} \mathbf{h} \mathbf{day} \mathbf{yr}
1 second 1 1.667\times10^{-2} 2.778\times10^{-4} 1.157\times10^{-5} 3.169\times10^{-8}
1 minute 60 1 1.667\times10^2 6.944\times10^{-4} 1.901\times10^{-6}
1 hour 3600 60 1 4.167\times10^{-2} 1.141\times10^{-4}
1 day 8.640\times10^4 1440 24 1 2.738\times10^{-3}
1 year 3.156\times10^7 5.259\times10^5 8.766\times10^3 365.25 1
Table B2 Time 
\mathbf{m/s} \mathbf{cm/s} \mathbf{ft/s} \mathbf{mi/h}
1 meter/second 1 10^2 3.281 2.237
1 centimeter/second 10^{-2} 1 3.281\times10^{-2} 2.237\times10^-2
1 foot/second 0.3048 30.48 1 0.6818
1 mile/hour 0.4470 44.70 1.467 1
Table B3 Speed 

Acceleration

1~\mathrm{m/s}^2=100~\mathrm{cm/s}^2=3.281~\mathrm{ft/s}^2

1~\mathrm{cm/s}^2=0.01~\mathrm{m/s}^2=0.03281~\mathrm{ft/s}^2

1~\mathrm{ft/s}^2=0.3048~\mathrm{m/s}^2=30.48~\mathrm{cm/s}^2

1~\mathrm{mi/h}\cdot\mathrm{s}=1.467~\mathrm{ft/s}^2

\mathbf{kg} \mathbf{g} \mathbf{slug} \mathbf{u}
1 kilogram 1 10^3 6.852\times10^{-2} 6.024\times10^{26}
1 gram 10^{-3} 1 6.852\times10^{-5} 6.024\times10^{23}
1 slug 14.59 1.459\times10^4 1 8.789\times10^{27}
1 atomic mass unit 1.661\times10^{-27} 1.661\times10^{-24} 1.138\times10^{-28} 1
1 metric ton 1000
Table B4 Mass 
\mathbf{N} \mathbf{dyne} \mathbf{lb}
1 newton 1 10^5 0.2248
1 dyne 10^{-5} 1 2.248\times10^{-6}
1 pound 4.448 4.448\times10^5 1
Table B5 Force 
\mathbf{Pa} \mathbf{dyne/cm}^2 \mathbf{atm} \mathbf{cmHg} \mathbf{lb/in.}^2
*Where the acceleration due to gravity is 9.80665~\mathrm{m/s}^2 and the temperature is 0^{\circ}\mathrm{C}
1 pascal 1 10 9.869\times10^{-6} 7.501\times10^{-4} 1.450\times10^{-4}
1 dyne/centimetre2 10^{-1} 1 9.869\times10^{-7} 7.501\times10^{-5} 1.450\times10^{-5}
1 atmosphere 1.013\times10^5 1.013\times10^6 1 76 14.70
1 centimetre mercury* 1.333\times10^3 1.333\times10^4 1.316\times10^{-2} 1 0.1934
1 pound/inch2 6.895\times10^3 6.895\times10^4 6.805\times10^{-2} 5.171 1
1 bar 10^5
1 torr 1~(\mathrm{mmHg})
Table B6 Pressure
\mathbf{J} \mathbf{erg} \mathbf{ft.lb}
1 joule 1 10^7 0.7376
1 erg 10^{-7} 1 7.376\times10^{-8}
1 foot-pound 1.356 1.356\times10^7 1
1 electron-volt 1.602\times10^{-19} 1.602\times10^{-12} 1.182\times10^{-19}
1 calorie 4.186 4.186\times10^7 3.088
1 British thermal unit 1.055\times10^3 1.055\times10^{10} 7.779\times10^2
1 kilowatt-hour 3.600\times10^6
\mathbf{eV} \mathbf{cal} \mathbf{Btu}
1 joule 6.242\times10^{18} 0.2389 9.481\times10^{-4}
1 erg 6.242\times10^{11} 2.389\times10^{-8} 9.481\times10^{-11}
1 foot-pound 8.464\times10^{18} 0.3239 1.285\times10^{-3}
1 electron-volt 1 3.827\times10^{-20} 1.519\times10^{-22}
1 calorie 2.613\times10^{19} 1 3.968\times10^{-3}
1 British thermal unit 6.585\times10^{21} 2.520\times10^2 1
Table B7 Work, Energy, Heat 

