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Preface 

About this textbook 
This textbook is written to fill several needs that we believe were not already met by the 
many existing introductory physics textbooks. First, we wanted to ensure that the textbook 
is free to use for students and professors. Second, we wanted to design a textbook that is 
mindful of the new pedagogies being used in introductory physics, by writing it in a way that 
is adapted to a flipped-classroom approach where students complete readings, think about 
the readings, and then discuss the material in class. Third, we wanted to create a textbook 
that also addresses the experimental aspect of physics, by proposing experiments to be 
conducted at home or in the lab, as well as providing guidelines for designing experiments 
and reporting on experimental results. Finally, we wanted to create a textbook that is a 
sort of “living document”, that professors can edit and re-mix for their own needs, and to 
which students can contribute material as well. The textbook is hosted on GitHub, which 
allows anyone to make suggestions, point out issues and mistakes, and contribute material. 

This textbook is meant to be paired with the accompanying “Question Library”, which 
contains many practice problems, many of which were contributed by students. 

This textbook would not have been possible without the support of Queen’s University and 
the Department of Physics, Engineering Physics & Astronomy at Queen’s University, as well 
as the many helpful discussions with the students, technicians and professors at Queen’s 
University. 

Hello from the authors 
Ryan Martin I am a professor of physics at Queen’s University. My 
main research is in the field of particle astrophysics, particularly in 
studying the properties of neutrinos. I grew up in Switzerland, ob-
tained my Bachelor’s, Master’s and Ph.D. at Queen’s University. I was 
then a postdoctoral fellow at Lawrence Berkeley National Laboratory, a 
faculty at the University of South Dakota, before returning to Queen’s. 
I am particularly passionate about education, and I am always seeking 
opportunities to involve students in helping to make education more 
accessible. I also like to cook and to play volleyball. 

Emma Neary I am currently a second year physics major and 
QuARMS (Queen’s University Accelerated Route to Medical School) 
student, as well as a native of St. John’s, Newfoundland. Uniting the 
perspectives of students and professors in an accessible way is important 
to me. I strongly believe in the importance of building physical models; 
whether it be in physics, medicine, sciences or the arts. It has been my 
goal to infuse the textbook with the theme of modelling in a creative 
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and engaging way. Aside from doing physics, I enjoy hiking, dancing, 
reading and doing research in gastroenterology and neuropsychiatry. 

Joshua Rinaldo I am a third year physics major and concurrent edu-
cation student. I was first introduced to the flipped classroom approach 
in Ryan Martin’s first year physics class, and have found that the ex-
perience shaped the way I approach education. I intend on continuing 
to make use of the flipped classroom approach as I move forward in my 
career. Being able to co-author this textbook has been an amazing op-
portunity for me to grow as an educator, and I look forward to applying 
the skills I learned while working on the textbook. Outside of physics, 
I enjoy making jewelry and practicing mixed martial arts. 

Olivia Woodman I am a currently a third year undergraduate stu-
dent at Queen’s Univeristy, majoring in physics. The flipped classroom 
approach has been beneficial to my own learning, and I think that we 
have created a textbook that really complements this learning style. 
Throughout this book, I have shared my thoughts on various topics in 
physics, as well as some useful tips and tricks. I hope that students 
enjoy using this book and continue to contribute to it in the future. 
Working on this textbook has also allowed me to combine my love of 
physics with my love of doodling, so I hope you enjoy the drawings! 

How to use this textbook 
This textbook is designed to be used in a flipped-classroom approach, where students com-
plete readings at home, and the material is then discussed in class. The material is thus pre-
sented fairly succinctly, and contains Checkpoint Questions throughout that are meant 
to be answered as the students complete the reading. We suggest including these Check-
point Questions as part of a quiz in a reading assignment (marked based on completion, not 
correctness), and then using these questions as a starting point for discussions in class. 

For topics that are particularly diÿcult, we have included Thought Boxes written by 
students that try to present the material in a di�erent light. We are always happy if 
students (or professors) wish to contribute additional thought boxes. 

Chapters start with a set of Learning outcomes and an Opening question to help 
students have a sense of the chapter contents. The chapters have Examples throughout, 
as well as additional practice problems at the end. The Question Library should be 
consulted for additional practice problems. At the end of the chapter, a Summary presents 
the key points from the chapter. We suggest that students carefully read the summaries 
to make sure that they understand the contents of the chapter (and potentially identify, 
before reading the chapter, if the content is review to them). At the end of the chapters, 
we also present a section to Think about the material. This includes questions that 
can be assigned in reading assignments to research applications of the material or historical 
context. The thinking about the material section also includes experiments that can be 
done at home (as part of the reading assignment) or in the lab. 
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Appendices cover the main background in mathematics (Calculus and Vectors), as well 
as present an introduction to programming in python, which we feel is a useful skill to 
have in science. There is also an Appendix that is intended to guide work in the lab, by 
providing examples of how to write experimental proposals and reports, as well as guidelines 
for reviewing proposals and reports. We believe that introductory laboratories should not 
be be “recipe-based”, but rather that students should take an approach similar to that 
of a researcher in designing (proposing) an experiment, conducting it, and reviewing the 
proposals and results of their peers. 

Credits 
This textbook, and especially the many questions in the Question Library would not have 
been possible without the many contributions from students, teaching assistants and other 
professors. Below is a list of the students that have contributed material that have made 
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1 The Scientific Method and Physics 

Learning Objectives 

• Understand the Scientific Method. 
• Define the scope of Physics. 
• Understand the di�erence between theory and model. 
• Have a sense of how a physicist thinks. 

Think About It 

A scientific theory... 
A) must explain the physical world, and it may or may not be experimentally verifi-

able. 
B) proves our models to be correct, and it must be experimentally verifiable. 
C) describes the physical world, and must be experimentally verifiable. 
D) must disprove other theories, and may or may not be experimentally verifiable. 

1.1 Science and the Scientific Method 
Science is the process of describing the world around us. It is important to note that 
describing the world around us is not the same as explaining the world around us. Science 
aims to answer the question “How?” and not the question “Why?”. As we develop our 
description of the physical world, you should remember this important distinction and resist 
the urge to ask “Why?”. 

The Scientific Method is a prescription for coming up with a description of the physical 
world that anyone can challenge and improve through performing experiments. If we come 
up with a description that can describe many observations, or the outcome of many di�erent 
experiments, then we usually call that description a “Scientific Theory”. We can get some 
insight into the Scientific Method through a simple example. 

Imagine that we wish to describe how long it takes for a tennis ball to reach the ground 
after being released from a certain height. One way to proceed is to describe how long it 
takes for a tennis ball to drop 1 m, and then to describe how long it takes for a tennis ball 
to drop 2 m, etc. We could generate a giant table showing how long it takes a tennis ball 
to drop from any given height. Someone would then be able to perform an experiment to 
measure how long a tennis ball takes to drop from 1 m or 2 m and see if their measurement 
disagrees with the tabulated values. If we collected the descriptions for all possible heights, 

2 



3 1.1. SCIENCE AND THE SCIENTIFIC METHOD 

then we would e�ectively have a valid and testable scientific theory that describes how long 
it takes tennis balls to drop from any height. 

Suppose that a budding scientist, let’s call her Chloë, then came along and noticed that 
there is a pattern in the theory that can be described much more succinctly and generally 
than by using a giant table. In particular, suppose that she notices that, mathematically, 
the time, t, that it takes for a tennis ball to drop a height, h, is proportional to the square 
root of the height: p

t / h 

Example 1-1 

p
Use Chloë’s Theory (t / h) to determine how much longer it will take for an object 
to drop by 2 m than it would to drop by 1 m. 

Solution 

When we have a proportionality law (with a /) sign, we can always change this to an 
equal sign by introducing a constant, which we will call k: 

p
t / h 

p
! t = k h 

Let t1 be the time to fall a distance h1 = 1 m, and t2 be the time to fall a distance 
h2 = 2 m. In terms of our unknown constant, k, we have: q q 

t1 = k h1 = k (1 m) q q 
t2 = k h2 = k (2 m) 

By taking the ratio, t
t 
1
2 
, our unknown constant k will cancel: 

q 
t1 (1 m) 1 = q = p
t2 (2 m) 2 

p
∴ t2 = 2t1 

p
and we find that it will take 2 ˘ 1.41 times longer to drop by 2 m than it will by 1 m. 

Chloë’s “Theory of Tennis Ball Drop Times” is appealing because it is succinct, and it 
also allows us to make verifiable predictions. That is, using this theory, we can predictp
that it will take a tennis ball 2 times longer to drop from 2 m than it will from 1 m, 
and then perform an experiment to verify that prediction. If the experiment agrees with 
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the prediction, then we conclude that Chloë’s theory adequately describes the result of 
that particular experiment. If the experiment does not agree with the prediction, then we 
conclude that the theory is not an adequate description of that experiment, and we try to 
find a new theory. 

Chloë’s theory is also appealing because it can describe not only tennis balls, but the time 
it takes for other objects to fall as well. Scientists can then set out to continue testing her 
theory with a wide range of objects and drop heights to see if it describes those experiments 
as well. Inevitably, they will discover situations where Chloë’s theory fails to adequately 
describe the time that it takes for objects to fall (can you think of an example?). 

We would then develop a new “Theory of Falling Objects” that would include Chloë’s 
theory that describes most objects falling, and additionally, a set of descriptions for the 
fall times for cases that are not described by Chloë’s theory. Ideally, we would seek a new 
theory that would also describe the new phenomena not described by Chloë’s theory in a 
succinct manner. There is of course no guarantee, ever, that such a theory would exist; it 
is just an optimistic hope of physicists to find the most general and succinct description 
of the physical world. This is a general di�erence between physics and many of the other 
sciences. In physics, one always tries to arrive at a succinct theory (e.g. an equation) 
that can describe many phenomena, whereas the other sciences are often very descriptive. 
For example, there is no succinct formula for how butterflies look; rather, there is a giant 
collection of observations of di�erent butterflies. 

This example highlights that applying the Scientific Method is an iterative process. Loosely, 
the prescription for applying the Scientific Method is: 

1. Identify and describe a process that is not currently described by a theory. 
2. Look at similar processes to see if they can be described in a similar way. 
3. Improve the description to arrive at a “Theory” that can be generalized to make 

predictions. 
4. Test predictions of the theory on new processes until a prediction fails. 
5. Improve the theory. 

Checkpoint 1-1 

Fill in the blanks: 

Physics is a branch of science that the behaviour of the universe. When 
doing physics, we attempt to answer the question of things work the way 
they do. 

A) explains 
B) describes 
C) how 
D) why 
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1.2 Theories, hypotheses and models 
For the purpose of this textbook (and science in general), we introduce a distinction in what 
we mean by “theory”, “hypothesis”, and by “model”. We will consider a “theory” to be a 
set of statements (or an equation) that gives us a broad description, applicable to several 
phenomena and that allows us to make verifiable predictions. For example, Chloë’s Theory p
(t / h) can be considered a theory. Specifically, we do not use the word theory in the 
context of “I have a theory about this...” 

A “hypothesis” is a consequence of the theory that one can test. From Chloë’s Theory, we p
have the hypothesis that an object will take 2 times longer to fall from 1 m than from 2 m. 
We can formulate the hypothesis based on the theory and then test that hypothesis. If the 
hypothesis is found to be invalidated by experiment, then either the theory is incorrect, or 
the hypothesis is not consistent with the theory. 

A “model” is a situation-specific description of a phenomenon based on a theory, that allows 
us to make a specific prediction. Using the example from the previous section, our theory 
would be that the fall time of an object is proportional to the square root of the drop height, 
and a model would be applying that theory to describe a tennis ball falling by 4.2 m. From 
the model, we can form a testable hypothesis of how long it will take the tennis ball to fall 
that distance. It is important to note that a model will almost always be an approximation 
of the theory applied to describe a particular phenomenon. For example, if Chloë’s Theory 
is only valid in vacuum, and we use it to model the time that it take for an object to fall at 
the surface of the Earth, we may find that our model disagrees with experiment. We would 
not necessarily conclude that the theory is invalidated, if our model did not adequately 
apply the theory to describe the phenomenon (e.g. by forgetting to include the e�ect of air 
drag). 

This textbook will introduce the theories from Classical Physics, which were mostly es-
tablished and tested between the seventeenth and nineteenth centuries. We will take it 
as given that readers of this textbook are not likely to perform experiments that challenge 
those well-established theories. The main challenge will be, given a theory, to define a model 
that describes a particular situation, and then to test that model. This introductory physics 
course is thus focused on thinking of “doing physics” as the task of correctly modelling a 
situation. 

Emma’s Thoughts 

What’s the di�erence between a model and a theory? 
“Model” and “Theory” are sometimes used interchangeably among scientists. In physics, 
it is particularly important to distinguish between these two terms. A model provides 
an immediate understanding of something based on a theory. 

For example, if you would like to model the launch of your toy rocket into space, you 
might run a computer simulation of the launch based on various theories of propulsion 
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that you have learned. In this case, the model is the computer simulation, which 
describes what will happen to the rocket. This model depends on various theories that 
have been extensively tested such as Newton’s Laws of motion, Fluid dynamics, etc. 

• “Model”: Your homemade rocket computer simulation 
• “Theory”: Newton’s Laws of motion, Fluid dynamics 

With this analogy, we can quickly see that the “model” and “theory” are not inter-
changeable. If they were, we would be saying that all of Newton’s Laws of Motion 
depend on the success of your piddly toy rocket computer simulation! 

Checkpoint 1-2 

Models cannot be scientifically tested, only theories can be tested. 
A) True 
B) False 

1.3 Fighting intuition 
It is important to remember to fight one’s intuition when applying the scientific method. 
Certain theories, such as Quantum Mechanics, are very counter-intuitive. For example, in 
Quantum Mechanics, an object can be described as being in two locations at the same time. 
In the Theory of Special Relativity, it is possible for two people to disagree on whether two 
events occurred at the same time. These particular prediction from these theories have not 
been invalidated by any experiment. 

There is no requirement in science that a theory be “pretty” or intuitive. The only require-
ment is that a theory describe experimental data. One should then take care in not forcing 
one’s preconceived notions into interpreting a theory. For example, Quantum Mechanics 
does not actually predict that objects can be in two locations at once, only that objects be-
have as if they were in two locations at once. A famous example is Schrödinger’s cat, which 
can be modelled as being both alive and dead at the same time. However, just because we 
model it that way does not mean that it really is alive and dead at the same time. 

1.4 The scope of Physics 
Physics describes a wide range of phenomena within the physical sciences, ranging from 
the behaviour of microscopic particles that make up matter to the evolution of the entire 
Universe. We often distinguish between “classical” and “modern” physics depending on 
when the theories were developed, and we can further subdivide these areas of physics 
depending on the scale or the type of the phenomena that they describe. 

The word physics comes from Ancient Greek and translates to “nature” or “knowledge of 
nature”. The goal of physics is to develop theories from which mathematical models can be 
derived to describe our observations. One of the ambitious goals of physicists is to develop 
a single theory that describes all of nature, instead of having multiple theories to describe 
di�erent categories of phenomena. This is in stark contrast to other fields of science, as 
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Rutherford famously quipped: “All science is either physics or stamp collecting”. That 
is, physicists hope that there exists one single mathematical theory (like Chloë’s theory of 
falling objects) that describes the entire physical world. In Biology, for example, this would 
not be a reasonable goal, as one needs to describe every single living being, and there is no 
overarching “theory of what all living things look like”. Currently, physicists have been able 
to narrow down the number of theories required to describe all of the physical world to only 
three, which is impressive (the theory of gravity, the theory of the strong nuclear force, and 
physicists have now further unified the weak nuclear force with electromagnetism to make 
the “electroweak force”). 

1.4.1 Classical Physics 
This textbook is focused on classical physics, which corresponds to the theories that were 
developed before 1905. 
Mechanics 

Mechanics describes most of our everyday experiences, such as how objects move, including 
how planets move under the influence of gravity. Isaac Newton was the first to formally 
develop a theory of mechanics, using his “Three Laws” to describe the behaviour of objects 
in our everyday experience. His famous work published in 1687, “Philosophiae Naturalis 
Principia Mathematica” (“The Principia”) also included a theory of gravity that describes 
the motion of celestial objects. 

Following the 1781 discovery of the planet Uranus by William Herschel, astronomers noticed 
that the orbit of the planet was not well described by Newton’s theory. This led Urbain Le 
Verrier (in Paris) and John Couch Adams (in Cambridge) to predict the location of a new 
planet that was disturbing the orbit of Uranus rather than to claim that Newton’s theory 
was incorrect. The planet Neptune was subsequently discovered by Le Verrier in 1846, one 
year after the prediction, and seen as a resounding confirmation of Newton’s theory. 

In 1859, Urbain Le Verrier also noted that Mercury’s orbit around the Sun is di�erent than 
that predicted by Newton’s theory. Again, a new planet was proposed, “Vulcan”, but that 
planet was never discovered and the deviation of Mercury’s orbit from Newton’s prediction 
remained unexplained until 1915, when Albert Einstein introduced a new, more complete, 
theory of gravity, called “General Relativity”. This is a good example of the scientific 
method; although the discovery of Neptune was consistent with Newton’s theory, it did not 
prove that the theory is correct, only that it correctly described the motion of Uranus. The 
discrepancy that arose when looking at Mercury ultimately showed that Newtons’ theory 
of gravity fails to provide a proper description of planetary orbits in the proximity of very 
massive objects (Mercury is the closest planet to the Sun). 
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Checkpoint 1-3 

What did the inability to find the planet Vulcan show: 
A) It showed that Newton’s model of Mercury was correct. 
B) It showed that Newton’s theory did not correctly describe the orbits of all planets. 
C) It showed that the technology at the time was inadequate. 
D) It showed that Einstein’s theory of General Relativity was correct. 

Electromagnetism 

Electromagnetism describes electric charges and magnetism. At first, it was not realized 
that electricity and magnetism were connected. Charles Augustin de Coulomb published in 
1784 the first description of how electric charges attract and repel each other. Magnetism 
was discovered in the ancient world, when people noticed that lodestone (rocks made from 
magnetized magnetite mineral) could attract iron tools. In 1819, Oersted discovered that 
moving electric charges could influence a compass needle, and several subsequent experi-
ments were carried out to discover how magnets and moving electric charges interact. 

In 1865, James Clerk Maxwell published “A Dynamical Theory of the Electromagnetic 
Field”, wherein he first proposed a theory that unified electricity and magnetism as two 
facets of the same phenomenon. One important concept from Maxwell’s theory is that 
light is an electromagnetic wave with a well-defined speed. This uncovered some potential 
issues with the theory as it required an absolute frame of reference in which to describe the 
propagation of light. Experiments in the late 1800s failed to detect the existence of this 
frame of reference. 

1.4.2 Modern Physics 
In 1905, Albert Einstein published three major papers that set the foundation for what 
we now call “Modern Physics”. These papers covered the following areas that were not 
well-described by classical physics: 

• A description of Brownian motion that implied that all matter is made of atoms. 
• A description of the photoelectric e�ect that implied that light is made of particles. 
• A description of the motion of very fast objects that implied that mass is equivalent 

to energy, and that time and distance are relative concepts. 

In order to accommodate Einstein’s descriptions, physicists had to dramatically re-formulate 
new theories. 
Quantum mechanics and particle physics 

Quantum mechanics is a theory that was developed in the 1920s to incorporate Einstein’s 
conclusion that light is made of particles (or rather, quantized lumps of energy called quanta) 
and describe nature at the smallest scales. This could only be done at the expense of 
determinism, the idea that we can predict how particular situations evolve in time. This led 
to a theory that could only provide the probabilities that certain outcomes will be realized. 
Quantum mechanics was further refined during the twentieth century into Quantum Field 
Theory, which led to the Standard Model of particle physics that describes our current 
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understanding of matter through the theories of the electroweak and strong forces. 
The Special and General Theories of Relativity 

In 1905, Einstein published his “Special Theory of Relativity”, which describes how light 
propagates at a constant speed without the need for an absolute frame of reference, thus 
solving the problem introduced by Maxwell. This required physicists to consider space and 
time on an equal footing (“space-time”), rather than two independent aspects of the natural 
world, and led to a flurry of odd, but verified, experimental predictions. One such prediction 
is that time flows slower for objects that are moving fast, which has been experimentally 
verified by flying precise atomic clocks on airplanes and satellites. In 1915, Einstein further 
refined his theory into General Relativity, which is our best current description of gravity 
and includes a description of Mercury’s orbit which was not described by Newton’s theory. 

Checkpoint 1-4 

Special relativity can be applied to which of these science fiction plots? 
A) An eccentric duo travel back in time to alter the past. 
B) An astronaut travelling near light speed for many years comes home to find that 

he has aged less than his family on Earth. 
C) A superhero harnesses lightning to use as a weapon. 

Cosmology and astrophysics 

Cosmology describes processes at the largest scales and is mostly based on applying General 
Relativity to the scale of the Universe. For example, cosmology describes how our Universe 
started from the Big Bang and how large scale structures, such as galaxies and clusters of 
galaxies, have formed and evolved into our present day Universe. 

Figure 1.1: A galaxy in the Coma cluster of galaxies (credit:NASA). 

Astrophysics is focused on describing the formation and the evolution of stars, galaxies, and 
other “astrophysical objects” such as neutron stars and black holes. 
Particle astrophysics 

Particle astrophysics is a relatively new field that makes use of subatomic particles produced 
by astrophysical objects to learn both about the objects and about the particles. For 
example, the 2015 Nobel Prize in Physics was awarded to Art McDonald (a Canadian 
physicist from Queen’s University) for using neutrinos1 produced by the Sun to both learn 

1Neutrinos are the lightest subatomic particles that we know of 
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about the nature of neutrinos and about how the Sun works. 

1.5 Thinking like a physicist 
In a sense, physics can be thought of as the most fundamental of the sciences, as it describes 
the interactions of the smallest constituents of matter. In principle, if one can precisely 
describe how protons, neutrons, and electrons interact, then one can completely describe 
how a human brain thinks. In practice, the theories of particle physics lead to equations 
that are too diÿcult to solve for systems that include as many particles as a human brain. 
In fact, they are too diÿcult to solve exactly for even rather small systems of particles such 
as atoms bigger than helium (containing several protons, neutrons and electrons). 

We have a number of other fields of science to cover complex systems of particles interacting. 
Chemistry can be used to describe what happens to systems consisting of many atoms and 
molecules. In a living being, it is too diÿcult to keep track of systems of atoms and 
molecules, so we use Biology to describe living systems. 

One of the key qualities required to be an e�ective physicist is an ability to understand 
how to apply a theory and develop a model to describe a phenomenon. Just like any other 
skill, it takes practice to become good at developing models. Students that graduate with 
a physics degree are thus often sought for jobs that require critical thinking and the ability 
to develop quantitative models, which covers many fields from outside of physics such as 
finance or Big Data. This textbook thus tries to emphasize practice with developing models, 
while also providing a strong background in the theories of classical physics. 
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1.6 Summary 

Key Takeaways 

Science attempts to describe the physical world (it answers the question “How?”, not 
“Why?”). 

The Scientific Method provides a prescription for arriving at theories that describe 
the physical world and that can be experimentally verified. The Scientific Method is 
necessarily an iterative process where theories are continuously updated as new experi-
mental data are acquired. An experiment can only disprove a theory, not confirm it in 
any general sense. 

Physics covers a wide scale of phenomena ranging from the Universe down to subatomic 
particles. Classical physics encompasses the theories developed before 1905, when Ein-
stein introduced the need for Quantum Mechanics and the Theorie(s) of Relativity. 
One of the main goals of physics is to arrive at a single theory that describes all of 
our natural world. Currently, physicists require three theories to describe the natural 
world. 

1.7 Thinking about the Material 

Reflect and research 

1. What particle helps to give mass to all of the massive elementary particles? 
2. Name that physicist! Who was the first to propose that the universe is expanding? 
3. Before discovering the CMBR (Cosmic Microwave Background Radiation), scien-

tists Arno Penzias and Robert Wilson were trying to detect radio waves with very 
sensitive antennae. The very first time they heard a consistent, low noise on their 
detectors they discovered that it was (mostly) not the CMBR. What was causing 
most of this noise? 

4. Physicist Lene Hau first slowed a beam of light to 17 m/s using a very cold, dilute 
gas of bosons. In 2001, how fast was she able to slow down the beam of light? 

5. Think of two theories that you use in your every day life. (For example, when we 
wash our hands, we do so because of the germ theory of disease!) 
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1.8 Sample problems and solutions 
1.8.1 Problems 
Problem 1-1: Your friend Martin loves to explore “conspiracy theories”. His favourite 
theory involves “Chem Trails”. He tells you that the government is secretly using airliners 
to spread chemicals in the atmosphere for some unknown reason. (Solution) 

a) Think of 2 ways in which you could objectively test Martin’s theory. 
b) After proposing your experiment to Martin, he claims that his theory cannot be in-

validated by any experiment, no matter how scientifically rigorous the experiment is. 
Is Martin correct? 
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1.8.2 Solutions 
Solution to problem 1-1: 

a) You could do an investigation to see if the government is spreading chemicals, and try to 
find out why. You could make measurements of the contents in the atmosphere before and 
after an airline passes to see if any unexpected chemicals show up. 

b) No he is not, as you just proposed two experiments that could invalidate his theory. 



2 Comparing Model and Experiment 

In this chapter, we will learn about the process of doing science and lay the foundations for 
developing skills that will be of use throughout your scientific careers. In particular, we will 
start to learn how to test a model with an experiment, as well as learn to estimate whether 
a given result or model makes sense. 

Learning Objectives 

• Be able to estimate orders of magnitude. 
• Understand units. 
• Understand the process of building a model and performing an experiment. 
• Understand uncertainties in experiments. 

Think About It 

Newton’s Universal Theory of Gravity predicts that objects near the surface of the 
Earth will fall with an acceleration of 9.8 m/s2. Your friend reports that they have 
measured the acceleration of a falling ball and found that it was (9.0 ± 0.5) m/s2. Does 
their result invalidate the prediction from Newton’s Theory? 

A) Yes, since the range (9.0 ± 0.5) m/s2 does not include 9.8 m/s2. 
B) Not necessarily, as it depends on whether your friend correctly determined the 

uncertainty in their measurement. 
C) Definitely not, since Newton’s Universal Theory of Gravity has been confirmed 

by many experiments. 

2.1 Orders of magnitude 
Although you should try to fight intuition when building a model to describe a particular 
phenomenon, you should not abandon critical thinking and should always ask if a prediction 
from your model makes sense. One of the most straightforward ways to estimate if a model 
makes sense is to ask whether it predicts the correct order of magnitude for a quantity. 
Usually, the order of magnitude for a quantity can be determined by making a very simple 
model, ideally one that you can work through in your head. When we say that a prediction 
gives the right “order of magnitude”, we usually mean that the prediction is within a factor 
of “a few” (up to a factor of 10) of the correct answer. For example, if a measurement gives 
a value of 2000, then we would consider that a model prediction of 8000 gave the right order 
of magnitude (it di�ers from the correct answer by a factor of 4), whereas a prediction of 
24000 would not (it di�ers by a factor of 12). 

14 



15 2.1. ORDERS OF MAGNITUDE 

Example 2-1 

How many ping pong balls can you fit into a school bus? Is it of order 10,000, or 
100,000, or more? 

Solution 

Our strategy is to estimate the volumes of a school bus and of a ping pong ball, and 
then calculate how many times the volume of the ping pong ball fits into the volume of 
the school bus. 

We can model a school bus as a box, say 20 m×2 m×2 m, with a volume of 80 m3˘100 m3. 
We can model a ping pong ball as a sphere with a diameter of 0.03 m (3 cm). When 
stacking the ping pong balls, we can model them as little cubes with a side given by their 
diameter, so the volume of a ping pong ball, for stacking, is ˘ 0.000 03 m3=3 × 10−5 m3. 
If we divide 100 m3 by 3 × 10−5 m3, using scientific notation: 

100 m3 1 × 102 1 = = 3 × 107 ˘ 3 × 106 
3 × 10−5 m3 3 × 10−5 

Thus, we expect to be able to fit about three million ping pong balls in a school bus. 

Figure 2.1: A school bus and ping pong balls modelled as boxes. 
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Checkpoint 2-1 

Fill in the following table, giving the order of magnitude (in meters) of the sizes of 
di�erent physical objects. Feel free to look these up on the internet! 

Object Order of magnitude 

Proton 

Nucleus of atom 

Hydrogen atom 

Virus 

Human skin cell 

Width of human hair 

Human 1 m 

Height of Mt. Everest 

Radius of the Earth 

Radius of the Sun 

Radius of the Milky Way 

2.2 Units and dimensions 
In 1999, the NASA Mars Climate Orbiter disintegrated in the Martian atmosphere because 
of a mixup in the units used to calculate the thrust needed to slow the probe and place 
it in orbit about Mars. A computer program provided by a private manufacturer used 
units of pounds seconds to calculate the change in momentum of the probe instead of the 
Newton seconds expected by NASA. As a result, the probe was slowed down too much 
and disintegrated in the Martian atmosphere. This example illustrates the need for us to 
use and specify units when we describe the properties of a physical quantity, and it also 
demonstrates the di�erence between a dimension and a unit. 

“Dimensions” can be thought of as types of measurements. For example, length and time 
are both dimensions. A unit is the standard that we choose to quantify a dimension. For 
example, meters and feet are both units for the dimension of length, whereas seconds and 
ji�ys1 are units for the dimension of time. 

When we compare two numbers, for example a prediction from a model and a measurement, 
it is important that both quantities have the same dimension and be expressed in the same 
units. 

1A ji�y is a unit used in electronics and generally corresponds to either 1/50 or 1/60 seconds. 
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Checkpoint 2-2 

The speed limit on a highway... 
A) has the dimension of length over time and can be expressed in units of kilometers 

per hour. 
B) has the dimension of length can and be expressed in units of kilometers per hour. 
C) has the dimension of time over length and can be expressed in units of meters per 

second. 
D) has the dimension of time and can be expressed in units of meters. 

2.2.1 Base dimensions and their SI units 
In order to facilitate communication of scientific information, the International System of 
units (SI for the french, Système International d’unités) was developed. This allows us to use 
a well-defined convention for which units to use when describing quantities. For example, 
the SI unit for the dimension of length is the meter and the SI unit for the dimension of 
time is the second. 

In order to simplify the SI unit system, a fundamental (base) set of dimensions was chosen 
and the SI units were defined for those dimensions. Any other dimension can always be 
re-expressed in terms of the base dimensions shown in Table 2.1 and its units in terms of 
the corresponding combination of the base SI units. 

Dimension SI unit 

Length [L] meter [m] 

Time [T] seconds[s] 

Mass [M] kilogram [kg] 

Temperature [�] kelvin [K] 

Electric current [I] ampère [A] 

Amount of substance [N] mole [mol] 

Luminous intensity [J] candela [cd] 

Dimensionless [1] unitless [] 
Table 2.1: Base dimensions and their SI units with abbreviations. 

From the base dimensions, one can obtain “derived” dimensions such as “speed” which is a 
measure of how fast an object is moving. The dimension of speed is L/T (length over time) 
and the corresponding SI unit is m/s (meters per second)2 Many of the derived dimension 
have corresponding derived SI units which can be expressed in terms of the base SI units. 
Table 2.2 shows a few derived dimensions and their corresponding SI units and how those 

2Note that we can also write meters per second as m·s−1, but we often use a divide by sign if the power 
of the unit in the denominator is 1. 
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SI units are obtained from the base SI units. 
Dimension SI unit SI base units 

Speed [L/T] meter per second [m/s] [m/s] 

Frequency [1/T] hertz [Hz] [1/s] 

Force [M·L·T−2] newton [N] [kg·m·s−2] 

Energy [M·L2·T−2] joule [J] [N·m=kg·m2·s−2] 

Power [M·L2·T−3] watt [W] [J/s=kg·m2·s−3] 

Electric Charge [I· T] coulomb [C] [A· s] 

Voltage [M·L2·T−3·I−1] volt [V] [J/C=kg·m2·s−3·A−1] 
Table 2.2: Example of derived dimensions and their SI units with abbreviations. 

By convention, we can indicate the dimension of a quantity, X, by writing it in square 
brackets, [X]. For example, [X] = I, would mean that the quantity X has the dimension 
I, so it has the dimension of electric current. Similarly, we can indicate the SI units of X 
with SI[X]. Referring to Table 2.1, since X has the dimension of current, SI[X] = A. 

2.2.2 Dimensional analysis 
We call “dimensional analysis” the process of working out the dimensions of a quantity in 
terms of the base dimensions and a model prediction for that quantity. A few simple rules 
allow us to easily work out the dimensions of a derived quantity. Suppose that we have two 
quantities, X and Y , both with dimensions. We then have the following rules to find the 
dimension of a quantity that depends on X and Y : 

1. Addition/Subtraction: You can only add or subtract two quantities if they have the 
same dimension: [X + Y ] = [X] = [Y ] 

2. Multiplication: The dimension of the product, [XY ] , is the product of the dimensions: 
[XY ] = [X] · [Y ] 

3. Division: The dimension of the ratio, [X/Y ], is the ratio of the dimensions: [X/Y ] = 
[X]/[Y ] 

The next two examples show how to apply dimensional analysis to obtain the unit or 
dimension of a derived quantity. 
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Example 2-2 

Acceleration has SI units of ms−2 and force has the dimension of mass multiplied by 
acceleration. What are the dimensions and SI units of force, expressed in terms of the 
base dimensions and units? 

Solution 

We can start by expressing the dimension of acceleration, since we know from its SI 
units that it must have the dimension of length over time squared. 

[acceleration] = L 
T 2 

Since force has the dimension of mass times acceleration, we have: 

[force] = [mass] · [acceleration] = M L 

T 2 

and the SI units of force are thus: 

SI[force] = kg · m/s2 

Force is such a common dimension that it, like many other derived dimensions, has its 
own derived SI unit, the Newton [N]. 

Example 2-3 

Use Table 2.2 to show that voltage has the same dimension as force multiplied by speed 
and divided by electric current. 

Solution 

According to Table 2.2, voltage has the dimension: 

[voltage] = M · L2 · T−3 · I−1 

while force, speed and current have dimensions: 

T−2[force] = M · L · 
T −1[speed] = L · 

[current] = I 
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The dimension of force multiplied by speed divided by electric charge " 
force · speed 

# 
[force] · [speed] M · L · T −2 · L · T−1 

= = 
current [current] I 

= M · L2 · T−3 · I−1 

where, in the last line, we combined the powers of the same dimensions. By inspection, 
this is the same dimension as voltage. 

When you build a model to predict the value of a physical quantity, you should always use 
dimensional analysis to ensure that the dimension of the quantity your model predicts is 
correct. 

Example 2-4 

Your model predicts that the speed, v, of an object of mass m, after having fallen a 
distance h on the surface of a planet with mass M and radius R is given by: 

mMh 
v = 

R 

Is this a reasonable prediction? 

Solution 

First, we can see that the speed will be larger if h is bigger, which makes sense, since we 
expect the speed to be greater if the object fell a greater distance. Similarly, we expect 
that the speed would be higher if the mass of the planet, M , is larger, as it would exert 
a larger gravitational force, as given by this model. We also expect that the object will 
have a greater speed if it has a larger mass, m, if the drag from the atmosphere on the 
planet is significant. Finally, if the radius of the planet R is larger, we would expect the 
speed to be smaller, as the planet would be less dense and exert less gravitational force 
at its surface. However, if we verify the dimensions for the prediction of v, we find the 
model does not predict dimensions of speed: 

[m][M ][h][v] = [R] 

= MML = M2 
L 

and our model predicts a speed with dimensions of mass squared. By performing simple 
dimensional analysis, we can easily confirm that our model is definitely wrong. You 
should always check the dimensions of any model prediction, to make sure it is correct. 
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Olivia’s Thoughts 

4. Solve using the rules of algebra: [ ] (where just cancelled out the ’s)L= we Ma 2T 

2 

In this section, we were given three rules for combining dimensions. You’ll notice that 
these rules are the same as the rules for algebra, except you’re using dimensions instead 
of x’s and y’s. So, you can really just approach dimensional analysis problems as you 
would algebra problems. 

There are some basic steps you can follow when you are trying to find the SI units for a 
value/variable in your equation. I’ll go through Example 2-2 in a bit of a di�erent way. 
Let’s say that you have the equation F = ma and this time, you know the dimensions 
of F and m, and you want to find the dimensions of a: 

1. Rewrite the values/variables in your equation in terms of their dimensions, leaving 
all other operations (multiplication, exponents, etc.) as is: F = m · a ! [F ] = 
[m] · [a] 

2. Rearrange for your unknown dimension: [a] = [
[ 
m
F ]

] 

3. Substitute in your known dimensions: [a] = [
[ 
m
F ]

] ! [a] = MLT −2 = ML 
M MT 2 

5. Replace the dimensions with their corresponding SI units: [a] = L ! SI[a] = m 
T 2 s 

Checkpoint 2-3 

In Chloë’s theory of falling objects from Chapter 1, the time, t, for an object to fall a p
distance, x, was given by t = k x. What must the SI units of Chloë’s constant, k, be? 

1
2B) T L− 

1
2 

1
2A) T L 

1
2C) s m 

D) s m− 

Dimensional analysis can also be used to determine formulas (usually to within an order of 
magnitude). One famous example of this is when a British physicist named G.I. Taylor was 
able to determine a formula that showed how the blast radius of an atomic bomb scaled 
with time. Using pictures of the first atomic bomb explosion, he was able to determine the 
amount of energy released in the explosion, which was classified information at the time. 
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Example 2-5 

Find a formula that shows how the blast radius, r, scales with the time since the explo-
sion, t, where the radius also depends on the energy released in the explosion, E, and 
the density of the medium into which the bomb explodes, ˆ. 

Solution 

We want to find out how the blast radius scales with time, so we want an expression 
that relates r to some combination of E, ˆ, and t: 

r ̆  Exˆytz 

where x, y, and z are our unknown exponents, since we don’t know yet how we will 
combine E, ˆ, and t. However, we do know that when we combine these quantities, we 
have to get the correct dimension (length) for the radius: 

[r] = [E]x[ˆ]y[t]z 

We know the dimensions for radius and time, and the dimension for E can be found in 
Table 2.2. Density is mass divided by volume, so its dimension is M/L3. Our equation 
then becomes: 

L = (ML2T−2)x(ML−3)y(T )z 

L = (MxL2xT −2x)(MyL−3y)(T z) 

We have three unknowns, so we need three equations. We can recognize that the left 
hand side (with dimension of length, L) is equivalent to L1 · M0 · T 0. We can then 
separate the above expression into three equations, one for each of M , L, and T : 

M0 = MxMy ! 0 = x + y 
L1 = L2xL−3y ! 1 = 2x − 3y 
T 0 = T−2xT z ! 0 = z − 2x 

Solving the sytem of equations, we find that x = 1/5, y = −1/5, and z = 2/5. So, the 
combination of E, ˆ, and t that gives us the dimension of length is: 

r ̆  E1/5ˆ−1/5 2/5t 
2/5∴ r / t 
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You can also write this equation as: s 
r ̆  5 Et

2 

ˆ 

Thus, by measuring the blast radius at some time, and knowing the density of the air, 
you can estimate the energy that was released during the explosion. 

2.3 Making measurements 
Having introduced some tools for the modelling aspect of physics, we now address the 
other side of physics, namely performing experiments. Since the goal of developing theories 
and models is to describe the real world, we need to understand how to make meaningful 
measurements that test our theories and models. 

Suppose that we wish to test Chloë’s theory of falling objects from Chapter 1: 
p

t = k x 

which states that the time, t, for any object to fall a distance, x, near the surface of the 
Earth is given by the above relation. The theory assumes that Chloë’s constant, k, is the 
same for any object falling any distance on the surface of the Earth. 

One possible way to test Chloë’s theory of falling objects is to measure k for di�erent 
drop heights to see if we always obtain the same value. Results of such an experiment are 
presented in Table 2.3, where the time, t, was measured for a bowling ball to fall distances 
of x between 1 m and 5 m. The table also shows the values computed for 

p
x and the p

corresponding value of k = t/ x: 
p

x [m] t [s] x [m 1
2 ] k [s m− 12 ] 

1.00 0.33 1.00 0.33 

2.00 0.74 1.41 0.52 

3.00 0.67 1.73 0.39 

4.00 1.07 2.00 0.54 

5.00 1.10 2.24 0.49 
Table 2.3: Measurements of the drop times, t, for a bowling ball to fall di�erent distances, x. We 
have also computed 

p
x and the corresponding value of k. 

When looking at Table 2.3, it is clear that each drop height gave a di�erent value of k, so 
at face value, we would claim that Chloë’s theory is incorrect, as there does not seem to 
be a value of k that applies to all situations. However, we would be incorrect in doing so 
unless we understood the precision of the measurements that we made. Suppose that we 
repeated the measurement multiple times at a fixed drop height of x = 3 m, and obtained 
the values in Table 2.4. 
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] k [s m− 1
2 

1
2

p
x [m] t [s] x [m ] 

3.00 1.01 1.73 0.58 

3.00 0.76 1.73 0.44 

3.00 0.64 1.73 0.37 

3.00 0.73 1.73 0.42 

3.00 0.66 1.73 0.38 
Table 2.4: Repeated measurements of the drop time, t, for a bowling ball to fall a distance x = 3 m. 
We have also computed 

p
x and the corresponding value of k. 

This simple example highlights the critical aspect of making any measurement: it is impos-
sible to make a measurement with infinite precision. The values in Table 2.4 show that if 
we repeat the exact same experiment, we are likely to measure di�erent values for a single 
quantity. In this case, for a fixed drop height, x = 3 m, we obtained a spread in values of 
the drop time, t, between roughly 0.6 s and 1.0 s. Does this mean that it is hopeless to do 
science, since we can never repeat measurements? Thankfully, no! It does however require 
that we deal with the inherent imprecision of measurements in a formal manner. 

2.3.1 Measurement uncertainties 
The values in Table 2.4 show that for a fixed experimental setup (a drop height of 3 m), 
we are likely to measure a spread in the values of a quantity (the time to drop). We can 
quantify this “uncertainty” in the value of the measured time by quoting the measured value 
of t by providing a “central value” and an “uncertainty”: 

t = (0.76 ± 0.15) s 

where 0.76 s is called the “central value” and 0.15 s the “uncertainty” or the “error’. Note 
that we use the word error as a synonym for uncertainty, not “mistake”. When we present 
a number with an uncertainty, we mean that we are “pretty certain” that the true value is 
in the range that we quote. In this case, the range that we quote is that t is between 0.61 s 
and 0.91 s (given by 0.76 s - 0.15 s and 0.76 s + 0.15 s). When we say that we are “pretty 
sure” that the value is within the quoted range, we usually mean that there is a 68% chance 
of this being true and allow for the possibility that the true value is actually outside the 
range that we quoted. The value of 68% comes from statistics and the normal distribution. 

Emma’s Thoughts 

“Precision”, “Accuracy” and “Uncertainty” - what’s the di�erence? 

Have you ever started writing a lab report and wondered whether or not you should de-
scribe your measurement in terms of “accuracy” or “precision”? What about describing 
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the error in your experiment as a measure of “accuracy” or “uncertainty”? 

You’re not alone! Precision, accuracy and uncertainty all relate to error, but have 
di�erent meanings. To clarify these terms, I think it is useful to study them side-by-
side. 

Precision refers to how close your measurements are to each other when you repeat 
a measurement multiple times. If the values obtained are close to one another, your 
measurements are precise. For example, say you were measuring the rebound height of 
a basketball, dropped from a fixed height. After performing the measurement multiple 
times, you find that the measured rebound heights are very close in value to each other. 
You could then report that “After repeating our measurement multiple times, the values 
that we obtained were very close together. Our measurements were precise!”. Of course, 
you have to specify what you mean by “close” (perhaps in terms of the divisions on the 
ruler that you used to measure rebound height). 

Accuracy measures the agreement between a measured value and its true value. If 
the measured value is close to the true value, your measured value is accurate. For 
example, say that you developed a model for the distance covered by a rock thrown 
with a slingshot. If you find that the measured value is close to the predicted value, 
you would say that your model is accurate, “Our model value was very close to the 
value that we measured - our model was accurate.” Again, you have to specify what 
you mean by “close”, usually in terms of the uncertainty on your measured value. 

Uncertainty is an estimate of the amount that a measurement will di�er from a true 
value. In science, we aim to lower the uncertainty in our measurements, so that we 
can test models and theories with more precision. Let’s say that you are measuring the 
number of rotations of a spinning top during a certain period of time. Your measure-
ments are close together, but have a fixed range of values. This would be an example 
where you could calculate the uncertainty in your measurements. It would be sensible 
to say “After multiple measurements, we’ve found that our values are similar and our 
uncertainty captures the range of values that we measured.” 

Determining the central value and uncertainty 

The tricky part when performing a measurement is to decide how to assign a central value 
and an uncertainty. For example, how did we come up with t = (0.76 ± 0.15) s from the 
values in Table 2.4? 

Determining the uncertainty and central value on a measurement is greatly simplified when 
one can repeat the same measurement multiple times, as we did in Table 2.4. With repeat-
able measurements, a reasonable choice for the central value and uncertainty is to use the 
mean and standard deviation of the measurements, respectively. 

If we have N measurements of some quantity t, {t1, t2, t3, . . . tN }, then the mean, t ̄, and 
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standard deviation, ˙t, are defined as: 

i=N1 X t1 + t2 + t3 + · · · + tN¯ t = ti = (2.1)
N Ni=1 

i=N1 X (t1 − t ̄)2 + (t2 − t ̄)2 + (t3 − t ̄)2 + · · · + (tN − t ̄)2 
˙t 

2 = (ti − t ̄)2 = (2.2)
N − 1 i=1 N − 1 

˙t = 
q ̇

t 
2 (2.3) 

The mean is just the arithmetic average of the values, and the standard deviation, ˙t, 
requires one to first calculate the mean, then the variance (˙t 2, the square of the standard 
deviation). You should also note that for the variance, we divide by N − 1 instead of N . 
The standard deviation and variance are quantities that come from statistics and are a 
good measure of how spread out the values of t are about their mean, and are thus a good 
measure of the uncertainty. 

1
2 

1
2 

1
2 

Example 2-6 

Calculate the mean and standard deviation of the values for k from Table 2.4. 

Solution 

In order to calculate the standard deviation, we first need to calculate the mean of the 
N = 5 values of k: {0.58, 0.44, 0.37, 0.42, 0.38}. The mean is given by: 

0.58 + 0.44 + 0.37 + 0.42 + 0.38 
k ¯ = = 0.44 s m− 5 

We can now calculate the variance using the mean: 

1 
˙k 

2 = 4[(0.58 − 0.44)2 + (0.44 − 0.44)2 

+ (0.37 − 0.44)2 + (0.42 − 0.44)2 + (0.38 − 0.44)2] = 7.3 × 10−3 s2 m 

and the standard deviation is then given by the square root of the variance: 
p

˙k = 0.0073 = 0.09 s m− 

Using the mean and standard deviation, we would quote our value of k as : 

k = (0.44 ± 0.09) s m− 

Any value that we measure will always have an uncertainty. In the case where we can 
easily repeat the measurement, we should do so to evaluate how reproducible it is, and 
the standard deviation of those values is usually a good first estimate of the uncertainty 
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in a value3. Sometimes, the measurements cannot easily be reproduced; in that case, it is 
still important to determine a reasonable uncertainty, but in this case, it usually has to be 
estimated. Table 2.6 shows a few common types of measurements and how to determine 
the uncertainties in those measurements. 

Type of measurement How to determine central value and 
uncertainty 

Repeated measurements Mean and standard deviation 

Single measurement with a graduated scale Closest value and half of the smallest divi-
(e.g. ruler, digital scale, analogue meter) sion 

Counted quantity Counted value and square root of the value 
Table 2.5: Di�erent types of measurements and how to assign central values uncertainties. 

Figure 2.2: The length of the grey rectangle would be quoted as L = (2.80 ± 0.05) cm using the rule 
of “half the smallest division”. 

For example, we would quote the length of the grey object in Figure 2.2 to be L = 
(2.80 ± 0.05) cm based on the rules in Table 2.6, since 2.8 cm is the closest value on the 
ruler that matches the length of the object and 0.5 mm is half of the smallest division on the 
ruler. Using half of the smallest division of the ruler means that our uncertainty range cov-
ers one full division. Note that it is usually better to reproduce a measurement to evaluate 
the uncertainty instead of using half of the smallest division, although half of the smallest 
division should be the lower limit on the uncertainty. That is, by repeating the measure-
ments and obtaining the standard deviation, you should see if the uncertainty is larger than 
half of the of the smallest division, not smaller. 

The relative uncertainty in a measured value is given by dividing the uncertainty by the 
central value, and expressing the result as a percent. For example, the relative uncertainty 
in t = (0.76 ± 0.15) s is given by 0.15/0.76 = 20%. The relative uncertainty gives an idea 
of how precisely a value was determined. Typically, a value above 10% means that it was 
not a very precise measurement, and we would generally consider a value smaller than 1% 
to correspond to quite a precise measurement. 
Random and systematic sources of error/uncertainty 

It is important to note that there are two possible sources of uncertainty in a measurement. 
The first is called “statistical” or “random” and occurs because it is impossible to exactly 

3In practice, the standard deviation is an overly conservative estimate of the error and we would use 
the error on the mean, which is the standard deviation divided by the square root of the number of 
measurements. 

https://0.15/0.76
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reproduce a measurement. For example, every time you lay down a ruler to measure some-
thing, you might shift it slightly one way or the other which will a�ect your measurement. 
The important property of random sources of uncertainty is that if you reproduce the mea-
surement many times, these will tend to cancel out and the mean can usually be determined 
to high precision with enough measurements. 

The other source of uncertainty is called “systematic”. Systematic uncertainties are much 
more diÿcult to detect and to estimate. One example would be trying to measure some-
thing with a scale that was not properly tarred (where the 0 weight was not set). You 
may end up with very small random errors when measuring the weights of object (very 
repeatable measurements), but you would have a hard time noticing that all of your weights 
were o�set by a certain amount unless you had access to a second scale. Some common 
examples of systematic uncertainties are: incorrectly calibrated equipment, parallax error 
when measuring distance, reaction times when measuring time, e�ects of temperature on 
materials, etc. 

As a reminder, we want to emphasized the di�erence between “error” and “mistake” in the 
context of making measurements. “Uncertainty” or “error” in a measurement comes from 
the fact that it is impossible to measure anything to infinite accuracy. A “mistake” also 
a�ects a measurement, but is preventable. If a “mistake” occurs in physics, the experiment 
is generally re-done and the previous data are discarded. The term “human error” should 
never be used in a lab report as it implies that a mistake was made. Instead, if you think 
that you measured time imprecisely, for example, refer to human reaction time, not “human 
error”. 

Table 2.6 shows examples of sources of error that students often call “human error” but 
that should be instead described more precisely. 

Situation Source of Error 

While taking measurements, your line of This is parallax error - a type of systematic 
sight was not completely parallel to the error. 
measuring device. 

You incorrectly performed calculations. Mistake! Redo the calculations. 

A draft of wind in the lab slightly altered This is an environmental e�ect/error - it 
the direction of your ball rolling down an could be random or systematic, depending 
incline. on whether it always had the same e�ect. 

Your hand slipped while holding the ruler Mistake! Redo this experiment and discard 
- the object was measured to be twice its the data. 
original size! 

When timing an experiment, you don’t hit Reaction time error - usually a systematic 
the ”STOP” button exactly when the ex- error (time is usally measured longer than 
periment stops. it is). 

Table 2.6: Don’t use the term “human error”, instead, use these. 
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Propagating uncertainties 

Going back to the data in Table 2.4, we found that for a known drop height of x = 3 m, we 
measured di�erent values of the drop time, which we found to be t = (0.76 ± 0.15) s (using 
the mean and standard deviation). We also calculated a value of k corresponding to each 

1
2value of t, and found k = (0.44 ± 0.09) s m− (Example 2-6). 

Suppose that we did not have access to the individual values of t, but only to the value of 
t = (0.76 ± 0.15) s with uncertainty. How do we calculate a value for k with uncertainty? 
In order to answer this question, we need to know how to “propagate” the uncertainties in a 
measured value to the uncertainty in a value derived the measured value. We briefly present 
di�erent methods for propagating uncertainties, before advocating for the use of computers 
to do the calculations for you. 

1. Estimate using relative uncertainties 
The relative uncertainty in a measurement gives us an idea of how precisely a value was 
determined. Any quantity that depends on that measurement should have a precision that 
is similar; that is, we expect the relative uncertainty in k to be similar to that in t. For t, 
we saw that the relative uncertainty was approximately 20%. If we take the central value 
of k to be the central value of t divided by 

p
x, we find: 

(0.76 s)
k = q = 0.44 s m− 

(3 m) 
1
2 

Since we expect the relative uncertainty in k to be approximately 20%, then the absolute 
uncertainty is given by: 

˙k = (0.2)k = 0.09 s m− 1
2 

which is close to the value obtained by averaging the five values of k in Table 2.4. 

2. The Min-Max method 
A pedagogical way to determine k and its uncertainty is to use the “Min-Max method”. p
Since k = t/ x, k will be the biggest when t is the biggest, and the smallest when t is the 
smallest. We can thus determine “minimum” and “maximum” values of k corresponding to 
the minimum value of t, tmin = 0.61 s and the maximum value of t, tmax = 0.91 s: 

tmin 0.61 s 
kmin = p = q = 0.35 s m− 

x (3 m) 
tmax 0.91 s 

1
2 

1
2= 0.53 s m−kmax = p = q 

x (3 m) 

This gives us the range of values of k that correspond to the range of values of t. We 
can choose the middle of the range as the central value of k and half of the range as the 
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uncertainty: 
1¯ k = (kmin + kmax) = 0.44 s m− 2 
1 

˙k = (kmax − kmin) = 0.09 s m− 2 

1
2 

1
2 

∴ k = (0.44 ± 0.09) s m− 1
2 

which, in this case, gives the same value as that obtained by averaging the individual 
values of k. While the Min-Max method is useful for illustrating the concept of propagating 
uncertainties, we usually do not use it in practice as it tends to overestimate the uncertainty. 

3. The derivative method 
In the example above, we assumed that the value of x was known precisely (and we chose 
3 m), which of course is not realistic. Let us suppose that we have measured x to within 

t1 cm so that x = (3.00 ± 0.01) m. The task is now to calculate k = p when both x and t 
have uncertainties. 

x 

The derivative method lets us propagate the uncertainty in a general way, so long as the 
relative uncertainties on all quantities are “small” (less than 10-20%). If we have a function, 
F (x, y) that depends on multiple variables with uncertainties (e.g. x ± ̇x, y ± ̇y), then the 
central value and uncertainty in F (x, y) are given by: 

¯ F = F (x̄, ȳ) 

˙F = 

vuut !2 !2
@F @F 

˙x + ˙y (2.4)
@x @y 

That is, the central value of the function F is found by evaluating the function at the 
central values of x and y. The uncertainty in F , ˙F , is found by taking the quadrature 
sum of the partial derivatives of F evaluated at the central values of x and y multiplied by 
the uncertainties in the corresponding variables that F depends on. The uncertainty will 
contain one term in the sum per variable that F depends on. 

In appendix D, we will show you how to calculate this easily with a computer, so do not worry 
about getting comfortable with partial derivatives (yet!). Note that the partial derivative, 
@F , is simply the derivative of F (x, y) relative to x evaluated as if y were a constant. Also,
@x

when we say “add in quadrature”, we mean square the quantities, add them, and then take 
the square root (same as you would do to calculate the hypotenuse of a right-angle triangle). 

Example 2-7 

tUse the derivative method to evaluate k = p for x = (3.00 ± 0.01) m and t = 
(0.76 ± 0.15) s. 

x 

Solution 

https://kmin)=0.09
https://kmax)=0.44
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Here, k = k(x, t) is a function of both x and t. The central value is easily found using 
the central values for x and t: 

t (0.76 s) ¯ k = p = q = 0.44 s m− 
x (3 m) 

3
2 

and x: 

3
2 

1
2 

Next, need determine and evaluate the partial derivative of with respect to towe k t 

1 1 1@k d 0 58 m−= == = qtp p .
dt@t xx 

1 1@k d (0 76 s)(3 00 m) 0 073 s m − − − −− − −= = = =t txx . . .22@x dx 

And finally, plug this into the quadrature to get the uncertainty in :we sum k 

1
2 

(3 m) 

1
2 

1
2 

v u !2 !2u @k @k 
˙k = t ˙x + ˙t

@x @t 

3
2 

3
2 

r� �2 � �2 
= (0.073 s m− )(0.01 m) + (0.58 m− )(0.15 s) 

1
2= 0.09 s m− 

1
2 

So we find that: 

k = (0.44 ± 0.09) s m− 

which is consistent with what we found with the other two methods. 

Discussion: We should ask ourselves if the value we found is reasonable, since we also 
included an uncertainty in x and would expect a bigger uncertainty than in the previous 
calculations where we only had an uncertainty in t. The reason that the uncertainty in 
k has remained the same is that the relative uncertainty in x is very small, 0.01 

3.00 ˘ 0.3%, 
so it contributes very little compared to the 20% uncertainty from t. 

The derivative method leads to a few simple short cuts when propagating the uncertainties 
for simple operations, as shown in Table 2.9. A few rules to note: 

1. Uncertainties should be combined in quadrature 
2. For addition and subtraction, add the absolute uncertainties in quadrature 
3. For multiplication and division, add the relative uncertainties in quadrature 
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Operation to get z Uncertainty in z 

z = x + y (addition) ˙z = 
q ̇

x 
2 + ̇ y 

2 

z = x − y (subtraction) ˙z = 
q ̇

x 
2 + ̇ y 

2 r� �2 � �2
˙x ˙yz = xy (multiplication) ˙z = xy 
x 

+ 
yr� �2 � �2

˙x ˙yz = x (division) ˙z = x + 
y y x y 

z = f(x) (a function of 1 variable) ˙z = df ˙xdx 

Table 2.7: How to propagate uncertainties from measured values x ± ̇x and y ± ̇y to a quantity 
z(x, y) for common operations. 

Checkpoint 2-4 

We have measured that a llama can cover a distance of (20.0 ± 0.5) m in (4.0 ± 0.5) s. 
What is the speed (with uncertainty) of the llama? 

2.3.2 Using graphs to visualize and analyse data 
Table 2.8 below reproduces our measurements of how long it took (t) for an object to drop 
a certain distance, x. Chloë’s Theory of gravity predicted that the data should be described 
by the following model: 

p
t = k x 

where k was an undetermined constant of proportionality. 

x [m] t [s] 1 
2

p
x [m ] 1 

2k [s m− ] 

1.00 0.33 1.00 0.33 

2.00 0.74 1.41 0.52 

3.00 0.67 1.73 0.39 

4.00 1.07 2.00 0.54 

5.00 1.10 2.24 0.49 
Table 2.8: Measurements of the drop times, t, for a bowling ball to fall di�erent distances, x. We 
have also computed 

p
x and the corresponding value of k. 

The easiest way to visualize and analyse these data is to plot them on a graph. In particular,p
if we plot (graph) t versus x, we expect that the points will fall on a straight line that goes 
through zero, with a slope of k (if the data are described by Chloë’s Theory). In Appendix 
D, we show you how you can easily plot these data using the Python programming language 
as well as find the slope and o�set of the line that best fits the data, as show in Figure 2.3. 
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p
Figure 2.3: Graph of t versus x and line of best fit. 

When plotting data and fitting them to a line (or other function), it is important to make 
sure that the values have at least an uncertainty in the quantity that is being plotted on 
the y axis. In this case, we have assumed that all of the measurements of time have an 
uncertainty of 0.15 s and that the measurements of the distance have no (or negligible) 
uncertainties. 

Since we expect the slope of the data to be k, finding the line of best fit provides us a 
with method to determine k by using all of the data points. In this case, we find that 
k = (0.61 ± 0.13) s m− 12 . Performing a linear fit of the data is the best way to 
determine a constant of proportionality between the measurements. Note that 
we expect the intercept to be equal to zero according to our model, but the best fit line has 
an intercept of (−0.24 ± 0.22) s, which is slightly below, but consistent, with zero. From 
these data, we would conclude that our measurements are consistent with Chloë’s Theory. 
Again, remember that we can never confirm a theory, we can only exclude it; in this case, 
we cannot exclude Chloë’s Theory. 

2.3.3 Reporting measured values 
Now that you know how to attribute an uncertainty to a measured quantity and then 
propagate that uncertainty to a derived quantity, you are ready to present your measurement 
to the world. In order to conduct “good science”, your measurements should be reproducible, 
clearly presented, and precisely described. Here are general rules to follow when reporting 
a measured number: 

1. Indicate the units, preferably SI units (use derived SI units, such as newtons, when
appropriate).

2. Include a description of how the uncertainty was determined (if it is a direct measure-
ment, how did you choose the uncertainty? If it is a derived quantity, how did you
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propagate the uncertainty?). 
3. Show no more than 2 “significant digits”4 in the uncertainty and format the central 

value to the same decimal as the uncertainty. 
4. Use scientific notation when appropriate (usually numbers bigger than 1000 or smaller 

than 0.01). 
5. Factor out the power 10 from the central value and uncertainty (e.g. (10 123 ± 310) m 

would be better presented as (10.12 ± 0.31) × 103 m or (101.2 ± 3.1) × 102 m ). 

Checkpoint 2-5 

Someone has measured the average height of tables in the laboratory to be 1.0535 m with 
a standard deviation of 0.0525 m. What is the best way to present this measurement? 

A) (1.0535 ± 0.0525) m 
B) (1.054 ± 0.053) m 
C) (105.4 ± 5.3) × 10−2 m 
D) (105.35 ± 5.25) cm 

2.3.4 Comparing model and measurement - discussing a result 
In order to advance science, we make measurements and compare them to a theory or model 
prediction. We thus need a precise and consistent way to compare measurements with each 

1
2 

other and with predictions. Suppose that we have measured a value for Chloë’s constant 

1
2 

k = (0.44 ± 0.09) s m− 
fall time is proportional to the square root of the distance fallen. Isaac Newton’s Universal 

. Of course, Chloë’s theory does not predict a value for k, only that 

Theory of Gravity does predict a value for k of 0.45 s m− with negligible uncertainty. In 

1
2 

1
2 

this case, since the model (theoretical) value easily falls within the range given by our 
uncertainty, we would say that our measurement is consistent (or compatible) with the 
theoretical prediction. 

Suppose that, instead, we had measured k = (0.55 ± 0.08) s m− 1
2 so that the lowest value 

compatible with our measurement, k = 0.55 s m− − 0.08 s m− = 0.47 s m− 1
2 , is not com-

patible with Newton’s prediction. Would we conclude that our measurement invalidates 
Newton’s theory? The answer is: it depends... What “it depends on” should always be 
discussed any time that you present a measurement (even if it happened that your mea-
surement is compatible with a prediction - maybe that was a fluke). Below, we list a few 
common points that should be addressed when presenting a measurement that will guide 
you into deciding whether your measurement is consistent with a prediction: 

• How was the uncertainty determined and/or propagated? Was this reasonable? 
• Are there systematic e� ects that were not taken into account when determining the 

uncertainty? (e.g. reaction time, parallax, something diÿcult to reproduce). 
• Are the relative uncertainties reasonable based on the precision that you would rea-

sonable expect? 
• What assumptions were made in calculating your measured value? 
• What assumptions were made in determining the model prediction? 

4Significant digits are those excluding leading and trailing zeroes. 
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In the above, our value of k = (0.55 ± 0.08) s m− 1
2 is the result of propagating the uncertainty 

in t which was found by using the standard deviation of the values of t. It is thus conceivable 
that the true value of t, and therefore of k, is outside the range that we quote. Since our 
value of k is still quite close to the theoretical value, we would not claim to have invalidated

1
2Newton’s theory with this measurement. Our uncertainty in k is ˙k = 0.08 s m− , and the 

di�erence between our measured and the theoretical value is only 1.25˙k, so very close to 
the value of the uncertainty. 

In a similar way, we would discuss whether two di�erent measurements, each with an uncer-
tainty, are compatible. If the ranges given by uncertainties in two values overlap, then they 
are clearly consistent and compatible. If, on the other hand, the ranges do not overlap, they 
could be inconsistent or the discrepancy might instead be the result of how the uncertainties 
were determined and the measurements could still be considered consistent. 
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2.4 Summary 

Key Takeaways 

Measurable quantities have dimensions and units. A physical quantity should always 
be reported with units, preferably SI units. 

When you build a model to predict a physical quantity, you should always ask if the 
prediction makes sense (Does it have a reasonable order of magnitude? Does it have 
the right dimensions?). 

Any quantity that you measure will have an uncertainty. Almost any quantity that you 
determine from a model or theory will also have an uncertainty. 

The best way to determine an uncertainty is to repeat the measurement and use the 
mean and standard deviation of the measurements as the central value and uncertainty. 
If we have N measurements of some quantity t, {t1, t2, t3, . . . tN }, then the mean, t ̄, and 
standard deviation, ˙t, are defined as: 

1 i=N t1 + t2 + t3 + · · · + tN¯ 

vuut 

t = ti = 
N Ni=1 

i=N1 (t1 − t ̄)2 + (t2 − t ̄)2 + (t3 − t ̄)2 + · · · + (tN − t ̄)2 
˙t 

2 = (ti − t ̄)2 = 
N − 1 i=1 N − 1 

˙t = ˙t 
2 

X 
X 

You have to pay special attention to systematic uncertainties, which are diÿcult to de-

q 

termine. You should always think of ways that your measured values could be wrong, 
even after repeated measurements. Relative uncertainties tell you whether your mea-
surement is precise. 

There are multiple ways to propagate uncertainties. You can estimate the uncertainty 
using relative uncertainties or use the Min-Max method, which tends to overestimate 
the uncertainties. The preferred way to propagate uncertainties is with the derivative 
method, which you can use so long as the relative uncertainties on the measurements 
are small. If we have a function, F (x, y) that depends on multiple variables with 
uncertainties (e.g. x ± ̇x, y ± ̇y), then the central value and uncertainty in F (x, y) are 
given by: 

¯ F = F (x̄, ȳ) !2 !2
@F @F 

˙F = ˙x + ˙y
@x @y 

This can be easily calculated using a computer. 
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If you expect two measured quantities to be linearly related (one is proportional to the 
other), plot them to find out! Use a computer to do so! 

Important Equations 

Central value and uncertainty: 

i=N1 X t1 + t2 + t3 + · · · + tN¯ t = ti = 
N Ni=1 

i=N1 X (t1 − t ̄)2 + (t2 − t ̄)2 + (t3 − t ̄)2 + · · · + (tN − t ̄)2 
˙t 

2 = (ti − t ̄)2 = 
N − 1 i=1 N − 1 

˙t = 
q ̇

t 
2 

Derivative method: 

¯ F = F (x̄, ȳ) v u !2 !2u @F @F 
˙F = t ˙x + ˙y

@x @y 

Operation to get z Uncertainty in z 

z = x + y (addition) ˙z = 
q ̇

x 
2 + ̇ y 

2 

z = x − y (subtraction) ˙z = 
q ̇

x 
2 + ̇ y 

2 r� �2 � �2
˙x ˙yz = xy (multiplication) = xy +˙z x yr� �2 � �2 

z = x (division) ˙z = x ˙x + ˙y 
y y x y 

z = f(x) (a function of 1 variable) ˙z = df ˙xdx 

Table 2.9: How to propagate uncertainties from measured values x ± ̇x and y ± ̇y to a 
quantity z(x, y) for common operations. 
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2.5 Thinking about the material 

Reflect and research 

1. Often, physicists will report a measured number with a “standard” uncertainty 
and indicate that there is a 68% that the true value lies within the range covered 
by the uncertainty. Where does the number 68% come from? 

2. Why can the derivative method only be used when the relative uncertainties are 
small? 

3. How would you estimate the height of a tall building? 

Experiments to try at home 

1. Estimate the volume of your room, and how many people could be piled into the 
room. State your assumptions and how you determined the values. 

Experiments to try in the lab 

1. Newton’s Universal Theory of gravity predicts that the distance, x, covered by an 
object that has fallen for a length of time, t, is given by: 

1 2 x = 2gt 

Determine the value of g (with uncertainty) by performing an experiment that 
will allow you to determine g by determining the slope of a line of best fit. 

2.6 Sample problems and solutions 
2.6.1 Problems 
Problem 2-1: During a physics lecture, you look under your seat and find a sheet contain-
ing data from an experiment on throwing balls vertically (perhaps a juggling experiment). 
The following equation is shown at the bottom of the sheet: 

2 2v2 − v = 1 
2a 

along with the following description: 

• v1 = initial measured velocity of the ball m/s - various measurements. 
• v2 = final measured velocity of the ball m/s - seems to be zero every time. 
• a = acceleration of the ball (−9.8 m/s2). 

Unfortunately, the students spilled ketchup on the left hand side of their equation, making 
it illegible. Luckily, you are proficient in dimensional analysis. What were the students 
trying to calculate, based on this model? (Solution) 
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Problem 2-2: Chelsea is preparing meticulously for her upcoming trip to Europe. Being 
a self-proclaimed “shop-a-holic” and physics lover, she wants to figure out how many pairs 
of shoes she can buy on vacation that will physically fit in her closet. Her closet is a walk-
in closet with two entrance doors. Estimate the number of pairs of shoes that can fit in 
Chelsea’s closet. (Solution) 

2.6.2 Solutions 
Solution to problem 2-1: We can use their equation to determine the dimension of the 
quantity on the left hand side: 

2 2− L 
T 

L 
T[v2

2] − [v1
2][?] = = = L[a] L 

T 2 

Thus, the dimension of the unknown quantity is length. Given the context, they were 
likely attempting to model the height at which a vertically thrown ball would travel before 
stopping. 

Solution to problem 2-2: We start by estimating the volume of Chelsea’s closet as well 
as that of a pair of shoes. Chelsea’s closet is a “walk-in closet’ with two double doors. If 
we know the dimensions of the door, we can estimate the width and height of the closet. 
Estimating the average size of a large door to be 1 m × 2 m, one face of the close will have 
an area of 4 m2. If we estimate the depth of Chelsea’s closet to be about 3 m, the volume 
of her closet is 12 m3 

Figure 2.4: Chelsea’s closet. 

Next, we can estimate the size of an average pair of shoes, by modelling a shoe as a rectangu-
lar box. A single shoe has a height and width of about 5 cm and a length of about 25 cm. A 
pair of shoes will thus be equivalent to box with dimensions 5 cm×10 cm×25 cm = 1250 cm3. 
This is equivalent to 0.001 25 m3. We can now determine how many pairs of shoes, N , would 
fit in the closet: 

(12 m3)
N = (0.001 25 m3) = 9600 ˇ 10, 000 

We find that Chelsea can buy about 10,000 new pairs of shoes on her trip, and still fit them 
all into her closet. Time to get shopping, Chelsea! 



3 Describing motion in one dimension 

In this chapter, we will introduce the tools required to describe motion in one dimension. 
In later chapters, we will use the theories of physics to model the motion of objects, but 
first, we need to make sure that we have the tools to describe the motion. We generally 
use the word “kinematics” to label the tools for describing motion (e.g. speed, acceleration, 
position, etc), whereas we refer to “dynamics” when we use the laws of physics to predict 
motion (e.g. what motion will occur if a force is applied to an object). 

Learning Objectives 

• Describe motion in 1D using functions and defining an axis. 
• Define position, velocity, speed, and acceleration. 
• Use calculus to describe motion. 
• Be able to describe motion in di�erent frames of reference. 

Think About It 

You throw a ball upwards with an initial speed v. Assume there is no air resistance. 
When you catch the ball, its speed will be... 

A) greater than v. 
B) equal to v. 
C) less than v. 
D) in the opposite direction. 

The most simple type of motion to describe is that of a particle that is constrained to move 
along a straight line (one-dimensional motion); much like a train along a straight piece of 
track. When we say that we want to describe the motion of the particle (or train), what we 
mean is that we want to be able to say where it is at what time. Formally, we want to know 
the particle’s position as a function of time, which we will label as x(t). The function 
will only be meaningful if: 

• we specify an x-axis and the direction that corresponds to increasing values of x 
• we specify an origin where x = 0 
• we specify the units for the quantity, x. 

That is, unless all of these are specified, you would have a hard time describing the motion 
of an object to one of your friends over the phone. 

40 
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Figure 3.1: In order to describe the motion of the grey ball along a straight line, we introduce the 
x-axis, represented by an arrow to indicate the direction of increasing x, and the location of the 
origin, where x = 0 m. Given our choice of origin, the ball is currently at a position of x = 0.5 m. 

Consider Figure 3.1 where we would like to describe the motion of the grey ball as it moves 
along a straight line. In order to quantify where the ball is, we introduce the “x-axis”, 
illustrated by the black arrow. The direction of the arrow corresponds to the direction 
where x increases (i.e. becomes more positive). We have also chosen a point where x = 0, 
and by convention, we choose to express x in units of meters (the S.I. unit for the dimension 
of length). 

Note that we are completely free to choose both the direction of the x-axis and the location 
of the origin. The x-axis is a mathematical construct that we introduce in order to describe 
the physical world; we could just as easily have chosen for it to point in the opposite direction 
with a di�erent origin. Since we are completely free to choose where we define the x-axis, 
we should choose the option that is most convenient to us. 

3.1 Motion with constant speed 
Now suppose that the ball in Figure 3.1 is rolling, and that we recorded its x position 
every second in a table and obtained the values in Table 3.1 (we will ignore measurement 
uncertainties and pretend that the values are exact). 

Time [s] X position [m] 
0.0 s 0.5 m 
1.0 s 1.0 m 
2.0 s 1.5 m 
3.0 s 2.0 m 
4.0 s 2.5 m 
5.0 s 3.0 m 
6.0 s 3.5 m 
7.0 s 4.0 m 
8.0 s 4.5 m 
9.0 s 5.0 m 

Table 3.1: Position of a ball along the x-axis recorded every second. 

The easiest way to visualize the values in the table is to plot them on a graph, as in Figure 
3.2. Plotting position as a function of time is one of the most common graphs to make in 
physics, since it is often a complete description of the motion of an object. 
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Figure 3.2: Plot of position as a function of time using the values from Table 3.1. 

The data plotted in Figure 3.2 show that the x position of the ball increases linearly with 
time (i.e. it is a straight line and the position increases at a constant rate). This means 
that in equal time increments, the ball will cover equal distances. Note that we also had 
the liberty to choose when we define t = 0; in this case, we chose that time is zero when the 
ball is at x = 0.5 m. 

Checkpoint 3-1 

Using the data from Table 3.1, at what position along the x-axis will the ball be when 
time is t = 9.5 s, if it continues its motion undisturbed? 

A) 5.0 m 
B) 5.25 m 
C) 5.75 m 
D) 6.0 m 

Since the position as a function of time for the ball plotted in Figure 3.2 is linear, we can 
summarize our description of the motion using a function, x(t), instead of having to tabulate 
the values as we did in Table 3.1. The function will have the functional form: 

x(t) = x0 + vxt (3.1) 
The constant x0 is the “o�set” of the function; the value that the function has at t = 0 s. 
We call x0 the “initial position” of the object (its position at t = 0). The constant vx is the 
“slope” of the function and gives the rate of change of the position as a function of time. 
We call vx the “velocity” of the object. 

The initial position is simply the value of the position at t = 0, and is given from the table 
as: 

x0 = 0.5 m 
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The velocity, vx, is simply the di�erence in position, �x, between any two points divided 
by the amount of time, �t, that it took the object to move between those to points (“rise 
over run” for the graph of x(t)): 

�x 
v = �t 

By looking at any two rows from Table 3.1, we can see that the object travels a distance 
�x = 0.5 m in a time �t = 1 s. Its velocity is thus: 

�x (0.5 m) 
v = = = 0.5 m/s�t (1 s) 

The position of the object as a function of time is thus 

x(t) = (0.5 m) + (0.5 m/s)t 

If vx is large, then the object covers more distance in a given time, i.e. it moves faster. If 
vx is a negative number, then the object moves in the negative x direction. The speed of 
the object is the absolute value of its velocity. Thus objects moving in di�erent directions 
will have di�erent velocities, but can have the same speed if they cover the same amount of 
distance in the same amount of time. 
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Checkpoint 3-2 

Figure 3.3: Position as a function of time for an object. 

Referring to Figure 3.3, what can you say about the motion of the object? 
A) The object moved faster and faster between t = 0 s and t = 30 s, then slowed 

down to a stop at t = 60 s. 
B) The object moved in the positive x-direction between t = 0 s and t = 30 s, and 

then turned around and moved in the negative x-direction between t = 30 s and 
t = 60 s. 

C) The object moved faster between t = 0 s and t = 30 s than it did between t = 30 s 
and t = 60 s. 

Checkpoint 3-3 

Figure 3.4: Positions as a function of time for two objects. 

Referring to Figure 3.4, what can you say about the motion of the two objects? 
A) Object 1 is slower than Object 2 
B) Object 1 is more than twice as fast as Object 2 
C) Object 1 is less than twice as fast as Object 2 
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3.2 Motion with constant acceleration 
Until now, we have considered motion where the velocity is a constant (i.e. where velocity 
does not change with time and the position of an object is a linear function of time). Suppose 
that we wish to describe the position of a falling object that we released from rest at time 
t = 0 s. The object will start with a velocity of 0 m/s and it will accelerate as it falls. We 
say that an object is “accelerating” if its velocity is not constant. As we will see in later 
chapters, objects that fall near the surface of the Earth experience a constant acceleration 
(their velocity changes at a constant rate). 

Formally, we define acceleration as the rate of change of velocity. Recall that velocity is 
the rate of change of position, so acceleration is to velocity what velocity is to position. In 
particular, we saw that if the velocity, vx, is constant, then position as a function of time is 
given by: 

x(t) = x0 + vxt (3.1) 

In analogy, if the acceleration is constant, then the velocity as a function of time is given 
by: 

vx(t) = v0x + axt (3.2) 

where ax is the “acceleration” and v0x is the velocity of the object at t = 0. We can work 
out the dimensions of acceleration for this equation to make sense. Since we are adding v0x 
and axt, we need the dimensions of axt to be velocity: 

[axt] = L 
T 

[ax] = L 
T 2 

Acceleration thus has dimensions of length over time squared, with corresponding S.I. units 
of m/s2 (meters per second squared or meters per second per second). In order to describe 
the position of an object that is accelerating, we cannot use equation 3.1, since it is only 
correct if the velocity is constant. 

In Section 3.3.2, we will show that the position as a function of time, x(t), of an object with 
constant acceleration, ax, is given by: 

x(t) = x0 + v0xt + 2
1 
axt

2 (3.3) 

where, at t = 0, the object was at position x = x0 and had a velocity v0x. 

Example 3-1 

A ball is thrown upwards with a velocity of 10 m/s. After what distance will the ball 
stop before falling back down? Assume that gravity causes a constant downwards ac-
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celeration of 9.8 m/s2. 

Solution 

We will solve this problem in the following steps: 
1. Setup a coordinate system (define the x-axis). 
2. Identify the condition that corresponds to the ball stopping its upwards motion 

and falling back down. 
3. Determine the distance at which the ball stopped. 

Since we throw the ball upwards with an initial velocity upwards, it makes sense to 
choose an x-axis that points up and has the origin at the point where we release the 
ball. With this choice, referring to the variables in equation 3.3, we have: 

x0 = 0 
v0x = +10 m/s 
ax = −9.8 m/s2 

where the initial velocity is in the positive x-direction, and the acceleration, ax, is in 
the negative direction (the velocity will be getting smaller and smaller, so its rate of 
change is negative). 

The condition for the ball to stop at the top of the trajectory is that its velocity will be 
zero (that is what it means to stop). We can use equation 3.2 to find what time that 
corresponds to: 

v(t) = v0x + axt 
0 = (10 m/s) + (−9.8 m/s2)t 

(10 m/s)
∴ t = (9.8 m/s2) = 1.02 s 

Now that we know that it took 1.02 s to reach the top of the trajectory, we can find 
how much distance was covered: 

1 2 x(t) = x0 + v0xt + t2ax 
1 

x = (0 m) + (10 m/s)(1.02 s) + (−9.8 m/s2)(1.02 s)2 = 5.10 m 2 

and we find that the ball will rise by 5.10 m before falling back down. 

https://�9.8m/s2)(1.02
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3.2.1 Visualizing motion with constant acceleration 
When an object has a constant acceleration, its velocity and position as a function of time 
are described by the two following equations: 

v(t) = v0x + axt 
1 2 x(t) = x0 + v0xt + 2axt 

where the velocity changes linearly with time, and the position changes quadratically with 
time (it goes as t2). Figure 3.5 shows the position and the speed as a function of time for 
the ball from Example 3-1 for the first three seconds of the motion. 

Figure 3.5: Position and velocity as a function of time for the ball in Example 3-1. 