Power

1~\mathrm{W}=1~\mathrm{J/s}

1~\mathrm{hp}=746~\mathrm{W}=550~\mathrm{ft}\cdot\mathrm{lb/s}

1~\mathrm{Btu/h}=0.293~\mathrm{W}

Angle

1~\mathrm{rad}=57.3^{\circ}=180^{\circ}/\pi

1^{\circ}=0.01745~\mathrm{rad}=\pi/180~\mathrm{rad}

1~\mathrm{revolution}=360^{\circ}=2\pi~\mathrm{rad}

1~\mathrm{rev/min}~(\mathrm{rpm})=0.1047~\mathrm{rad/s}

C - Fundamental Constants

104

Quantity Symbol Value
Atomic mass unit \mathrm{u} 1.660~538~782~(83)\times10^{-27}~\mathrm{kg}
931.494~028~(23)~\mathrm{MeV}/c^2
Avogadro’s number N_A 6.022~141~79~(30)\times10^{23}~\mathrm{particles/mol}
Bohr magneton \mu_{\mathrm{B}}=\frac{e\hbar}{2m_e} 9.274~009~15~(23)\times10^{-24}~\mathrm{J/T}
Bohr radius a_0=\frac{\hbar^2}{m_ee^2k_e} 5.291~772~085~9~(36)\times10^{-11}~\mathrm{m}
Boltzmann’s constant k_{\mathrm{B}}=\frac{R}{N_A} 1.380~650~4~(24)\times10^{-23}~\mathrm{J/K}
Compton wavelength \lambda_{\mathrm{C}}=\frac{h}{m_ec} 2.426~310~217~5~(33)\times10^{-12}~\mathrm{m}
Coulomb constant k_e=\frac{1}{4\pi\epsilon_0} 8.987~551~788\ldots\times10^9~\mathrm{N}\cdot\mathrm{m}^2/\mathrm{C}^2
Deuteron mass m_d 3.343~583~20~(17)\times10^{-27}~\mathrm{kg}
2.103~553~212~724~(78)~\mathrm{u}
1875.612~859~\mathrm{MeV}/c^2
Electron mass m_e 9.109~382~15~(45)\times10^{-31}~\mathrm{kg}
5.485~799~094~3~(23)\times10^{-4}~\mathrm{u}
0.510~998~910~(13)~\mathrm{MeV}/c^2
Electron volt \mathrm{eV} 1.602~176~487~(40)\times10^{-19}~\mathrm{J}
Elementary charge e 1.602~176~487~(40)\times10^{-19}~\mathrm{C}
Gas constant R 8.314~472~(15)~\mathrm{J/mol}\cdot\mathrm{K}
Gravitational constant G 6.674~28~(67)\times10^{-11}~\mathrm{N}\cdot\mathrm{m}^2/\mathrm{kg}^2
Neutron mass m_n 1.674~927~211~(84)\times10^{-27}~\mathrm{kg}
1.008~664~915~97~(43)~\mathrm{u}
939.565~346~(23)~\mathrm{MeV}/c^2
Nuclear magneton \mu_n=\frac{e\hbar}{2m_p} 5.050~783~24~(13)\times10^{-27}~\mathrm{J/T}
Permeability of free space \mu_0 4\pi\times10^{-7}~\mathrm{T}\cdot\mathrm{m/A} (exact)
Permittivity of free space \epsilon_0=\frac{1}{\mu_0c^2} 8.854~187~817\ldots\times10^{-12}~\mathrm{C}^2/\mathrm{N}\cdot\mathrm{m}^2 (exact)
Planck’s constant h