We can divide the motion into three parts (shown by the vertical dashed lines in Figure 
3.5): 

1) Between t = 0 s and t = 1.02 s 

At time t = 0 s, the ball starts at a position of x = 0 m (left panel) and has a velocity of 
v0x = 10 m/s (right panel). During the first second of motion, the position, (t), increases 
(the ball is moving up), until the position stops increasing at t = 1.02 s, as found in example 
3-1. During that time, the velocity decreases linearly from 10 m/s to 0 m/s due to the 
constant negative acceleration from gravity. At t = 1.02 s, the velocity is instantaneously 
0 m/s and the ball is momentarily at rest (as it reaches the top of the trajectory before 
falling back down). 

2) Between t = 1.02 s and t = 2.04 s 

At t = 1.02 s, the velocity continues to decrease linearly (it becomes more and more negative) 
as the ball start to fall back down faster and faster. The position also starts decreasing just 
after t = 1.02 s, as the ball returns back down to the point of release. At t = 2.04 s, the ball 
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returns to the point from which it was thrown, and the ball is going with the same speed 
(10 m/s) as when it was released, but the velocity is negative (downwards motion). 

3) After t = 2.04 s 

If nothing is there to stop the ball, it continues to move downwards with ever decreas-
ing velocity. The position continues to become more negative and the speed continues to 
increase. 

Checkpoint 3-4 

Make a sketch of the acceleration as a function of time corresponding to the position 
and velocity shown in Figure 3.5. 

3.3 Using calculus to describe motion 
Objects do not necessarily have a constant velocity or acceleration. We thus need to extend 
our description of the position and velocity of an object to a more general case. This can 
be done in much the same way as we introduced accelerated motion; namely by pretending 
that during a very small interval in time, �t, the velocity and acceleration are constant, 
and then considering the motion as the sum over many small intervals in time. In the limit 
that �t tends to zero, this will be an accurate description. 

3.3.1 Instantaneous and average velocity 
Suppose that an object is moving with a non constant velocity, and covers a distance �x in 
an amount of time �t. We can define an average velocity, vavg: 

�x avg v = �t 
That is, regardless of our choice of time interval, �t, we can always calculate the aver-

avg age velocity, v , of an object over a particular distance. If we shrink the length of the 
time interval used to measure the velocity, and take the limit �t ! 0, we can define the 
instantaneous velocity: 

�x 
v = lim 

�t!0 �t 
The instantaneous velocity is the velocity only in that small instant in time where we choose 
�x and �t. Another way to read this equation is that the velocity, v, is the slope of the 
graph of x(t). Recall that the slope is the “rise over run”, in other words, the change in 
x divided by the corresponding change in t. Indeed, when we had no acceleration, the 
position as a function of time, equation 3.1, explicitly had the velocity as the slope of a 
linear function: 

x(t) = v0x + vxt 

If we go back to Figure 3.5, where velocity was no longer constant, we can indeed see that 
the graph of the velocity versus time, v(t), corresponds to the instantaneous slope of the 
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graph of position versus time, x(t). For t < 1.02 s, the slope of the x(t) graph is positive but 
decreasing (as is v(t)). At t = 1.02 s, the slope of x(t) is instantaneously 0 m/s (as is the 
velocity). Finally, for t > 1.02 s, the slope of x(t) is negative and increasing in magnitude, 
as is v(t). 

Leibniz and Newton were the first to develop mathematical tools to deal with calculations 
that involve quantities that tend to zero, as we have here for our time interval �t. Nowadays, 
we call that field of mathematics “calculus”, and we will make use of it here. Using the 
vocabulary of calculus, rather than saying that “instantaneous velocity is the slope of the 
graph of position versus time at some point in time”, we say that “instantaneous velocity 
is the time derivative of position as a function of time”. We also use a slightly di�erent 
notation so that we do not have to write the limit lim�t!0: 

�x dx d 
v(t) = lim = = x(t) (3.4)

�t!0 �t dt dt 

where we can really think of dt as lim�t!0 �t, and dx as the corresponding change in position 
over an infinitesimally small time interval dt. 

Similarly, we introduce the instantaneous acceleration, as the time derivative of v(t): 

ax(t) = dv = d v(t) (3.5)
dt dt 

Olivia’s Thoughts 

When looking at a graph of position versus time, it is sometimes hard to tell at first 
glance whether the speed of the object is increasing or decreasing. This section gives 
us an easy way to figure it out. The velocity is the instantaneous slope of the graph 
x(t), so the speed is the “steepness” of that graph. Simply draw a few lines that are 
tangent to (meaning just touching) the curve, and see what happens as time increases. 
If the lines get steeper, the object is speeding up. If they are getting flatter, the object 
is slowing down. 
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Figure 3.6: Two graphs of x(t) showing tangent lines. Left: the object is speeding up (positive 
velocity, positive acceleration). Right: the object is slowing down (positive velocity, negative 
acceleration). 

From here, you can also figure out what the direction of the acceleration is. If an object 
is speeding up, the acceleration and velocity must be in the same direction (i.e. both 
positive or both negative). If the object is slowing down, they must be in opposite 
directions. Imagine the graphs in Figure 3.6 are describing the motion of a person 
running in heavy wind. In the graph on the left, the person is running with the wind 
and accelerating (v(t) and a(t) positive), and in the second graph the person is running 
against the wind and decelerating (v(t) positive and a(t) negative). 

3.3.2 Using calculus to obtain acceleration from position 
Suppose that we know the function for position as a function of time, and that it is given 
by our previous result (for the case when the acceleration ax is constant): 

1 2 x(t) = x0 + v0xt + t2ax 

The velocity is given by taking the derivative of x(t) with respect to time: 
dx d 

� 1 2 
� 

v(t) = = x0 + v0xt + 2axt dt dt 
= v0x + axt 

as we found before, in equation 3.2. The acceleration is then given by the time-derivative 
of the velocity: 

ax = dv 
dt 

= d 
dt 

(v0xt + axt) 

= ax 
as expected. 

Checkpoint 3-5 

Chloë has been working on a detailed study of how vicuñasa run, and found that their 
position as a function of time when they start running is well modelled by the function 
x(t) = (40 m/s2)t2 + (20 m/s3)t3. What is the acceleration of the vicuñas? 

A) ax(t) = 40 m/s2 

B) ax(t) = 80 m/s2 

C) ax(t) = 40 m/s2 + (20 m/s3)t 
D) ax(t) = 80 m/s2 + (120 m/s3)t 
aNever heard of vicuñas? Internet! 

3.3.3 Using calculus to obtain position from acceleration 
Now that we saw that we can use derivatives to determine acceleration from position, we 
will see how to do the reverse and use acceleration to determine position. Let us suppose 
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that we have a constant acceleration, ax(t) = ax, and that we know that at time t = 0 s, 
the object had a speed of v0x and was located at a position x0. 

Since we only know the acceleration as a function of time, we first need to find the velocity 
as a function of time. We start with: 

ax(t) = d v(t)
dt 

which tells us that we know the slope (derivative) of the function v(t), but not the actual 
function. In this case, we must do the opposite of taking the derivative, which in calculus 
is called taking the “anti-derivative” with respect to t and has the symbol 

R 
dt. In other 

words, if: 

d
v(t) = ax(t)

dt 

then: Z 
v(t) = ax(t)dt 

Since in this case, ax(t) is a constant, ax, the anti-derivative is easily found: Z 
axdt = axt + C 

The velocity is thus given by: Z 
v(t) = axdt = axt + C 

The constant C is determined by what we call our “initial conditions”. In this case, we 
stated that at time t = 0, the velocity should be v0x. The constant C is thus v0x: 

v(t) = C + axt = v0x + axt 

and we recover the formula for velocity when the acceleration is constant. Now that we 
know the velocity as a function of time, we can take one more anti-derivative with respect 
to time to obtain the position: 

v(t) = dx 
dtZ 

∴ x(t) = v(t)dt 

In the case where acceleration is constant, this gives: Z 
x(t) = v(t)dt Z 

= (v0x + axt)dt 
1 = v0xt + 2axt

2 + C 0 
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where C 0 is a di�erent constant than the one we had when determining velocity. The 
constant is given by our initial conditions. If the object was located at position x = x0 at 
time t = 0, then C 0 = x0 and we recover the equation for position as a function of time for 
constant acceleration: 

1 2 x(t) = x0 + v0xt + t2ax 

Checkpoint 3-6 

Choose the graph of x(t) for the case when acceleration is given by a(t) = A!2 cos(!t), 
where ! and A are positive constants. The velocity and position are zero at t = 0. 

Figure 3.7: Choose the correct position versus time graph. 

A) Figure A 
B) Figure B 
C) Figure C 

Checkpoint 3-7 

The acceleration of a cricket jumping sideways is observed to increase linearly with 
time, that is, ax(t) = a0 + jt, where a0 and j are constants. What can you say about 
the velocity of the cricket as a function of time? 

A) it is constant 
B) it increases linearly with time (v(t) / t) 
C) it increases quadratically with time (v(t) / t2) 
D) it increases with the cube of time (v(t) / t3) 
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3.4 Relative motion 
In order to describe the motion of an object confined to a straight line, we introduced an 
axis (x) with a specified direction (in which x increases) and an origin (where x = 0). 
Sometimes, it can be more convenient to use an axis that is moving. For example, consider 
a person, Alice, moving inside of a train headed for the French town of Nice. The train 

0Bis moving with a constant speed, v as measured from the ground. Suppose that another 
person riding the train, Brice, describes Alice’s position using the function xA(t) using an 
x-axis defined inside of the train car (x = 0 where Brice is sitting, and positive x is in the 
direction of the train’s motion), as depicted in Figure 3.8 below. As long as any person is 
in the train with Brice, they will easily be able to describe Alice’s motion using the x-axis 
that is moving with the train. Suppose that the train goes through the French town of 
Hossegor, where a third person, Igor, watches the train go by. If Igor wishes to describe 

0Alice’s motion, it is easier for him to use a di�erent axis, say x , that is fixed to the ground 
and not moving with the train. 

Figure 3.8: Alice is walking in the train and her position is described by both Brice, who is sitting 
in the train (using the x axis), and Igor, who is at rest on the ground (using the x0 axis). 

Since Brice already went through the work of determining the function xA(t) in the refer-
ence frame of the train, we wish to determine how to transform xA(t) into the reference 
frame of the train station, x0A(t), so that Igor can also describe Alice’s motion. In other 
words, we wish to describe Alice’s motion in two di�erent reference frames. 

A reference frame is simply a choice of coordinates, in this case, a choice of x-axis. Ideally, 
in physics, we prefer to use inertial reference frames, which are reference frames that are 
either “at rest” or that are moving at a constant speed relative to a frame that we consider 
at rest. 

In principle, if you blocked out all of the windows in the train, it would not be possible for 
Alice and Brice to determine if the train is moving at constant speed or if it is stopped. 
Thus, the concept of a “rest frame” is itself arbitrary. It is not possible to define a frame 
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of reference that is truly at rest. Even Igor’s frame of reference, the train station, is on the 
planet Earth, which is moving around the Sun with a speed of 108 000 km/h. 

Referring to Figure 3.8, we wish to use Brice’s description of Alice’s motion, xA(t), and 
convert it into a description, x0A(t), that Igor can use in the train station. Since Brice is at 
rest in the train, the speed of Brice relative to Igor is v0B(t) (the speed of the train, or the 
speed of the x frame of reference relative to the x0 frame of reference). The first step is for 
Igor to describe Brice’s position, x0B(t), (that is, the position of Brice’s origin). 

Assume that we choose t = 0 to be the point in time where the two origins are aligned. 
Since the train is moving at a constant speed, v0B (as measured by Igor), then the position 
of Brice’s origin, x0B(t), as measured from Igor’s origin is given by: 

x 0B(t) = v 0Bt 

Now that Igor can describe the position of the origin of Brice’s coordinate system, he can 
use Brice’s description of Alice’s motion. Recall that xA(t) is Brice’s measure of Alice’s 
distance from his origin. Similarly, x0B(t), is Igor’s measure of the distance from his origin 
to Brice’s origin. Thus, to obtain Alice’s distance from Igor’s origin, we simply add the 
distance, x0B(t), from Igor’s origin to Brice’s origin, and then add, xA(t), the distance from 
Brice’s origin to Alice. Thus: 

x 0A(t) = x 0B(t) + x A(t) = v 0Bt + x A(t) (3.6) 

which tells us how to obtain the position of object A in the x0 reference frame, when xA(t) is 
the description the object’s position in the x reference frame which is moving with a velocity 
0Bv relative to the x0 reference frame. 

Since we know the position of Alice as measured in Igor’s frame of reference, we can now 
easily find her velocity and her acceleration, as measured by Igor. Her velocity as measured 

0Aby Igor, v , is given by the time-derivative of her position measured in Igor’s frame of 
reference: 

v 0A(t) = d x 0A(t) (3.7)
dt 

= d (v 0Bt + x A(t)) (3.8)
dt 

= v 0B + d x A(t) (3.9)
dt 

= v 0B + v A(t) (3.10) 

where vA(t) = 
dt
d xA(t) is Alice’s speed as measured by Brice, in the train. That is, the 

velocity of Alice as measured by Igor is the sum of the velocity of the train relative to 
the ground and the velocity of Alice relative to the train, which makes sense. If we now 
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determine Alice’s acceleration, a0A(t), as measured by Igor, we find: 

a 0A(t) = d v 0A(t) (3.11) 
dt 

= d (v 0B + v A) (3.12)
dt 

= 0 + d v A(t) (3.13)
dt 

= a A (3.14) 

0Bwhere we have explicitly used the fact that the train is moving at constant velocity (
dt
d v = 

0). Here we find that both Brice and Igor will measure the same number when referring to 
Alice’s acceleration (if the train is moving at a constant velocity). This is a particularity of 
“inertial” frame of references: accelerations do not depend on the reference frame, as long as 
the reference frames are moving with a constant velocity relative to each other. As we will 
see later, forces exerted on an object are directly related to the acceleration experienced by 
that object. Thus, the forces on an object do not depend on the choice of inertial reference 
frame. 
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Example 3-2 

A large boat is sailing North at a speed of v0B = 15 m/s and a restless passenger is walk-
ing about on the deck. Chloë, another passenger on the boat, finds that the passenger is 

Awalking at a constant speed of v = 3 m/s towards the South (opposite the direction of 
the boat’s motion). Marcel is watching the boat pass by from the shore. What velocity 
(magnitude and direction) does Marcel measure for the restless passenger? 

Solution 

First, we must choose coordinate systems in the boat and on the shore. On the boat, 
let us define an x axis that is positive in the North direction and has an origin such 
that the position of the restless passenger was xA(t = 0) = 0 at time t = 0. In Chloë’s 
reference frame, the passenger is thus described by: 

A(t) = v A x t = (−3 m/s)t 

Awhere we note that v is negative since the passenger is moving in the negative x 
direction (the passenger is walking towards the South, but we chose positive x to be in 
the North direction). On shore, we choose an x0 axis that also is positive in the North 
direction. We can choose the origin such that the position of the origin of the boat’s 

0coordinate system was at x = 0 at time t = 0. The position of the origin of the boat’s 
coordinate system, x0B(t), as measured by Marcel (on shore) is thus: 

x 0B(t) = v 0Bt = (15 m/s)t 

The position of the passenger, x0A(t), as measured by Marcel, is then given by adding 
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the position of the boat’s origin and the position of the passenger as measured from the 
boat’s origin: 

x 0A(t) = x 0B(t) + x A(t) 
= v 0Bt + v At 
= (v 0B + v A)t 
= ((15 m/s) + (−3 m/s))t 
= (12 m/s)t 

To find the velocity of the passenger as measured by Marcel, we take the time derivative: 

0A d 0A(t)v = x 
dt � �d 0B + v A)t= (v 
dt 

= (v 0B + v A) 
= ((15 m/s) + (−3 m/s)) 
= 12 m/s 

Since this is a positive number, Marcel still sees the passenger moving in the North 
direction (the direction of his positive x0 axis), but with a speed of 12 m/s, which is less 
than that of the boat. On the boat, the passenger appears to be walking towards the 
South, but the net motion of the passenger relative to the ground is still in the North 
direction, as their speed is less than that of the boat. 
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3.5 Summary 

Key Takeaways 

To describe motion in one dimension, we must define an axis with: 

1. An origin (where x = 0). 
2. A direction (the direction in which x increases). 
3. A unit for the length. 

We describe the position of an object with a function x(t) that depends on time. The 
rate of change of position is called “velocity”, vx(t), and the rate of change of velocity 
is called “acceleration”, ax(t): 

�x dx 
vx(t) = lim = 

�t!0 �t dt 
�v dvx 

ax(t) = lim = 
�t!0 �t dt 

Given the acceleration, one can find the velocity and position: Z 
vx(t) = ax(t)dt Z 
x(t) = vx(t)dt 

With a constant acceleration, ax(t) = ax, if the object had velocity v0x and position x0 
at t = 0:a 

vx(t) = v0xt + axt 
1 2 x(t) = x0 + v0xt + t2ax 

v 2 − v0
2 = 2a(x − x0) 

An inertial frame of reference is one that is moving with a constant velocity. It is 
impossible to define a frame of reference that is truly “at rest”, so we consider inertial 
frames of reference only relative to other frames of reference that we also consider to 

Abe inertial. If an object has position x as measured in a frame of reference x that is 
0moving at constant speed v0B as measured in a second frame of reference x , then in the 

x0 reference frame, the kinematic quantities for the object are obtained by the Galilean 
transformation: 

x 0A(t) = v 0Bt + x A(t) 
v 0A(t) = v 0B + v A(t) 
a 0A(t) = a(t) 
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aWe did not derive the third of these kinematic equations in this chapter, but it is derived in problem 
3-1. 

Important Equations 

Position, Velocity, and Relative Motion: 
Acceleration: 

�x dx(t) = lim = 0Bvx 
�t!0 x 0A(t) = v t + x A(t)�t dt 

�v dvx v 0A(t) = v 0B + v A(t)
ax(t) = lim = 

�t!0 �t dtZ a 0A(t) = a(t) 
vx(t) = ax(t)dt Z 
x(t) = vx(t)dt 

Kinematic Equations: 
vx(t) = v0xt + axt 

1 2 x(t) = x0 + v0xt + 2axt 

v 2 − v0
2 = 2a(x − x0) 

Important Definitions 

Position: The distance between the defined coordinate system’s origin and an object. 
SI units: [m]. Common variable(s): ~x, ~r. 

Velocity: The rate at which position changes with respect to time. SI units: [ms−1]. 
Common variable(s): ~v. 

Acceleration: the rate at which velocity changes with respect to time. SI units: 
[ms−2]. Common variable(s): ~a. 
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3.6 Thinking about the material 

Reflect and research 

1. Look up the depth of a competition diving pool. What is the relationship between 
the height of the diving platform and the minimum pool depth? Why? If the 
designers of the pool assumed that every diver drops straight down o� the diving 
board, would the pool still be safe for divers that jump up first? 

2. When did Galileo Galilei first describe his principles of Galilean Relativity? 
3. In Galileo’s “Dialogue Concerning the Two Chief World Systems”, what example 

did he use to describe relative motion? 
4. Imagine that you are a judge, trying to charge an irresponsible driver for speeding 

on the highway. In the courtroom, he argues that in his own frame of reference, 
he was sitting still with respect to his car. In fact, he says that it was the oÿcer, 
parked on the side of the highway that was speeding. You realize that in his 
reference frame, he is indeed correct - but that’s not what matters! How do you 
explain the relative motion of driving laws to this sneaky o�ender, in order to 
serve him justice? 

To try at home 

1. Find a way to measure the value of g (the acceleration from Earth’s gravity) and 
describe what you did. 

To try in the lab 

1. Measure the value of g (the acceleration from Earth’s gravity) by measuring the 
time it takes for an object to drop from di�erent heights. Analyse your data in 
way that you perform a linear fit to your data and determine g from the slope of 
that fit. 



61 3.7. SAMPLE PROBLEMS AND SOLUTIONS 

3.7 Sample Problems and Solutions 
3.7.1 Problems 
Problem 3-1: Show that one can use equations 3.2 and 3.3 to derive the following 
equation: 

v 2 − v0
2 = 2a(x − x0) 

which is independent of time. (Solution) 

Problem 3-2: Rob is riding his bike at a speed of 8 m/s. He passes by a velociraptor, as 
one often does, who is eating by the side of the road. The velociraptor begins chasing him. 
The velociraptor accelerates from rest at a rate of 4 m/s2. (Solution) 

a) Assuming it takes 3 seconds for the velociraptor to react, how long does it take from 
the moment Rob passes by for the velicoraptor to catch up to him? 

b) If there is a safe place 70 metres from where Rob passes the velociraptor, will Rob 
make it there in time to escape being eaten? 

Problem 3-3: Figure 3.9 shows a graph of the acceleration, a(t), of a particle moving in 
one dimension. Draw the corresponding velocity and position graphs. Assume that v(0) = 0 
and x(0) = 0, and be as quantitative as possible. (Solution) 

Figure 3.9: A graph of acceleration as a function of time. 
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3.7.2 Solutions 
Solution to problem 3-1: We start with the equations for position and velocity that we 
derived in this chapter: 

x = x0 + v0t + 2
1 
at2 

v = v0 + at 

The first equation can be written as: 
1 2(x − x0) = v0t + 2at 

Our goal is to find an equation that is independent of time t. We start by isolating t in our 
equation for velocity: 

v = v0 + at 
v − v0 

t = 
a 

We then substitute this value of t into our equation for (x − x0): 
1 2(x − x0) = v0t + 2at � � � �2v − v0 1 v − v0(x − x0) = v0 + 2a a a 

We want the left hand side to be 2a(x − x0), so we multiply each term by 2a: � � � �2v − v0 1 v − v02a(x − x0)x = (2a)v0 + (2a)2a a a� � � �2v − v0 v − v02a(x − x0) = (2v0)a + a 2 
a a 

2a(x − x0) = 2v0(v − v0) + (v − v0)2 

We distribute 2v0 into the brackets. Then we expand the third term and get: 

2a(x − x0) = (2v0v − 2v0
2) + (v0 − v 2)(v0 − v 2) 

2a(x − x0) = (2v0v − 2v0
2) + (v0

2 − 2v0v + v 2) 

All that’s left to do is collect like terms, and we get the formula we are looking for: 
2 2 22a(x − x0) = 2v0v − 2v0 + v0 − 2v0v + v 

2a(x − x0) = (v 2) + (2v0v − 2v0v) + (v0
2 − 2v0

2) 
2a(x − x0) = v 2 − v 2 

0 
2 − v 2∴ v 0 = 2a(x − x0) 

If you choose a coordinate system such that x0, this equation becomes v2 − v0
2 = 2ax. 
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Solution to problem 3-2: We start by choosing our coordinate system. The solution is 
simplest if the x axis is positive in the direction of motion and has an origin at the point 
where Rob passes the velociraptor. We also choose t = 0 to be the moment the velociraptor 
starts running. 

Figure 3.10: Rob is being chased by a velociraptor. At t = 0, Rob is a distance x0R from the 
velociraptor. Safety is 70 m away from the origin. 

(a) What do we mean by “catch up”? It means that Rob and the velociraptor will have 
the same position at the same time. So, we are interested in the value of t when 
xR = xV , where xR is the position of Rob, and xV is the position of the velociraptor. 
We need two equations, one describing Rob’s position and one describing the position 
of the velociraptor. Rob is moving at a constant velocity, so his position is described 
by: 

xR = x0R + vRt 

The velociraptor has a constant acceleration, so its position is described by: 

xV = x0V + v0V t + 2
1 
aV t

2 

We can use a table to list the numerical values that we know: 

Rob Velociraptor 

x0R =? x0V = 0 m 

vR = 8 m/s v0V = 0 m/s 

aV = 4 m/s2 

x0R is Rob’s position at the instant the velociraptor starts running. The value of x0R 
is unknown but can be easily solved for. It takes 3 seconds for the velociraptor to 
react, so at t = 0, Rob has moved (8 m/s) × (3 s) = 24 m = x0R (where we used the 
formula x = vt). 
Since v0V = 0 (the velociraptor starts running from rest) and x0V = 0 (the velociraptor 
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starts at the origin), we can write our equations for the position as: 

xR = x0R + vRt 

xV = 2
1 
aV t

2 

Remember that we want to find t when xR =xV . Setting the above equations equal to 
one another gives: 

xR = xV 
1 2 x0R + vRt = 2aV t 

∴ 2
1 
aV t

2 − vRt − x0R = 0 

which is a quadratic equation for t. Substituting in numerical values, and solving for 
t: 

1(4 m/s2)t2 − (8 m/s)t − (24 m) = 02 
2t2 − 8t − 24 = 0 

p
8 ± 256

∴ t = = 6.0 s 4 

Where we chose the positive root of the quadratic, since the time must be a positive 
quantity. This doesn’t quite give us the answer we want, since we want to know how 
long it takes the velociraptor to catch up from the moment Rob passes by. We thus 
have to add the 3 s reaction time, giving a total time of 9 s. 

(b) We can use this solution to figure out whether Rob makes it to safety. The velociraptor 
catches up after 9 seconds. In 9 seconds, Rob has travelled a distance of (8 m/s) × 
(9 s) = 72 m. The shelter is only 70 m away, so Rob gets to safety in time! 
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Solution to problem 3-3: 

Figure 3.11: Graphs of v(t) and x(t) corresponding to the accleration versus time graph given in 
the question. 

We start by drawing the graph of v(t) from the graph of a(t). Solutions may vary, but a 
few key features must be present: 

• Between t = 0 s and t = 3 s, the velocity decreases linearly, since the acceleration is 
constant and negative. 
• Between t = 3 s and t = 6 s, the velocity remains constant, since the acceleration is 

zero. 
• Between t = 6 s and t = 9 s, the velocity increases linearly, since the acceleration is 

positive. Since the acceleration is twice as large as in the first interval, the velocity 
increases at twice the rate that it decreased in the first interval. The object changes 
direction during this interval, since the velocity changes sign. 
• Between t = 9 s and t = 12 s, the velocity decreases linearly with the same rate as in 

the first interval, and is zero at the end of this interval. 

We can get the graph of x(t) from the graph of v(t). The graph of x(t) should have these 
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features: 

• Between t = 0 s and t = 3 s, position decreases quadratically, as the velocity is negative 
and the decreasing. 
• Between t = 3 s and t = 6 s, position decreases linearly, since the velocity is negative 

and constant. 
• Between t = 6 s and t = 9 s, the position continues to decrease, but at a lesser rate ans 

the velocity approaches zero. When the velocity is zero, the position stop changing, 
and starts to increase quadratically as the velocity becomes positive and increasing. 
• Between t = 9 s and t = 12 s, the position continues to increase, but at a lesser rate 

as the velocity decreases back to zero. 



4 Describing motion in multiple dimensions 

In this chapter, we will learn how to extend our description of an object’s motion to two 
and three dimensions by using vectors. We will also consider the specific case of an object 
moving along the circumference of a circle. 

Learning Objectives 

• Describe motion in a 2D plane. 
• Describe motion in 3D space. 
• Describe motion along the circumference of a circle. 

Think About It 

Jake and Madi are riding a carousel that spins at a constant rate. Madi is closer to the 
centre of the carousel than Jake is. What can you say about their accelerations? 

A) Both of their accelerations are zero. 
B) Madi’s acceleration is greater than Jake’s. 
C) Jake’s acceleration is greater than Madi’s. 
D) Madi and Jake have the same non-zero acceleration. 

4.1 Motion in two dimensions 
4.1.1 Using vectors to describe motion in two dimensions 
We can specify the location of an object with its coordinates, and we can describe any 
displacement by a vector. First, consider the case of an object moving with a constant 
velocity in a particular direction. We can specify the position of the object at any time, t, 
using its position vector, ~r(t), which is a function of time. The position vector is a vector 
that goes from the origin of the coordinate system to the position of the object. We can 
describe the x and y components of the position vector with independent functions, x(t), 
and y(t), that correspond to the x and y coordinates of the object at time t, respectively: 

10 
x(t) 

~r(t) = B@ CA = x(t)x̂ + y(t)ŷ 
y(t) 

Suppose that in a period of time �t, the object goes from a position described by the 
position vector ~r1 to a position described by the position vector ~r2, as illustrated in Figure 
4.1. 

67 
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Figure 4.1: Illustration of a displacement vector, �~r = ~r2 − ~r1, for an object that was located at 
position ~r1 at time t1 and at position ~r2 at time t2 = t1 + �t. 

We can define a displacement vector, �~r = ~r2 −~r1, and by analogy to the one dimensional 
case, we can define an average velocity vector, ~v as: 

�~r 
~v = (4.1)�t 

The average velocity vector will have the same direction as �~r, since it is the displacement 
vector divided by a scalar (�t). The magnitude of the velocity vector, which we call “speed”, 
will be proportional to the length of the displacement vector. If the object moves a large 
distance in a small amount of time, it will thus have a large velocity vector. This definition 
of the velocity vector thus has the correct intuitive properties (points in the direction of 
motion, is larger for faster objects). 

For example, if the object went from position (x1, y1) to position (x2, y2) in an amount of 
time �t, the average velocity vector is given by: 

�~r 
~v = �t 

1 
10 

x2 − x1B@ CA= �t y2 − y1 10 
�x1 = �t 

B@ CA 
�y 

10 

1 
�x 
�t 

�t 

B@ CA= 
�y 0 B@ CA= 
vx 

vy 

∴ ~v = vxx̂+ vyŷ 
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That is, the x and y components of the average velocity vector can be found by separately 
determining the average velocity in each direction. For example, vx = �

� 
x
t 

corresponds to 
the average velocity in the x direction, and can be considered independent from the velocity 
in the y direction, vy. The magnitude of the average velocity vector (i.e. the average speed), 
is given by: 

= 1 
�t 

q
�x2 + �y2 = �r �t 

q
2 2+ v||~v|| = vx y 

where �r is the magnitude of the displacement vector. Thus, the average speed is given by 
the distance covered divided by the time taken to cover that distance, in analogy to the one 
dimensional case. 

Checkpoint 4-1 

A llama runs in a field from a position (x1, y1) = (2 m, 5 m) to a position (x2, y2) = 
(6 m, 8 m) in a time �t = 0.5 s, as measured by Marcel, a llama farmer standing at the 
origin of the Cartesian coordinate system. What is the average speed of the llama? 

A) 1 m/s 
B) 5 m/s 
C) 10 m/s 
D) 15 m/s 

If the velocity of the object is not constant, then we define the instantaneous velocity 
vector by taking the limit �t ! 0: 

�~r d~r 
~v(t) = lim = (4.2)

�t!0 �t dt 

which gives us the time derivative of the position vector (in one dimension, it was the time 
derivative of position). Writing the components of the position vector as functions x(t) and 
y(t), the instantaneous velocity becomes: 

0 ~v(t) = d ~r(t)
dt 

(4.3) 1 
x(t)d = 

dt 
B@ CA 
y(t) 10 

dx 
dtCAB@= 
dy 
dt 

vx(t) 
0 B@ 

1 CA= 
vy(t) 

∴ ~v(t) = vx(t)x̂ + vy(t)ŷ 
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where, again, we find that the components of the velocity vector are simply the velocities in 
the x and y direction. This means that we can treat motion in two dimensions as two times 
one-dimensional motion: a motion along x and a separate motion along y. This highlights 
the usefulness of the vector notation for allowing us to use one vector equation (~v = 

dt
d �~r) 

to represent two equations (one for x and one for y). 

Similarly the acceleration vector is given by: 

~a(t) = d ~v(t)
dt 10 (4.4) 

dvx 
dt CAB@= 
dvy 
dt 

ax(t) 
0 1 CAB@= 
ay(t) 

∴ ~a(t) = ax(t)x̂ + ay(t)ŷ 

If an object is at position ~r0 = (x0, y0) with a velocity vector ~v0 = v0xx̂+ v0yŷ at time t = 0, 
and has a constant acceleration vector1, ~a = axx̂+ayŷ, then the velocity vector at some 
later time t, ~v(t), is given by: 

~v(t) = ~v0 + ~at 

Or, if we write out the components explicitly: 101010 
(t) v0xCA+ B@ axtB@ vx CA = B@ CA 
(t) v0y aytvy 

these be considered as two independent equations for the components of the velocity vector: 

vx(t) = v0x + axt 
vy(t) = v0y + ayt 

which is the same equation that we had for one dimensional kinematics, but once for each 
coordinate. The position vector is given by: 

1 2 ~r(t) = ~r0 + ~v0t + at2 ~ 

with components: 
1 2 x(t) = x0 + v0xt + 2axt 
1 2 y(t) = y0 + v0yt + 2ayt 

1Where a constant vector means that both the magnitude and direction are constant in time. 
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which again shows that two dimensional motion can be considered as separate and inde-
pendent motions in each direction. 

Example 4-1 

An object starts at the origin of a coordinate system at time t = 0 s, with an initial 
velocity vector ~v0 = (10 m/s)x̂+(15 m/s)ŷ. The acceleration in the x direction is 0 m/s2 

and the acceleration in the y direction is −10 m/s2. 

(a) Write an equation for the position vector as a function of time. 
(b) Determine the position of the object at t = 10 s. 

1 CA 

(c) Plot the trajectory of the object for the first 5 s of motion. 

Solution 

a)We can consider the motion in the x and y direction separately. In the x direction, 

1 CA 

the acceleration is 0, and the position is thus given by: 

( ) +=t t0 0x x v x 

0B@ 
0B@ 

= (0 m) + (10 m/s)t 
= (10 m/s)t 

In the y direction, we have a constant acceleration, so the position is given by: 

y(t) = y0 + v0yt + 12ayt
2 

1 2= (0 m) + (15 m/s)t + (−10 m/s2)t2 
1 2= (15 m/s)t − (10 m/s2)t2 

The position vector as a function of time can thus be written as: 

x(t) 
~r(t) = 

y(t) 

(10 m/s)t 
= 

(15 m/s)t − 12 (10 m/s2)t2 
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b) Using t = 10 s in the above equation gives: 

(10 m/s)(10 s) 
~r(t = 10 s) = 

(15 m/s)(10 s) − 12 (10 m/s2)(10 s)2 

(100 m) 
= 

1 CA 

( 350 m)− 

c) We can plot the trajectory using python, as in Figure 4.2. 

1 CA 

0B@ 
0B@ 

Figure 4.2: Parabolic trajectory of an object with no acceleration in the x direction and a 
negative acceleration in the y direction. 

As you can see, the trajectory is a parabola, and corresponds to what you would get 
when throwing an object with an initial velocity with upwards (positive y) and horizon-
tal (positive x) components. If you look at only the y axis, you will see that the object 
first goes up, then turns around and goes back down. This is exactly what happens 
when you throw a ball upwards, independently of whether the object is moving in the x 
direction. In the x direction, the object just moves with a constant velocity. The points 
on the graph are drawn for constant time intervals (the time between each point, �t 
is constant). If you look at the distance between points projected onto the x axis, you 
will see that they are all equidistant and that along x, the motion corresponds to that 
of an object with constant velocity. 
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Checkpoint 4-2 

In example 4-1, what is the velocity vector exactly at the top of the parabola in Figure 
4.2? 

A) ~v = (10 m/s)x̂ + (15 m/s)ŷ 
B) ~v = (15 m/s)ŷ 
C) ~v = (10 m/s)x̂ 
D) None of the above. 

Example 4-2 

A monkey is hanging from a tree branch and you want to feed the monkey by throwing 
it a banana (Figure 4.3). You know that the monkey is easily frightened and will let 
go of the tree branch the instant you throw the banana. The monkey is a horizontal 
distance d away and a height h above the point from which you release the banana 
when you throw it. At what angle with respect to the horizontal should you throw the 
banana so that the banana reaches the monkey? 

Figure 4.3: Feeding a monkey in a tree. 

Solution 

This question is asking us to find the angle, �, between the banana’s initial velocity 
vector, ~v0B, and the horizontal for the banana to hit the monkey. This angle is given 
by the horizontal (vB0x) and vertical (vB0y) components of the initial velocity vector of 
the banana: 

vB0ytan � = 
vB0x 
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In order for the banana to hit the monkey, and the banana and the monkey must be in 
the same place at the same time at some time, t. Our approach will be as follows: 
we will start by finding equations that describe the x and y position of the monkey and 
of the banana. Then, we will use our conditions for a successful “hit” to find the ratio 
(tan � = vB0y/vB0x) that we want for our initial throw, and use that to find �. 

First, we define a coordinate system. We choose the origin to be where the banana is 
released. We let y be in the vertical direction (positive upwards) and let x be in the 
horizontal direction (positive towards the monkey), as shown in Figure 4.3. 

We treat the x and y components of the banana and monkey’s velocity and posi-
tion vectors as independent. The monkey’s motion has only a vertical component. 
The y component of the monkey’s acceleration is the acceleration due to gravity, 
ay = −9.8 m/s2 = −g, which is negative, since gravity produces an acceleration in 
the negative y direction. The y component of the monkey’s initial position is yM0 = h 
and the y component of its initial velocity is vM0y = 0. The y component of the 
monkey’s position as a function of time, yM (t), is given by: 

1 2 yM (t) = yM0 + vMy0t + 2ayt 
1 2= h + (0) − 2gt 

The horizontal position of the monkey is constant, and is equal to xM (t) = d. 

The banana’s motion has both x and y components. There is no acceleration in the x 
direction, so the x component of the banana’s velocity is vB0x and constant. We defined 
the banana’s initial x coordinate to be xB0 = 0, so the x position of the banana as a 
function of time, xB(t) is given by: 

xB(t) = xB0 + vB0x 

= (0) + vB0xt 

We defined the initial y position of the banana to be yB0 = 0. The y position of the 
banana as a function of time, yB(t), can thus be described by: 

yB(t) = yB0 + vB0yt + 2
1 
ayt

2 

= (0) + vB0yt − 2
1 
gt2 

where vB0y is the y component of the banana’s initial velocity and ay = −g is the y 
component of the banana’s acceleration (due to gravity). Now that we have equations 
that describe the position of both the banana and the monkey, we can use our conditions 
for the banana and monkey to be at the same position at the same time. For the monkey 
and the banana to be in the same position, we need yM (t) = yB(t) and xB(t) = xM (t) = 
d at some time t. 
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Setting our equations for yM (t) and yB(t) equal to one another gives: 

h − 2
1 
gt2 = v0yBt − 2

1 
gt2 

∴ h = v0yBt 

And setting xM (t) = d equal to xB(t) gives: 

∴ d = vxB 

We can just divide one equation by the other to find: 

h v0yBt = 
d vxBt 
h = v0yB 

d vxB 

This gives us the ratio we are looking for, so we now know that 

htan � = 
d ! 

∴ � = tan−1 h 

d 

This is a somewhat surprising result, as it means that you only need to thrown the 
banana in the direction of the monkey (that is, aim at the monkey, and throw!). Thus, 
it will not matter how fast you throw the banana, and you will always hit the monkey 
if you aimed correctly. When you throw the banana faster, you will hit the monkey 
higher in its trajectory. If there is no ground for the monkey to hit, you can throw the 
banana as slowly as you like, and it will eventually catch up with the monkey when the 
banana reaches x = d. 

4.1.2 Relative motion 
In the previous chapter, we examined how to convert the description of motion from one 
reference frame to another. Recall the one dimensional situation where we described the 
position of an object, A, using an axis x as xA(t). Suppose that the reference frame, x, is 

0B 0moving with a constant speed, v , relative to a second reference frame, x . We found that 
the position of the object is described in the x0 reference frame as: 

x 0A(t) = v 0Bt + x A(t) 

if the origins of the two systems coincided at t = 0. The equation above simply states that 
the distance of the object to the x0 origin is the sum of the distance from the x0 origin to 
the x origin and the distance from the x origin to the object. 

In two dimensions, we proceed in exactly the same way, but use vectors instead: 

~r 0A(t) = ~v 0Bt + ~r A(t) 
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where rA(t) is the position of the object as described in the xy reference frame, ~v 0B, is the 
velocity vector describing the motion of the origin of the xy coordinate system relative to an 
0 0x y0 coordinate system and ~r 0A(t) is the position of the object in the x y0 coordinate system. 

We have assumed that the origins of the two coordinate systems coincided at t = 0 and that 
the axes of the coordinate systems are parallel (x parallel to x0 and y parallel to y0). 

0Note that the velocity of the object in the x y0 system is found by adding the velocity of xy 
0relative to x y0 and the velocity of the object in the xy frame (~vA(t)): 

d 0A(t) = d 0B ~r (~v t + ~r A(t))
dt dt 

= ~v 0B + ~v A(t) 

As an example, consider the situation depicted in Figure 4.4. Brice is on a boat o� the 
shore of Nice, with a coordinate system xy, and is describing the position of a boat carrying 
Alice. He describes Alice’s position as ~rA(t) in the xy coordinate system. Igor is on the 
shore and also wishes to describe Alice’s position using the work done by Brice. Igor sees 

0B 0Brice’s boat move with a velocity ~v as measured in his x y0 coordinate system. In order 
to find the vector pointing to Alice’s position ~r 0A(t), he adds the vector from his origin to 
Brice’s origin (~v 0Bt) and the vector from Brice’s origin to Alice ~rA(t). 

Figure 4.4: Example of converting from one reference frame to another in two dimensions using 
vector addition. 
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Writing this out by coordinate, we have: 

x 0A(t) = vx 0Bt + x A(t) 
y 0A(t) = vy 0Bt + y A(t) 

and for the velocities: 

0A 0B A v (t) = v + v (t)x x x 

0A 0B A v (t) = v + v (t)y y y 

Checkpoint 4-3 

You are on a boat and crossing a North-flowing river, from the East bank to the West 
bank. You point your boat in the West direction and cross the river. Chloë is watching 
your boat cross the river from the shore, in which direction does she measure your 
velocity vector to be? 

A) In the North direction. 
B) In the West direction. 
C) A combination of North and West directions. 

4.2 Motion in three dimensions 
The big challenge was to expand our description of motion from one dimension to two. 
Adding a third dimension ends up being trivial now that we know how to use vectors. In 
three dimensions, we describe the position of a point using three coordinates, so all of the 
vectors simply have three independent components, but are treated in exactly the same 
way as in the two dimensional case. The position of an object is now described by three 
independent functions, x(t), y(t), z(t), that make up the three components of a position 
vector ~r(t): 10 

x(t) 

y(t)~r(t) = 
BBBBB@ 

CCCCCA 
z(t) 

∴ ~r(t) = x(t)x̂ + y(t)ŷ + z(t)ẑ 

The velocity vector now has three components and is defined analogously to the 2D case: 1010 
~v(t) = d~r 

dt 
= 
BBBBB@ 
dx 
dt 

dy 
dt 

CCCCCA = 
BBBBB@ 

(t)vx CCCCCA (t)vy 

dz 
dt 

vz(t) 

∴ ~v(t) = vx(t)x̂ + vy(t)ŷ + vz(t)ẑ 
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and the acceleration is defined in a similar way: 

1010 
(t)dvx 

dt 

dvy 
dt 

dvz 

~a(t) = d~v 
dt 

= 
BBBBB@ 

CCCCCA = 
BBBBB@ 

CCCCCA 
ax 

(t)ay 

(t)azdt 

∴ ~a(t) = ax(t)x̂ + ay(t)ŷ + az(t)ẑ 

In particular, if an object has a constant acceleration, ~a = axx̂ + ayŷ + az ẑ, and started at 
t = 0 with a position ~r0 and velocity ~v0, then its velocity vector is given by: 

10 
v0x + axt 

v0y + ayt 
BBBBB@ 

CCCCCA ~v(t) = ~v0 + ~at = 

v0z + azt 

and the position vector is given by: 

10 BBBBB@ 
x0 + v0xt + 2

1 axt
2 

y0 + v0yt + 1
2 ayt

2 

z0 + v0zt + 2
1 azt

2 

CCCCCA 
1 

~r(t) = ~r0 + ~v0t + at2 
2 ~ = 

where again, we see how writing a single vector equation (e.g. ~v(t) = ~v0 + ~at) is really just 
a way to write the three independent equations that are true for each component. 

4.3 Accelerated motion when the velocity vector changes 
direction 

One key di�erence with one dimensional motion is that, in two dimensions, it is possible 
to have an acceleration even when the speed is constant. Recall, the acceleration vector is 
defined as the time derivative of the velocity vector (equation 4.4). This means that if the 
velocity vector changes with time, then the acceleration vector is non-zero. If the length of 
the velocity vector (speed) is constant, it is still possible that the direction of the velocity 
vector changes with time, and thus, that the acceleration vector is non-zero. This is, for 
example, what happens when an object goes around in a circle with a constant speed (the 
direction of the velocity vector changes). 
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Figure 4.5: Illustration of how the direction of the velocity vector can change when speed is 
constant. 

Figure 4.5 shows an illustration of a velocity vector, ~v(t), at two di�erent times, ~v1 and ~v2, 
as well as the vector di�erence, �~v = ~v2 − ~v1, between the two. In this case, the length 
of the velocity vector did not change with time (||~v1|| = ||~v2||). The acceleration vector is 
given by: 

�~v 
~a = lim 

�t!0 �t 

and will have a direction parallel to �~v, and a magnitude that is proportional to �v. Thus, 
even if the velocity vector does not change amplitude (speed is constant), the acceleration 
vector can be non-zero if the velocity vector changes direction. 

Let us write the velocity vector, ~v, in terms of its magnitude, v, and a unit vector, v̂, in the 
direction of ~v: 

~v = vxx̂+ vyŷ = vv̂ q 
v = ||~v|| = v2 + v2 

x y 

vx vy
v̂ = x̂+ ŷ 

v v 

In the most general case, both the magnitude of the velocity and its direction can change 
with time. That is, both the direction and the magnitude of the velocity vector are functions 
of time: 

~v(t) = v(t)v̂(t) 

When we take the time derivative of ~v(t) to obtain the acceleration vector, we need to take 
the derivative of a product of two functions of time, v(t) and v̂(t). Using the rules for taking 
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the derivative of a product, the acceleration vector is given by: 

~a = d ~v(t) = d v(t)v̂(t)
dt dt 

dv v 
~a = v̂(t) + v(t)dˆ (4.5)

dt dt 

and has two terms. The first term, dv v̂(t), is zero if the speed is constant (dv = 0). The
dt dt 

v vsecond term, v(t)dˆ , is zero if the direction of the velocity vector is constant (dˆ = 0). In
dt dt

general though, the acceleration vector has two terms corresponding to the change in speed, 
and to the change in the direction of the velocity, respectively. 

The specific functional form of the acceleration vector will depend on the path being taken 
by the object. If we consider the case where speed is constant, then we have: 

v(t) = v 
dv = 0 
dt 

2 2 2 vx(t) + vy(t) = v q
∴ vy(t) = v2 − vx(t)2 

In other words, if the magnitude of the velocity is constant, then the x and y components 
are no longer independent (if the x component gets larger, then the y component must get 
smaller so that the total magnitude remains unchanged). If the speed is constant, then the 
acceleration vector is given by: 

dv dv̂ 
~a = v̂(t) + v 

dt dt 

= 0 + v d v̂(t)
dt 

d (t) (t) 
! 

= v vx 
x̂+ vy ŷ)

dt v v qdvx d = x̂+ v2 − vx(t)2ŷ 
dt dt 
dvx 1 (t))dvx= x̂+ q (−2vx ŷ 
dt 2 v2 − vx(t)2 dt 

dvx vx(t) dvx= x̂ − q ŷ 
dt v2 − vx(t)2 dt 

dvx vx(t) dvx= x̂ − ŷ 
dt vy(t) dt 
dvx vx(t) 

! 
∴ ~a = x̂ − ŷ (4.6)

dt vy(t) 
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where most of the algebra that we did was to separate the x and y components of the 
acceleration vector, and we used the Chain Rule to take the derivative of the square root. 
The resulting acceleration vector is illustrated in Figure 4.6 along with the velocity vector2. 

Figure 4.6: Illustration that the acceleration vector is perpendicular to the velocity vector if speed 
is constant. 

The velocity vector has components vx and vy, which allows us to calculate the angle, � 
that it makes with the x axis: 

tan(�) = vy 
vx 

Similarly, the vector that is parallel to the acceleration has components of 1 and −v
v 
x

y 
, 

allowing us to determine the angle, °, that it makes with the x axis: 

vxtan(°) = 
vy 

Note that tan(�) is the inverse of tan(°), or in other words, tan(�) = cot(°), meaning that � 
and ° are complementary and thus must sum to ˇ 2 (90�). This means that the acceleration 
vector is perpendicular to the velocity vector if the speed is constant and the 
direction of the velocity changes. 

In other words, when we write the acceleration vector, we can identify two components, 

dvx2Rather, it is a vector parallel to the acceleration vector that is illustrated, as the factor of was dt
omitted (as you recall, multiplying by a scalar only changes the length, not the direction) 
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~ak(t) and ~a?(t): 

dv v 
~a = v̂(t) + v(t)dˆ 

dt dt 
= ~ak(t) + ~a?(t) 

∴ ~ak(t) = dv v̂(t)
dt 
dv̂ dvx vx(t) 

! 
∴ ~a?(t) = v = x̂ − ŷ 

dt dt vy(t) 

where ~ak(t) is the component of the acceleration that is parallel to the velocity vector, and 
is responsible for changing its magnitude, and ~a?(t), is the component that is perpendicular 
to the velocity vector and is responsible for changing the direction of the motion. 

Checkpoint 4-4 

A satellite moves in a circular orbit around the Earth with a constant speed. What can 
you say about its acceleration vector? 

A) It has a magnitude of zero. 
B) It is perpendicular to the velocity vector. 
C) It is parallel to the velocity vector. 
D) It is in a direction other than parallel or perpendicular to the velocity vector. 

4.4 Circular motion 
We often consider the motion of an object around a circle of fixed radius, R. In principle, 
this is motion in two dimensions, as a circle is necessarily in a two dimensional plane. 
However, since the object is constrained to move along the circumference of the circle, it 
can be thought of (and treated as) motion along a one dimensional axis that is curved. 

Figure 4.7: Describing the motion of an object around a circle of radius R. 

Figure 4.7 shows how we can describe motion along a circle of radius, R. We could use 
x(t) and y(t) to describe the position on the circle, however, x(t) and y(t) are no longer 
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independent since they have to correspond to the coordinates of points on a circle: 

x 2(t) + y 2(t) = R2 

Instead of using x and y, we could think of an axis that is bent around the circle (as shown 
by the curved arrow in Figure 4.7, the s axis). The s axis is such that s = 0 where the circle 
intersects the x axis, and the value of s increases as we move counter-clockwise along the 
circle. Distance along the s axis thus corresponds to the distance along the circumference 
of the circle. 

Another variable that could be used for position instead of s is the angle, �, between the 
position vector of the object and the x axis, as illustrated in Figure 4.7. If we express the 
angle � in radians, then it is easy to convert between s and �. Recall, an angle in radians is 
defined as the length of an arc subtended by that angle divided by the radius of the circle. 
We thus have: 

s(t)
�(t) = (4.7)

R 

In particular, if the object has gone around the whole circle, then s = 2ˇR (the circumference 
of a circle), and the corresponding angle is, � = 2ˇR = 2ˇ, namely 360�.

R 

By using the angle, �, instead of x and y, we are e� ectively using polar coordinates, with a 
fixed radius. As we already saw, the x and y positions are related to � by: 

x(t) = R cos(�(t)) 
y(t) = R sin(�(t)) 

where R is a constant. For an object moving along the circle, we can write its position 
vector, ~r(t), as: 1010 

x(t) cos(�(t)) 
~r(t) = B@ CA = RB@ CA 

y(t) sin(�(t)) 

and the velocity vector is thus given by: 10 
cos(�(t)) 

~v(t) = d ~r(t) = d R 
dt dt 

B@ CA 
sin(�(t)) 10 

dt
d cos(�(t))CAB@= R 
dt
d sin(�(t)) 

− sin(�(t))d� 
dt 

0 B@ 
1 CA= R 

cos(�(t))d� 
dt 
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where we used the Chain Rule to calculate the time derivatives of the trigonometric functions 
(since �(t) is function of time). We can write this in component form: 

vx = −R sin(�(t))d� 
dt 

vy = R cos(�(t))d� (4.8)
dt 

The magnitude of the velocity vector is given by: 
q 

||~v|| = 

= 

= 

2 2+ vvx y !2 !2 
vuut 
vuut 
−R sin(�(t))d� 

dt 
+ R cos(�(t))d� 

dt !2
d� 

R2 [sin2(�(t)) + cos2(�(t)]
dt 

d� = R 
dt 

The position and velocity vectors are illustrated in Figure 4.8 for an angle � in the first 
quadrant (0 < � < ˇ 2 ). 

Figure 4.8: The position vector, ~r(t) is always perpendicular to the velocity vector, ~v(t), for motion 
on a circle. 

In this case, you can note that the x component of the velocity is negative (from the diagram 
and from Equation 4.8). From Equation 4.8, you can also see that |vx| = tan(�), which is |vy |
illustrated in Figure 4.8, showing that the velocity vector is tangent to the circle and 
perpendicular to the position vector. This is always the case for motion along a circle. 

We can simplify our description of motion along the circle by using either s(t) or �(t) 
instead of the vectors for position and velocity. If we use s(t) to represent position along 
the circumference (s = 0 where the circle intersects the x axis), then the velocity along the 
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s axis is: 

vs(t) = d s(t)
dt 

= d R�(t)
dt 
d� = R 
dt 

where we used the fact that � = s/R to convert from s to �. The velocity along the s 
axis is thus precisely equal to the magnitude of the two-dimensional velocity vector (derived 
above), which makes sense since the velocity vector is tangent to the circle (and thus in the 
s “direction”). 

If the object has a constant speed, vs, along the circle and started at a position along 
the circumference s = s0, then its position along the s axis can be described using 1D 
kinematics: 

s(t) = s0 + vst 
or, in terms of �: 

s(t) s0 vs
�(t) = = + t 

R R R 
d� = �0 + t 
dt 

= �0 + !t 
d�

∴ ! = 
dt 

where we introduced �0 as the angle corresponding to the position s0, and we introduced 
! = d� 

dt 
, which is analogous to velocity, but for an angle. ! is called the angular velocity 

and is a measure of the rate of change of the angle � (as it is the time derivative of the 
angle). The relation between the “linear” velocity vs (the magnitude of the velocity vector, 
which corresponds to the velocity in the direction tangent to the circle) and ! is: 

d� 
vs = R = R! 

dt 

Similarly, if the object is accelerating, we can define an angular acceleration, (t), as the 
rate of change of the angular velocity: 

(t) = d! 
dt 

which can directly be related to the acceleration in the s direction, as(t): 

as(t) = d vs
dt 
d d! = !R = R 
dt dt 

as(t) = R 
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Thus, the linear quantities (those along the s axis) can be related to the angular quantities 
by multiplying the angular quantities by R: 

s = R� (4.9) 
vs = R! (4.10) 
as = R (4.11) 

If the object started at t = 0 with a position s = s0 (� = �0), and an initial linear velocity 
v0s (angular velocity !0), and has a constant linear acceleration around the circle, as 
(angular acceleration, ), then the position of the object can be described using either the 
linear or the angular quantities: 

s(t) = s0 + vs0t + 2
1 
ast

2 

1 2�(t) = �0 + !0t + t2 

As you recall from section 4.3, we can compute the acceleration vector and identify com-
ponents that are parallel and perpendicular to the velocity vector: 

~a = ~ak(t) + ~a?(t) 
dv dv̂ = v̂(t) + v 
dt dt 

ak(t) = dvThe first term, ~ 
dt 
v̂(t), is parallel to the velocity vector v̂, and has a magnitude given 

by: 

dv d d ||~ak(t)|| = = v(t) = R! = R 
dt dt dt 

That is, the component of the acceleration vector that is parallel to the velocity is precisely 
the acceleration in the s direction (the linear acceleration). This component of the acceler-
ation is responsible for increasing (or decreasing) the speed of the object and is zero if the 
object goes around the circle with a constant speed (linear or angular). 

As we saw earlier, the perpendicular component of the acceleration, ~a?(t), is responsible 
for changing the direction of the velocity vector (as the object continuously changes direc-
tion when going in a circle). When the motion is around a circle, this component of the 
acceleration vector is called “centripetal” acceleration (i.e. acceleration pointing towards 
the centre of the circle, as we will see). We can calculate the centripetal acceleration in 
terms of our angular variables, noting that the unit vector in the direction of the velocity 
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is v̂ = − sin(�)x̂ + cos(�)ŷ: 
dv̂ 

~a?(t) = v 
dt 

= (!R) d [− sin(�)x̂ + cos(�)ŷ]
dt" # 

= !R − d sin(�)x̂ + d cos(�)ŷ
dt dt " # 

= !R − cos(�)d� x̂ − sin(�)d� ŷ 
dt dt 

= !R[− cos(�)!x̂ − sin(�)!ŷ] 

~a?(t) = !2R[− cos(�)x̂ − sin(�)ŷ] (4.12) 

where you can easily verify that the vector [− cos(�)x̂ − sin(�)ŷ] has unit length and points 
towards the centre of the circle (when the tail is placed on a point on the circle at angle �). 
The centripetal acceleration thus points towards the centre of the circle and has magnitude: 

v2(t) 
ac(t) = ||~a?(t)|| = !2(t)R = (4.13)

R 

where in the last equal sign, we wrote the centripetal acceleration in terms of the speed 
around the circle (v = ||~v|| = vs). 

If an object goes around a circle, it will always have a centripetal acceleration (since its 
velocity vector must change direction). In addition, if the object’s speed is changing, it will 
also have a linear acceleration, which points in the same direction as the velocity vector (it 
changes the velocity vector’s length but not its direction). 

Checkpoint 4-5 

A vicuña is going clockwise around a circle that is centred at the origin of an xy 
coordinate system that is in the plane of the circle. The vicuña runs faster and faster 
around the circle. In which direction does its acceleration vector point just as the vicuña 
is at the point where the circle intersects the positive y axis? 

A) In the negative y direction. 
B) In the positive y direction. 
C) A combination of the positive y and positive x directions. 
D) A combination of the negative y and positive x directions. 
E) A combination of the negative y and negative x directions. 

4.4.1 Period and frequency 
When an object is moving around in a circle, it will typically complete more than one 
revolution. If the object is going around the circle with a constant speed, we call the motion 
“uniform circular motion”, and we can define the period and frequency of the motion. 

The period, T , is defined to be the time that it takes to complete one revolution around the 
circle. If the object has constant angular speed !, we can find the time, T , that it takes to 
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complete one full revolution, from � = 0 to � = 2ˇ: 
�� 2ˇ 

! = = 
T T 

∴ T 
2ˇ = (4.14)
! 

We would obtain the same result using the linear quantities; in one revolution, the object 
covers a distance of 2ˇR at a speed of v: 

2ˇR 
v = 

T 
2ˇR 2ˇR 2ˇ 

T = = = 
v !R ! 

The frequency, f , is defined to be the inverse of the period: 
1 ! 

f = = 
T 2ˇ 

and has SI units of Hz = s−1. Think of frequency as the number of revolutions completed 
per second. Thus, if the frequency is f = 1 Hz, the object goes around the circle once per 
second. Given the frequency, we can of course obtain the angular velocity: 

! = 2ˇf 

which is sometimes called the “angular frequency” instead of the angular velocity. The 
angular velocity can really be thought of as a frequency, as it represents the “amount of 
angle” per second that an object covers when going around a circle. The angular velocity 
does not tell us anything about the actual speed of the object, which depends on the radius 
v = !R. This is illustrated in Figure 4.9, where two objects can be travelling around two 
circles of radius R1 and R2 with the same angular velocity !. If they have the same angular 
velocity, then it will take them the same amount of time to complete a revolution. However, 
the outer object has to cover a much larger distance (the circumference is larger), and thus 
has to move with a larger linear speed. 

Figure 4.9: For a given angular velocity, the linear velocity will be larger on a larger circle 
(v = !R). 
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Checkpoint 4-6 

A motor is rotating at 3000 rpm, what is the corresponding frequency in Hz? 
A) 5 Hz 
B) 50 Hz 
C) 500 Hz 

Olivia’s Thoughts 

There’s a trick I like to use to remember how linear and angular velocities work. Figure 
4.10 shows your hand in two positions, which we call (1) and (2). 

Figure 4.10: How to use your hand to better understand circular motion 

Let’s say you want to describe the location of your fingers in (2). Start by putting your 
hand in position (1). This is the position where � = 0 and s = 0. Imagine that your 
wrist (or your thumb, whichever you prefer) is fixed at the origin. If you keep your 
fingers perpendicular to your hand, they will always point in the positive s direction. 

Imagine that you have a blue glob of paint on the back of your pinky. Rotate your hand 
until it is in position (2). The length of the curve that the paint makes is the value of 
s. The angle between the back of your hand and the positive x-axis is �. Now, imagine 
that there is a red glob of paint at your palm. It takes the same amount of time for 
your palm to get from position (1) to position (2) as it does for your fingers. Since they 
both go through the same angle � in the same amount of time, the angular velocity, 
! must be the same for both. However, the blue line left by your fingers will be much 
longer than the red line left by your palm. Your fingers travelled a greater distance than 
your palm in the same amount of time, so they must have a greater linear velocity, 
vs. The further you are from your thumb, the greater the linear velocity will be, which 
we know from the formula vs = R!. 

If you kept rotating your hand around the circle, you would see that your fingers always 
point in the same direction as your linear velocity. This means that if you are using 
cartesian coordinates, the direction of your linear velocity is always changing. 
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There are a couple of limitations to this trick. Remember that this only works for 
circular motion (the radius R must be constant) and that if you are moving in the 
negative s direction, your fingers will point antiparallel to the linear velocity. 
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4.5 Summary 

Key Takeaways 

When the motion of an object is in more than one dimension, we describe the position 
of the object using a vector, ~r. 

x(t) 
~r(t) = y(t) = x(t)x̂ + y(t)ŷ + z(t)ẑ 

z(t) 

where x(t), y(t), and z(t), are the position coordinates of the object. We treat the 
motion in each dimension as independent. 

The instantaneous velocity vector and the acceleration vector are given by: 

~v(t) = d ~r(t)
dt 

1 CCCCCA 

~a(t) = d ~v(t)
dt 

0 BBBBB@ 

If the acceleration vector is constant (in magnitude and direction), then the position 
and velocity of the object are described by: 

1 2 ~r(t) = ~r0 + ~v0t + at2 ~ 

~v(t) = ~v0 + ~at 

where each of these vector equations represents 3 independent equations, one for each 
of the x, y, and z component of the vectors. 

AIf an object has position ~r as measured in a frame of reference xy that is moving at 
0B 0 0 0 0constant speed ~v as measured in a second frame of reference x y , then in the x y 

reference frame: 

0A(t) = ~ 0B ~r v t + ~r A(t) 
~v 0A(t) = ~v 0B + ~v A(t) 
~a 0A(t) = ~a A(t) 

An acceleration can change the magnitude and/or the direction of the velocity vector. 

1. The component of the acceleration vector that is parallel to the velocity vector 
changes the magnitude of the velocity. 

2. The component of the acceleration vector that is perpendicular to the velocity 
vector changes the direction of the velocity. 
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The acceleration vector for motion in two dimensions can be written as the sum of 
vectors that are parallel (~ak) and perpendicular (~a?) to the velocity vector: 

dv v 
~a = v̂(t) + v(t)dˆ = ~ak + ~a?

dt dt 

If the position of an object moving in a circle of radius R is described by its position 
along the curved axis s, then its position along the circle can be described using an 
angle, �, in radians: 

s(t)
�(t) = 

R 

For an object moving along a circle, we can write its position vector, ~r(t), as: 1 
cos( ( ))� tB@

0 
sin(�(t)) 

10 
x(t)B@ CA CA~r(t) = = R 
y(t) 

The angular velocity, !, is the rate of change of the angle. The angular acceleration, 
, is the rate of change of the angular velocity: 

d� 
! = 

dt 
d! = 
dt 

The linear kinematic quantities can be found from the angular quantities: 

s = R� 
vs = R! 
as = R 

For circular motion, the velocity vector is tangent to the circle and the perpendicular 
component of the acceleration is called the centripetal acceleration. The centripetal 
acceleration points towards the centre of the circle and has a magnitude of: 

v2(t) 
ac(t) = !2(t)R = 

R 

The centripetal acceleration vector can be written as: 

~a?(t) = !2R[− cos(�)x̂ − sin(�)ŷ] 

Uniform circular is the motion of an object around a circle with a constant speed. The 
period, T , is the time that it takes for the object to complete one revolution. The 
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frequency, f , is the inverse of the period, and can be thought of as the number of 
revolutions completed per second: 

2ˇ 
T = 

! 
1 ! 

f = 
T 

= 2ˇ 

1 CA 
0 B@ 

Important Equations 

1 CA 
Motion in 2D: Circular Motion: 0 B@ x(t) x(t) cos(�(t))

~r(t) = = x(t)x̂ + y(t)ŷ ~r(t) = = R 
y(t) y(t) sin(�(t)) 

d� ~v(t) = d ~r(t) ! = dt dt 
d!d( ) ( )=t t~a ~v 

! 

= dt dt 

0B vs = R! 
~r 0A(t) = ~v t + ~r A(t) 

as = R 
~v 0A(t) = ~v 0B + ~v A(t) 

v2(t) 
R 

1 CA 

Relative Motion 2D: = R� s 

2( ) [ cos( )ˆ sin( ) ]̂− −=Acceleration Vector 2D: ! R � �t~a x y? 

2ˇ
dv v T = 

0 B@ 

2( ) ( )( ) ( )0A A = =! Rt t= at t~a ~a c 

ˆdˆ( ) + ( )= t t !~a v v
dt dt 

( ) = =fdv tvx x 

1 ! 

(constant speed:) ~a = x̂ − ŷ T 2ˇ 
dt vy(t) 

Important Definitions 

Position vector: A vector, usually labelled, ~r, to describe the position of an object 
relative to the origin of a coordinate system. In Cartesian coordinates, the position 
vector is simply given by the x, y, and z coordinates of the object, ~r = xx̂ = yŷ + zẑ. 

Velocity vector: A vector, usually labelled, ~v, which corresponds to the time-rate of 
change (the derivative with respect to time) of the position vector. 

Acceleration vector: A vector, usually labelled, ~a, which corresponds to the time-rate 
of change (the derivative with respect to time) of the velocity vector. 

Angular position: The angle that the position vector makes with either the x or z 
axis. SI units: none. Common variable(s): � (angle with the z axis), ° (angle with the 
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x axis). 

Angular velocity: The rate at which an angle changes with respect to time. SI units: 
[s−1]. Common variable(s): ~!. The angular velocity can be represented by a vector, 
using the right-hand rule for axial vectors. 

Angular acceleration: The rate at which angular velocity changes with respect to 
time. SI units: [s−2]. Common variable(s): ~ . The angular acceleration can be repre-
sented by a vector, using the right-hand rule for axial vectors. 

Uniform circular motion: The motion of an object with constant speed around a 
circle. 
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4.6 Thinking about the material 

Reflect and research 

1. It was once believed that there was an absolute reference frame called the “lu-
miniferous aether”. What was the name of the experiment that disproved the 
existence of this frame of reference? 

2. Find the centripetal acceleration of the Earth around the Sun. 

To try at home 

1. Describe and carry out a small experiment to confirm that the amount of time 
that it takes for a projectile to fall a certain distance does not depend on the 
horizontal component of its velocity. 

To try in the lab 

1. Develop a proposal for measuring how fast you can throw a ball, and carry out 
the experiment. 

2. Develop a proposal for measuring how far you can jump with a running start (e.g. 
a long jump). 

3. Propose an experiment to determine the period of the sun’s rotational motion. 
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4.7 Sample problems and solutions 
4.7.1 Problems 
Problem 4-1: Ethan is jumping hurdles. He gets a running start, moving with a speed of 
3 m/s. The hurdle is 0.5 m high and the maximum speed that he can have when he leaves 
the ground is 5 m/s. (You can assume Ethan is a point particle, and ignore air resistance). 
(Solution) 

a) What is the closest distance from the hurdle at which Ethan can jump and still clear 
the hurdle? 

b) What maximum height does he reach? 
Problem 4-2: A cowboy swings a lasso above his head. The lasso moves at a constant 
speed in a circle of radius 1.5 m in the horizontal plane. A hawk flies toward the lasso at 
50 km/h. The hawk sees the end of the lasso moving at 60 km/h when the lasso is directly 
in front of it (see Figure 4.11). In the reference frame of the cowboy ... (Solution) 

a) How long does it take for the lasso to complete one revolution? (Hint: From the point 
of view of the hawk, the lasso is moving towards him in addition to moving in a circle. 
You will have to use your knowledge of relative motion to solve this problem!) 

b) What is the centripetal acceleration of the end of the lasso? 
c) What is the angular acceleration of the lasso? 

Figure 4.11: The problem as viewed from above. This diagram depicts the moment that the 
end of the lasso passes in front of the hawk. 



97 4.7. SAMPLE PROBLEMS AND SOLUTIONS 

4.7.2 Solutions 
Solution to problem 4-1: Our approach will be to consider the x and y components of 
the motion separately. We start by drawing a diagram and choosing our coordinate system. 
We will choose y to be vertical and positive upwards and x to be in the direction that Ethan 
is running. We choose the origin to be the location where Ethan leaves the ground for the 
jump, as illustrated in Figure 4.12. 

Figure 4.12: Ethan wants to clear a 0.5 m hurdle and has an initial velocity ~v0 with x and y 
components. 

a) Ethan’s speed at the beginning of the jump is v0 = 5 m/s and the horizontal (x) 
component of his velocity is vx = 3 m/s. The y component of his initial velocity, v0y, 
is given by: 

2 2 2 v + v = vx 0y 0 q 
2 2= v0 − vv0y x 

v0y = 
q

(5 m/s)2 − (3 m/s)2 = 4 m/s 

We chose the origin at the beginning of the jump, so that Ethan’s x and y coordinates 
at time t = 0 are x0 = 0 and y0 = 0, respectively. Once Ethan is in the air, there will 
be no acceleration in the x direction, and the only acceleration is in the y direction 
and will be that due to gravity. Ethan’s position at any time t can be described by 
the following equations: 

x(t) = vxt 
1 2 y(t) = v0yt − 2gt 

where g is the acceleration due to gravity, g = 9.8 m/s2. 
We want to determine the value of x(t) when the vertical displacement, y(t), is equal 
to the height of the hurdle, h. We thus find the value of t when y = 0.5 m and then 
find the value of x at that time. 
We can re-arrange the equation for y(t) and solve the resulting quadratic for t (we get 



98 CHAPTER 4. DESCRIBING MOTION IN MULTIPLE DIMENSIONS 

two solutions): 

0 = −2
1 
gt2 + v0yt − h 

10 = (−9.8 m/s2)t2 + (4 m/s)t − 0.5 m 2 
t = 0.15 s, 0.66 s 

The jump will be a parabola, and Ethan will cross a height of 0.5 m twice, once on the 
way up, and once on the way down. We want to know when Ethan reaches 0.5 m for 
the first time (on the way up), so we choose t = 0.15 s. The horizontal displacement 
at this time is: 

x = vxt 
= (3 m/s)(0.15 s) 
= 0.45 m 

Therefore, he can get as close as 0.45 m from the hurdle before he has to jump, if his 
initial horizontal velocity is 3 m/s. 

b) Ethan’s motion follows a parabolic shape. At the maximum height, Ethan’s vertical 
velocity is equal to zero. We can model only the vertical part of the motion to solve 
for the value of y when vy = 0. We know the following quantities: 

v0y = 4 m/s 
vy = 0 m/s 
g = 9.8 m/s2 

The easiest way to determine y is to use the formula, 

vy 
2 = v0

2 
y − 2g(y − y0) 

2 2v − vy 0y∴ y = (−2g) 

Substituting our values for vy, v0y, and g, we get: 

(−4 m/s)2 
=ymax (2)(−9.8 m/s2) 

ymax = 0.82 m 

Ethan reaches a maximum height of 0.82 m. 

https://3m/s)(0.15
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Solution to problem 4-2: 

a) We need to determine the speed of the end of the lasso in the cowboy’s frame of ref-
erence, knowing its speed in the hawk’s frame of reference and knowing the velocity 
of the hawk. Once we know the speed of the lasso in the cowboy’s frame of reference 
we can easily determine how long it takes to complete one revolution (its period). 

Figure 4.13: The two coordinate systems are aligned so that positive y0 and positive y are in 
the same direction. The velocity vectors of the hawk and the lasso in the reference frame of 
the cowboy are shown. 

0We start by introducing coordinate systems for the hawk (xy) and the cowboy (x y0), 
and choose for the x (y) and x0 (y0) axes to be parallel. We choose the axes such that 
x is to the right (when seen from above, as in Figure 4.13) and y is in the direction 
of motion of the hawk as seen in the cowboy’s reference frame. The velocity vector of 
the hawk in the cowboy’s frame of reference is: 

~v 0 H = vH 0 ŷ = (50 km/h)ŷ 

In the hawk’s frame of reference, the lasso will have a y component of velocity in 
the negative y direction with the same magnitude as the speed of the hawk, and an 
unknown component, vLx, in the x direction. The velocity of the lasso in the hawk’s 
frame of reference is: 

~vL = vLxx̂ − vH 0 ŷ 

However, we know the speed of the lasso in the hawk’s frame of reference (vL = 
60 km/h), so we can easily find vLx: 

vLx = 
q 
vL 

2 − vH 02 = 
q

(60 km/h)2 − (50 km/h)2 = 33.17 km/h 
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Figure 4.14: Vector addition to determine the velocity of the lasso in the cowboy’s reference 
frame. 

In the cowboy’s frame of reference, the lasso will have a velocity vector (Figure 4.14), 
L, given by: 0~v 

0 = 0 + ~vL ~v ~vL H 
0 
H ŷ + vLxx̂ − v 0 H ŷ= v 

= vLxx̂ = (33.17 km/h)x̂ 

That is, in the cowboy’s frame of reference, the lasso has a velocity that is in the x 
direction. This corresponds to the speed, vs, of the end of the lasso in uniform circular 
motion about a circle of radius R = 1.5 m. We can thus find the time required for one 
revolution to be: 

2ˇR 
vs = 

T 
2ˇR 2ˇ(1.5 m) 2ˇ(1.5 m) 

∴ T = = = 1.02 s 
vs (33.17 km/h) = (9.2 m/s) 

where we converted the speed into m/s before determining the time. 
b) The motion is uniform circular motion, so it has a centripetal acceleration given by 

vs 
2(t) 

ac(t) = 
R 

To find the centripetal acceleration of the end of the lasso, we just user our values for 
vs and R. 

(9.2 m/s)2 
(t) = = 56 m/s2 ac 1.5 m 

c) The angular acceleration of the lasso is zero. The angular acceleration refers to the 
rate of change of the angular velocity (the rate at which the lasso rotates), which is 
constant for uniform circular motion. 



5 Newton’s Laws 

In this chapter, we introduce Newton’s Laws, which is a succinct theory of physics that 
describes an incredibly large number of phenomena in the natural world. Newton’s Laws 
are one possible formulation of what we call “Classical Physics” (as opposed to “Modern 
Physics” which include Quantum Mechanics and Special Relativity). Newton’s Laws make 
the connection between dynamics (the causes of motion) and the kinematics of motion (the 
description of that motion). 

Learning Objectives 

• Understand Newton’s Three Laws. 
• Understand the concept of force and how to identify a force. 
• Understand the concepts of mass and inertia. 
• Understand how to draw free-body diagrams. 

Think About It 

You are at the supermarket, pushing a cart full of groceries. To keep the cart moving, 
you notice that you have to keep applying a force to the cart. You conclude that a 
continuous force is needed for continuous motion. This statement is, 

A) True, since the natural state of all objects is to be at rest. Eventually, all objects 
will be at rest, so to keep an object moving, a force needs to be applied. 

B) False. The force you apply to keep an object moving is only to counteract a 
frictional force. 

5.1 Newton’s Three Laws 
Newton’s classical theory of physics is based on the three following laws: 

• Law 1: An object will remain in its state of motion, be it at rest or moving with 
constant velocity, unless a net external force is exerted on the object. 
• Law 2: An object’s acceleration is proportional to the net force exerted on the 

object, inversely proportional to the mass of the object, and in the same direction as 
the net force exerted on the object. 
• Law 3: If one object exerts a force on another object, the second object exerts a force 

on the first object that is equal in magnitude and opposite in direction. 

The three statements above are suÿcient to describe almost all of the natural phenomena 
that we experience in our lives. Concepts such as energy, centre of mass, torque, etc, which 
you may have already encountered, are derived naturally from these three laws. In order 
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to build models to describe specific experiments or observations using Newton’s Laws, one 
needs to understand the two main mathematical concepts that are introduced by the theory: 
force and mass. A few comments on each of the three laws are first provided before the 
concepts of force and mass are developed further. 

5.1.1 Newton’s First Law 
Newton’s First Law is often referred to as the law of inertia which was originally stated by 
Galileo. The first law is counter-intuitive, as our experience is that if you push a block on a 
table and let it go, it will eventually stop. Indeed, Aristotle proposed that the natural state 
of objects is to be at rest. As a result of Newton’s theory, we now understand that if you 
model a block sliding on a table, one must include a force of friction between the table and 
the block that acts to slow it down; a sliding block is thus not in a situation where no net 
external force is exerted on the object. 

Newton’s First Law is useful in defining what we call an “inertial frame of reference”, which 
is a frame of reference in which Newton’s First Law holds true. A frame of reference can be 
thought of as a coordinate system which can be moving. For example, if a train is moving 
with constant velocity, we can consider the train as an inertial frame of reference since 
objects in the train would follow Newton’s First Law for observers that are in the train. 
If a train passenger placed an object on a table, they would observe that the object does 
not spontaneously start moving; if they slide an object on a frictionless table, they would 
observe that it keeps on sliding at constant velocity. 

However, if the train is accelerating forwards, then an object placed on a frictionless table 
would appear, for observers in the train’s frame of reference, to be accelerating in the 
direction opposite to that of the train, and violate Newton’s First Law. An accelerating 
train is thus not an inertial frame of reference. To an observer on the ground, looking into 
the accelerating train through a window, the object placed on the table would appear to 
move with the same constant velocity as when it was placed on the table (the velocity of 
the train at the instant the object is placed on the table). In a similar way, when you are 
in a car, Newton’s First Law holds if the car is going at constant velocity, but if the car 
goes around a curve (and thus accelerates even its speed is constant), you will find that all 
objects in the car suddenly appear to be pushed towards the outside of the curve, in conflict 
with Newton’s First Law; this is because the accelerating car is not an inertial frame of 
reference and Newton’s First Law is thus not expected to hold. 

Newton’s First Law thus allows us to define an inertial frame of reference; Newton’s Three 
Laws only hold in inertial frames of reference. 

Checkpoint 5-1 

You are in an elevator accelerating upwards. 
A) The elevator is an inertial frame of reference. 
B) The elevator is not an inertial frame of reference. 
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5.1.2 Newton’s Second Law 
Newton’s Second Law is often written as a vector equation: 

X 
~F = m~a 

~where P F is the vector sum of the forces exerted on an object, ~a is the acceleration vector of 
the object, and m is the “inertial mass” of the object. As we will see, a force is represented by 
a vector, and the sum of the force vectors on an object is often called the “net force”. Recall 
that using vectors to write an equation is just a shorthand for writing the equation out 
for each component. In three dimensions, this would thus correspond to three independent 
scalar equations (one for each component of the force and acceleration vectors): 

X 
Fx = max X 
Fy = mayX 
Fz = maz 

Newton’s Second Law is the foundation for Classical Physics, in which we seek to quanti-
tatively describe the motion of any object. The motion of an object is fully specified by its 
acceleration as long as we know the position and velocity at a specific point in time. That 
is, by knowing the position and velocity of the object at a point in time and its acceleration, 
we can describe its motion both in the future and in the in past; we call Classical Physics a 
deterministic theory (as opposed to, say, Quantum Mechanics, which would only tell us the 
probability that a particle would be at some particular position in the future). The right-
hand side of Newton’s Second Law thus contains the kinematic description of the object; if 
we know the acceleration, we know everything about the motion of the object. 

The left-hand side of the equation contains all of the “dynamics” to describe the object; 
force is the tool that Newton introduced in order to be able to determine the acceleration of 
an object. Newton’s Second Law thus tells how to determine the kinematics of an object by 
using the concept of forces; it relates the dynamics to the kinematics. Having already covered 
kinematics, we will now focus on understanding dynamics and how to develop models that 
allow us to calculate the net force on an object. The inertial mass, m, is a specific property 
of an object that tells us how large an acceleration it will experience based on a given net 
force. Thus, objects with di�erent masses will experience di�erent accelerations if subject 
to the same net force. 

Checkpoint 5-2 

Object 1 has twice the inertial mass of object 2. If both objects have the same acceler-
ation vector. 

A) The net force on both objects is the same. 
B) The net force on object 1 is twice that on object 2. 
C) The net force on object 1 is half of that on object 2. 



104 CHAPTER 5. NEWTON’S LAWS 

5.1.3 Newton’s Third Law 
Newton’s Third Law relates the forces that two objects exert on each other. It is important 
to understand that the forces that are mentioned in the Newton’s Third Law are exerted on 
di�erent objects. If object A exerts a force on object B, then object B will also exert a force 
on object A. The two forces have the same magnitude but opposite directions. Sometimes, 
the forces are called “action” and “reaction” forces, although this is misleading, because 
it makes it sound like the reaction force is “in response to” some voluntary action force. 
However, inanimate objects can exert forces, and so this can lead to needless confusion as 
to which force is the reaction force. 

It does not matter which force you choose to call the action (reaction) force. If a block is 
pushing down on a table (action force), then the table is pushing up on the block (reaction 
force). However, one could just as well say that the table is pushing up on the block (action 
force) so the block is pushing down on the table (reaction force). It does not matter which 
force you call the action force. This can be confusing, because if you choose to push on a 
wall (exerting an action force), then the wall exerts a force on you (the reaction force). If 
you choose not to push on the wall (exerting no force), then the wall does not exert the 
reaction force. This leads to people thinking that the reaction force is in response to an 
action force exerted by a sentient being, which is not the case. You can call the force that 
you choose to exert on the wall the reaction force and Newton’s Laws will still work just as 
well! 

Newton’s Third law often leads to confusion when Newton’s Second Law is applied. Recall 
that Newton’s Second Law involves the sum of the forces on a particular object (the “net 
force” on that object). The two forces that are mentioned in Newton’s Third Law 
are not exerted on the same object, so they would never appear together in the sum 
of the forces from Newton’s Second Law, and they never cancel each other. 

Checkpoint 5-3 

You push a heavy block in the North direction. The block is twice as heavy as you are. 
Which statement is true? 

A) The block exerts half of the force on you, in the North direction. 
B) The block exerts the same force on you, but in the South direction. 
C) The block exerts double of the force on you, in the South direction. 
D) The block is inanimate and thus does not exert a force on you. 

5.2 Force 
A force is a mathematical tool that is introduced in Newton’s theory of physics. A force is 
not a real “thing”; there are no forces in the real world, you cannot give someone a force, 
or buy a force at the supermarket. A force is a purely mathematical tool, so it is important 
to fight your intuition about what a force is and to stick to well-defined rules for identifying 
forces to build models. 

Mathematically, a force is represented by a vector, and thus has a magnitude and a 
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direction. The SI unit for the magnitude of a force is the “Newton”, abbreviated, N. A 
force is used to describe how the motion of an object is a�ected by external agents. It is 
important to note that a force can be exerted by an inanimate being; that is, there is no 
intent - no conscious decision to push or pull - associated with a force. 

When you push a block along a horizontal surface, we would model the motion of the block 
as being related to a force that you exert on the block in the direction that you are pushing 
and with a magnitude that is proportional to how hard you are pushing. Newton’s Third 
Law states that the block will exert a force on you that is of equal magnitude but in the 
opposite direction; if we want to model your motion, we will need to include that force 
exerted by the block on you. 

If you are pulling on a cart, we would model the motion of the cart by including a force that 
is exerted on the cart by you. The force would be represented by a vector in the direction 
that you are pulling with a magnitude based on how hard you are pulling. Similarly, to 
model your motion, we would include a force vector that is equal in magnitude and opposite 
in direction to represent the force exerted by the cart on you. When modelling the motion 
of an object, it is important to consider only the forces exerted on that object. 

One way to quantify a force is to use a spring scale. Springs have a natural “rest length” 
if not acted upon by external forces. If you try to stretch a spring, it will “want” to come 
back to its normal rest length; it exerts a force on your hand in the opposite direction from 
the one you are pulling on the spring. You may have noticed that the more you stretch a 
spring, the harder you have to pull on it. We can quantify the magnitude of a force by the 
distance that the forces causes a spring to stretch, since that distance increases with what 
we conceptualize as a force. For example, one could designate a “standard spring” to be 
one that extends (or compresses) by 1 cm when a force of 1 N is exerted on the spring in the 
direction co-linear with the axis of the spring. We could then use that “standard spring” to 
measure the magnitude of any force. 

5.2.1 Types of forces 
When modelling the dynamics of an object, we need to identify all of the forces exerted 
on that object. Some of the forces can be classified as “contact forces” as they arise from 
something making contact with the object (such as you pushing on the object). Other 
forces can be exerted “at a distance”; for example, the force of gravity from the Earth can 
be exerted on a bird in flight, even if the bird is not in contact with the Earth. In reality, 
contact forces arise because the electrons from two objects repel each other. When you push 
against a wall, the reason that you feel a resistance is because the electrons on your hand 
are repelled by the electrons on the wall; you never actually “touch” the wall1! 

In this section, we list and describe the most common types of forces that arise when 
modelling the motion of an object. When determining the forces that are acting on an 
object, it is usually a good idea to run down this list to see if any of these forces should be 
included. Again, try to fight your intuition about what a force “feels” like and instead be 
objective in determining whether any of the forces below should be included based on their 

1As a matter of fact, it is impossible to ever touch anything, you can just get really close! 
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characteristics. 
Weight 

Weight is the force exerted by gravity. While all objects with mass exert an attractive force 
of gravity on all other objects with mass, that force is usually negligible unless the mass of 
one of the objects is very large. For an object near the surface of the Earth, we can, to a 
very good degree of approximation, assume that the only force of gravity on the object is 

~from the Earth. We usually label the force of gravity on an object as Fg. All objects near 
the surface of the Earth will experience a weight, as long as they have a mass. If an object 
has a mass, m, and is located near the surface of the Earth, it will experience a force (its 
weight) that is given by: 

~Fg = m~g 
where ~g is the Earth’s “gravitational field” vector and points towards the centre of 
the Earth. Near the surface of the Earth, the magnitude of the gravitational field is 
approximately g = 9.8 N/kg. The gravitational field is a measure of the strength of the 
force of gravity from the Earth (it is the gravitational force per unit mass). The magnitude 
of the gravitational field is weaker as you move further from the centre of the Earth (e.g. 
at the top of a mountain, or in Earth’s orbit). The gravitational field is also di�erent on 
di�erent planets; for example, at the surface of the moon, it is approximately gm = 1.62 N/kg 
(six times less) - thus the weight of an object is six times less at the surface of the moon 
(but its mass is still the same). As we will see, the magnitude of the gravitational field from 
any spherical body of mass M (e.g a planet) is given by: 

M 
g(r) = G 2r 

where G = 6.67 × 10−11 is Newton’s constant of gravity, and r is the distance from the 
centre of the object. 

Figure 5.1: The weight force on an object near the surface of the Earth points towards the centre 
of the Earth (downwards). 

Although we have not yet introduced the concept of mass, it is worth emphasizing that mass 
and weight are di�erent (they have di�erent dimensions). Mass is an intrinsic property of 
an object, whereas weight is a force of gravity that is exerted on that object because it has 
mass and is located next to another object with mass (e.g. the Earth). On Earth, when we 
measure our weight, we usually do so by standing on a spring scale, which is designed to 
measure a force by compressing a spring. We are thus measuring mg, which can easily be 
related to our mass since, on Earth, weight and mass are related by a factor of g = 9.8 N/kg; 
this is usually what leads to the confusion between mass and weight. 



5.2. FORCE 107 

Checkpoint 5-4 

A person standing on a scale finds that they weigh 80 kg. 
A) They exert an upwards force on the Earth with a magnitude of 80 N. 
B) They exert an upwards force on the Earth with a magnitude of 784 N. 
C) They exert an downwards force on the Earth with a magnitude of 80 N. 
D) They exert an downwards force on the Earth with a magnitude of 784 N. 
E) They exert no force on the Earth. 

Normal forces 

Normal forces are exerted when two surfaces are in contact and “pushing” against each 
other. For example, if a block is resting on a horizontal table, the table will exert a normal 
force on the block that is upwards. The force is called “normal” because it is normal (i.e. 
perpendicular) to the interface between the two objects. The normal force exerted by a 
surface onto an object points in the direction from the surface to the object in such a 
way that it is perpendicular to the interface between the surface and the object. Because 
of Newton’s Third Law, whenever an object experiences a normal force from a surface, the 
object also exerts a force of the same magnitude (in the opposite direction) on the surface. 
The magnitude of the normal force exerted by a surface onto an object, in general, depends 
on the other forces that are exerted on the object. For example, if a block is on a table, it 
will experience a stronger normal force if you exert a downwards force on the block. 

Figure 5.2 shows two examples of the normal force on a block that is exerted by a surface (it 
is explicitly assumed that the block also experiences a downwards force from gravity that 

~is not shown). In both cases, the normal force, N , is perpendicular to the interface and in 
the direction that goes from the interface towards the object. 

~Figure 5.2: The normal force, N , exerted by a horizontal surface on a block (left side) and by an 
inclined surface (right side). In both cases, the normal force on the object is perpendicular to the 
interface between the object and the surface and points in the direction from the interface towards 
the object. 

Frictional forces 

A frictional force can exist at the interface between two surfaces and is always perpendicular 
to the normal force that corresponds to that interface. A frictional force is used to model 
the resistance that is felt when one tries to slide an object along a surface. The frictional 
force is used to model the details of how two surfaces interact at a microscopic level; since 
surfaces are never perfectly flat, two surfaces will never slide without resistance as the various 
bumps and valleys of the two surfaces will interact (Figure 5.3). Furthermore, even if the 
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two surfaces were perfectly smooth, the electrons on the two surfaces would still interact 
and lead to an e�ective force when one surface moves with respect to the other. 

Figure 5.3: Illustration that the frictional force between surfaces can be thought of as arising from 
microscopic imperfection in the surfaces, although even two perfectly smooth surfaces would still 
interact. 

One distinguishes between two types of frictional forces: kinetic and static, depending on 
whether the surfaces are sliding with respect to each other (kinetic) or not (static). Because 
of Newton’s Third Law, the objects associated with each surface will both experience a 
frictional force (same magnitude, opposite direction). 

The frictional force exerted on an object is always parallel to the surface of the object. For 
the kinetic force of friction, the force is exerted in the direction that is opposite to the motion 
of the object relative to the surface. For the static force of friction, the force is exerted in 
the direction that is opposite to the impeding motion. If a block is sliding towards the right 
on a table (Figure 5.4, left), it will experience a kinetic force of friction that is to the left. 
The table will then experience a force of friction that is to the right (Newton’s Third Law). 
If there is a heavy crate on the ground which you try to push but does not move (Figure 
5.4, right), there is a force of static friction exerted by the ground on the object that is in 
the opposite direction that you are pushing. 

~f 
Figure 5.4: (Left:) A block sliding to the right on a horizontal surface (not shown). The force 

k, is always perpendicular to the normal force and opposite of the direction of kinetic friction, 

~f 
of motion. (Right:) A block that is being acted upon by an external force 

s, is perpendicular to the normal force and opposite the direction of “impeding 
~F to the right. A force 

of static friction, 
motion” - without the force of static friction, the block would start to accelerate towards the right, 
so the force of static friction is to the left. 

One key di�erence between the forces of static and kinetic friction is that the magnitude 
of the force of static friction can vary in magnitude; the force of static friction on the crate 
increases as you push harder, until you push hard enough to overcome the maximal force of 
static friction that can exist between the ground and the crate. Often, the force of kinetic 
friction is smaller than the static force of friction; you may have noticed that you have to 
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push very hard to get an object sliding, but once it is sliding, you do not need to push as 
hard to keep it moving. 

The magnitude of the kinetic force of friction between two surfaces, fk, is modelled as being 
proportional to the normal force between the two surfaces: 

fk = µkN 

where µk is called the “coeÿcient of kinetic friction” and depends on the two surfaces. If 
you push down on an object, it is more diÿcult to slide it along a surface, because the 
normal force, and thus the kinetic friction force increases. 

Similarly, the maximum magnitude of the force of static friction between to surfaces, fs, is 
modelled as: 

fs � µsN 

where µs is called the “coeÿcient of static friction” and the inequality sign is used to indicate 
that the force of static friction has a maximum value, but that its magnitude depends on 
the other forces being exerted on the object. For example, if you do not push against a 
crate on a horizontal surface, there is no force of static friction on the crate (as long as no 
other forces are exerted that are parallel to the surface). 
Tension forces 

Tension forces are “pulling” forces that are applied by a rope or other non rigid media (e.g. 
a chain) which cannot usually be used to push2. If you attach a rope to a crate and use the 
rope to pull the crate, we call the force exerted by the rope onto the crate a force of tension. 

When you pull on a rope that is attached to a wall at the other end, we say that the rope 
is under tension, or that the tension force is present throughout the rope. If you pull really 
hard on the rope, it is harder to displace the centre of the rope (or any other point) than if 
you did not pull on the rope at all. It thus makes sense to view the tension as being present 
throughout the rope. The force of tension that a rope can apply onto an object depends on 
what is pulling on the rope at the other end. A rope can be used to change the direction 
of a force, as illustrated in Figure 5.5, which shows a pulley and rope being used to lift a 

~block vertically by applying a horizontal force, F , to the rope. 

2If you attached a rigid rod to an object and pulled on the rigid rod, you could call the force exerted by 
the rod on the object a force of tension, even if the rod is rigid. 
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Figure 5.5: A force ~F is applied to a rope, which goes around a pulley and is attached to a 
crate. The rope exerts a force of tension ~T on the crate. If the pulley and rope are massless, then 
the magnitude of the applied force is equal to that of the tension force, and the rope and pulley 
e�ectively allow one to change the direction of the applied force vector. 

The same tension is present throughout sections of the rope that can move freely. Imagine 
a rope lying on the ground and someone pressing down with their foot on the rope at its 
midpoint. If you pull on one end of the rope with your hand, there will be a tension in the 
section of the rope between your hand and the foot that is pressing on the rope, but the 
other side of the rope will be slack; the tension is thus di�erent in di�erent sections of the 
rope. As we will see in later chapters, if a rope goes around a pulley that is accelerating 
and has mass, then the tension in the rope on either side of the pulley is di�erent; this is 
similar to the tension being di�erent on either side of the foot pressing down on the rope. 
Drag forces 

Drag forces are exerted on an object that is moving through a fluid (a gas or a liquid). As 
an object moves through a fluid, the fluid must be displaced which results in a net force 
opposing the motion of the object. Drag forces are thus always in the opposite direction of 
the motion of the object relative to the fluid, similar to friction. Often, one hears the term 
“air friction” which refers to the drag force experienced by an object that is moving through 
the air. 

There is no good general model for calculating the magnitude of the drag force on any object 
moving through any fluid. This usually has to be measured; while good software exist for 
simulating drag, you will still ultimately need to test your new airplane design in a wind 
tunnel to measure the drag force. 

The magnitude of the drag force generally depends on the cross-section of the object (the 
area of the object as seen when looking at the object in the direction of motion), the speed 
of the object, and the visocity of the fluid (how diÿcult it is to displace the fluid). For small 
objects moving relatively slowly through a fluid (e.g. pollen falling through the air), the 
drag force is usually proportional to the object’s speed, whereas for larger objects moving 
faster through a fluid (e.g a car or airplane moving through the air) the drag force is usually 
proportional to the speed of the object squared. 
Spring forces 

Spring forces are those forces that are exerted by those materials and objects that can be 
compressed or extended. A common example is a simple coil spring, which has a natural 
rest length. If the spring is extended, the spring will exert “restoring forces” on both ends 
of the spring that are directed towards the centre of the spring. If the spring is compressed, 
the spring will exert restoring forces that point away from the centre of the spring. In either 
case, the spring will exert forces that would allow it to come back to its rest length. 

Most springs, if they are not stretched or compressed too much, will exert a restoring force 
that is given by Hooke’s Law: 

~F = −kxx̂ 
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~where F is the force exerted by the spring, k is called the “spring constant” of the spring, 
and x is the amount that the spring has been stretched or compressed. The negative sign 
indicates that the restoring force from the spring will be in the opposite direction that the 
spring length was changed, and the x axis is defined to be co-linear with the axis of the 
spring and the origin is located where the spring is at rest. This is illustrated in Figure 5.6. 

Figure 5.6: A spring is attached to a fixed wall on its left and to a movable block on its right. 
The x axis is chosen to describe the position of the end of the spring where the block is attached 
and the origin corresponds to the point where the spring is not extended or compressed (the top 
row). The x axis is chosen so that positive values of x correspond to the spring being extended. 
On the bottom left, the spring is extended by a distance x (the position of the block has positive x), 
and the force from the spring on the block is in the negative x direction. On the bottom right, the 
spring is compressed (the position of the block has negative x), and the force from the spring is in 
the positive x direction. 

Checkpoint 5-5 

In Figure 5.6, we chose the positive x axis to correspond to positions where the spring 
~is extended and verified that Hooke’s Law (F = −kxx̂) holds. If we had chosen the 

positive direction to correspond to compression (positive x to the left), would Hooke’s 
Law still correctly describe the direction of the force exerted by the spring on the block? 

A) Yes. 
B) No. 

Inertial forces 

Inertial forces are exerted on an object when the forces on the object are modelled in a non-
inertial frame of reference. For example, in the frame of reference of an accelerating elevator, 
or that of a car going around a curve, one can use Newton’s Three Laws to model motion, 
if an additional inertial force is included. In a frame of reference that has an acceleration 
given by ~a, an inertial force −m~a is exerted on an object. This is the nature of the outwards 
force that is felt when your car goes around a curve, or the perception of being weightless 
in an elevator that has a large downwards acceleration. We will discuss inertial forces in 
more detail in section 5.6. 
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“Applied” forces 

“Applied” forces is just a general “catch-all” term for specifying forces that are not described 
above. For example, the force applied by a person onto an object is often referred to as an 
applied force. 

5.3 Mass and inertia 
Mass is a property of an object that quantifies how much matter the object contains. In SI 
units, mass is measured in kilograms. One kilogram is defined to be the mass of a cylinder 
that is made of a platinum-iridium alloy that is kept at the international Bureau of Weights 
and Measures, in France. All other masses are obtained by comparison to this standard. 

Newton’s Second Law introduces the concept of mass as that property of the object that 
determines how large of an acceleration it will experience given a net force exerted on that 
object. In principle, one can compare the accelerations of di�erent bodies to that of the 
international standard to determine their mass in kilograms. For example, under a given 
net force, if an object’s acceleration is half of that of the standard kilogram, the object has 
a mass of 2 kg. 

In the context of Newton’s Second Law, mass is a measure of the inertia of an object; that 
is, it is a measure of how that particular object resists a change in motion due to a force 
(we can think of a large acceleration as a large change in motion, as the velocity vector of 
the object will change more). For this reason, the mass that appears in Newton’s Second 
Law is referred to as “inertial mass”. 

As you recall, the weight of an object is given by the mass of the object multiplied by the 
strength of the gravitational field, ~g. There is no reason that the mass that is used to 
calculate weight, Fg = mg, has to be the same quantity as the mass that is used to calculate 
inertia F = ma. Thus, people will sometimes make the distinction between “gravitational 
mass” (the mass that you use to calculate weight and the force of gravity) and “inertial 
mass” as described above. Very precise experiments have been carried out to determine if 
the gravitational and inertial masses are equal. So far, experiments have been unable to 
detect any di�erence between the two quantities. As we will see, both Newton’s Universal 
Theory of Gravity and Einstein Theory of General Relativity assume that the two are 
indeed equal. In fact, it is a key requirement for Einstein’s Theory that the two be equal 
(the assumption that they are equal is called the “Equivalence Principle”). You should 
however keep in mind that there is no physical reason that the two are the same, and that 
as far as we know, it is a coincidence! 

Unless stated otherwise, we will not make any distinction between gravitational and inertial 
mass and assume that they are equal. We will simply use the term “mass” and only clarify 
the type of mass when relevant (e.g. when we cover gravity). 

5.4 Applying Newton’s Laws 
Now that we have introduced all of the concepts from Newton’s Theory of Classical Physics, 
we present some general strategies for building models that use the theory. Recall that if we 
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can describe the motion of all objects of interest to us, we have described everything that 
we can. Newton’s Second Law allows us to determine the acceleration of an object based on 
the net force acting on the object. Once we have determined the accelerations of all objects 
of interest we have built a complete model. 

The most important step in applying Newton’s Theory is to identify the forces that are 
exerted on an object. The most important step in applying Newton’s Theory is to identify 
the forces that are exerted on an object. The most important step in applying Newton’s 
Theory is to identify the forces that are exerted on an object. Now that you have read it 
three times, you realize this step is important, right?! 

The strategy for building a model for the motion of an object using Newton’s Theory is 
straightforward: 

1. Identify an inertial frame of reference in which to build the model. 
2. Identify the forces acting on the object (did we mention that this step is important?). 
3. Draw a free-body diagram. 
4. Apply Newton’s Second Law. 

5.4.1 Identifying the forces 
The first step in applying Newton’s theory is to identify all of the forces that are acting on 
an object. This can be done by asking yourself: “what could possibly be pushing or pulling 
on the object?”, as well as running through the list of forces that we enumerated in section 
5.2.1 to identify if any of them are relevant here. For easy reference, we reproduce the types 
of forces here and include some questions that you might ask yourself to decide whether or 
not to include the corresponding force: 

• Weight (is the object near the surface of a planet?). 
• Normal forces (is the object in contact with any surface? There could be more than 

one!). 
• Frictional forces (are there static or kinetic friction forces associated with the normal 

forces?). 
• Tension forces (is something like a rope pulling on the object?). 
• Drag forces (is the object moving through a fluid?). 
• Spring forces (is there a spring pushing or pulling on the object?). 
• Applied forces (is anything else pushing or pulling on the object?). 
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Example 5-1 

Figure 5.7: A block on a horizontal table. 

A block of mass m is at rest on a horizontal table, as shown in Figure 5.7. What forces 
are exerted on the block? 

Solution 

The forces on the block are illustrated in Figure 5.8 and are: 
~1. Fg, its weight. 
~2. N , a normal force exerted by the plane. The normal force is perpendicular to the 
interface between the table and the block. It points upwards in “reaction” to the 
downwards force that the block exerts onto the table. The downwards force from 
the block onto the table is not shown, since that force is not exerted on the block 
but on the table. 

Figure 5.8: Forces on a block on a horizontal table. 
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Example 5-2 

A block of mass m is at rest on a inclined surface, as shown in Figure 5.9. What forces 
are exerted on the block? 

A block on an inclined surface. Figure 5.9: 

Solution 

The forces on the block are illustrated in Figure 5.10 and are: 
~1. Fg, its weight. 
~2. N , a normal force exerted by the inclined plane. 
~3. fs, a force of static friction exerted by the inclined plane. Without this force, the 
block would slide down. The force is in the direction opposite of impeding motion 
and is parallel to the interface (and perpendicular to the normal force). 

Figure 5.10: Forces on block on an inclined surface. 

Example 5-3 

Figure 5.11: A block resting on a wedge-shaped block. 

A block of mass m is at rest on a wedge-shaped block of mass M itself at rest on a hori-
zontal table, as shown in Figure 5.11. What forces are exerted on each of the two blocks? 

Solution 

Since it will be too messy to draw all of the forces on the same diagram, we have drawn 
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each block separately in Figure 5.12. Usually, when multiple blocks are stacked on each 
other, it is easiest to start with the forces on the top block. In this case, the top block 
is in the same condition as the block from Example 5-2. The forces exerted on the top 
block are: 

~N 

1. , its weight. 
2. , a normal force from the wedge-shaped block. 
3. , a force of static friction exerted by the wedge-shaped block. 

~N 

The forces exerted on the wedge-shaped block are: 

1. , its weight. 
2. , a normal force exerted by the small block. Note that this force is equal in 

m m Mmagnitude and opposite in direction to (the two forces, and , which 
are on di�erent objects, are an action/reaction pair of forces). 

3. , a force of friction exerted by the small block (again, this forms an action/re-

~N 

action pair of forces with ). 
4. N2 , a normal force exerted by the table. 

The forces for both blocks are shown in Figure 5.12. 
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Figure 5.12: Forces on the block and the wedge-shaped block. 

5.4.2 Free body diagrams 
In order to analyse the forces on an object more clearly, it is a very good idea to draw a 
“Free-Body Diagram” (FBD). A free-body diagram is simply a diagram where we draw the 
forces on a single object and represent the object as a point. Because the object is a point, 
we do not worry where on the object the forces are exerted. In later chapters, we will see 
that for extended bodies, it does matter where the forces are applied. However, Newton’s 
Laws as presented so far are only valid for objects that can be represented as a small point. 
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Figure 5.13: Free-body diagram for the block and the wedge-shaped block from Example 5-3. 

In Example 5-3 above, we would draw one free-body diagram for each object (each mass), 
as shown in Figure 5.13. 

Example 5-4 

Figure 5.14: Two connected blocks sliding down an inclined plane. 

Two blocks, of masses m1 and m2, are placed on an inclined plane that makes an angle � 
with the horizontal. The blocks are connected by a massless string, as shown in Figure 
5.14. The two blocks are sliding and accelerating downwards with an acceleration, ~a, 
as shown. The coeÿcient of kinetic friction between the plane and either block is µk. 
Draw a free-body diagram for each block. 

Solution 

First, we identify the forces on each mass (each block), which we then use to make the 
free-body diagram shown in Figure 5.15. On mass m1, the forces are: 

~1. Fg1, its weight. 
~2. N1, a normal force exerted by the inclined plane. 
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~3. fk1, a force of kinetic friction exerted by the inclined plane. The force is in the 
opposite direction of the motion, and has a magnitude given by fk1 = µkN1. 
~4. T , a force of tension from the string. 

On mass m2, the forces are: 
~1. Fg2, its weight. 
~2. N2, a normal force from the inclined plane. 
~3. fk2, a force of kinetic friction exerted by the inclined plane. The force is in the 
opposite direction of the motion, and has a magnitude given by fk2 = µkN2. 
~4. −T , a force of tension from the string. This is the same force as on m1, but in the 

~opposite direction. We chose to label the force as −T , instead of using a di�erent 
variable, since it is just the negative of the vector that represents the tension force 
on m1. 

In Figure 5.15, we have shown the forces on each block using a free-body diagram. We 
also reproduced the vector for the acceleration (we drew the vector for the acceleration 
using a thicker arrow to indicate that it has a di�erent dimension). We also reproduced 
the angle � in the free-body diagram, as this is helpful once the free-body diagram is 
used with Newton’s Second Law. 

Figure 5.15: Free-body diagram for the blocks m1 and m2 from Figure 5.14. 

5.4.3 Using Newton’s Second Law 
Applying Newton’s Second Law is straightforward once all of the forces exerted on an object 
have been identified. You should thus make sure that you spend most of your time drawing 
a good and complete free-body diagram before proceeding. 

Newton’s Second Law is a vector equation that relates the vector sum of all forces exerted on 
an object and the acceleration vector of the object. This corresponds to one scalar equation 
per component of the vector. 
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X 
~F = m~a X 
Fx = max X 
Fy = mayX 
Fz = maz 

In order to use Newton’s Second Law, we thus need to introduce a coordinate system so that 
we can work with the components of the vectors (forces and acceleration) in that coordinate 
system. Usually, a good choice of coordinate system is one where the x (or y) axis is parallel 
to the acceleration vector. Figure 5.16 shows the free-body diagram from the m1 block from 
the previous example (Example 5-4) along with a good choice of coordinate system. 

Figure 5.16: Free-body diagram and choice of coordinate system for the m1 blocks from Figure 
5.15, Example 5-4. 

To apply Newton’s Second Law using the free-body diagram and coordinate system from 
Figure 5.16, we first write out all of the vector and then identify their x and y components. 
The force vectors are: 

~T = T x̂ + 0ŷ 
~fk1 = −fk1x̂ + 0ŷ 
~Fg1 = m1g(sin �x̂ − cos �ŷ) 
~N1 = 0x̂ + N1ŷ 

We can now write out the x component of Newton’s Second Law:X 
Fx = T − fk1 − Fg1 sin � = m1a 

∴ T − fk1 − Fg1 sin � = m1a 

where we note that the normal force has no component in the x direction. The y component 
of Newton’s Second Law for mass m1 is given by: X 

Fy = N1 − Fg1 = 0 
∴ N1 − Fg1 = 0 
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where we note that the forces of tension and friction have no y component. The two 
equations that we obtained above for x and y fully specify the motion of the m1 block if all 
quantities are known3. 

A few notes on applying Newton’s Second Law: 

• When applying Newton’s Second Law, analyze each mass in the problem separately. 
It does not matter that block m1 is connected by a rope to block m2. Once you have 
determined all of the forces exerted on m1, you can write Newton’s Second Law for 
m1. 
• Newton’s Second Law is a vector equation; this means that it is true for each (scalar) 

component of the vectors involved. 
• You can choose the coordinate system, so choose one that makes it easy to write out 

the vector components. A good choice is to choose x to be parallel to the acceleration 
vector, so that you do not have to break the acceleration vector up into components. 
The choice of coordinate system is only made in order to allow you to write out the 
components of Newton’s Second Law based on the free-body diagram. 
• Treat each mass separately (since Newton’s Second Law is only true for an individual 

mass). This means that each mass will have its own free-body diagram and that 
you can choose the coordinate system that is most convenient for a given free-body 
diagram. In particular, this means that you do not need to choose the same coordinate 
system for di�erent masses in a problem. 

The following example shows how to write Newton’s Second Law for a system of two blocks. 

Example 5-5 

Figure 5.17: Two blocks connected by a massless string and massless pulley. Both blocks are 
accelerating. 

A block of mass m1 is placed on an incline that makes an angle of � with the horizontal. 
The block of mass m1 is connected by a massless string through a massless pulley to a 
second block of mass m2, which rests on a horizontal surface. The blocks are accelerat-

3Since we have two equations, we technically only need to specify all but two quantities to be able to 
fully model the motion of the block. 
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ing in such a way that the block of mass m1 is accelerating down the incline, as shown 
in Figure 5-5. The coeÿcient of kinetic friction between either block and the surface it 
is resting on is µk. Write Newton’s Second Law for both blocks. 

Solution 

First, we identify the forces on each mass (each block). On mass m1, the forces are: 
~1. Fg1, its weight. 
~2. N1, a normal force exerted by the inclined plane. 
~3. fk1, a force of kinetic friction exerted by the inclined plane. The force is in the 
opposite direction of the motion, and has a magnitude given by fk1 = µkN1. 
~4. T1, a force of tension from the string. 

On mass m2, the forces are: 
~1. Fg2, its weight. 
~2. N2, a normal force from the horizontal surface. 
~3. fk2, a force of kinetic friction exerted by the horizontal surface. The force is in 
the opposite direction of the motion, and has a magnitude given by fk2 = µkN2. 
~4. T2, a force of tension from the string. This force has the same magnitude as the 

~tension force T1 exerted on mass m1, because the pulley is massless. 

We can then proceed to draw the free-body diagram for each mass, and use that to write 
out Newton’s Second Law. For mass m1, the free-body diagram is shown in Figure 5.18. 
We have chosen a coordinate system that has the x axis parallel to the acceleration of 
the block, and the y axis upwards and perpendicular to the x axis, as shown. 

Figure 5.18: Free-body diagram for m1. 

For m1, we can write Newton’s Second Law, starting with the x components: X 
Fx = Fg1 sin � − fk1 − T1 = m1a1 

∴ m1g sin � − µkN1 − T1 = m1a1 

where, in the second line, we used the magnitude of the weight (Fg1 = m1g) and of the 
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force of kinetic friction (fk1 = µkN1). For the y component of Newton’s Second Law, 
in which the acceleration has no component, we have: X 

Fy = N1 − Fg1 cos � = 0 
∴ N1 = m1g cos � 

which shows us that the magnitude of the normal force can easily be expressed in terms 
of the weight (Fg1 = m1g) and the angle of the incline. 

For m2, we can proceed in much the same way, choosing a di�erent coordinate system, 
since the acceleration vector for m2 points in a di�erent direction (we don’t have to 
choose a di�erent coordinate system, but we can if we find it makes things easier). The 
free-body diagram for m2 is shown in Figure 5.19 along with our choice of coordinate 
system. 

Figure 5.19: Free-body diagram for m2. 

We start by writing out the x component of Newton’s Second Law for m2: X 
Fx = T2 − fk2 = m2a2 

∴ T2 − µkN2 = m2a2 

where again, we expressed the kinetic force of friction using the normal force and the 
coeÿcient of kinetic friction. The y component of Newton’s Second Law gives: X 

Fy = Fg2 − N2 = 0 
∴ N2 = m2g 

where again, we expressed the weight in terms of the mass and g, and we find that the 
normal force has the same magnitude as the weight. 

Now that we have written Newton’s Second Law for each mass, we can write all 
four equations that we obtained to describe the system of two masses. We should 
also note that the magnitude of the tension forces are the same for the two masses 
(T1 = T2 = T ), and that since the masses are connected by a string, the magnitude of 
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their acceleration vectors are the same (a1 = a2 = a). Using this, we can describe the 
full system with the following 4 equations: 

m1g sin � − µkN1 − T = m1a 

N1 = m1g cos � 
T − µkN2 = m2a 

N2 = m2g 

Of the variables above (m1, m2, µk, T , N1, N2, a), one would only need to specify 
all but four of them to fully describe the motion of the system. For example, if one 
specifies the two masses and the coeÿcient of kinetic friction, all of the other variables 
can be determined. 

5.5 The acceleration due to gravity 
If you have studied some physics before reading this textbook, you may have been surprised 
by our choice of dimension for g to be force per unit mass rather than acceleration. This 
is indeed an unconventional choice as g is usually presented as “the acceleration due to 
Earth’s gravity” instead of the “strength of Earth’s gravitational field”. Our choice comes 
from the potential di�erence between inertial mass, mI , and gravitational mass, mG, which 
we distinguish in this section. 

Consider the simple model of a mass falling freely near the surface of the Earth in the 
absence of air-resistance. The only force exerted on the mass is its weight, mG ~g, which is 
given in terms of gravitational mass (the mass that determines how an object experiences 
gravity). Both the weight and the acceleration of the object point downwards. The free-
body diagram for the mass is shown in Figure 5.20, where the y axis was chosen to be 
vertically upwards (co-linear with the acceleration). 

Figure 5.20: Free-body diagram for a mass that is free-falling in the absence of air resistance 
(drag). 

Writing out the y component of Newton’s Second Law, being careful to distinguish between 
inertial and gravitational mass, and noting that both the weight and the acceleration are in 
the negative y direction: X 

Fy = −Fg = −mI a 

∴ mGg = mI a 
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This makes it clear that g is not necessarily the acceleration due to gravity. It is only the 
acceleration due to gravity in the limit that the inertial and gravitational masses are the 
same. If mG = mI , then we have: 

a = g 

and indeed, the acceleration of objects near the surface of the Earth has a magnitude of 
g. It is also clear that the dimensions of g can also be written as an acceleration, and 
in most cases, one writes that, near the surface of the Earth, g = 9.8 m/s2. You should 
however remember that this is only true when inertial and gravitational masses are the 
same, and that g really should be thought of as the strength of the gravitational field, not 
as an acceleration. 

5.6 Non-inertial frames of reference and inertial forces 
In the previous sections, we described how to use Newton’s First Law to identify an inertial 
frame of reference (one where Newton’s First Law holds true) in order to identify the forces 
exerted on an object so that Newton’s Second Law could be applied. It is possible to 
apply Newton’s Laws in a non-inertial frame of reference, provided that one includes 
an additional “inertial force”. 

Let us assume that we hang a mass, m, from the ceiling of our car using a string. If the 
car accelerates forwards with a constant acceleration, ~a, the mass will swing towards the 
back of the car and the string will not be vertical as long as the car maintains its constant 
acceleration, as shown in Figure 5.21. As the car maintains its acceleration, the hanging 
mass will not move relative to the car. 

Figure 5.21: A mass hanging from the ceiling of a car accelerating to the right. 

We can analyse this motion from the inertial frame of reference of the ground. In this frame 
of reference, there are two forces exerted on the mass: 

~1. Fg, its weight, with magnitude mg. 
~2. T , a force of tension exerted by the string, in the direction of the string. 

The two forces are shown in the free-body diagram of Figure 5.22, along with a coordinate 
system chosen such that x points in the direction of the acceleration the mass (which is the 
same as the acceleration of the car, since the mass does not move relative to the car). 
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Figure 5.22: Free-body diagram for the forces acting on a mass suspended from the ceiling of 
accelerating car. 

Writing out the x and y components of Newton’s Second Law for the mass, we have: X 
~ ~ ~F = T + Fg = m~a X 

∴ Fx = T sin � = ma X 
∴ Fy = T cos � − Fg = 0 

We can, instead, model the motion of the mass in the frame of reference of the car, by 
pretending that we are sitting in the car. In the frame of reference of the car, the mass is 
immobile, and thus has no acceleration. In the non-inertial frame of reference of the car, we 
still have the weight and tension forces exerted on the mass; these have the same magnitude 
and direction as in the inertial frame of reference of the ground. One could replace the string 
with a spring scale, and observers in the car and on the ground would agree that the spring 
scale reads the same number. Those observers would also agree that the weight of the mass 
is the same. However, the two observers disagree on whether the mass is accelerating, since 
the observer in the car measures that the mass has no acceleration. 

In the frame of reference of the car, the acceleration of the mass is zero. If we want Newton’s 
Second Law to hold, this implies that, in the reference frame of the car, the sum of the forces 
on the mass must be zero: X 

~F = 0 (car reference frame) 

We know from analysing the motion from the frame of reference of the ground that the 
~ ~vector sum of the forces T and Fg is equal to m~a. The only way for the force in the frame 

~of reference of the car to add up to zero is if there is an additional force, FI , that is exerted 
in that frame of reference: X 

F~ = T~ + F~ g + F~ I = 0 (car reference frame) 

~ ~Since we know that T + Fg = m~a, we can substitute this in the equation above: X 
F~ = T~ + F~ g + F~ I = 0 (car reference frame) 

~= m~a + FI = 0 
∴ FI = −m~a 
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~and we find that this “inertial force”, FI , must be exerted in the opposite direction from 
the acceleration of the frame of reference, with a magnitude given by ma. The free-body 
diagram for the mass, as viewed in the reference frame of the car, is illustrated in Figure 
5.23. 

Figure 5.23: Free-body diagram for the forces acting on a mass suspended from the ceiling of 
~accelerating car, in the frame of reference of the car. An additional inertial force, FI = −m~a, has 

to be included. 

Example 5-6 

You are in an elevator that is accelerating downwards with a constant acceleration ~a. 
You are standing on a spring scale. What is the value of your weight as displayed 
on the spring scale? Assume that your mass is m. (The spring scale will display your 
weight as having the same magnitude as the normal force that the scale exerts on you). 

Solution 

We can model your motion in the non-inertial frame of reference of the elevator, where 
your acceleration is zero. The forces that are exerted on you are: 

~1. Fg, your weight, with magnitude mg. 
~2. N , the normal force exerted upwards by the spring scale, which is the weight as 
measured by the scale. 
~3. FI , an inertial force with magnitude ma that is exerted upwards (in the direction 
opposite of the acceleration of the frame of reference). 

The forces in the frame of reference of the elevator are illustrated in Figure 5.24, along 
with a coordinate system that was chosen so that the forces are co-linear with one of 
the axes (since the acceleration is zero). 
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Figure 5.24: Free-body diagram for the forces exerted on a person as modelled in a frame of 
reference that is accelerating downwards. 

All of the forces are in the vertical direction, so we only need to write out the y com-
ponent of Newton’s Second Law, which we can easily solve for the normal force: X 

Fy = N + FI − Fg = 0 
N + ma − mg = 0 

∴ N = m(g − a) 

Remember that you need to be careful about the signs. We have included the fact 
that FI is exerted upwards with the plus sign in the first equation (the y component of 
~FI = 0x̂ + FI ŷ is +FI ). We then used the fact that the magnitude of the inertial force 
is given by FI = ma in the second line. 

You can easily verify that you would obtain the same result in the inertial frame of 
reference of the ground, where there is no inertial force, but the acceleration is non-zero 
(and in the negative y direction if we use the same coordinate system): X 

Fy = N − mg = −ma (ground frame of reference) 

The normal force, which corresponds to weight as read by the scale, is thus N = 
m(g − a). We should ask ourselves if the result makes sense: 

• Since the dimension of a and g are the same, m(g − a) has the correct dimension 
of force. 
• If the acceleration, a, is zero, then the magnitude is N = mg, as it should be if 

the elevator is at rest with respect to the ground. 
• If the acceleration a is equal to g, the normal force exerted by the scale is exactly 

zero, and your measured weight is zero. This is what we call being “weightless”, 
which is not a good description, since the force of weight is still applied, and it is 
the normal force which is zero. 
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• If the acceleration, a, is bigger than g, then the normal force would be negative. 
This corresponds to the elevator accelerating downwards faster than gravity, and 
the model breaks down, since in this case, you would first hit the ceiling of the 
elevator, which would then exert a downwards normal force with magnitude m(a+ 
g). 
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5.7 Summary 

Key Takeaways 

Newton’s Three Laws are a theory of classical physics that allow the motion of an object 
to be fully described by introducing the concepts of force and mass. 

Newton’s First Law states that objects will not accelerate if no net force is exerted on 
the object. In particular, this allows inertial frames of reference to be defined as those 
frames of reference where Newton’s First Law holds true. 

Newton’s Second Law connects dynamics and kinematics by relating the net force ex-

a 

erted on an object (i.e. the vector sum of the forces exerted on an object) to its 
acceleration and its mass: X 

~Fnet = i = m~ 
i 

Newton’s Third law states that forces always come in pairs that are exerted on di�erent 

~F 

objects. If object A exerts a force on object B, then object B exerts a force that is equal 
in magnitude but opposite in direction on object A. 

A force is a mathematical tool introduced in Newton’s theory to model how di�erent 
objects can influence each other. Mass can be thought of as a quantity of matter and is 
an intrinsic property of an object. Inertial mass refers to how that quantity of matter 
resists acceleration, whereas gravitational mass refers to how that quantity of mass 
experiences the force of gravity. As far as we can tell, inertial and gravitational mass 
are the same. 

When applying Newton’s theory, the most important part is to identify the forces that 
act on one object. This can be represented graphically by using a free-body diagram. 
The following is a common list of forces to consider when identifying the forces exerted 
on an object: 

• Weight (is the object near the surface of a planet?). 
• Normal forces (is the object in contact with any surface? There could be more 

than one!). 
• Frictional forces (are there static or kinetic friction forces associated with the 

normal forces?). 
• Tension forces (is something like a rope pulling on the object?). 
• Drag forces (is the object moving through a fluid?). 
• Spring forces (is there a spring pushing or pulling on the object?). 
• Applied forces (is anything else pushing or pulling on the object?). 

When applying Newton’s Second Law, one needs to choose a coordinate system so that 
Newton’s Second Law can be written out for each component. It is usually good to 
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choose the coordinate system such that the x axis is parallel to the acceleration vector 
of the object. 

When using Newton’s Laws to model the motion of an object of mass m in a non-inertial 
frame of reference that is accelerating with acceleration ~a relative to an inertial frame of 

~reference, an additional inertial force, FI = −m~a, must be included on the the object. 

Important Equations 

Newton’s Second Law, in vector form, can be written as: X 
~F = m~a 

which is just a short-hand notation for the scalar equations written out for each com-
ponent: X 

Fx = max X 
Fy = mayX 
Fz = maz 

~The force of gravity (or weight), Fg, near the surface of the Earth is given by: 

~Fg = m~g 

where Earth’s gravitational field has a magnitude of g = 9.8 N/kg. 

The force of kinetic friction exerted by one surface on another is given by:: 

fk = µkN 

where N is the normal force between the two surfaces and µk is the coeÿcient of kinetic 
friction. The force of kinetic friction on a object is in the opposite direction from its 
motion. 

The maximum value of the magnitude of the force of static friction between two surfaces 
with a coeÿcient of static friction µs between them, can be written as: 

fs � µsN 

The force of static friction is exerted in the direction opposite of the impeding motion. 

Hookes’ Law for the force exerted by a spring, is given by the following vector equation: 

~F = −kxx̂ 

where x is the distance by which the spring is compressed or extended relative to its 
rest length. 
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Important Definitions 

Mass: A property of matter which describes its resistance to acceleration. SI units: 
[kg]. Common variable(s): M , m. 

Force: A mathematical object used to describe the interactions of an object with its 
~environment. SI units: [N]. Common variable(s): F . 

Spring constant: A value which describes the sti�ness of a spring, when the restor-
ing force of the spring is modelled using Hooke’s Law. SI units: [Nm−1]. Common 
variable(s): k. 

Gravitational field: The strength of the gravitational force per unit mass at a par-
ticular location. Under the equivalence principle, this is numerically equal to the ac-
celeration of free-falling object. SI units: [N/kg (field), ms−2 (acceleration)]. Common 
variable(s): ~g. 

Coeÿcient of friction: A constant used to determine the magnitude (or maximal 
magnitude if static friction) of a friction force between two surfaces based on the normal 
force exerted perpendicular to those two surfaces. SI units: none. Common variable(s): 
µ. 
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5.8 Thinking about the material 

Reflect and research 

1. What was the name of the publication in which Newton’s published his three 
laws, and when was it published? 

2. When did Galileo come up with his principle of inertia? 
3. Suppose that Newton grew up in an accelerating train, with no knowledge that 

he is living in an accelerating train. What would Newton’s first law look like in 
this world? 

4. When you skate on ice, there is kinetic friction between your skates and the ice. 
Does the coeÿcient of kinetic friction depend on the temperature of the ice? If 
yes, what is the optimal temperature for skating with the least amount of friction? 

To try at home 

1. Place two books stacked on each other on the palm of one hand held horizontally. 
Use your other hand to press down (and forward) on the top book and try to move 
the bottom book. No matter how hard you push down (to increase the force of 
friction between the two books), you cannot make the bottom one move. How 
come? 

To try in the lab 

1. Propose an experiment to determine whether gravitational and inertial mass are 
equal. 

2. Propose an experiment to measure the coeÿcients of static and kinetic friction 
between a block and a surface. 
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5.9 Sample problems and solutions 
5.9.1 Problems 
Problem 5-1: 

Figure 5.25: Katie snowboarding down an incline. 

Katie, an amateur snowboarder, rests at the top of hill inclined by an angle of � = 50� with 
respect to the horizontal, as shown in Figure 5.25. She gracefully slides down the hill until 
she face-plants into a large pile of snow at the bottom, 40 m from where she started. If the 
coeÿcient of kinetic friction between Katie’s snowboard and the hill is µk = 0.45, how long 
elapses between when she starts to glide and when she face plants? (Solution) 

Problem 5-2: 

Figure 5.26: Two stacked boxes. 

Two boxes with masses, m1 and m2, respectively, are placed on top of one another, as 
shown in Figure 5.26. The coeÿcient of static friction between the two boxes and between 

~the boxes and the ground is µs = 0.3. A constant force, F , is exerted on box 2, as shown. 
Show that it is impossible for box 1 to accelerate. (Solution) 
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5.9.2 Solutions 
Solution to problem 5-1: Before trying to solve the problem, we should think of the 
strategy that will allow us to model the time that it takes to arrive at the bottom. We 
know that Newton’s Second Law relates the forces on Katie to her acceleration. If we build 
a model of the forces on Katie, we can then determine her acceleration. Once we know 
her acceleration, we can use kinematics to determine how long it takes for her to cover the 
distance of 40 m. 

The forces exerted on Katie are: 
~1. Fg, her weight. 
~2. N , a normal force exerted by the slope. 
~3. fk, a force of kinetic friction exerted by the slope, with magnitude fk = µkN 

This allows us to build a free-body diagram for the forces on Katie, as shown in Figure 
5.27. Since Katie will glide down the slope, her acceleration will be parallel to the slope and 
downwards, which we showed with a thicker arrow on the free-body diagram. Our free-body 
diagram also shows the coordinate system that we chose, with the x axis pointing parallel 
to the acceleration. 

Figure 5.27: Forces acting on Katie as she snowboards. 

With a free-body diagram, we can write the x and y components of Newton’s Second Law. 
In the x direction, both the force of friction and the weight have components. The force of 
friction is in the negative x direction, whereas the component of gravity in the x direction 
is Fg sin �. The acceleration vector is also in the x direction. Putting this altogether into 
Newton’s Second Law: X 

Fx = Fg sin � − fk = ma 
∴ mg sin � − µkN = ma 

where we used the fact that the weight is given by mg (m is Katie’s mass) and the magnitude 
of the force of friction is given by fk = µkN . 

Next, we write out the y component of Newton’s Second Law. The normal force is in the 
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positive y direction, whereas the component of gravity in the y direction is −Fg cos �. The 
acceleration has no component in the y direction. Putting this into Newton’s Second Law: X 

Fy = N − Fg cos � = 0 
∴ N − mg cos � = 0 

We now have two equations that describe Katie’s motion: 

mg sin � − µkN = ma 
N − mg cos � = 0 

We have three unknowns, m, N , and a, but only two equations! Hopefully, one of these will 
cancel out! At this point, all of the physics for the problem is done! We can now proceed 
to solve these equations to find the acceleration. The second equation allows us to solve for 
the normal force, N = mg cos �, which we substitute into the first equation: 

mg sin � − µkN = ma 
∴ mg sin � − µkmg cos � = ma 

As you can see, the mass m can be cancelled out of this equation, and we can find the 
acceleration: 

a = g sin � − µkg cos � 
= g(sin � − µk cos �) 
= (9.8 N/kg) (sin(50�) − (0.45) cos(50�)) 
= 4.67 N/kg 

At this point, we should ask ourselves if our result makes sense. In particular, we have found 
that the acceleration has unit of N/kg instead of m/s2. A quick examination of Newton’s 
Second Law shows us that these two units are equivalent: 

F = ma 
F 

a = 
m 
SI[F ] N

∴ SI[a] = 
SI[m] = kg 

Often, one write the magnitude of the Earth’s gravitation field as g = 9.8 m/s2, since it has 
the same dimension as acceleration, and does indeed correspond to the acceleration that 
is felt by falling objects near the surface of the Earth. In fact, g, is usually defined as the 
acceleration of object near the Earth, although this is misleading, as it requires that inertial 
and gravitational mass be the same. 

Knowing that Katie’s initial velocity is v0x = 0 m/s, her acceleration is ax = a = 4.67 m/s2 

in the x direction (the same direction as the slope), and the distance that she must travel 
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is x = 40 m, we can find the time it takes for her to face-plant. If we set the origin of the 
x axis where she starts (so that her initial position along the x axis, x0 = 0), the distance 
that she covered in the time, t, is given by: 

x(t) = x0 + v0xt + 2
1 
at2 

1 240 m = (0) + (0)t + (1.31 m/s2)t2 

∴ t = 

vuut 2(40 m) 
(4.67 m/s2) = 4.14 s 

Katie has 4.14 s of gliding bliss before face-planting into the large pile of snow. 

Solution to problem 5-2: The only way for box 1 to accelerate is if box 2 “drags” box 
1 along with it through a force of friction exerted at the interface between box 1 and box 
2. We need to show that the force of (static) friction exerted by the ground on box 1 will 
always be at least as large as the force of friction exerted by box 2 on box 1. The largest 
force of friction that box 2 can exert on box 1 is a force of static friction, so we model all 
forces between surfaces as forces of static friction. 

The forces on box 2 are: 

~• F2g, its weight. 
~• N2, a normal exerted by box 1. 
~• f2s, a force of static friction exerted by box 1. 
~• F , the applied force. 

The forces on box 1 are: 

~• F1g, its weight. 
~• −N2, a normal force exerted by box 2 (downwards). 
~• −f2s, a force of static friction exerted by box 2. 

~• N1, a normal force exerted by the ground. 
~• f1s, a force of static friction exerted by the ground. 

The are illustrated in the free-body diagram in Figure 5.28 



137 5.9. SAMPLE PROBLEMS AND SOLUTIONS 

Figure 5.28: Forces on the two boxes. 

Considering the y component of Newton’s Second Law for box 2 (the top box), we can find 
the value of the normal force exerted by box 1: X 

Fy = N2 − F2g = 0 
∴ N2 = m2g 

The maximal magnitude of the force of static friction, f2s, between the two boxes is given 
by: 

f2s = µsN2 = µsm2g 

This is the maximal magnitude of the force that can accelerate box 1. Considering the y 
component of Newton’s Second Law applied to box 1, we can find N1, the normal force 
exerted by the ground: X 

Fy = N1 − F1g − N2 = 0 
∴ N1 = F1g + N2 = (m1 + m2)g 

The force of static friction exerted by the ground on box 1 will be in the opposite direction 
as the force of static friction exerted by box 2. The maximal magnitude of the force of static 
friction exerted by the ground is given by: 

f1s = µsN1 = µs(m1 + m2)g 

We can see that the maximal force of static friction exerted by the ground will always exceed 
the magnitude of the force of static friction exerted by box 2. It is thus impossible to push 
on box 2 to make box 1 move (as long as the force of static friction between the two boxes 
and the box and the ground are the same). 



6 Applying Newton’s Laws 

In this chapter, we take a closer look at how to use Newton’s Laws to build models to 
describe motion. Whereas the previous chapter was focused on identifying the forces that 
are acting on an object, this chapter focuses on using those forces to describe the motion of 
the object. 

Newton’s Laws are meant to describe “point particles”, that is, objects that can be thought 
of as a point and thus have no orientation. A block sliding down a hill, a person on a 
merry-go-round, a bird flying through the air can all be modelled as point particles, as long 
as we do not need to model their orientation. In all of these cases, we can model the forces 
on the object using a free-body diagram as the location of where the forces are applied on 
the object do not matter. In later chapters, we will introduce the tools required to apply 
Newton’s Second Law to objects that can rotate, where we will see that the location of 
where a force is exerted matters. 

Learning Objectives 

• Understand when an object’s motion can be modelled as one dimensional (linear). 
• Be able to develop models for objects undergoing linear motion. 
• Be able to develop models for objects undergoing circular motion. 
• Be able to develop models for objects undergoing arbitrary three dimensional 

motion. 
• Understand the forces involved in circular motion, and understand that “cen-

tripetal” and “centrifugal” forces are not really forces. 

Think About It 

If a person swings on a swing where the ropes are damaged, where are the ropes most 
likely to break? 

A) at the bottom of the trajectory, when the speed is the greatest. 
B) at the top of the trajectory, when the speed is zero. 
C) at the point in the trajectory where the speed is one half of its maximal value. 

6.1 Statics 
When using Newton’s Laws to model an object, one can identify two broad categories of 
situations: static and dynamic. In static situations, the acceleration of the object is zero. 
By Newton’s Second Law, this means that the vector sum of the forces (and torques, as we 
will see in a later chapter) exerted on an object must be zero. In dynamic situations, the 

138 



139 6.1. STATICS 

acceleration of the object is non-zero. 

For static problems, since the acceleration vector is zero, we can choose a coordinate system 
in a way that results in as many forces as possible being aligned with the axes (so that we 
minimize the number of forces that we need to break up into components). 

Example 6-1 

~You push horizontally with a force F on a box of mass m that is resting against a 
vertical wall, as shown in Figure 6.1. The coeÿcient of static friction between the wall 
and the box is µs. What is the minimum magnitude of the force that you must exert 
for the box to remain stationary? 

Solution 

Figure 6.1: A horizontal force exerted on box that is resting against a wall. 

Since the acceleration of the box is zero, the vector sum of the forces exerted on the 
box is zero. We start by identifying the forces exerted on the box; these are: 

~1. F , the horizontal force that you exert on the box. 
~2. Fg, the weight of the box, with magnitude mg. 
~3. N , a normal force exerted by the wall on the box. The force is in the horizontal 

~direction, in the opposite direction to F . 
~4. fs, a vertical force of static friction between the wall and the box. The force points 
upwards as the “impeding motion” of the block is downwards. The force will have 
at most a magnitude of fs � µsN , since the force of static friction depends on the 
other forces exerted on the object. 

The forces are shown in the free-body diagram in Figure 6.2, along with our choice of 
coordinate system which was chosen so that all forces are either in the x or y direction. 
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Figure 6.2: Free-body diagram of the forces exerted on the box. 

The x component of Newton’s Second Law is: X 
Fx = F − N = 0 

∴ N = F 

which tells us that the normal force exerted by the wall has the same magnitude as the 
~applied force, F . The y component of Newton’s Second Law is: X 

Fy = fs − Fg = 0 
∴ fs − mg = 0 
∴ fs = mg 

which tells us that the force of friction must have the same magnitude as the weight. 
This makes sense, since they are the only forces with components in the y direction, 
and thus, they must cancel each other out. 

The force of friction will be less than or equal to µsN , and thus less than or equal 
~ ~to µsF , since F and N have the same magnitude (from the x component of Newton’s 

Second Law). Furthermore, since fs = mg, we can write: 

fs � µsF 
∴ mg � µsF 
mg

∴ � F 
µs 

which gives us the condition that F � mg/µs, and thus the minimum magnitude of F 
in order to keep the box from sliding down. 

Although we used the lesser than or equal to sign in the above equations, we could 
have used an equal sign if we were confident that the force of friction has its maximal 
magnitude, fs = µsN . The maximal magnitude of the force of friction is proportional 
to the force that we exert (since N = F ); if we want to exert the least amount of force 
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F , then we need the force of friction to be equal to its maximal magnitude which needs 
to be equal to the weight of the box. 

Discussion: This model for the minimal required force makes sense because: 

• The dimension of mg/µs is force. 
• If the mass of the box is increased, then one needs to push harder against the box 

to keep it up. 
• If the coeÿcient of static friction, µs, is increased, one does not need to push as 

hard. 

6.2 Linear motion 
We can describe the motion of an object whose velocity vector does not continuously change 
direction as “linear” motion. For example, an object that moves along a straight line in a 
particular direction, then abruptly changes direction and continues to move in a straight line 
can be modelled as undergoing linear motion over two di�erent segments (which we would 
model individually). An object moving around a circle, with its velocity vector continuously 
changing direction, would not be considered to be undergoing linear motion. For example, 
paths of objects undergoing linear and non-linear motion are illustrated in Figure 6.3. 

Figure 6.3: (Left:) Displacement vectors for an object undergoing three segments that can each be 
modelled as linear motion. (Right:) Path of an object whose velocity vector changes continuously 
and cannot be considered as linear motion. 

When an object undergoes linear motion, we always model the motion of the object over 
straight segments separately. Over one such segment, the acceleration vector will be co-
linear with the displacement vector of the object (parallel or anti-parallel - note that the 
acceleration can change direction as it would from a spring force, but will always be co-linear 
with the displacement). 

Example 6-2 

A block of mass m is placed at rest on an incline that makes an angle � with respect to 
the horizontal, as shown in Figure 6.4. The block is nudged slightly so that the force of 
static friction is overcome and the block starts to accelerate down the incline. At the 
bottom of the incline, the block slides on a horizontal surface. 

The coeÿcient of kinetic friction between the block and the incline is µk1, and the 
coeÿcient of kinetic friction between the block and horizontal surface is µk2. If one 
assumes that the block started at rest a distance L from the bottom of the incline, how 
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far along the horizontal surface will the block slide before stopping? 

Figure 6.4: A block slides down an incline before sliding on a flat surface and stopping. 

Solution 

We can identify that this is linear motion that we can break up into two segments: (1) 
the motion down the incline, and (2), the motion along the horizontal surface. We will 
thus identify the forces, draw the free-body diagram for the block, and use Newton’s 
Second Law twice, once for each segment. 

It is often useful to describe the motion in words to help us identify the steps required 
in building a model for the block. In this case we could say that: 

1. The block slides down the incline and accelerates in the direction of motion. By 
identifying the forces and applying Newton’s Second Law, we can determine its 
acceleration which will be parallel to the incline. 

2. The block will reach a certain speed at the bottom of the incline, which we can 
determine from kinematics by knowing that the block travelled a distance L, with 
a known acceleration and that it started at rest. 

3. The block will decelerate along the horizontal surface. Again, by identifying 
the forces and using Newton’s Second Law, we will be able to determine the 
acceleration of the block. 

4. The block will stop after having travelled an unknown distance, which we can 
find by using kinematics and knowing the acceleration of the block as well as its 
initial velocity at the bottom of the incline. 

Our first step is thus to identify the forces on the block while it is on the incline. These 
are: 

~1. Fg, its weight. 
~2. N1, a normal force exerted by the incline. 
~3. fk1, a force of kinetic friction exerted by the incline. The force is opposite of the 
direction of motion, and has a magnitude given by fk1 = µk1N1. 

These are shown on the free-body diagram in Figure 6.5. As usual, we drew the ac-
celeration, ~a1, on the free-body diagram, and chose the direction of the x axis to be 
parallel to the acceleration. 
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Figure 6.5: Free-body diagram for the block when it is on the incline. 

Writing out the x component of Newton’s Second Law, and using the fact that the 
acceleration is in the x direction (~a = a1x̂): X 

Fx = Fg sin � − fk1 = ma1 

∴ mg sin � − µk1N1 = ma1 

where we expressed the magnitude of the kinetic force of friction in terms of the normal 
force exerted by the plane, and the weight in terms of the mass and gravitational field, 
g. The y component of Newton’s Second Law can be written: X 

Fy = N1 − Fg cos � = 0 
∴ N1 = mg cos � 

which we used to express the normal force in terms of the weight. We can use this 
expression for the normal force by substituting it into the equation we obtained from 
the x component to find the acceleration along the incline: 

mg sin � − µk1N1 = ma1 

mg sin � − µk1mg cos � = ma1 

∴ a1 = g(sin � − µk1 cos �) 

Now that we know the acceleration down the incline, we can easily find the velocity at 
the bottom of the incline using kinematics. We choose the origin of the x axis to be 
zero where the block started (x0 = 0), so that the block is at position x = L at the 
bottom of the incline. Using kinematics, we can find the speed, v, given that the initial 
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speed, v0 = 0: 

v 2 − v0
2 = 2a1(x − x0) 
v 2 = 2a1L q 

∴ v = 2a1L q 
= 2Lg(sin � − µk1 cos �) 

We can now proceed to build a model for the second segment. We first identify the 
forces on the block when it is on the horizontal surface; these are: 

~1. Fg1, its weight. 
~2. N2, a normal force exerted by the horizontal surface. This is in general di�erent 
than the normal force exerted when the block was on the inclined plane. 
~3. fk2, a force of kinetic friction exerted by the horizontal surface. The force is 
opposite of the direction of motion, and has a magnitude given by fk2 = µk2N2. 

The forces are illustrated by the free-body diagram in Figure 6.6, where we showed 
the acceleration vector, ~a2, which we determined to be to the left since the block is 
decelerating. We also chose an xy coordinate system such that the x axis is anti-
parallel to the acceleration, so that the motion is in the positive x direction (and the 
acceleration in the negative x direction). 

Figure 6.6: Free-body diagram for the block when it is sliding along the horizontal surface. 
We (arbitrarily) chose the positive x direction to be in the direction of motion and anti-parallel 
to the acceleration. We could easily have chosen the opposite direction. 

Writing out the x component of Newton’s Second Law: X 
Fx = −fk2 = −ma2 

∴ µk2N2 = ma2 

where we expressed the force of kinetic friction using the normal force. We have to be 
careful here with the sign of the acceleration; the equation that we wrote implies that 
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a2 is a positive number, since µk2 is positive and N2 is also positive (it is the magnitude 
of the normal force). a2 is the magnitude of the acceleration, and we included the fact 
that the acceleration points in the negative x direction when we put a negative sign in 
the first line. The x component of the acceleration is −a2, and the vector is given by 
~a2 = −a2x̂. 

The y component of Newton’s Second Law will allow us to find the normal force: X 
Fy = N2 − Fg = 0 

∴ N2 = mg 

which we can substitute back into the x equation to find the magnitude of the acceler-
ation along the horizontal surface: 

ma2 = µk2N2 

∴ a2 = µk2g 

Now that we have found the acceleration along the horizontal surface, we can use 
kinematics to find the distance that the block travelled before stopping. We choose the 
origin of the x axis to be the bottom of the incline (x0 = 0), the acceleration is negative 
ax = −a2 = −muk2g, the final speed is zero, v = 0, and the initial speed, v0 is given by 
our model for the first segment. Using one of the kinematic equations: 

2 − v 2 v 0 = 2(−a2)(x − x0) 
v0

2 = 2a2x 

1 2∴ x = v2a2
0 

1 = 2Lg(sin � − µk1 cos �)2µk2g 

(sin � − µk1 cos �)
∴ x = L 

µk2 

Discussion: The model for the distance x that it takes the block to stop makes sense 
because: 

• All of the terms in the fraction are dimensionless, so the value of x will have the 
same dimension as L. 
• If we make L bigger, then x will be bigger (if we release the block from higher up 

on the incline, it will have more time to accelerate and will slide further before 
stopping). 
• If we make µk1 bigger, then x will be smaller: if we increase friction on the incline, 

the block will have a smaller acceleration and smaller speed at the bottom. 
• If we increase the friction with the horizontal plane (increase µk2), then x will be 

reduced (it won’t slide as far if there is more friction on the horizontal plane). 
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• If we increase �, the numerator will be larger, so x will increase (the block will 
accelerate more down a steeper incline and end up further). 

Checkpoint 6-1 

A present is placed at rest on a plane that is inclined, at a distance L from the bottom 
of the incline, much like the box in Example 6-2 above. At the bottom of the incline, 
the box is determined to have a speed v. If the box is instead released from a distance 
of 4L from the bottom of the incline, what will its speed at the bottom of the incline 
be? 

A) v 
B) 2v 
C) 4v 
D) it depends on the coeÿcient of friction between the present and the plane. 

6.2.1 Modelling situations where forces change magnitude 
So far, the models that we have considered involved forces that remained constant in mag-
nitude. In many cases, the forces exerted on an object can change magnitude and direction. 
For example, the force exerted by a spring changes as the spring changes length or the force 
of drag changes as the object changes speed. In these case, even if the object undergoes 
linear motion, we need to break up the motion into many small segments over which we 
can assume that the forces are constant. If the forces change continuously, we will need to 
break up the motion into an infinite number of segments and use calculus. 

Consider the block of mass m that is shown in Figure 6.7, which is sliding along a frictionless 
~horizontal surface and has a horizontal force F (x) exerted on it. The force has a di�erent 

magnitude in the three segments of length �x that are shown. If the block starts at position 
x = x0 axis with speed v0, we can find, for example, its speed at position x3 = 3�x, after 
the block travelled through the three segments. 

Figure 6.7: A block being pushed along a frictionless horizontal surface with a force that changes. 

~The horizontal force, F , exerted on the block can be written as: 

F1x̂ x < �x (segment 1) 
~F (x) = F2x̂ �x � x < 2�x (segment 2) 

F3x̂ 2�x � x (segment 3) 

8 >< 
>: 
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as it depends on the location of the block. To find the speed of the block at the end of the 
third segment, we can model each segment separately. The forces exerted on the block are 
the same in each segment: 

~1. Fg, its weight, with magnitude mg. 
~2. N , a normal force exerted by the ground. 
~3. F (x), an applied force that changes magnitude with position and is di�erent in the 
three di�erent segments. 

The forces are illustrated in the free-body diagram show in Figure 6.8. 

Figure 6.8: Free-body diagram for the block shown in Figure 6.7. 

Newton’s Second Law can be used to determine the acceleration of the block for each of the 
three segments, since the forces are constant within one segment. For all three segments, 
the y component of Newton’s Second Law just tells us that the normal force exerted by the 
ground is equal in magnitude to the weight of the block. The x component of Newton’s 
Second Law gives the acceleration: X 

Fx = Fi = mai 

where we have used the index i to indicate which segment the block is in (i can be 1, 2 or 
3). The acceleration of the block in segment i is given by: 

Fi 
ai = 

m 

If the speed of the block is v0 at the beginning of segment 1 (x = x0), we can find its speed 
at the end of segment 1 (x = x1), v1, using kinematics and the fact that the acceleration in 
segment 1 is a1: 

v1
2 − v0

2 = 2a1(x1 − x0) 
v1

2 = v0
2 + 2a1�x 

2 2∴ v1 = v0 + 2F1 �x 
m 

We can now easily find the speed at the end of segment 2 (x = x2), v2, since we know the 
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speed at the beginning of segment 2 (x1,v1) and the acceleration a2: 

v2
2 − v 2 = 2a2(x2 − x1)1 

∴ v2
2 = v1

2 + 2a2�x 
2= v0 + 2F1 �x + 2F2 �x 

m m 

It is easy to show that the speed at the end of the third segment is: 

2 2 v3 = v0 + 2F1 �x + 2F2 �x + 2F3 �x 
m m m 

If there were N segments, with the force being di�erent in each segment, we could use the 
summation notation to write: 

i=N FiX 
vN 

2 = v0
2 + 2 �x 

mi=1 

~Finally, if the magnitude of the force varied continuously as a function of x, F (x), we would 
model this by taking segments whose length, �x, tends to zero (and we would need an 
infinite number of such segments). For example, if we wanted to know the speed of the 

~object at position x = X along the x axis, with a force that was given by F (x) = F (x)x̂, if 
the object started at position x0 with speed v0, we would take the following limit: 

i=N 
2 2 X F (x) 
v = v0 + lim 2 �x 

�x!0 mi=1 

where �x = X
N 

so that as �x ! 0, N ! 1. Of course, integrals are the exact tool that 
allow us to evaluate the sum in this limit: 

i=N Z XX Fi F (x)lim 2 �x = 2 dx 
�x!0 m x0 mi=1 

and the speed at position x = X is given by: Z X
2 2 F (x) 
v = v0 + 2 dx 

x0 m 

Naturally, we can find the above result starting directly from calculus. If the component 
of the (net) force in the x direction is given by F (x), then the acceleration is given by 
a(x) = F

m 
(x) . The velocity is related to the acceleration: 

a(x) = dv 
dt 

∴ dv = a(x)dt 

We cannot simply integrate the last equation to find that v = 
R 
a(x)dt because the acceler-

ation is given as a function of position, a(x), and not a function of time, t. Thus, we cannot 
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simply take the integral over t and must instead “change variables” to take the integral over 
x. x and t are related through velocity: 

dx 
v = 

dt 
1

∴ dt = dx 
v 

We can thus write: 
1 

dv = a(x)dt = a(x) dx 
v 

The equation above is called a “separable di�erential equation”, which can also be written: 
dv 1 = a(x)
dx v 

This is called a di�erential equation because it relates the derivative of a function (the 
derivative of v with respect to x, on the left) to the function itself (v appears on the right 
as well). The di�erential equation is “separable”, because we can separate out all of the 
quantities that depend on v and on x on di�erent sides of the equation: 

vdv = a(x)dx 

This last equation says that vdv is equal to a(x)dx. Remember that dx is the length of a 
very small segment in x, and that dv is the change in velocity over that very small segment. 
Since the terms on the left and right are equal, if we sum (integrate) the quantity vdv over 
many segments, that sum must be equal to the sum (integral) of the quantity a(x)dx over 
the same segments. Let us choose those segment such that for the beginning of the first 
interval the position and speed are x0 and v0, respectively, and the position and speed at 
the end of the last segment are X and V , respectively. We then must have that: Z V Z X 

vdv = a(x)dx 
v0 x0 

1 1 
2V 

2 − 2v0
2 = 

Z X 
a(x)dx 

x0 Z X 
∴ V 2 2= v0 + 2 a(x)dx 

x0 

which is the same as we found earlier. If the acceleration is constant, we recover our formula 
from kinematics: Z X 

V 2 = v0
2 + 2 adx 

x0 

= v0
2 + 2a(X − x0) 

∴ V 2 − v0
2 = 2a(X − x0) 
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Example 6-3 

Figure 6.9: A block is launched along a frictionless surface by compressing a spring by a 
distance D. The top panel shows the spring when at rest, and the bottom panel shows the 
spring compressed by a distance D just before releasing the block. 

A block of mass m can slide freely along a frictionless surface. A horizontal spring, 
with spring constant, k, is attached to a wall on one end, while the other end can move 
freely, as shown in Figure 6.9. A coordinate system is defined such that the x axis 
is horizontal and the free end of the spring is at x = 0 when the spring is at rest. 
The block is pushed against the spring so that the spring is compressed by a distance 
D. The block is then released. What speed will the block have when it leaves the spring? 

Solution 

As you recall, the force exerted by a spring depends on the compression or extension of 
the spring and is given by Hooke’s Law: 

~F (x) = −kxx̂ 

where x is the position of the free end of the spring and x = 0 corresponds to the spring 
being at rest. In our case, when the edge of the block is located at x0 = −D (the 
spring is compressed), the force is thus in the positive x direction (since x0 is a negative 
number). 

The forces on the block are: 
~1. Fg, its weight, with magnitude mg. 
~2. N , a normal force exerted by the ground. 
~3. F (x), the spring force. 

Since the block is not moving vertically, the magnitude of the normal force must equal 
the weight N = mg, since these are the only forces with components in the vertical 
direction. The x component of Newton’s Second Law gives us the acceleration of the 
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block (which depends on x): X 
Fx = −kx = ma(x) 

∴ a(x) = − k x 
m 

Again, recall that if x is negative, then the acceleration will be in the positive direction. 
Since this scenario is exactly the same that we described above in the text, namely a 
force that varies continuously with position, we can apply the formula that we found 
earlier for determining the velocity after a varying force has been applied from position 
x = x0 to position x = X: Z X 

V 2 2= v0 + 2 a(x)dx 
x0 

V is the final speed that we would like to find, v0 = 0 because the block starts at rest, 
and x0 = −D is the starting position of the block. X is the position along the x axis 
where the block leaves the spring. 

We have to think a little about what the value of X should be: when the spring is 
compressed and the block accelerating, the spring is pushing the block in the positive 
x direction. Once the block reaches x = 0 the spring would want to pull the block 
backwards, but since it is not attached to the block, it stops exerting a force on the 
block at that point. The block thus leaves the spring at x = 0, so that the final position 
is X = 0. The speed of the block when it leaves the spring is thus: Z X 

V 2 2= v0 + 2 a(x)dx 
x0Z 0 

= 0 + 2 a(x)dx 
−DZ 0 k = 2 − xdx 

−D m " #0
k 1 2= 2 − 2x m −D 

k
D2= 

ms 
k

∴ V = D 
m 

Discussion: This model for the speed of the block when it leaves the spring makes 
sense because: 

• The dimension for the expression for V is correct (you should check this!). 
• If the spring is compressed more (bigger value of D), then the speed will be higher. 
• If the mass is bigger (more inertia), then the final speed will be lower. 
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• If the spring is sti er (bigger value of k), then the final speed will be higher. 

If you have studied physics before, you may have realized that the speed is easily found 
by conservation of energy: 

1 1 
2mV 

2 = 2kD
2 

which gives the same value for V . As we will see in a later chapter, kinetic and potential 
energy are defined as they are, precisely because it makes using conservation of energy 
equivalent to using forces as we just did. 

Example 6-4 

An object of mass m is released from rest out of a helicopter. The drag (air-resistance) 
on the object can be modelled as having a magnitude given by bv, where v is the speed 
of the object and b is a constant of proportionality. How does the velocity of the object 
depend on time? 

Solution 

As the object falls through the air, the forces exerted on the object are: 

1. Fg, its weight, with magnitude mg, exerted downwards. 
2. Fd, the force of drag, with magnitude bv, exerted upwards. 

Since the object will fall in a straight line, this is a one-dimensional problem, and we 
can choose the x axis to be vertical, with positive x pointing downwards, and the origin 
located where the object was released. The object will thus have a positive acceleration 
and move in the positive x direction with this choice of coordinate system. This is 
illustrated in the free-body diagram in Figure 6.10. 

Figure 6.10: Free-body diagram for a block free-falling with drag. 
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Newton’s Second Law for the object gives: X 
Fx = Fg − Fd = ma 

mg − bv = ma 

∴ a = g − b v 
m 

In this case, the acceleration depends explicitly on velocity rather than position, as 
we had before. However, we can use the same methodology to find how the velocity 
changes with time. First, we can note that the acceleration is zero if: 

g − b v = 0 
m 
mg

∴ v = 
b 

That is, once the object reaches a speed of vterm = mg/b, it will stop accelerating, i.e. 
it will reach “terminal velocity”. Note that this is the same condition as requiring that 
the drag force (bv) have the same magnitude as the weight (mg). 

Writing the acceleration as a = dv , we can write:
dt ! 
dv b 

dt 
= g − v 

m 

which again, is a separable di�erential equation, in which we can write the terms that 
depend on v and those that depend on t on separate sides of the equal sign: 

dv = dt 
g − 

m
b v 

dv b = − dt 
v − mg m

b 

where we re-arranged the equation in the second line so that it would be easier to 
integrate in the next step. We can find the velocity, v(t), at some time, t, by stating 
that v = 0 at t = 0 and taking the integrals (sum) on both sides. Again, we are 
modelling the motion as being made up of a large number of very small segments where 
the quantities on both sides of the equation are the same. Thus, if we sum (integrate) 
those quantities over all of the same segments, the left and right hand side of the 
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equations will still be equal to each other: Z Z v(t) tdv b = − dt 
v − mg0 0 mb� � ��v(t)mg bln v − = − t 
b 0 m� � � � 

mg mg bln v(t) − − ln − = − t 
b b m 

v(t) − mg 
! 

bln 
−mg = − b t 

m
b 

where, in the last line, we used the property that ln(a) − ln(b) = ln(a/b). By taking 
ln(x)the exponential on either side of the equation (e = x), we can find an expression for 

the velocity as a function of time: 

v(t) − mg − b 
m b = e t 

−mg 
b 
mg mg − b t 

mv(t) − = − e 
b b 

mg mg − b t 
m∴ v(t) = − e 

b b� �mg − b t 
m = 1 − e 

b 

Discussion: This equation tells us that the velocity increases as a function of time, 
but the rate of increase decreases exponentially with time. At time t = 0, the velocity 
is zero, as expected. As t approaches infinity, v approaches, mg

b 
, which is the terminal 

velocity. The time dependence of the velocity is illustrated in Figure 6.11. 
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Figure 6.11: Velocity as a function of time for an object of mass m = 10 kg which is free-
falling from rest with a drag coeÿcient b = 0.5 Ns/m. 

6.3 Uniform circular motion 
As we saw in Chapter 4, “uniform circular motion” is defined to be motion along a circle 
with constant speed. This may be a good time to review Section 4.4 for the kinematics of 
motion along a circle. In particular, for the uniform circular motion of an object around a 
circle of radius R, you should recall that: 

• The velocity vector, ~v, is always tangent to the circle. 
• The acceleration vector, ~a, is always perpendicular to the velocity vector, because the 

magnitude of the velocity vector does not change. 
• The acceleration vector, ~a, always points towards the centre of the circle. 
• The acceleration vector has magnitude a = v2/R. 
• The angular velocity, !, is related to the magnitude of the velocity vector by v = !R 

and is constant. 
• The angular acceleration, , is zero for uniform circular motion, since the angular 

velocity does not change. 

In particular, you should recall that even if the speed is constant, the acceleration vector 
is always non-zero in uniform circular motion because the velocity changes direction. 
According to Newton’s Second Law, this implies that there must be a net force on the 
object that is directed towards the centre of the circle1 (parallel to the acceleration): 

X 
~F = m~a 

where the acceleration has a magnitude a = v2/R. Because the acceleration is directed 
towards the centre of the circle, we sometimes call it a “radial” acceleration (parallel to the 
radius), aR, or a “centripetal” acceleration (directed towards the centre), ac. 

Consider an object in uniform circular motion in a horizontal plane on a frictionless surface, 
as depicted in Figure 6.12. 

1The sum of the forces is often called the “net force” on an object, and in the specific case of uniform 
circular motion, that net force is sometimes called the “centripetal force” - however, it is not a force in and 
of itself and it is always the sum of the forces that points towards the centre of the circle. 
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Figure 6.12: An object undergoing uniform circular motion on a frictionless surface, as seen from 
above. 

The only way for the object to undergo uniform circular motion as depicted is if the net 
force on the object is directed towards the centre of the circle. One way to have a force that 
is directed towards the centre of the circle is to attach a string between the center of the 
circle and the object, as shown in Figure 6.12. If the string is under tension, the force of 
tension will always be towards the centre of the circle. The forces on the object are thus: 

~1. Fg, its weight with magnitude mg. 
~2. N , a normal forced exerted by the surface. 
~3. T , a force of tension exerted by the string. 

The forces are depicted in the free-body diagram shown in Figure 6.13 (as viewed from the 
side), where we also drew the acceleration vector. Note that this free-body diagram is only 
“valid” at a particular instant in time since the acceleration vector continuously changes 
direction and would not always be lined up with the x axis. 

Figure 6.13: Free-body diagram (side view) for the object from Figure 6.13 undergoing uniform 
circular motion. 

Writing out the x and y components of Newton’s Second Law: X 
Fx = T = maR X 
Fy = N − Fg = 0 

The y component just tells us that the normal force must have the same magnitude as the 
weight because the object is not accelerating in the vertical direction. The x component 
tells us the relation between the magnitudes of the tension in the string and the radial 
acceleration. Using the speed of the object, we can also write the relation between the 
tension and the speed: 

2v 
T = maR = m 

R 
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Thus, we find that the tension in the string increases with the square of the speed, and 
decreases with the radius of the circle. 