\hbar=\frac{h}{2\pi}

6.626~068~96~(33)\times10^{-34}~\mathrm{J}\cdot\mathrm{s}

1.054~571~628~(53)\times10^{-34}~\mathrm{J}\cdot\mathrm{s}

Proton mass m_p 1.672~621~637~(83)\times10^{-27}~\mathrm{kg}
1.007~276~466~77~(10)~\mathrm{u}
938.272~013~(23)~\mathrm{MeV}/c^2
Rydberg constant R_{\mathrm{H}} 1.097~373~156~852~7~(73)\times10^7~\mathrm{m}^{-1}
Speed of light in vacuum c 2.997~924~58\times10^8~\mathrm{m/s} (exact)
Table C1 Fundamental Constants
Note: These constants are the values recommended in 2006 by CODATA, based on a least-squares adjustment of data from different measurements. The numbers in parentheses for the values represent the uncertainties of the last two digits.

Useful combinations of constants for calculations:

hc=12,400~\mathrm{eV}\cdot{\AA}=1240~\mathrm{eV}\cdot\mathrm{nm}=1240~\mathrm{MeV}\cdot\mathrm{fm}

\hbar c=1973~\mathrm{eV}=197.3~\mathrm{eV}\cdot\mathrm{nm}=197.3~\mathrm{MeV}\cdot\mathrm{fm}

k_ee^2=14.40~\mathrm{eV}\cdot{\AA}=1.440~\mathrm{eV}\cdot\mathrm{nm}=1.440~\mathrm{MeV}\cdot\mathrm{fm}

k_{\mathrm{B}}T=0.02585~\mathrm{eV} at T=300~\mathrm{K}

D - Astronomical Data

105

Celestial Object Mean Distance from Sun (million km) Period of Revolution (d = days) (y = years) Period of Rotation at Equator Eccentricity of Orbit
Sun 27 d
Mercury 57.9 88 d 59 d 0.206
Venus 108.2 224.7 d 243 d 0.007
Earth 149.6 365.26 d 23 h 56 min 4 s 0.017
Mars 227.9 687 d 24 h 37 min 23 s 0.093
Jupiter 778.4 11.9 y 9 h 50 min 30 s 0.048
Saturn 1426.7 29.5 6 10 h 14 min 0.054
Uranus 2871.0 84.0 y 17 h 14 min 0.047
Neptune 4498.3 164.8 y 16 h 0.009
Earth’s Moon 149.6 (0.386 from Earth) 27.3 d 27.3 d 0.055
Celestial Object Equatorial Diameter (km) Mass (Earth = 1) Density (g/cm3)
Sun 1,392,000 333,000.00 1.4
Mercury 4879 0.06 5.4
Venus 12,104 0.82 5.2
Earth 12,756 1.00 5.5
Mars 6794 0.11 3.9
Jupiter 142,984 317.83 1.3
Saturn 120,536 95.16 0.7
Uranus 51,118 14.54 1.3
Neptune 49,528 17.15 1.6
Earth’s Moon 3476 0.01 3.3
Table D1 Astronomical Data 

Other Data:

Mass of Earth: 5.97\times10^{24}~\mathrm{kg}

Mass of the Moon: 7.36\times10^{22}~\mathrm{kg}

Mass of the Sun: 1.99\times10^{30}~\mathrm{kg}

E - Mathematical Formulas

106

Quadratic formula

If ax^2+bx+c=0, then x=\pm\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Triangle of base b and height h Area =\frac{1}{2}bh
Circle of radius r Circumference =2\pi r Area =\pi r^2
Sphere of radius r Surface area =4\pi r^2 Volume =\frac{4}{3}\pi r^3
Cylinder of radius r and height h Area of curved surface =2\pi rh Volume =\pi r^2h

Table E1 Geometry

Trigonometry

Trigonometric Identities

  1. \sin\theta=1/\csc\theta
  2. \cos\theta=1/\sec\theta
  3. \tan\theta=1/\cot\theta
  4. \sin(90^{\circ}-\theta)=\cos\theta
  5. \cos(90^{\circ}-\theta)=\sin\theta
  6. \tan(90^{\circ}-\theta)=\cot\theta
  7. \sin^2\theta+\cos^2\theta=1
  8. \sec^2\theta-\tan^2\theta=1
  9. \tan\theta=\sin\theta/\cos\theta
  10. \sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta
  11. \cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta
  12. \tan(\alpha\pm\beta)=\frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta}
  13. \sin2\theta=2\sin\theta\cos\theta
  14. \cos2\theta=\cos^2\theta-\sin^2\theta=2\cos^2\theta-1=1-2\sin^2\theta
  15. \sin\alpha+\sin\beta=2\sin\frac{1}{2}(\alpha+\beta)\cos\frac{1}{2}(\alpha-\beta)
  16. \cos\alpha+\cos\beta=2\cos\frac{1}{2}(\alpha+\beta)\cos\frac{1}{2}(\alpha-\beta)