Checkpoint 6-2 

Figure 6.14: Possible trajectories (in red) that the block will follow if the string breaks. 

An object is undergoing uniform circular motion in the horizontal plane, when the string 
connecting the object to the centre of rotation suddenly breaks. What path will the 
block take after the string broke? 

A) A 
B) B 
C) C 
D) D 

Example 6-5 

Figure 6.15: A car going around a curve that can be approximated as the arc of a circle of 
radius R. 

A car goes around a curve which can be approximated as the arc of a circle of radius 
R, as shown in Figure 6.15. The coeÿcient of static friction between the tires of the 
car and the road is µs. What is the maximum speed with which the car can go around 
the curve without skidding? 

Solution 

If the car is going at constant speed around a circle, then the sum of the forces on the 
car must be directed towards the centre of the circle. The only force on the car that 
could be directed towards the centre of the circle is the force of friction between the 
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tires and the road. If the road were perfectly slick (think driving in icy conditions), it 
would not be possible to drive around a curve since there could be no force of friction. 
The forces on the car are: 

~1. Fg, its weight with magnitude mg. 
~2. N , a normal force exerted upwards by the road. 
~3. fs, a force of static friction between the tires and the road. This is static friction, 
because the surface of the tire does not move relative to the surface of the road 
if the car is not skidding. The force of static friction has a magnitude that is at 
most fs � µsN . 

The forces on the car are shown in the free-body diagram in Figure 6.16. 

Figure 6.16: Free-body diagram for the car as seen looking at the car from the back (the centre 
of the curve is towards the left). 

The y component of Newton’s Second Law tells us that the normal force exerted by the 
road must equal the weight of the car: X 

Fy = N − Fg = 0 
∴ N = mg 

The x component relates the force of friction to the radial acceleration (and thus to the 
speed): 

2X v 
Fx = fs = maR = m 

R 
2v

∴ fs = m 
R 

The force of friction must be less than or equal to fs � µsN = µsmg (since N = mg 
from the y component of Newton’s Second Law), which gives us a condition on the 
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speed: 
2v 

fs = m � µsmg
R 
v 2 � µsgR q

∴ v � µsgR 

Thus, if the speed is less than 
p
µsgR, the car will not skid and the magnitude of the 

force of static friction, which results in an acceleration towards the centre of the circle, 
will be smaller or equal to its maximal possible value. 

Discussion: The model for the maximum speed that the car can travel around the 
curve makes sense because: 

• The dimension of 
p
µsgR is speed. 

• The speed is larger if the radius of the curve is larger (one can go faster around 
a wider curve without skidding). 
• The speed is larger if the coeÿcient of friction is large (if the force of friction is 

larger, a larger radial acceleration can be sustained). 

Example 6-6 

Figure 6.17: A ball attached to a string undergoing circular motion in a vertical plane. 

A ball is attached to a mass-less string and executing circular motion along a circle of 
radius R that is in the vertical plane, as depicted in Figure 6.17. Can the speed of the 
ball be constant? What is the minimum speed of the ball at the top of the circle if it 
is able to make it around the circle? 

Solution 

The forces that are acting on the ball are: 
~1. Fg, its weight with magnitude mg. 
~2. T , a force of tension exerted by the string. 
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Figure 6.18 shows the free-body diagram for the forces on the ball at three di�erent 
locations along the path of the circle. 

Figure 6.18: A ball attached to a string undergoing circular motion in a vertical plane. 

In order for the ball to go around in a circle, there must be at least a component of the 
net force on the ball that is directed towards the centre of the circle at all times. In the 
bottom half of the circle (positions 1 and 2), only the tension can have a component 
directed towards the centre of the circle. 

Consider in particular the position labelled 2, when the string is horizontal and the 
~tension is equal to T2. The free-body diagram in Figure 6.18 also shows the vector 

~sum of the weight and tension at position 2 (the red arrow labelled P F ), which points 
downwards and to the left. It is thus clearly impossible for the acceleration vector to 
point towards the centre of the circle, and the acceleration will have components that 
are both tangential (aT ) to the circle and radial (aR), as shown by the vector ~a2 in 
Figure 6.18. 

The radial component of the acceleration will change the direction of the velocity vector 
so that the ball remains on the circle, and the tangential component will reduce the 
magnitude of the velocity vector. According to our model, it is thus impossible for the 
ball to go around the circle at constant speed, and the speed must decrease as it goes 
from position 2 to position 3, no matter how one pulls on the string (you can convince 
yourself of this by drawing the free-body diagram at any point between points 2 and 
3). 

The minimum speed for the ball at the top of the circle is given by the condition that 
the tension in the string is zero just at the top of the trajectory (position 3). The ball 
can still go around the circle because, at position 3, gravity is towards the centre of 
the circle and can thus give an acceleration that is radial, even with no tension. The y 
component of Newton’s Second Law, at position 3 gives: X 

Fy = −Fg = may 
∴ ay = −g 
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The magnitude of the acceleration is the radial acceleration, and is thus related to the 
speed at the top of the trajectory: 

2v 
aR = −ay = g = m 

Rs 
∴ vmin = gR 

m 

which is the minimum speed at the top of the trajectory for the ball to be able to 
continue along the circle. The tension in the string would change as the ball moves 
around the circle, and will be highest at the bottom of the trajectory, since the tension 
has to be bigger than gravity so that the net force at the bottom of the trajectory is 
upwards (towards the centre of the circle). 

Discussion: The model for the minimum speed of the ball at the top of the circle 
makes sense because: q

gR • 
m 

has the dimension of speed. 
• The minimum velocity is larger if the circle has a larger radius (try this with a 

mass attached at the end of a string). 
• The minimum velocity is larger if the mass is bigger (again, try this at home!). 

Checkpoint 6-3 

Consider a ball attached to a string, being spun in a vertical circle (such as the one 
depicted in figure 6.17). If you shortened the string, how would the minimum angular 
velocity (measured at the top of the trajectory) required for the ball to make it around 
the circle change? 

A) It would decrease 
B) It would stay the same 
C) It would increase 

6.3.1 Banked curves 
As we saw in Example 6-5, there is a maximum speed with which a car can go around a 
curve before it starts to skid. You may have noticed that roads, highways especially, are 
banked where there are curves. Racetracks for cars that go around an oval (the boring kind 
of car races) also have banked curves. As we will see, this allows the speed of vehicles to 
be higher when going around the curve; or rather, it makes the curves safer as the speed 
at which vehicles would skid is higher. In Example 6-5, we saw that it was the force of 
static friction between the tires of the car and the road that provided the only force with a 
component towards the centre of the circle. The idea of using a banked curve is to change 
the direction of the normal force between the road and the car tires so that it, too, has a 
component in the direction towards the centre of the circle. 

Consider the car depicted in Figure 6.19 which is seen from behind making a left turn around 
a curve that is banked by an angle � with respect to the horizontal and can be modelled as 
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an arc from a circle of radius R. 

Figure 6.19: A car moving into the page and going around a banked curved so that it is turning 
towards the left (the centre of the circle is to the left). 

The forces exerted on the car are the same as in Example 6-5, except that they point in 
di�erent directions. The forces are: 

~1. Fg, its weight with magnitude mg. 
~2. N , a normal force exerted by the road, perpendicular to the surface of the road. 
~3. fs, a force of static friction between the tires and the road. This is static friction, 
because the surface of the tire does not move relative to the surface of the road if 
the car is not skidding. The force of static friction has a magnitude that is at most 
fs � µsN and is perpendicular to the normal force. The force could be either upwards 
or downwards, depending on the other forces on the car. 

A free-body diagram for the forces on the car is shown in Figure 6.20, along with the 
acceleration (which is in the radial direction, towards the centre of the circle), and our 
choice of coordinate system (choosing x parallel to the acceleration). The direction of the 
force of static friction is not known a priori and depends on the speed of the car: 

• If the speed of the car is zero, the force of static friction is upwards. With a speed 
of zero, the radial acceleration is zero, and the sum of the forces must thus be zero. 
The impeding motion of the car would be to slide down the banked curve (just like a 
block on an incline). 
• If the speed of the car is very large, the force of static friction is downwards, as the 

impeding motion of the car would be to slide up the bank. The natural motion of the 
car is to go in a straight line (Newton’s First Law). If the components of the normal 
force and of the force of static friction directed towards the centre of the circle are too 
small to allow the car to turn, then the car would slide up the bank (so the impeding 
motion is up the bank and the force of static friction is downwards). 
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Figure 6.20: Free-body diagram for the forces on the car. The direction of the force of static 
friction cannot be determined, as it depends on the acceleration of the car, so it is shown twice 
(with dotted lines). 

There is thus an “ideal speed” at which the force of static friction is precisely zero, and 
the x component of the normal force is responsible for the radial acceleration. At higher 
speeds, the force of static friction is downwards and increases in magnitude to keep the car’s 
acceleration towards the centre of the circle. At some maximal speed, the force of friction 
will reach its maximal value, and no longer be able to keep the car’s acceleration pointing 
towards the centre of the circle. At speeds lower than the ideal speed, the force of friction is 
directed upwards to prevent the car from sliding down the bank. If the coeÿcient of static 
friction is too low, it is possible that at low speeds, the car would start to slide down the 
bank (so there would be a minimum speed below which the car would start to slide down). 

Let us model the situation where the force of static friction is identically zero so that we 
can determine the ideal speed for the banked curve. The only two forces on the car are thus 
its weight and the normal force. The x and y component of Newton’s Second Law give: 

X v2 
Fx = N sin � = maR = m 

R 
2v

∴ N sin � = m (6.1)
R 

X 
Fy = N cos � − Fg = 0 

∴ N cos � = mg (6.2) 

We can divide Equation 6.1 by Equation 6.2, noting that tan � = sin �/ cos �, to obtain: 

2 
tan � = v 

gRq
∴ videal = gR tan � 
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At this speed, the force of static friction is zero. In practice, one would use this equation to 
determine which bank angle to use when designing a road, so that the ideal speed is around 
the speed limit or the average speed of traÿc. We leave it as an exercise to determine the 
maximal speed that the car can go around the curve before sliding out. 

6.3.2 Inertial forces in circular motion 
As you sit in a car that is going around a curve, you will feel pushed outwards, away from the 
centre of the circle that the car is going around. This is because of your inertia (Newton’s 
First Law), and your body would go in a straight line if the car were not exerting a net force 
on you towards the centre of the circle. You are not so much feeling a force that is pushing 
you outwards as you are feeling the e�ects of the car seat pushing you inwards; if you were 
leaning against the side of the car that is on the outside of the curve, you would feel the 
side of the car pushing you inwards towards the centre of the curve, even if it “feels” like 
you are pushing outwards against the side of the car. 

If we model your motion looking at you from the ground, we would include a force of friction 
between the car seat (or the side of the car, or both) and you that is pointing towards the 
centre of the circle, so that the sum of the forces exerted on you is towards the centre of the 
circle. We can also model your motion from the non-inertial frame of the car. As you recall, 
because this is a non-inertial frame of reference, we need to include an additional inertial 

~force, FI , that points opposite of the acceleration of the car, with magnitude FI = maR (if 
the net acceleration of the car is aR). Inside the non-inertial frame of reference of the car, 
your acceleration (relative to the reference frame, i.e. the car) is zero. This is illustrated by 
the diagrams in Figure 6.21. 

Figure 6.21: (Left:) A person sitting on a car seat in a car turning towards the left. (Centre:) Free-
body diagram for the person as modelled in the inertial reference frame of the ground. (Right:) 
Free-body diagram for the person as modelled in the non-inertial frame of reference of the car, 
including an additional inertial force. 
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The y component of Newton’s Second Law in both frames of reference is the same: X 
Fy = N − Fg = 0 

∴ N = mg 

and simply tells us that the normal force is equal to the weight. In the reference frame of 
the ground, the x component of Newton’s Second Law gives: X 

Fx = fs = maR 
2v

∴ fs = m 
R 

In the frame of reference of the car, where your acceleration is zero and an inertial force of 
magnitude FI = mv2/R is exerted on you, the x component of Newton’s Second Law gives: X 

Fx = fs − FI = 0 
2v

∴ fs − m = 0 
R 

which of course, mathematically, is exactly equivalent. The inertial force is not a real force 
in the sense that it is not exerted by anything. It only comes into play because we are 
trying to use Newton’s Laws in a non-inertial frame of reference. However, it does provide 
a good model for describing the sensation that we have of being pushed outwards when the 
car goes around a curve. Sometimes, people will refer to this force as a “centrifugal” force, 
which means “a force that points away from the centre”. You should however remember 
that this is not a real force exerted on the object, but is the result of modelling motion in 
a non-inertial frame of reference. 

Checkpoint 6-4 

Jamie is driving his tricycle around a circular pond. Jamie feels a centrifugal force 
with magnitude FI . If Jamie pedals twice as fast, what will be the magnitude of the 
centrifugal force that he experiences?p

A) 2FI 
B) 1

2 FI 
C) 2FI 
D) 4FI 
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6.4 Non-uniform circular motion 
In non-uniform circular motion, an object’s motion is along a circle, but the object’s speed 
is not constant. In particular, the following will be true 

• The object’s velocity vector is always tangent to the circle. 
• The speed and angular speed of the object are not constant. 
• The angular acceleration of the object is not zero. 
• The acceleration vector will not point towards the centre of the circle. 

Since the acceleration vector does not point towards the centre of the circle, it is usually 
convenient to break up the acceleration vector into two components: aR, a component that 
is radial (towards the centre of the circle), and aT , a component that is tangent to the circle 
(and perpendicular to to the radial component). The radial component is “responsible” 
for the change in direction of the velocity such that the object goes in a circle. the 
magnitude of the radial acceleration is the same as it is for uniform circular motion: 

2v 
aR = 

r 

where the speed is no longer constant in time. The tangential component of the acceleration 
is responsible for changing the magnitude of the velocity of the object: 

dv 
aT = 

dt 

Example 6-7 

Figure 6.22: An ant on a horizontal turntable that is starting to spin, as seen from above. 

A small ant is sleeping on a turntable just as the turntable starts to spin from rest, 
with an angular acceleration = 1 rad/s2 that is small enough so that, initially, the 
ant remains on the turntable. The ant is a distance R = 0.1 m from the centre of the 
turntable, as shown in Figure 6.22 and the coeÿcient of static friction between the ant’s 
“feet” and the turntable is µs = 0.5. After how much time will the ant slide o� from 
the turntable? 

Solution 
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As the turntable accelerates, the force of static friction between the turntable and the 
ant will keep the ant moving with the turntable. Once the turntable is going fast 
enough, the force of friction will no longer be large enough to provide the total accel-
eration that is required to keep the ant moving with the turntable (with a constant 
tangential component of the acceleration and an increasing radial component of the 
acceleration). 

The forces on the ant are: 
~1. Fg, its weight, with magnitude mg. 
~2. N , a normal force exerted by the turntable on the ant. 
~3. fs, a force of static friction exerted by the turntable on the ant. The force of 
friction will be such that it has both radial and tangential components. 

A free-body diagram for the forces on the ant is shown in Figure 6.23, as seen from 
above and from the side, for some point in time. We have chosen the point in time 
to be just when the ant is about to slide o� of the turntable, when the force of static 
friction makes an unknown angle � with the x axis. We have placed the origin of the 
coordinate system at the centre of the turntable and chosen the x axis such that the ant 
is located on the positive x axis with its velocity in the positive y direction. We used a 
three dimensional coordinate system where the weight and normal force are exerted in 
the z (vertical) direction since the acceleration vector of the ant will have both radial 
(x) and tangential (y) components. 

Figure 6.23: (Left:) Forces on the ant as seen from above. The normal force is out of the 
page ( ), whereas the weight is into the page (×). (Right:) Forces on the ant as seen from 
the side. Note that the acceleration vector and force of static friction also have components in 
the y direction, which is why their magnitude is shown as being smaller than in the top view. 

Newton’s Second Law has to be written out in three components. The z component 
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relates the weight and normal force: X 
Fz = N − Fg = 0 

∴ N = mg 

The x component of Newton’s Second Law is such that the x component of the accel-
eration is its radial component: 

X v2 
Fx = −fs cos � = −maR = −m 

R 
2v

∴ fs cos � = m 
R 

The y component of Newton’s Second relates the tangential component of the force of 
static friction to the tangential component of the acceleration: X 

Fy = fs sin � = maT 
∴ fs sin � = m�R 

where we used the fact that the (linear) tangential acceleration, aT , is related to the 
angular acceleration, , by: 

aT = R 

Summarizing the three equations that we obtained from the three components of New-
ton’s Second Law: 

2v 
fs cos � = m 

R 
fs sin � = m�R 

N = mg 

Also, note that the speed, v(t) at some time t is given by simple kinematics: 

v(t) = v0 + aT t = (0) + Rt 

The ant will start to slip when the force of friction reaches its maximal amplitude, 
fs = µsN = µSmg. The x of Newton’s Second Law can be used to find an expression 
for the time at which force of friction reaches its maximal value (in terms of the unknown 
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angle �): 

2v 
fs cos � = m 

R 
2 2 µsg cos � = R t 

µsg cos �
∴ t = 2R 

! 

We can use the y component to determine the angle �: 

fs sin � = m�R 
µsg sin � = R 

∴ sin � = R 

µsg 

R (1 rad/s2)(0.1 m) 
∴ � = sin−1 = sin−1 

s 

(0 5)(9 8 N kg)/µ g . .s 

= 1.17� 

! 

vuut 

The angle is very small, and we see that the force of friction is mostly directed towards 
the centre of the circle. The radial acceleration is thus much larger than the tangential 
acceleration. We can then use the angle to find the time using the expression we derived 
above: s 

µsg cos � (0.5)(9.8 N/kg) cos(1.17�)
t = = 

R 2 (0.1 m)(1 rad/s2)2 

= 7.0 s 
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6.5 Summary 

Key Takeaways 

When the velocity of an object does not change direction continuously (“linear motion”), 
we can model its motion independently over several segments in such a way that the 
motion is one dimensional in each segment. This allows us to choose a coordinate 
system in each segment where the acceleration vector is co-linear with one of the axes. 

When the forces on an object changes continuously, we need to use calculus to deter-
mine the motion of the object. If the velocity vector for an object changes direction 
continuously, we need to model the motion in each dimension independently. 

If an object undergoes uniform circular motion, the acceleration vector and the sum of 
the forces always point towards the centre of the circle. In the radial direction, Newton’s 
Second Law gives 

X v2 
~F = maR = m 

R 

If an object’s speed is changing as it moves around a circle the acceleration vector will 
have a component that is towards the centre of the circle (the radial component) and 
a component that is tangential to the circle. The tangential component is responsible 
for the change in speed, whereas the radial component is responsible for the change in 
direction of the velocity. 

In a reference frame that is rotating about a circle, an inertial force, sometimes called 
the centrifugal force, appears to push all objects co-moving with the reference frame 
towards the outside of the circle. 
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6.6 Thinking about the material 

Reflect and research 

1. Is there a maximum speed with which an object can spin? (Something about the 
thing eventually flying apart if it rotates too fast, as the atoms can not be held 
together at some point - maybe there is a cool video to look up?) 

To try at home 

1. Spin a mass on a string in a vertical circle, what is the tension in the string when 
the mass is at the top for it to barely make it around? 

2. Spin a mass on a string in a vertical circle, how does the minimum speed at the 
top of the circle to barely make it around depend on the radius of the circle or 
the mass? 

3. Spin a mass on a string in a vertical circle, describe the motion if the mass does 
not have the minimum speed to make it around the circle. If it makes it to the 
top, does it automatically make it all the way around the circle? 

To try in the lab 

1. Build a conical pendulum and determine whether the opening angle of the cone 
is related to the speed of the bob, in the way that you expect it to be. 

2. Propose an experiment to determine the e�ects of the drag force on projectile 
motion. 

3. Propose an experiment which investigates an object’s motion when placed on a 
spinning turntable. 
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6.6.1 Problems and Solutions 
Problem 6-1: Consider a conical pendulum with a mass m, attached to a string of length 
L. The mass executes uniform circular motion in the horizontal plane, about a circle of 
radius R, as shown in Figure 6.24. One can think of the horizontal circle and the point 
where the string is attached to as forming a cone. The circular motion is such that the 
(constant) angle between the string and the vertical is �. (Solution) 

a) Derive an expression for the tension in the string. 
b) Derive an expression for the speed of the mass. 
c) Derive an expression for the period of the motion. 

Figure 6.24: The conical pendulum. 

Problem 6-2: Barb and Kenny are going to the amusement park. Barb insists on riding 
the giant roller coaster, but Kenny is scared that they will fall out of the roller coaster at 
the top of the loop. Barb reassures Kenny by asking the roller coaster technician for more 
information. The technician says that they will be travelling at 15 m/s when upside down, 
and that the roller coaster loop has a radius of 22 m. Kenny is still sceptical. Is he correct 
in being sceptical? (Solution) 

Figure 6.25: The roller coaster 
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6.6.2 Solutions 
Solution to problem 6-1: 

a) We start by identifying the forces that are acting on the mass. These are: 
~• Fg, its weight, with a magnitude mg. 
~• FT , a force of tension exerted by the string. 

The forces are illustrated in Figure 6.26, along with our choice of coordinate system 
and the direction of the acceleration of the mass (towards the centre of the circle). 

Figure 6.26: Forces acting on the conical pendulum 

The y component of Newton’s Second law gives the relation between the tension in 
the string, the weight, and the angle � 

X 
Fy = 0 

FT cos � − Fg = 0 
FT cos � = mg 

mg
∴ FT = cos � 

b) In order for the mass to move in a circle, the net force must be directed towards the 
centre of the circle at all times. The x component of Newton’s Second Law, combined 
with our expression for the magnitude of the tension, FT , allows us to determine the 
speed of the mass: 

X 
Fx = mar 

2v 
FT sin � = m 

R� � 2mg vsin � = m cos � R 
2v 

g tan � = 
Rq

∴ v = gR tan � 
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c) Now that we know the speed, we can easily find the period, T , of the motion: 

2ˇR 
T = 

= 

v 

2ˇR p
gR tan � 

s 
R = 2ˇ 

g tan � 

Solution to problem 6-2: We need to determine if the speed of Barb and Kenny is large 
enough for them to go around the circle. The minimum speed that they must have at 
the top of the loop is such that their weight (the only force acting on them) provides the 
centripetal (net) force required to go around the loop. 

Writing Newton’s Second Law in the vertical direction, for the case where only the weight 
acts on Barb or Kenny (mass m), when they are going at speed v 

2v 
mg = maR = m 

R 

∴ v = 
q 
gR = 

q
(9.8 m/s2)(22 m) = 14.68 m/s 

This corresponds to the minimum speed that they must have at the top of the loop to 
make it around. If they go faster, the normal force from their seat (downwards, since they 
are upside-down), would result in a larger net force towards the centre of the circle. This 
situation corresponds to the normal force from their seat just barely reaching 0 at the top 
of the loop. Since the roller coaster is quoted as having a speed of 15 m/s at the top of the 
loop, they will just barely make it. However, this is way too close to the minimal speed 
to not fall out of the roller coaster, so Kenny is correct in being sceptical! The engineers 
designing the roller coaster should include a much bigger safety margin! 



7 Work and energy 

In this chapter, we introduce a new way to build models derived from Newton’s theory of 
classical physics. We will introduce the concepts of work and energy, which will allow us to 
model situations using scalar quantities, such as energy, instead of vector quantities, such 
as forces. It is important to remember that even when we are using energy and work, these 
tools are derived from Newton’s Laws; that is, we may not be using Newton’s Second Law 
explicitly, but the models that we develop are still based on the same theory of classical 
physics. 

Learning Objectives 

• Understand the concept of work and how to calculate the work done by a force. 
• Understand the concept of the net work done on an object and how that relates 

to a change in speed of the object. 
• Understand the concept of kinetic energy and where it comes from. 
• Understand the concept of power. 

Think About It 

You are holding a heavy book with your arm extended horizontally. The book does not 
move as you struggle to keep it from falling to the ground. Does your arm do work on 
the book? If you start walking to class while holding the book, does your arm do work 
on the book? 

7.1 Work 
Review Topics 

• Section A.3.3 on the scalar product. 
• Section B.3 on integrals. 

We introduce the concept of work as the starting point for building models using energy 
instead of forces. Work is a scalar quantity that is meant to represent how a force exerted 
on an object over a given distance results in a change in speed of that object. We will first 
introduce the concept of work done by a force on an object, and then look at how work can 
change the kinematics of the object. This is analogous to how we first defined the concept 
of force, and then looked at how force a�ects motion (by using Newton’s Second Law, which 
connected the concept of force to the acceleration of the object). 

175 
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~ ~The work done by a force, F , on an object over a displacement, d, is defined to be: 

~W = F · d~ = Fd cos � = Fxdx + Fydy + Fzdz (7.1) 

where � is the angle between the vectors when they are placed tail to tail, as in Figure 7.1. 
The dimension of work, force times displacement, is also called “energy”. The S.I. unit for 
energy is the Joule (abbreviated J) which is equivalent to Nm or kgm2/s2 in base units. 

~ ~Figure 7.1: When determining the scalar product F ·d = Fd cos �, � is the angle between the vectors 
when they are placed tail to tail. 

The work “done” by the force is the scalar product of the force vector and the displacement 
vector of the object. We say that the force “does work” if it is exerted while the object 
moves (has a displacement vector) and in such a way that the scalar product of the force 
and displacement vectors is non-zero. A force that is perpendicular to the displacement 
vector of an object does no work (since the scalar product of two perpendicular vectors is 
zero). A force exerted in the same direction as the displacement will do positive work (cos � 
positive), and a force in the opposite direction of the displacement will do negative work 
(cos � negative). As we will see, positive work corresponds to increasing the speed of the 
object, whereas negative work corresponds to decreasing its speed. No work corresponds to 
no change in speed (but could corresponds to a change in velocity). 

Checkpoint 7-1 

A pendulum of length R consists of a mass connected to a string (Figure 7.2). The 
~string exerts a force of tension FT on the mass. What is the work done by tension when 

the pendulum swings through an angle �? 

Figure 7.2: A pendulum swings through an angle �. 

A) W = FT R� 
B) W = FT R(1 − cos �) 
C) Tension does no work on the mass. 
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You may be tempted to ask, “Why work? Why not something else? Why that scalar product 
in particular? How could we possibly have thought of that?”. In general, it seems arbitrary 
that we introduce the quantity “work” and then find that it leads to a convenient way of 
building models. However, we did not just pull this quantity out of thin air! Many theorists, 
over many years, tried all sorts of quantities and ways to rephrase Newton’s Theory that 
were not helpful. The quantities that make it into textbooks are the ones that turned 
out to be useful. You should also keep in mind that, just like force, work is a “made-up” 
mathematical tool that is helpful in describing the world around us. There is no such thing 
as work or energy; they are just useful mathematical tools. 

7.1.1 Work in one dimension. 
Work involves vectors, so we can first examine the concept in one dimension, before extend-
ing this to two and three dimensions. We can choose x as the coordinate in one dimension, 

~so that all vectors only have an x component. We can write a force vector as F = Fx̂, where 
F is the x component of the force (which could be positive or negative). A displacement 

~vector can be written as d = dx̂, where again, d is the x component of the displacement, 
and can be positive or negative. In one dimension, work is thus: 

~W = F · d~ = (Fx̂) · (dx̂) = Fd(x̂ · x̂) = Fd 

~where x̂ · x̂ = 1. Consider, for example, the work done by a force, F , on a box, as the box 
moves along the x axis from position x = x0 to position x = x1, as shown in Figure 7.3. 

~Figure 7.3: A force, F , exerted on an object as it moves from position x = x0 to position x = x1. 

~We can write the length of the displacement vector as ||d|| = d = �x = x1 − x0. The work 
done by the force is given by: 

~W = F · d~ = Fx̂ · �xx̂ = F �x = F (x1 − x0) 

which is a positive quantity, since x1 > x0, with our choice of coordinate system. 
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Checkpoint 7-2 

~A constant force in the positive x direction, F , acts on a box, as in Figure 7.3. Consider 
~the work done by F as the box moves from x1 to x0. How does it compare to the work 

~done by F when moving from x0 to x1 (that we calculated above)? 
~A) F does no work on the box when it moves from x0 to x1. 

B) The work has the same magnitude as before, but the work is now negative. 
~C) The work done by F is the same in both cases. 

7.1.2 Work in one dimension - varying force 
~Suppose that instead of a constant force, F , we have a force that changes with position, 

~F (x), and can take on three di�erent values between x = x0 and x = x3: 

~F (x) = 

8 >< 
>: 
F1x̂ x < �x 
F2x̂ �x � x < 2�x 
F3x̂ 2�x � x 

as illustrated in Figure 7.3, which shows the force on an object as it moves from position 
~ ~ ~ x = x0 to position x = x3, along three (equal) displacement vectors, d1 = d2 = d3 = �xx̂. 

X 

~Figure 7.4: A varying force, F (x), exerted on an object as it moves from position x = x0 to position 
x = x3. 

The total work done by the force over the three separate displacements is the sum of the 
work done over each displacement: 

W tot = W1 + W2 + W3 

~ ~= F1 · d~ 2 + F~ 2 · d~ 2 + F3 · d~ 3 

= F1�x + F2�x + F3�x 

If instead of 3 segments we had N segments and the x component of the force had the N 
corresponding values Fi in the N segments, the total work done by the force would be: 

N 

W tot = ~Fi · �~x 
i=0 
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where we introduced a vector �~x to be the vector of length �x pointing in the positive 
~ x direction. In the limit where F (x) changes continuously as a function of position, we 

take the limit of an infinite number of infinitely small segments of length dx, and the sum 
becomes an integral: 

Z 
W tot ~= 

xf 
F (x) · d~x (7.2) 

x0 

where the work was calculated in going from x = x0 to x = xf , and d~x = dxx̂ is an infinitely 
small displacement vector (of length dx) in the positive x direction. 

Example 7-1 

A block is pressed against the free end of a horizontal spring with spring constant, k, 
so as to compress the spring by a distance D relative to its rest length, as shown in 
Figure 7.5. The other end of the spring is fixed to a wall. What is the work done by 
the spring force on the block in going from x = −D to x = 0? What is the work done 
by the block on the spring over the same displacement? 

Figure 7.5: A block is pressed against a horizontal spring so as to compress the spring by a 
distance D relative to its rest length. 

Solution 

The force exerted by the spring on the block changes continuously with position, ac-
cording to Hooke’s law: 

~F (x) = −kxx̂ 

and points in the positive x direction when the end of the spring has a negative x position 
(with our coordinate choice illustrated in Figure 7.5, where the origin is located at the 
rest length of the spring). To calculate the work done by the force, we sum the work 
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done by the force over many infinitesimally small displacements d~x (using an integral): Z 0 
~W = F (x) · d~x Z− 0 

D 

= (−kxx̂) · (dxx̂) Z− 0 
D 

= −kxdx(x̂ · x̂) 
−ZD 0 

= − kxdx 
−D �1 �0 

= − 2kx
2 

−D 

= 2
1 
kD2 

In order to determine the work that was done by the block on the spring, we need to 
~determine the force, F 0(x), exerted by the block on the spring. By Newton’s Third 

Law, this is equal in magnitude but opposite in direction to the force exerted by the 
spring on the block: 

~ ~F 0(x) = −F (x) = kxx̂ 

The work done by the block on the spring over the same displacement is: Z 0 
~W 0 = F 0(x) · d~x Z− 0 

D 

= (kxx̂) · (dxx̂) Z− 0 
D 

= kxdx = −2
1 
kD2 

−D 

which is negative. This makes sense because the force exerted by the block on the 
spring is in the direction opposite to the direction of displacement, so the work should 
be negative. 

7.1.3 Work in multiple dimensions 
~ ~First, consider the work done by a force F in pulling a crate over a displacement d, in the 

case where the force is directed at an angle � above the horizontal, as shown in Figure 7.6, 
and the displacement is along the x axis (or rather, we chose the x axis to be parallel to the 
displacement). 
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~Figure 7.6: A force, F , exerted on an object as it moves from position x = x0 to position x = x1. 

The work done by the force is given by: 

F~ · ~W = d = Fd cos � 
= Fkd 
= Fdk 

where we highlighted the fact that the scalar product “picks out” components of vectors 
~ ~that are parallel to each other. Fk = F cos � is the component of F that is parallel to d, and 

~ ~dk = d cos � is the component of d that is parallel to F . These are also shown in Figure 7.6. 

Checkpoint 7-3 

Brent and Dean pull two crates by using ropes that make the same angle above the 
horizontal and with the same force. The magnitude of the crates’ displacement is the 
same, but Dean’s crate moves horizontally on the ground while Brent’s crate moves up 
a frictionless ramp that is parallel to the rope used to pull the crate. Who did more 
work on the crate? 

A) Dean because there is friction between his crate and the ground. 
B) Brent. 
C) They did the same amount of work. 

In general, if an object is moving along an arbitrary path, we cannot choose the x axis to 
be parallel to the displacement or to the force. If the path can be sub-divided into straight 
segments over which the force is constant, as in Figure 7.7, we can calculate the work done 
by the force over each segment and add the work done in each segment together to obtain 
the total work done by the force. Note that, in general, the work done by a force as an 
object moves from one position to another depends on the particular path that was taken 
between the two positions, since di�erent paths will have di�erence lengths. 
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Figure 7.7: An arbitrary two dimensional path of an object from A to B broken into three straight 
segments. 

Example 7-2 

Compare the work done by the force of kinetic friction in sliding a crate along a hori-
zontal surface from position A (coordinates xA, yA) to position B (coordinates xB, yB) 
using the two di�erent paths depicted in Figure 7.8. Assume that the mass of the crate 
is m and that the coeÿcient of kinetic friction between the crate and the ground is µk. 

Figure 7.8: Two possible paths to slide a crate from position A to position B, as seen from 
above. 

Solution 

The force of kinetic friction is always in the direction opposite to that of motion. Thus, 
regardless of the path taken, the force of friction will do negative work. 

Let us first calculate the work done by the force of kinetic friction along the first path 
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(the straight line). The force of kinetic friction will have a magnitude: 

fk = µkN = µkmg 

The normal force will have the same magnitude as the weight because the crate is not 
moving (accelerating) in the direction perpendicular to the xy plane. The displacement 
vector from A to B can be written as: 

~d = (xB − xA)x̂ + (yB − yA)ŷ q 
~∴ ||d|| = d = (xB − xA)2 − (yB − yA)2 

The force of kinetic friction will be in the opposite direction of the displacement vector, 
so the angle between the two vectors is 180� (cos � = −1). The work done by the force 
of kinetic friction is thus: q 

~ · ~W = fk d = fkd cos � = −µkmg (xB − xA)2 − (yB − yA)2 

and is negative, as expected. 
~For path 2, we break up the motion into two segments, with displacements vectors d1 

~(along y) and d2 (along x). We can write the two displacement vectors as: 

~d1 = 0x̂ + (yB − yA)ŷ 
~∴ ||d1|| = d1 = (yB − yA) 
~d2 = (xB − xA)x̂ + 0ŷ 
~∴ ||d2|| = d2 = (xB − xA) 

Along each segment, the force of kinetic friction is anti-parallel to the displacement (note 
that the force of friction changes direction over the two segments), but the magnitude 
is fk = µkmg. The work done along the first segment is thus: 

~ · ~W1 = fk d1 = fkd1 cos � = −µkmg(yB − yA) 

The work done along the second segment is: 

W2 = f~ k · d~ 2 = fkd2 cos � = −µkmg(xB − xA) 

And the total work done by the force of kinetic friction over the second path is: 

W tot = W1 + W2 = −µkmg ((xB − xA) + (yB − yA)) 

which is more work than was done along path 1. This makes sense because for both 
paths, the force of friction has the same magnitude and is always in the opposite direc-
tion of motion; thus, the longer the path, the more work will be done by the force. 
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Example 7-3 

A box of mass m is moved from the floor onto a table using two di�erent paths, as 
shown in Figure 7.9. The table is a horizontal distance L away from where the box 
starts and a height H above the floor. Compare the work done by the weight of the 
box along the two possible paths. 

Figure 7.9: Two possible paths to move a box from the floor onto a table. 

Solution 

We can use a coordinate system such that the origin coincides with the initial position 
of the box. x is horizontal and y is vertical, as shown in Figure 7.9. The weight of the 
box can be written as: 

~Fg = −mgŷ 

and points in the negative y direction with a magnitude of mg. To calculate the 
work done by the weight along the first path, we first determine the corresponding 

~displacement vector, d: 

~d = Lx̂+ Hŷ 

and we can then determine the work: 

~W = Fg · d~ = (−mgŷ) · (Lx̂+ Hŷ) 
= Fxdx + Fydy = (0)(L) + (−mg)(H) 
= −mgH 

Along path 1, the work done by the weight is negative, and does not depend on the 
horizontal distance L. Let us now calculate the work done along the second path, 
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~ ~which we break up into two segments with displacement vectors d1 (vertical) and d2 
(horizontal). The displacement vectors are: 

~d1 = Hŷ 
~d2 = Lx̂ 

The work done along the vertical segment is: 

~W1 = Fg · d~ 1 = (−mgŷ) · (Hŷ) 
= −mgH 

The work done along the horizontal segment is: 

~W2 = Fg · d~ 2 = (−mgŷ) · (Lx̂) 
= 0 

which is zero, because the force of gravity is always vertical and thus perpendicular to 
the displacement vector of the horizontal segment. The total work done by the weight 
along the second path is: 

W tot = W1 + W2 = −mgH 

which is the same as the work done along path 1. As we will see, when a force is constant 
in magnitude and direction, the work that it does on an object in going from one position 
to another is independent of the path taken. This was not the case in Example 7-2, 
because the direction of the force of kinetic friction depends on the direction of the 
displacement. 
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Checkpoint 7-4 

Clare and Amelia go down two di�erent slides, as shown in Figure 7.10. Clare and 
Amelia have the same mass and the slides have the same non-zero coeÿcients of friction. 

Figure 7.10: Clare (C) and Amelia (A) go down two di�erent slides of the same height. 

For each of the following forces, decide whether the force: does more work on Clare, 
does more work on Amelia, or does the same amount of work on both. 

1. The force of gravity... 
2. The force of friction... 
3. The normal force from the slide... 

The most general case for which we can calculate the work done by a force is the case when 
the force changes continuously along a path where the displacement also changes direction 
continuously. This is illustrated in Figure 7.11 which shows an arbitrary path between two 

~points A and B, and a force, F (~r), that depends on position (~r). In general, the work done 
by the force on an object that goes from A to B will depend on the actual path that was 
taken. 

Figure 7.11: An arbitrary path between two points A and B with a force that depends on position, 
~F (~r). 

The strategy for calculating the work in the general case is the same: we break up the path 
~into small straight segments with displacement vectors dl (Figure 7.12) where we assume 

that the force is constant over the segment. The total work is the sum of the work over 
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each segment: Z B 
~ ~W = F (~r) · dl (7.3) 

A 

As usual, we use the integral symbol to indicate that you need to take an infinite number 
~of infinitely small segments dl in order to calculate the sum. 

~Figure 7.12: We divide the path into infinitesimally small segments with displacement vectors dl. 

You should note that this is not an integral like any other that we have seen so far: the 
integral is not over a single integration variable (usually we use x), but it is the integral 
(the sum!) over the specific path that we have chosen in going from A to B. This is called 
a “path integral”, and is generally diÿcult to evaluate. 

Example 7-4 

Figure 7.13: A parabolic path between A and B. 

~ ~A force, F (~r) = F (x, y) = Fxx̂ + Fyŷ, is exerted on an object. The object starts at 
position A and ends at position B, along a parabolic path, y(x) = a + bx2, as depicted 

~in Figure 7.13. What is the work done by the force, F , along this trajectory? 

Solution 

In this case, the force can change with position (if Fx and Fy are not constant), and 
the direction of the path changes continuously. When we break up the path into small 

~segments dl, we need to incorporate the equation of the parabola to include the fact 



188 CHAPTER 7. WORK AND ENERGY 

~that dl must always be tangent to the parabola. Consider one small segment along the 
~trajectory and the infinitesimal displacement vector dl at that point, as in Figure 7.14. 

~Figure 7.14: The infinitesimal displacement vector, dl. 

We can write the x and y components of the vector as infinitesimal distances, dx and 
~dy, along the x and y axes, respectively. The vector dl can thus be written: 

~dl = dxx̂+ dyŷ 

The total work done by the force is then: Z B 
~ ~W = F (~r) · dl 

AZ B 
= (Fxx̂+ Fyŷ) · (dxx̂+ dyŷ) 

AZ B 
= (Fxdx + Fydy) 

AZ B Z B 
∴ W = Fxdx + Fydy 

A A 

where in the last line, we simply used the property that the integral of a sum is the 
sum of the corresponding integrals. At this point, we have two integrals over integration 
variables (x and y) that are meaningful. However, we have not yet used the fact that our 
path is a parabola, and in general, we expect that the shape of the path is important. 
By saying that we are integrating (or calculating the work) over a specific path, we are 
really saying that x and y are not independent; that is, if we know the value of x at 
some point on the path, we know the corresponding value of y (y = a + bx2). 

Since x and y are not independent, we can use a “substitution of variables” in order to 
express y in terms of x, and dy in terms of dx: 

y(x) = a + bx2 

dy = 2bx 
dx 

∴ dy = 2bxdx 

This allows us to convert the integral over y to an integral over x, which also allows us 
to be explicit for the limits of the integral (in our example, the integral goes from x = 0 
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to x = x1): Z B Z B 
W = Fxdx + Fydy ZA ZA x1 x1 

= Fxdx + Fy(2bxdx) Z0 
x1 

0 

= (Fx + 2bxFy)dx 
0 

where we would need to know how Fx and Fy depends on x and y in order to actually 
evaluate the integral. 

For example, if the force were constant (Fx and Fy constant), then the work done along 
the parabolic path would be: Z x1 

W = (Fx + 2bxFy)dx h0 ix1 = Fxx + bFyx 2 
0 

2= Fxx0 + bFyx0 

As we mentioned earlier, if the force is constant in magnitude and direction, then 
the work done is independent of path. We can easily check this, using the displacement 

~vector d = x1x̂+ bx2
1ŷ: 

W = F~ · d~ = (Fxx̂+ Fyŷ) · (x1x̂+ bx1
2 ŷ) 

2= Fxx1 + bFyx1 

as we found above. 

7.1.4 Net work done 
So far, we have considered the work done on an object by a single force. If more than 
one force is exerted on an object, then each force can do work on the object, and we can 
calculate the “net work” done on the object by adding together the work done by each force. 
We will show that this is equivalent to first calculating the net force on the object, F net (i.e. 
the vector sum of the forces on the object), and then calculating the work done by the net 
force. 

~ ~ ~Suppose that three forces, F1, F2, and F3 are exerted on an object as it moves such that its 
~displacement vector is d. The net work done on the object is easily shown to be equivalent 

to the work done by the net force:: 

W net = W1 + W2 + W3 

~ d + ~ ~= F1 · ~ F2 · d~ + F3 · d~ 

= (F1xdx + F1ydy + F1zdz) + (F2xdx + F2ydy + F2zdz) + (F3xdx + F3ydy + F3zdz) 
= (F1x + F2x + F3x)dx + (F1y + F2y + F3y)dy + (F1z + F2z + F3z)dz 
~= F net · d~ 



190 CHAPTER 7. WORK AND ENERGY 

where F~ net = F~ 1 + F~ 2 + F~ 3 is the net force. The result is easily generalized to any number 
of forces, including if those forces change as a function of position: Z B 

W net F net(~ ~= r) · dl 
A 

Example 7-5 

~You push with an unknown horizontal force, F , against a crate of mass m that is located 
on an inclined plane that makes an angle � with respect to the horizontal, as shown 
in Figure 7.15. The coeÿcient of kinetic friction between the crate and the incline is 
µk. You push in such a way that that crates moves at a constant speed up the incline. 
What is the net work done on the crate if it moves up the incline by a distance d? 

Figure 7.15: A crate being pushed up an incline. 

Solution 

Although the answer may be obvious, let’s go the long way about it and calculate the 
work done by each force, and then sum them together to get the total work done. We 
start by identifying the forces exerted on the crate: 

~ ~1. F , the applied force, of unknown magnitude, F . 
~2. Fg, the weight of the crate, with magnitude mg. 
~3. N , a normal force exerted by the incline. 
~4. fk, a force of kinetic friction, with magnitude µkN , that points in the direction 

~opposite of d. 

These are shown in the free-body diagram in Figure 7.16, along with our choice of 
coordinate system, and the displacement vector. 
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Figure 7.16: Free-body diagram for the crate on the incline. 

With our choice of coordinate system, the displacement vector is given by: 

~d = d(cos �x̂ + sin �ŷ) 

Before calculating the work done by each force, we need to determine the magnitude of 
the normal force (and thus of the force of kinetic friction). Since the crate is moving 
at a constant velocity, its acceleration is zero, so the sum of the forces must be zero. 
Writing out the y component of Newton’s Second Law allows us to find the magnitude 
of the normal force: X 

Fy = N cos � − Fg − fk sin � = 0 
∴ mg = N cos � − µkN sin � = N(cos � − µk sin �) 

mg
∴ N = cos � − µk sin � 

Writing out the x component of Newton’s Second Law allows us to find the magnitude 
of the unknown force F : X 

Fx = F − N sin � − fk cos � = 0 
∴ F = N sin � + µkN cos � = N(sin � + µk cos �) 

sin � + µk cos � = mg cos � − µk sin � 

We now proceed to calculate the work done by each force. The work done by the normal 
force is identically zero, since it is perpendicular to the displacement vector. The work 

~done by the applied force, F = Fx̂, is: 

WF = F~ · d~ = (Fx̂) · (d(cos �x̂ + sin �ŷ)) 
sin � + µk cos � = Fd cos � = mg d cos � cos � − µk sin � 
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~The work done by the force of gravity, Fg = −mgŷ, is: 

~ · ~Wg = Fg d = (−mgŷ) · (d(cos �x̂ + sin �ŷ)) 
= −mgd sin � 

~ ~ ~The work done by the force of friction, fk, noting that fk and d are antiparallel: 

~ · ~Wf = fk d = −fkd = −µkNd 
mg= −µk d cos � − µk sin � 

The net work done on the crate is thus: 

W net = WF + Wg + Wf 

sin � + µk cos � mg= mg d cos � − mgd sin � − µk d cos � − µk sin � cos � − µk sin � 
sin � + µk cos � 1 

! 
= mgd cos � − sin � − µkcos � − µk sin � cos � − µk sin � 

(sin � + µk cos �) cos � − sin �(cos � − µk sin �) − µk 
! 

= mgd cos � − µk sin � 
sin � cos � + µk cos2 � − sin � cos � + µk sin2 � − µk 

! 
= mgd cos � − µk sin � 

µk(cos2 � + sin2 �) − µk 
! 

= mgd cos � − µk sin � 
= 0 

where we used the fact that cos2 � + sin2 � = 1. Thus we find that the net work done 
on the crate is zero! 

Discussion: Of course, this makes sense, because the net force on the crate is zero, 
since it is not accelerating, so the net work done is also zero. As a consequence, or 
rather, by construction, we have the condition that if the net work done on an object is 
zero, then that object does not accelerate. We thus have a scalar quantity (work) that 
can tell us something about whether an object is changing speed. In the next section, we 
introduce a new quantity, “kinetic energy”, to describe how an object’s speed changes 
when the net work done is not zero. 
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Olivia’s Thoughts 

Pay close attention to the words “on” and “by.” There are a few things about this that 
can be tricky: 

1. In Example 7-5, we were asked to find the net work done on the crate. Some-
times, the question won’t specify that it wants you to find the net work, and will 
just say “What is the work done on the crate?” When you are just asked for the 
work done “on” an object, the question is implicitly asking for the net work done 
on the object. 

2. Just because the net work done on an object is zero doesn’t mean that the work 
done by each of the forces is zero. This may seem obvious, but it’s easy to get 
tripped up on a test or exam. If you are reading a question about work and it says 
that the object is moving at a constant speed, it’s tempting to just jump ahead 
and say that the work must be equal to zero. However, you can only say this 
if it’s asking you for the net work done on the object. For instance, in example 
7-5, we concluded that since the crate was moving at a constant speed, the net 
work was equal to zero. But if the question asked you to find the work done on 
the crate by gravity, that would mean something di�erent. The work done by 
gravity in this case is not equal to zero (it’s actually negative). 

3. The work done “on” an object is not the same as the net work done “by” that 
object. For example, say you are in a tug-of-war and you pull the other team 
towards you, but you yourself do not move. The net work done on you is zero, 
but the work done by you is not zero. So, when you are talking about work, you 
should always state explicitly whether the work is being done “on” the object or 
“by” the object. 

Note: The wording won’t always be like this - sometimes it will say “How much work 
do you do on the box?” instead of “How much work is done by you on the box,” so 
always be careful. Still, looking for key words like “by” and “on” is a good place to 
start. 

Checkpoint 7-5 

A 2 kg box sits on a horizontal surface. A constant horizontal force of 6 N is applied to 
the box. The box moves with a constant acceleration of 2 m/s2. Which of the following 
has the greatest magnitude? 

A) The work done by the applied force. 
B) The work done by friction. 
C) The net work done on the box. 
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7.2 Kinetic energy and the work energy theorem 
At this point, you should be comfortable calculating the net work done on an object upon 
which several forces are exerted. As we saw in the previous section, the net work done on an 
object is connected to the object’s acceleration; if the net force on the object is zero, then 
the net work done and acceleration are also zero. In this section, we derive a new quantity, 
kinetic energy, which allows us to connect the work done on an object with its change in 
speed. This will allow us to describe motion using only scalar quantities. Like the definition 
of work, the following derivation appears to “come out of thin air”. Remember, though, 
that theorists have tried all sorts of mathematical tricks to reformulate Newton’s Theory, 
and this is the one that worked. 

F~ net(~Consider the most general case of an object of mass m acted upon by a net force, r), 
which can vary in magnitude and direction. We wish to calculate the net work done on 
the object as it moves along an arbitrary path between two points, A and B, in space, as 
shown in Figure 7.17. The instantaneous acceleration of the object, ~a, is shown along with 

~an “element of the path”, dl. 

Figure 7.17: An object moving along an arbitrary path between points A and B that is acted upon 
F~netby a net force . 

The net work done on the object can be written: 

Z B 
W net F net(~ ~= r) · dl 

A 

and is in general a diÿcult integral to evaluate for an arbitrary path. Our goal is to find a 
way to evaluate this integral by finding a function, K, with the property that: 

Z B 
F net(~ ~ r) · dl = KB − KA 

A 

That is, we will only have to evaluate K at the end points of the path in order to determine 
the value of the integral. In this way, the function K is akin to an anti-derivative. 

In order to determine the form for the function K, we start by noting that, by using Newton’s 
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Second Law, we can write the integral for work in terms of the acceleration of the object: X 
~ F~ netF = = m~a Z B Z B Z B 

F net(~ ~ ~ ~∴ r) · dl = m~a · dl = m ~a · dl 
A A A 

where we assumed that the mass of the object does not change along the path and can thus 
be factored out of the integral. Consider the scalar product of the acceleration, ~a, and the 

~path element, dl = dxx̂+ dyŷ + dzẑ, written in terms of the velocity vector: 
d~v 

~a = 
dt 
d~v ~ ~∴ ~a · dl = · dl 
dt ! 
dvx dvy dvz= x̂+ ŷ + ẑ  · (dxx̂+ dyŷ + dzẑ)
dt dt dt 

dvx dvy dvz= dx + dy + dz 
dt dt dt 

Any of the terms in the sum can be re-arranged so that the time derivative acts on the 
element of path (dx, dy, or dz) instead of the velocity, for example: 

dvx dx 
dx = dvx

dt dt 
dxwhere we recognize that 
dt 

= vx. We can thus write the scalar product between the 
acceleration vector and the path element as: 

dvx dvy dvz~ ~a · dl = dx + dy + dz 
dt dt dt 
dx dy dz = dvx + dvy + dvz
dt dt dt 

= vxdvx + vydvy + vzdvz 
The integral for the net work done can be written as: Z B Z B 

W net F net(~ ~= r) · dl = m (vxdvx + vydvy + vzdvz) 
A AZ B Z B Z B 

= m vxdvx + m vydvy + m vzdvz 
A A A 

which corresponds to the sum of three integrals over the three independent components of 
the velocity vector. The components of the velocity vector are functions that change over 
the path and have fixed values at either end of the path. Let the velocity vector of the object 
at point A be ~vA = (vAx, vAy, vAz) and the velocity vector at point B be ~vB = (vBx, vBy, vBz). 
The integral over, say, the x component of velocity is then: Z B Z vBx �1 �vBx 

2 m vxdvx = m vxdvx = m x 
A 2v vAx vAx 

1 2 2= 2m(v − vAx)Bx 
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We can thus write the net work integral as: Z B Z B Z B 
W net = m vxdvx + m vydvy + m vzdvz 

A A A 

1 1 12 2 2 2 2 2= 2m(v − v ) + 2m(v − v ) + 2m(v − v )Bx Ax By Ay Bz Az 

2 2 2 2 2 2= 12m(vBx + vBy + vBz) − 
1
2m(vAx + vAy + vAz) 

1 2 1 2= 2mv − 2mvB A 

2 2where we recognized that the magnitude (squared) of the velocity is given by vA = vAx + 
2 2vAy + vAz. We have thus arrived at our desired result; namely, we have found a function of 

speed, K(v), that when evaluated at the endpoints of the path allows us to calculate the 
net work done on the object over that path: 

K(v) = 2
1 
mv 2 (7.4) 

That is, if you know the speed at the start of the path, vA, and the speed at the end of the 
path, vB, then the net work done on the object along the path between A and B is given 
by: 

W net = �K = K(vB) − K(va) (7.5) 

We call K(v) the “kinetic energy” of the object. We can say that the net work done on an 
object in going from A to B is equal to its change in kinetic energy (final kinetic energy 
minus initial kinetic energy). It is important to note that we defined kinetic energy in a 
way that it is equal to the net work done. You may have already seen kinetic energy from 
past introductions to physics as a quantity that is just given; here, we instead derived a 
function that has the desired property of being equal to the net work done and called it 
“kinetic energy”. 

The relation between the net work done and the change in kinetic energy is called the “Work-
Energy Theorem” (or Work-Energy Principle). It is the connection that we were looking for 
between the dynamics (the forces from which we calculate work) and the kinematics (the 
change in kinetic energy). Unlike Newton’s Second Law, which relates two vector quantities 
(the vector sum of the forces and the acceleration vector), the Work-Energy Theorem relates 
two scalar quantities to each other (work and kinetic energy). Although we introduced the 
kinetic energy as a way to calculate the integral for the net work, if you know the value of 
the net work done on an object, then the Work-Energy Theorem can be used to calculate 
the change in speed of the object. 

Most importantly, the Work-Energy theorem introduces the concept of “energy”. As we will 
see in later chapters, there are other forms of energy in addition to work and kinetic energy. 
The Work-Energy Theorem is the starting point for the idea that you can convert one form 
of energy into another. The Work-Energy Theorem tells us how a force, by doing work, can 
provide kinetic energy to an object or remove kinetic energy from an object. 
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Example 7-6 

A net work of W was done on an object of mass m that started at rest. What is the 
speed of the object after the work has been done on the object? 

Solution 

Using the Work-Energy Theorem: 

W = 2
1 
mv 2 − 2

1 
mv 2 

f i 

where vi is the initial speed of the object and vf is its final speed. Since the initial 
speed is zero, we can easily find the final speed: s 

2W 
vf = 

m 

Example 7-7 

A block is pressed against the free end of a horizontal spring with spring constant, k, 
so as to compress the spring by a distance D relative to its rest length, as shown in 
Figure 7.18. The other end of the spring is fixed to a wall. 

Figure 7.18: A block is pressed against a horizontal spring so as to compress the spring by a 
distance D relative to its rest length. 

If the block is released from rest and there is no friction between the block and the 
horizontal surface, what is the speed of the block when it leaves the spring? 

Solution 

This is the same problem that we presented in Chapter 6 in Example 6-3, where we 
solved a di�erential equation to find the speed. 
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Our first step is to calculate the net work done on the object in going from x = −D to 
x = 0 (which corresponds to when the object leaves the spring, as discussed in Example 
6-3). The forces on the object are: 

~1. Fg, its weight, with magnitude mg. 
~2. N , the normal force exerted by the ground. 
~3. F (x), the force from the spring, with magnitude kx. 

Both the normal force and weight are perpendicular to the displacement, so they will do 
no work. The net work done is thus the work done by the spring, which we calculated 
in Example 7-1 to be: 

2 

W net = WF = 2
1 
kD2 

By the Work-Energy Theorem, this is equal to the change in kinetic energy. Noting 

2 

that the object started at rest (vi = 0), the final speed vf is found to be: 

1 1 1 
W net = 2mv − 2mv = 2mv − 0i f 

2 
f 

21 1 
2kD

2 = 2mvf s 
kD2 

∴ vf = 
m 

Example 7-8 

A block is pressed against the free end of a horizontal spring with spring constant, k, 
so as to compress the spring by a distance D relative to its rest length, as shown in 
Figure 7.19. The other end of the spring is fixed to a wall. 

Figure 7.19: A block is pressed against a horizontal spring so as to compress the spring by a 
distance D relative to its rest length. 

If the block is released from rest and the coeÿcient of kinetic friction between the block 
and the horizontal surface is µk, what is the speed of the block when it leaves the spring? 
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Solution 

This is the same example as the previous one, but with kinetic friction. The forces on 
the block are: 

~1. Fg, its weight, with magnitude mg. 
~2. N , the normal force exerted by the ground on the block. 
~3. F (x), the force from the spring, with magnitude kx. 
~4. fk, the force of kinetic friction, with magnitude µkN . 

Both the normal force and weight are perpendicular to the displacement, so they will 
do no work. Furthermore, since the acceleration in the vertical direction is zero, the 
normal force will have the same magnitude as the weight (N = mg). The magnitude 
of the force of kinetic friction is thus fk = µkmg. The net work done will be the sum 
of the work done by the spring, WF , and the work done by friction, Wf : 

W net = WF + Wf 

We have already determined the work done by the spring: 

WF = 2
1 
kD2 

The work done by the force of kinetic friction will be negative (since it is in the direction 
opposite of the motion) and is given by: 

Wf = f~ k · d~ = −fkD = −µkmgD 

Applying the work energy theorem, and noting that the block started at rest (vi = 0), 
the final speed vf is found to be: 

1 1 
W net 2 2= WF + Wf = 2mvf − 2mvi 

1 1 2 
2kD

2 − µkmgD = 2mvf s 
kD2 

∴ vf = − 2µkgD 
m 

Discussion: We can think of this in terms of the concept of energy. The spring does 
positive work on the block, and so it increases its kinetic energy. Friction does negative 
work on the block, decreasing its kinetic energy. Only the spring is “introducing” energy 
into the block, as friction is removing that energy by doing negative work. Another 
way to think about it is that the spring is inputting energy; some of that energy goes 
into increasing the kinetic energy of the block, and some of it is lost by friction. 



200 CHAPTER 7. WORK AND ENERGY 

The energy that is lost to friction can be thought of as “thermal energy” (heat) that 
goes up into heating the block and the surface. Indeed, if you rub your hand against the 
table, you will notice that it gets warmer; you are losing some of the energy introduced 
to your hand by the work done by your arm into heating up the table and your hand! 
This shows that we can think about modelling friction using thermal energy rather than 
a force. 

7.3 Power 
We finish the chapter by introducing the concept of “power”, which is the rate at which 
work is done on an object, or more generally, the rate at which energy is being converted 
from one form to another. If an amount of work, �W , was done in a period of time �t, 
then the work was done at a rate of: 

�W 
P = (7.6)�t 

where P is called the power. The SI unit for power is the “Watt”, abbreviated W, which 
corresponds to J/s = kgm2/s3 in base SI units. If the rate at which work is being done 
changes with time, then the instantaneous power is defined as: 

P = dW (7.7)
dt 

You have probably already encountered power in your everyday life. For example, your 
1000 W hair dryer consumes “electrical energy” at a rate of 1000 J per second and converts 
it into the kinetic energy of the fan as well as the thermal energy to heat up the air. 
Horsepower (hp) is an imperial unit of power that is often used for vehicles, the conversion 
being 1 hp = 746 W. A 100 hp car thus has an engine that consumes the chemical energy 
released by burning gasoline at a rate of 7.46 × 104 J per second and converts it into work 
done on the car as well as into heat. 

Checkpoint 7-6 

Two cranes lift two identical boxes o� of the ground. One crane is twice as powerful as 
the other. Both cranes do the same amount of work on the boxes and operate at full 
power. Which of the following statements is true of the boxes, once the cranes have 
done work on them? 

A) One box has been lifted twice as high as the other. 
B) The boxes are lifted to the same height in the same amount of time. 
C) The boxes are lifted to the same height, but it takes one of the boxes twice as 

long to get there. 
D) One box is lifted twice as high as the other, but it takes the same amount of time 

to get there. 
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Example 7-9 

If a car engine can do work on the car with a power of P , what will be the speed of the 
car at some time t if the car was at rest at time t = 0? 

Solution 

W = Pt 

First, need to calculate how much total work done the car: we was on 

Then, using the Work-Energy Theorem, find the speed of the timeatwe can car some 

2 

t: 
1 1 

W = 2mv − 2mv 
2 
f i 

21 
Pt = 2mvf s 

2Pt 
∴ vf = 

m 

Discussion: The model for the final speed of the car makes sense because: 

• The dimension of the expression for vf is speed (you should check this!). 
• The speed is greater if either the time or power are greater (so the speed is larger 

if more work is done on the car). 
• The speed is smaller if the mass of the car is greater (the acceleration of the car 

will be less if the mass of the car is larger). 

Example 7-10 

You are pushing a crate along a horizontal surface at constant speed, v. You find that 
~you need to exert a force of F on the crate in order to overcome the friction between 

the crate and the ground. How much power are you expending by pushing on the crate? 

Solution 

~We need to calculate the rate at which the force, F , that you exert on the crate does 
work. If the crate is moving at constant speed, v, then in a time �t, it will cover a 
distance, d = v�t. Since you exert a force in the same direction as the motion of the 
crate, the work done over that distance d is: 

�W = F~ · d~ = Fd cos(0) = Fv�t 
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The power corresponding to the work done in that period of time is thus: 

�W 
P = = Fv �t 

This is quite a general result for the rate at which a force does work when it is exerted 
on an object moving at constant speed. 

Olivia’s Thoughts 

Example 7-10 ties into what I brought up earlier. If you think to yourself: “The velocity 
is constant, so the work must be zero”, the formula, 

�W 
P = = Fv �t 

wouldn’t make any sense. Since v is a constant velocity, the power would always be 
equal to zero, which of course isn’t right. Again, remember that when the velocity is 
constant, it is only the net work that is equal to zero. In Example 7-10, it’s asking 
for the power that you are expending by pushing on the crate (which is the same as 
asking for the rate of the work done by you on the crate). So, the formula does indeed 
make sense. 
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7.4 Summary 

Key Takeaways 

~The work, W , done on an object by a force, F , while the object has moved through a 
~displacement, d, is defined as the scalar product: 

F~ · ~W = d = Fd cos � 
= Fxdx + Fydy + Fzdz 

If the force changes with position and/or the object moves along an arbitrary path in 
space, the work done by that force over the path is given by: Z B 

~ ~W = F (~r) · dl 
A 

If multiple forces are exerted on an object, then one can calculate the net force on the 
object (the vector sum of the forces), and the net work done on the object will be equal 
to the work done by the net force: Z B 

W net F~ net(~ ~= r) · dl 
A 

If the net work done on an object is zero, that object does not accelerate. 

We can define the kinetic energy, K(v) of an object of mass m that has speed v as: 

1 2K(v) = 2mv 

The Work-Energy Theorem states that the net work done on an object in going from 
position A to position B is equal to the object’s change in kinetic energy: 

W net 2 2= �K = 2
1 
mv − 2

1 
mvAB 

where vA and vB are the speed of the object at positions A and B, respectively. 

The rate at which work is being done is called power and is defined as: 

dW 
P = 

dt 
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~If a constant force F is exerted on an object that has a constant velocity ~v, then the 
power that corresponds to the work being done by that force is: 

P = d W = d (F~ · d~)
dt dt 

d ~ ~ ~= F · d = F · ~v 
dt 

Important Equations 

Work: Work-Energy Theorem: 
~W = F · d~ = Fd cos � 

W = Fxdx + Fydy + Fzdz 1 1 
W net 2 2Z B = �K = 2mv − 2mvB A 

~ ~W = F (~r) · dl 
AZ B 

W net F~ net(~ ~= r) · dl Power: 
A 

Kinetic Energy: 
2 P = K(v) = 2

1 
mv 

dW 

dt 
~P = F · ~v 

Important Definitions 

Work: A scalar quantity to quantity the amount of energy that a force can input into 
a system when it is exerted over a given distance. SI units: [J]. Common variable(s): 
W . 

Kinetic energy: A form of energy that an object with a mass has by virtue of having 
a non-zero speed. SI units: [J]. Common variable(s): K. 

Power: The rate at which energy is converted with respect to time. SI units: [W]. 
Common variable(s): P . 
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7.5 Thinking about the material 

Reflect and research 

1. When was the concept of work first introduced? 
2. To construct the pyramids, the ancient Egyptians used simple machines, like 

levers, to accomplish tasks that would not be possible otherwise. Apply what we 
know about work to find out how levers help people lift incredibly heavy objects. 

3. After an accident, investigators use skid marks to figure out how fast the cars 
were going before the crash. Use your knowledge of work, figure out how they do 
this. 

4. The Tesla Model S can accelerate from 0-100 km/h in as little as 2.7 seconds. 
Calculate the power of the car in horsepower. Why is it unusual for a 7 seat 
sedan, like the Model S, to have such a short acceleration time? Investigate how 
it’s possible for the Tesla to accelerate so quickly. 

To try at home 

1. Measure the power that you can output with your legs, and describe how you 
made the measurement. 

To try in the lab 

1. Propose an experiment to measure the thermal energy associated with a force of 
kinetic friction. 

2. Propose an experiment to test the Work-Energy Theorem. 
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7.6 Sample problems and solutions 
7.6.1 Problems 
Problem 7-1: A ski jump can is modelled as a ramp of height h = 5 m, as shown in Figure 
7.20. The landing area is at the same height as the bottom of the ramp. A skier of mass 
m = 80 kg is moving at a speed vi = 15 m/s when they reach the bottom of the ramp. When 
the skier lands the jump, their speed is measured to be vf = 12 m/s. Ignore air resistance. 

Figure 7.20: A person of mass m goes o� a ski jump of height h. 

(Solution) 
a) What is the speed of the skier the instant they leave the ski jump, at the top of the 

ramp? 
b) Use the answer from part (a) to find the work done by friction the friction between 

the ramp and the skier.
Problem 7-2: A child of mass m sits on a swing of length L, as in Figure 7.21. You push 

~the child with a horizontal force F . You apply the force in such a way that the child moves 
~at a constant speed (note that F will not have a constant magnitude). (Solution) 

a) How much work do you do to move the child from � = 0 to � = �1? 
~b) Use a detailed diagram to show that the work done by F is equal to mgh, where h is 

the change in height of the child. 

Figure 7.21: A child on a swing is pushed from � = 0 to � = �1 at constant speed with a 
~horizontal force, F . 
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7.6.2 Solutions 
Solution to problem 7-1: 

a) We start by defining a coordinate system. We choose the x axis to be horizontal and 
positive in the direction of motion, and we choose the y axis to be vertical and the 
positive direction upwards. 
We will determine the speed at the top of the ramp, vt, using the Work-Energy 
Theorem: 

1 1 
W net 2 2= 2mv − 2mvf t 

where W net is the net work done on the skier as they “fly” through the air. While the 
~skier is in the air, the only force acting on them is gravity, F = −mgŷ. The path of 

the skier is a parabola, so that the displacement vector changes direction continuously. 
The work done by gravity is given by: Z 

~ ~W = Fg · dl 

~where dl is an infinitesimal displacement along the trajectory, as shown in Figure 7.22. 

Figure 7.22: Infinitesimal displacement along the trajectory of the jump. 

The displacement vector will have x and y components: 

~dl = dxx̂+ dyŷ 

The scalar product with the force of gravity is thus: 

~ ~Fg · dl = (−mgŷ) · (dxx̂+ dyŷ) = −mgdy 

The work done by gravity can thus be converted into an integral over y (for which we 
know the start and end values), and is given by: 

Z Z 0 
W = F~ g · d~l = −mgdy = [−mgy]h 0 = mgh 

h 

The work done by gravity is positive, which makes sense, since the force of gravity 
is generally in the same direction as the net displacement (downwards). We did not 
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need to take into account the specific shape of the trajectory, because the force was 
constant in magnitude and direction (see Example 7-4). 
We can now find the speed of the skier when they leave the jump using the Work-
Energy theorem: 

1 12 
f 

2W net −= 2mv 2mvt 
1 

mgh = 2mv 
1 − 2mv 

2 
f 

2 
t qq 

(12 m/s)2 − 2(9.8 m/s2)(5 m) = 6.8 m/s2 − 2gh =∴ vt = vf 

b) We can again use the Work-Energy Theorem to determine the work done by friction 
as the skier slides up the ramp. We know that the speed of the skier at the bottom of 
the ramp is vi, and we just found that the speed of the skier at the top of the ramp q
is vt = v2 

f − 2gh. The net work done on the skier going up the ramp is equal to: 

1 1 2 
2mvi 

2 
tW net −= 2mv 

1 
2m(v 1 

2m(v 2 2 
i 

2 − 2gh − v 2 
i )) =− v= ft 

1 
2m(v 2 

f 
2 
i ) − mgh − v= 

The net work done is also the sum of the work done by each of the forces acting on 
the skier as they slide up the ramp. The forces on the skier are the force of gravity, 
the force of friction, and the normal force. The normal force does no work, since it is 
always perpendicular to the displacement. The net work is thus the sum of the work 
done by the force gravity, Wg, and the work done by the force of friction, Wf , over 
the displacement corresponding to the length of the ramp: 

W net = Wg + Wf 

The work done by gravity is: 

~ · ~Wg = Fg d = (−mgŷ) · (dxx̂+ hŷ) = −mgh 

where d~ is the displacement vector up the ramp (unknown horizontal distance, dx, and 
vertical distance, h). We can now determine the work done by the force of friction: 

W net = Wg + Wf 

1 
2m(v 2 

f − v 2 
i ) − mgh = −mgh + Wf 

∴ Wf = 1 
2m(v 2 − v 2) = 1(80 kg)((12 m/s)2 − (15 m/s)2) = −3240 J 2f i 

And we find that the force of friction did negative work (it reduced the kinetic energy 
of the skier). 
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Discussion: Over the course of the jump, the skier started at the bottom of the 
ramp with a given kinetic energy, then lost some of that energy going up the ramp (in 
the form of loss to friction and negative work done by gravity). During the airborne 
phase, gravity did positive work and the skier gained back some of the kinetic energy 
that they had lost going up the ramp. Thus the net work done by the force of friction 
is the di�erence in kinetic energies between the final landing point and the beginning 
of the ramp, because friction is the only force that did a net amount of (negative) 
work over the whole trajectory (gravity did no net work over the whole trajectory). 
This example shows how we can start to think about energy as something that is 
“conserved”, which we will explore in more detail in the next chapter. 

Solution to problem 7-2: 

~a) We want to find the work done by the applied force F . We first need to find an 
~expression for the magnitude of F , based on the fact that the child is not accelerating. 

The forces on the child are: 
~• Fg, their weight, with magnitude mg. 
~• FT , the tension in the rope, which changes with the angle, �. 
~• F , the applied force, which change in magnitude as the angle, �, changes. 

The forces are illustrated in Figure 7.23. 

Figure 7.23: A free-body diagram of the forces exerted on the child. 

The child is moving at a constant speed, so the net force is equal to zero. The sum of 
the x and y components of the forces are equal to zero (Newton’s Second Law): 

X 
Fx = F − FT sin � = 0 X 
Fy = FT cos � − mg = 0 

Rearranging these equations gives: 

F = FT sin � 
mg = FT cos � 

We want an expression for F that does not depend on FT (since FT is unknown), so 
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we can divide one equation by the other: 
F FT sin � = = tan � 
mg FT cos � 

∴ F (�) = mg tan � 

~where we indicated that the force F (�) depends on the angle �. The work done by 
~the force, F , is given by: Z B 

~ ~WF = F (�) · dl 
A 

~dl is the “path element” along part of the arc of circle over which the child moves, as 
~illustrated in Figure 7.24. We have an expression for how F changes in magnitude as 

a function of the angle �, and it would thus be convenient to perform the integral over 
the angle �. 

Figure 7.24: A path element along the circular trajectory of the swing. 

We can use polar coordinate, (r, �), instead of cartesian coordinates to describe the 
~displacement vector, dl. If the vector subtends an arc on the circle that makes an 

~infinitesimal angle, d�, as illustrated, then the length of the vector dl is given by: 

dl = Ld� 

~where L is the radius of the circle. The vector dl makes an angle � with the horizontal, 
~ ~ ~and thus with the vector, F . The dot product between F and dl can thus be written 

as: 
~ ~F (�) · dl = Fdl cos � = (mg tan �)(Ld�) cos � = mgL sin �d� 

We can now write the integral for the work using limit that are based on the angle �, 
from � = 0 to � = �1: Z �1 

W = mgL sin �d� 
0 

= mgL[− cos �]� 01 = mgL(1 − cos �1) 

~b) We know that the work done by F is W = mgL(1 − cos �1). So, we want to prove 
that L(1 − cos �1) is equal to h. Expanding L(1 − cos �1) gives: 

L(1 − cos �1) = L − L cos �1 
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This can be illustrated on a diagram, as in Figure 7.25, which shows that h is equal 
to L − L cos �. 

Figure 7.25: A diagram showing the geometry of the problem 

Discussion: The net force acting on the mass is equal to zero, so the net work must 
~be equal to zero. The two forces that do work on the mass are the applied force F , 

and gravity. The work done by the applied force if mgh, so the work done by gravity 
must be −mgh. 



8 Potential Energy and Conservation of
Energy 

In this chapter, we continue to develop the concept of energy in order to introduce a di�erent 
formulation for Classical Physics that does not use forces. Although we can describe many 
phenomena using energy instead of forces, this method is completely equivalent to using 
Newton’s Three Laws. As such, this method can be derived from Newton’s formulation, as 
we will see. Because energy is a scalar quantity, for many problems, it leads to models that 
are much easier to develop mathematically than if one had used forces. The chapter will 
conclude with a presentation of the more modern approach, using “Lagrangian Mechanics”, 
that is currently preferred in physics and forms the basis for extending our description of 
physics to the microscopic world (e.g. quantum mechanics). 

Learning Objectives 

• Understand the di�erence between conservative and non-conservative forces. 
• Understand how to define potential energy for a conservative force. 
• Understand how to use potential energy to calculate work. 
• Understand the definition of mechanical energy. 
• Understand how to use conservation of mechanical energy. 
• Understand how to apply the Lagrangian formulation in a simple case. 

Think About It 

Three roller coaster carts start at position x = 0, where they are all at the same height 
(Figure 8.1). All of the carts start with the same velocity. At x1, which roller coaster 
cart will be moving the fastest? 

All of the roller coasters end at ground level, at x2. Which roller coaster cart will be 
moving the fastest at x2? Will all of them make it to x2? Who will get there first? 
Assume that the roller coaster track is frictionless. 

Figure 8.1: Three roller coasters that start at the same height and end at the same height. 

212 
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8.1 Conservative forces 
~In Chapter 7, we introduced the concept of work, W , done by a force, F (~r), acting on an 

object as it moves along a path from position A to position B: Z B 
~ ~W = F (~r) · dl (8.1) 

A 

~where F (~r) is a force vector that, in general, is di�erent at di�erent positions in space (~r). 
~ ~ ~We can also say that F depends on position by writing F (~r) = F (x, y, z), since the position 

~vector, ~r, is simply the vector ~r = xx̂+ yŷ+ zẑ. That is, F (~r) is just a short hand notation 
~ ~for F (x, y, z), and dl is a (very) small segment along the particular path over which one 

calculates the work. 

The above integral is, in general, diÿcult to evaluate, as it depends on the specific path 
over which the object moved. In Example 7-2 of Chapter 7, we calculated the work done by 
friction on a crate that was slid across the floor along two di�erent paths and indeed found 
that the work depended on the path that was taken. In Example 7-3 of the same chapter, 
we saw that the work done by the force of gravity when moving a box along two di�erent 
paths did not depend on the path chosen1. 

We call “conservative forces” those forces for which the work done only depends on the 
initial and final positions and not on the path taken between those two positions. “Non-
conservative” forces are those for which the work done does depend on the path taken. The 
force of gravity is an example of a conservative force, whereas friction is an example of a 
non-conservative force. 

This means that the work done by a conservative force on a “closed path” is zero; that is, 
the work done by a conservative force on an object is zero if the object moves 
along a path that brings it back to its starting position. Indeed, since the work 
done by a conservative force only depends on the location of the initial and final positions, 
and not the path taken between them, the work has to be zero if the object ends in the 
same place as where it started (a possible path is for the object to not move at all). 

~Consider the work done by gravity in raising (displacement d1) and lowering (displacement 
~ ~d2 = −d1) an object back to its starting position along a vertical path, as depicted in Figure 
8.2. 

Figure 8.2: An object that has moved up and back down. 

1At least for those two paths that we tried in the example. 
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The total work done by gravity on this particular closed path is easily shown to be zero, as 
the work can be broken up into the negative work done as the object moves up (displacement 

~ ~vector d1) and the positive work done as the object moves down (displacement vector d2): 

W tot · ~ ~= F~ g d1 + Fg · d~ 2 = −mgd + mgd = 0 

In order to write the path integral of the force over a closed path, we introduce a new 
notation to indicate that the starting and ending position are the same: 

Z A I 
~ ~ ~ ~F (~r) · dl = F (~r) · dl 

A 

The condition for a force to be conservative is thus: 

I 
~ ~F (~r) · dl = 0 (8.2) 

since this means that the work done over a closed path is zero. The condition for this 
integral to be zero can be found by Stokes’ Theorem: 

" ! ! ! #I Z @Fz @Fy @Fx @Fz @Fy @Fx~ ~ ~F (~r) · dl = − x̂+ − ŷ + − ẑ  · dA 
S @y @z @z @x @x @y 

where the integral on the right is called a “surface integral” over the surface, S, enclosed by 
the closed path over which the work is being calculated. Don’t worry, it is way beyond the 
scope of this text to understand this integral or Stokes’ Theorem in detail! It is however 
useful in that it gives us the following conditions on the components of a force for that force 
to be conservative (by requiring the terms in parentheses to be zero): 

@Fz @Fy− = 0 
@y @z 
@Fx @Fz− = 0 
@z @x 
@Fy @Fx− = 0 (8.3)
@x @y 

In general: 

1. A force can be conservative if it only depends on position in space, and not speed, 
time, or any other quantity. 

2. A force is conservative if it is constant in magnitude and direction. 
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Checkpoint 8-1 

You push a crate from point A to point B along a horizontal surface. Is the force you 
exert a conservative force? 

Figure 8.3: You push a crate from A to B along any path. 

A) Yes 
B) No 
C) Not enough information 

Example 8-1 

Is the force of gravity on an object of mass m, near the surface of the Earth, given by: 

~F (x, y, z) = 0x̂ + 0ŷ − mgẑ  

conservative? Note that we have defined the z axis to be vertical and positive upwards. 

Solution 

The force is expected to be conservative since it is constant in magnitude and direction. 
We can verify this using the conditions in Equation 8.3: 

@Fz − @Fy = @ (−mg) − 0 = 0 
@y @z @y 
@Fx − @Fz = 0 − @ (−mg) = 0 
@z @x @x
@Fy − @Fx = 0 − 0 = 0 
@x @y 

and the force is indeed conservative since all three conditions are zero. 
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Example 8-2 

3
2

Is the following force conservative? 

−k −kx −ky −kz ~F (x, y, z) = 3 ~r = x̂+ ŷ + ẑ  

3
2 

3
2 

3
2 

r (x2 + y2 + z2) (x2 + y2 + z2) (x2 + y2 + z2) 

5
2 

5
2 

5
2 

Solution 

3
2 

Since the force only depends on position, it could be conservative, so we must check 
using the conditions from Equation 8.3: ! ! 

@Fz @Fy @ −kz @ −ky − = − 

3
2

3
2 

3
2 

@y @z @y (x2 + y2 + z2) @z (x2 + y2 + z2) 

5
2 

5
2 

5
2 

3kz(2y) 3ky(2z)= − = 0 

3
2 

2(x2 + y2 + z2) 2(x2 + y2 + z2)! ! 
@Fx @Fz @ −kx @ −kz − = − 
@z @x @z (x2 + y2 + z2) @x (x2 + y2 + z2) 

3kx(2z) 3kz(2x)= − = 0
2(x2 + y2 + z2) 2(x2 + y2 + z2)! ! 

@Fy @Fx @ −ky @ −kx − = − 
@x @y @x (x2 + y2 + z2) @y (x2 + y2 + z2) 

3ky(2x) 3kx(2y)= − = 0
2(x2 + y2 + z2) 2(x2 + y2 + z2) 

where we used the Chain Rule to take the derivatives. Since all of the conditions are 
zero, the force is conservative. As we will see, the force represented here is similar 
mathematically to both the force that Newton introduced in his Universal Theory of 
Gravity, and the force introduced by Coulomb as the electric force, which are both 
conservative. 

8.2 Potential energy 
In this section, we introduce the concept of “potential energy”. Potential energy is a scalar 
function of position that can be defined for any conservative force in a way to make it easy to 
calculate the work done by that force over any path. Since the work done by a conservative 
force in going from position A to position B does not depend on the particular path taken, 
but only on the end points, we can write the work done by a conservative force in terms of 
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a “potential energy function”, U(~r), that can be evaluated at the end points: 

Z B 
~ ~−W = − F (~r) · dl = U(~rB) − U(~rA) = �U (8.4) 

A 

where we have have chosen to define the function U(~r) so that it relates to the negative 
of the work done for reasons that will be apparent in the next section. Figure 8.4 shows an 
example of an arbitrary path between two points A and B in two dimensions for which one 
could calculate the work done by a conservative force using a potential energy function. 

Figure 8.4: Illustration of calculating the work done by a conservative function along an arbitrary 
path by taking the di�erence in potential energy evaluated at the two endpoints, −W = U(~rB) − 
U(~rA). 

Once we know the function for the potential energy, U(~r), we can calculate the work done 
by the associated force along any path. In order to determine the function, U(~r), we can 
calculate the work that is done along a path over which the integral for work is easy (usually, 
a straight line). 

For example, near the surface of the Earth, the force of gravity on an object of mass, m, is 
given by: 

~Fg = −mgẑ  

where we have defined the z axis to be vertical and positive upwards. We already showed in 
Example 8-1 that this force is conservative and that we can thus define a potential energy 
function. To do so, we can calculate the work done by the force of gravity over a straight 
vertical path, from position A to position B, as shown in Figure 8.5. 
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Figure 8.5: A vertical path for calculating the work done by gravity. 

The work done by gravity from position A to position B is: Z B 
~ ~W = F (~r) · dl ZA 

= 
zB 

(−mgẑ) · (dzẑ) 
zA Z zB 

= −mg dz 
zA 

= −mg(zB − zA) 

By inspection, we can now identify the functional form for the potential energy function, 
U(~r). We require that: 

−W = U(~rB) − U(~rA) = U(zB) − U(zA) 

where we replaced the position vector, ~r, with the z coordinate, since this is a one dimen-
sional situation. Therefore: 

−W = mg(zB − zA) = U(zB) − U(zA) 
∴ U(z) = mgz + C 

and we have found that, for the force of gravity near the surface of the Earth, one can define 
a potential energy function (by inspection), U(z) = mgz + C. 

It is important to note that, since it is only the di�erence in potential energy that mat-
ters when calculating the work done, the potential energy function can have an arbitrary 
constant, C, added to it. Thus, the value of the potential energy function is mean-
ingless, and only di�erences in potential energy are meaningful and related to 
the work done on an object. In other words, it does not matter where the potential 
energy is equal to zero, and by choosing C, we can therefore choose a convenient location 
where the potential energy is zero. 

Checkpoint 8-2 

When we found the work done by gravity, we defined positive z to be upwards. If we 
instead chose positive z to be downwards, how would the potential energy function be 
defined? 

A) The potential energy function would be the same, U(z) = mgz + C. 
B) The potential energy function would be the same but negative, U(z) = −mgz +C 

Checkpoint 8-3 

Can an object have a negative potential energy? 
A) Yes 
B) No 
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Example 8-3 

Calculate the work done by the force of gravity when a box of mass, m, is moved 
from the ground up onto a table that is a distance L away horizontally and H vertically, 
as illustrated in Figure 8.6. How much work must be done by a person moving the box? 

Figure 8.6: A box moved from the ground up onto a table. 

Solution 

Since the force of gravity is conservative, we can use the potential energy function given 
by: 

U(z) = mgz + C 

to calculate the work done by the force of gravity when the box is moved. The work 
done by gravity will only depend on the change in height, H, as the potential energy 
function only depends on the z coordinate of an object. We can choose the origin of 
our coordinate system to be the ground and choose the constant C = 0, so that the 
potential energy function at the starting position of the box is: 

U(zA = 0) = mg(0) = 0 

The potential energy function when the box is on the table, with z = H, is given by: 

U(zB = H) = mgH 

The change in potential energy, �U = U(zB) − U(zA) is equal to the negative of the 
work done by gravity. The work done by gravity, Wg, is thus: 

−Wg = U(zB) − U(zA) = mgH − 0 
∴ Wg = −mgH 



220 CHAPTER 8. POTENTIAL ENERGY AND CONSERVATION OF ENERGY 

which is the same as what we found in Example 7-3 of Chapter 7. The work done by 
gravity is negative, as we found previously. This makes sense because gravity has a 
component opposite to the direction of motion. 

The work done by a person, Wp, to move the box can easily be found by considering 
the net work done on the box. While the box is moving, only the person and gravity 
are exerting forces on the box, so those are the only two forces performing work. Since 
the box starts and ends at rest, the net work done on the box must be zero (no change 
in kinetic energy, recall the Work-Energy Theorem): 

W net = 0 = Wg + Wp 

∴ Wp = −Wg = mgH 

Discussion: We find that the person had to do positive work, which makes sense, since 
they had to exert a force with a component in the direction of motion (upwards). It is 
also interesting to note that it does not matter if the person exerted a constant force 
or whether they varied the force that they exerted on the box as they moved it: the 
amount of work done by the person is fixed to be the negative of the work done by 
gravity. 

Example 8-4 

The force exerted by a spring that is extended or compressed by a distance, x, is given 
by Hookes’ Law: 

~F (x) = −kxx̂ 

where the x axis is defined to be co-linear with the spring and the origin is located at 
the rest position of the spring. Show that the force exerted by the spring onto an object 
is conservative and determine the corresponding potential energy function. 

Solution 

Since the force depends on position, it could be conservative, which we can check with 
the conditions from Equation 8.3: 

@Fz − @Fy = 0 − 0 = 0 
@y @z 
@Fx − @Fz = @ (−kx)) − 0 = 0 
@z @x @z 
@Fy − @Fx = 0 − @ (−kx)) = 0 
@x @y @y 

and the force is indeed conservative. To determine the potential energy function, let us 
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calculate the work done by the spring from position xA to position xB: Z B 
~ ~W = F (~r) · dl ZA 

= 
xB 

(−kxx̂) · dxx̂ 
xAZ � �xBxB 

= (−kx)dx = −2
1 
kx2 

xA xA��1 = − 2kx
2 − 2

1 
kx2 

B A 

Again, comparing with: 

−W = U(~rB) − U(~rA) = U(xB) − U(xA) 

We can identify the potential energy for a spring: 

U(x) = 2
1 
kx2 + C 

where, in general, the constant C can take any value. If we choose C = 0, then the 
potential energy is zero when the spring is at rest, although it is not important what 
choice is made. Note that in one dimension, the potential energy function is the negative 
of the anti-derivative of the function that gives the x component of the force. 

Checkpoint 8-4 

A conservative force acts on an object that is initially at rest. No other forces act on the 
object. Does the object move in a way that increases its potential energy or decreases 
its potential energy? 

A) Increases. 
B) Decreases. 
C) It depends on the choice of C for the corresponding potential energy. 

8.2.1 Recovering the force from potential energy 
Given a (scalar) potential energy function, U(~r), it is possible to determine the (vector) force 
that is associated with it. Take, for example, the potential energy from a spring (Example 
8-4): 

U(x) = 2
1 
kx2 + C 

As you recall from Example 8-4, to find this function (in one dimension), we took the x 
component of the spring force and (e�ectively) found the negative of its anti-derivative, 
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which we defined as the potential energy function: 

F (x) = −kx Z Z 
U(x) = − F (x)dx = (kx)dx = 2

1 
kx2 + C 

∴ F (x) = − d U(x)
dx 

Thus, the force can be obtained from the negative of the potential energy function, by taking 
its derivative with respect to position. 

In three dimensions, the situation is similar, although the potential energy function (and 
the components of the force vector) will generally depend on all three position coordinates, 
x, y, and z. In three dimensions, the the three components of the force vector are given by 
taking the gradient of the negative of the potential energy function2: 

~ ~ ~F (~r) = −rU(~r) = −rU(x, y, z) 

∴ Fx(x, y, z) = − @ U(x, y, z)
@x 

∴ Fy(x, y, z) = − 
@y 

@ 
U(x, y, z) 

∴ Fz(x, y, z) = − @ U(x, y, z) (8.5)
@z 

8.3 Mechanical energy and conservation of energy 
Recall the Work-Energy Theorem, which relates the net work done on an object to its 
change in kinetic energy, along a path from point A to point B: 

W net = �K = KB − KA 

where KA is the object’s initial kinetic energy and KB is its final kinetic energy. Generally, 
the net work done is the sum of the work done by conservative forces, W C , and the work 
done by none conservative forces, WNC : 

W net = WC + WNC 

The work done by conservative forces can be expressed in terms of changes in potential 
~ ~energy functions. For example, suppose that two conservative forces, F1 and F2, are exerted 

on the object. The work done by those two forces is given by: 

W1 = −�U1 

W2 = −�U2 

2As you may recall from Appendix B, the gradient is a vector that points towards the direction of 
maximal increase in a multi-variate function. 
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~ ~where U1 and U2 are the changes in potential energy associated with forces F1 and F2, 
respectively. We can re-arrange the Work-Energy Theorem as follows3: 

W net = W C + W NC = −�U1 − �U2 + WNC = �K 
∴ WNC = �U1 + �U2 + �K 

That is, the work done by non-conservative forces is equal to the sum of the changes in 
potential and kinetic energies. In general, we can use �U to represent the change in the total 
potential energy of the object. The total potential energy is the sum of the potential energies 
associated with each of the conservative forces acting on the object (�U = �U1 + �U2 
above). The above expression can thus be written in a more general form: 

WNC = �U + �K (8.6) 

In particular, note that if there are no non-conservative forces doing work on the object: 

�K + �U = 0 if no non-conservative forces (8.7) 
−�U = �K 

That is, the sum of the changes in potential and kinetic energies of the object is always zero. 
This means that if the potential energy of the object increases, then the kinetic energy of 
the object must decrease by the same amount. 

We can introduce the “mechanical energy”, E, of an object as the sum of the potential and 
kinetic energies of the object: 

E = U + K (8.8) 

If the object started at position A, with potential energy UA and kinetic energy KA, and 
ended up at position B with potential energy UB and kinetic energy KB, then we can write 
the mechanical energy at both positions and its change �E, as: 

EA = UA + KA 

EB = UB + KB 

�E = EB − EA 
= UB + KB − UA − KA 

∴ �E = �U + �K 

Thus, the change in mechanical energy of the object is equal to the work done by non-
conservative forces: 

W NC = �U + �K = �E 

3This is why we defined potential energy as negative of the work; it becomes a positive term when we 
move it to the same side of the equation as the kinetic energy! 
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and if there is no work done by non-conservative forces on the object, then the mechanical 
energy of the object does not change: 

�E = 0 if no non-conservative forces 
∴ E = constant 

This is what we generally call the “conservation of mechanical energy”. If there are no 
non-conservative forces doing work on an object, its mechanical energy is conserved (i.e. 
constant). 

The introduction of mechanical energy gives us a completely di�erent way to think about 
mechanics. We can now think of an object as having “energy” (potential and/or kinetic), 
and we can think of forces as changing the energy of the object. 

Checkpoint 8-5 

Is the value of an an object’s mechanical energy meaningful, or is it only the di�erence 
in mechanical energy that is meaningful? 

A) Yes, the value of the mechanical energy is meaningful. At any given time, an 
object will have a quantifiable amount of mechanical energy. 

B) No, the value is not meaningful because the value of potential energy is arbitrary. 
Only di�erences in mechanical energy are meaningful. 

C) No, the value is not meaningful because both the potential and kinetic energies 
are arbitrary. Their values will change depending on where you set the energy to 
be zero. 

D) It depends on which conservative forces act on the object (and therefore what 
“kind” of potential energy the object has). 

We can also think of the work done by non-conservative forces as a type of change in energy. 
For example, the work done by friction can be thought of as a change in thermal energy 
(feel the burn as you rub your hand vigorously on a table!). If we can model the work done 

= �Eotherby non-conservative forces as a type of “other” energy, −W NC , then we can state 
that: 

�Eother + �U + �K = 0 

which is what we usually refer to as “conservation of energy”. That is, the total energy in 
a system, including kinetic, potential and any other form (e.g. thermal, electrical, etc.) is 
constant unless some external agent is acting on the system. 

We can always include that external agent in the system so that the total energy of the 
system is constant. The largest system that we can have is the Universe itself. Thus, the 
total energy in the Universe is constant and can only transform from one type into another, 
but no energy can ever be added or removed from the Universe. 
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Olivia’s Thoughts 

Here’s an example that may help you understand the concept of external agents and 
energy conservation. Say we have a mass that hangs from a spring, so that the mass 
oscillates up and down like a yo-yo. If we define our system to include the spring, the 
mass, and gravity, energy will be conserved (the energy is transformed from potential 
energy to kinetic energy and back again). 

Now, what if someone is holding the end of the spring and they start walking so that 
the whole system accelerates? Energy is not conserved because the system is gaining 
kinetic energy, seemingly out of nowhere. The system is being acted on by an external 
agent (the person). If we expand our system so that it includes the spring, the mass, 
gravity, and the person, energy is conserved. Instead of the kinetic energy “coming out 
of nowhere”, we can see that it is actually coming from the person converting chemical 
energy in their body in order to move their muscles. 

Figure 8.7: A person accelerates a mass and spring by walking. If the system does not include 
the person, energy is not conserved. If it does include the person, energy is conserved. 

But what if there’s an external agent acting on our new system? We can keep “zooming 
out” to include more and more external sources in the definition of our system. If you 
kept zooming out, eventually you would reach the point where the whole Universe was 
included in your system. At this point, you can’t zoom out any more. This means that, 
if the Universe is your system, energy must always be conserved because there can’t be 
any external agents acting on the system. 

Example 8-5 
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Figure 8.8: A block is launched along a frictionless surface by compressing a spring by a 
distance D. The top panel shows the spring when at rest, and the bottom panel shows the 
spring compressed by a distance D just before releasing the block. 

A block of mass m can slide along a horizontal frictionless surface. A horizontal spring, 
with spring constant, k, is attached to a wall on one end, while the other end can 
move, as shown in Figure 8.8. A coordinate system is defined such that the x axis 
is horizontal and the free end of the spring is at x = 0 when the spring is at rest. 
The block is pushed against the spring so that the spring is compressed by a distance 
D. The block is then released. What speed will the block have when it leaves the spring? 

Solution 

This is again the same example that we saw in Chapters 6 and 7. We will show here 
that it is solved very easily using conservation of energy. The forces acting on the block 
are: 

1. Weight, which does no work since it is perpendicular to the block’s displacement. 
2. The normal force, which does no work since it is perpendicular to the block’s 

displacement. 
3. The force from the spring, which is conservative and can be modelled with a 

potential energy U(x) = 1
2 kx

2, where x is the position of the end of the spring. 

The block starts at rest at position A (x = −D), where the spring is compressed by a 
distance D, and leaves the spring at position B (x = 0), where the spring is at its rest 
position. 

At position A, the kinetic energy of the block is KA = 0 since the block is at rest, and 
= 1the potential energy from the spring force of the block is UA 2 kD

2. The mechanical 
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energy of the block at position A is thus: 

KA = 0 

UA = 2
1 
kD2 

∴ EA = UA + KA = 2
1 
kD2 

At position B, the spring potential energy of the block is zero (since the spring is at 
rest), and all of the energy is kinetic: 

1 2KB = 2mvB 
UB = 0 

∴ EB = UB + KB = 2
1 
mv 2 

B 

Since there are no non-conservative forces doing work on the block, the mechanical 
energies at A and B are the same: 

W NC = �E = EB − EA = 0 
∴ EB = EA 
1 1 
2mv 

2 = 2kD
2 

B s 
kD2 

vB = 
m 

as we found previously. 

Example 8-6 

Figure 8.9: A block slides down an incline before sliding on a flat surface and stopping. 

A block of mass m is placed at rest on an incline that makes an angle � with respect to 
the horizontal, as shown in Figure 8.9. The block is nudged slightly so that the force of 
static friction is overcome and the block starts to accelerate down the incline. At the 
bottom of the incline, the block slides on a horizontal surface. The coeÿcient of kinetic 
friction between the block and the incline is µk1, and the coeÿcient of kinetic friction 
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between the block and horizontal surface is µk2. If one assumes that the block started 
at rest a distance L from the bottom of the incline, how far along the horizontal surface 
will the block slide before stopping? 

Solution 

This is the same problem we solved in Example 6-2. In that case, we solved for the 
acceleration of the block using Newton’s Second Law and then used kinematics to 
find how far the block went. We can solve this problem in a much easier way using 
conservation of energy. 

It is still a good idea to think about what forces are applied on the object in order to 
determine if there are non-conservative forces doing work. In this case, the forces on 
the block are: 

1. The normal force, which does no work, as it is always perpendicular to the motion. 
2. Weight, which does work when the height of the object changes, which we can 

model with a potential energy function. 
3. Friction, which is a non-conservative force, whose work we must determine. 

Let us divide the motion into two segments: (1) a segment along the incline (positions A 
to B in Figure 8.9), where gravitational potential energy changes, and (2), the horizontal 
segment from positions B to position C on the figure. We can then apply conservation 
of energy for each segment. 

Starting with the first segment, we can choose the gravitational potential energy to 
be zero when the block is at the bottom of the incline. The block starts at a height 
h = L sin � above the bottom of the incline. The gravitational potential energy for the 
beginning and end of the first segment are thus: 

UA = mgL sin � 
UB = 0 

Since the block starts at rest, its kinetic energy is zero at position A, and if the speed 
of the box is vB at position B, we can write its kinetic energy at both positions as: 

KA = 0 
1 2KB = 2mvB 
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The mechanical energy of the object at positions A and B is thus: 

EA = UA + KA = mgL sin � 
1 2EB = UB + KB = 2mvB 
1 2�E = EB − EA = 2mvB − mgL sin � 

Finally, since we have a non-conservative force, the force of kinetic friction, acting on the 
first segment, we need to calculate the work done by that force. We found in Example 
6-2 that the force of friction had magnitude fk = µk1N = µk1mg cos �. Since the force 
of friction is anti-parallel to the displacement vector, which points down the incline and 
has length L, the work done by friction is: 

W NC = Wf = −fkL = −µk1mg cos �L 

Applying conservation of energy along the first segment, we have: 

WNC = �E 
1 2−µk1mg cos �L = 2mv − mgL sin �B 

1 2∴ 2mv = mgL sin � − µk1mg cos �L B 

Note that the above equation, in words, could be read as, “the change in kinetic energy 
(1 2 

2 mvB) is equal to the negative change in potential energy (mgL sin �) minus the work 
done by friction (µk1mg cos �L)”. In other words, the block had potential energy, which 
was converted into kinetic energy and heat (the work done by friction can be thought 
of as thermal energy). 

We now proceed in an analogous way for the second segment, from position B to 
position C. The only force that can do work along this segment (of length x) is the 
force of kinetic friction, since both the weight and normal force are perpendicular to 
the displacement. There are no conservative forces doing work, so there is no change 
in potential energy. The initial kinetic energy is KB (from above), and the final kinetic 
energy, KC , is zero. The change in mechanical energy is thus: 

�E = EC − EB = KC − KB = −KB 

= −2
1 
mv 2 

B 

= −mgL sin � + µk1mg cos �L 

where, in the last line, we used the result from the first segment. The work done by 
the force of friction along the horizontal segment of (undetermined) length x is: 

W NC = Wf = −fkx = −µk2Nx = −µk2mgx 
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Finally, we can find x by setting the work done by non-conservative forces equal to the 
change in mechanical energy: 

W NC = �E 
−µk2mgx = −mgL sin � + µk1mg cos �L 

1
∴ x = L (sin � − µk1 cos �) 

µk2 

which is the same result that we obtained in Example 6-2. 

Discussion: By using conservation of energy, we were able to model the motion of the 
block down the incline in a way that was much easier than what was done in Example 
6-2. Furthermore, although we modelled friction as a non-conservative force doing work, 
we gained some insight into the idea that this could be thought of as an energy loss. 
In terms of energy, we would say that the block initially had gravitational potential 
energy, which was then converted into kinetic energy as well as thermal energy (in the 
heat generated by friction). 

8.4 Energy diagrams and equilibria 
We can write the mechanical energy of an object as: 

E = K + U 

which will be a constant if there are no non-conservative forces doing work on the object. 
This means that if the potential energy of the object increases, then its kinetic energy must 
decrease by the same amount, and vice-versa. 

Consider a block that can slide on a frictionless horizontal surface and that is attached 
to a spring, as is shown in Figure 8.10 (left side), where x = 0 is chosen as the position 
corresponding to the rest length of the spring. If you push on the block so as to compress 
the spring by a distance D and then release it, the block will initially accelerate because of 
the spring force in the positive x direction until the block reaches the rest position of the 
spring (x = 0 on the diagram). When it passes that point, the spring will exert a force in 
the opposite direction. The block will continue in the same direction and decelerate until 
it stops and turns around. It will then accelerate again towards the rest position of the 
spring, and then decelerate once the spring starts being compressed again, until the block 
stops and the motion repeats. We say that the block “oscillates” back and forth about the 
rest position of the spring. 

We can describe the motion of the block in terms of its total mechanical energy, E. Its 
potential energy is given by: 

U(x) = 2
1 
kx2 

On the right of Figure 8.10 is an “Energy Diagram” for the block, which allows us to 
examine how the total energy, E, of the block is divided between kinetic and potential 
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energy depending on the position of the block. The vertical axis corresponds to energy and 
the horizontal axis corresponds to the position of the block. 

The total mechanical energy, E = 25 J, is shown by the horizontal red line. Also illustrated 
are the potential energy function (U(x) in blue), and the kinetic energy, (K = E − U(x), 
in dotted black). 

Figure 8.10: Left: The block oscillates about the rest position of the spring, between x = −D and 
x = D. Right: The energy diagram for the block. This diagram is for a spring with spring constant 
k = 1 N/m. 

The energy diagram allows us to describe the motion of the object attached to the spring 
in terms of energy. A few things to note: 

1. At x = ±D, the potential energy is equal to E, so the kinetic energy is zero. The 
block is thus instantaneously at rest at those positions. 

2. At x = 0, the potential energy is zero, and the kinetic energy is maximal. This 
corresponds to where the block has the highest speed. 

3. The kinetic energy of the block can never be negative4, thus, the block cannot be 
located outside the range [−D, +D], and we would say that the motion of the block is 
“bound”. The points between which the motion is bound are called “turning points”. 

An analysis of the energy diagram tells us that the block is bound between the two turning 
points, which themselves are equidistant from the origin. When we initially compress the 
spring, we are “giving” the block “spring potential energy”. As the block starts to move, 
the potential energy of the block is converted into kinetic energy as it accelerates and then 
back into potential energy as it decelerates. 

1 24Remember, the kinetic energy is given by K = 2 mv . Since neither mass nor the value of v2 can be 
negative, the kinetic energy of an object can never be negative. 
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Checkpoint 8-6 

Calculate the positions of the turning points for the situation shown in Figure 8.10. 
The total energy is 25 J and the spring constant is k = 1 N/m. 

By looking at only the potential energy function, without knowing that it is related to a 
spring, we can come to the same conclusions; namely that the motion is bound as long as 
the total mechanical energy is not infinite. We call the point x = 0 a “stable equilibrium”, 
because it is a local minimum of the potential energy function. If the object is displaced 
from the equilibrium point, it will want to move back towards that point. This can also be 
understood in terms of the force associated with the potential energy function: 

F = − d U(x)
dx 

The local minimum occurs where the derivative of the potential function is equal to zero. 
Thus, the equilibrium point is given by the condition that the force associated 
with the potential is zero (x = 0 in the case of the potential energy from a spring). The 
equilibrium is a stable equilibrium because the force associated with the potential energy 
function (F (x) = −kx for the spring) points towards the equilibrium point. 

The potential energy function for an object with total mechanical energy, E, can be thought 
of as a little “roller coaster”, on which you place a marble and watch it “roll down” the 
potential energy function. You can think of placing a marble where U(x) = E and releasing 
it. The marble would then roll down the potential energy function, just as an actual marble 
would roll down a real slope, mimicking the motion of the object along the x axis. This is 
illustrated in Figure 8.11 which shows an arbitrary potential energy function and a marble 
being placed at a location where the potential energy is equal to E. 

Figure 8.11: Arbitrary potential energy function and illustration of visualizing a marble rolling 
down the function by placing the marble on the potential energy function at a point where U(x) = E. 

The motion of the marble will be bound between the two points where the potential energy 
function is equal to E. When the marble is placed as shown, it will roll towards the left, just 
as if it were a real marble on a track. Since the potential energy is increasing as a function of 
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x at the point where we placed the marble, the force is in the negative x direction (remember, 
the force is the negative of the derivative of the potential energy function). With the given 
energy, the marble would never be able to make it to point D, as it does not have enough 
energy to “climb up the hill”. It would roll down, through point C, up to point B, down to 
point A, and then turn around where U(x) = E and return to where it started. 

Locations A and C on the diagram are stable equilibria, because if a marble is placed in 
one of those locations and nudged slightly, it will come back to the equilibrium point (or 
oscillate about that point). Points B and D are “unstable equilibria”, because if the marble 
is placed there and nudged, it will not immediately come back to those points. Note that if 
the marble were placed at point D and nudged towards the right, the motion of the marble 
would be unbound on the right, and it would keep going in that direction. 

Now, say an object’s potential energy is described by the function in Figure 8.11, and the 
object has total energy E. The object’s motion along the x axis will be exactly the same as 
the projection of the marble’s motion on the x axis. 

Checkpoint 8-7 

A force, F (x), acts on an object. The potential energy function, U(x), associated with 
the force is given by U(x) = a(x−6)2(x−1)(x−3)+20 J, where a is a positive constant. 
U(x) is plotted in Figure 8.12. Use the “marble” method to determine the direction of 
the force at x = 5. Confirm your answer by finding the value of the force , F (x), at 
x = 5. 

Figure 8.12: A potential energy function U(x). The x-axis represents the x position and the 
y-axis represents the energy. 

A) F (x = 5) = −10a 
B) F (x = 5) = 10a 
C) F (x = 5) = 20a 
D) F (x = 5) = −20a 
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8.5 Advanced Topic: The Lagrangian formulation of 
classical physics 

So far, we have seen that, based on Newton’s Laws, one can formulate a description of motion 
that is based solely on the concept of energy. A lot of research was done in the eighteenth 
century to reformulate a theory of mechanics that would be equivalent to Newton’s Theory 
but whose starting point is the concept of energy instead of the concept of force. This 
“modern” approach to classical mechanics is primarily based on the research by Lagrange 
and Hamilton. 

Although it is beyond the scope of this text to go into the details of this formulation, it is 
worth taking a quick look in order to get a better sense of how physicists seek to generalize 
theories. It is also worth noting that the Lagrangian formulation is the method by which 
theories are developed for quantum mechanics and modern physics. 

The Lagrangian description of a “system” is based on a quantity, L, called the “Lagrangian”, 
which is defined as: 

L = K − U (8.9) 

where K is the kinetic energy of the system, and U is its potential energy. A “system” can 
be a rather complex collection of objects, although we will illustrate how the Lagrangian 
formulation is implemented for a single object of mass m moving in one dimension under 
the influence of gravity. Let x be the direction of motion (which is vertical) such that the 
potential and kinetic energies of the object are given by: 

U(x) = mgx 
1 2K(vx) = 2mvx 
1 2∴ L(x, vx) = 2mvx − mgx 

where we chose the potential energy to be zero at x = 0, and vx is the velocity of the object. 

In the modern formulation of classical mechanics, the motion of the system will be such 
that the following integral is minimized: Z 

S = Ldt 

where L can depend on time explicitly or implicitly (through the fact that position and 
velocity, on which the Lagrangian depends, are themselves time-dependent). The require-
ment that the above integral be minimized is called the “Principle of Least Action”5, and 
is thought to be the fundamental principle that describes all of the laws of physics. The 
condition for the action to be minimized is given by the Euler-Lagrange equation: ! 

d @L @L − = 0 (8.10)
dt @vx @x 

5The integral, S, is called the “action” of the system. 
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Thus, in the Lagrangian formulation, one first writes down the Lagrangian for the sys-
tem, and then uses the Euler-Lagrange equation to obtain the “equations of motion” for 
the system (i.e. equation that give the kinematic quantities, such as acceleration, for the 
system). 

Given the Lagrangian that we found above for a particle moving in one dimension under 
the influence of gravity, we can determine each term in the Euler-Lagrange equation: �

@L @ 
�1 = 2mv 

2 − mgx = mvx
@vx @vx

x ! 
d @L d

∴ = (mvx) = max
dt @vx dt �

@L @ 
�1 = 2mv 

2 − mgx = −mg
@x @x x 

Putting these into the Euler-Lagrange equation: ! 
d @L − @L = 0 
dt @vx @x 

(max) − (−mg) = 0 
max = −mg 
∴ ax = −g 

which is exactly equivalent to using Newton’s Second Law (the second last step is equivalent 
to F = ma). In the Lagrangian formulation, we do not need the concept of force. Instead, 
we describe possible “interactions” by a potential energy function. That is why you may 
sometimes hear of physicists talking about the “Weak interaction” instead of the “Weak 
force” when they are talking about one of the four fundamental interactions (forces) of 
Nature. This is because, in the modern formulation of physics, one does not use the concept 
of force, and instead thinks of potential energy functions to model what we would call a 
force in the Newtonian approach. 

Emmy Noether, a mathematician in the early twentieth century, proved a theorem that 
makes the Lagrangian formulation particularly aesthetic. Noether’s theorem states that for 
any symmetry in the Lagrangian, there exists a quantity that is conserved. For example, if 
the Lagrangian does not depend explicitly on time, then a quantity, which we call energy, 
is conserved6. 

The Lagrangian that we had above for a particle moving under the influence of gravity 
did not depend on time explicitly, and thus energy is conserved (gravitational potential 
energy is converted into kinetic energy and there are no non-conservative forces). If the 
Lagrangian did not depend on position, then a quantity that we call “momentum”7 would 

6If the Lagrangian does not depend on time, then we can shift the system in time and the equations of 
motion would be una�ected. We say that the Lagrangian is symmetric, or una�ected, by changes in time. 

7See chapter 10 
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be conserved. In this case, momentum in the x direction was not conserved because the 
Lagrangian depended on x through the potential energy. 

Olivia’s Thoughts 

We saw in this chapter that describing systems in terms of energy is often easier than 
describing them in terms of forces. The Lagrangian gives us a way to get the same 
information we would get from Newton’s laws (like the acceleration, etc.), but using 
energy as a starting point. The Lagrangian method is really useful when we are looking 
at motion in multiple dimensions, or when we are describing complicated systems. Using 
the Lagrangian is actually really simple, and just like with forces, you can pretty much 
approach every problem the same way. Here are the basic steps to follow: 

1. Find two expressions for your system: one for the potential energy (U) and one 
for the kinetic energy (K). This often ends up being the hardest step. 

2. Write down the Lagrangian, L = K − U , using the expressions you just found. 
3. Pick a coordinate. (In one dimension, this is trivial, but it will be important 

once you start working in multiple dimensions). The Euler-Lagrange equation 
was given to you as: ! 

d @L − @L = 0 
dt @vx @x 

because we are working in one dimension. You can actually pick whichever coor-
dinate you are interested in. For example, if you were interested in the motion of 
your object in the y direction, you would pick y as your coordinate and write: ! 

d @L @L − = 0 
dt @vy @y 

4. Now you just have to do what the equation above tells you to do, which is to 
start with your Lagrangian (your L = K − U equation) and take a bunch of 
derivatives. If you try to just plug L into the Euler-Lagrange equation and do all 
the derivatives at once, it can get confusing. I recommend finding the components 
separately. I like to start by taking the partial derivative with respect to velocity, 
@L , then taking its derivative with respect to time. Next, I find @L and then put 
@vy @y 

it all together. 
5. That’s it! When you’ve taken the derivatives (and simplified a bit), you’ll have an 

“equation of motion” that gives you information about the motion of the object. 
You can then use this equation however you want! 
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8.6 Summary 

Key Takeaways 

A force is conservative if the work done by that force on a closed path is zero: I 
~ ~F (~r) · dl = 0 

Equivalently, the force is conservative if the work done by the force on an object moving 
from position A to position B does not depend on the particular path between the two 
points. The conditions for a force to be conservative are given by: 

@Fz @Fy− = 0 
@y @z 
@Fx @Fz− = 0 
@z @x 
@Fy @Fx− = 0 
@x @y 

In particular, a force that is constant in magnitude and direction will be conservative. 
A force that depends on quantities other than position (e.g. speed, time) will not 
be conservative. The force exerted by gravity and the force exerted by a spring are 
conservative. 

~For any conservative force, F (~r), we can define a potential energy function, U(~r), that 
can be used to calculate the work done by the force along any path between position 
A and position B: Z B 

~ ~−W = − F (~r) · dl = U(~rB) − U(~rA) = �U 
A 

where the change in potential energy function in going from A to B is equal to the 
negative of the work done in going from point A to point B. We can determine the 
function U(~r) by calculating the work integral over an “easy” path (e.g. a straight line 
that is co-linear with the direction of the force). 

It is important to note that an arbitrary constant can be added to the potential energy 
function, because only di�erences in potential energy are meaningful. In other words, 
we are free to choose the location in space where the potential energy function is defined 
to be zero. 

We can break up the net work done on an object as the sum of the work done by 
conservative (W C ) and non-conservative forces (W NC ): 

W net = W NC + W C = W NC − �U 
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where �U is the di�erence in the total potential energy of the object (the sum of the 
potential energies for each conservative force acting on the object). 

The Work-Energy Theorem states that the net work done on an object in going from 
position A to position B is equal to the object’s change in kinetic energy: 

W net 2 2= 12mv − 
1
2mv = �KB A 

We can thus write that the total work done by non conservative forces is equal to the 
change in potential and kinetic energies: 

WNC = �K + �U 

In particular, if no non-conservative forces do work on an object, then the change in 
total potential energy is equal to the negative of the change in kinetic energy of the 
object: 

−�U = �K 

We can introduce the mechanical energy, E, of an object as: 

E = U + K 

The net work done by non-conservative forces is then equal to the change in the object’s 
mechanical energy: 

WNC = �E 

In particular, if no net work is done on the object by non-conservative forces, then the 
mechanical energy of the object does not change (�E = 0). In this case, we say that 
the mechanical energy of the object is conserved. 

The Lagrangian description of classical mechanics is based on the Lagrangian, L: 

L = K − U 

which is the di�erence between the kinetic energy, K, and the potential energy, U , of 
the object. The equations of motion are given by the Principle of Least Action, which 
leads to the Euler-Lagrange equation (written here for the case of a particle moving in 
one dimension): ! 

d @L − @L = 0 
dt @vx @x 
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Important Equations 

Conditions for a force to be Work-energy theorem: 
conservative: I 1 1 

W net 2 2= 2mv − 2mv = �K ~ ~ B AF (~r) · dl = 0 

Work: 
@Fz @Fy 

W net = W NC + W C = W NC − �U− = 0 
@y @z 
@Fx @Fz W NC = �K + �U 
− = 0 

@z @x 
Energy:@Fy @Fx− = 0 

@x @y 
E = U + K 

Potential energy for a WNC = �E 
conservative force: 

Lagrange:
�U = −W Z B L = K − U~ ~U(~rB) − U(~rA) = − F (~r) · dl ! 

A d @L @L − = 0 
dt @vx @x 

Important Definitions 

Conservative force: A force that does no net work when exerted over a closed path. 

Potential energy: A form of energy that an object has by virtue of its position in 
space. The potential energy is associated with a conservative force, which is exerted 
in the direction that lowers the potential energy of the object. SI units: [J]. Common 
variable(s): U . 
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8.7 Thinking about the material 

Reflect and research 

1. When did Lagrange publish his theory of classical mechanics, and what was the 
name of the publication? 

2. What is D’Alembert’s contribution to the field of classical mechanics? 
3. Who first proposed the Principle of Least Action, and when? 
4. What is an example of a situation not already covered that you can describe where 

mechanical energy is conserved? 
5. Under what symmetry is angular momentum conserved? 
6. Think of three renewable energy sources and describe how they use conservation 

of energy to produce electricity. 
7. What is a Rube Goldberg machine? Look up some videos of Rube Goldberg 

machines, and find the coolest one! 

To try at home 

1. Design a small catapult or slingshot that you can build using materials found at 
home. Describe how these machines work using conservation of energy. 

To try in the lab 

1. Propose an experiment to test that energy is conserved in a system where only 
gravity acts. 

2. Simulate the launch of a space probe out of the solar system using a gravity assist. 
3. Model and investigate the craters that are created when objects are dropped into 

a bed of sand. 
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8.8 Sample problems and solutions 
8.8.1 Problems 
Problem 8-1: A ball of mass m is dropped onto a vertical spring with spring constant k. 
The spring will compress until the ball comes to rest. How much will it compress if the ball 
is dropped from a height h above the spring? (Solution) 

Figure 8.13: A ball is dropped from rest onto a vertical spring. 

Problem 8-2: A simple pendulum consists of a mass m connected to a string of length L. 
The pendulum is released from an angle �0 from the vertical. Use conservation of energy to 
find an expression for the velocity of the mass as a function of the angle. (Solution) 

Figure 8.14: A pendulum is released from rest an angle �0 from the vertical. 

Problem 8-3: A block of mass m sits on a frictionless horizontal surface. It is attached to 
a wall by a spring with a spring constant k. The mass is pushed so as to compress the spring 
and then it is released (Figure 8.15). Use the Lagrangian formalism to find an equation of 
motion for the mass/spring system (i.e. use the Lagrangian to determine the acceleration 
of the mass). (Solution) 
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Figure 8.15: A mass attached to a spring oscillates about the rest position of the spring. 
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8.8.2 Solutions 
Solution to problem 8-1: The two forces acting on the ball are gravity and the spring 
force. Both are conservative, so we can use conservation of mechanical energy. We will find 
the energy of the ball when it is at a height h above the spring, and the energy of the ball 
when the spring is fully compressed. Then, we will use conservation of mechanical energy 
to determine the compression of the spring. 

Remember that the total mechanical energy is the sum of the total potential energy and the 
kinetic energy, E = U + K. Let’s call the initial position of the ball A and the final position 
of the ball B. You will notice that we set up our coordinate system so that y is positive 
upwards, with y = 0 at the point where the ball comes into contact with the spring. We 
choose to define both the gravitational potential energy and spring potential energy so that 
they are zero at y = 0. 

Since the ball starts from rest, its kinetic energy is zero at position A. At this point, the 
ball is not touching the spring, so the potential energy from the spring force is zero. The 
mechanical energy of the ball at position A is simply equal to its gravitational potential 
energy: 

EA = UA + KA 

EA = mgh 

At position B, the ball is again at rest, so the kinetic energy of the ball is zero. Now that 
the ball is in contact with the spring, it will experience a force from the spring that can be 
modelled with a potential energy U(y) = 2

1 ky1
2, where y1 is the distance between the rest 

position of the spring and its compressed length. At point B (y = −y1), the ball will have 
both spring and gravitational potential energy, so its mechanical energy at position B is 
given by: 

EB = UB + KB = UB 

UB = mg(−y1) + 2
1 
ky1

2 

EB = −mgy1 + 2
1 
ky1

2 

Since mechanical energy is conserved in this system (no non-conservative forces are doing 
work), we can now set EA = EB and solve for y1: 

EA = EB 

mgh = −mgy1 + 2
1 
ky2 

1 

0 = 2
1 
ky1

2 − mgy1 − mgh 

where in the last line we rewrote the expression as a quadratic equation. We can solve for 
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y1 with the quadratic formula: 

mg ± 
q

(mg)2 − 4(1/2k)(−mgh) 
y1 = 

k 

mg ± 
q 
mg(mg + 2kh) 

y1 = 
k 

We now have an expression for the amount the spring is compressed, y1, in terms of our 
known values. 

Solution to problem 8-2: We are going to find a general expression for the energy of the 
system, and then use this expression to find the velocity at any point. There are two forces 
acting on the mass: 

1. The force of tension (from the string). This force is perpendicular to the direction of 
motion at any point, so it does no work on the mass. 

2. The force of gravity, which has a potential energy function given by U(y) = mgy. 
We choose the gravitational potential energy to be zero when the pendulum hangs 
vertically (when � = 0 and y = 0). 

The mechanical energy of the mass is conserved, and at any point is given by the sum of 
its kinetic and its gravitational potential energies: 

E = mgy + 2
1 
mv 2 

We want to find the velocity as a function of �, so we need to write y in terms of �. As 
you may recall from Problem 7-2, we saw that from the geometry of the problem, we can 
express the height of the mass as y = L − L cos �, or L(1 − cos �), where y is the height 
as measured from the bottom point of the motion. You can refer to Figure 7.25 to refresh 
your memory. The energy at any point is then: 

E = mgL(1 − cos �) + 2
1 
mv 2 

Conservation of energy tells us that the total energy at any point must be the same as the 
initial energy. So, we can use our initial conditions to find the total energy of the system. 
The mass starts from rest (initial kinetic energy is zero) an angle �0 above the vertical: 

E = mgL(1 − cos �) + 2
1 
mv 2 

Einitial = mgL(1 − cos �0) 

Now that we have found the total energy of the system, we can write our general expression 
for the energy of the system at any point: 

1 2E = mgL(1 − cos �) + 2mv 

mgL(1 − cos �0) = mgL(1 − cos �) + 2
1 
mv 2 
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All that’s left to do is simplify the expression and rearrange for v: 

mgL(1 − cos �0) = mgL(1 − cos �) + 2
1 
mv 2 

1 
gL(1 − cos �0) − gL(1 − cos �) = 2 

2v 
1 2gL − gL cos �0 − gL + gL cos � = 2v 
1 2gL(cos � − cos �0) = 2v q

∴ v = 2gl(cos � − cos �0) 

Discussion: We can see from this expression that the speed will be maximized when cos � 
is maximized, which will occur when � = 0 (when the pendulum is vertical). This is as we 
expected. We can also see that we will get an imaginary number if the magnitude of � is 
greater than �0, showing that the motion is constrained between −�0 and �0. Finally, we 
showed that the velocity of the pendulum does not depend on the mass! 

Solution to problem 8-3: We are going to find an equation of motion of the system using 
the Lagrangian method. We choose to use a one dimension coordinate system, with the x 
axis defined to be co-linear with the spring, positive in the direction where the spring is 
extended, and set the origin to be located at the rest position of the spring. The kinetic 
energy and potential energy of the mass are given by 

1 2K = 2mvx 

U = 2
1 
kx2 

since the only force exerted on the mass that can do work is the force from the spring. We 
have chosen the potential energy to be zero at x = 0. The Lagrangian for this system is: 

L = K − U 

L = 2
1 
mv 2 − 2

1 
kx2 

x 

The Euler-Lagrange equation in one dimension is: 

! 
d @L @L − = 0 
dt @vx @x 
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We can calculate the terms of the Euler-Lagrange equation: �
@L @ 

�1 1 = 2mv 
2 − 2kx

2 
@vx @vx

x 

= mvx! 
d @L d

∴ = (mvx)
dt @vx dt 

= max �1 �
@L 2 1and = 2mv − 2kx

2 
@x x 

= −kx 

and then put them together to get: ! 
d @L @L − = 0 
dt @vx @x 

∴ max = −kx 

We can see that this equation of motion is equivalent to Newton’s Second Law. 



9 Gravity 

In previous chapters, we have so far learned about Newton’s Theory of Classical Mechanics, 
which allowed us to model the motion of an object based on the forces acting on the object. 
In this chapter, we present the theories that describe the force of gravity itself. We will see 
several theories of gravity and focus primarily on Newton’s Universal Theory of Gravity. 

Learning Objectives 

• Understand Kepler’s Laws. 
• Understand Newton’s Universal Theory of Gravity. 
• Understand Gauss’ Law and the gravitational field. 
• Understand how to use energy to describe orbits. 
• Understand how Einstein’s General Theory of Relativity di�ers from Newton’s 

theory of gravity. 

Think About It 

A person stands on a scale at the top of Mount Logan, the tallest mountain in Canada. 
How will her measured weight compare to her weight at sea level? 

A) It will be slightly less than her weight at sea level. 
B) It will be equal to her weight at sea level. 
C) It will be slightly more than her weight at sea level. 

9.1 Kepler’s Laws 
Although humans have long been fascinated by the motion of objects in the sky, it was 
Johannes Kepler, in the early seventeenth century, that was the first to write down quan-
titative rules that described the motion of planets around the Sun. His theory was based 
on the extensive and detailed observations recorded by Tycho Brahe in the late sixteenth 
century. 

Kepler proposed three laws that describe all of the data that Tycho Brahe had collected 
about planetary motion: 

1. The path of a planet around the Sun is described by an ellipse with the Sun at once 
of its foci. 

2. All planets move in such a way that the area swept by a line connecting the planet 
and the Sun in a given period of time is constant. 

3. The ratio between the orbital periods, T , of two planets squared is equal to the ratio 

247 
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of the semi-major axes, s, of their orbits cubed: � �2 � �3T1 s1= 
T2 s2 

We examine these three laws in more detail in the sections that follow. It should also be 
noted that, even though Kepler’s Laws were derived for planets orbiting the Sun, they apply 
to any body that is orbiting any other body under the influence of gravity1. 

9.1.1 Kepler’s First Law 
Kepler noticed that the motion of all planets followed the path of an ellipse with the Sun 
located at one of its foci. Figure 9.1 shows a diagram of an ellipse, along with its two foci, 
its semi-major axis, s, its semi-minor axis, b, and its eccentricity, e. The eccentricity is 
a measure of how far a focus is from the centre of the ellipse. A larger eccentricity thus 
corresponds to a “flatter” ellipse. Note that a circle is just a special case of an ellipse, with 
both foci located at the centre of the circle. 

Figure 9.1: A ellipse, showing its two foci, its semi-major axis, s, its semi-minor axis, b, and its 
eccentricity, e. 

The sun is located at one of the foci. The point of closest approach to the Sun is called 
the “perihelion” of the orbit (or “perigee” if the orbit is not around the Sun), and the point 
furthest from the Sun is called the “aphelion” of the orbit (or “apogee” if the orbit is not 
around the Sun), as shown in Figure 9.2. 

1In fact, they apply for any two bodies orbiting each other if the force between them is an “inverse-square” 
law, such as the gravitational and electric forces. 
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Figure 9.2: The orbit of the Earth around the Sun, showing the perihelion and aphelion, and the 
orbit of the Moon around the Earth, showing the perigee and the apogee. (Not to scale.) 

Checkpoint 9-1 

Order the ellipses from smallest eccentricity to largest eccentricity. 

Figure 9.3: Three ellipses, each with a di�erent eccentricity. 

9.1.2 Kepler’s Second Law 
Kepler’s Second Law is really a statement about the speed of a planet in an elliptical orbit. 
It states that the area swept by a line connecting the planet and the Sun in a given period 
of time is fixed. This is illustrated in Figure 9.4, which shows the elliptical orbit of a planet 
around the Sun located at one of the foci, and the area swept out when the planet goes 
from A to B and from C to D. 

Figure 9.4: Illustration of Kepler’s Second Law, showing the area that is “swept” by a planet in a 
fixed period of time. 

Kepler’s Second Law states that the two areas that are shown by the greyed out sections in 
the figure are the same if the planet took the same amount of time to travel between points 
A and B as it did to travel between points C and D. Because the points C and D are further 
away from the Sun than points A and B, the distance between points C and D must be 
smaller than the distance between points A and B for the two areas to be the same. This, 
in turn, implies that the planet must be moving slower between C and D than between 
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points A and B. The speed of a planet is thus greatest at the perihelion and smallest at 
the aphelion. As we will see in a later chapter, Kepler’s Second Law is equivalent to the 
statement that the angular momentum of the planet about the Sun is conserved. 

Checkpoint 9-2 

Based on Kepler’s second law, what can you say about the speed of a planet in a 
circular orbit? 

9.1.3 Kepler’s Third Law 
Kepler’s Third Law is quantitative and relates the orbital periods (T ) and the semi-major 
axes (s) between any two planets in orbit around the Sun: � �2 � �3T1 s1= 

T2 s2 

We can re-arrange this relation so that all of the quantities related to one planet are on the 
same side of the equal sign: 

T1
2 T2

2 
= = constant 3 3s s1 2 

In other words, the ratio between the orbital period squared and the semi-major axis cubed 
is a constant, independent of the particular planet. In Example 9-2, we will use Newton’s 
Universal Theory of Gravity to evaluate the constant. 

Checkpoint 9-3 

An object is in a circular orbit with radius r and has an orbital speed v. If you double 
the radius of the circular orbit, what will be the value of the orbital speed? 

A) 2v 
B) 8vp
C) 8v. 
D) p1 

2 v 

9.2 Newton’s Universal Theory of Gravity 
Newton supposedly gained insight into the gravitational force by observing an apple falling 
from a tree and concluding that if it is the same force that makes apples fall at sea level and 
at the top of a mountain, perhaps that force can be exerted all the way up to the moon. It is 
rather remarkable that Newton was able to make the connection between falling apples and 
the motion of the moon around the Earth to find a single theory to describe both situations. 

We should be clear that the theory of gravity is a di� erent theory than Newton’s “Laws 
of Motion” (Newton’s Three Laws). The Laws of Motion introduce the concepts of force 
and inertial mass, and prescribe how to use those concepts in order to model motion using 
kinematics. Newton’s Universal Theory of Gravity is a theory that describes the force of 
gravity that two bodies with (gravitational) mass exert on each other. 
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Newton’s Universal Theory of Gravity states that if two bodies, with masses M1 and M2, 
located at positions ~r1 and ~r2, respectively, are separated by a distance, r, then M2 will 

~exert an attractive force on M1, F12, given by: 

M1M2~F12 = −G 2 r̂21 (9.1) 
r 

where r̂21 is the unit vector from M2 to M1: 

~r21 = ~r2 − ~r1 

1 
r̂21 = ~r21 

r 

~as shown in Figure 9.5. F12 should be read as “the force on body 1 from body 2”. G = 
6.67 × 10−11 Nm2/kg2 is Newton’s Universal Constant of Gravity. It should be noted that 
Newton’s theory for the force of gravity written in this form only applies to either point 
masses (separated by a distance r) or spherical bodies whose centres are separated by a 
distance r that is larger than the radius of either sphere. 

Figure 9.5: Illustration of the vectors involved in Newton’s Universal Theory of Gravity. 

Originally, Newton argued that the force of gravity would be proportional to the masses of 
the bodies, and inversely proportional to the square of the distance between them: 

M1M2
F12 / 2r 

and G is simply the constant of proportionality. 

Because of Newton’s Third Law, body 1 exerts a force on body 2 that is equal in magnitude 
but opposite in direction: 

~ ~F12 = −F21 
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Example 9-1 

Calculate the magnitude of the force of gravity between yourself and a person standing 
50 cm from you and compare that to your weight at the surface of the Earth (the force 
of gravity exerted by the Earth on you). 

Solution 

If we assume that the two people have a mass of 50 kg, the force of gravity exerted by 
one on the other, if they are separated by 50 cm, is given by: 

M1M2 (50 kg)(50 kg) 
F = G 2 = (6.67 × 10−11 Nm2/kg2) = 6.67 × 10−7 N 

r (0.5 m)2 

This is a very small force, compared to their weight, Fg: 

Fg = M1g = (50 kg)(9.8 N/kg) = 490 N 

which is approximately 700 million times bigger. 

Discussion: The force of gravity is a very weak force when compared to other forces 
in Nature, such as the electric force between two charges. Newton’s Universal Constant 
of Gravity is very small, so the force of gravity between two objects is very small unless 
either of the masses involved are very large, or the distance between them is very small. 
In general, when modelling the motion of objects on the Earth, it is generally safe to 
ignore the forces of gravity between objects and only include their weight (the force of 
gravity from the Earth). 

Checkpoint 9-4 

The radius of the Earth is 6371 km. What is the order of magnitude of the Earth’s 
mass? 

A) 1024kg 
B) 1018kg 
C) 1019kg 
D) 1021kg 
E) Not enough information. 
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Example 9-2 

Determine the constant in Kepler’s Third Law for planets orbiting the Sun, namely the 
value of the ratio: 

3s 

T 2 

where s is the semi-major axis and T is the orbital period. 

Solution 

Since Kepler’s Third Law holds for any body orbiting the Sun, we can easily determine 
the ratio by considering a planet of mass m in a circular orbit of radius R centred 
about the Sun. The semi-major axis of the orbit is equal to the radius of the orbit for 
a circular orbit (s = R). 

If the planet is in a circular orbit about the Sun, its speed, v, will be constant, by 
Kepler’s Second Law, and it will thus be executing uniform circular motion. The only 
force exerted on the planet is the force of gravity exerted by the Sun. Thus the force of 
gravity must be equal to the mass of the planet times its radial (centripetal) acceleration, 
aR, which is given by: 

2v 
aR = 

R 

Newton’s Second Law for the planet can be written as: X 
F = Fg = maR 

2Mm v 
G = m 
R2 R 
M 2G = v 
R 

where M is the mass of the Sun. The speed of the planet is given by the circumference 
of the orbit divided by the orbital period T , since it is constant: 

2ˇR 
v = 

T 
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Re-arranging the equation from Newton’s Second Law: 

M 2G = v 
R 
M 4ˇ2R2 

G = 
R T 2 

R3 M
∴ = G 
T 2 4ˇ2 

Thus, we find that the ratio of the cube of the orbital radius to the period squared is a 
constant that depends only on the mass of the Sun, which will then be the same for all 
planets (as it does not depend on, say, the mass of the planet that we considered). 

Discussion: The relation above can, for example, be used to determine the mass of 
the Sun, since we can use geometry to determine the semi-major axis for the orbit of a 
planet, as Kepler did with the data from Tycho Brahe. 

Example 9-3 

The acceleration due to Earth’s gravity depends on the force that the Earth exerts on 
an object. Using the Earth’s mass and radius, determine the acceleration of falling 
objects due to Earth’s gravity at the surface of the Earth. Also, determine the altitude 
where the acceleration due to Earth’s gravity is half of that at the Earth’s surface. 

Solution 

We can find the acceleration due to Earth’s gravity by determining the acceleration of 
a mass m upon which gravity is the only acting force. In other words, we model an 
object that is in free-fall a distance R away from the centre of the Earth. Newton’s 
Second Law can be used in one dimension (corresponding to the direction that connects 
the falling mass to the centre of the Earth): 

X Mm 
F = G = ma 

R2 

M
∴ a = G 

R2 

where M = 5.97 × 1024 kg is the mass of the Earth. At the surface of the Earth, 
R = R� = 6.371 × 106 m: 

M (5.97 × 1024 kg) 
a = G

R2 = (6.67 × 10−11 Nm2/kg2) 
� (6.371 × 106 m)2 

= 9.81 m/s2 

which, of course, is the value of g that we have been using so far for the acceleration due 
to gravity near the surface of the Earth. To find the altitude at which this is reduced 
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by half, we first find the value of R that corresponds to this acceleration: 

1 M M = G2GR2 R2 
� p

∴ R = 2R� = 9.0 × 106 m 

which corresponds to an altitude of h = R − R� = 2640 km, well above the Earth’s 
atmosphere. 

Discussion: The acceleration of falling objects decreases as one moves further from 
the centre of the Earth. It is thus an approximation to assume that g is a constant, 
although in most cases this is a very good approximation. In practice, the value of 
g will depend both on the distance from the centre of the Earth and the composition 
(density) of the material in the Earth’s crust below where g is being measured. Precise 
measurements of g have bee used to determine the composition of the Earth’s crust and 
to search for mineral and oil deposits. 

9.2.1 Weight and apparent weight 
You have probably seen images of astronauts floating around the International Space Station 
(ISS) or other orbiting vessels, and heard of the term “weightlessness” to describe their 
motion. The ISS is in orbit at an altitude of approximately 400 km, where the force of 
Earth’s gravity is far from negligible (in Example 9-3 we showed that one needs to go to 
an altitude of 2640 km for the force to be reduced by half of that at the surface of the 
Earth). The contradiction between being weightless and the fact that weight is not zero is 
resolved by understanding that the popular term “weightless” is imprecise from a physics 
perspective. 

The correct term to use from a physics perspective is to say that the apparent weight of the 
astronauts is zero when they are floating around. Weight is the magnitude of the force of 
gravity exerted by the Earth. Apparent weight is, for example, the force that one measures 
when standing on a spring scale, which is equal to the normal force exerted by the spring 
scale on the person. Apparent weight could also be determined by the tension in a string 
from which a person is suspended. The apparent weight is the sum of the forces exerted 
on a person minus the force of gravity. If gravity is the only force exerted on a person 
(or object), that person’s apparent weight is zero, which is what is popularly called being 
weightless. 

One way to feel weightless is when you are in free-fall (e.g. the first few seconds of a 
parachute jump from an airplane). One can think of being in orbit as continuously falling 
towards the centre of the Earth, but with an initial velocity in a direction such that you 
never actually collide with the Earth. The feeling of weightlessness will occur any time that 
the only force exerted on you is the force of gravity. If you are in a spacecraft in any orbit 
and the only force on the spacecraft is from gravity (i.e. no rockets or wings are exerting 
any forces), then everything in the spacecraft will have the same acceleration, since gravity 
is the only force acting on anything in the spacecraft, and it will appear that everything is 
just floating. To an outside observer, it would be clear that the spacecraft and its contents 
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are all accelerating. 
E�ects of Earth’s rotation 

Earth’s rotation a�ects the apparent weight of objects near the Earth’s surface. Consider 
a person standing on a spring scale at the North pole (top free-body diagram in Figure 

~9.6). The only two forces exerted on the person are their weight, Fg, and the normal force, 
~N , exerted by the spring scale. Since the person is not accelerating, the normal force and 
the weight have the same magnitude and opposite directions. The scale will thus read the 
actual weight of the person2. 

Figure 9.6: The apparent weight, given by the normal force, is di�erent at the Earth’s equator 
because a person’s acceleration is non-zero as they rotate with the Earth. 

Consider, instead, a person standing on a spring scale at the equator (Figure 9.6). That 
person is accelerating because they are undergoing uniform circular motion as they rotate 
along with the Earth. Again, the only forces acting on the person are their weight and the 
normal force exerted by the scale. The sum of the forces must now be equal to the person’s 
mass, m, times the radial acceleration, ar, that is necessary for them to follow the surface 
of the Earth as the Earth rotates about its axis. Newton’s Second Law allows us to find the 

2The weight that is displayed on the scale is equal in magnitude to the normal force exerted by the scale 
on the person. It is the reaction force to that normal force. 
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magnitude of the normal force acting on the person: 
2X v 

F = Fg − N = mar = m 
R 

2v
∴ N = Fg − m 

R 
2Mm v = G − m 

R2 R !2M v = m G 
R2 − R !2v = m g − 
R 

where M is the mass of the Earth, R is the radius of the Earth, and v is the speed at the 
surface of the Earth due to the Earth’s rotation. In the last line, we used the result from 
Example 9-3 where we determined the value of g in terms of the mass and radius of the 
Earth. 

We see that the normal force is reduced compared to what it would be if the Earth were 
not rotating (v = 0) or if one is standing at one of the poles. Your apparent weight, which 
you can measure by standing on a spring scale, is thus smaller at the equator than it is at 
the poles. The quantity in parenthesis can be thought of as a modified or “e�ective” value 
of g at the equator. 

Checkpoint 9-5 

What is the e�ective value of g at the equator? 
A) 9.80 m/s2 

B) 9.78 m/s2 

C) 9.70 m/s2 

D) 9.51 m/s2 

If you are circling the Earth a distance R from the centre of the Earth at a constant speed v, 
it is possible for your apparent weight to be zero. Imagine standing on a scale in an aircraft 
that is circling the Earth and measuring your apparent weight with the spring scale. As the 
speed of the aircraft increases, your apparent weight, N , decreases according to the formula 
that we just found: !2M v 

N = m G 
R2 − R 

At a certain speed, v, your apparent weight is zero and you feel weightless: 
2M v 

G = 
R2 sR 

M
∴ v = G 

R 
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This speed corresponds to a centripetal acceleration that is exactly equal to that due to 
gravity. This makes sense, since gravity is the only force that is acting on you (the normal 
force is now zero), which is exactly what we call being in orbit. 

Earth’s rotation has some interesting consequences for stationary objects. At any position 
on Earth that is not at the equator or the poles, the sum of the forces on any stationary 
object (meaning stationary relative to the Earth’s surface) cannot be zero. This is because 
the object must rotate along with the Earth, so the net force on the object must point 
toward the centre of the circle about which that location on Earth is rotating. 

Take, for example, a plumb line, which consists of a mass hanging from a string. The two 
forces acting on the mass are gravity and tension. The force of gravity must point towards 
the centre of the Earth. We would expect that the force of tension, and therefore the string, 
would point directly away from the centre of the Earth. However, we find that if the plumb 
line is located at some angle � from the equator (but not at the equator or poles), as in 
Figure 9.7, then the string will point slightly away from the centre of the Earth. In order for 
the mass to remain stationary relative to the ground, it must rotate along with the Earth 
(radius R) around a circle of radius R cos �. Thus, the tension from the string cannot point 
away from the centre of the Earth, because the net force must point towards the centre of 
the circle of radius R cos �. 

Figure 9.7: Away from the equator and poles, a plumb line (right) does not point towards the centre 
of the Earth, because the net force on the mass must provide the acceleration towards the centre of 
the circle (of radius R cos �) about which the plumb line rotates due to the Earth’s rotation. Note 
that the deflection of the plumb line is highly exaggerated. 
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Checkpoint 9-6 

You cut the string of the plumb line. Where does the mass land relative to its initial 
latitude (the angle � in Figure 9.7)? 

A) At the same latitude. 
B) Closer to the nearest pole. 
C) Closer to the equator. 

9.2.2 The gravitational field 
The gravitational force exerted on a mass m by a mass M can be written as: 

Mm ~F (~r) = −G 2 r̂  
r 

if we define a coordinate system with the origin located at the centre of mass M so that ~r 
is the position of m relative to M . We can define the “gravitational field”, ~g(~r), at position, 
~r, due to the presence of mass M as the gravitational force per unit mass exerted by M : 

~F (~r) GM 
~g(~r) = = − 2 r̂  

m r 
(9.2) 

The word “field” is just a mathematical term for a function that depends on position. Since 
~g(~r) is a vector, we would refer to it as a “vector field”. 

Defining the gravitational field makes it easy to calculate the force of gravity from M on 
any mass m: 

~Fg = m~g(~r) 

At the surface of the Earth, the magnitude of the gravitational field is given by: 
GM 

g(R�) = 
R2 = 9.81 N/kg 
� 

where R� is the radius of the Earth. Of course, this also corresponds to the acceleration of 
objects in free-fall near the surface of the Earth, which we can find from Newton’s Second 
Law: X 

~ ~F = Fg = m~a 
m~g(R�) = m~a 

∴ ~a = ~g(R�) 

but we see here why it more precise to refer to g as the “magnitude of the gravitational 
field at the surface of the Earth” rather than “the acceleration due to Earth’s gravity”. It 
is also worth noting that the two are only equal if the gravitational mass (on the left of the 
equation in the second line) is the same as the inertial mass (on the right of the equation). 
The gravitational mass is the mass that appears in the gravitational force defined by Newton, 
whereas the inertial mass is the mass that appears with the acceleration in Newton’s Second 
Law. 
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Checkpoint 9-7 

Two small objects with di�erent masses, m1 and m2, are located a distance r from a 
nearby star. What can you say about the magnitude of the gravitational field and the 
magnitude of the gravitational force on m1 and m2? 

A) The field is di�erent and the forces are di�erent. 
B) The field is di�erent but the forces are the same. 
C) The field is the same but the forces are di�erent. 
D) The field is the same and the forces are the same. 

Suppose that there are two large mass bodies, M1 and M2, and a smaller mass body, m. We 
can calculate the net gravitational force on m by summing the gravitational force vectors 
from M1 and M2 separately. If the gravitational fields from M1 and M2 are given by ~g1(~r) 
and ~g2(~r), respectively, then the total gravitational force on m is given by: 

~F = m~g1(~r) + m~g2(~r) = m(~g1(~r) + ~g2(~r)) 
= m~g(~r) 

where we have introduced the total gravitational field: 

~g(~r) = ~g1(~r) + ~g2(~r) 

In other words, if there are multiple bodies that result in a non-negligible force of gravity, 
we can calculate their gravitational fields independently and sum them together to define a 
net gravitational field, ~g(~r), that models the net force of gravity from all of the bodies. The 

0net gravitational force on a new body of mass m0 is then simply given by m ~g(~r), and we do 
not need to add any more vectors together. For example, when calculating the motion of 
satellites that can be influenced by the force of gravity from both the Earth and the Moon, 
we simply need to calculate the net gravitational field from the Earth and Moon, and the 
motion of any satellite can then be modelled using that net gravitational field. 
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Checkpoint 9-8 

There are two planets with equal mass located a distance d apart. Position A is located 
midway between the two planets. Position B is located a distance d/2 from one of the 
planets, in the position shown in Figure 9.8. How does the field at A compare to the 
field at B? 

Figure 9.8: Two planets are a distance d apart. We are considering the gravitational field at 
two positions, A and B, located near the planets. 

A) The magnitude of the field is the same at A and B. 
B) The magnitude of the field is greater at A than at B. 
C) The magnitude of the field is greater at B than at A. 

9.2.3 Gauss’ Law 
Newton’s Universal Theory of Gravity postulates that the force of gravity between two bod-
ies decreases as the squared of the distance between those two bodies. Using the terminology 
of a field, we would say that the strength of the gravitational field from an object decreases 
as the inverse of the square of the distance to that object. This is an example of a what we 
generally call an “inverse-square law”. The electric force between two charges is also given 
by an inverse-square law, and we now understand that these forces behave as if they were 
“transmitted” by waves or particles. 

If a force is given by an inverse-square law, then Gauss’ Law gives a way to determine the 
strength of the field that is associated with that force. In the case of gravity, Gauss’ Law 
states that: I 

~g(~r) · dA~ = 4ˇGM enc 

where the integral on the left is an integral over a “closed surface” that completely surrounds 
the mass for which we want to determine the gravitational field. To evaluate the integral, 

~imagine taking a closed surface, S, that surrounds the mass. The vector dA is defined as the 
vector that goes with a small element of that surface and points outwards from the closed 
surface. The magnitude of the vector is equal to the area of that small surface (dA), as 

~illustrated in Figure 9.9. You can then take the scalar product of dA with the gravitational 
field, ~g(~r), at that point on the surface. If you sum all of those scalar products, you get the 
value of the integral on the left. Gauss’ Law states that the value of that integral is equal 
4ˇG times the total mass that is enclosed by the surface. 
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Olivia’s Thoughts 

If you want to know if a surface is closed, ask yourself if you could put water inside the 
surface and not be worried about it spilling out. For example, if you put water in a 
sphere or a cube , the water would not spill out even if you shook it around, so they are 
closed surfaces. A flat square is an open surface because there is no “inside” to even 
put the water in. A bowl is an open surface because, though you can put water in it, 
the water could spill out. 

We will go into more detail about Gauss’ Law when we cover electromagnetism, but it is 
worth seeing how to use it in a simple scenario. Figure 9.9 shows a spherical body of mass 
M and radius R for which we would like to determine the value of the gravitational field at 
a distance r from the centre of the body. 

Figure 9.9: Example of a spherical Gaussian surface, S, of radius r centred about a body of mass 
~M and radius R. An element of the surface, dA is also shown along with the gravitational field, 

~g(~r), at that point. 

To do so, we draw a “Gaussian surface”, S, that is a sphere with a radius r, and centred 
~about the body. At any point on the surface, the area element vector dA points away from 

the centre of the spherical surface. The gravitational field vector, ~g(~r) will always point 
towards the centre of the spherical surface, as illustrated. Furthermore, by symmetry, the 
magnitude of ~g(~r) is constant along the whole Gaussian surface. Thus, the scalar product 

~ ~g(~r) · dA = −g(r)dA everywhere along the surface (it is negative because the two vectors 
are anti-parallel). The integral is thus given by: I I 

~ ~g(~r) · dA = −g(r) dA 

where we factored g(r) out of the integral, since the magnitude of ~g(~r) is constant for all ofH
the area elements dA on the sphere. Remember that an integral is a sum. The integral dA 
thus means “sum all of the area elements dA over the entire surface S”. Thus, the integral 
is the total area of the spherical surface S3: I I 

~ ~g(~r) · dA = −g(r) dA = −g(r)(4ˇr2) 

3The surface area of a sphere of radius r is 4ˇr2. 
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Inserting this into Gauss’ Law, we find: I 
~g(~r) · dA~ = 4ˇGM enc 

−g(r)(4ˇr2) = 4ˇGM enc 

∴ g(r) = − GM 2r 

where M enc = M is the total mass enclosed by the Gaussian surface (in this case, the entire 
mass M is enclosed). This is of course the result that we expected and obtained earlier 
from Newton’s formulation. Note that Gauss’ Law is only easy to use if the system is highly 
symmetric (e.g. spherically symmetric), and that it does not give the direction of the field 
vector, which must be obtained from symmetry arguments. 

Olivia’s Thoughts 

Here’s an analogy to describe Gauss’s Law for gravity: A famous celebrity is doing 
an event, and they attract a certain number of fans who want to get as close to the 
celebrity as possible. You put up a barricade around the celebrity. The gravitational 
field is represented by how crowded it is somewhere along the barricade. If a second 
celebrity is at the event, they will attract their own fans, so there will be more people 
around the barricade. The number of celebrities is kind of like the enclosed mass M enc. 

A photographer is coming to the event, and you told him to stand at some location 
that is a distance r from the celebrities. The photographer wants to know how crowded 
it will be when he is standing behind the barricade at that location. Gauss’s law gives 
us a way to figure this out. If you know which celebrities are at the event (M enc), you 
can determine how many people will be there (this is like finding 4ˇGM enc). Then, if 
you can build a barricade such that the fans are evenly distributed around it, and you 
know how long that barricade is (

H 
dA), you can easily calculate how crowded it will 

be at some point along the barricade (you can just divide the number of people by the 
length of the barricade). 
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The barricade represents our Gaussian surface and, like a Gaussian surface, it can be 
whatever shape we want as long as it encloses the celebrities and passes through the 
point we are interested in. If we want to make sure the people are spread out evenly, the 
shape of the barricade is going to depend on the specific case. Let’s take the example 
of our single spherical body. This is analagous to having one celebrity at the event. 

Figure 9.10 shows two possible barricades we could build. Although we can technically 
build the barricade on the left, it doesn’t help us because the areas closer to the celebrity 
will be more crowded. Instead, we want to build the barricade on the right, which is 
a circle of radius r, because the fans are evenly spread out. This is why we use a 
spherical Gaussian surface when we’re considering the field due to a spherical body -
at any point a distance r from the body, the field will be the same. (Note: Remember 
that, unlike the barricade, the Gaussian surface isn’t a physical thing, so it won’t a�ect 
the gravitational field. It is just a mathematical tool that allows us to take advantage 
of what the field already looks like.) 

Figure 9.10: A celebrity (black dot) attracts fans (grey dots). A photographer (dot labelled 
“P”) stands behind the barricade a distance r away. This shows two possible barricades we 
could build around the celebrity. The density of the fans is not uniform for the barricade on 
the left, so we would not choose that shape to evaluate the Gaussian integral. 

We can also use Gauss’ Law to determine the gravitational field inside of the body of mass 
M and radius R. This is illustrated in Figure 9.11, which shows a spherical Gaussian surface 
of radius r that is inside of the body of mass M . 

Figure 9.11: Example of a spherical Gaussian surface, S, of radius r centred inside a body of mass 
M and radius R. 

The gravitational field inside of the body of mass M is also symmetric and constant in 
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magnitude across the whole surface, so that the integral is the same as before: I 
~ ~g(~r) · dA = −g(r)(4ˇr2) 

However, in order to use Gauss’ Law, we need to determine the mass of the body that is 
enclosed within the spherical surface, which will be less than M . If we assume that the 
mass density, ˆ, of the object is constant (the body is made of a uniform material), then 
the density is simply the mass of the object over its volume: 

M 
ˆ = 4 

3 ̌ R
3 

The amount of mass enclosed by the spherical surface of radius r is the density multiplied 
by the volume of a sphere of radius r: 

M enc = ˆ 43ˇr
3 = M r3 

R3 

Applying Gauss’ Law, we can now find the magnitude of the gravitational field inside of the 
spherical body at a distance r from the centre: I 

~g(~r) · dA~ = 4ˇGM enc 

3r −g(r)(4ˇr2) = 4ˇGM 
R3 

∴ g(r) = − GM r 
R3 

And we find that, inside a uniform spherical body of mass M , the gravitational field increases 
linearly with radius as one moves out from the centre. At the centre of the body, the 
gravitational field is zero. 

Checkpoint 9-9 

What can you say about the magnitude of the gravitational field inside a spherical shell 
of mass M? 

A) It increases as you move out from the centre of the spherical shell. 
B) It decreases as you move out from the centre of the spherical shell. 
C) It is equal to zero. 
D) It is nonzero and constant in magnitude. 

9.3 Gravitational potential energy 
Consider a large spherical body of mass M with a coordinate system whose origin coincides 
with the centre of the spherical body (for example, the large body could be the Earth). The 

~force, F (~r) on a body of mass m (for example, a satellite), located at a position ~r is then 
given by: 

Mm Mm ~F (~r) = −G 2 r̂ = −G 3 ~r r r 
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where in the second equality, we use the fact that the unit vector in the direction of ~r is 
simply the vector ~r divided by its magnitude. We can write the force out in Cartesian 
coordinates: 

~r = xx̂+ yŷ + zẑ  q 
r = x2 + y2 + z2 = (x 2 + y 2 + z 2) 

Mm 

1
2 

∴ ~F (x, y, z) = −G (xx̂+ yŷ + zẑ)
(x2 + y2 + z2) 3

2 

Mathematically, this is equivalent to the force that we considered in Example 8-2 of Chapter 
8, which we showed was a conservative force. The force of gravity in Newton’s theory is 
thus a conservative force, for which we can determine a potential energy function. 

In order to determine the gravitational potential energy function for the mass m in the 
presence of a mass M , we calculate the work done by the force of gravity on the mass 
m over a path where the integral for work will be “easy” to evaluate, namely a straight 
line. Figure 9.12 shows such a path in the radial direction, r, over which it will be easy 
to calculate the work done by the force of gravity from mass M when mass m moves from 
being a distance rA to a distance rB from the centre of mass M . 

Figure 9.12: Calculating the work done on a mass m by the force of gravity exerted by mass M 
when mass m moves from a distance rA to a distance rB from the centre of mass M . 

The work done by the force of gravity on m in going from rA to rB is given by: Z Z � � Z rB rB rBMm Mm ~W = F (r) · d~r = −G 2 r̂  · d~r = −G 2 dr rA rA r rA r � �rBMm Mm Mm = G = G − G 
r rA rB rA 

The di�erence in potential energy in going from position A to position B is given by the 
negative of the work done by the force: 

�U = U(rB) − U(rA) = −W Mm = G Mm − G 
rA rB 

By inspection, we can identify the potential energy function for gravity: 

U(r) = −GMm + C 
r 

(9.3) 
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which is determined only up to a constant, C. 

A particularly useful choice of constant is C = 0. This corresponds to choosing the potential 
energy to be zero only when r goes to infinity. That is, the potential energy of mass m is 
zero only when it is infinitely far away from mass M . The choice of constant C corresponds 
to the (arbitrary) value of the potential energy when mass m is infinitely far from mass M . 
When mass m is not infinitely far away, it has negative potential energy (if C = 0). This 
is not a problem! Remember, the only thing that is meaningful is a di�erence in potential 
energy, so the specific value of the potential energy has no meaning. The kinetic energy of 
an object, on the other hand, has to be positive. 

Recall that if there are no other forces acting on an object, that object will move in such a 
way to reduce its potential energy. If the object of mass m is located at some distance r from 
the object of mass M , the force of gravity will attract m so that r decreases. As r decreases 
in magnitude, the potential energy becomes more negative (larger in magnitude, but further 
away from zero), and the potential energy of m will indeed decrease as it accelerates due to 
the force of gravity. 

9.3.1 Mechanical energy with gravity 
Unless noted otherwise, we will continue our discussion of gravitational potential energy 
with the particular choice of constant C = 0: 

U(r) = −GMm (9.4) 
r 

Furthermore, we will assume that M is a large body, such as the Earth, which we can 
consider as fixed, and focus our discussion on describing the motion of mass m (e.g. a 
satellite). If M is much bigger than m, they will both experience a force of gravity from each 
other of the same magnitude (Newton’s Third Law), but because M is so much larger, its 
acceleration will be much smaller (Newton’s Second Law). Thus, it is a good approximation 
to assume that M is stationary and that only m moves when M >> m. 

We can define the total mechanical energy of mass m when it has a speed v (relative to M) 
and is located at a distance r from the centre of mass M : 

Mm 1 2E = U + K = −G + 2mv r 

where the kinetic energy term is always positive. If gravity is the only force exerted on mass 
m, then the mechanical energy, E, as defined above, will be a constant. The mechanical 
energy of an object can give us insight into the possible motion of the object. 

Imagine launching a rocket straight upwards from the surface of the Earth; once all of the 
fuel has burnt up, the rocket’s mechanical energy becomes constant as the rocket engine 
stops doing work on the rocket. As soon as the engine stops providing thrust, the rocket will 
start to slow down as the force of gravity attracts the rocket back to Earth. If the rocket 
is going fast enough, it will be able to completely escape the Earth’s gravitational pull and 
travel to infinity (we assume that there are no other planets or the Sun, just the Earth 
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exists!). If, on the other hand, the rocket’s speed is too low, it will eventually stop and fall 
back to Earth. This is the same thing that happens to you when you try to jump vertically. 
If you could jump hard enough, you would be able to escape the Earth’s gravitational pull! 

In terms of mechanical energy, we can ask ourselves if the mechanical energy of the rocket 
is large enough to escape the Earth’s gravitational pull. Specifically, we can ask ourselves 
what the value of the rocket’s kinetic energy would be when it reaches infinity. The kinetic 
energy of the rocket is given by: 

K = E − U 

If the rocket is infinitely far from the Earth, then its potential energy is zero, and the kinetic 
energy is equal to E. 

If the mechanical energy, E, is negative, it is not possible for the rocket to ever make it 
to infinity because its kinetic energy would have to be negative. In other words, if the 
mechanical energy is negative, then the object of mass m can never escape the gravitational 
pull of object M . We say that m is “gravitationally bound” to M . 

If the mechanical energy, E, is exactly zero, then the object’s kinetic energy will become 
zero just as it reaches infinity. In other words, it will just barely be able to escape the 
gravitational pull from mass M . The condition for this to happen is: 

E = 0 
K = −U 

1 2 Mm 

2mv = G 
rs 

2GM
∴ vesc = 

r 

which we can interpret as a condition for the speed of the rocket. If at some distance r from 
M , the rocket has the speed given by the condition above, then it will have enough kinetic 
energy to escape the gravitational pull of M . We call this speed the “escape velocity”. 

Finally, if the mechanical energy is greater than zero, then the rocket will have enough 
energy to escape the gravitational pull of M and have a non-zero speed when it reaches 
infinity. 

Checkpoint 9-10 

What is the escape velocity from the surface of the Earth? 
A) 4.29 × 106 km/s 
B) 1.25 × 105 km/s 
C) 11.2 km/s 
D) 9.81 km/s 
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Example 9-4 

Show that an object of mass m in a circular orbit of radius r around a body of mass 
M has half of the kinetic energy required to escape the gravitational pull of M . 