Triangles

  1. Law of sines: \frac{a}{\sin\alpha}=\frac{b}{\sin\beta}=\frac{c}{\sin\gamma}
  2. Law of cosines: c^2=a^2+b^2-2ab\cos\gamma

    Figure shows a triangle with three dissimilar sides labeled a, b and c. All three angles of the triangle are acute angles. The angle between b and c is alpha, the angle between a and c is beta and the angle between a and b is gamma.

  3. Pythagorean theorem: a^2+b^2=c^2

    Figure shows a right triangle. Its three sides are labeled a, b and c with c being the hypotenuse. The angle between a and c is labeled theta.

Series expansions

  1. Binomial theorem:
    (a+b)^n=a^n+na^{n-1}b+\frac{n(n-1)a^{n-2}b^2}{2!}+\frac{n(n-1)(n-2)a^{n-3}b^3}{3!}+\ldots
  2. (1\pm x)^n=1\pm\frac{nx}{1!}+\frac{n(n-1)x^2}{2!}\pm\ldots\ (x^2<1)
  3. (1\pm x)^{-n}=1\mp\frac{nx}{1!}+\frac{n(n-1)x^2}{2!}\mp\ldots\ (x^2<1)
  4. \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\ldots
  5. \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\ldots
  6. \tan x=x+\frac{x^3}{3}+\frac{2x^5}{15}+\ldots
  7. e^x=1+x+\frac{x^2}{2!}+\ldots
  8. \ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3-\ldots\ (|x|<1)

Derivatives

  1. \frac{d}{dx}[af(x)]=a\frac{d}{dx}f(x)
  2. \frac{d}{dx}[f(x)+g(x)]=\frac{d}{dx}f(x)+\frac{d}{dx}g(x)
  3. \frac{d}{dx}[f(x)g(x)]=f(x)\frac{d}{dx}g(x)+g(x)\frac{d}{dx}f(x)
  4. \frac{d}{dx}f(u)=\left[\frac{d}{du}f(u)\right]\frac{du}{dx}
  5. \frac{d}{dx}x^m=mx^{m-1}
  6. \frac{d}{dx}\sin x=\cos x
  7. \frac{d}{dx}\cos x=-\sin x
  8. \frac{d}{dx}\tan x=\sec^2x
  9. \frac{d}{dx}\cot x=-\csc^2x
  10. \frac{d}{dx}\sec x=\tan x\sec x
  11. \frac{d}{dx}\csc x=-\cot x\csc x
  12. \frac{d}{dx}e^x=e^x
  13. \frac{d}{dx}\ln x=\frac{1}{x}
  14. \frac{d}{dx}\sin^{-1}x=\frac{1}{\sqrt{1-x^2}}
  15. \frac{d}{dx}\cos^{-1}x=-\frac{1}{\sqrt{1-x^2}}
  16. \frac{d}{dx}\tan^{-1}x=-\frac{1}{1+x^2}

Integrals

  1. \int af(x)\,dx=a\int f(x)\,dx
  2. \int[f(x)+g(x)]\,dx=\int f(x)\,dx+\int g(x)\,dx
  3. \int x^m\,dx=\frac{x^{m+1}}{m+1}\ (m\neq1)
    ~~~~~~=\ln x\ (m=-1)
  4. \int\sin{x}\,dx=-\cos x
  5. \int\cos{x}\,dx=\sin x
  6. \int\tan{x}\,dx=\ln|\sec x|
  7. \int\sin^2{ax}\,dx=\frac{x}{2}-\frac{\sin{2ax}}{4a}
  8. \int\cos^2{ax}\,dx=\frac{x}{2}+\frac{\sin{2ax}}{4a}
  9. \int\sin{ax}\cos{ax}\,dx=-\frac{\cos2ax}{4a}
  10. \int e^{ax}\,dx=\frac{1}{a}e^{ax}
  11. \int xe^{ax}\,dx=\frac{e^{ax}}{a^2}(ax-1)
  12. \int\ln{ax}\,dx=x\ln{ax}-x
  13. \int\frac{dx}{a^2+x^2}=\frac{1}{a}\tan^{-1}\frac{x}{a}
  14. \int\frac{dx}{a^2-x^2}-\frac{1}{2a}\ln\left|\frac{x+a}{x-a}\right|
  15. \int\frac{dx}{\sqrt{a^2+x^2}}=\sinh^{-1}\frac{x}{a}
  16. \int\frac{dx}{\sqrt{a^2-x^2}}=\sin^{-1}\frac{x}{a}
  17. \int\sqrt{a^2+x^2}\,dx=\frac{x}{2}\sqrt{a^2+x^2}+\frac{a^2}{2}\sinh^{-1}\frac{x}{a}
  18. \int\sqrt{a^2-x^2}\,dx=\frac{x}{2}\int{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}