Solution 

The only force acting on the object is gravity, so it has a mechanical energy given by: 

E = U + K 
Mm 1 2E = −G + 2mv r 

In order for the object to just escape the gravitational pull of M , it’s mechanical energy 
must be equal to zero: 

E = 0 
∴ Kesc = −U 

Since the object is in a circular orbit, we can use Newton’s Second Law to find an 
expression for v2: 

2mv 
Fnet = 

r 
2GMm mv = 2r r 

GM 2= v 
r 

where in the second line we used the fact that Fnet is equal to the force of gravity 
exerted by M on the object. The kinetic energy of the object is thus: 

1 2K = 2mv 
1 GMm 

K = 2 r 

You will notice that this is very similar to our expression for U . In fact, we have: 

1 
K = −2U 

1
∴ K = 2Kesc 

Note: We can also see that the velocity of an object in a circular orbit is equal toq 
GM/r, which is half the escape velocity, vesc = 

q
2GM/r 
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Types of orbits 

The mechanical energy of a body of mass m determines whether it is gravitationally bound 
to (i.e. cannot escape) the body of mass M . The path (orbit) that m will take depends 
on its velocity with respect to M . Clearly, if the velocity of m is directed at the centre of 
M , then m will just collide with M . In all other cases, the orbit that m will take depends 
on the mechanical energy of m as well as the speed of m at the point of closest approach 
to M (see Figure 9.13). The velocity of m at the point of closest approach will always be 
perpendicular to the line joining the centres of m and M . The di�erent possible orbits are: 

1. A circular orbit of radius R (where R is the distance of closest approach) if the 
mechanical energy is negative (i.e. it is bound) and the speed is exactly equal 
to the value necessary for the gravitational force to provide the required centripetal 
acceleration for uniform circular motion: 

2X Mm v 
F = G = m 

R2 Rs 
∴ vcirc = GM 

R 

2. An elliptical orbit if the mechanical energy is negative and the speed at the 
point of closest approach is di�erent than that required for a circular orbit. 

3. A parabolic orbit if the mechanical energy is exactly zero. 
4. A hyperbolic orbit if the mechanical energy is bigger than zero. 

The possible orbits are illustrated in Figure 9.13, and are curves in the family of “conic 
sections”, as they can be found by the intersection of a plane and a cone. All conic sections 
have at least one “focus” point (ellipses have two) that corresponds to the location of M . 

Figure 9.13: The di�erent possible orbits of m due to the gravitational force of M depend on the 
mechanical energy, E, of m. The orbits are drawn in a frame of reference where M is at rest. 
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9.4 Einstein’s Theory of General Relativity 
Newton’s Universal Theory of Gravity was extremely successful at describing the motion 
of planets in the solar system, and allowed for high precision astronomy. For example, 
precision measurements of Uranus’s orbit showed that it appeared to be inconsistent with 
Newton’s theory, unless the gravitational influence of another planet was included in the 
model. This led to the discovery of the planet Neptune. 

However, some issues with Newton’s theory were uncovered. The orbit of Mercury was 
shown to be di�erent than what Newton’s theory could describe, but searches for another 
planet (Vulcan) were unsuccessful. In addition, Albert Einstein’s theory of Special Rela-
tivity, published in 1905, was found to be incompatible with Newton’s theory of gravity. 
One of the consequences of Special Relativity is that nothing can propagate faster than the 
speed of light. Newton’s Universal Theory of Gravity implies that the gravitational force is 
transmitted instantaneously. In Newton’s theory, if the Sun suddenly disappeared, Earth 
would immediately “fall out” of its orbit, and we would immediately know that the Sun has 
disappeared. This would violate Special Relativity because there cannot be a mechanism 
that would allow us to know that the Sun has disappeared faster than it would take light to 
propagate from the Sun. In other words, for the 8 min that are required for light to travel 
from the Sun to the Earth, we cannot know that the Sun has disappeared: only when we 
literally see the Sun disappear would the Earth be “allowed” to fall out of its orbit. 

Einstein’s Theory of General Relativity is a theory developed by Einstein in order to describe 
gravity in a way that is consistent with Special Relativity and the propagation of light. 
Einstein was famous for his “thought experiments,” which allow us to think about some of 
the implications of a theory, even if the experiments would be very diÿcult to carry out in 
practice. One such thought experiment is to consider what someone would observe in an 
accelerating frame of reference. 

Consider an observer in an elevator, as illustrated in Figure 9.14. If the elevator is stationary 
at the surface of the Earth (left panel), and the observer is standing on a scale, they could 
measure their weight, mg, on the scale. The two forces on the observer are their weight and 
the normal force, which would be equal in magnitude since the observer is not accelerating. 
The normal force, read out by the scale, would thus correspond to their weight. To be more 
precise, the normal force would be equal to mGg, where mG is the gravitational mass of the 
observer (that mass which is related to the force of gravity experienced by a mass). 

If the elevator was instead placed in empty space, and the elevator was accelerating upwards 
with an acceleration of g (right panel), the observer would still be able to measure their 
weight by stepping on the scale. The only force on the observer is the normal force from 
the scale, which must be equal to its mass times their acceleration N = ma = mg, since 
the observer is accelerating with the elevator. In this case, it is the inertial mass of the 
observer, mI , that comes into play, so the normal force read on the scale is mI g. 
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Figure 9.14: Left: A person standing on a scale in an elevator at rest at the surface of the Earth. 
Right: A person in an elevator that is accelerating in empty space with the same acceleration as 
that due to gravity at the Earth’s surface. The curvature of the light beam is exaggerated. 

Einstein postulated that it would be impossible for the observer to distinguish whether they 
are at rest on the surface of the Earth, or in empty space accelerating with an acceleration 
of g. In other words, he postulated that the inertial and gravitational masses are exactly 
equivalent. This is what is called the “Equivalence Principle”. 

This simple statement has dramatic implications. Special Relativity requires that light 
will travel in a straight line in empty space. If a beam of light enters and then exits the 
elevator, the observer on Earth and the one accelerating in empty space must observe the 
same thing, since they cannot distinguish between being on Earth or accelerating in space. 
The observer in space, who is accelerating, will observe that the beam of light bends as it 
crosses the elevator (the beam travels in a straight line as observed in an inertial reference 
frame, so the person in the accelerating elevator would see it follow a parabolic path). The 
observer on Earth must thus observe the same thing, namely that light will follow a curved 
path in the presence of a gravitational field. 

But...light must travel in a straight line in empty space. That means that if the path of a 
beam of light is curved near Earth, it must be because space itself is curved in the presence 
of a gravitational field! In other words, Einstein’s Theory of General Relativity describes 
how the presence of mass (or energy) results in a curvature of space (and time). 

Imagine a ladybug on the side of a basketball. If the ladybug starts moving in what it 
believes to be a straight line, it will actually move in a curved path along the surface of the 
ball, as in Figure 9.15. This is like the curved path of light that we observe. If we didn’t 
know the ball was there, we would just think that the bug was moving along a curved path. 
In the same way, if an observer is not aware of the curvature of spacetime, it appears that 
light follows a curved path. 
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Figure 9.15: Left: A ladybug perceives itself to be moving in a straight line. Center: The basketball 
is curved, so the ladybugs follow curved paths. Right: What an observer would see if they didn’t 
know the basketball was there. 

Now imagine there’s a second ladybug. Both bugs start at the middle of the ball and start 
moving towards the top of the ball in what they think is a straight line (as shown in the 
center panel of Figure 9.15). When the bugs start moving, they are parallel to each other, 
so if the ball was not curved, the ladybugs would never meet. However, because it is curved, 
the ladybugs will eventually cross paths. If you were not aware that the ball was there, you 
would have to conclude that there was some force attracting the bugs to each other, just like 
if you were unaware that spacetime was curved, you would conclude that massive bodies 
moving towards each other are attracted by a gravitational force. 

Objects that are moving in a gravitational field are actually following Newton’s First Law 
(they are moving at constant velocity in a straight line and no force is exerted on them). 
It is strange and unexpected, but high precision measurements confirm that this correctly 
describes everything that we have measured! 

Einstein’s theory was able to describe the orbit of Mercury, and the prediction that gravity 
leads to light following a curved path was confirmed by Eddington within five years of 
Einstein’s theory being published. Another implication of the theory is that time goes by 
slower in the presence of a gravitational field. Clocks on Earth run slower than clocks in 
orbit (where the gravitational field is weaker). This e�ect is taken into account when using 
GPS to determine your position on Earth, since this is based on comparing the time that 
it takes signals to arrive to your position on Earth from di�erent satellites. This is also 
somewhat reasonably well described in the movie “Interstallar”, where time is seen to pass 
much slower for a set of astronauts in the vicinity of a black hole, where the gravitational 
field is strong. 
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9.5 Summary 

Key Takeaways 

Kepler was the first to synthesize a large amount of data to quantitatively describe 
gravity with his three laws: 

1. The path of a planet around the Sun is described by an ellipse with the Sun at 
once of its foci. 

2. Planets move in such a way that the area swept by a line connecting the planet 
and the Sun in a given period of time is constant, independent of the location of 
the planet. 

3. The ratio between the orbital periods, T , squared of two planets is equal to the 
ratio of the semi-major axes, s, of their orbits cubed: 

� �2 � �3T1 s1= 
T2 s2 

Newton described the attractive force of gravity exerted between two bodies of mass 
M1 and M2 (which must be point masses) as: 

M1M2~F12 = −G 2 r̂21 
r 

~where F12 is the force on body 1 from body 2, r is the distance between the two bodies, 
and ~r21 is the vector from body 2 to body 1. The motion of a body under the influence 
of only this force will satisfy all of Kepler’s Laws, if the body is gravitationally bound. 

The gravitational field, ~g(~r), from a body of mass M , is defined as the gravitational 
force that another body would experience per unit mass: 

~F (~r) M 
~g(~r) = = −G 2 r̂  

m r 

~The field can be used to determine the corresponding gravitational force, Fg, that a 
body of mass m would experience if located at a position ~r relative to the body of mass 
M : 

Fg = m~g(~r) 

When describing the motion of objects near the surface of the Earth, it is thus more 
precise to refer to g = 9.8 N/kg as the magnitude of the Earth’s gravitational field at 
the surface of the Earth, then to refer to g = 9.8 m/s2 as the acceleration due to Earth’s 
gravity. The two are only equal if gravitational mass (the m in the above equation) and 
inertial mass (the m in Newton’s Second Law) are the same. 
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Gauss’ Law, which applies to all inverse-square force laws, can be used to determine 
the magnitude of the gravitational field from a body of mass M , even it if it not a point 
mass: I 

~g(~r) · dA~ = 4ˇGM enc 

Since the force described by Newton’s theory is conservative, we can define a potential 
energy function. The gravitational potential energy of a mass m located a distance r 
away from a mass M is: 

U(r) = −GMm + C 
r 

A convenient choice of the constant is C = 0, as this corresponds to the gravitational 
potential energy being equal to zero when m is infinitely far away from M . 

The mechanical energy, E, of an object of mass m that is located at a distance r from 
an object of mass M , if gravity is the only conservative force exerted on m, is given by: 

E = K + U = 2
1 
mv 2 − GMm 

r 

where we have explicitly chosen C = 0, and v is the speed of m relative M (considered 
to be at rest). Furthermore, if no non-conservative forces do work on the body of mass 
m, the mechanical energy, E, is constant. 

If the mechanical energy of m is negative, it is gravitationally bound to M . Depending 
on the mechanical energy of m and its velocity at the point of closest approach to M , 
the orbit of m will be described by one of four conic sections (circle, ellipse, parabola, 
hyperbola). 

Einstein’s Theory of General Relativity describes gravitation as the bending of space 
and time caused by the presence of mass and energy. In Einstein’s theory, objects follow 
straight (inertial) paths and do not feel a force of gravity. The curvature of space is what 
results in their apparent motion not being a straight line. Einstein’s theory is based on 
the Equivalence Principle (inertial and gravitational mass are exactly equal) and the 
properties of how light propagates according to the Theory of Special Relativity. 
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Important Equations 

Kepler’s Third Law: Gauss’s Law: � �2 � �3 IT1 s1= ~g(~r) · dA~ = 4ˇGM enc 

T2 s2 

Gravitational force and Gravitational potential energy gravitational field: and mechanical energy: 
M1M2~F12 = −G r̂212 Mm r

U(r) = −G + C 
r ~g(~r) = −GM r̂  

r2 1 Mm 
E = K + U = 2mv 

2 − G 
Fg = m~g(~r) r 
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9.6 Thinking about the material 

Reflect and research 

1. When you look at the night sky, how can you tell the di�erence between a planet 
and a star? 

2. What was the relationship between Tycho Brahe and Johannes Kepler? 
3. How did Tycho Brahe collect all the data that Kepler used? 
4. How much time elapsed between Kepler publishing his laws and Newton publish-

ing his Universal Theory of Gravity? 
5. What was Kepler’s original intention when he synthesized Tycho Brahe’s obser-

vations? What was he hoping to show? 
6. What was Ptolemy’s theory of gravity based upon? 
7. Who was the first to suggest that planets revolved around the Sun instead of the 

Earth? 
8. Explain how the force of gravity from the moon results in tides on both sides of 

the Earth. 
9. Explain what an L1 Lagrange point is, and how it does not violate Kepler’s Third 

Law. 
10. How did Eddington confirm that light follows a curved path in a gravitational 

field? 

To try in the lab 

1. Theory project: Prove, based on Newton’s Universal Theory of Gravity, that the 
motion of orbiting bodies is given by a conic section. 

2. Write a computer simulation to plot the orbit of two bodies, and explore how the 
total mechanical energy of one object a�ects its motion. If the two bodies have 
the same mass, and both move, where is the focus of the conical section describing 
their respective paths? 

3. Propose an experiment to model and map the position of a planet in the night 
sky. 
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9.7 Sample problems and solutions 
9.7.1 Problems 
Problem 9-1: Geosynchronous satellites are satellites that are placed in a circular orbit 
around the Earth in such a way that their orbital period is synchronized with the 24 h rota-
tion period of the Earth. The advantage of geosynchronous satellites is that they are always 
above the same point on Earth, which makes them useful for establishing communication 
networks. At what altitude must geosynchronous satellites be placed? (Solution) 

Problem 9-2: How much energy must be expended in order to place a satellite of mass 
m = 1000 kg in a geosynchronous circular orbit around the Earth, if the satellite is launched 
from the North Pole of the Earth? How much energy is this per kilogram of satellite placed 
in orbit? (Solution) 

Problem 9-3: Find an expression for the gravitational field due to a thin uniform rod of 
mass M at point P , which is a distance h above the midsection of the rod (Figure 9.16). 

Figure 9.16: A thin rod of mass M and length L produces a gravitational field at a point P located 
above the midsection of the rod. 

(Solution) 
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9.7.2 Solutions 
Solution to problem 9-1: When a satellite orbits the Earth, the only force on the satellite 
is the force of gravity from the Earth. Since the satellite is in a circular orbit, that force of 
gravity must point towards the centre of the Earth in such a way that the satellite has the 
correct radial acceleration, aR, to stay in uniform circular motion: 

2v 
ar = 

R 

where v is the speed of the satellite, and R is the distance between the satellite and the 
centre of the Earth (i.e. the centre of the circular orbit). The magnitude of the force of 
gravity on the satellite of mass m is given by: 

Mm 
F = G 

R2 

where M is the mass of the Earth. Newton’s Second Law applied to the satellite is: X 
Fr = F = mar 

2Mm v
∴ G = m 

R2 R 

The speed of the satellite can be found from the fact that it must travel a distance of 2ˇR 
(the circumference of the orbit) in a period T = 24 h: 

2ˇR 
v = 

T 

which we can substitute into the equation from Newton’s Second Law to find the distance 
R (i.e. the radius of the circular orbit): 

2Mm v 
G = m 
R2 R 
M (2ˇR)2 

G = 
R2 T 2R 
M 4ˇ2R 

G = 
R2 T 2 s 

MT 2 
∴ R = 3 

G 4ˇ2 s 
(5.97 × 1024 kg)(86 400 s)2 

= 3 (6.67 × 10−11 Nm2/kg2) 4ˇ2 

= 42.2 × 106 m 

which corresponds to the distance between the satellite and the centre of the Earth. To 
obtain the “altitude”, h, namely the distance from the surface of the Earth to the satellite, 
we must subtract the radius of the Earth, R� = 6.371 × 106 m from this distance: 

h = R − R� = 35.9 × 106 m 
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Thus, geosynchronous satellites are located at an altitude of approximately 36 000 km. 

Discussion: Note that we could have also easily used Kepler’s Third Law to determine the 
radius of the orbit, since we already know the period (24 h), and we know the value of the 
constant for Kepler’s Third Law from Example 9-2. 

Solution to problem 9-2: We need to calculate how much work must be done for the 
satellite to go from being at rest at the surface of the Earth to being in a geosynchronous 
orbit. That work will be done by a non-conservative force (a rocket engine). The work done 
by the non-conservative force, W , is equal to the satellite’s change in mechanical energy: 

W = �E = EB − EA 

The initial mechanical energy of the satellite, EA, is given by its gravitational potential 
energy (it has no kinetic energy at the surface of the Earth when at the North Pole - on the 
equator, it would have kinetic energy due to the Earth’s rotation): 

EA = K + U = 0 − GMm 

R� 

where M = 5.97 × 1024 kg is the mass of the Earth, and R� = 6.731 × 106 m is the radius 
of the Earth. 

In orbit, the energy of the rocket, EB, is given by: 

EB = K + U = 2
1 
mv 2 − GMm 

R 

where R = 42.2 × 106 m is the radius of the geosynchronous orbit (Problem 9-1) and v is 
the speed of the satellite in orbit. The speed is given by: 

2ˇR 
v = 

T 

where T = 24 h is the orbital period. The net work that must be done to place the satellite 
in orbit is thus given by: !

1 Mm Mm 
W = EB − EA = 2mv 

2 − G − −G 

1 4ˇ2R2 
= + GMm 2m T 2 

R !
1 1 − 
R� R 

R� 

1 4ˇ2(42.2 × 106 m)2 
(1000 kg) = 2 (86 400 s)2 !

1 1+ (6.67 × 10−11 Nm2/kg2)(5.97 × 1024 kg)(1000 kg) (6.731 × 106 m) − (42.2 × 106 m) 
= 5.78 × 1010 J 

https://Nm2/kg2)(5.97
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This corresponds to the energy that must be imparted to a 1000 kg satellite for it to end up 
in a geosynchronous orbit. This corresponds to 5.78 × 107 J/kg as the energy required per 
kilogram of payload placed in geosynchronous orbit. Although we calculated work as if it 
were work done by a force, we can think of this work coming from stored chemical potential 
energy in the fuel of the rocket carrying the satellite. 

Discussion: The energy that we found above is the minimum energy that one must provide 
to the satellite. In practice, in order to place a satellite in orbit, one will also need to 
provide enough energy to accelerate the rocket that carries the satellite up into orbit, which 
is typically much heavier than the satellite. If the satellite were instead launched from the 
equator of the Earth, the satellite would already have some initial kinetic energy due to the 
rotation of the Earth, and one would need to provide less energy to place it in orbit. This 
is the reason that most rockets are launched from near the equator (think French Guyana, 
Florida, Kazakhstan) in a direction that is roughly parallel with the Earth’s rotation. 

Solution to problem 9-3: We cannot use Gauss’s law to determine the magnitude of the 
field because the gravitational field lacks symmetry (i.e. the field will be di�erent at the 
ends of the rod than along the length of the rod). The gravitational field due to a body of 
mass M is given by: 

GM 
~g(~r) = − 2 r̂  

r 

Our strategy will be to break the rod into very small segments of length dx. Each segment, 
of mass dM , will make a small contribution, d~g, to the gravitational field, as shown in Figure 
9.17. We will then take the sum of all these contributions to find the net field. 

Figure 9.17: A thin rod of mass M and length L produces a gravitational field at a point P located 
above the midsection of the rod. Each segment of the rod dx will contribute to the gravitational 
field. 

The gravitational field due to each segment is given by: 
GdM 

d~g = − 2 r̂  
r 

The element of the field, d~g, will point in a di�erent direction for each segment dx. You 
can conclude from Figure 9.17 that, due to symmetry, the x components of the field from 
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each segment will cancel out (for the segment dx shown in the diagram, there will be an 
identical segment on the other side of the rod). The net field will point in the −ŷ direction, 
so we are only interested in the vertical component of d~g. Using our diagram, this means 
that we want to find the magnitude of dg cos �: 

GdM 
dg cos � = cos �2r 

The magnitude of the gravitational field at point P is thus given by: Z Z GdM 
g = dg cos � = cos �2r 

The integral is written over dM , where both r, and � are di�erent for each di�erent mass 
element, dM . We need to express any variable that changes for di�erent mass elements in 
terms of a single variable of integration. We will choose � as the variable of integration, and 
thus need to express r and dM in terms of �, d�, and other constants. 

The distance, r, between P and a mass element dM located at angle � is easily found to be: 
h 

r = cos � 
1 cos2 �

∴ = 
r2 h2 

dM can easily be expressed in term of dx (the length of the mass element in the x direction) 
and �, the mass per unit length of the rod: 

M 
dM = �dx = dx 

L 

We now need to express dx in terms of d�. This can be found as follows, by first expressing 
x in terms of �, and then taking the derivative of x with respect to � 

x = h tan � 
dx h

∴ = 
d� cos2 � 

h
∴ dx = d� cos2 � 

Now that we have found the small change in x that results from a small change in �, we 
can write the mass element, dM , in terms of the d�: 

M M h 
dM = dx = d� 

L L cos2 � 

We can now write the integral in terms of �: Z ZGdM 1 
g = cos � = G 2 cos �dM 2r r ! !Z cos2 � M h = G cos � 

h2 L cos2 � ZGM = cos �d� 
Lh 
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Now that we have the integral over �, we need to set the limits to correspond to the values 
of � at each end of the rod. The angle will have the same magnitude for each end of the 
rod, �0, given by: 

sin �0 = q L 
h2 + L22 4 

The magnitude of the field is thus given by: Z �0GM GM 
g = cos �d� = [sin �]� − 0 

�0Lh −�0 Lh 
2GM 2GM L = sin �0 = q
Lh Lh h2 + L22 4 

The gravitational field at point P is thus given by: 

2GM L 
~g = − q ŷ 

Lh h2 + L22 4 



10 Linear momentum and the centre of mass 
In this chapter, we introduce the concepts of linear momentum and of centre of mass. 
Momentum is a quantity that, like energy, can be defined from Newton’s Second Law, to 
facilitate building models. Since momentum is often a conserved quantity within a system, 
it can make calculations much easier than using forces. The concepts of momentum and of 
centre of mass will also allow us to apply Newton’s Second Law to systems comprised of 
multiple particles including solid objects. 

Learning Objectives 

• Understand how to calculate linear momentum. 
• Understand how to calculate impulse and that it corresponds to a change in 

momentum. 
• Understand when and how to apply conservation of linear momentum to model 

situations. 
• Understand the di�erence between elastic and inelastic collisions, and when me-

chanical energy is conserved. 
• Understand how to calculate the centre of mass of an object. 

Think About It 

You hit a pool ball square on with the cue ball. If both balls have the same mass, and 
you can neglect any “english” on the cue ball, what happens to the cue ball? 

A) It stops. 
B) It continues, with half of its original speed. 
C) It continues, with its original speed. 
D) It rebounds, with its original speed. 

10.1 Momentum 
10.1.1 Momentum of a point particle 
We can define the momentum, 
quantity: 

~v 

v~p 

~p, of a particle of mass m and velocity 

= m~ 

as the vector 

(10.1) 

Since this is a vector equation, it corresponds to three equations, one for each component of 
the momentum vector. It should be noted that the numerical value for the momentum of a 
particle is arbitrary, as it depends in which frame of reference the velocity of the particle is 

284 
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defined. For example, your velocity with respect to the surface of the Earth is zero, so your 
momentum relative to the surface of the Earth is zero. However, relative to the surface of 
the Sun, your velocity, and momentum, are not zero. As we will see, forces are related to a 
changes in momentum, just as they are related to a change in velocity (acceleration). 

If the particle has a constant mass, then the time derivative of its momentum is given by: 
d d d 
~ m~ ~v = m~ap = v = m 

dt dt dt 

and we can write this as Newton’s Second Law, since m~a must be equal to the vector sum 
of the forces on the particle of mass m: 

d X 
~ F~ net ~p = F = (10.2)

dt 

The equation above is the original form in which Newton first developed his theory. It says 
that the net force on an object is equal to the rate of change of its momentum. If the net 
force on the object is zero, then its momentum is constant (as is its velocity). In 
terms of components, Newton’s Second Law written for the rate of change of momentum is 
given by: 

dpx X 
= Fx

dt 
dpy X 

= Fy
dt 
dpz X 

= Fz
dt 

Example 10-1 

A particle of mass m is released from rest and allowed to fall freely under the influence 
of gravity near the Earth’s surface (assume that drag is negligible). Is the mechanical 
energy of the particle conserved? Is the momentum of the particle conserved? If mo-
mentum is not conserved, how does momentum change with time? Do your answers 
change if the force of drag cannot be ignored? 

Solution 

First, we model the falling particle assuming that there is no force of drag. The only 
force exerted on the particle is thus its weight. 

The mechanical energy of the particle will be conserved only if there are no non-
conservative forces doing work on the particle. Since the force of gravity is the only 
force acting on the particle, its mechanical energy is conserved. 

The total momentum of the particle is not conserved, because the sum of the forces 
on the particle is not zero. Choosing the z axis to be vertical and positive upwards, 
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Newton’s Second Law in the z direction is given by: 

X dpz
Fz = −mg = 

dt 

Note that the x and y components of momentum are conserved, since there are no 
forces with components in that direction. We can find how the z component of the 
momentum changes with time by taking the anti-derivative of the force with respect to 
time (from t = 0 to t = T ): 

dpz = −mg Z dt Z T 
dpz = (−mg)dt 

0 

pz(T ) − pz(0) = −mgT 
∴ pz(T ) = pz(0) − mgT 

where the z component of momentum, pz(T ) at some time T , is given by its value at 
time t = 0 plus −mgT . If the object started at rest (~v = 0), then the magnitude of the 
momentum, as a function of time, is given by: 

p(t) = pz(t) = −mgt 

and indeed changes with time. 

If the force of drag were not negligible, there would be a non-conservative force acting 
on the particle, so its mechanical energy would no longer be conserved. The particle will 
accelerate until it reaches terminal velocity. During that phase of acceleration, the net 
force on the particle is not zero (it is accelerating), so its momentum is not conserved. 
Once the particle reaches terminal velocity, the net force on the particle is zero, and its 
momentum is conserved from then on. 

Discussion: This simple example highlights the fact that mechanical energy and mo-
mentum are conserved under di�erent conditions. Just because one is conserved does 
not mean that the other is conserved. It also shows that Newton’s Second Law is a 
statement about change in momentum, not momentum itself (just like it is a statement 
about acceleration, change in velocity, not velocity). 

10.1.2 Impulse 
When we introduced the concept of energy, we started by calculating the “work”, W , done 
by a force exerted on an object over a specific path between two points: 

Z B 
~ ~W = F · dl 

A 



287 10.1. MOMENTUM 

We then introduced kinetic energy, K, to be that quantity whose change is equal to the net 
work done on the particle Z B 

W net F~ net ~= · dl = �K 
A 

F~ netwhere the net force, , is the vector sum of the forces on the particle. 

We can do the same thing, but instead of integrating the force over distance, we can integrate 
~it over time. We thus introduce the concept of “impulse”, J , of a force, as that force 

integrated from an initial time, tA, to a final time, tB: Z tB 
~ ~J = Fdt (10.3) 

tA 

where it should be clear that impulse is a vector quantity (and the above vector equation 
thus corresponds to one integral per component). Impulse is, in general, defined as an 

~integral because the force, F , could change with time. If the force is constant in time 
(magnitude and direction), then we can define the impulse without using an integral: 

~ ~J = F�t 
where �t is the amount of time over which the force was exerted. Although the force might 
never be constant, we can sometimes use the above formula to calculate impulse using an 
average value of the force. 

Checkpoint 10-1 

What is the SI unit for impulse? 
A) kg · m/s2 

B) kg · s2 

C) kg · m/s 
D) kg · m/s3 

Example 10-2 

Estimate the impulse that is given to someone’s head when they are slapped in the face. 

Solution 

When we slap someone’s face with our hand, our hand exerts a force on their face during 
the period of time, �t, over which our hand is in contact with their face. During that 
period of time, the force on their face goes from being 0, to some unpleasantly high 
value, and then back to zero, so the force cannot be considered constant. 

Let us estimate the average magnitude of the slapping force by considering the decelera-
tion of our slapping hand and modelling the motion as one-dimensional. Let us assume 
that our slapping hand has a mass m = 1 kg and that it is has a speed of 2 m/s just 
before it makes contact. Furthermore, let us assume that it is in contact with the face 
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for a period of time �t. This allows us to find the average acceleration of our hand and 
thus the average force exerted by the face on our hand to stop it: 

�v 
a = �t 

�v
∴ F = ma = m �t 

By Newton’s Third Law, the force decelerating our hand has the same magnitude as 
the force that our hand exerts on the face, allowing us to calculate the impulse given 
to the person’s head: !

�v 
J = F�t = m �t = m�v�t 

= (1 kg)(2 m/s) = 2 kg · m/s 

Discussion: Note that the impulse given to the head corresponds exactly to the change 
in momentum of the hand (�p = m�v). 

So far, we calculated the impulse that is given by a single force. We can also consider the 
net impulse given to an object by the net force exerted on the object: Z tB 

J~net = F~ netdt 
tA 

Compare this to Newton’s Second Law written out using momentum: 
d 

F~ net p~ = 
dtZ Z ~ tBpB 

F~ netdtd~p = 
p~ A tAZ tB 

F~ netdt~ ~ =pB − pA ZtA 
F~ netdt∴ �p~ = 

tB 

tA 

and we find that the net impulse received by a particle is precisely equal to its change in 
momentum: 

J~net�p~ = (10.4) 
This is similar to the statement that the net work done on an object corresponds to its 
change in kinetic energy, although one should keep in mind that momentum is a vector 
quantity, unlike kinetic energy. 

Example 10-3 

A car moving with a speed of 100 km/h collides with a building and comes to a com-
plete stop. The driver and passenger each have a mass of 80 kg. The driver wore a seat 
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belt that extended during the collision, so that the force exerted by the seatbelt on the 
driver acted for about 2.5 s. The passenger did not wear a seat belt and instead was 
slowed down by the force exerted by the dashboard, over a much smaller amount of 
time, 0.2 s. Compare the average decelerating force experienced by the driver and the 
passenger. 

Solution 

We can calculate the change in momentum of both people, which will be equal to the 
impulse they received as they collided with the seatbelt or with the dashboard. Since 
we know the duration in time that the forces were exerted, we can calculate the aver-
age force involved in order to give the required impulse. We can assume that this all 
happens in one dimension, so we use scalar quantities instead of vectors. 

The change in momentum along the direction of motion for either the driver or passenger 
is given by: 

�p = pB − pA = (0) − pA = −mvA 

where vA is the initial speed of the car, and the final momentum of either person is 
zero. 

The change in momentum is equal to the impulse received by either person during a 
period of time �t, which is related to the force that was exerted on them: 

J = F�t = �p = −mvA 
vA

F = −m�t 

For the driver, this corresponds: 

(27.8 m/s)
F = (80 kg) = 890 N (2.5 s) 

and for the passenger: 

(27.8 m/s)
F = (80 kg) = 11 120 N (0.2 s) 

The force on the driver is thus comparable to their weight, whereas the passenger 
experiences an average force that is more than 10 times their weight. 

Discussion: Any mechanism that results in a longer collision time will help to reduce 
the forces that are involved. This is why cars are designed to crumple in head-on 
collisions. We can understand this in terms of the crumpling of the car absorbing some 
of the kinetic energy of the car, as well as lengthening the time of the collision so that 
the forces involved are smaller. You may also hear people that look at modern cars that 
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are all crumpled up after a crash and say something along the lines of “They sure don’t 
make cars the way they used to”. But of course, that is by design; it is safer if the car 
crumples up (and cars are designed to crumple up in specific areas, not the passenger 
cabin). 

Note that we did not need to use impulse to calculate the average force, since we could 
have just used kinematics to determine the acceleration and Newton’s Second Law to 
calculate the corresponding force. Using impulse is equivalent by construction, but 
sometimes, it is easier mathematically. 

10.1.3 Systems of particles: internal and external forces 
So far, we have only used Newton’s Second Law to describe the motion of a single point 
mass particle or to describe the motion of an object whose orientation we did not need to 
describe (e.g. a block sliding down a hill). In this section, we consider what happens when 
there are multiple point particles that form a “system”. 

In physics, we loosely define a system as the ensemble of objects/particles that we wish to 
describe. So far, we have only described systems made of one particle, so describing the 
motion of the system was equivalent to describing the motion of that single particle. A 
system of two particles could be, for example, two billiard balls on a pool table. To describe 
that system, we would need to provide functions that describe the positions, velocities, 
and forces exerted on both balls. We can also define functions/quantities that describe the 
system as a whole, rather than the details. For example, we can define the total kinetic 
energy of the system, K, corresponding to the sum of kinetic energies of the two balls. 

~We can also define the total momentum of the system, P , given by the vector sum of the 
momenta of the two balls. 

When considering a system of multiple particles, we distinguish between internal and 
external forces. Internal forces are those forces that the particles in the system exert on 
each other. For example, if the two billiard balls in the system collide with each other, they 
will each exert a force on the other during the collision; those forces are internal. External 
forces are all other forces exerted on the particles of the system. For example, the force of 
gravity and the normal force from the pool table are both external forces exerted on the balls 
in the system (exerted by the Earth, or by the pool table, neither of which we considered to 
be part of the system). The force exerted by a person hitting one of the balls with a pool 
queue is similarly an external force. What we consider to be a system is arbitrary; we could 
consider the pool table and the Earth to be part of the system along with the two balls; in 
that case, the normal force and the weight of the balls would become internal forces. The 
classification of whether a force is internal or external to a system of course depends on 
what is considered part of the system. 
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Checkpoint 10-2 

Two pool balls crash against each other. Is this force of gravity exerted by one ball on 
the other an internal or external force? 

A) Internal. 
B) External. 

The key property of internal forces is that the vector sum of the internal forces in a 
system is zero. Indeed, Newton’s Third Law states that for every force exerted by object 
A on object B, there is a force that is equal in magnitude and opposite in direction exerted 
by object B on object A. If we consider both objects to be in the same system, then the 
sum of the internal forces between objects A and B must sum to zero. It is important to 
note that this is quite di�erent than what we have discussed so far about summing forces. 
The forces that sum to zero are exerted on di�erent objects. Thus far, we had only ever 
considered summing forces that are exerted on the same object in order to apply Newton’s 
Second Law. We have never encountered a situation where “action” and “reaction” forces 
are summed together, because they act on di�erent objects. 

Emma’s Thoughts 

Internal vs. External forces - what is the “system” and what forces should 
we consider? 

As discussed above, internal and external forces can only be considered in the context 
of a specific system. So, how do we define this “system”? How far do we go when 
defining the system? 

For example, let’s say that you kick a soccer ball, and it hits a nearby lawn chair, 
knocking it down. You want to determine what will happen to the soccer ball after it 
hits the lawn chair. What is defined to be the system here, and how should the forces 
be classified? Is the force exerted by the soccer ball on the lawn chair an external 
force? Should we consider the friction between the first foot particle that touches the 
first soccer ball particle? 

The best way to approach “defining the system” is to pin down exactly what you’re 
trying to model. Here, specifically, you are trying to determine the velocity of the 
ball after it hits the lawn chair. In this situation, thinking about the friction between 
individual foot and soccer ball particles wouldn’t help us to figure out the final velocity 
of the soccer ball. Rather, thinking of the soccer ball and lawn chair as two giant, 
continuous particles, colliding and exchanging energy would be helpful. In this situation, 
it would be useful to consider the “system” to be the soccer ball and lawn chair only. 

The force exerted by the soccer ball on the lawn chair would be an internal force, as this 
gives us information as to the final velocity of the soccer ball and is a force exchanged 
between the particles within the system. The force that gravity exerts on the lawn 
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chair, normal force on the person’s foot and the force exerted by the foot on the soccer 
ball are all forces that we would consider “external”. 

Remember - “internal” and “external” are not magical properties of a specific type of 
force. These definitions are made by us in the quest of building useful models. 

1 and~p 

10.1.4 Conservation of momentum 
Consider a system of two particles with momenta 2. Newton’s Second Law must ~p 
hold for each particle: 

d~p1 X 
= 

dt k 

d~p2 X 
= 

~F 

~F 

1k 

2k
dt k 

where Fik 

~F 

is the k-th force that is acting on particle i. We can sum these two equations 

2k 

together: 

d~p1 d~p2 X X 
+ 1k +~F= 

dt dt k k 

The quantity on the right is the sum of the forces exerted on particle 1 plus the sum of 
the forces exerted on particle 2. In other words, it is the sum of all of the forces exerted 
on all of the particles in the system, which we can write as a single sum. On the left hand 
side, we have the sum of the two time derivatives of the momenta, which is equal to the 
time-derivative of the sum of the momenta. We can thus re-write the equation as: 

d 

dt 
~p( 1 + ~p2) = 

X 
~F 

where, again, the sum on the right is the sum over all of the forces exerted on the system. 
Some of those forces are external (e.g. gravity exerted by Earth on the particles), whereas 
some of the forces are internal (e.g. a contact force between the two particles). We can 
separate the sum into a sum over all external forces ( ext) and a sum over internal forces ~F 

(~F int): X X X 
int~F ext +~F = ~F 

The sum of the internal forces is zero: X 
~F int = 0 

because for every force that particle 1 exerts on particle 2, there will be an equal and 
opposite force exerted by particle 2 on particle 1. We thus have: 

d 

dt 
~p( 1 + ~p2) = 

X 
~F ext 



293 10.1. MOMENTUM 

1 +~pFurthermore, if we introduce the “total momentum of the system”, 2, as the sum~P = ~p 
of the momenta of the individual particles, we find: 

X~Pd ~F ext= 
dt 

which is the equivalent of Newton’s Second Law for a system where, ~P , is the total momen-

~p 

tum of the system, and the sum of the forces is only over external forces to the system. 

Note that the derivation above easily extends to any number, N , of particles, even though 
i, we canwe only did it with N = 2. In general, for the “ith particle”, with momentum 

write Newton’s Second Law: 

d~pi X 
= ~Fik

dt k 

where the sum is over only those forces exerted on particle i. Summing the above equation 
for all N particles in the system: 

X X Xd ~F int ~pi = ~F ext + 
dt i 

where the sum over internal forces will vanish for the same reason as above. Introducing 
the total momentum of the system, ~P : X 

~P = ~pi 
i 

We can write an equation for the time-derivative of the total momentum of the system: 

~F 
~Pd X 

ext= 
dt 

(10.5) 

where the sum of the forces is the sum over all forces external to the system. Thus, if there 
are no external forces on a system, then the total momentum of that system is 
conserved (if the time-derivative of a quantity is zero then that quantity is constant). 

We already argued in the previous section that we can make all forces internal if we choose 
our system to be large enough. If we make the system be the Universe, then there are no 
forces external to the Universe, and the total momentum of the Universe must be constant: 

Universe X~Pd ~F ext = 0= 
dt Universe 

Universe ∴ ~P = constant 

In summary, we saw that: 
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• If no forces are exerted on a single particle, then the momentum of that particle is 
constant (conserved). 
• In a system of particles, the total momentum of the system is conserved if there are 

no external forces on the system. 
• If there are no non-conservative forces exerted on a particle, then that particle’s me-

chanical energy is constant (conserved). 
• In a system of multiple particles, the total mechanical energy of the system will be 

conserved if there are no non-conservative forces exerted on the system. 

When we refer to a force being “exerted on a system”, we mean exerted on one or more of 
the particles in the system. In particular, the sum of the work done by internal forces is 
not necessarily zero, so energy and momentum are thus conserved under di�erent 
conditions. 

Example 10-4 

Figure 10.1: A train with N cars of mass m about to collide with a car of mass m that is at 
rest on the track. 

Consider a train made of N cars of equal mass m that is travelling at constant speed 
v along a straight piece of track where friction and drag are negligible, as depicted in 
Figure 10.1. An empty car of mass m was left at rest on the track in front of the train. 
The train collides with the empty car which stays attached to the front of the train. 
What is the speed of the train after the collision? Is the total mechanical energy of the 
system conserved? 

Solution 

When the train collides with the car, it will exert a “collision” force on the car, and the 
car will exert an opposite force on the train. If we consider both of the train and the 
car as being part of the same system, then those collision forces will be internal, and 
the momentum of the system (train + car) will be conserved. The train and car both 
experience external forces from Earth’s gravity and the normal force from the train 
tracks. However, those two sets of forces cancel each other out, since neither the train 
nor the car have any acceleration in the vertical direction (the sum of the forces on 
each object has no net vertical component). Thus, there are no net external forces on 
the car+train system, and the total momentum of the system is conserved through the 
collision. 
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We can model this system in one dimension (along the track), defining our x axis. We 
choose the ground as a frame of reference, the positive direction parallel to the initial 
velocity of the train, and the origin to be located where the car initially starts. Before 
the collision, the x component of the momenta of the train (mass Nm) and car (mass 
m) are: 

ptrain = Nmv 
pcar = 0 

After the collision, the car is attached to the train (and thus has the same speed, v0), 
so the momenta of the train and car after the collision are: 

p 0 = Nmv0 train 

pcar 
0 = mv 0 

where the primes 0 denote quantities after the collision. Applying conservation of mo-
mentum to the system, the total momentum before and after the collision must be 
equal: 

0 0 ptrain + pcar = p + ptrain car 

∴ Nmv = Nmv0 + mv 0 

N
∴ v 0 = 

N + 1v 

and the speed of the train with the additional car attached is reduced by a factor 
N/(N + 1) compared to what it was before the collision. 

We can check to see if the mechanical energy of the system is conserved, since we know 
the speeds of the train and car before and after the collision. Since all of the motion is 
horizontal, gravity and the normal force do no work on either the train or car, so their 
mechanical energy can be taken as their kinetic energy (their gravitational potential 
energy does not change after the collision). The total mechanical energy of the system, 
E, before the collision is the kinetic energy of the train: 

E = 2
1 
Nmv2 

The total mechanical energy of the system, E 0, after the collision is: 

1 1 102 02E 0 = 2Nmv
02 + 2mv = (N + 1)mv2 � �21 N = (N + 1)m2 N + 1v 

1 N2
2= 2m N + 1v 
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and we see that E 0 < E, and thus that the total mechanical energy of the system is not 
conserved (it is reduced after the collision). 

Discussion: We could have solved this problem by carefully modelling the force exerted 
by the car on the train during the collision, which would have allowed us to find the 
speed of the train after the collision using its acceleration. This would have required 
a detailed model for that force, which we do not have. However, by realizing that the 
train and car could be considered as a system with no net external forces exert on it, 
we were able to easily find the speed of the train after the collision using conservation 
of momentum. 

We also found that mechanical energy was not conserved. This makes physical sense 
because, for the car to remain attached to the train, there presumably had to be some 
significant forces in play that “crushed” the car into the train. Some of the initial kinetic 
energy of the train was used to deform the train and the car during the collision. We 
can also think of deforming a material as giving it energy. Sometimes that energy is 
recoverable (e.g. compressing a spring), sometimes, it is not (e.g. crushing a car). 

If the car and train were equipped with large springs to absorb the energy of the impact, 
the collision could have conserved mechanical energy, as the springs compress and then 
expand back. The speed of the car and train would then be di�erent after the collision 
in this case (see example 10-7). It is a feature of collisions where the two bodies remain 
attached to each other that mechanical energy is not conserved. 

10.2 Collisions 
In this section we go through a few examples of applying conservation of momentum to 
model collisions. Collisions can loosely be defined as events where the momenta of individual 
particles in a system are di�erent before and after the event. 

We distinguish between two types of collisions: elastic and inelastic collisions. Elastic 
collisions are those for which the total mechanical energy of the system is conserved during 
the collision (i.e. it is the same before and after the collision). Inelastic collisions are those 
for which the total mechanical energy of the system is not conserved. In either case, to 
model the system, one chooses to define the system such that there are no external forces 
on the system so that total momentum is conserved. 

10.2.1 Inelastic collisions 
In this section, we give a few examples of modelling inelastic collisions. Inelastic collisions 
are usually easier to handle mathematically, because one only needs to consider conservation 
of momentum and does not use conservation of energy (which usually involves equations 
that are quadratic in the speeds because of the kinetic energy term). 

Example 10-5 
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Figure 10.2: One skater pushing another on a frictionless horizontal surface. 

You (mass ms) and your friend (mass mf ) face each other on ice skates on an ice surface 
that is slippery enough that friction can be considered negligible, as shown in Figure 
10.2. You shove your friend away from you so that he moves with velocity ~vf away from 
you (the velocity is measured relative to the ice). Is the collision elastic? What is your 
speed relative to the ice after you shoved your friend? 

Solution 

We can consider the system as being comprised of you and your friend. There are no 
net external forces on the system (gravity and normal forces cancel each other), so the 
momentum of the system will be conserved. 

The mechanical energy will not be conserved. You had to use chemical potential energy 
stored in your muscles to shove your friend. Thus, external energy (i.e. not mechanical 
energy from you or your friend) was injected into the system, and we should expect the 
total mechanical energy to be larger after the collision. 

Before the collision, both you and your friend have zero speed, and thus zero kinetic 
energy and zero momentum. After the collision, your friend has a velocity ~vf . We 

~can use conservation of total momentum, P , to determine your velocity, ~vs, after the 
collision. 

~ P~ 0P = 
0 = ms ~vs + mf ~vf 

∴ ~vs = − mf 
~vf 

ms 

where primes (0) denote a quantity after the collision. We find that your velocity is in 
the opposite direction from that of your friend. Before the collision, the mechanical 
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energy, E, of the system is zero (we can ignore gravitational potential energy, since 
everything is in the horizontal plane). After the collision, the mechanical energy, E 0, is: 

E 0 = 2
1 
msvs 

2 + 2
1 
mf vf 

2 

which is clearly bigger than the mechanical energy before the collision (i.e. 0), as we 
suspected it would be. 

Discussion: We find that you recoil in the opposite direction, which makes sense. If 
you push your friend in one direction, Newton’s Third Law says that your friend pushes 
you in the opposite direction. Your speed furthermore depends on the ratio of your 
friend’s mass to yours. This also makes sense, because if you both feel the same force, 
the person with the smallest mass will have the highest speed; if your mass is higher 
than your friend’s, then your speed after the collision will be smaller than your friend’s. 

We also saw that mechanical energy was not conserved. In terms of energy, we can 
explain this by saying that you burned up chemical potential energy stored in your 
muscles in order to shove your friend. Because we included both you and your friend in 
the system, the shove was an internal force and momentum is conserved. Of course, if 
we had considered only you as the system, then your momentum would not have been 
conserved during the collision. 

The type of collision that we described here is also sometimes called an “explosion”. 
You can imagine all of the parts that make up a bomb as small particles. When the 
bomb explodes, chemical potential energy is converted into the kinetic energy of the 
bomb fragments. If you consider all of the particles/fragments of the bomb as a system, 
then the total momentum of all of the bomb fragments is conserved (and equal to zero if 
the bomb was initially at rest). Again, mechanical energy would not be conserved (and 
would increase) as the chemical potential energy is converted into mechanical energy. 

Example 10-6 

A proton of mass mp and initial velocity ~vp collides inelastically with a nucleus of mass 
mN at rest, as shown in Figure 10.3. A coordinate system is set up as shown, such that 
the initial velocity of the proton is in the x direction. After the collision, the proton’s 

0speed is measured to be vp and its velocity vector is found to make an angle � with the 
x axis as shown. What is the velocity vector of the nucleus after the collision? Assume 
that the collision takes place in vacuum. 
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Figure 10.3: A proton of mass mp colliding inelastically with a nucleus of mass mN . 

Solution 

As a system, we consider the proton and the nucleus together, so that the total mo-
mentum of the system is conserved during the collision, as no other external forces are 
exerted on the two particles (since they are in vacuum). Because momentum is a vector, 

~each component of the total momentum, P , is conserved during the collision: 

~ P~ 0P = 
= P 0∴ Px x 

∴ Py = Py 0 

where, as usual, primes (0) denote quantities after the collision. After the collision, both 
particles will have velocity vectors that have x and y components. Let the velocity vector 
of the nucleus after the collision be ~v 0 N and let ° be the angle that it makes with the x 
axis, as shown in Figure 10.3. 

We can start by considering the conservation of the x component of the total momen-
tum. The initial and final momenta in the x direction are given by: 

Px = mpvp 

P 0 0 0 
x = mpvp cos � + mN vN cos ° 

∴ mpvp = mpvp 
0 cos � + mN vN 

0 cos ° 

which gives us a first equation to determine the final velocity of the nucleus. 

The y component of the total momentum before the collision is zero since we chose the 
coordinate system such that the initial velocity of the proton is in the x direction. The 
initial and final momenta in the y direction are given by: 

Py = 0 
P 0 0 0= mpv sin � − mN v sin ° y p N 

∴ mpvp 
0 sin � = mN vN 

0 sin ° 

which gives us a second equation to solve for the velocity of the nucleus. With the two 
equations from momentum conservation, we can solve for the magnitude and direction 
of the velocity of the nucleus. From the y component of momentum conservation, we 
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can find an expression for the speed of the nucleus: 

mpvp 
0 sin � = mN vN 

0 sin ° 
0 mp 0 1

∴ v = v sin �N mN
p sin ° 

which we can substitute into the x equation for momentum conservation to solve for 
the angle °: 

mpvp = mpvp 
0 cos � + mN vN 

0 cos ° 
0 mp 0 cos ° 

mpvp = mpvp cos � + mN vp sin � 
mN sin ° 

1 
vp = vp 0 cos � + vp 0 sin � tan ° 

0vp sin �
∴ tan ° = 

vp − vp 0 cos � 

If we were given numbers for the initial and final speed of the proton, as well as the 
angle �, we would be able to find a value for the angle °, which we could then use to 
determine the final speed of the nucleus: 

0 mp 0 1 
v = v sin �N mN

p sin ° 

Discussion: By using the conservation of momentum equation and writing out the x 
and y components, we were able to find two equations to determine the magnitude and 
direction of the nucleus’ velocity after the collision. In the limit where mN >> mp, the 
final speed of the nucleus would be very small (close to zero). 

10.2.2 Elastic collisions 
In this section, we give a few examples of modelling elastic collisions. Even though it is 
mechanical energy that is conserved in an elastic collision, one can almost always simplify 
this to only kinetic energy being conserved. If a collision takes place in a well localized 
position in space (i.e. before and after the collision are the same point in space), then 
the potential energies of the objects involved will not change, thus any change in their 
mechanical energy is due to a change in kinetic energy. 

Example 10-7 



301 10.2. COLLISIONS 

Figure 10.4: Two blocks about to collide elastically. 

A block of mass M moves with velocity ~vM in the x direction, as shown in Figure 
10.4. A block of mass m is moving with velocity ~vm also in the x direction and collides 
elastically with block M . Both blocks slide with no friction on the horizontal surface. 
What are the velocities of the two blocks after the collision? 

Solution 

Because this is an elastic collision, both the total momentum and total mechanical en-
ergy are conserved. Equating the total momentum before and after the collision, and 
considering only the x component gives the following equation: 

~ P~ 0P = 
MvM + mvm = Mv0 + mv 0 M m 

where the primes (0) correspond to the quantities after the collision. Note that, in 
0 0principle, the x components of the velocities (vM , vM , vm, vm) could be negative numbers 

if the corresponding block is moving in the negative x direction. 

For the mechanical energy of the two blocks, we only need to consider their kinetic 
energy since their gravitational potential energies are the same before and after the 
collision on the horizontal surface. The total mechanical energy of the system, before 
and after the collision is given by: 

E = E 0 
1 1 2 1 1 02 
2Mv2 + 2mv = 2Mv02 + 2mvM m M m 

∴ Mv2 + mv 2 = Mv02 + mv 02 
M m M m 

where we cancelled the factor of one half in the last line. This gives two equations 
(conservation of energy and momentum) and two unknowns (the two speeds after the 
collision). This is not a linear system of equations, because the equation from conser-
vation of energy is quadratic in the speeds. 

The following method allows many models for elastic collisions between two particles to 
be solved easily by converting the quadratic equation from energy conservation into an 
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equation that is linear in the speeds. First, write both equations so that the quantities 
related to each particle are on opposite sides of the equation. For momentum, this 
gives: 

MvM + mvm = Mv0 + mv 0 M m 
0 0∴ M(vM − vM ) = m(v m − vm) (10.6) 

For conservation of energy, this gives: 

Mv2 + mv 2 = Mv02 + mv 02 
M m M m 
2 02 02 2∴ M(v − v ) = M(v − v ) (10.7)M M m m 

which we can re-write as: 

2 02 02 2M(v − v ) = M(v − v )M M m m 
0 0 0 0M(vM − vM )(vM + vM ) = M(vm − vm)(vm + vm) 

We can then divide Equation 10.7 by Equation 10.6: 
0 0 0 0M(vM − v )(vM + v ) M(v − vm)(v + vm)M M m m= 0M(vM − vM ) m(v0m − vm) 

0 0∴ vM + vM = vm + vm 

which gives us an equation that is much easier to work with, since it is linear in the 
speeds. If we re-arrange this last equation back so that quantities before and after the 
collision are on di�erent sides of the equality: 

0 0 vM − vm = −(vM − vm) 

we can see that the relative speed between M and m is the same before and after the 
collision. That is, if block M “saw” block m approaching with a speed of 3 m/s before 
the collision, it would “see” block m moving away with speed 3 m/s after the collision, 
regardless of the actual directions and velocities of the block, if the collision was elastic. 

By using this equation with the original conservation of momentum equation, we now 
have two equations and two unknowns that are easy to solve: 

0 0 vM − vm = −(vM − vm) 
MvM + mvm = Mv0 + mv 0 M m 
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Solving for vm in both equations gives: 

vM − vm = −(vM − vm) 

MvM + mvm = MvM + mvm 
1

∴ vm = (MvM + mvm − MvM ) 

Equating the two expressions for vm allows us to solve for vM : 

0 

1

0 

(MvM + mvm − MvM ) = vM + vM − vm m 
0 

0 
MvM + mvm − MvM = mvM + mvM − mvm 

∴ + −=v v v vM M mm 

0 

∴ +=v v vM m 

(M − m)vM + 2mvm = (M + m)vM 

0 

0 

M − m 2m 

0 

M M + m M + m 

0 

0 

m 

0

0 

0 

m − M 2M 

0 

0

0 

0 

One easily solve for the other speed, :can vm 

∴ +=v v vMmm 

+=v v vM m 

M + m M + m 
0 

0 

0 

And writing these together: 

M − m 2m 
M M + m M + m 

m − M 2M 
vm = vm + vM

M + m M + m 

Discussion: The formulas that we obtained above are valid for any one dimensional 
elastic collision. 

Checkpoint 10-3 

Two trains of equal masses collide elastically on a track. If train A had a speed v and 
train B was at rest, what are the speeds of the trains after the collision? 

A) Both trains A and B travel away from each other with speeds 1
2 v. 

B) Train A will be at rest and train B will move away with a speed v. 
C) Both trains A and B will stick together and move at a speed of v. 
D) Train B will be at rest and train A will move away at a speed of v. 

Example 10-8 

0 
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Figure 10.5: A proton elastically collides with a proton at rest. 

A proton of mass m and initial velocity ~v1 collides elastically with a second proton that 
is at rest. After the collision, the two protons have velocities ~v 01 and ~v 02, as shown in 
Figure 10.5. Show that the velocity vectors of the two protons are perpendicular after 
the collision. 

Solution 

This example highlights a particular feature of elastic collisions when the two objects 
have the same mass and one of the objects is initially at rest. The conservation of 
momentum for the system comprised of the two protons can be written as: 

0
1 

0
2+ m~vm~v1 = m~v 

~v1 = ~v 01 ~v 02+ 

where the left hand side corresponds to the initial total momentum and the right hand 
side to the total momentum after the collision. In the second line, we cancelled out the 
mass, and obtained a vector relation between the velocity vectors. We can graphically 
illustrate the vector relation as in Figure 10.6 which shows the triangle that is formed 
by adding the two outgoing velocity vectors to obtain the initial velocity vector. 

2
2 

Figure 10.6: Graphical illustration of the relation between the initial and final velocity vectors 
as a vector sum. 

Conservation of kinetic energy for the collision can be written as: 

01 

2
1 

1 
2mv 
0 

12
1 

2
1 
0 

+ v 22 

+ 
0 

= 2mv 2mv 
2
1 = vv 
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where the left hand side corresponds to the initial kinetic energy and the right hand 
side to the final kinetic energy. We cancelled the mass and factor of one half in the 
second line. This last equation gives a relation between the magnitudes of the velocity 
vectors. By comparing the equation above to Pythagoras’ theorem, and by inspecting 
the triangle in Figure 10.6, it is clear that the triangle must be a right angle triangle, 
and thus that ~v 1 and ~v 2 must be perpendicular. 00 

10.2.3 Frames of reference 

Review Topics 

Before proceeding, you may wish to review Sections 3.4 and 4.1.2 on expressing velocities 
in di�erent frames of reference. 

Because the momentum of a particle is defined using the velocity of the particle, its value 
depends on the reference frame in which we chose to measure that velocity. In some cases, it 
is useful to apply momentum conservation in a frame of reference where the total momentum 
of the system is zero. For example, consider two particles of mass m1 and m2, moving 
towards each other with velocities ~v1 and ~v2, respectively, as measured in a frame of reference 
S, as illustrated in Figure 10.7. 

Figure 10.7: Two particles moving towards each other. 

~In the frame of reference S, the total momentum, P , of the two particles can be written: 

~P = m1~v1 + m2~v2 

Consider a frame of reference, S 0, that is moving with velocity, ~vCM , relative to the frame 
of reference S. In that frame of reference, the velocities of the two particles are di�erent 
and given by: 

0 = ~v1 −~v 1 ~vCM 
0 = ~v2 −~v 2 ~vCM 

0 

~The total momentum, P 0, in the frame of reference S 0 is then given by1: 

P~ 0 0= m1~v 1 + m2~v 2 

= m1(~v1 − ~vCM ) + m2(~v2 − ~vCM ) 
= m1~v1 + m2~v2 − (m1 + m2)~vCM 

1Note that we are using primes (0) to denote quantities in a di�erent reference frame, not after a collision. 
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We can choose the velocity of the frame S 0, ~vCM , such that the total momentum in that 
frame of reference is zero: 

P~ 0 = 0 
m1~v1 + m2~v2 − (m1 + m2)~vCM = 0 

m1~v1 + m2~v2∴ ~vCM = 
m1 + m2 

This “special” frame of reference, in which the total momentum of the system is zero, is 
called the “centre of mass frame of reference”. The velocity of centre of mass frame of 
reference can easily be obtained if there are N particles involved instead of two: 

P 
m1~v1 + m2~v2 + m3~v3 + . . . mi ~vi∴ ~vCM = = P (10.8) 

m1 + m2 + m3 + . . . mi 

Again, you should note that because the above equation is a vector equation, it represents 
one equation per component of the vectors. For example, the x component of the velocity 
of the centre of mass frame of reference is given by: P 

m1v1x + m2v2x + m3v3x + . . . mivix∴ vCMx = = P 
m1 + m2 + m3 + . . . mi 

Example 10-9 

Figure 10.8: One block approaching another identical block at rest, as seen in the lab frame 
of reference. 

In the frame of reference of a lab, a block of mass m has a velocity ~v1 directed along the 
positive x axis and is approaching a second block of mass m that is at rest (~v2 = 0), as 
shown in Figure 10.8. What is the velocity of the centre of mass frame? What is the 
velocity of each block in the centre of mass frame? Verify that the total momentum is 
zero in the centre of mass frame. 

Solution 

Since this is a one dimensional situation, we only need to evaluate the x component of 
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the velocity of the centre of mass: 

m1~v1 + m2~v2 
~vCM = 

m1 + m2 
m1v1x + m2v2x∴ vCMx = 
m1 + m2 

mv1 + m(0)= 
m + m 

1 = 2v1 

The centre of mass frame of reference is thus also moving along the positive direction 
of the x axis, but with a speed that is half of that of the moving block. In the centre 
of mass frame of reference, it appears that the block on the left is slower than in the 
lab frame and that the block on the right is moving in the negative x direction. The 
velocities of the two blocks in the centre of mass frame of reference are given by: 

0 1 
v1 = v1 − vCMx = 2v1 

v2 
0 = (0) − vCMx = −2

1 
v1 

Thus, in the reference frame of the centre of mass, the two block are approaching each 
other with the same speed (v1/2), which is only the case because the two blocks have 
the same mass. The blocks, as viewed in the centre of mass frame of reference, are 
shown in Figure 10.9. 

Figure 10.9: In the centre of mass frame of reference, the block approach each other with the 
same speed, because they have the same mass. 

Clearly, the total momentum is zero in the centre of mass frame of reference: �1 ~ 0 0 1 � 
P 0 = m~v 1 + m~v 2 = m 2 ~v1 − 2 ~v1 = 0 

Discussion: As we have seen, in the centre of mass frame of reference the total mo-
mentum is zero. If there are only two particles, and they have the same mass, then, in 
the centre of mass frame of reference, they both have the same speed and move either 
towards or away from each other. 
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10.3 The centre of mass 
In this section, we show how to generalize Newton’s Second Law so that it may describe the 
motion of an object that is not a point particle. Any object can be described as being made 
up of point particles; for example, those particles could be the atoms that make up regular 
matter. We can thus use the same terminology as in the previous sections to describe a 
complicated object as a “system” comprised of many point particles, themselves described 
by Newton’s Second Law. A system could be a rigid object where the point particles cannot 
move relative to each other, such as atoms in a solid2. Or, the system could be a gas, made 
of many atoms moving around, or it could be a combination of many solid objects moving 
around. 

In the previous section, we saw how the total momentum and the total mechanical energy 
of the system could be used to describe the system as a whole. In this section, we will define 
the centre of mass which will allow us to describe the position of the system as a whole. 

Consider a system comprised of N point particles. Each point particle i, of mass mi, can 
be described by a position vector, ~ri, a velocity vector, ~vi, and an acceleration vector, ~ai, 
relative to some coordinate system in an inertial frame of reference. Newton’s Second Law 
can be applied to any one of the particles in the system: X 

~Fik = mi ~ai 
k 

~where Fik is the k-th force exerted on particle i. We can write Newton’s Second Law once 
for each of the N particles, and we can sum those N equations together: X X X 

~ ~ ~F1k + F2k + F3k + . . . = m1~a1 + m2~a2 + m3~a3 + . . . 
k k kX X 

~F = mi ~ai 
i 

where the sum on the left is the sum of all of the forces exerted on all of the particles in 
the system3 and the sum over i on the right is over all of the N particles in the system. As 
we have already seen, the sum of all of the forces exerted on the system can be divided into 
separate sums over external and internal forces: X X X 

F~ ext + F intF~ = ~ 

and the sum over the internal forces is zero4. We can thus write that the sum of the external 
forces exerted on the system is given by: X X 

F~ ext = mi ~ai (10.9) 
i 

2In reality, even atoms in a solid can move relative to each other, but they do not move by large amounts 
compared to the object.

3Again, we are summing together forces that are acting on di�erent particles
4Recall, the internal forces are those forces that particles in the system are exerting on one another. 

Because of Newton’s Third Law, these will sum to zero. 
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We would like this equation to resemble Newton’s Second Law, but for the system as a 
whole. Suppose that the system has a total mass, M : X 

M = m1 + m2 + m3 + · · · = mi 

i 

we would like to have an equation of the form: X 
F~ ext = M~aCM (10.10) 

to describe the system as a whole. However, it is not (yet) clear what is accelerating 
with acceleration, ~aCM , since the particles in the system could all be moving in di�erent 
directions. Suppose that there is a point in the system, whose position is given by the 
vector, ~rCM , in such a way that the acceleration above is the second time-derivative of that 
position vector: 

d2 
~aCM = ~rCM 

dt2 

We can compare Equations 10.9 and 10.10 to determine what the position vector ~rCM 
corresponds to: 

X X X d2 
F~ ext = mi ~ai = mi ~ri 

i i dt2 

X d2 
F~ ext = M~aCM = M ~rCM 

dt2 

d2 X d2 
∴ M ~rCM = mi ~ri

dt2 
i dt2 

Re-arranging, and noting that the masses are constant in time, and so they can be factored 
into the derivatives: 

d2 1 X d2 
~rCM = mi ~ri

dt2 M dt2 
i ! 

d2 d2 1 X 
~rCM = mi ~ri

dt2 dt2 M i 

1 X 
∴ ~rCM = mi ~ri

M i 

where in the last line we set the quantities that have the same time derivative equal to each 
other5. ~rCM is the vector that describes the position of the “centre of mass” (CM). The 
position of the centre of mass is described by Newton’s Second Law applied to the system 
as a whole: X 

F~ ext = M~ (10.11)aCM 

5Technically, the terms in the derivatives are only equal to within two constants of integration, ~rCM = P 
i mi ~ri + at + b, which we can set to zeroM 

1 
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where M is the total mass of the system, and the sum of the forces is the sum over only 
external forces on the system. 

Although we have formally derived Newton’s Second Law for a system of particles, we 
really have been using this result throughout the text. For example, when we modelled a 
block sliding down an incline, we never worried that the block was made of many atoms all 
interacting with each other and the surroundings. Instead, we only considered the external 
forces on the block, namely, the normal force from the incline, any frictional forces, and the 
total weight of the object (the force exerted by gravity). Technically, the force of gravity is 
not exerted on the block as a whole, but on each of the atoms. However, when we sum the 
force of gravity exerted on each atom: 

m1~g + m2~g + m3~g + · · · = (m1 + m2 + m3 + . . . )~g = M~g 

we find that it can be modelled by considering the block as a single particle of mass M 
upon which gravity is exerted. The centre of mass is sometimes described as the “centre 
of gravity”, because it corresponds to the location where we can model the total 
force of gravity, M~g, as being exerted. When we applied Newton’s Second Law to the 
block, we then described the motion of the block as a whole (and not the motion of the 
individual atoms). Specifically, we modelled the motion of the centre of mass of the block. 

The position of the centre of mass is a vector equation that is true for each coordinate: 

1 X 
~rCM = mi ~ri

M i 

1 X 
∴ xCM = mixi

M i 

1 X 
∴ yCM = miyi

M i 

1 X 
∴ zCM = mizi (10.12)

M i 

The centre of mass is that position in a system that is described by Newton’s Second 
Law when it is applied to the system as a whole. The centre of mass can be thought 
of as an average position for the system (it is the average of the positions of the particles 
in the system, weighted by their mass). By describing the position of the centre of mass, 
we are not worried about the detailed positions of the all of the particles in the system, but 
rather only the average position of the system as a whole. In other words, this is equivalent 
to viewing the whole system as a single particle of mass M located at the position of the 
centre of mass. 

Consider, for example, a person throwing a dumbbell that is made from two spherical masses 
connected by a rod, as illustrated in Figure 10.10. The dumbbell will rotate in a complex 
manner as it moves through the air. However, the centre of mass of the dumbbell will travel 
along a parabolic trajectory (projectile motion), because the only external force exerted on 
the dumbbell during its trajectory is gravity. 
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Figure 10.10: The motion of the centre of mass of a dumbbell is described by Newton’s Second 
Law, even if the motion of the rotating dumbbell is more complex. 

If we take the derivative with respect to time of the centre of mass position, we obtain 
the velocity of the centre of mass, and its components, which allow us to describe how the 
system is moving as a whole: 

d 1 X d 1 X 
~vCM = ~rCM = mi ~ri = mi ~vi

dt M dt Mi i 

1 X 
∴ vCMx = mivix

M i 

1 X 
∴ vCMy = 

M
miviy 

i 

1 X 
∴ vCMz = miviz (10.13)

M i 

Note that this is the same velocity that we found earlier for the velocity of the centre of 
mass frame of reference. In the centre of mass frame of reference, the total momentum of 
the system is zero. This makes sense, because the centre of mass represents the average 
position of the system; if we move “with the system”, then the system appears to have zero 
momentum. 

~We can also define the total momentum of the system, P , in terms of the total mass, M , of 
the system and the velocity of the centre of mass: 

X M X 
~P = mi ~vi = mi ~vi

M 
= M~vCM 

which we can also use in Newton’s Second Law: 
d X 
~ F~ extP = 

dt 

and again, we see that the total momentum of the system is conserved if the net external 
force on the system is zero. In other words, the centre of mass of the system will move with 
constant velocity when momentum is conserved. 
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Finally, we can also define the acceleration of the centre of mass by taking the time derivative 
of the velocity: 

d 1 X d 1 X 
~ = ~ = ~ =aCM vCM mi vi mi ~ai

dt M dt Mi i 

1 X 
∴ aCMx = miaix

M i 

1 X 
∴ aCMy = 

M
miaiy 

i 

1 X 
∴ aCMz = miaiz (10.14)

M i 

Example 10-10 

Figure 10.11: A syzygy between the Sun, Earth, and Mars. 

In astronomy, a syzygy is defined as the event in which three bodies are all lined up along 
a straight line. For example, a syzygy occurs when the Sun (mass MS = 2.00 × 1030 kg), 
Earth (mass ME = 5.97 × 1024 kg), and Mars (mass MM = 6.39 × 1023 kg) are all lined 
up, as in Figure 10.11. How far from the centre of the Sun is the centre of mass of the 
Sun, Earth, Mars system during a syzygy? 

Solution 

Since this is a one-dimensional problem, we can define an x axis that is co-linear with 
the three bodies, and find only the x coordinate of the position of the centre of mass. 
We are free to choose the origin of the coordinate system, so we choose the origin to be 
located at the centre of the Sun. This way, the position of the centre of mass along the 
x axis will directly correspond to its distance from the centre of the Sun. 

The Sun, Earth, and Mars are not point particles. However, because they are spherically 
symmetric, their centres of mass correspond to their geometric centres. We can thus 
model them as point particles with the mass of the body located at the corresponding 
geometric centre. If rE = 1.50 × 1011 m (rM = 2.28 × 1011 m) is the distance from the 
centre of the Earth (Mars) to the centre of the Sun, then the position of the centre of 
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mass is given by: 

1 X 
xCM = mixi

M i 

MS(0) + MErE + MM rM= 
MS + ME + MM 

(2.00 × 1030 kg)(0) + (5.97 × 1024 kg)(1.50 × 1011 m) + (6.39 × 1023 kg)(2.28 × 1011 m) = (2.00 × 1030 kg) + (5.97 × 1024 kg) + (6.39 × 1023 kg) 
= 5.21 × 105 m 

The centre of mass of the Sun-Earth-Mars system during a syzygy is located approxi-
mately 500 km from the centre of the Sun. 

Discussion: The radius of the Sun is approximately 700 000 km, so the centre of mass 
of the system is well inside of the Sun. The Sun is so much more massive than either 
of the Earth or Mars, that the two planets hardly contribute to shifting the centre of 
mass away from the centre of the Sun. We would generally consider the masses of the 
two planets to be negligible if one wanted to model how the solar system itself moves 
around the Milky Way galaxy. 

https://kg)(2.28
https://kg)(1.50
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Example 10-11 

Figure 10.12: Three people on rafts on a lake. 

Alice (mass mA), Brice (mass mB), and Chloë (mass mC ) are stranded on individual 
rafts of negligible mass on a lake, o� of the coast of Nyon. The rafts are located at 
the corners of a right-angle triangle, as illustrated in Figure 10.12, and are connected 
by ropes. The distance between Alice and Brice is rAB and the distance between Alice 
and Chloë is rAC , as illustrated. Alice decides to pull on the rope that connects her to 
Chloë , while Brice decide to pull on the rope that connects him to Alice. Where will 
the three rafts meet? 

Solution 

We consider the system comprised of the three people and their rafts and model each 
person and their raft as a point particle with the mass concentrated at the centre of 
the raft. The forces exerted by pulling on the ropes are internal forces (one particle on 
the other), and will thus have no impact on the motion of the centre of mass of the 
system. There are no net external forces exerted on the system (the forces of gravity 
are balanced out by the forces of buoyancy from the rafts). The centre of mass of the 
system does not move when the people are pulling on the ropes, so they must ultimately 
meet at the centre of mass. 

We can define a coordinate system such that the origin is located where Alice is initially 
located, the x axis is in the direction from Alice to Brice, and the y axis is in the direction 
from Alice to Chloë. The initial positions of Alice, Brice, and Chloë are thus: 

~rA = 0x̂ + 0ŷ 
~rB = rABx̂+ 0ŷ 
~rC = 0x̂ + rAC ŷ 
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respectively. The x and y coordinates of the centre of mass are thus: 

1 X mA(0) + mBrAB + mC(0) � 
mB 

� 
xCM = mixi = = rAB

M i mA + mB + mC mA + mB + mC 

1 X mA(0) + mB(0) + mC rAC 
� 

mC 
� 

yCM = miyi = = rAC
M i mA + mB + mC mA + mB + mC 

which corresponds to the position where the three rafts will meet, relative to the initial 
position of Alice. 

Discussion: By using the centre of mass, we easily found where the three rafts would 
meet. If we had used Newton’s Second Law on the three rafts individually, the model 
would have been complicated by the fact that the forces exerted by Alice and Brice on 
the ropes change direction as the rafts begin to move, which would have required the 
use of integrals to determine the motion of each person. 

10.3.1 The centre of mass for a continuous object 
So far, we have considered the centre of mass for a system made of point particles. In this 
section, we show how one can determine the centre of mass for a “continuous object”6. We 
previously argued that if an object is uniform and symmetric, its centre of mass will be 
located at the centre of the object. Let us show this explicitly for a uniform rod of total 
mass M and length L, as depicted in Figure 10.13. 

Figure 10.13: A rod of length L and mass M . 

In order to determine the centre of mass of the rod, we first model the rod as being made 
of N small “mass elements” each of equal mass, �m, and of length �x, as shown in Figure 
10.13. If we choose those mass elements to be small enough, we can model them as point 
particles, and use the same formulas as above to determine the centre of mass of the rod. 

We define the x axis to be co-linear with the rod, such that the origin is located at one 
end of the rod. We can define the “linear mass density” of the rod, �, as the mass per unit 
length of the rod: 

M 
� = . 

L 

6In reality, there are of course no continuous objects since, at the atomic level, everything is made of 
particles. 
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A small mass element of length �x, will thus have a mass, �m, given by: 

�m = ��x 

If there are N mass elements that make up the rod, the x position of the centre of mass of 
the rod is given by: 

xCM = 1 
M 

NX 
mixi 

i 

= 1 
M 

NX 
�mxi 

i 

= 1 
M 

NX 
��xxi 

i 

where xi is the x coordinate of the i-th mass element. Of course, we can take the limit over 
which the length, �x, of each mass element goes to zero to obtain an integral: 

N Z L1 X 1 
xCM = lim ��xxi = �xdx 

�x!0 M M 0i 

where the discrete variable xi became the continuous variable x, and �x was replaced by 
dx (which is the same, but indicates that we are taking the limit of �x ! 0). The integral 
is easily found: 

Z L �1 �L1 1 2 xCM = �xdx = � 2x M 0 M 0� � 11 1 1 M = �2L
2 = 2L

2 
M M L 
1 = 2L 

where we substituted the definition of � back in to find, as expected, that the centre of mass 
of the rod is half its length away from one of the ends. 

Suppose that the rod was instead not uniform and that its linear density depended on the 
position x along the rod: 

�(x) = 2a + 3bx 

We can still find the centre of mass by considering an infinitesimally small mass element 
of mass dm, and length dx. In terms of the linear mass density and length of the mass 
element, dx, the mass dm is given by: 

dm = �(x)dx 
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The x position of the centre of mass is thus found the same way as before, except that the 
linear mass density is now a function of x: Z L Z L Z L1 1 1 

xCM = �(x)xdx = (2a + 3bx)xdx = (2ax + 3bx2)dx 
M 0 M 0 M 0 h iL1 = ax 2 + bx3 
M 0 
1 = (aL2 + bL3)
M 

In general, for a continuous object, the position of the centre of mass is given by: Z1 
~ = ~rdm rCM 

M Z1
∴ xCM = xdm 

M Z1
∴ yCM = ydm 

M Z1
∴ zCM = zdm (10.15)

M 
(10.16) 

where in general, one will need to write dm in terms of something that depends on position 
(or a constant) so that the integrals can be evaluated over the spatial coordinates (x,y,z) 
over the range that describe the object. In the above, we wrote dm = �dx to express the 
mass element in terms of spatial coordinates. 

Example 10-12 

Figure 10.14: A symmetric bowl with parabolic sides is completely filled with water. The bowl 
has a height h. 

A bowl of height h has parabolic sides and a circular cross-section, as illustrated in 
Figure 10.14. The bowl is filled with water. The bowl itself has a negligible mass and 
thickness, so that the mass of the full bowl is dominated by the mass of the water. 
Where is the centre of mass of the full bowl? 
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Solution 

We can define a coordinate system such that the origin is located at the bottom of the 
bowl and the z axis corresponds to the axis of symmetry of the bowl. Because the bowl 
is full of water, and the bowl itself has negligible mass, we can model the full bowl as 
a uniform body of water with the same shape as the bowl and (volume) mass density 
ˆ equal to the density of water. Furthermore, by symmetry, the centre of mass of the 
bowl will be on the z axis. 

Because the bowl has a circular cross-section, we can divide it up into disk-shaped 
mass elements, dm, that have an infinitesimally small height dz, and a radius r(z), that 
depends on their z coordinate (Figure 10.14). 

Figure 10.15: The parabolic bowl divided up into disk-shaped mass elements, dm, that have 
an infinitesimally small height dz, and a radius r(z), that depends on their z coordinate. 

The centre of mass of each disk-shaped mass element will be located where the corre-
sponding disk intersects the z axis. The mass of one disk element is given by: 

dm = ˆdV = ˆˇr2(z)dz 

where dV = ˇr(z)2dz is the volume of the disk with radius r(z) and thickness dz. The 
radius of the infinitesimal disk depends on its z position, since the radii of the di�erent 
disks must describe a parabola: 

1 
z(r) = 2 r 

2 
a p

r(z) = a z 

∴ dm = ˆˇr2(z)dz = ˆˇa2zdz 

where we introduced the constant a so that the dimensions are correct. The constant a 
determines how “steep” the parabolic sides are. The z coordinate of the centre of mass 
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is thus given by: 
Z Z h Z h1 1 ˆˇa2 

zCM = zdm = z(ˆˇa2zdz) = z 2dz 
M M 0 M 0�1 �hˆˇa2 

= 3 
3z M 0 

ˆˇa2 
h3= 3M 

However, we are not quite done, since we do not know the total mass, M , of the water. 
To find the total mass of water, M , we proceed in an analogous way, and determine the 
value of the sum (integral) of all of the mass elements: 

Z Z h �1 �h 
M = dm = ˆˇa2zdz = ˆˇa2 2 = 2

1 ̂
ˇa2h2 

2z 0 0 

Substituting this value for M , we can determine the z coordinate of the centre of mass 
of the full bowl: 

ˆˇa2 2ˆˇa2 2 
zCM = h3 = = 3h3M 3ˆˇa2h2 h

3 

Regardless of the actual shape of the parabola (the parameter a), the centre of mass 
will always be two thirds of the way up from the bottom of the bowl. 

Discussion: In determining the centre of mass of a three dimensional object, we used 
symmetry to argue that the x and y coordinates would be zero. We then found the z 
position of the centre of mass by dividing up the bowl into infinitesimally small mass 
elements (disks) along the direction in which we needed to find the centre of mass 
coordinate. 

Checkpoint 10-4 

True or False: The centre of mass of a continuous object is always located within the 
object. 

A) True 
B) False 
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10.4 Summary 
Key Takeaways 

The momentum vector, , of a point particle of mass, m, with velocity, , is defined as: 

= m~ 

~v 

~p 

X 
= = 

dt 

particular, if there is no net force on a particle, its momentum will not change. 
net 

~p 

~F 

v 

where the net force the particle determines the rate of change of its Inmomentum. on 

from time timeto :a at tA B 

~F 

~p 

~F 

Z tB 

~p 

= 

net netdt

~p 

= 

~P 

~P 

tA 

~P 

d 

d 
~p 

~J 

The net impulse vector is also equal to the change in momentum of the particle in that 

~J 

same period of time: 

net = � = B − A 

~p 

~J 

net 

~p 

We write Newton’s Second Law for point particle in term of its momentum: can a 

~F 

The net impulse vector, is defined as the net force exerted on a particle integrated , 

When we define a system of particles, we can distinguish between internal and external 
forces. Internal forces those forces exerted by the particles in the system each are on 
other. External forces are those forces on the particles in the system that are not exerted
by the particles each other. The all of the forces all of the particles in on sum over on 
the system will be equal to the the external forces, because the allsum over sum over 
internal forces system is always (Newton’s Third Law). on a zero 

The total of is the of the of all of themomentum system, momenta, a sum, ,i 
particles in the system: X 

= i 

The rate of change of the momentum of a system is equal to the sum of the external 
forces exerted on the system: 

X 
ext 

dt 

which can be thought of as an equivalent description as Newton’s Second Law, but for 
the system as a whole. If the net (external) force on a system is zero, then the total 
momentum of the system is conserved. 
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Collisions are those events when the particles in a system interact (e.g. by colliding) and 
change their momenta. When modelling collisions, it is usually beneficial to first define 
a system for which the total momentum is conserved before and after the collision. 

Collisions can be elastic or inelastic. Elastic collisions are those where, in addition 
to the total momentum, the total mechanical energy of the system is conserved. The 
total mechanical energy can usually be taken as the sum of the kinetic energies of the 
particles in the system. 

Inelastic collisions are those in which the total mechanical energy of the system is not 
conserved. One can usually identify if mechanical energy was introduced or removed 
from the system and determine if the collision is elastic. It is important to identify 
when momentum and mechanical energy are conserved. Momentum is conserved if no 
net force is exerted on the system, whereas mechanical energy is conserved if no net 
work was done on the system by non-conservative forces (internal or external) or by 
external conservative forces. 

We can always choose in which frame of reference to model a collision. In some cases, it 
is convenient to use the frame of reference of the centre of mass of the system, because 
in that frame of reference, the total momentum of the system is zero. 

If a system has a total mass M , then one can use Newton’s Second Law to describe its 
motion: X 

F~ ext = M~aCM X d 
F~ ext ~= P 

dt 

where the sum of the forces is over all of the external forces on the system. The 
acceleration vector, ~aCM , describes the motion of the “centre of mass” of the system. 
~P = M~vCM is the total momentum of the system. 

The centre of mass of a system is a mass-weighted average of the positions of all of the 
particles of mass mi and position ~ri that comprise the system: 

1 X 
~rCM = mi ~ri

M i 

The vector equation can be broken into components to find the x, y, and z component 
of the position of the centre of mass. Similarly, one can also define the velocity of the 
centre of mass of the system, in terms of the individual velocities, ~vi, of the particles in 
the system: 

1 X 
~vCM = mi ~vi

M i 
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Finally, one can define the acceleration of the centre of mass of the system, in terms of 
the individual accelerations, ~ai, of the particles in the system: 

1 X 
~aCM = mi ~ai

M i 

If the system is a continuous object, we can find its centre of mass using a sum (integral) 
of infinitesimally small mass elements, dm, weighted by their position: Z1 

~ = ~rdm rCM 
M Z1

∴ xCM = xdm 
M Z1

∴ yCM = ydm 
M Z1

∴ zCM = zdm 
M 

The strategy to set up the integrals above is usually to express the mass element, dm, 
in terms of the position and density of the material of which the object is made. One 
can then integrate over position in the range defined by the dimensions of the object. 
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Important Equations 

of a system: 
Momentum of point particle: Position of the Centre of Mass a 

= mCM i iX

Z tB i 

~ 

net i= = 
dt 

M 

M 

M 

M 

Velocity of the Centre of Mass 

M 

M 

M 

of a system:
Impulse: 

~r 

1 X 

~r

~v 

~a 

= 
tA 

= � = B − A net 

Acceleration of the Centre of Mass 
of a system: 

Momentum of a system: 1 X 
CM = mi i 

= mCM i i 

net netdt 

= i 

~F
dt 

v 

~p 

X 

~F 

~p 

ext= 

~p 

d 

~F 

~P 

= rdm 

~F 

~F

system: 

1 X= ~p m~ 
~r 

~p 

~v 

~~ FJ 

~p 

~a 
iX 

d
Position of the Centre of Mass for ~P a 
continuous object: Z1Newton’s Second Law for a 

CM Z 
1= M~aCM 

~P 

1 

d 

∴ xCM = xdm 

~J 

X 
ext Z 

X ∴ yCM = ydm 
ext 

1 Z= 
dt ∴ zCM = zdm 

~J 

~p 

Important Definitions 

Momentum: The product of velocity and mass. SI units: [kgms−1]. Common vari-
able(s): . 

Impulse: A property of matter which describes an object’s resistance to rotational 
motion. SI units: [Ns]. Common variable(s): . 
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10.5 Thinking about the material 

Reflect and research 

1. Explain how Newton’s Cradle illustrates the conservation of momentum. Are the 
collisions in Newton’s Cradle elastic? Explain! 

2. Gymnasts have specially engineered “crash mats” for landing after doing spins 
and flips in the air. Why do these crash mats have to be specially engineered, 
and why can’t the gymnast just use a big pile of blankets? 

3. Give 2 examples where the centre of mass of an object is not located inside of the 
object. 

4. The Volvo XC60 is supposedly the safest car in the world that money can buy. 
Why is this? 

5. In the boxing world, boxers try to “ride the punch”. Research and explain how 
this method helps boxers to reduce injuries. 

To try at home 

1. Grab two or three of your friends and ask them to hold a bed sheet. Throw an 
egg at full speed onto the bed sheet. What happens to the egg, and why? 

2. Verify that in a 1 one-dimensional elastic collision between two objects of the 
same mass, if one object starts at rest, the other object will end at rest after the 
collision (look up Newton’s Cradle to get an idea). 

To try in the lab 

1. Propose an experiment to test whether a collision is elastic. 
2. Propose an experiment to test whether momentum is conserved in a two dimen-

sional collision. 
3. Design a technique which measures the centre of mass of an arbitrary 3D object. 
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10.6 Sample problems and solutions 
10.6.1 Problems 
Problem 10-1: 

Figure 10.16: A bullet of mass m strikes and embeds itself into a ballistic pendulum of mass M . 

A ballistic pendulum is a device that can be built to measure the speed of a projectile. 
The pendulum is constructed such that the projectile is fired at the bob of the pendulum 
(typically a block of wood) which then swings as illustrated in Figure 10.16, with the 
projectile embedded within. By measuring the height that is reached by the pendulum’s 
bob, one can determine the speed of the projectile before it collided with the pendulum. If a 
ballistic pendulum with a mass M suspended at the end of strings of length L is observed to 
rise by a height h after being struck by a bullet of mass m, how fast was the bullet moving? 
(Solution) 

Problem 10-2: 

Figure 10.17: One block attached to a spring about to collide with another block. 

A block of mass M with a spring of spring constant k attached to it is sliding on a frictionless 
surface with velocity ~vM in the x direction. A second block of mass m has velocity ~vm also 
in the x direction (shown above in the negative x direction, but let us assume that we do not 
necessarily know the direction, only that the two blocks will collide). During the collision 
between the blocks, what is the maximum amount by which the spring is compressed? 
(Solution) 

Problem 10-3: A uniform wire is bent into a semi-circle of radius R. Where is the centre 
of mass of the wire? (Solution) 
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10.6.2 Solutions 
Solution to problem 10-1: We can model this situation by dividing it into three phases: 

1. Before the bullet collides with the pendulum, only the bullet has momentum in the x 
direction. 

2. Immediately after the inelastic collision, the bullet and pendulum form a combined 
object of mass M + m that has the same momentum as the bullet, in the x direction, 
before the pendulum starts to swing upwards. 

3. The pendulum with the embedded bullet swings upwards until its kinetic energy is 
zero. 

The collision between the bullet and pendulum is inelastic, because some of the kinetic 
energy of the bullet is used to deform the bullet and the pendulum. In general, any collision 
where two objects end up “stuck together” is inelastic. 

In order to model the pendulum’s motion we first apply conservation of momentum to deter-
0mine the speed, v , of the pendulum and embedded bullet just after the collision. Applying 

conservation of momentum in the x direction to the system formed by the pendulum and 
the bullet, just before and after the collision, we have: 

P = mv 
P 0 = (M + m)v 0 

∴ mv = (M + m)v 0 
m

∴ v 0 = v 
m + M 

where P and P 0 are the initial and final momenta of the system, respectively. The pendulum 
with the bullet embedded in it will thus have a speed of v0 at the bottom of the pendulum’s 
motion, before it swings upwards. 

We can now use conservation of energy to model the swinging motion since, at that point, 
only tension and gravity act on the pendulum, and there are no non-conservative forces. If 
we choose the origin to be the location of the pendulum at the bottom of its trajectory, its 
initial gravitational potential energy is zero and its initial mechanical energy, E, is given 
by: 

1 02E = (m + M)v2 

At the top of the trajectory, the pendulum with the embedded bullet will stop and have no 
kinetic energy. The mechanical energy at the top of the trajectory, E 0, is thus equal to the 
gravitational potential energy of the pendulum at a height h above the origin: 

E 0 = (m + M)gh 
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Applying conservation of mechanical energy allows us to find the initial speed of the bullet: 
E = E 0 

1(m + M)v 02 = (m + M)gh 2 
v 02 = 2gh � �2m 
v = 2gh 

m + M qm + M
∴ v = 2gh 

m 

where is the second last line we used the expression for v0 that we obtained from conservation 
of momentum. 

Discussion: This example showed a situation in which momentum and energy were both 
conserved, but not at the same time. This example also highlighted how, by using conser-
vation laws, one can derive models that are much easier to solve mathematically than if one 
had to model all of the forces involved. 

Solution to problem 10-2: The collision is elastic because the energy used to compress the 
spring is “given back” when the spring extends again, since the spring force is conservative. 

They key to modelling the compression of the spring is to identify the condition under 
which the spring is maximally compressed. This will occur at the point during the collision 
where the two masses will have exactly the same velocity, momentarily moving in unison as 
the spring is maximally compressed. Because, instantaneously, the masses have the same 
velocity, there is a frame of reference in which the two masses are at rest, and the momentum 
is zero. Of course, that frame of reference is the centre of mass frame of reference. 

Because the collision is one-dimensional, we can calculate the velocity of the centre of mass 
as: 

MvM + mvm 
vCM = 

m + M 
where we note that vm is a negative number, since the block of mass m is moving in the 

~negative x direction. The total momentum, PCM , in the centre of mass frame of reference 
must be zero. Writing this out for the x component and transforming the velocities of the 
two blocks into the centre of mass frame of reference: 

P CM x = M(vM − vCM ) + m(vm − vCM ) = 0 

∴ (vm − vCM ) = − M (vM − vCM ) 
m 

Also note that we can write the velocity di�erence vM − vCM without using the centre of 
mass velocity: 

MvM + mvm 1 
vM − vCM = vM − = (vM (m + M) − MvM − mvm) 

m + M m + M 
m = (vM − vm) 

m + M 
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We can then use conservation of energy in the centre of mass frame to determine the maximal 
compression of the spring. Before the collision, the total mechanical energy in the system, 
E, is the sum of the kinetic energies of the two blocks (as the spring is not compressed): 

E = 2
1 
m(vm − vCM )2 + 2

1 
M(vM − vCM )2 

1 M2 1 = (vM − vCM )2 + 2M(vM − vCM )2 
2 m� � 

= 12M 1 + M (vM − vCM )2 

� m �1 m + M = (vM − vCM )2 
2M m� �� �21 m + M m = (vM − vm)2M m m + M� �1 mM = (vM − vm)2 
2 m + M 

where we used our expressions above to simplify the expression. When the spring is maxi-
mally compressed, the two blocks are at rest and the mechanical energy of the system, E 0, 
is all “stored” as spring potential energy: 

E 0 = 2
1 
kx2 

where x is the distance by which the spring is compressed. Equating the two allows us to 
determine the maximal compression of the spring: 

E = E 0 � �1 mM 1(vM − vm)2 = 2kx
2 

2 m + M s � �1 mM
∴ x = (vM − vm)

k m + M 
Discussion: By modelling the collision in the centre of mass frame of reference, we were 
easily able to determine the maximal compression of the spring. This would have been more 
diÿcult in the lab frame of reference, because the two blocks would still be moving when 
the spring is maximally compressed, so we would have needed to determine their speeds to 
determine the total mechanical energy when the spring is compressed. 

When we calculated the initial kinetic energy, we found that it was given by: � �1 mM 1 
E = (vM − vm)2 = 2Mred(vM − vm)2 

2 m + M 
The combination of masses in parentheses is called the “reduced mass” of the system, and 
is a sort of e�ective mass that can be used to model the system as a whole. 

Solution to problem 10-3: The curved wire is illustrated in Figure 10.18, along with a 
small mass element, dm, on the wire, and our choice of coordinate system (centred at the 
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centre of the semi-circle). By symmetry, the position of the centre of mass will be located 
at x = 0, so we only need to determine the y position. 

Figure 10.18: A uniform wire bent into a semi circle of radius R, and a small mass element, dm, 
on the wire. 

The y position of the centre of mass is given by: Z1 
yCM = ydm 

M 

where M is the total mass of the wire. We can define the mass per unit length, �, for the 
wire as: 

M 
� = 

ˇR 

We will choose to integrate the equation for the y position of the centre of mass over � (from 
0 to ˇ), instead of over y, as it will make the integral easier (it is easier to express dm in 
terms of d� than dy because the wire is curved). � is the angle at which the mass element 
is located. The mass element forms an arc on the wire of length ds that subtends an angle 
d�. The two are related by: 

ds = Rd� 
The mass element, dm, can then be expressed in terms of the mass per unit length of the 
wire and the length, Rd�, of the mass element: 

dm = �ds = �Rd� 
We also need to express the y position of the mass element using �: 

y = R sin � 
Now that we have expressed dm and y in terms of �, we can determine the y position of the 
centre of mass: Z Z ̌1 1 

yCM = ydm = R sin ��Rd� 
M M 
R2� Z ̌ 

0 
R2�h iˇ 

= sin �d� = − cos � 
M 0 M 0 

2R2� 2R = = 
M ˇ 
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where in the last equality, we used the expression for the mass per unit length, �, obtained 
above. 



�

11 Rotational dynamics 

In this Chapter, we use Newton’s Second Law to develop a formalism to describe how objects 
rotate. In particular, we will introduce the concept of torque which plays a similar role to 
that of force in non-rotational dynamics. We will also introduce the concept of moment of 
inertia to describe how objects resist rotational motion. 

Learning Objectives 

• Understand how to use vector quantities for describing the kinematics of rotations. 
• Understand how to use torque to determine the angular acceleration of an object. 
• Understand conditions for static and dynamic equilibrium. 
• Understand how to determine the moment of inertia of an object. 

Think About It 

A construction worker would like to lift one end of a heavy block from the ground using 
a bar propped against a rock on the ground as a lever. Should he place the rock close 
or far from the block to make it easier to lift the block? 

A) It will be easier to lift the block if the rock is close to the block. 
B) It will be easier to lift the block if the rock is far from the block. 
C) It does not matter where he places the rock, as long as the bar is short. 
D) It does not matter where he places the rock, as long as the bar is long. 

11.1 Rotational kinematic vectors 
Review Topics 

Before proceeding, you may wish to review: 
• Section 4.4 on kinematics for circular motion. 
• Section A.3.4 on the vector product. 
• Section A.4.3 on axial vectors and their use in defining rotational quantities. 

11.1.1 Scalar rotational kinematic quantities 
Recall that we can describe the motion of a particle along a circle of radius, R, by using its 
angular position, �, its angular velocity, !, and its angular acceleration, . With a suitable 
choice of coordinate systen, the angular position can be defined as the angle made by the 
position vector of the particles, ~r, and the x axis of a coordinate system whose origin is the 
centre of the circle, as shown in Figure 11.1. 
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Figure 11.1: Angular position for a particle moving around the z axis (out of the page), along a 
circle of radius R with a centre at the origin. 

The angular velocity, !, is the rate of the change of the angular position, and the angular 
acceleration, , is the rate of change of the angular velocity: 

d 
! = � 

dt 
d = ! 
dt 

If the angular acceleration is constant, then angular velocity and position as a function of 
time are given by: 

!(t) = !0 + t 
1 2�(t) = �0 + !0t + t2 

where �0 and !0 are the angular position and velocity, respectively, at t = 0. 

We can also describe the motion of the particle in terms of “linear” quantities (as opposed 
to “angular” quantities) along a one-dimensional axis that is curved along the circle. If s is 
the distance along the circumference of the circle, measured counter-clockwise from where 
the circle intersects the x axis, then it is related to the angular displacement: 

s = R� 

if � is expressed in radians. Similarly, the linear velocity along the s axis, vs, and the 
corresponding acceleration, as, are given by: 

ds d 
vs = = R� = R! 

dt dt 
dv d 

as = = R! = R 
dt dt 

where the radius of the circle, R, is a constant that can be taken out of the time derivatives. 
For motion along a circle, the velocity vector, ~v, of the particle is always tangent to the 
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circle (Figure 11.1), so vs corresponds to the speed of the particle. The acceleration vector, 
~a, is in general not tangent to the circle; as represents the component of the acceleration 
vector that is tangent to the circle. If as = 0, then = 0, and the particle is moving with 
a constant speed (uniform circular motion), and the acceleration vector points towards the 
centre of the circle. 

Checkpoint 11-1 

Which of the following statements correctly describes the speeds at points A and B on 
the disk rotating about an axis through its centre, as illustrated in Figure 11.2? 

Figure 11.2: Two points at di�erent radii on a rotating disk. 

A) Both points A and B have the same angular and linear speeds. 
B) Both points A and B have the same linear speed but they have di�erent angular 

speeds. 
C) Both points A and B have the same angular speed but they have di�erent linear 

speeds. 

11.1.2 Vector rotational kinematic quantities 
In the previous section, we defined angular quantities to describe the motion of a particle 
about the z axis along a circle of radius R that lies in the xy plane. By using vectors, 
we can define the angular quantities for rotation about an axis that can point in any 
direction. Given an axis of rotation, the path of any particle rotating about that axis 
can be described by a circle that lies in the plane perpendicular to that axis of rotation, as 
illustrated in Figure 11.3. 

Figure 11.3: Defining the vector ~r and the angular velocity, !~ for a particle with velocity ~v rotating 
about an axis in a general direction. 
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We define the vector, ~r, for a particle to be the vector that goes from the axis of rotation to 
the particle and is in a plane perpendicular to the axis of rotation, as in Figure 11.3. Given 
the velocity vector of the particle, ~v, we define its angular velocity vector, !~ , about the 
axis of rotation, as: 

1 
~! = ~r × ~v (11.1)2r 

The angular velocity vector is perpendicular to both the velocity vector and the vector ~r, 
since it is defined as their cross-product. Thus, the angular velocity vector is co-linear 
with the axis of rotation. By using the angular velocity vector, we can specify the 
direction of the axis of rotation as well as the direction in which the particle 
is rotating about that axis. The direction of rotation is given by the right hand rule 
for axial vectors: when you point your thumb in the same direction as the angular velocity 
vector, the direction of rotation is the direction that your fingers point when you curl them, 
as illustrated in Figure. 11.4. 

Figure 11.4: Using the right hand rule for axial vectors. In this case, the direction of rotation 
is counter clockwise when looking at the page (the direction that the fingers curl), so the rotation 
vector points out of the page (the direction of the thumb). 

This definition of the angular velocity is consistent with the description from the previous 
section for motion about a circle of radius R that lies in the xy plane, as in Figure 11.1. In 
that case, the magnitude of the angular velocity is given by: 

1 1 v 
! = 2 ||~r × ~v|| = 2 rv sin ° = 

r r R 
∴ v = R! 

where ° is the angle between the vectors ~r and ~v (90� for motion around a circle). The direc-
tion of the angular velocity in Figure 11.1 is in the positive z direction, which corresponds 
to counter-clockwise rotation about the z axis. 
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Checkpoint 11-2 

You push on the right-hand side of a door to open it, as the door’s hinges are on the 
left. The angular velocity vector of the door is: 

A) Upwards 
B) Downwards 
C) Forwards 
D) Backwards 

One can always define an angular velocity vector relative to a point of rotation, even if 
the particle is not moving along a circle. If we define the vector ~r to be the vector from the 
point of rotation to the particle, then the angular velocity vector describes the motion of 
the particle as if it were instantaneously moving in a circle centred at the point of rotation, 
in a plane given by the vectors ~r and ~v. 

Consider, for example, the particle in Figure 11.5 which is moving in a straight line with 
a velocity vector in the xy plane at a position ~r relative to the origin. We can define its 
angular velocity vector relative to the origin, which will be in the positive z direction. 

Figure 11.5: Angular position for a particle moving in a straight line. 

The angular velocity describes the motion of the particle as if it were instantaneously 
moving along a circle of radius r centred about the origin. The angular velocity 
is related to the component of ~v, v?, that is perpendicular to ~r (which is the component 
tangent to the circle of radius r, in Figure 11.5): 

1 v sin ° v?||~!|| = 2 ||~r × ~v|| = = (11.2) 
r r r 

where ° is the angle between ~r and ~v. 

Similarly, we can define the angular acceleration vector, ~ , about an axis of rotation: 
1 

~ = 2 ~r × ~a (11.3) 
r 

where ~a is the particle’s acceleration vector, and ~r is the vector from the axis of rotation to 
the particle. The direction of the angular acceleration is co-linear with the axis of rotation 
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and the right-hand rule gives the rotational direction of the angular acceleration. We can 
also define the angular acceleration about a point; in that case, the direction of the vector 
will define an instantaneous axis of rotation about a circle of radius r centred at the point 
as well as the direction of the angular acceleration about that axis. 

~Finally, we can define an angular displacement vector, �, relative to an axis of rotation. 
The direction of the angular displacement vector will be co-linear with the axis of rotation, 
its direction will indicate the direction of rotation about that axis, and its magnitude (in 
radians) will correspond to the angular displacement (as shown in Figure 11.3). We can 
only relate the angular displacement vector to an infinitesimal linear displacement vector, 
d~s, since the position vector ~r from the axis of rotation will be di�erent at each end of the 
displacement vector if the displacement is large. The infinitesimal angular displacement 
vector that corresponds to an infinitesimal displacement vector, d~s, is defined as: 

1 
d~� = ~r × d~s2r 

Checkpoint 11-3 

Which statement is correct regarding an ant on a disk that is rotating slower and slower 
as illustrated? 

Figure 11.6: An ant on a disk. 

A) The angular velocity points into the page and the angular acceleration points out 
of the page. 

B) Both the angular velocity and acceleration point into the page. 
C) Both the angular velocity and acceleration point out of the page. 
D) The angular acceleration points into the page and the angular velocity points out 

of the page. 

The instantaneous angular velocity vector is the rate of change of the angular displacement 
vector: 

d~� d 1 1 
~ = r × d~ ~ ~vs! = ~ s = r ×2 2dt dt r r 
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where ~vs is the (instantaneous) tangential velocity around the circle (i.e. the component 
of the velocity ~v that is perpendicular to ~r). The angular acceleration vector is the rate of 
change of the angular velocity vector: 

d 
~ = !~ 

dt 

Given the angular kinematic quantities, the related linear quantities at a position ~r from 
the axis of rotation are given by: 

d~s = d�~ × ~r 
~vs = ~! × ~r 
~as = ~ × ~r (11.4) 

where the linear quantities are always in the direction perpendicular to ~r (tangent to the 
circle, for motion around a circle). In other words, one cannot, say, take the acceleration 
vector, obtain the angular acceleration vector, and then get back the original acceleration 
vector - one will only get back the component of the acceleration vector that is perpendicular 
to ~r. 

Checkpoint 11-4 

A particle has an angular velocity in the negative z direction. In which way is the 
particle’s velocity vector at a point in its trajectory when it is on the positive y axis? 

A) Positive z direction 
B) Negative y direction 
C) Positive x direction 
D) Negative x direction 

11.2 Rotational dynamics for a single particle 
~Suppose that a single force, F , is acting on a particle of mass m. Newton’s Second Law for 

the particle is then given by: 

~F = m~a 

We can define a point of rotation such that ~r is the position of the particle relative to that 
point. We can take the cross-product of ~r with both sides of the equation in Newton’s 
Second Law: 

~r × F~ = m~r × ~a 

~The left hand-side of the equation is called “the torque of F relative to the point of rotation”, 
and is usually denoted by ~̋: 

~ ~̋ = ~r × F (11.5) 
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The right-hand side of the equation is related to the angular acceleration vector, ~ , about 
that point of rotation: 

2 m~r × ~a = mr ~ 

Putting this altogether, we get: 

2 ~̋ = mr ~ 

If more than one force is exerted on the particle, it is easy to show that the net torque 
from the net force on the particle is equal to the sum of the torques on the particle: 

~ ~ ~ ~ ~r × (F1 + F2 + F3 + . . . ) = (~r × F1 + ~r × F~ 2 + ~r × F~ 3 + . . . )X X 
~ ˝ net∴ ~r × F = ~̋ = ~ 

We can write “Newton’s Second Law for the rotational dynamics of a particle”: 
X 

˝ net 2 ~̋ = ~ = mr ~ (11.6) 

This equation provides us an alternate formulation to Newton’s Second Law that is useful 
for describing the motion of a particle that is rotating. The left-hand side of the equation 
corresponds to the “causes of motion” (much like the sum of the forces in Newton’s Second 
Law), and the right-hand side of the equation to the inertia and the kinematics. A few 
things to note when comparing to Newton’s Second Law: 

1. The rotational quantities, torque and angular acceleration, are only defined with 
respect to a point or axis of rotation (as this determines the vector ~r). If one 
chooses a di� erent point of rotation, then the torque and angular acceleration will be 
di�erent. 

2. The angular acceleration of a particle is proportional to the net torque exerted on 
it, much like the linear acceleration is proportional to the net force exerted on the 
particle. 

3. Torque about a centre of rotation can be thought of as the equivalent of a force that 
causes things rotate about an axis that goes through the point of rotation and that is 
parallel to the torque/angular acceleration vectors. 

4. Instead of mass, it is mass times r2 that plays the role of inertia and determines how 
large of an angular acceleration a particle will experience for a given net torque. 

Example 11-1 

�

�

�

�
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Figure 11.7: A toy rocket accelerating around a circle of radius R, as seen from above. 

A toy rocket is attached to a string on a horizontal frictionless table, as shown in Figure 
11.7. The rocket has a mass m and produces a constant force of thrust with a magni-
tude F that accelerates the rocket along a circle of radius R (the length of the string). 
If the rocket starts at rest, what distance along the circumference of the circle will the 
rocket have travelled after a time, t? 

Solution 

We can model the rocket as a point particle of mass m with the following forces exerted 
on it: 

~1. F , the thrust of the rocket, always acting tangent to the circle. 
~2. T , the force of tension in the string, always acting towards the centre of the circle. 
~3. Fg, the rocket’s weight, acting into the page, with magnitude mg. 
~4. N , a normal force exerted by the table, out of the page, with magnitude mg. 

Because the normal force and the weight are equal in magnitude and opposite in direc-
tion, the net force will be the sum of the force of thrust and the force of tension, which 
are always perpendicular to each other. Thinking about this with Newton’s Second 
Law, we could model the force of thrust as increasing the speed of the particle, while 
the force of tension keeps the rocket moving in a circle (it can do no work to increase 
the speed, since it is always perpendicular to the motion). 

We can also think about this in terms of torques and angular acceleration about the 
centre of the circle. The thrust will result in a net torque about the centre of rotation, 
which will lead to the rocket having an angular acceleration. By determining the angular 
acceleration, we can then model the displacement at some time, t, using kinematics. 
The force of tension will create no torque about the centre of the circle because the force 
of tension is always co-linear with the position vector, ~r (the cross-product of co-linear 
vectors is always zero). 

We introduce a coordinate system whose origin coincides with the centre of the circle, 
as shown in Figure 11.8, so that ~r corresponds to the position of the rocket relative 
to the origin. The force of thrust and the tension are also shown in the diagram. We 
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choose the direction of the x axis such that the rocket was located at the intersection 
of the x axis and the circle at time, t = 0. 

Figure 11.8: Coordinate system to describe the motion of the rocket. 

The net torque on the rocket about the point of rotation is given by the cross-product 
~between the thrust force, F , and the position vector, ~r: 

˝net ~ = ~r × F~ 

~and will point in the positive z direction (as given by the right hand rule). ~r and F are 
perpendicular, so the magnitude of the net torque is given by: 

˝net = rF sin(90�) = RF 

where R is the magnitude of ~r. The net torque vector is thus: 

˝net ~ = RF ẑ  

Applying the rotational version of Newton’s Second Law allows us to determine the 
angular acceleration: 

˝net 2 ~ = mr ~ 
RF ẑ = mR2 ~ 

∴ ~ = F ẑ  
mR 

The angular acceleration vector points in the positive z direction (as does the net 
torque), and indicates that the rocket is accelerating in the counter-clockwise direction 
about the z axis. 

After a period of time t, the rocket will have covered an angular displacement, ��, 
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given by: 

1 2�� = �(t) − �0 = !0t + t2 
1 F 2= t2 mR 

The linear displacement, �s, that corresponds to this angular displacement is: 

1 F 2�s = R�� = t2 m 

Discussion: The formula that we found for the total linear displacement is the same 
that we would have found if the particle were moving in a straight line with a net force 
F applied to it (as the particle would have a constant acceleration given by F/m). 

11.3 Torque 
The torque associated with a force is a mathematical tool to describe how much a particular 
force will cause a particle (or solid) object to rotate about a given point or a given axis of 
rotation. A torque is only defined relative to an axis or point of rotation. It 
never makes sense to say “the torque is ...”, and one should always say “the torque about 
this axis/point of rotation is ... ”. Angular quantities (torque, angular velocity, angular 
displacement, etc) are only ever defined relative to a specific axis or point of rotation. 

~Mathematically, the torque vector from a force, F , exerted at a position, ~r, relative to the 
axis or point of rotation is defined as: 

~ ~̋ = ~r × F 

Note that the torque from a given force increases if that force is further from the axis of 
rotation (if ~r has a bigger magnitude). 

Consider the solid disk of radius, r, depicted in Figure 11.9. The disk can rotate about an 
axis that passes through the centre of the disk and that is perpendicular to the plane of the 

~disk. A force, F , is exerted on the edge of the disk as shown. 
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Figure 11.9: A force exerted on the perimeter of a disk that can rotate about an axis that is 
perpendicular to the disk and that passes through its centre. We can determine the resulting torque 
by considering either the component of ~F that is perpendicular to ~r (left panel) or the component 
of ~r that is perpendicular to ~F (right panel). The torque vector, ~̋, is out of the page, as illustrated 
in the centre. 

Intuitively, that force will cause the disk to rotate in the counter-clockwise direction. The 
~torque from the force F about the axis as rotation is given by: 

~ ~̋ = ~r × F 

where the vector ~r is perpendicular to the axis of rotation and goes from the axis of rotation 
~to the point where F is exerted. The direction of the torque vector is out of the page (right 

hand rule, see Figure 11.9), and will thus lead to an angular acceleration that is also out of 
the page, which corresponds to the counter-clockwise direction, as anticipated. 

We can break up the force into components that are parallel (Fk) and perpendicular (F?) 
to the vector ~r, as shown on the left panel of Figure 11.9. Only the component of the force 
that is perpendicular to ~r will contribute to rotating the disk. Imagine that the force is 
from a string that you have attached to the perimeter of the disk; if you pull on the string 
such that the force is parallel to ~r, the disk would not rotate. The magnitude of the torque 
is given by: 

˝ = rF sin ° (11.7) 

~where ° is the angle between ~r and F , as shown in Figure 11.9. F sin ° is precisely the 
~component of F that is perpendicular to ~r, so we could also write the magnitude of the 

torque as: 

˝ = rF? 
which highlights that only the component of the force that is perpendicular to ~r contributes 

~to the torque. Instead of combining the sin ° with F to obtain F?, the component of F 
perpendicular to ~r, we can instead combine the sin ° with r in Equation 11.7 to obtain r?, 

~the component of ~r that is perpendicular to F . This is illustrated in the right panel of 
Figure 11.9. The magnitude of the torque is thus also given by: 

˝ = r?F 

The quantity r? is called the “lever arm” of the force about a specific axis of rotation. 

Emma’s Thoughts 

Remembering how to maximize the torque about an axis using a pencil 

We already know that the greater the force that you apply, the more an object will 
rotate. Here is an easy way to quickly remind yourself of the two other factors that 
play a role in whether or not an object will rotate: 



11.4. ROTATION ABOUT AN AXIS VERSUS ROTATION ABOUT A POINT 343 

Torque about an axis increases if the force is applied further from the axis 
of rotation. 

First, pinch the centre of your pencil. Try to make the pencil rotate by pushing right 
next to where you are pinching. Try making the pencil rotate again, by pushing near 
the eraser. You should notice that it is much easier to make the pencil rotate by pushing 
near the eraser, as it is further from the axis of rotation (the pinch). 

Torque about an axis is maximized if the force is applied perpendicular to 
the object. 

Next, you should try pushing on the top of the eraser of your pencil, parallel to the 
pencil. The pencil will not rotate. Now, try pushing on the eraser, but perpendicular 
to the pencil. In this case, the pencil will rotate. 

If you are ever having trouble remembering the factors involved in maximizing torque 
about an axis, just grab your pencil case and do this quick exercise. 

Checkpoint 11-5 

Why is the handle of a door placed on the side of the door that is opposite to the 
hinges? 

A) Because it increases the lever arm of a force used to rotate the door about the 
handle. 

B) Because it increases the perpendicular component of force used to rotate the door 
about the hinges. 

C) Because it increases the lever arm of a force used to rotate the door about the 
hinges. 

D) Because it would be inconvenient if the handle were next to the hinges. 

11.4 Rotation about an axis versus rotation about a 
point 

When defining angular quantities (torque, angular acceleration, etc.), it is important to 
identify whether these are defined relative to an axis or to a point of rotation. This, in turn, 
determines the vector ~r that is involved in the definition of the angular quantities. 

Consider a disk of radius r with a force, ~F exerted on its perimeter, as illustrated in Figure 
11.10. The disk can only rotate about an axis that is perpendicular to the disk and that goes 
through the centre of the disk, like a wheel mounted on an axle. The force has a component, 
~Fplane, that lies in the plane perpendicular to the axis of rotation, and a component, ~Faxis, 
that is parallel to axis of rotation. 
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Figure 11.10: A force exerted on disk that can only rotate about an axis through its centre and 
perpendicular to its plane. Only the component of 

plane, will contribute to the torque about the axis of rotation. ~F 
that is in the plane perpendicular to the axis ~F 

of rotation, 

The vector ~r is always defined to be perpendicular to the axis of rotation and to go 
from the axis of rotation to the point where the force 

˝ = ~ 

~F is exerted, as illustrated. 
The torque obtained by taking the cross product: 

~F×~r 

will be perpendicular to both ~r and ~F , and will thus not be parallel to the axis of rotation. 
Only the component of the torque that is parallel to the axis of rotation will 
contribute to rotating the disk about the axis. Only the component of the force that lies 
in the plane perpendicular to the axis of rotation, ~Fplane, will contribute to the component 
of the torque about that axis of rotation. Thus, when we need to determine the torque 
about an axis of rotation, we can consider vectors ~r and ~F that lie in the plane 
perpendicular to the axis of rotation. The torque of relative to the axis of rotation ~F 

~ 

is thus: 

˝axis = ~r × ~Fplane 

Furthermore, only the component of ~Fplane that is perpendicular to ~r will contribute to that 
torque, as we saw in the previous section. 

In general, solid objects such as a disk can only rotate about an axis. In that case, one 
can consider only the components of forces that lie in the plane perpendicular to the axis 
of rotation in order to calculate the components of the torques about that axis that are 
parallel to that axis. 

A point particle may be able to rotate about any axis that goes through a point of rotation. 
The net torque vector on the particle about that point will indicate the direction of the axis 
about which the particle would rotate. This is illustrated in the left panel of Figure 11.11. 

Instead, if the particle were constrained to rotate about the z axis (e.g. if the particle is 
on a track), then we would use the component of the torque vector that is parallel to the 
z axis to describe its motion, as illustrated in the right panel. The z component of the 
torque could be determined by using only the components of the forces that lie in the plane 
perpendicular to the axis, and defining the vector ~r from the axis to the particle rather than 
from the point of rotation to the particle. 
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Figure 11.11: Left panel: a particle rotating about a circle centred at the origin with an axis 
determined from the net torque vector. Right panel: a particle that is constrained to rotate about 
the z axis. 

Example 11-2 

~A force given by F = Fxx̂ + Fyŷ + Fz ẑ  is exerted at a position ~r = rxx̂ + ryŷ + rz ẑ. 
Calculate the torque about the z axis as well as the torque about the origin. 

Solution 

To calculate the torque about the z axis, we need take the cross-product between the 
~components of the vectors ~r and F that lie in the x − y plane, since that is the plane 

perpendicular to the axis of rotation (the z axis). This gives: 

~̋z = (rxx̂+ ryŷ) × (Fxx̂+ Fyŷ) = (rxFy − ryFy)ẑ 

If instead we want to calculate the torque about the origin, we take the cross-product 
between the two vectors: 

~̋ = (rxx̂+ ryŷ + rz ẑ) × (Fxx̂+ Fyŷ + Fz ẑ) 
= (ryFz − rzFy)x̂ + (rzFx − rxFz)ŷ + (rxFy − ryFy)ẑ 

If a particle were located at the given position, the force would cause the particle to 
(instantaneously) rotate about an axis that goes through the origin and is parallel to 
the torque vector. 

Discussion: This example highlights the di�erence between calculating the torque 
about an axis of rotation and determining the torque about a point. When calculating 
the torque about an axis that goes through the origin, we only consider the components 

~of the vectors ~r and F that are in the plane perpendicular to the axis of rotation. This 
would correspond to a situation in which the particle is constrained to move in a plane 
that is perpendicular to the axis of rotation. Instead, if we calculate the torque about 
the origin, then the torque vector determines the axis of rotation through the origin 
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about which the particle would rotate. In this case, since the axis of rotation is the z 
axis, and the point of rotation was the origin, the torque about the z axis was simply 
the z component of the torque calculated about the origin. 

11.5 Rotational dynamics for a solid object 
We now consider the rotational dynamics for a solid object about a specific axis of rotation. 
Just as we did in Chapter 10, we model a solid object as a system made of many particles 
of mass mi. Because all of the points in a solid must move in unison, they all rotate about 
an axis of rotation instead of a point. We describe the position of each particle i by 
a vector ~ri that is perpendicular to the axis of rotation and goes from the axis to 
the corresponding particle, as shown in Figure 11.12. 

Figure 11.12: Two point particles that are part of a large solid object and their position vectors 
relative to an axis of rotation. 

We wish to model the motion of the object as it rotates about a specific axis. Thus, when 
considering the net torque on any particle i, we only consider the component of the particle’s 
net torque that is parallel to the axis of rotation (that component of torque that comes from 
forces that are in the plane perpendicular to the rotation axis). 

We can write the rotational version of Newton’s Second Law for particle, i, with mass mi, 
and position vector ~ri relative to the rotation axis: 

X 
˝ net 2 ~̋ik = ~ i = miri ~ i 

k 

˝ netwhere ~̋ik is the k-th torque on particle i. ~ i is the net torque on the particle about the 
axis of rotation and ~ i is the particle’s angular acceleration about that axis. 

We can divide the torques exerted on a particle into internal and external torques. Internal 
torques are those exerted by another particle in the system, whereas external torques are 
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exerted by something external to the system. If particle 1 exerts a torque ~̋ on particle 2, 
particle 2 will exert an equal and opposite torque, −~̋ on particle 1. 

Indeed, consider the two particles that exert an equal and opposite force (Newton’s Third 
~Law), F , on each other, and an arbitrary point/axis of rotation, as illustrated in Figure 

11.13. The torque on particle 1 from the force exerted by particle 2 will have the same 
magnitude as the torque on particle 2 from the force by particle 1. This is because both 
forces have the same magnitude and they are co-linear, which results in them having the 
same lever arm. The torque vector from each force will be in opposite directions, because 
the forces are in opposite direction. Newton’s Third Law thus also holds for torques. 

Figure 11.13: Two particles will exert equal and opposite torques on each other due to Newton’s 
Third Law; the forces exerted by each particle on the other are co-linear and will thus have the 
same lever arm relative to any point/axis of rotation. 

We can sum together the equations for each particle i: 

˝ net ˝ net ˝ net 2 2 2 ~ + ~ + ~ + . . . = m1r ~ 1 + m2r ~ 2 + m3r ~ 3 + . . .1 2 3 1 2 3X ̋
 net 

X 2 ~ = miri i ~ i 
i i 

where the sum over all of the torques exerted on each particle will be equal to the net 
˝ intexternal torque exerted on all of the particles, since the sum of the internal torques, ~ i , 

will be zero: X X X X 
˝ net ˝ int ˝ ext ˝ ext ˝ ext ~ = ~ + ~ = ~ = ~ i i i i 

i i i i 

˝ extwhere ~ is the net external torque on the system. 

All of the particles are part of the same rigid body, and cannot move relative to each other. 
Furthermore, they must all move around circles that are centred about the axis of rotation 
and in a plane perpendicular to that axis. They must thus all have the same angular 
acceleration1, ~ i = ~ 1 = ~ 2 = · · · = ~ . We can thus factor the angular acceleration, ~ , out 
of the sum. 

We can thus write Newton’s Second Law for rotational dynamics of a solid object as: X ̋
 net 

X 2 ~ = miri i ~ i 
i i ! 
˝ ext 

X 2∴ ~ = miri ~ 
i 

1They will have di�erent linear accelerations, but the angular acceleration (and angular velocity) will be 
the same for all particles if they are moving in unison. 



�

348 CHAPTER 11. ROTATIONAL DYNAMICS 

The term in parentheses describes how the various masses are distributed relative to the 
axis of rotation. The term in parenthesis is called the moment of inertia of the object, 
and usually denoted with the letter, I: X 2I = miri (11.8) 

i 

The moment of inertia is a property of the object relative to a specific axis of rotation. 
Re-writing Newton’s Second Law for the rotational dynamics of solid objects using the 
moment of inertia: 

˝ ext ~ = I~ (11.9) 

The net torque exerted on an object in the direction of the axis of rotation is thus equal 
to its moment of inertia about that axis multiplied by its angular acceleration about that 
axis. In other words, the moment of inertia describes how the object will resist rotational 
motion given a net torque. An object with a smaller moment of inertia will have a larger 
angular acceleration for a given torque. Again, this is analogous to the linear case, where 
the acceleration of an object given a net force is determined by its inertial mass. 

Example 11-3 

Figure 11.14: A dumbbell made of two small identical masses separated by a distance L. 

Two small point masses, m, are connected by a mass-less rod of length L to form a 
dumbbell, as illustrated in Figure 11.14. A net force of magnitude F is exerted on each 
mass, in opposite directions, as illustrated in the Figure. 

a) What is the linear acceleration of the centre of mass of the dumbbell? 
b) What is the angular acceleration of the dumbbell relative to an axis that goes 

through its centre of mass and is perpendicular to the page? 
c) What is the angular acceleration of the dumbbell relative to an axis that goes 

through one of the masses and is perpendicular to the page? 

Solution 

We model the dumbbell as a rigid body made of two point masses held at a fixed 
distance. 

a) The linear acceleration of the centre of mass must be zero, because the net force 
on the dumbbell is zero. However, just because the centre of mass does not move 
does not mean that all parts of the dumbbell are immobile. 

b) First, we calculate the angular acceleration relative to an axis that is perpendicular 
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the page and goes through the centre of mass. The centre of mass is located 
midway between the two masses, as illustrated in Figure 11.15. We also define a 
coordinate system as shown, such that the z axis is out of the page. 

Figure 11.15: The dumbbell rotating about the centre of mass. 

The vector from the axis of rotation to each mass will have the same magnitude, 
r, but di�erent directions. The net external torque on the dumbbell relative to 

˝ extthe axis that goes through the centre of mass, ~ , which is equal to the sum of 
the torques from each force: 

˝ ext ~ ~ ~ = ~r × F + (−~r) × (−F ) 
= 2(~r × F~ ) = 2(rx̂ × F ŷ) = 2rF (x̂ × ŷ) = 2rF ẑ  
= LF ẑ  

where we used the fact that 2r = L. The net torque is thus non zero and in the 
positive z direction; the dumbbell will have an angular acceleration that is parallel 
to the net torque, and thus will accelerate in the counter-clockwise direction. 
The moment of inertia of the dumbbell relative to the axis through the centre of 
mass is given by: 

X 2 2 2I = mir = mr 2 + mr = 2mr = 2
1 
mL2 

i 
i 

Using Newton’s Second Law for rotational dynamics, we find the angular acceler-
ation to be: 

˝ ext ~ = I~ 

LF ẑ = 2
1 
mL2 ~ 

2F
∴ ~ = ẑ  

mL 

Because the centre of mass is fixed (the sum of the forces is zero), the two ends 
of the dumbbell will rotate about an axis that goes through the centre of mass. 
This is a feature of all situations in which the net force on an object is zero and 
the net torque about an axis that goes through the centre of mass is non-zero. 
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c) Let us now calculate the angular acceleration of the dumbbell about an axis that 
goes through one of the masses, as illustrated in Figure 11.16. 

Figure 11.16: The dumbbell rotating about one of its ends. 

We first calculate the net torque on the dumbbell. The vector that goes from the 
axis of rotation to the force exerted on the mass that coincides with the rotation 
axis is zero. Thus, only the force exerted on the mass that is not at the rotation 
axis contributes to the net torque: 

˝ ext ~ = ~r × F~ = LF ẑ  

The moment of inertia of the dumbbell about this axis is: X 
I = miri 

2 = m(0)2 + m(r 2) = mL2 

i 

which is larger than it was about the centre of mass. Again, the angular acceler-
ation is found using Newton’s Second Law for rotational dynamics: 

˝ ext ~ = I~ 
LF ẑ = mL2 ~ 

∴ ~ = F ẑ  
mL 

We find that the angular acceleration is smaller about an axis that goes through 
one of the mass than it is about an axis through the centre of mass. Because 
the centre of mass of the dumbbell is fixed, we can only think of the dumbbell 
as instantaneously rotating about one of its ends; that is, the motion of the 
dumbbell will not be such that one mass rotates about the other; this is only true 
instantaneously.

Discussion: This simple example illustrates several key features about rotational dy-
namics: 

• If the sum of the forces on an object is zero, it does not mean that the entire 
object is stationary; it only implies that the centre of mass is stationary (or 
rather, moving with a constant velocity, but we can always choose to model the 
system in a frame of reference where the centre of mass is stationary). 
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• If the sum of the forces on an object is zero, and the sum of the external torques 
is non-zero, the object will rotate about an axis that goes through the centre of 
mass. That is, all points on the object will move along circles that are centred on 
an axis that goes through the centre of mass. 
• We can model the rotating object about any axis that we choose. In general, the 

net external torque and the moment of inertia will depend on the choice of axis, 
as will the resulting angular acceleration. 
• When determining the motion of the centre of mass, we can draw a free-body 

diagram, and the location of where the forces are exerted do not matter. 
• When determining how the object rotates, we cannot use a free-body diagram, 

because it matters where the forces are applied (as the torque from a given force 
depends on the location where the force is applied relative to the axis of rotation). 

11.6 Moment of inertia 
In order to model how an object rotates about an axis, we use Newton’s Second Law for 
rotational dynamics: 

˝ ext ~ = I~ 

˝ extwhere ~ is the net external torque exerted on the object about the axis of rotation, ~ is 
the angular acceleration of the object, and I is the moment of inertia of the object (about 
the axis). If we consider the object as being made of many particles of mass mi each located 
at a position ~ri relative to the axis of rotation, the moment of inertia is defined as: X 2I = miri 

i 

Consider, for example, the moment of inertia of a uniform rod of mass M and length L that 
is rotated about an axis perpendicular to the rod that pass through one of the ends of the 
rod, as depicted in Figure 11.17. 

Figure 11.17: A rod of length L and mass M being rotated about an axis perpendicular to the rod 
that goes through one of its ends. 

We introduce the linear mass density of the rod, �, as the mass per unit length: 

M 
� = 

L 
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We model the rod as being made of many small mass elements of mass �m, of length �r, 
at a location ri, as illustrated in Figure 11.17. Using the linear mass density, the mass 
element, �m, has a mass of: 

�m = ��r 
The rod is made of many such mass elements, and the moment of inertia of the rod is thus 
given by: 

I = 
X 

�mri 2 = 
X 

��rri 2 

i i 

If we take the limit in which the length of the mass element is infinitesimally small (�r ! dr) 
the sum can be written as an integral over the dimension of the rod: Z L � �1 1 M 

L3I = �r2dr = 3�L
3 = i

0 3 L 

= 3
1 
ML2 

where we re-expressed the linear mass density in terms of the mass and length of the rod. 
In general, we can write the moment of inertia of a continuous object as: Z 

I = r 2dm 

where dm is a small mass element that makes up the object, r is the distance from that 
mass element to the axis of rotation, and the integral is over the dimension of the object. 
As we did above, we would usually set up this integral so that dm is expressed in terms of 
r so that we can take an integral over r. 

Example 11-4 

Calculate the moment of inertia of a uniform thin ring of mass M and radius R, rotated 
about an axis that goes through its centre and is perpendicular to the disk. 

Solution 

We take a small mass element dm of the ring, as shown in Figure 11.18. 
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Figure 11.18: A small mass element on a ring. 

The moment of inertia is given by: Z 
I = dmr2 

In this case, each mass element around the ring will be the same distance away from 
the axis of rotation. The value r2 in the integral is a constant over the whole ring, and 
so can be taken out of the integral: Z Z 

I = dmr2 = R2 dm 

where we used the fact that the ring has a radius R, so the distance r of each mass 
element to the axis of rotation is R. The integral: Z 

dm 

just means “sum all of the mass elements, dm”, and is thus equal to M , the total mass 
of the ring. The moment of inertia of the ring is thus: Z 

I = R2 dm = MR2 

11.6.1 The parallel axis theorem 
The moment of inertia of a solid object can be diÿcult to calculate, especially if the object 
is not symmetric. The parallel axis theorem allows us to determine the moment of inertia 
of an object about an axis, if we already know the moment of inertia of the object about 
an axis that is parallel and goes through the centre of mass of the object. 

Consider an object for which we know the moment of inertia, ICM , about an axis that goes 
through the object’s centre of mass. We define a coordinate system such that the origin is 
located at the centre of mass, and the z axis is parallel to the axis about which we know 
the moment of inertia, as illustrated in Figure 11.19. 
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Figure 11.19: An object with a coordinate system whose origin is at the object’s centre of mass, 
and for which we know the moment of inertia about the z axis. We wish to determine the object’s 
moment of inertia through a second axis, parallel to the z axis, but located a distance h away from 
the centre of mass. 

We wish to determine the moment of inertia for the object for an axis that is parallel to the 
z axis, but goes through a point with coordinates (x0, y0) located a distance h away from 
the centre of mass. The moment of inertia about an axis parallel to the z axis and that 
goes through that point, Ih is given by: X 2= mirIh i 

i 

where mi is a mass element of the object located at a distance ri from the axis of rotation. 
If the mass element is located at a position (xi, yi) relative to the centre of mass, we can 
write the distance ri in terms of the position of the mass element, and of the position of the 
axis of rotation: 

2 2 2 2 2 ri = (xi − x0)2 + (yi − y0)2 = xi − 2xix0 + x0 + yi − 2yiy0 + y0 

Note that: 

x 2 2 = h2 
0 + y0 

The moment of inertia, Ih, can thus be written as: X X2 2 2Ih = miri = (mi(xi + yi ) − 2x0mixi − 2y0miyi + mih
2) 

i iX X X X 
= mi(x 2 

i + yi 2) + h2 mi − 2x0 mixi − 2y0 miyi 
i i i i 

where we broke the sum up into several sums, and factored constant terms (h, x0, y0) out of 
the sums, since these constants do not depend on which mass element we are considering. 
The first term is the moment of inertia about the centre of mass, since x2 

i +yi 2 is the distance 
to the centre of mass. The second term is h2 times the total mass of the object, since the 
sum of all the mi is just the mass, M , of the object. Now consider the term: X 

−2x0 mixi 
i 

The sum, P mixi is the numerator in the definition of the x coordinate of the centre of 
mass! The sum is thus zero, because we choose the origin to be located at the centre of 
mass. The last two terms in the sum are thus identically zero, because they correspond to 
the x and y coordinates of the centre of mass! 

We can thus write the parallel axis theorem: 

(11.10)Ih = ICM + Mh2 

where ICM is the moment of inertia of an object of mass M about an axis that goes through 
the centre of mass and, Ih, is the moment of inertia about a second axis that is parallel to 
the first and a distance h away. 
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Example 11-5 

In the previous section, we calculated the moment of inertia of a rod of length L and 
mass M through an axis that is perpendicular to the rod and through one of its ends, 
and found that it was given by: 

I = 3
1 
ML2 

What is the moment of inertia of the rod about an axis that is perpendicular to the 
rod and goes through its centre of mass? 

Solution 

In this case, we know the moment of inertia through an axis that does not go through 
the centre of mass. The centre of mass is located a distance h = L/2 away from the 
point about which we know the moment of inertia, Ih. 

Using the parallel axis theorem, we can find the moment of inertia through the centre 
of mass: 

ICM = Ih − Mh2 � �21 L 1 = 3ML2 − M = 2 12ML2 

Discussion: We find that the moment of inertia about the centre of mass is smaller 
than the moment of inertia about the end of the rod. This makes sense because when 
rotating the rod about its end, more of its mass is further away from the axis of rotation, 
which results in a larger moment of inertia. 

11.7 Equilibrium 
In this section, we consider the conditions under which an object is in static or dynamic 
equilibrium. An object is in equilibrium if it does not rotate when viewed in a frame of 
reference where the object’s centre of mass is stationary (or moving at constant velocity). 

11.7.1 Static equilibrium 
An object is in static equilibrium, if both the sum of the external forces exerted on 
the object and the sum of the external torques (about any axis) are zero. If the 
object is in static equilibrium the centre of mass will have no acceleration and the object 
will have no angular acceleration. In the centre of mass frame of reference, the object is 
immobile. 

Example 11-6 
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Figure 11.20: Two masses on a balance. 

Two masses, m1 and m2 are placed on a balance as shown in Figure 11.20. The balance 
is made of a plank of mass M and length L that is placed on a fulcrum that is a distance 
d from one of the edges of the plank. If mass m1 is placed at a distance r1 from the 
fulcrum, how far should mass m2 be placed on the other side of the plank in order for 
the balance to be in equilibrium? 

Solution 

We can consider the plank as the object that is in static equilibrium. Thus, the sum 
of the forces and the sum of the torques on the plank must be zero. We first start by 
identifying the forces that are exerted on the plank; these are: 

~1. Fg, the weight of the plank, exerted at the centre of mass of the plank. 
~2. F1, a force equal to the weight of mass m1, exerted at the location of m1. 
~3. F2, a force equal to the weight of mass m2, exerted at the location of m2. 
~4. N , a normal force exerted by the fulcrum. 

The forces are illustrated in Figure 11.21 along with our choice of coordinate system. 
The z axis is not illustrated, and is directed out of the page. 

Figure 11.21: Forces exerted on the plank. 

All of the forces are in the y direction, so we only write the y component of Newton’s 
Second Law (with zero acceleration), which allows us to determine the magnitude of 
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the normal force: X 
Fy = N − Mg − m1g − m2g = 0 

∴ N = (M + m1 + m2)g 

Because the plank is in static equilibrium, the sum of the torques must also be zero. 
We can choose the axis of rotation about which to calculate the torques. We choose an 
axis that is parallel to the z axis (out of the page) and goes through the fulcrum. In 
general, since we can choose the axis of rotation, it is usually convenient to choose an 
axis that goes through a point where at least one force is being exerted, because the 
torque from that force will be zero (its lever arm will be zero). Furthermore, since all 
of the forces are in the xy plane, the net torque on the plank will be in the z direction, 
so it makes sense to choose an axis in that direction. 

The torques from the weight of the plank and from the force exerted by mass m2 will 
be in the negative z direction, and the torque from the force exerted by mass m1 will 
be in the positive z direction. The normal force will not result in any torque, because 
it is exerted at the axis of rotation and has a lever arm of zero. 

We define ~r1 as the vector from the fulcrum to mass m1. The torque, ~̋1, from the force 
exerted by mass m1 is given by: 

~ ~̋1 = ~r1 × F1 = (−r1x̂) × (−F1ŷ) 
= r1F1(x̂ × ŷ) = r1F1ẑ = r1m1gẑ  

~where we used the fact that the magnitude of F1 is m1g. Similarly, the torques from 
the force exerted by m2, ~̋2, and by the weight, ~̋g, are given by: 

~ ~̋2 = ~r2 × F2 = −m2gr2ẑ  � �
L ~ ~̋g = ~r × Fg = −rMgẑ = − 2 − d Mgẑ  

where L 2 − d is the distance between the fulcrum and where the weight of the plank is 
exerted. We require that the z component of the net torque be equal to zero (since all 
of the torques are in the z direction), which allows us to determine r2: X ̋

z = ˝1z + ̋ 2z + ̋ gz = 0 � �
L 

m1gr1 − m2gr2 − 2 − d Mg = 0 � � � �1 L
∴ r2 = m1r1 − 2 − d M 

m2 

Note that because we chose to calculate the torques about a point that goes through 
the fulcrum, in this case, we did not need to determine the value of the normal force 
which we obtained from Newton’s Second Law. 
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Discussion: This example highlights the fact that when an object is in static equi-
librium, we can choose a convenient axis about which to calculate the torques. In this 
case, by calculating the torques about the fulcrum, we did not need to consider the 
torque from the normal force. If we had chosen a di�erent point, then the torque from 
the normal force would have been non-zero, and we would have used Newton’s Second 
Law to express the normal force in terms of the other quantities. Physically, if we had 
placed the fulcrum at the centre of the plank d = L/2, then we would have found that 
m1r1 = m2r2, the well known equation for a balance. This equation, of course, comes 
from requiring that the torques from the forces exerted by m1 and m2 are equal in 
magnitude and opposite in direction. 

11.7.2 Dynamic equilibrium 

Review Topics 

Before proceeding, you may wish to review Section 5.6 on inertial forces. 

When an object is in dynamic equilibrium, its centre of mass is accelerating, but the object 
is not rotating when viewed from its centre of mass frame of reference. Thus, the sum of 
the external forces exerted on the object is not zero, while the net external torque exerted 
on the object is zero, in the frame of reference of the centre of mass. 

Consider, for example, a speed skater going around a circular track or radius R, and leaning 
into the centre making an angle � with the ice, as depicted in Figure 11.22. The skater’s 
centre of mass is accelerating, because she is going around a circle, so the net force on the 
skater is not zero. However, in the reference frame of the skater, the skater is not rotating; 
she is thus in dynamic equilibrium. 

Figure 11.22: A speed skater leaning in as she goes around a circle. 

The forces on the skater are: 

~1. Fg, her weight, exerted at her centre of mass with magnitude, Mg. 
~2. N , a normal force, exerted by the ice upwards on her skates. 
~3. fs, a force of static friction, exerted towards the centre of the circle, by the ice on her 
skates. 

The forces are illustrated in Figure 11.23 along with our choice of coordinate system. 
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Figure 11.23: Forces on the speed skater from Figure 11.22. 

The sum of the forces exerted on the skater must be towards the centre of the circle and 
equal to the mass of the skater times her centripetal acceleration (which is the acceleration 
of her centre of mass, ~aCM ). The x and y components of Newton’s Second Law are thus 
given by: 

2X v 
Fx = −fs = −maCM − m 

RX 
Fy = N − mg = 0 

All of the forces exerted on the skater are in the xy plane, so we consider torques about an 
axis that is co-linear with the z axis. Consider the torques about an axis through the point 
of contact between the skates and the ice; there is a net torque in the counter-clockwise 
direction due to the weight of the skater (the weight is the only force that can result in a 
torque about the point of contact with the ice). We expect that the skater would topple 
over, however, this must not be a correct model for the skater, since we know that it is 
possible for her to lean in without falling. 

Consider, instead, the sum of the torques about an axis through her centre of mass. If the 
skater has a length L and the centre of mass is in the middle of the skater, the sum of the 
torques about the centre of mass is given by the torques from the normal forces and the 
force of friction: 

X L L 
˝ = ˝Nz + ̋ fsz = 2 cos �N − sin �fs2 

About the centre of mass, the torques must be zero for the skater not to rotate, and this 
would give a relation between the force of static friction and the normal force. 

Why do we get an incorrect model when we take the torques about the point of contact 
between the ice and the skater? In order to determine if the skater is rotating, we need to 
be in the same reference frame as the skater. However, the frame of reference of the skater 
is not an inertial frame of reference, since the skater is accelerating. We can still model the 
forces on the skater in the non-accelerating frame of reference, as long as we include the 
inertial force, −m~aCM , in that frame of reference. In the frame of reference of the skater, 
there is an additional inertial force, −m~aCM , in order for the sum of the forces to be zero 



360 CHAPTER 11. ROTATIONAL DYNAMICS 

(in the frame of reference of the skater, the sum of the forces must be zero since the skater 
is not accelerating in that frame of reference). The additional inertial force is exerted at the 
centre of mass, as illustrated in Figure 11.24. 

Figure 11.24: Forces on the speed skater from Figure 11.22 as seen in the accelerating frame of 
reference of the centre of mass. 

The reason that our model worked when taking the torques about the centre of mass is that 
the inertial force, exerted at the centre of mass, does not result in a torque (since it has a 
lever arm of zero). Our model was technically wrong, but if we take the torques about the 
centre of mass, then we do not need to worry about the inertial force. If we include the 
additional inertial force, then we can take the torques about any point, just as in the static 
equilibrium case. 
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11.8 Summary 
Key Takeaways 

We can describe the kinematics of rotational motion using vectors to indicate both an 
axis of rotation and the direction of rotation about that axis. If a particle with velocity 
vector, ~v, is rotating in an circle about an axis, then its angular velocity vector, !~ , 
relative to that axis is defined as: 

1 
~! = ~r × ~v2r 

where ~r is a vector from the axis of rotation to the particle. The particle rotates in a 
circle that lies in the plane defined by ~r and ~v, perpendicular to the axis of rotation. 
The direction of the angular velocity vector is co-linear with the axis of rotation and 
the direction of rotation is given by the right-hand rule for axial vectors. 

One can define the angular velocity of a particle relative to a point of rotation, even if 
the particle is not moving in a circle. In that case, the angular velocity corresponds to 
the angular velocity of the particle as if it were instantaneously moving about a circle. 

If a particle moving around a circle has a tangential acceleration, ~as, then its angular 
acceleration vector is defined as: 

1 
~ = ~r × ~as2r 

~The torque from a force, F , exerted at a position ~r, relative to an axis (or point) of 
rotation is defined as: 

~ ~̋ = ~r × F 

Torque is analogous to force in that it is used to model the causes of motion. Torques 
are only ever defined relative to an axis or point of rotation. The torque vector will 
be co-linear with the axis about which the object on which the force is exerted would 
rotate as a result of that force. 

The magnitude of the torque can be written using either the component of the force, 
F? perpendicular to the vector ~r, or the lever arm, r?, of the force relative to the axis 
of rotation: 

˝ = rF sin ° 
= rF? 
= r?F 

~where ° is the angle between the vectors ~r and F when these are placed “tail to tail”. 
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Using rotational/angular quantities, we can modify Newton’s Second Law to describe 
rotational dynamics about a given axis (or point) of rotation. For a point particle, this 
gives: 

˝ net 2 ~ = mr ~ 

˝ netwhere ~ is the net torque on the particle (the sum of the torques from each force 
exerted on the particle) about the axis, and ~ is the resulting angular acceleration about 
that axis. 

For an object (either continuous or made of point particles), the rotational version of 
Newton’s Second Law for rotation about a specific axis is given by: 

˝ net ~ = I~ 

where I is the moment of inertia of the object about that axis. 

The moment of inertia of an object about an axis of rotation is given by X 2I = miri 
i 

if the object is modelled as a system of point particles of mass mi each a distance ri 
from the axis of rotation. For a continuous object, the moment of inertia is given by: Z 

I = r 2dm 

where dm is a small mass element a distance r from the axis of rotation and the integral 
is over the dimension of the object. Generally, one can set up the integral by expressing 
dm in terms of r using the density of the object, and then integrating r over the 
dimension of the object. 

If the moment of inertia of an object of mass M about an axis that goes through the 
centre of mass is given by ICM , then the moment of inertia, Ih, of the object through 
an axis that is parallel and a distance h from the centre of mass is given by the parallel 
axis theorem: 

Ih = ICM + Mh2 Parallel axis theorem 

Objects are in equilibrium if they are not rotating when viewed in their centre of mass 
frame of reference. Thus, for an object to be in equilibrium, the sum of the torques on 
the object, in the centre of mass reference frame, must be zero. 

An object is in static equilibrium if the centre of mass is not accelerating, and thus the 
sum of the external forces on the object is zero. To model the torques on an object 
in static equilibrium, one can choose the axis about which to calculate the torques. A 
good choice is to choose an axis that is perpendicular to the plane in which the forces 
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on the object are exerted (if such a plane exists), and to choose the axis to go through 
a point where at least one force is exerted (so that torques exerted at that point are 
identically zero). 

An object is in dynamic equilibrium if the centre of mass is accelerating, but the object 
does not rotate when viewed in the frame of reference of its centre of mass. In dynamic 
equilibrium, if one models the torques exerted on the object about an axis that does 
not go through the centre of mass, then one must remember to include an inertial force 
exerted at the centre of mass. 
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Important Equations 

Angular quantities: Newton’s Second Law for a point par-
ticle about a given axis of rotation: 

˝ net 21 ~ = mr ~ 
~! = ~r × ~v2r Newton’s Second Law for rotation1 
~ = 2 ~r × ~a? about an axis: r 
~vs = ~! × ~r 

˝ net ~ = I~ 
~as = ~ × ~r 

Moment of Inertia: X 
I = miriTorque from a force: 

2 

Zi 
I = r 2dm 

~̋ = ~r × F~ 
˝ = rF sin ° 

Parallel Axis Theorem: = rF? 
= r?F Ih = ICM + Mh2 

Important Definitions 

Torque: A rotational equivalent of force which occurs when a force is applied at a 
distance r from the axis of rotation of a rigid body or particle. SI units: [J]. Common 
variable(s): ˝ . 

Moment of inertia: A property of matter which describes an object’s resistance to 
rotational motion. SI units: [kgm2]. Common variable(s): I. 

Linear mass density: The mass per unit length of an object. SI units: [kgm−1]. 
Common variable(s): �. 
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11.9 Thinking about the material 

Reflect and research 

1. Compare the steering wheels of a small car and a large transport truck. What 
are the di�erences, and why? 

2. List 2 kitchen utensils that use torque to “get the job done”. 

To try at home 

1. Take a large textbook and consider the 3 axes that are parallel to the sides of 
the textbook and go through the centre of mass. By rotating the book along the 
three axes successively, determine the axis about which the moment of inertia of 
the textbook is the largest. 

2. Confirm that the moment of inertia of a rod is smaller if the rod is rotated about 
its centre of mass than if it is rotated by one of its ends. 

To try in the lab 

1. Propose an experiment to measure the moment of inertia of an object and to 
compare that to a model prediction. 

2. Construct a comeback can, then model the forces which make the toy’s peculiar 
motion possible. 
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11.10 Sample problems and solutions 
11.10.1 Problems 
Problem 11-1: Calculate the moment of inertia of a uniform disk of mass M and radius 
R, rotated about an axis that goes through its centre and is perpendicular to the disk. 
(Solution) 

Problem 11-2: 

Figure 11.25: A sign is suspended on a horizontal bar of mass M and length L. 

A sign holder is built by attaching a bar of mass M and length L to a wall using a hinge 
that allows the bar to rotate in the vertical plane. The sign of mass m is attached to the 
end of the bar that is opposite fo the wall. The bar is held up by a rope that is attached 
to the wall on one end and to the bar on the other end, two thirds of the length of the bar 
from the wall, as illustrated in Figure 11.25. The rope makes an angle � with respect to the 
horizontal bar. Find the tension in the rope and the magnitude of the force exerted by the 
hinge onto the bar. (Solution) 
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11.10.2 Solutions 
Solution to problem 11-1: We need to split up the disk into mass elements, dm, that 
we can sum together to obtain the moment of inertia of the disk. We can choose a ring of 
radius r and radial thickness dr for the shape of our mass element, as depicted in Figure 
11.26. 

Figure 11.26: A mass element, dm, in the shape of a ring of radius r and radial thickness dr. 

We can define a surface mass density, ˙, equal to the mass per unit area of the disk: 

M 
˙ = 

ˇR2 

The mass of the ring shaped element is thus given by: 

dm = ˙2ˇrdr 

where 2ˇrdr is the area of the mass element. You can imagine unfolding the mass element 
into a rectangle of height dr and of length 2ˇr to obtain its area. Now that we have expressed 
the mass element in terms of r, we can proceed to calculate the moment of inertia of the 
disk. 

We know from Example 11-4, that the infinitesimal moment of inertia, dI, of a ring of radius 
r and infinitesimal mass, dm, about its axis of symmetry is given by: 

dI = dmr2 

The moment of inertia of the disk, is found by summing the moments of inertia of the 
infinitesimal rings: Z Z Z R Z R 

I = dI = dmr2 = ˙2ˇrdrr2 = 2ˇ˙ r 3dr 
0 0 

1 � 
M 

� 1 = 2ˇ˙4R
4 = 2ˇ 4R

4 
ˇR2 

= 2
1 
MR2 

where we removed the surface mass density by expressing it in term of the total mass and 
radius of the disk. 



368 CHAPTER 11. ROTATIONAL DYNAMICS 

Discussion: The moment of inertia of a disk of mass M and radius R is half of that of a 
ring of radius R and mass M . It is thus easier to rotate the disk than the ring. 

Solution to problem 11-2: The whole system does not move and so it is in static equi-
librium. In order to determine the forces exerted on the bar by the rope and the hinge, we 
model the bar as being in static equilibrium. The forces exerted on the bar are: 

~• Fg, the weight of the bar, with magnitude Mg, exerted at the bar’s centre of mass. 
~• Fm, a downwards forced exerted by the sign at the end of the bar, with magnitude 
mg. 
~• T , a force of tension exerted by the rope at a distance 2/3L from the wall. 
~• R, a force exerted by the hinge on the bar at the end next to the wall2. We expect that 
the force from the hinge will have both a horizontal component, Rx, and a vertical 
component, Ry, in order for the net force on the bar to be zero. 

The forces are illustrated in Figure 11.27 along with our choice of coordinate system (and 
the z axis, not shown, points out of the page). 

Figure 11.27: Forces on the bar that is holding the sign of mass m. 

We start by writing out the x and y components of Newton’s Second Law (with zero accel-
eration): X 

Fx = Rx − T cos � = 0 X 
Fy = Ry + T sin � − Mg − mg = 0 

2We chose the letter R for “Reaction”, as this is the force of reaction from the hinge as the bar pushes 
against the hinge. 
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We can choose the axis about which to calculate the torques. Since all of the forces are in 
the xy plane, we choose to calculate the torques about an axis parallel to the z axis that 

~goes through the hinge on the wall. The force from the hinge, R, will thus result in a torque 
of zero (since it has a lever arm of zero). The torque from each force about the hinge is 
given by: � �

L L ~ ~̋M = ~rM × Fg = x̂ × (−Mgŷ) = −Mg ẑ2 2� � 
~̋T = ~rT × T~ = L

x̂ × (−T cos �x̂+ T sin �ŷ) = T sin �Lẑ3 3 
~̋m = ~rm × F~ m = (Lx̂) × (−mgŷ) = −mgLẑ  

The sum of the torques in the z direction must be zero for static equilibrium, which allows 
us to determine the magnitude of the force of tension: X ̋

z = ˝Mz + ̋ Tz + ̋ mz = 0 
L L −Mg + T sin � 3 − mgL = 02 

−Mg 2
1 + T sin �3

1 − mg = 0 
3g � M 

� 
∴ T = m +sin � 2 

Using the x and y components of Newton’s Second Law, we can now use the tension to 
determine the x and y components of the force exerted by the hinge: 

3g � M 
� 

Rx = T cos � = m +tan � 2 � � � � 
Ry = (M + m)g − T sin � = (M + m)g − 3g m + M 2 = − 2m + M 2 g 

We find that the y component of the force from the hinge is in the negative y direction, 
so our diagram in Figure 11.27 is wrong! If you removed the hinge on the wall and 
instead held that end of the bar with your hand, you would feel that the end of the bar 
is trying to go into the wall and upwards, as the bar tries to rotate with the opposite end 
moving downwards due to the weight of the sign. You would have to push in the positive x 
and negative y direction to keep the bar from moving. 

Discussion: In this example, we saw that we needed to use both the sum of the forces and 
the sum of the torques in order to determine the forces on the bar. 



12 Rotational energy and momentum 

In this chapter, we extend our description of rotational dynamics to include the rotational 
equivalents of kinetic energy and momentum. We also develop the framework for describing 
the motion of rolling objects. We will see that many of the relations that hold for linear 
quantities also hold for angular quantities. 

Learning Objectives 

• Understand how to define the rotational kinetic energy of an object as well as its 
total kinetic energy. 
• Understand how to model rolling motion, and what slipping means in the context 

of rolling motion. 
• Understand how to define the angular momentum of an object and when it is 

conserved. 

Think About It 

How can you model the motion of a downwards going yo-yo? 
A) It is similar to that of an object falling with a force of drag. 
B) It is similar to that of an object rolling down an incline. 
C) It is similar to that of an object sliding down an incline. 
D) It is similar to that of an object rotating about a fixed axis of rotation. 

12.1 Rotational kinetic energy of an object 
In this section, we show how to define the rotational kinetic energy of an object that is 
rotating about a stationary axis in an inertial frame of reference. Consider a solid object 
that is rotating about an axis with angular velocity, ~!, as depicted in Figure 12.1. 

370 
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Figure 12.1: An object rotating about an axis that is perpendicular to the page. 

We can model the object as being composed of many point particles, each with a mass 
mi, located at a position ~ri, with velocity ~vi relative to the axis of rotation. We choose a 
coordinate system whose origin is on the axis of rotation and whose z axis is co-linear with 
the axis of rotation, as depicted in Figure 12.1. 

Each particle of mass mi in the object has a kinetic energy, Ki: 

1 
Ki = 2miv 

2 
i 

We can sum the kinetic energy of each particle together to get the total rotational kinetic 
energy, Krot, of the object: 

X 1 2 
iKrot = 2miv 

i 

Although each particle will have a di�erent velocity, ~vi, they will all have the same angular 
velocity, !~ . For any particle, located a distance ri from the axis of rotation, their velocity 
is related to the angular velocity of the object by: 

~vi = ~! × ~ri 
vi = !ri 

where !~ and ~ri are always perpendicular to each other, since ~! is out of the plane of the 
page. Furthermore, the velocity vector, ~vi, will always be perpendicular to ~ri, since all 
particles are moving in circles centred about the axis of rotation. We can thus write the 
total rotational kinetic energy of the object using the angular speed: 

= 
X 1 2 = 

X 1 1 X 2Krot =2 
2mivi 2miri !

2 
2!

2 miri 
i i i 

= 2
1 
I!2 
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where we factored ! and the one half out of the sum, as these are the same for each particle i. 
We then recognized that the remaining sum is simply the definition of the object’s moment 
of inertia about the axis: X 2I = mri 

i 

Thus, the rotational kinetic energy of an object rotating with angular speed ! about an 
axis that is stationary in an inertial frame of reference is given by: 

Krot = 2
1 
I!2 (12.1) 

where I is the object’s moment of inertia about that axis. The rotational kinetic energy is 
functionally very similar to the linear kinetic energy; instead of mass, we use the moment 
of inertia, and instead of speed squared, we use angular speed squared. 

12.1.1 Work on a rotating object 
We can calculate the work done by a force exerted on an object rotating about a stationary 

~axis in an inertial frame of reference. Let F be a force exerted at position, ~r, relative 
to the axis of rotation at some instant in time, and let the force be exerted in the plane 
perpendicular to the axis of rotation, as illustrated in Figure 12.2. Because the object is 
rotating about the given axis, only the component of the force that is tangent to the circle 
about which the point where the force is exerted can do work (only the component of the 
force that is parallel to the displacement can do work). 

The work done by the force as the object rotates by a certain angle is given by: Z Z 
~ ~W = F · dl = F?dl 

~where dl is a small displacement along the (circular) path followed by the point where the 
~force is exerted, as illustrated in Figure 12.2. F? is the component of F that is perpendicular 

to the vector, ~r, from the axis of rotation to the location where the force is exerted (F? is 
~the component of F that is tangent to the circle). 
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Figure 12.2: Calculating the work done by a force on a rotating object. 

At some instant in time, when the force is exerted at position, ~r, consider the scalar product 
between the torque from the force, ~̋, and an infinitesimal angular displacement, d~�, about 
the axis of rotation: � 1 � 

~ ~ ~̋ · d~� = (~r × F ) · 2 ~r × dl r 

~ ~The vectors ~̋ and d~� are parallel to the axis of rotation (because F and dl are in the plane 
perpendicular to the axis of rotation), so their scalar product will be equal to the product 

~of their magnitudes. The vector ~r × F has a magnitude of: 

~r × F~ = rF? 

~where F? is the component of the force tangent to the circle. The vector ~r × dl has a 
magnitude: 

~ ~r × dl = rdl 

~since ~r and dl are always perpendicular. The scalar product ~̋ · d�~ is thus equal to: 
1 

~̋ · d~� = rF? 2 rdl = F?dl 
r 

The work done by a force when an object rotates about an axis can thus be written in terms 
of its torque about that axis and the corresponding angular displacement from �1 to �2: Z �2 

W = ~̋ · d~� (12.2) 
�1 

The net work done on an object through an angular displacement from �1 to �2 can thus be 
written using the net torque ~̋ net exerted on the object: Z �2 

W net ˝ net= ~ · d�~ 
�1 

We can re-arrange this using Newton’s Second Law for rotational dynamics: 

˝ net ~ = I~ 
d~! d! d�~ d! = I = I = I ~! 
dt d� dt d� 

which allows us to write the integral over a change in angular velocity instead of angular 
displacement: Z �2 

Z �2 d! 
W net ˝ net= ~ · d�~ = I ~! · d�~ 

�1 �1 d�Z !2 

= I!d! = 2
1 
I!2 

2
1 
I!2 

2 − 1 
!1 
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where we used the fact that !~ are d�~ are parallel. We thus find that the Work-Energy 
Theorem can also be applied to find the change in rotational kinetic energy resulting from 
the net work done by a torque: 

Z �2 

W net ˝ net= ~ · d�~ = �Krot (12.3) 
�1 

If a constant torque, ~̋, is exerted on an object that is rotating at constant angular velocity, 
~!, then the rate at which that work is being done is given by: 

dW d d�~ 
P = = ~̋ · d~� = ~̋ · = ~̋ · !~ 

dt dt dt 

~This is very similar to the power, P = F · ~v, with which a force does work on an object 
moving with constant velocity, except that instead of force we use torque, and instead of 
velocity, we use angular velocity. 

12.1.2 Total kinetic energy of an object 
In the frame of reference of the centre of mass, an object rotating about an axis through its 
centre of mass with angular velocity, !~ , will have rotational kinetic energy, Krot, given by: 

Krot = 2
1 
ICM !

2 

where ICM is the moment of inertia of the object about the axis through its centre of mass. 

We wish to determine the kinetic energy of the object in an inertial frame of reference where 
the object’s centre of mass is moving with a velocity ~vcm; that is, in a frame where the axis 
of rotation is moving with the velocity of the centre of mass. We model the object as being 
composed of particles of mass, mi, each located at position, ~ri, relative to the axis of rotation 
through the centre of mass. The velocity, ~vi, of a particle i, in this frame of reference, is 
given by: 

~vi = !~ × ~ri + ~vCM 

where ~! × ~ri is the velocity of the particle as seen in the centre of mass (due to rotation). 
The kinetic energy of particle i, Ki, is given by: 

Ki 2
1 
mivi 

2 
2
1 
mi(~vi · vi)= = ~ 

where we expressed the speed of the particle squared using a scalar product of the velocity 
of the particle with itself. The total kinetic energy of the object is found by summing the 
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kinetic energies of all of the particles: 

Ktot = 
X 

2
1 
mi(~vi · ~vi) 

1 X 
= mi(!~ × ~ri + ~vCM ) · (!~ × ~ri + ~vCM )2 i 

1 X 1 X X 
= mi(~! × ~ri) · (!~ × ~ri) + mi(~vCM ) · (~vCM ) + mi(~! × ~ri) · (~vCM )2 2i i i 

1 X 2 1 X 2 X 
= mi!

2 ri + mivCM + mi(!~ × ~ri) · (~vCM )2 2i i i 

1 1 X 
= 2ICM !

2 + 2Mv2 + mi(!~ × ~ri) · (~vCM )CM 
i 

where the first term is the rotational kinetic energy that we found earlier. The second term, 
called the “translational kinetic energy”, can be thought of as the kinetic energy of the 
whole system with mass M = P mi, due to the translational motion of the centre of mass. 
The last term is identically zero; we can re-order the scalar product and factor ~vCM out of 
the sum: X X 

mi(~! × ~ri) · (~vCM ) = (~vCM ) · mi(~! × ~ri) 
i iX 

= (~vCM ) · 0 mi ~v i 
i 

where v0 i = ~! × ~ri is the velocity of particle i in the center of mass frame of reference. But 
the sum: X 

mi ~v 
0 
i 

i 

is the numerator for the definition of the velocity of the centre of mass, which, in the centre 
of mass frame of reference is identically zero! 