F - Periodic Table

107

The Periodic Table of Elements is shown. The 18 columns are labeled “Group” and the 7 rows are labeled “Period.” Below the table to the right is a box labeled “Color Code” with different colors for metals, metalloids, and nonmetals, as well as solids, liquids, and gases. To the left of this box is an enlarged picture of the upper-left most box on the table. The number 1 is in its upper-left hand corner and is labeled “Atomic number.” The letter “H” is in the middle in red indicating that it is a gas. It is labeled “Symbol.” Below that is the number 1.008 which is labeled “Atomic Mass.” Below that is the word hydrogen which is labeled “name.” The color of the box indicates that it is a nonmetal. Each element will be described in this order: atomic number; name; symbol; whether it is a metal, metalloid, or nonmetal; whether it is a solid, liquid, or gas; and atomic mass. Beginning at the top left of the table, or period 1, group 1, is a box containing “1; hydrogen; H; nonmetal; gas; and 1.008.” There is only one other element box in period 1, group 18, which contains “2; helium; H e; nonmetal; gas; and 4.003.” Period 2, group 1 contains “3; lithium; L i; metal; solid; and 6.94” Group 2 contains “4; beryllium; B e; metal; solid; and 9.012.” Groups 3 through 12 are skipped and group 13 contains “5; boron; B; metalloid; solid; 10.81.” Group 14 contains “6; carbon; C; nonmetal; solid; and 12.01.” Group 15 contains “7; nitrogen; N; nonmetal; gas; and 14.01.” Group 16 contains “8; oxygen; O; nonmetal; gas; and 16.00.” Group 17 contains “9; fluorine; F; nonmetal; gas; and 19.00.” Group 18 contains “10; neon; N e; nonmetal; gas; and 20.18.” Period 3, group 1 contains “11; sodium; N a; metal; solid; and 22.99.” Group 2 contains “12; magnesium; M g; metal; solid; and 24.31.” Groups 3 through 12 are skipped again in period 3 and group 13 contains “13; aluminum; A l; metal; solid; and 26.98.” Group 14 contains “14; silicon; S i; metalloid; solid; and 28.09.” Group 15 contains “15; phosphorous; P; nonmetal; solid; and 30.97.” Group 16 contains “16; sulfur; S; nonmetal; solid; and 32.06.” Group 17 contains “17; chlorine; C l; nonmetal; gas; and 35.45.” Group 18 contains “18; argon; A r; nonmetal; gas; and 39.95.” Period 4, group 1 contains “19; potassium; K; metal; solid; and 39.10.” Group 2 contains “20; calcium; C a; metal; solid; and 40.08.” Group 3 contains “21; scandium; S c; metal; solid; and 44.96.” Group 4 contains “22; titanium; T i; metal; solid; and 47.87.” Group 5 contains “23; vanadium; V; metal; solid; and 50.94.” Group 6 contains “24; chromium; C r; metal; solid; and 52.00.” Group 7 contains “25; manganese; M n; metal; solid; and 54.94.” Group 8 contains “26; iron; F e; metal; solid; and 55.85.” Group 9 contains “27; cobalt; C o; metal; solid; and 58.93.” Group 10 contains “28; nickel; N i; metal; solid; and 58.69.” Group 11 contains “29; copper; C u; metal; solid; and 63.55.” Group 12 contains “30; zinc; Z n; metal; solid; and 65.38.” Group 13 contains “31; gallium; G a; metal; solid; and 69.72.” Group 14 contains “32; germanium; G e; metalloid; solid; and 72.63.” Group 15 contains “33; arsenic; A s; metalloid; solid; and 74.92.” Group 16 contains “34; selenium; S e; nonmetal; solid; and 78.97.” Group 17 contains “35; bromine; B r; nonmetal; liquid; and 79.90.” Group 18 contains “36; krypton; K r; nonmetal; gas; and 83.80.” Period 5, group 1 contains “37; rubidium; R b; metal; solid; and 85.47.” Group 2 contains “38; strontium; S r; metal; solid; and 87.62.” Group 3 contains “39; yttrium; Y; metal; solid; and 88.91.” Group 4 contains “40; zirconium; Z r; metal; solid; and 91.22.” Group 5 contains “41; niobium; N b; metal; solid; and 92.91.” Group 6 contains “42; molybdenum; M o; metal; solid; and 95.95.” Group 7 contains “43; technetium; T c; metal; solid; and 97.” Group 8 contains “44; ruthenium; R u; metal; solid; and 101.1.” Group 9 contains “45; rhodium; R h; metal; solid; and 102.9.” Group 10 contains “46; palladium; P d; metal; solid; and 106.4.” Group 11 contains “47; silver; A g; metal; solid; and 107.9.” Group 12 contains “48; cadmium; C d; metal; solid; and 112.4.” Group 13 contains “49; indium; I n; metal; solid; and 114.8.” Group 14 contains “50; tin; S n; metal; solid; and 118.7.” Group 15 contains “51; antimony; S b; metalloid; solid; and 121.8.” Group 16 contains “52; tellurium; T e; metalloid; solid; and 127.6.” Group 17 contains “53; iodine; I; nonmetal; solid; and 126.9.” Group 18 contains “54; xenon; X e; nonmetal; gas; and 131.3.” Period 6, group 1 contains “55; cesium; C s; metal; solid; and 132.9.” Group 2 contains “56; barium; B a; metal; solid; and 137.3.” Group 3 breaks the pattern. The box has a large arrow pointing to a row of elements below the table with atomic numbers ranging from 57-71. In sequential order by atomic number, the first box in this row contains “57; lanthanum; L a; metal; solid; and 138.9.” To its right, the next is “58; cerium; C e; metal; solid; and 140.1.” Next is “59; praseodymium; P r; metal; solid; and 140.9.” Next is “60; neodymium; N d; metal; solid; and 144.2.” Next is “61; promethium; P m; metal; solid; and 145.” Next is “62; samarium; S m; metal; solid; and 150.4.” Next is “63; europium; E u; metal; solid; and 152.0.” Next is “64; gadolinium; G d; metal; solid; and 157.3.” Next is “65; terbium; T b; metal; solid; and 158.9.” Next is “66; dysprosium; D y; metal; solid; and 162.5.” Next is “67; holmium; H o; metal; solid; and 164.9.” Next is “68; erbium; E r; metal; solid; and 167.3.” Next is “69; thulium; T m; metal; solid; and 168.9.” Next is “70; ytterbium; Y b; metal; solid; and 173.1.” The last in this special row is “71; lutetium; L u; metal; solid; and 175.0.” Continuing in period 6, group 4 contains “72; hafnium; H f; metal; solid; and 178.5.” Group 5 contains “73; tantalum; T a; metal; solid; and 180.9.” Group 6 contains “74; tungsten; W; metal; solid; and 183.8.” Group 7 contains “75; rhenium; R e; metal; solid; and 186.2.” Group 8 contains “76; osmium; O s; metal; solid; and 190.2.” Group 9 contains “77; iridium; I r; metal; solid; and 192.2.” Group 10 contains “78; platinum; P t; metal; solid; and 195.1.” Group 11 contains “79; gold; A u; metal; solid; and 197.0.” Group 12 contains “80; mercury; H g; metal; liquid; and 200.6.” Group 13 contains “81; thallium; T l; metal; solid; and 204.4.” Group 14 contains “82; lead; P b; metal; solid; and 207.2.” Group 15 contains “83; bismuth; B i; metal; solid; and 209.0.” Group 16 contains “84; polonium; P o; metal; solid; and 209.” Group 17 contains “85; astatine; A t; metalloid; solid; and 210.” Group 18 contains “86; radon; R n; nonmetal; gas; and 222.” Period 7, group 1 contains “87; francium; F r; metal; solid; and 223.” Group 2 contains “88; radium; R a; metal; solid; and 226.” Group 3 breaks the pattern much like what occurs in period 6. A large arrow points from the box in period 7, group 3 to a special row containing the elements with atomic numbers ranging from 89-103, just below the row which contains atomic numbers 57-71. In sequential order by atomic number, the first box in this row contains “89; actinium; A c; metal; solid; and 227.” To its right, the next is “90; thorium; T h; metal; solid; and 232.0.” Next is “91; protactinium; P a; metal; solid; and 231.0.” Next is “92; uranium; U; metal; solid; and 238.0.” Next is “93; neptunium; N p; metal; solid; and N p.” Next is “94; plutonium; P u; metal; solid; and 244.” Next is “95; americium; A m; metal; solid; and 243.” Next is “96; curium; C m; metal; solid; and 247.” Next is “97; berkelium; B k; metal; solid; and 247.” Next is “98; californium; C f; metal; solid; and 251.” Next is “99; einsteinium; E s; metal; solid; and 252.” Next is “100; fermium; F m; metal; solid; and 257.” Next is “101; mendelevium; M d; metal; solid; and 258.” Next is “102; nobelium; N o; metal; solid; and 259.” The last in this special row is “103; lawrencium; L r; metal; solid; and 262.” Continuing in period 7, group 4 contains “104; rutherfordium; R f; metal; solid; and 267.” Group 5 contains “105; dubnium; D b; metal; solid; and 270.” Group 6 contains “106; seaborgium; S g; metal; solid; and 271.” Group 7 contains “107; bohrium; B h; metal; solid; and 270.” Group 8 contains “108; hassium; H s; metal; solid; and 277.” Group 9 contains “109; meitnerium; M t; not indicated; solid; and 276.” Group 10 contains “110; darmstadtium; D s; not indicated; solid; and 281.” Group 11 contains “111; roentgenium; R g; not indicated; solid; and 282.” Group 12 contains “112; copernicium; C n; metal; liquid; and 285.” Group 13 contains “113; ununtrium; U u t; not indicated; solid; and 285.” Group 14 contains “114; flerovium; F l; not indicated; solid; and 289.” Group 15 contains “115; ununpentium; U u p; not indicated; solid; and 288.” Group 16 contains “116; livermorium; L v; not indicated; solid; and 293.” Group 17 contains “117; ununseptium; U u s; not indicated; solid; and 294.” Group 18 contains “118; ununoctium; U u o; not indicated; solid; and 294.”

G - The Greek Alphabet

108

Name Capital Lowercase Name Capital Lowercase
Alpha \mathrm{A} \alpha Nu \mathrm{N} \nu
Beta \mathrm{B} \beta Xi \Xi \xi
Gamma \Gamma \gamma Omicron \mathrm{O} o
Delta \Delta \delta Pi \Pi \pi
Epsilon \mathrm{E} \epsilon Rho \mathrm{P} \rho
Zeta \mathrm{Z} \zeta Sigma \Sigma \sigma
Eta \mathrm{H} \eta Tau \mathrm{T} \tau
Theta \Theta \theta Upsilon \Upsilon \upsilon
lota \mathrm{I} \iota Phi \Phi \phi
Kappa \mathrm{K} \kappa Chi \mathrm{X} \chi
Lambda \Lambda \lambda Psi \Psi \psi
Mu \mathrm{M} \mu Omega \Omega \omega
Table G1 The Greek Alphabet