Thus, the total kinetic energy of an object of mass, M , that is rotating about an axis 
through its centre of mass with angular velocity, !, and whose centre of mass is moving 
with velocity, ~vCM , is given by: 

= 2Mv2 (12.4)Ktot = Krot + Ktrans 2
1 
ICM !

2 + 1 
CM 

The total kinetic energy can be thought of as the sum of the rotational and kinetic energies. 

12.2 Rolling motion 
In this section, we examine how to model the motion of an object that is rolling along a 
surface, such as the motion of a bicycle wheel. Consider the motion of a wheel of radius, R, 
rotating with angular velocity, ~!, about an axis perpendicular to the wheel and through its 
centre of mass, as observed in the centre of mass frame. This is illustrated in Figure 
12.3. 
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Figure 12.3: A wheel rotating with angular velocity ~! about an axis through its centre of mass. 

In the frame of reference of the centre of mass, each point on the edge of the wheel has a 
velocity, ~vrot, due to rotation given by: 

~ = !~ × ~rvrot 

where ~r is a vector (of magnitude R) from the centre of mass to the corresponding point 
on the edge of the wheel (shown in Figure 12.3 for a point on the lower left of the wheel). 
The vector ~r is always perpendicular to !~ , so that the speed of all points on the edge, as 
measured in the frame of reference of the centre of mass, is the same: 

vrot = !R (12.5) 

as illustrated in Figure 12.3. 

Now, suppose that the whole wheel is moving, as it rolls on the ground, such that the centre 
of mass of the wheel moves with a velocity, ~vCM , as illustrated in Figure 12.4. 

Figure 12.4: A wheel rolling without slipping on the ground, with the centre of mass moving with 
velocity ~vCM . The wheel is shown at di�erent instants in time, as the point shown in red moves 
around the centre of mass. 

In the frame of reference of the ground, each point on the edge of the wheel will have a 
velocity ~v given by: 

~v = ~vrot + ~vCM 

That is, in the frame reference of the ground, each point will have a velocity obtained by 
(vectorially) adding its velocity relative to the centre of mass, ~vrot, and the velocity of the 
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centre of mass relative to the ground, ~vCM . This is illustrated in Figure 12.4 for one specific 
point, shown in red. The red vector corresponds to the velocity of the red point as the wheel 
rotates, and is obtained by adding the velocity of the centre of mass, ~vCM , and the velocity, 
~vrot, relative to the centre of mass (shown as the dashed vector, tangent to the edge of the 
wheel). 

Consider, specifically, the instant in time when the red point is at the bottom of the wheel, 
where the wheel makes contact with the ground. If the wheel is not slipping with 
respect to the ground, then the point is, at that instant, at rest relative to the ground. 
We call this type of motion “rolling without slipping”; the point on the rotating object that 
is in contact with the ground is instantaneously at rest relative to the ground. This is the 
scenario illustrated in Figure 12.4. 

For the point in contact with the ground, the vectors ~vrot and ~vCM are anti-parallel, hori-
zontal, and must sum to zero. Writing out the horizontal component of the velocity of that 
point (choosing the positive direction to be in the direction of the velocity of the centre of 
mass): 

v = −vrot + vCM = 0 
∴ vrot = vCM 

and we find that, for rolling without slipping, the speed due to rotation about the centre of 
mass has to be equal to the speed of the centre of mass. The speed due to rotation about the 
centre of mass can be expressed using the angular velocity of the wheel about the centre of 
mass (Equation 12.5). For rolling without slipping, we thus have the following relationship 
between angular velocity and the speed of the centre of mass: 

(rolling without slipping) (12.6)!R = vCM 

It makes sense for the angular velocity to be related to the speed of the centre of mass. The 
faster the wheel rotates, the faster the centre of mass will move. If the wheel is slipping 
with respect to the ground, then the point of contact is no longer stationary relative to the 
ground, and there is no relation between the angular velocity and the speed of the centre 
of mass. For rolling with slipping, imagine the motion of your bicycle wheel as you try to 
ride your bike on a slick sheet of ice. 

For rolling without slipping, the magnitude of the linear acceleration of the centre of mass, 
aCM , is similarly related to the magnitude of the angular acceleration of the wheel, , about 
the centre of mass: 

dvCM d d! = = !R = RaCM 
dt dt dt 

∴ aCM = R 
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Checkpoint 12-1 

For rolling without slipping (Figure 12.4), the speed of the point on the wheel that is 
in contact with the ground is 0. What is the speed of the point at the top of the wheel? 

A) 0. 
B) vCM . 
C) 2vCM . 
D) None of the above. 

Example 12-1 

Figure 12.5: A disk rolling without slipping down an incline. 

A disk of mass M and radius R is placed on an incline at a height h above the ground. 
The incline makes an angle � with respect to the horizontal, as shown in Figure 12.5. 
If the disk starts at rest and rolls without slipping down the incline, what speed will 
the centre of mass have when the disk reaches the bottom of the incline? 

Solution 

We can use the conservation of mechanical energy to determine the speed of the centre 
of mass at the bottom of the incline, as there are no non-conservative forces doing work 
on the disk. If we choose to define gravitational potential energy such that it is zero at 
the bottom of the incline, we can write the total mechanical energy of the disk at the 
top of the incline as: 

E = K + U = (0) + Mgh 

where the kinetic energy is zero, since the disk starts at resta. At the bottom of the 
incline, the disk will have only kinetic energy, since the potential energy at the bottom 
is defined to be zero. The kinetic energy of the disk will have a component from the 
rotation of the disk about the centre of mass, with angular speed !, and a component 
from the translation of the centre of mass with speed vCM . The mechanical energy at 
the bottom of the incline is thus: 

E 0 = K 0 + U = K 0 + K 0 + (0) = 2Mv2 
rot trans 2

1 
ICM !

2 + 1 
cm 

Since the disk is rolling without slipping, its angular speed is related to the speed of 
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centre of mass: 
vCM 

! = 
R 

The moment of inertia of the disk about its centre of mass is given by: 

ICM = 2
1 
MR2 

We can thus write the mechanical energy at the bottom of the incline as: 

E 0 = 1 
2
1 
Mv2 

2ICM !
2 + cm �� �21 1 = 

� 
2
1 
MR2 vCM + 2Mv2 

cm2 R 

= 4
3 
Mv2 

cm 

Applying conservation of energy allows us to determine the speed of the centre of mass 
at the bottom of the incline: 

E = E 0 

Mgh = 4
3 
Mv2 

cm s 
4

∴ vCM = 3gh 

Discussion: This example showed how we can use the conservation of energy to model 
the motion of an object that is rolling without slipping. The constraint of rolling without 
slipping allowed for the angular speed of the object to be related to the speed of its 
centre of mass. 

aTechnically, the potential energy should be taken for the height of the centre of mass, which is 
a distance hCM = h + R cos � from the ground at the top of the incline, and a height h0 = R atCM 
the bottom of the incline. The net di�erence in height for the centre of mass is thus hCM − h0 = CM 
h + R(1 − cos �). If we assume that h is much bigger than R, then this is negligible, otherwise, that is 
what we should use instead of h for the potential energy. 

Checkpoint 12-2 

A hoop, a disk, and a sphere roll without slipping down an incline. If they are all 
released at the same time, in what order will they arrive at the bottom? 

A) Hoop, disk, sphere. 
B) Sphere, disk, hoop. 
C) Disk, sphere, hoop. 
D) Disk, hoop, sphere. 
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12.2.1 The instantaneous axis of rotation 
When an object is rolling without slipping, we can model its motion as the superposition of 
rotation about the centre of mass and translational motion of the centre of mass, as in the 
previous section. However, because the point of contact between the rolling object and the 
ground is stationary, we can also model the motion as if the object were instantaneously 
rotating with angular velocity, !~ , about a stationary axis through the point of contact. 
That is, we can model the motion as rotation only, with no translation, if we choose an axis 
of rotation through the point of contact between the ground and the wheel. 

We call the axis through the point of contact the “instantaneous axis of rotation”, since, 
instantaneously, it appears as if the whole wheel is rotating about that point. This is 
illustrated in Figure 12.6, which shows, in red, the velocity vector for each point on the edge 
of the wheel, relative to the instantaneous axis of rotation. Because the axis of rotation is 
fixed to the ground, the velocity of each point about that axis of rotation corresponds to 
the same velocity relative to the ground that is depicted in Figure 12.4. 

Figure 12.6: A wheel that is rolling without slipping, as viewed if rotating about the instantaneous 
axis of rotation that passes through the point of contact with the ground. 

In particular, the angular velocity, ~!, about the instantaneous axis of rotation is the same 
as when we model the motion as translation plus rotation about the centre of mass ,as in 
the previous section. Indeed, relative to the instantaneous axis of rotation, the centre of 
mass must still have a velocity ~vCM , which is given by: 

~ = ~! × ~vCM rCM 

∴ vCM = !R 

where ~rCM is the vector from the axis of rotation to the centre of mass. This is the same 
condition for rolling without slipping that we found before. Similarly, the velocity of any 
point on the wheel, relative to the ground, is given by: 

~v = !~ × ~r 

where ~r is the vector from the axis of rotation to the point of interest (shown in Figure 12.6 
for the point on the right side of the wheel). In particular, the velocity vector (in red) for 
any point is always perpendicular to the vector ~r for that point, which was not necessarily 
obvious when modelling the motion as rotation plus translation, as in Figure 12.4. 
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Example 12-2 

Figure 12.7: A disk rolling without slipping down an incline. 

A disk of mass M and radius R is placed on an incline at a height h above the ground. 
The incline makes an angle � with respect to the horizontal, as shown in Figure 12.7. 
What is the angular acceleration of the disk, about an axis through its centre of mass, 
as it rolls without slipping down the slope? 

Solution 

In order to determine the angular acceleration of the disk about the centre of mass, we 
need to model the forces that are exerted on the disk. The forces exerted on the disk 
are: 

~1. Fg, the weight of the disk, exerted downwards at the centre of mass, with magni-
tude Mg. 
~2. N , a normal force perpendicular to the incline, exerted by the incline at the point 
of contact with the disk. 
~3. fs, a force of static friction parallel to the incline, exerted by the incline at the 
point of contact with the disk. Without this force, the disk would simply slide 
down the incline without rotating. 

These forces are illustrated in Figure 12.8, along with the acceleration of the centre 
of mass, and our choice of coordinate system (we choose the x axis parallel to the 
acceleration of the centre of mass, to facilitate applying Newton’s Second Law). 

Figure 12.8: The forces on the disk rolling without slipping down an incline. 
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The angular acceleration of the disk about the centre of mass, ~ is given by Newton’s 
Second Law for rotational dynamics: 

˝ ext ~ = ICM ~ 

˝ extwhere ~ is the net external torque on the disk about the centre of mass (which will 
be in the negative z direction). 

The only force that can exert a torque about the centre of mass is the force of static 
friction. Gravity has a lever arm of zero and the normal force is anti-parallel to the 
vector that goes from the centre of mass to the point where the force is exerted. The 
net torque about the centre of mass is thus: 

˝ ext ~ = ~̋fs = ~rfs × f~ s = −Rfsẑ  

The angular acceleration will thus be in the negative z direction, and the magnitude is 
given by: 

= ˝
ext 

= Rfs = 2fs 
ICM 

1 
2 MR2 MR 

However, we do not know the magnitude of the force of static friction. We can use the 
x and y components of Newton’s Second Law to determine it (with acceleration of the 
centre of mass in the x direction): X 

Fx = Fg sin � − fs = MaCM X 
Fy = N − Fg cos � = 0 

Because the disk is rolling without slipping, the acceleration of the centre of mass is 
related to the angular acceleration of the disk: 

= Racm 

The x component of Newton’s Second Law can thus be used to determine the magnitude 
of the force of static friction in terms of the angular acceleration: 

Mg sin � − fs = M R 

∴ fs = Mg sin � − M R 
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We can then substitute out the force of friction from our previous formula for the 
angular acceleration: 

= 2fs 
MR 
2Mg sin � − 2M = R 2g sin � = − 2 

MR R 

∴ 
2g sin � = 3R 

Instead of modelling the motion of the disk as rotation about the centre of mass and 
translation of the center of mass, we can also model it about the instantaneous axis of 
rotation. 

The angular acceleration about the instantaneous axis of rotation will be the same as 
the angular acceleration about the centre of mass. About the instantaneous axis of 
rotation, only the force of gravity can exert a torque, since the normal force and the 
force of friction both have a lever arm of zero. The torque from the force of gravity, 
about the instantaneous axis of rotation is: 

~̋g = −FgR sin �ẑ = −MgR sin �ẑ  

The torque from the force of gravity is equal to the moment of inertia of the disk about 
the instantaneous axis of rotation, I, multiplied by its angular acceleration: 

˝ ext = ˝g = I 
˝g MgR sin �

∴ = = 
I I 

The moment of inertia about the instantaneous axis of rotation is easily found using 
the parallel axis theorem: 

I = ICM + MR2 = 2
1 
MR2 + MR2 = 2

3 
MR2 

This allows us to find the angular acceleration of the disk: 

MgR sin � MgR sin � = = 
I 2

3 MR2 

2g sin � = 3R 

as we found previously, but in this case, we did not need to use Newton’s Second Law 
to determine the force of friction. 
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Discussion: We saw that we can model the dynamics of the rolling body using either 
an axis through the centre of mass, or an axis through the instantaneous axis of rotation. 
The latter was easier in this case, because it did not require using Newton’s Second Law. 

By using an axis through the centre of mass to model the motion of the disk, it was 
clear that the force of static friction is required in order for the disk to rotate. Without 
the force of static friction, the disk would slide along the surface of the incline. The disk 
could still rotate if there is a force of kinetic friction that causes a torque that rotates 
the disk. If the surface were completely frictionless, the disk would simply slide down 
the incline, and we could model it as a sliding block. If the incline is too steep the force 
of static friction is no longer suÿcient to provide the necessary torque required for the 
angular acceleration to be that which corresponds to rolling without slipping, and the 
disk would slip. 

12.3 Angular momentum 
In this section, we show that we can define a quantity called “angular momentum” as the 
rotational equivalent of the linear momentum. 

12.3.1 Angular momentum of a particle 

The angular momentum relative to a point of rotation, , of a particle with linear momen-~L 
, is defined as: tum, ~p 

(12.7)~p~r ~L = × 

where is the vector from the point of rotation to the particle, and the linear momentum, ~r 
, is defined relative to an inertial frame of reference in which the point of rotation is at~p 

p 

~p 

rest. 

Consider the time-derivative of angular momentum (where we have to use the product rule 
for derivatives): 

) 
d~ 

d~Ld 
~r 

r 

( 
d~ = × 

= × 
dt dt 

+ 
p 

× 

d~ 

~p ~r 
dt dt 

+= ~v × ×~p ~r 
dt 

The first term is zero, since ~v is parallel to by definition. Recall Newton’s Second Law ~p 
written using linear momentum: 

pd~ 

dt 
= ~F net 

where ~F net is the net force on the particle relative to the point of rotation. The rate of 
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change of angular momentum is thus given by: 
dL~ d~p= ~r × 
dt dt 

F net= ~r × ~ 

where the term on the right is the net torque on the particle. Thus, the rate of change of 
angular momentum is given by: 

dL~ 
˝ net= ~ (12.8)

dt 

which is analogous to the linear case, but we used angular momentum instead of linear 
momentum and net torque instead of net force. The net torque on a particle is thus equal 
to the rate of change of its angular momentum. In particular, the angular momentum of 
a particle will remain constant (not change with time) if the net torque on the particle is 
zero. 

We can also define the angular momentum of a particle using only angular quantities: 
~ 2L = ~r × p~ = m~r × ~v = mr !~ 

where we factored the mass m out of the momentum and used the definition ~! = 1/r2(~r×~v). 
We can think of mr2 as the moment of inertia, I, of the particle and write: 

~ 2L = mr !~ = I!~ (12.9) 
which is a close analogue to the definition of linear momentum, but we use moment of inertia 
instead of mass and angular velocity instead of velocity. 

The angular momentum is thus parallel to the angular velocity of the particle about the 
point of rotation. If no net torque is exerted on the particle about that point, then the 
particle’s angular momentum about that point will remain constant. We can also consider 
the torque and angular momentum about an axis instead of a point; in that case, we would 
simply take the components of torque and angular momentum that are parallel to that axis. 

Example 12-3 

Figure 12.9: A small block attached to a mass-less string moving in a horizontal circle on a 
table. 

A small block of mass m attached to a mass-less string is moving along a circle of 
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radius R on a horizontal table, as depicted from above in Figure 12.9. If the table is 
frictionless: are the block’s linear and/or angular momentum with respect to the axis of 
rotation conserved? If there is friction between the table and the block, are the block’s 
linear and/or angular momentum with respect to the axis of rotation conserved? What 
can you say about the kinetic energy of the block in the two cases? 

Solution 

If there is no friction between the block and the table, then the forces exerted on the 
block are: 

~1. Fg, the block’s weight, exerted downwards, with magnitude mg. 
~2. N , a normal force, exerted upwards, with magnitude mg. 
~3. T , a force of tension, exerted towards the centre of the circle. 

All of these forces are perpendicular to the (tangential) displacement of the block along 
the circle. Thus, there can be no work done on the block and its speed, v, must remain 
constant. The kinetic energy of the block must thus remain constant. 

The sum of the forces on the block must be towards the centre of the circle, since 
the block is in uniform circular motion. The linear momentum of the block cannot be 
conserved if there is a net force on the block (and clearly, the block’s velocity vector 
changes direction as it goes around the circle). 

The forces of weight and the normal force are both outside of the plane of motion, and 
thus cannot exert a torque along the axis of rotation. They are also equal and opposite 
in magnitude so the net torque from those two forces is always zero (since the net force 
from those forces is zero). The force of tension is always anti-parallel to the vector 
~r, from the axis of rotation to the particle, and cannot result in a torque about the 
rotation axis. Thus, the net torque on the block is zero and its angular momentum 
must be conserved. 

If there is kinetic friction exerted by the table on the block, then there is an additional 
~force, fs, exerted on the block in the direction opposite of motion (tangent to the circle, 

in the opposite direction from the block’s velocity). 

The force of friction will do negative work on the block, slowing it down and reducing 
its kinetic energy, which is no longer conserved. The net force on the block is non-zero, 
so its linear momentum is still not conserved. Finally, the force of friction, which is 
always perpendicular to ~r, will result in a torque that reduces the angular velocity of 
the block. The block’s angular momentum is thus no longer conserved when there is 
friction between the table and the block. 

Discussion: In this example, we saw that kinetic energy, linear momentum, and angu-
lar momentum are all conserved under di�erent conditions. Kinetic energy is conserved 
if no net work is done on the block. Linear momentum is conserved if the net force on 
the block is zero. Angular momentum is conserved if the net torque on the block is 
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zero. By introducing angular momentum, we are able to use a new conserved quantity 
to help us model rotational dynamics. 

Example 12-4 

p 

p 

~r 

~r 

~p 

~p 

~p

Figure 12.10: A particle moving in a straight line. 

~p 

~v 

~r 

~r 

r 

d 

A particle is moving with constant velocity (in a straight line) relative to a coordinate 

~v 

~L 

~r 

system in an inertial frame of reference, as shown in Figure 12.10. Show that its angular 

~p 

momentum about the origin is conserved. 

~L 

~v 

Solution 

In this case, the particle is moving in a straight line, but we can still define its angular 
momentum relative to the origin. If is the position vector of the particle relative to 
the origin, its angular momentum is: 

= × 

We can take the time derivative of the angular momentum to see if it changes with 
time: 

d = = ( × )
dt dt 

d~ d~ = × + × 
dt dt 

d~ = × + × 
dt 

The first term is zero because and are parallel (so their cross-product must be zero). 
The second term is zero because the particle’s momentum is constant in time (since 
its velocity is constant). Thus, the particle’s angular momentum does not change with 
time, and it is conserved. 
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Discussion: Of course, we expected this result since no net torque is exerted on the 
particle. It is however worth highlighting that a particle does not need to be rotating for 
its angular momentum about a given axis to be defined or conserved; all that matters 
is that there is no net torque on the particle relative to that axis. 

12.3.2 Angular momentum of an object or system 
Consider a system made of many particles of mass, mi, each with a position, ~ri, and velocity, 
~vi, relative to a point of rotation that is fixed in an inertial frame of reference. 

We can write Newton’s Second Law using the angular momentum, L~ i, for particle i: 

d~Li 
˝ net= ~ idt 

˝ netwhere ~ i is the net torque exerted on particle i. We can sum each side of this equation 
for all of the particles in the system: 

d~ d~ d~L1 L2 L3 
˝ net ˝ net ˝ net+ + + . . . = ~ + ~ + ~ + . . .1 2 3dt dt dt 

d X X 
~ ˝ net∴ Li = ~ idt i i 

The sum of all of the torques on all of the particles will include a sum over torques that are 
internal to the system and torques that are external to the system. The sum over internal 
torques is zero: X ̋

 net ~ i = 
X ̋

 int ~ i + 
X ̋

 ext ~ i = 
X ̋

 ext ~ i ˝ ext= ~
i i i i 

where we defined, ˝ ext~ , to be the net external torque exerted on the system. We also 
introduce the total angular momentum of the system, L~ , as the sum of the angular momenta 
of the individual particles: X 

~ ~L = Li 
i 

The rate of change of the total angular momentum of the system is then given by: 

dL~ 
˝ ext= ~ (12.10)

dt 

Up to this point, we did not require that the system be a solid object, so the particles in 
the system can move relative to each other. For example, the particles could be the Sun, 
planets, and everything else that is in our Solar System. The total angular momentum of 
all of the bodies in the Solar System (say, relative to the Sun) is conserved if there is no 
net torque on the solar system relative to the Sun (i.e. if there is no torque about the Sun 
exerted on any of the bodies in the system that is not exerted by one of the other bodies in 
the system). 
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Now, consider a solid object that is modelled as a system of many particles of mass, mi, at 
position, ~ri, with velocity, ~vi, relative to a fixed axis of rotation. We can define the angular 
momentum of a single particle as (Equation 12.9): 

~Li = mir 
2 
i ~!

2 
i 

The total momentum of the system is the sum of the angular momenta of the individual 
particles: X X 

~ ~L = Li = mir 
2 
i ~!

2 
i 

i i 

Because all of the particles are part of the same object, they must all move in unison and 
have the same angular velocity, ~!, relative to the axis of rotation. We can thus define the 
angular momentum about the rotation axis for a solid object with angular velocity, ~!, as: 

~L = 
!X 

mir ~! = I~!2 
i 

i 

(12.11) 

where we recognized that the sum in parentheses is simply the moment of inertia of the 
object relative to the axis of rotation. Again, it should be emphasized that this is the total 
angular momentum of the object about an axis of rotation, and not about a point. 

Visualizing the torque and angular momentum of a system can be challenging because it 
almost always requires visualizing something in three dimensions. Consider a wheel (e.g. 
a bicycle wheel) that is spinning about horizontal axle which you hold with your hands, 
as illustrated in the left panel of Figure 12.11 (without the hands). Imagine that you are 
holding onto the axle so that the wheel is front of you, your right hand is to the right of the 
wheel and your left hand is to the left of the wheel. 

Figure 12.11: A wheel rotating on an axle, with a horizontal angular velocity (left). If you try to 
tilt the axle as shown in the right panel, changing the angular momentum of the wheel, you will 
also need to exert a torque in the vertical direction (shown at the bottom right). 
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We define a coordinate system as shown so that the wheel is spinning as shown in the left 
panel, with angular velocity (and angular momentum) in the positive x direction (the top 
of the wheel is coming towards you). 

You then try to lift your right hand while lowering your left hand in order to tilt the 
rotation axis, as shown in the right panel. In doing so, you change the direction of the 
angular momentum (and angular velocity) of the wheel such that the angular momentum, 
L~ 0, now has a vertical component, �L~ , as shown. The torque that is required in order to 
change the angular momentum is given by: 

dL~ �L~ 
~̋ = ˘ 

dt �t 
where �t is the time that it takes to change the axis of rotation. The torque required in 
order to change the axis of rotation is directed in the same direction as �L~ (the positive y 
direction). That is, you will not be able to simply tilt the axle as shown; if you want to tilt 
the axle, you will also need to push forward with you right hand and pull backwards with 
your left hand to exert the required torque (shown in the bottom right of the figure)! If you 
simply try to tilt the rotation axis, your right hand will be pushed towards you and your 
left hand away from you, as a reaction to the torque that would otherwise be required to 
tilt the axis! 

12.3.3 Conservation of angular momentum 
In the previous section, we saw that the net external torque that is exerted on an object (or 
system) is equal to the rate of change of its angular momentum: 

dL~ 
˝ ext= ~ 

dt 

where the angular momentum and torque are measured about the same axis or point of 
rotation, fixed in an inertial frame of reference. 

The total angular momentum of a system about a point of rotation is conserved (i.e. does 
not change with time) if there is no net external torque exerted on the system about that 
point. If one makes the system large enough, then all of the torques can be taken to be 
internal, and the angular momentum of the system is conserved. The angular momentum 
of the Universe about a fixed point is thus conserved. 

Conservation of angular momentum is another conservation law that we derived from New-
ton’s Second Law. In the modern formulation of physics, we understand that the conser-
vation of angular momentum is associated with rotational symmetry of Newton’s Second 
Law; it does not matter from which “angle” we model a system, we can always use Newton’s 
Second Law. Similarly, conservation of linear momentum is associated with translational 
symmetry and conservation of energy is associated with the fact that Newton’s Second Law 
does not change with time. Angular momentum is fundamentally di�erent than linear mo-
mentum and energy, and is conserved under di�erent conditions. The angular momentum 
of a system about a given axis/point is conserved if there is no net torque on the system 
about that axis/point. 
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Example 12-5 

During a spin, a figure skater brings his arms close to his body and increases his angular 
velocity from !1 to !2. By what fraction did his moment of inertia decrease in doing so? 

Solution 

We can consider the rotation axis to be vertical through the centre of the skater. When 
the figure skater is spinning, there is no net external torque on him. Thus, his angular 
momentum is conserved as he bring his arms in. As he bring his arms in, his moment of 
inertia decreases, since he is bringing the mass of his arms closer to the axis of rotation. 
If I1 and I2 are the moments of inertia of the skater before and after brining his arms 
in, respectively, we can write the angular momentum about his axis of rotation as: 

L1 = I1!1 

L2 = I2!2 

Since there is no external torque on the skater, the angular momentum is the same 
before and after he changes his moment of inertia: 

L1 = L2 

I1!1 = I2!2 

I1 !2∴ = 
I2 !1 

Discussion: A spinning figure skater is a good example of the conservation of angular 
momentum. By changing their shape, they can change their moment of inertia and 
thus their angular velocity. 

Example 12-6 

Show that Kepler’s Second Law is equivalent to a statement about conservation of the 
angular momentum of a planet orbiting the Sun. 

Solution 

Kepler’s Second Law states that in a period of time �t, the area, �A, that is swept 
out by a planet is constant, regardless of where it is along its orbit. In other words: 

�A = constant �t 

Figure 12.12 shows a planet in an elliptical orbit around the sun. 
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Figure 12.12: The area swept out by a planet in a period of time dt. 

At some point in time, the planet has a velocity vector ~v and position vector ~r relative 
to the Sun. In a small period of time dt, the planet will move along a short distance vdt, 
which we can take as a straight line if dt is small enough. Let ° be the angle between 
the velocity and position vectors when these are tail to tail, as illustrated. 

The small amount of area, dA, swept out by the planet in a period of time dt, is given 
by the area of the right angle triangle with height r and base vdt sin °a: 

dA = 2
1 
rvdt sin ° 

The rate at which the area is swept out is thus: 

dA = 12rv sin ° 
dt 

Consider now the magnitude of the planet’s angular momentum about the Sun: 

L = rp sin ° = rmv sin ° 

where the mass of the planet is m. The rate at which the planet sweeps out the area 
can be written in terms of the angular momentum of the planet: 

dA 1 L = 2rv sin ° = 
dt 2m 

The only force exerted on the planet is the gravitational force from the Sun. That force 
is always anti-parallel to the vector ~r from the Sun to the planet, and cannot result 
in a torque on the planet about the Sun. Thus, the angular momentum of the planet 
about the Sun must be conserved, and L is constant. In turn, this means that the rate 
at which area is swept out by the planet, which is proportional to L, is also constant. 
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Thus, Kepler’s Second Law is equivalent to saying that the angular momentum of a 
planet relative to the Sun is constant. 

aThis is only exact in the limit of dt ! 0, when the small area from the extra piece outside of the 
ellipse vanishes. 
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12.4 Summary 
Key Takeaways 

If an object is rotating with angular speed, !, about an axis that is fixed in an inertial 
frame of reference, the rotational kinetic energy of that object is given by: 

Krot = 2
1 
I!2 

where I is the moment of inertia of that object about the axis of rotation. 

The net work done by the net torque exerted on an object about a fixed axis or rotation 
in an inertial frame of reference is equal to object’s change in rotational kinetic energy: Z �2 

˝ netW = ~ · d�~ = 2
1 
I!2 

2
1 
I!2 

2 − 1 
�1 

If a torque, ~̋, about a stationary axis is exerted on an object that is rotating with a 
constant angular velocity, !~ , about that axis, then the torque does work at a rate: 

P = ~̋ · !~ 

If an object of mass, M , is rotating about an axis through its centre of mass, and the 
centre of mass of is moving with speed, vCM , relative to an inertial frame of reference, 
then the total kinetic energy of the object is given by: 

= 1 
2
1 
Mv2Ktot = Krot + Ktrans 2ICM !

2 + CM 

where, !, is the angular speed of the object about the centre of mass, and, ICM , is the 
moment of inertia of the object about the centre of mass. The two terms in the kinetic 
energy come from the rotation about the centre of mass (Krot), and the translational 
motion of the centre of mass (Ktrans). 

An object is said to be rolling without slipping on a surface if the point on the object 
that is in contact with the surface is instantaneously at rest relative to the surface. 
We can model an object that is rolling without slipping by superimposing rotational 
motion about the centre of mass with translational motion of the centre of mass. The 
angular speed, !, and the angular acceleration, , of the object about an axis through 
its centre of mass are related to the speed, vCM , and linear acceleration, aCM , of the 
centre of mass, respectively: 

= !R 
aCM = R 

vCM 

These conditions are equivalent to stating that the object is rolling without slipping. 
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When an object is rolling without slipping, we can also model its motion as if it were 
instantaneously rotating about an axis that goes through the point of contact between 
the object and the ground (the instantaneous axis of rotation). The angular speed (and 
acceleration) about the instantaneous axis of rotation are the same as they are when 
the object is modelled as rotating about its (moving) centre of mass. 

An object can only be rolling without slipping if there is a force of static friction exerted 
by the surface on the object. Without this force, the object would slip along the surface. 

~We can define the angular momentum of a particle, L, about a point in an inertial 
frame of reference as: 

~L = ~r × p~ 

where, ~r, is the vector from the point to the particle, and, ~p, is the linear momentum 
of the particle. If the particle has an angular velocity, ~!, relative to an axis of rotation 
its angular momentum about that axis can be written as: 

~ 2L = mr !~ = I!~ 

where, r, is the distance between the particle and the axis of rotation, and I = mr2, 
can be thought of as the moment of inertia of the particle about that axis. 

We can write the equivalent of Newton’s Second Law for the rotational dynamics of a 
particle using angular momentum: 

dL~ 
˝ net= ~ 

dt 

where, ~̋ net, is the net torque on the particle about the same point used to define angular 
momentum. That point must be in an inertial frame of reference. 

~The rate of change of the total angular momentum for a system of particles, L = 
~L1 + L~ 2 + . . . , about a given point is given by: 

dL~ 
˝ ext= ~ 

dt 

˝ extwhere, ~ , is the net external torque on the system about the point of rotation. If 
the net external torque of the system is zero, then the total angular momentum of the 
system is constant (conserved). Again, the point of rotation must be in an inertial 
frame of referencea. 

For a solid object, in which all of the particles must move in unison, we can define the 
angular momentum of the object about a stationary axis to be: 

~L = I~! 
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where, ~!, is the angular velocity of the object about that axis, and, I, is the object’s 
corresponding moment of inertia about that axis. 

Many of the relations that exist between linear quantities have an analogue relation 
between the corresponding angular quantities, as summarized in the table below: 

Name Linear Angular Correspondence 

~Displacement s � d�~ = 
r 
r × d~s2 ~ 

2 

Velocity ~v !~ !~ = 
r2 ~r × ~v, vs = !~ × ~rb 

~r 

1 

c 

1 

~ ~ 

F~ ext ˝ ext ~ 

d~p F~ ext dL~ ˝ ext ~ 

1Acceleration = =× ×~a ~ ~ ~r ~a, a ~ ~r2 sr PInertia =I Im m rii i 

Momentum = = =L I! L ×p~ m~v ~ ~r p~ 

Newton’s Second Law ! ! != = I F ˝ Im~a ~ ~ ~, m , ~a ~ CM 

Newton’s Second Law ~! != = F ˝ L~ ~, ~p 
1 2Kinetic energy ! !I! I !mv m , v2 

Power ! !F ˝ ! F ˝ !· ·~v ~ ~ ~, ~v ~ 

~r 

dt dt 

~ ~ 

2 

aTechnically, if the point is the centre of mass, then this is valid even in an accelerating frame of 
reference. 

1
2 

bThis corresponds to the component of velocity perpendicular to . 
cThis corresponds to the component of acceleration perpendicular to . 
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Important Equations 

Rotational kinetic energy of a rotat- Angular momentum: 
ing object: 

~L = ~r × p~ 
Krot = 2

1 
I!2 

~ 2L = mr !~ = I!~ 
Total kinetic energy: dL~ 

˝ net= ~ 
1 1 dt 

Ktot = Krot + Ktrans 2ICM !
2 + CM = 2Mv2 

dL~ 
˝ ext= ~ 

Work: dt Z �2 ~1 1 L = I~! 
˝ netW = ~ · d�~ = 2I!2

2 − 2I!1
2 

�1 

Power: 

P = ~̋ · !~ 

Important Definitions 

Angular momentum: The rotational equivalent of linear momentum. Angular mo-
mentum must be defined relative to an axis of rotation. SI units: [kg · m2 · s−1]. Com-

~mon variable(s): L. 

Rotational kinetic energy: The rotational equivalent of translation kinetic energy. 
Generally, an object can have both rotational and translational kinetic energy. SI units: 
[J]. Common variables: Krot. 
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12.5 Thinking about the material 
12.5.1 Reflect and research 

Reflect and research 

1. How can a bicycle move forward? Draw the external forces on the bicycle that 
are required for the wheels to turn. 

2. Does conservation of angular momentum play a role in being able to remain 
upright on a bicyle? If yes, how? 

3. How does an anti-lock braking system (ABS) provide better breaking for your 
car? What is the physics behind this? 

To try at home 

1. Describe how you can qualitatively confirm conservation of angular momentum. 

Reflect and research 

1. Propose an experiment to measure the critical angle of an incline, above which a 
given object cannot roll without slipping, and compare this to a model prediction. 

2. Propose an experiment to test the conservation of angular momentum of a rotating 
object. 

3. Propose an experiment to test whether an object with constant velocity can impart 
angular momentum to another object. 
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12.6 Sample problems and solutions 
12.6.1 Problems 
Problem 12-1: A yo-yo can be modelled as two uniform disks, of radius R2, attached to 
either side of a smaller uniform disk of radius R1, as in Figure 12.13. We can assume that 
all three disks have a mass m. A mass-less string is wrapped around the smaller disk and 
then the yo-yo is released. What is the acceleration of the centre of mass of the yo-yo as it 
falls and the string unwinds? 

Figure 12.13: Left: Side view of the yo-yo. Right: Front view of the yo-yo, modelled as two disks 
of radius of R2 attached to either side of a disk of radius R1. 

(Solution) 

Problem 12-2: 

Figure 12.14: A projectile of mass m is about to collide with a disk that can spin about its axis of 
symmetry. View from above. 

A projectile of mass m is fired towards a stationary disk of radius R and mass M that lies 
on a horizontal table, as depicted from above in Figure 12.14. The disk is in the horizontal 
plane and can rotate about a vertical axis through its centre. The axle about which the disk 
rotates is attached to the table and cannot move. The projectile’s velocity, ~v, is horizontal 
and such that the projectile embeds itself at the edge of the disk. What is the angular 
velocity of the disk, about its centre, after the projectile has embedded itself into the disk? 
Was the collision elastic? Was linear momentum conserved during the collision? (Solution) 
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12.6.2 Solutions 
Solution to problem 12-1: 

The forces acting on the yo-yo are: 
~• Fg, its weight, with magnitude 3mg. 
~• T , a force of tension from the string. 

The forces, where they are exerted, and our choice of coordinate system are shown in Figure 
12.15. 

Figure 12.15: Free body diagram for the yo-yo. 

The yo-yo can be modelled as rolling without slipping, as if it were rolling along the string 
that unwinds. The torque about the centre of mass is provided by the tension in the string. 
The angular acceleration of the yo-yo, , will be related to the linear acceleration of the 
centre of mass, ~aCM , since this is rolling without slipping: 

aCM = R1 

where R1 is the radius that is analogous to rolling motion. Since the torque from the force 
of gravity is zero, we can write Newton’s Second Law for rotational quantities as: 

˝ ext ~ = I~ 
TR1 = I 

where TR1 is the magnitude of the torque from the force of tension, since the tension is 
perpendicular to the vector ~r between the centre of mass and the point where the tension 
is exerted. The moment of inertia of the yo-yo about its centre of mass is the sum of the 
moments of inertia of the three disks about their axis of symmetry: 

1 1 1 1 
I = 2MR2

2 + 2MR2
2 + 2MR2 = 2M(2R2

2 + R1
2)1 
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We can also write Newton’s Second Law in the vertical direction for the yo-yo (of mass 
3M): X 

Fy = −Fg + T = −3MaCM 

−3Mg + T = −3MaCM 

where we aCM is the magnitude of the acceleration of the centre of mass (since we included 
the sign in the first equation). 

We can eliminate the unknown force of tension from the equations by substitution. Using 
the equation from Newton’s Second Law: 

T = 3M(g − aCM ) 

and substituting this into the rotational equation: 

TR1 = I 
3M(g − aCM )R1 = I 

We can solve for aCM by using the condition for rolling without slipping ( R1 = aCM ): 

3M(g − aCM )R1 = I aCM 
R1 

I
aCM + 3MR1aCM = 3MgR1

R1 � � 
aCM 

I + 3MR1 = 3MgR1
R1 

3MgR1 
aCM = 

R
I 
1 

+ 3MR1 

3MgR1= 1 
2 M(2R2

2+R2
1) 

R1 
+ 3MR1 

3R1
2 ! 

1 = 
2 (2R2

2 + R1
2) + 3R1

2 g 

3R1
2 ! 

∴ aCM = g
R2

2 + 7
2 R

2
1 

Solution to problem 12-2: We consider the projectile and disk as a system, and a rotation 
axis that passes through the centre of disk. There are no external torques exerted on the 
system about the rotation axis, so the angular momentum of the system must be conserved 
through the collision. Before the collision, only the projectile has angular momentum about 
the axis of rotation, so the magnitude of the angular momentum before the collision is: 

L = rp sin ° 



402 CHAPTER 12. ROTATIONAL ENERGY AND MOMENTUM 

where ° is the angle between the particle’s momentum, ~p = m~v, and a vector, ~r, from 
the axis of rotation to the particle. We can calculate the particle’s angular momentum 
just before the collision, so that ~r is the vector from the centre of the circle to the point 
where the particle collides (with magnitude R, and perpendicular to ~v). The initial angular 
momentum of the system is thus: 

L = rp = Rmv 

After the collision, the projectile is embedded in the disk. The resulting object has a moment 
of inertia given by: 

I = Idisk + Iparticle = 2
1 
MR2 + mR2 

After the collision, the angular momentum of the disk with the embedded projectile is given 
by: �1 � 

L0 = I! = 2M + m R2! 

Using conservation of angular momentum, the angular velocity of the disk after the collision 
is: 

L = L0 �1 � 
Rmv = 2M + m R2! 

mv
∴ ! = � �

1 
2 M + m R 

We do not expect that mechanical energy is conserved during the collision, since the pro-
jectile embeds itself, which must cost energy. The mechanical energy before the collision is 
given by the kinetic energy of the projectile: 

1 2E = 2mv 

After the collision, the kinetic energy is the rotational kinetic energy of the disk with 
embedded projectile about the axis of rotation: 

�1 � 0 12
1 1 mv@ �E 0 = 2I!

2 = 2M + m R2 � A 
2 1 R2 M + m 

1 m2
2= � �v2 

2
1 M + m 

We can see that E 0 is less than E, by taking their ratio: 
21 m 2 

E 0 2 ( 2
1 M+m)v = 

E 2
1 mv2 

m = �
1 

� < 1 
2 M + m 
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and we confirm that mechanical energy is not conserved in the collision (and that energy 
was lost since one had to deform the projectile and disk). 

Linear momentum is clearly not conserved since the final linear momentum is zero, whereas 
before the collision, it is ~p = m~v. The centre of mass of the disk+projectile system moves 
before the collision and not after. There must thus be a net external force that is exerted 
on the system. That force is exerted by the table onto the axle of disk, as the disk would 
otherwise recoil when hit with the projectile. 

Discussion: In this example, we used conservation of angular momentum to model a 
collision. The collision is inelastic, because the projectile embeds itself into the disk. The 
linear momentum is not conserved through the collision because the axle about which the 
disk rotates must exert a force on the disk to prevent it from recoiling. 



13 Simple harmonic motion 

In this chapter, we look at oscillating systems that undergo “simple harmonic motion”, such 
as the motion of a mass attached to a spring. Many systems in the physical world, such 
as an oscillating pendulum, can be described by the same mathematical formalism that 
describes the motion of a mass attached to a spring. 

Learning Objectives 

• Understand how to model the position, velocity, and acceleration of a mass at-
tached to a spring. 
• Understand the conditions under which a system undergoes simple harmonic mo-

tion. 
• Understand how to model the motion of a pendulum when it undergoes simple 

harmonic motion. 

Think About It 

What do the motion of a mass attached to a spring, a cork bobbing in the water, and 
a pendulum have in common? 

13.1 The motion of a spring-mass system 
As an example of simple harmonic motion, we first consider the motion of a block of mass 
m that can slide without friction along a horizontal surface. The mass is attached to a 
spring with spring constant k which is attached to a wall on the other end. We introduce 
a one-dimensional coordinate system to describe the position of the mass, such that the x 
axis is co-linear with the motion, the origin is located where the spring is at rest, and the 
positive direction corresponds to the spring being extended. This “spring-mass system” is 
illustrated in Figure 13.1. 

404 
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Figure 13.1: A horizontal spring-mass system oscillating about the origin with an amplitude A. 

We assume that the force exerted by the spring on the mass is given by Hooke’s Law: 
~F = −kxx̂ 

where x is the position of the mass. The only other forces exerted on the mass are its 
weight and the normal force from the horizontal surface, which are equal in magnitude and 
opposite in direction. Therefore, the net force on the mass is the force from the spring. 

As we saw in Section 8.4, if the spring is compressed (or extended) by a distance A relative 
to the rest position, and the mass is then released, the mass will oscillate back and forth 
between x = ±A1, which is illustrated in Figure 13.1. We call A the “amplitude of the 
motion”. When the mass is at x = ±A, its speed is zero, as these points correspond to the 
location where the mass “turns around”. 

13.1.1 Description using energy 
We can describe the motion of the mass using energy, since the mechanical energy of the 
mass is conserved. At any position, x, the mechanical energy, E, of the mass will have a 
term from the potential energy, U , associated with the spring force, and kinetic energy, K: 

1 1 2E = U + K = 2kx
2 + 2mv 

We can find the mechanical energy, E, by evaluating the energy at one of the turning points. 
At these points, the kinetic energy of the mass is zero, so E = U(x = A) = 1/2kA2. We 
can then write the expression for mechanical energy as: 

1 1 2 1 
2kx

2 + 2mv = 2kA
2 (13.1) 

1As long as there is no friction to reduce the mechanical energy of the mass. 
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We can thus always know the speed, v, of the mass at any position, x, if we know the 
amplitude A: s 

k(A2 − x2) 
v(x) = 

m 

Checkpoint 13-1 

If you double the amplitude of the motion of a mass attached to a spring, its maximum 
speed will be: 

A) double.p
B) 2 times greater. 
C) the same. 
D) halved. 

13.1.2 Kinematics of simple harmonic motion 
We can use Newton’s Second Law to obtain the position, x(t), velocity, v(t), and accelera-
tion, a(t), of the mass as a function of time. The x component of Newton’s Second Law for 
the mass attached to the spring can be written: X 

Fx = −kx = ma 

We can write the acceleration in Newton’s Second Law more explicitly as the second deriva-
tive of the position, x(t), with respect to time. If we do this, we can see that Newton’s 
Second Law for the mass attached to the spring is a di�erential equation for the function 
x(t) (we call it an “equation of motion”): 

ma = −kx 
d2x 

m = −kx 
dt2 

d2x k
∴ = − x (13.2)
dt2 m 

We want to find the position function, x(t). Equation 13.2 tells us that the second derivative 
of x(t) with respect to time must equal the negative of the x(t) function multiplied by a 
constant, k/m. Without having taken a course on di�erential equations, it might not be 
obvious what the function x(t) could be. Several, equivalent functions can satisfy this 
equation. One possible choice, which we present here as a guess, is2: 

x(t) = A cos(!t + °) (13.3) 

where A, !, and ° are constants that we need to determine. We can take the second order 
derivative with respect to time of the function above to verify that it indeed “solves” the 

2Other possible guesses that work are A sin(!t + °), and x(t) = A cos(!t) + B sin(!t). 
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di�erential equation: 

x(t) = A cos(!t + °) 
d
x(t) = −A! sin(!t + °)

dt 
d2 d (−A! sin(!t + °)) = −A!2 cos(!t + °)
dt2 x(t) = 

dt 
d2 

∴ x(t)
dt2 x(t) = −!2 

The last equation has exactly the same form as Equation 13.2, which we obtained from 
Newton’s Second Law, if we define ! as: 

s 
k 

! = (13.4) 
m 

We call ! the “angular frequency” of the spring-mass system. We have found that our guess 
for x(t) satisfies the di�erential equation. 

Checkpoint 13-2 

What is the SI unit for angular frequency? 
A) Hz 
B) rad/s 
C) N1/2m−1/2kg−1/2 

D) All of the above 

Olivia’s Thoughts 

In Chapter 3, we found, x(t), from a function, a(t), by using simple integration. You may 
be wondering why we can’t do the same thing in order to find x(t) for the mass-spring 
system. The di�erence is that, before, the acceleration was a function of time. Here, 
the acceleration is a function of x. This means that we have to use a di�erent method 
to solve for x(t), which is why we are making these “guesses” to solve a di�erential 
equation. 

We still need to identify what the constants A and ° have to do with the motion of the 
mass. The constant A is the maximal value that x(t) can take (when the cosine is equal 
to 1). This corresponds to the amplitude of the motion of the mass, which we already had 
labelled, A. The constant, °, is called the “phase” and depends on when we choose t = 0 
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to be. Suppose that we define time t = 0 to be when the mass is at x = A; in that case: 

x(t = 0) = A 
A cos(!t + °) = A 

A cos(!(0) + °) = A 
cos(°) = 1 

∴ ° = 0 

If we define t = 0 to be when the mass is at x = A, then the phase, °, is zero. In general, 
the value of ° can take any value between −ˇ and +ˇ3 and, physically, corresponds to our 
choice of when t = 0 (i.e. the position of the mass when we choose t = 0). 

Since we have determined the position as a function of time for the mass, its velocity 
and acceleration as a function of time are easily found by taking the corresponding time 
derivatives: 

x(t) = A cos(!t + °) 

v(t) = d x(t) = −A! sin(!t + °)
dt 
d 

a(t) = v(t) = −A!2 cos(!t + °)
dt 

Checkpoint 13-3 

What is the value of ° if we choose t = 0 to be when the mass is at x = 0 and moving 
in the positive x direction? 

A) ˇ 
B) −ˇ 
C) ˇ/2 
D) −ˇ/2 

The position of the mass is described by a sinusoidal function of time; we call this type of 
motion “simple harmonic motion”. The position and velocity as a function of time for a 
spring-mass system with m = 1 kg, k = 4 N/m, A = 10 m are shown in Figure 13.2 for two 
di�erent choices of the phase, ° = 0 and ° = ˇ/2. 

3The argument to the cosine function is in radians, since the angular frequency is usually defined in 
radians per second. The value of ° is constrained to be within that range, since the cosine function is 
periodic with a period 2ˇ. 
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Figure 13.2: Position and velocity as a function of time for a mass-spring system for two di�erent 
values of the phase, °. 

We can make a few observations about the position and velocity illustrated in Figure 13.2: 

• Changing the phase, °, results in an horizontal shift of the functions. A positive phase 
results in a shift of the functions to the left. 
• The highest speed corresponds to a position of x = 0 and the largest position, x = ±A, 

corresponds to a speed of zero. 
• ° = 0 corresponds to the “initial condition” at t = 0, where the position of the mass 

is x = A and its speed is v = 0. 
• ° = ˇ/2 corresponds to the “initial condition” at t = 0, where the position of the mass 

is x = 0 and its velocity is in the negative direction, and with maximal amplitude. 
• The position is always between x = ±A, and the velocity is always between v = ±A!. 

The motion of the spring is clearly periodic. If the period of the motion is T , then the 
position of the mass at time t will be the same as its position at t + T . The period of the 
motion, T , is easily found: 

r2ˇ m 
T = = 2ˇ 

! k 
(13.5) 
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And the corresponding frequency is given by: 

s 
1 ! 1 k 

f = = = (13.6)
T 2ˇ 2ˇ m 

It should now be clear why ! is called the angular frequency, since it is related to the 
frequency of the motion. 

Checkpoint 13-4 

In order to double the oscillation period of a spring-mass system, you can 
A) double the ratio of the mass over the spring constant. 
B) quadruple the mass. 
C) halve the spring constant. 
D) All of the above. 

13.1.3 Analogy with uniform circular motion 
We can make an analogy between the mathematical description of the motion of a spring-
mass system and that of uniform circular motion. Consider a particle that is moving along 
a circle of radius A, with constant angular speed !, as illustrated in Figure 13.3. 

Figure 13.3: Uniform circular motion of a particle along a circle of radius A with constant angular 
speed !. 

The angular position, �(t), of the particle is given by: 

�(t) = �0 + !t 

if the particle was located at an angular position �0 at t = 0 (�0 = 0 in Figure 13.3). The x 
coordinate of the particle is given by: 

x(t) = A cos(�(t)) = A cos(�0 + !t) 
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We can see that the x coordinate of the particle has the same functional form as the position 
for simple harmonic motion. The same is true for the particle’s velocity. The magnitude of 
the particle’s velocity is given by: 

v = !r = !A 
where r = A is the radius of the circle. The x component of the particle’s velocity is easily 
found from the figure and is given by: 

vx(t) = −v sin(�(t)) = −!A sin(�0 + !t) 
We can visualize simple harmonic motion as if it were the projection onto the x axis of 
uniform circular motion with angular speed ! about a circle with radius A. The phase ° 
corresponds to the angular position of the particle around the circle, �0, at time t = 0. 
When the particle crosses the y axis (x = 0), its velocity is in the x direction, so the x 
component of the velocity is maximal. When the particle crosses the x axis (x = ±A), the 
x component of the velocity is zero. 

Olivia’s Thoughts 

Here’s a visualization of uniform circular motion projected onto the x axis: 

Figure 13.4: Projecting the motion of a ball around a circle onto the x axis. 

Figure 13.4 shows a ball moving at a constant speed around a circle of radius A. In this 
diagram, I have taken snapshots of the ball’s motion at regular time intervals as the ball 
moves from Position 1 to Position 5. Since the speed is constant, the balls are evenly 
spaced out around the circle. At the bottom of the figure, you can see what it would 
look like if we only considered the motion in the x direction (this is the projection of the 
motion onto the x axis). You could also think of this as what the motion would look 
like if you looked up at the circle from below. As you can see, this projection looks a 
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lot like the motion of a mass on a spring. The motion of the ball is constrained between 
−A and +A (the turning points), and the velocity of the ball, in the x direction, will 
be highest when x = 0. There are tons of videos online that show animations of this 
concept, just look up “SHM as a projection of circular motion” and you will get lots of 
di�erent ways to visualize this. 

13.2 Vertical spring-mass system 
Consider the vertical spring-mass system illustrated in Figure 13.5. 

Figure 13.5: A vertical spring-mass system. 

When no mass is attached to the spring, the spring is at rest (we assume that the spring 
has no mass). We choose the origin of a one-dimensional vertical coordinate system (y axis) 
to be located at the rest length of the spring (left panel of Figure 13.5). When a mass m 
is attached to the spring, the spring will extend and the end of the spring will move to a 
new equilibrium position, y0, given by the condition that the net force on the mass m is 
zero. The only forces exerted on the mass are the force from the spring and its weight. The 
condition for the equilibrium is thus:X 

Fy = Fg − F (y0) = 0 
mg − ky0 = 0 

∴ mg = ky0 

Now, consider the forces on the mass at some position y when the spring is extended 
downwards relative to the equilibrium position (right panel of Figure 13.5). Newton’s Second 
Law at that position can be written as: X 

Fy = mg − ky = ma 
d2y

∴ m = mg − ky 
dt2 

Note that the net force on the mass will always be in the direction so as to “restore” the 
position of the mass back to the equilibrium position, y0. If the mass had been moved 
upwards relative to y0, the net force would be downwards. 



413 13.2. VERTICAL SPRING-MASS SYSTEM 

We can substitute the equilibrium condition, mg = ky0, into the equation that we obtained 
from Newton’s Second Law: 

d2y 
m = mg − ky 
dt2 

d2y 
m = ky0 − ky 
dt2 

d2y 
m = −k(y − y0)
dt2 

d2y k
∴ = − (y − y0)
dt2 m 

0 0Consider a new variable, y = y − y0. This is the same as defining a new y axis that is 
0shifted downwards by y0; in other words, this the same as defining a new y axis whose 

origin is at y0 (the equilibrium position) rather than at the position where the spring is at 
rest. Noting that the second time derivative of y0(t) is the same as that for y(t): 

0d2y d2 d2y= (y 0 + y0) = 
dt2 dt2 dt2 

we can write the equation of motion for the mass, but using y0(t) to describe its position: 

0d2y k 0= y
dt2 m 

This is the same equation as that for the simple harmonic motion of a horizontal spring-
mass system (Equation 13.2), but with the origin located at the equilibrium position 
instead of at the rest length of the spring. In other words, a vertical spring-mass system will 
undergo simple harmonic motion in the vertical direction about the equilibrium position. 
In general, a spring-mass system will undergo simple harmonic motion if a constant force 
that is co-linear with the spring force is exerted on the mass (in this case, gravity). That 
motion will be centred about a point of equilibrium where the net force on the mass is zero 
rather than where the spring is at its rest position. 

Checkpoint 13-5 

How does the period of motion of a vertical spring-mass system compare to the period 
of a horizontal system (assuming the mass and spring constant are the same)? 

A) The period of the vertical system will be larger. 
B) The period of the vertical system will be smaller. 
C) The period will be the same. 

13.2.1 Two-spring-mass system 
Consider a horizontal spring-mass system composed of a single mass, m, attached to two 
di�erent springs with spring constants k1 and k2, as shown in Figure 13.6. 



414 CHAPTER 13. SIMPLE HARMONIC MOTION 

Figure 13.6: A mass attached to two di�erent springs. 

We introduce a horizontal coordinate system, such that the end of the spring with spring 
constant k1 is at position x1 when it is at rest, and the end of the k2 spring is at x2 when it 
is as rest, as shown in the top panel. A mass m is then attached to the two springs, and x0 
corresponds to the equilibrium position of the mass when the net force from the two springs 
is zero. We will assume that the length of the mass is negligible, so that the ends of both 
springs are also at position x0 at equilibrium. You can see in the middle panel of Figure 
13.6 that both springs are in extension when in the equilibrium position. It is possible to 
have an equilibrium where both springs are in compression, if both springs are long enough 
to extend past x0 when they are at rest. 

If we assume that both springs are in extension at equilibrium, as shown in the figure, then 
the condition for equilibrium is given by requiring that the sum of the forces on the mass is 
zero when the mass is located at x0. The extension of the spring on the left is x0 − x1, and 
the extension of the spring on the right is x2 − x0: 

X 
Fx = −k1(x0 − x1) + k2(x2 − x0) = 0 

−k1x0 + k1x1 + k2x2 − k2x0 = 0 
−(k1 + k2)x0 + k1x1 + k2x2 = 0 

∴ k1x1 + k2x2 = (k1 + k2)x0 

Note that if the mass is displaced from x0 in any direction, the net force on the mass will 
be in the direction of the equilibrium position, and will act to “restore” the position of the 
mass back to x0. 

When the mass is at some position x, as shown in the bottom panel (for the k1 spring in 
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compression and the k2 spring in extension), Newton’s Second Law for the mass is: 
−k1(x − x1) + k2(x2 − x) = ma 

d2x −k1x + k1x1 + k2x2 − k2x = m 
dt2 

d2x −(k1 + k2)x + k1x1 + k2x2 = m 
dt2 

Note that, mathematically, this equation is of the form −kx + C = ma, which is the same 
form of the equation that we had for the vertical spring-mass system (with C = mg), so 
we expect that this will also lead to simple harmonic motion. We can use the equilibrium 
condition (k1x1 + k2x2 = (k1 + k2)x0) to re-write this equation: 

d2x −(k1 + k2)x + k1x1 + k2x2 = m 
dt2 

d2x −(k1 + k2)x + (k1 + k2)x0 = m 
dt2 

d2x
∴ −(k1 + k2)(x − x0) = m 

dt2 

Let us define k = k1 + k2 as the “e�ective” spring constant from the two springs combined. 
0We can also define a new coordinate, x = x − x0, which simply corresponds to a new x axis 

whose origin is located at the equilibrium position (in a way that is exactly analogous to 
what we did in the vertical spring-mass system). We can thus write Newton’s Second Law 
as: 

d2x −(k1 + k2)(x − x0) = m 
dt2 
0d2x −kx0 = m 

dt2 
0d2x k

∴ = − x 0 
dt2 m 

and we find that the motion of the mass attached to two springs is described by the same 
equation of motion for simple harmonic motion as that of a mass attached to a single spring. 
In this case, the mass will oscillate about the equilibrium position, x0, with a an e�ective 
spring constant k = k1 + k2. Combining the two springs in this way is thus equivalent to 
having a single spring, but with spring constant k = k1 + k2. The angular frequency of the 
oscillations is given by: s s 

k k1 + k2
! = = 

m m 

13.3 Simple harmonic motion 
In the previous sections, we modelled the motion of a mass attached to a spring and found 
that its position, x(t), was described by the following di�erential equation: 

d2x = −!2 x 
dt 

(13.7) 
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A possible solution to that equation was given by: 

x(t) = A cos(!t + °) (13.8) 

We then saw that the motion of a vertical spring-mass system, as well as that of a mass 
attached to two springs, could also be described by Equation 13.7. Any physical system 
that can described by Equation 13.7 is said to undergo “simple harmonic motion”, or to 
be a “simple harmonic oscillator”. If we find that the physical model of a system leads to 
Equation 13.7, then we immediately know that the position of system can be described by 
Equation 13.8. 

The key physical characteristic of a simple harmonic oscillator is that there is a “restoring 
force” whose magnitude is proportional to the displacement from the equilibrium position. A 
restoring force is a force that acts to place the system back in equilibrium, and is thus always 
in the direction that is opposite of the displacement relative to an equilibrium position. In 
the three systems that we considered so far, the net force on the mass was always such that 
it would restore the mass back to the equilibrium position, where the net force on the mass 
is zero. 

Many systems in nature are well modelled as simple harmonic oscillators. Some examples 
are: the motion of a pendulum as it oscillates, the motion of a buoy bobbing up and down 
in the sea, the motion of electrons in a shorted capacitor, and the vibrations of atoms in a 
molecule. 

13.4 The motion of a pendulum 
In this section, we show how and when the motion of a pendulum can be described as simple 
harmonic motion. Consider the simple pendulum that is constructed from a mass-less string 
of length, L, attached to a fixed point on one end and to a point mass m on the other, as 
illustrated in Figure 13.7. 

Figure 13.7: A simple pendulum which oscillates in a vertical plane. 

The pendulum can swing in the vertical plane, and we have shown our choice of coordinate 
system (the z axis, not shown, is out of the page). The only two forces on the mass are 
the tension from the string and its weight. We can describe the position of the mass by 
the angle, �(t), that the string makes with the vertical. We can model the dynamics of the 
simple pendulum by considering the net torque and angular acceleration about the axis of 



�

�

�

�

�

�

417 13.4. THE MOTION OF A PENDULUM 

rotation that is perpendicular to the plane of the page and that goes through the point on 
the string that is fixed. 

The force of tension cannot create a torque on the mass about the axis of rotation, as it is 
anti-parallel to the vector from the point of rotation to the mass. The net torque is thus 
the torque from the force of gravity: 

˝ net ~ = ~̋g 
~= ~r × Fg = (L sin �x̂ − L cos �ŷ) × (−mgŷ) 

= −mgL sin �ẑ  

where L is the magnitude of the vector, ~r, from the axis of rotation to where the force of 
gravity is exerted. The net torque is equal to the angular acceleration, , multiplied by the 
moment of inertia, I, of the mass: 

˝ net ~ = I~ 
−mgL sin �ẑ = mL2 ~ 

−g sin �ẑ = L~ 

where I = ML2 is the moment of inertia for a point mass a distance L away from the 
axis of rotation. For the position illustrated in Figure 13.7, the angular acceleration of 
the pendulum is in the negative z direction (into the page) and corresponds to a clockwise 
motion for the pendulum, as we would expect. The angular acceleration is the second time 
derivative of the angle, �: 

d2� = 
dt2 

We can thus re-write the equation that we obtained from the rotational dynamics version 
of Newton’s Second Law as: 

−g sin �ẑ = L~ 
d2� g= − sin � 
dt2 L 

where we only used the magnitudes in the second equation, since all of the angular quantities 
are in the z direction. This equation of motion for �(t) almost looks like the equation for 
simple harmonic oscillation for the angle � (except that we have sin � instead of �). However, 
consider the “the small angle approximation”4 for the sine function: 

sin � ̌  � 

If the oscillations of the pendulum are “small”, such that the small angle approximation is 
valid, then the equation of motion for the pendulum is: 

d2� g g= − sin � ̌ − � 
dt2 L L 
d2� g

∴ = − � (for small �)
dt2 L 

4Look up the Maclaurin/Taylor series for the sine function! 
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and the angle that the pendulum makes with the vertical is described by the equation for 
simple harmonic oscillation with angular frequency: 

r 
g

! = 
L 

The angle, �, as a function of time is thus described by the function: 

�(t) = �max cos(!t + °) 

where �max is the maximal amplitude of the oscillations and ° is a phase that depends on 
when we choose to define t = 0. 

Checkpoint 13-6 

Kaiden built a grandfather clock using a simple pendulum, but he found that the period 
was twice as large as as he wanted it to be. In order to halve the period of the pendulum, 
he can 

A) change the mass. 
B) halve the length of the string. 
C) quarter the length of the string. 
D) double the length of the string. 
E) quadruple the length of the string. 

13.4.1 The physical pendulum 
A physical pendulum is defined as any object that is allowed to rotate in the vertical plane 
about some axis that goes through the object, as illustrated in Figure 13.8. 

Figure 13.8: A physical pendulum which oscillates in a vertical plane about an axis through the 
object. 

The only forces exerted on the pendulum are its weight (exerted at its centre of mass) and 
a contact force exerted at the axis of rotation. The physical pendulum can be modelled in 
exactly the same way as the simple pendulum, except that we use the moment of inertia of 
the object about the axis of rotation. Only the weight results in a torque about the rotation 
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axis, since the contact force is exerted at the rotation axis: 

˝net = ˝g = I 
d2� −mgh sin � = I = I 
dt2 

where h is the distance from the axis of rotation to the centre of mass. In the small angle 
approximation, this becomes: 

d2� mgh = − � (for small �)
dt2 I 

and we find that the physical pendulum oscillates with an angular frequency: s 
mgh 

! = 
I 
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13.5 Summary 
Key Takeaways 

The equation of motion for the position, x(t), of the mass in a one-dimensional spring-
mass system with no friction can be written: s 

d2x 

dt2 = − k 
x = −!2 x 

m 

and has a solution: 

x(t) = A cos(!t + °) 

where A is the amplitude of the motion, ° is the phase, which depends on our choice 
of initial conditions (when we choose time t = 0), and !: s 

k 
! = 

m 

is the angular frequency of the motion. The mass will oscillate about an equilibrium 
position with a period, T , and frequency, f , given by: r2ˇ m 

T = = 2ˇ 
! k s 
1 ! 1 k 

f = = = 
T 2ˇ 2ˇ m 

The velocity and acceleration of the mass are found by taking the time derivatives of 
the position x(t): 

x(t) = A cos(!t + °) 

v(t) = d x(t) = −A! sin(!t + °)
dt 

d 
a(t) = d

2 
(−A! sin(!t + °)) = −A!2 cos(!t + °)

dt2 x(t) = 
dt 

The total mechanical energy of the mass, at some position x, is given by: 

1 1 2 1 
E = U + K = 2kx

2 + 2mv = 2kA
2 

and is conserved. 

Any system that can be described by the equation of motion: 

d2x = −!2 x 
dt2 
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is said to be a simple harmonic oscillator, and its position will be described by: 

x(t) = A cos(!t + °) 

A simple harmonic oscillator will always oscillate about an equilibrium position, where 
the net force on the oscillator is zero. The net force on a simple harmonic oscillator 
is always directed towards the equilibrium position, and has a magnitude proportional 
to the distance of the oscillator from its equilibrium position. The force is called a 
restoring force. A vertical spring-mass system, and a mass attached to two springs will 
both undergo simple harmonic motion about their respective equilibrium position. 

A simple pendulum will undergo simple harmonic oscillations, if the amplitude of the 
oscillations is small. The angular frequency for the oscillations of a simple pendulum 
only depends on the length of the pendulum: r 

g
! = 

L 

This is valid in the small angle approximation, where: 

sin � ̌  � 

A physical pendulum of mass m which oscillates about an axis through the object will 
also undergo simple harmonic oscillation in the small angle approximation. The angular 
frequency of the oscillations for a physical pendulum is given by: s 

mgh 
! = 

I 

where h is the distance between the centre of mass and the axis of rotation, and I is 
the moment of inertia of the object about the rotation axis. 
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Important Equations 

Position, velocity, and Mechanical energy: 
acceleration for SHM: 

x(t) = A cos(!t + °) 1 1 1 
E = U + K = 2kx

2 + 2mv 
2 = 2kA

2 

v(t) = d x(t) = −A! sin(!t + °)
dt 
d2 

a(t) = 
dt2 x(t) = −A!2 cos(!t + °) Simple pendulum (small angles): 

Period and frequency: r s g
! = k L! = 

m r2ˇ m 
T = = 2ˇ Physical pendulum (small angles): 

! k s 
1 ! 1 k sf = = = 
T 2ˇ 2ˇ m mgh 

! = 
I 

Important Definitions 

Angular frequency: is related to a usual frequency by a factor of 2ˇ. For an object 
rotating around a circle at constant speed, the angular frequency of the rotation is the 
same as the angular speed (the rate of change of a position angle). SI units: [rad/s]. 
Common variable(s): !. 
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13.6 Thinking about the material 

Reflect and research 

1. What is an example of a system that is a simple harmonic oscillator (not covered 
in this this chapter)? What is the restoring force for that system? 

2. What happens to the motion of a mass-spring system in the presence of friction? 
Sketch out the position as a function of time. 

3. What is a “damped” harmonic oscillator? 
4. What is a coupled oscillator? Find a video of a coupled oscillator online and 

describe the motion. 
5. How do the shock absorbers on a car relate to simple harmonic motion? 

To try at home 

1. Compare values of � and sin � to see when the small angle approximation holds. 
Does it matter if � is expressed in radians? 

2. Build a simple pendulum and describe the motion. Is it simple harmonic motion? 
Is it damped simple harmonic motion? Does the frequency depend on the length 
of the pendulum as expected? 

To try in the lab 

1. Theory lab: what is the function x(t) if there is a frictional force, proportional to 
velocity, −bv, exerted on the spring mass system? 

2. Propose an experiment to test whether the period of the motion of pendulum 
depends on the amplitude of the motion. 

3. Propose an experiment to test whether a physical pendulum is well-described by 
simple harmonic motion. 

Propose an experiment which measures the gravitational constant (G) using a torsion 
pendulum. 
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13.7 Sample problems and solutions 
13.7.1 Problems 
Problem 13-1: Ty (m = 30 kg) is trying out a new piece of equipment at his local 
playground. The equipment consists of a platform that is connected to two springs. The 
top spring (k1 = 2400 N/m) connects the platform to the playground structure and the 
bottom spring (k2 = 3480 N/m) (Figure 13.9) connects it to the ground. When no one is 
standing on the platform the platform is 50 cm o� the ground. When Ty is standing on 
the platform, he oscillates up and down, and the lowest point that the platform reaches is 
35 cm o� the ground. Show that this is simple harmonic motion and determine what Ty’s 
maximum speed will be. (Solution) 

Figure 13.9: Playground equipment made of a platform connected to two vertical springs. 

Problem 13-2: A torsional pendulum consists of a horizontal rod suspended from a 
vertical wire. When the rod is rotated so that it is displaced an angle � from equilibrium, 
the wire (which is now twisted) provides a restoring torque about the axis of the wire given 
by: 

˝ = −�� 

where � is the torsion coeÿcient, which depends on the sti�ness of the wire. You may notice 
that this formula closely resembles Hooke’s law. 

a) You construct a torsional pendulum by attaching two small spherical masses (you can 
assume they are point masses, each of mass m) to the ends of a thin (mass-less) rod 
of length L and attaching a wire to the centre of the rod (Figure 13.10). When you 
displace one of the masses by an angle � and release it, you find that it oscillates with 
a period T . Find an expression for the torsion coeÿcient, �, in term of T , m, and L. 
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Figure 13.10: A torsional pendulum. The right side shows a top view. 

b) You place two very large spheres, each of mass M , near each of the small spheres 
(as shown in Figure 13.11). Each of the small spheres will be acted on by a force of 
gravity from the nearest large sphere. The pendulum is at equilibrium when it is 
deflected an angle from its original equilibrium position. At the new equilibrium, 
the displacement vectors connecting the centres of large and small spheres have a 
magnitude d and are essentially perpendicular to the rod. Find an expression for the 
universal gravitational constant G, in terms of the masses, the length of the rod, and 
the period measured in part a). 
Fun fact! This set-up resembles an experiment performed by Henry Cavendish that 
was first used to determine the value for G and to test Newton’s Universal Theory of 
Gravity. 

Figure 13.11: Two very large spheres are placed near each of the small masses on the tor-
sional pendulum (top view). At the new equilibrium, each small mass is a distance d from 
the nearest large mass. 
(Solution) 
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13.7.2 Solutions 
Solution to problem 13-1: First, we need to solve for the new equilibrium position of 
the platform, x0, when Ty is standing on the platform. We define the x axis so that the 
origin is 50 cm above the ground (the equilibrium position when no one is standing on the 
platform) and choose the positive direction to be downwards (Figure 13.12). 

Figure 13.12: The platform when no one is standing on it. 

Even though we do not know the mass of the platform, or the actual resting lengths of the 
spring, we do not need to know these, since we can model the platform with nobody on it 
as a single spring with spring constant k = k1 + k2 and rest position x = 0. 

When Ty is standing on the platform, the sum of the forces is given by his weight and the 
force from the “e�ective spring”: X 

F = mg − (k1 + k2)x 

where we noted that, when the platform moves down, both the top and bottom spring will 
exert a force upwards (Figure 13.13). 

At equilibrium, the sum of the forces is equal to zero. We can use this to solve for the 
displacement at x0: 

0 = mg − (k1 + k2)x0 

mg (30 kg)(9.8 m/s2)
∴ x0 = = 

k1 + k2 (2400 Nm) + (3480 Nm) = 0.05 m 

We will confirm that this is a simple harmonic oscillator by showing that the system’s 
motion can be described by the equation: 

d2x = −!2 x 
dt2 

For some position x below equilibrium, we can rewrite Newton’s second law as: 

ma = mg − (k1 + k2)x 
d2x 

m = mg − (k1 + k2)x 
dt2 
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In order to show that this is simple harmonic motion, we need to combine the right hand 
side of the equation into one term. We found earlier that mg = (k1 + k2)x0, which we can 
use here: 

d2x 
m = (k1 + k2)x0 − (k1 + k2)x 
dt2 

d2x (k1 + k2)= (x0 − x)
dt2 m 
d2x (k1 + k2)= − (x − x0)
dt2 m 

0We now define an x0 axis such that x = x − x0. This means that the origin of the x0 axis 
is at the new equilibrium position: 

Figure 13.13: The forces acting on the platform and our new coordinate system. 

We can now rewrite our expression using the x0 axis: 
d2x (k1 + k2)= − x 0 
dt2 m 

This equation tellsq us that this is simple harmonic motion about the new equilibrium posi-
tion, where ! = (k1 + k2)/m. We know that the lowest point that the platform reaches 

0is 35 cm above the ground, which, on our x0 axis, corresponds to x = 10 cm (Figure 13.13). 
Thus, the amplitude of the oscillation is A = 0.1 m. Because this is simple harmonic motion, 
we know that the position of the platform can be described by the following function: 

x 0(t) = A cos(!t + °) 
0We set t = 0 to be when the platform is at its lowest point (x = A). The value of ° is thus: 

x 0(0) = A cos(!(0) + °) 
A = A cos(°) 
1 = cos(°) 

∴ ° = 0 
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The velocity is given by: 

v(t) = d x(t) = −A! sin(!t + °)
dt 

= −A! sin(!t) 

The speed will be maximized when sin(!t) = 1 or − 1 . So, the maximum speed will be: 

|v| = A! s 
(k1 + k2)|v| = A 

m s 
(2400 Nm + 3480 Nm) |v| = (0.1 m) 30 kg 

|v| = 1.4 m/s 

Solution to problem 13-2: 

(a) The only force that creates a torque on the masses is the restoring force from the 
twisting of the wire. The rotational dynamics version of Newton’s Second Law relates 
this torque to the angular acceleration, of the rod: 

I = −�� 

where I is the moment of inertia of the rod. Rewriting more explicitly as the second 
time derivative of the angle, we get: 

d2� 
I = −�� 
dt2 

d2� � = − � 
dt2 I 

By inspection, we can see that the torsional pendulum is a simple harmonic oscillator, 
where ! = 

q 
�/I. The period of the motion is therefore: 

2ˇ 
T = 

! s 
T = 2ˇ I 

� 

We can rearrange this expression to get �: 

4ˇ2I 
T 2 = 

� 
4ˇ2I 

� = 
T 2 
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The moment of inertia for one of the masses is m(L/2)2, where L/2 is the distance 
from the mass to the axis of rotation. The moment of inertia for the two masses 
attached to the mass-less rod is: � �2L mL2 

I = 2m = 2 2 

Putting this into our expression for �: 

2ˇ2mL2 
� = 

T 2 

(b) The two forces that provide torques for the small spheres are gravity and the force 
exerted by the twisting wire. Each of the small spheres will experience a force due to 
gravity from the nearest large sphere. At equilibrium, the force due to gravity on one 
of the small spheres is therefore: 

GMm 
Fg = 

d2 

Assuming that, at equilibrium, the force vector is perpendicular to the rod, the torque 
from one of the large spheres is just the force multiplied by the distance to the axis 
of rotation. Since there are two large spheres, each of which creates a torque on the 
pendulum, the total torque due to gravity is: 

L 
˝g = 2Fg 2 

= FgL 
GMm = L 
d2 

(Note that ˝g is the torque due to gravity at equilibrium only). We can use 
Newton’s second law for the pendulum to find an expression for G. At equilibrium, 
the net torque is equal to zero, and the angle of deflection is : 

˝net = ˝wire − ̋g 
0 = ˝wire − ̋g 
˝g = ˝wire 

GMm 
L = �� 

d2 

��d2 
∴ G = 

LMm 

Using our expression for � found in part a), this becomes: 

2ˇ2L�d2 
G = 

MT 2 



14 Waves 

In this chapter we introduce the tools to describe waves. Waves arise in many di�erent 
physical systems (the ocean, a string, electromagnetism, etc.), and can be described by a 
common mathematical framework. 

Learning Objectives 

• Understand the definition of di�erent types of waves. 
• Understand how to mathematically describe travelling and standing waves. 
• Understand how to model the propagation of a pulse on a rope. 
• Understand how to model the energy transported by a wave. 
• Understand how to model the interference of waves. 
• Understand how standing waves form and how to model them. 

Think About It 

Two waves travel down two identical strings (Figure 14.1). The frequency of the first 
wave is twice that of the second wave. Which wave will be faster? 

Figure 14.1: Two waves travelling down two identical strings. 

A) The first wave. 
B) The second wave. 
C) The speeds will be the same. 

14.1 Characteristics of a wave 
14.1.1 Definition and types of waves 
A travelling wave is a disturbance that travels through a medium. Consider the waves 
made by fans at a soccer game, as in Figure 14.2. The fans can be thought of as the medium 
through which the wave propagates. The elements of the medium may oscillate about an 
equilibrium position (the fans move a short distance up and down), but they do not travel 
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with the wave (the fans do not move horizontally with the wave). 

Figure 14.2: A transverse wave made by soccer fans moving up and down. 

Consider the ripples (waves) made by a rock dropped in a pond (Figure 14.3). The ripples 
travel outwards from where the rock was dropped, but the water itself does not move 
outwards. The individual water molecules will move in small circles about an equilibrium 
position, but they do not move along with the waves. 

Figure 14.3: A transverse wave travelling through water. The left panel shows the view from above 
as ripples move outwards. The right panel shows the motion of an individual water molecule as 
the wave is viewed from the side. 

We can distinguish between two classes of waves, based on the motion of the medium through 
which it propagates. With transverse waves, the elements of the medium oscillate back 
and forth in a direction perpendicular to the motion of the wave. For example, if you attach 
a horizontal rope to a wall and move the other end up and down (Figure 14.4), you can 
create a disturbance (a wave) that travels horizontally along the rope. The parts of the rope 
do not move horizontally; they only move up and down, about some equilibrium position. 
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Figure 14.4: A transverse wave travelling through a rope. The wave is created by moving one end 
of the rope up and down. 

With longitudinal waves, the elements of the medium oscillate back and forth in the 
same direction as the motion of the wave. If you clap your hands, you will create a pressure 
disturbance in the air that will propagate; this is what we call sound (a sound wave). The 
air molecules oscillate about an equilibrium position in the same direction as the wave 
propagates, but they do not move with the wave. 

Figure 14.5: A longitudinal sound wave travelling through the air. The air molecules move back 
and forth in the same direction as the wave, but they oscillate about an equilibrium position instead 
of moving with the wave. 

Furthermore, we can distinguish between “travelling waves”, in which a disturbance propa-
gates through a medium, and “standing waves”, which do not transport energy through the 
medium (for example, a vibrating string on a violin). 
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Checkpoint 14-1 

Are the waves propagating through a slinky when you compress and elongate it (Figure 
14.6) transverse or longitudinal? 

Figure 14.6: A wave travelling through a slinky. The wave is created when you compress or 
elongate the slinky 

A) Transverse 
B) Longitudinal 

Physically, a wave can only propagate through a medium if the medium can be deformed. 
When a particle in the medium is disturbed from its equilibrium position, it will experi-
ence a restoring force that acts to bring it back to its equilibrium position. Often, if the 
displacement of the particle from the equilibrium is small, the magnitude of that force is 
proportional to the displacement. Thus, as we will see, we can model the propagation of 
waves by treating the particles in the medium as simple harmonic oscillators. 

A source of energy is required in order to deform the medium and generate a wave. For 
example, that source of energy could be a speaker creating sound waves by pushing a 
membrane back and forth; speakers require energy, and are often rated by the electrical 
power that they convert into sound waves (e.g. a 50 W speaker consumes 50 W of electrical 
power to produce sound). 

Figure 14.7: A speaker creating sound sound waves. The membrane vibrates back and forth which 
deforms the air to create sound waves that propagate through the air. 

14.1.2 Description of a wave 
In this chapter, we will mostly discuss how to describe sinusoidal waves; those for which the 
displacement of particles in the medium can be described by a sinusoidally-varying function 
of position. As we will see, more complicated waves can always be described as if they 
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are the combination of multiple sine waves. We can use several quantities to describe a 
travelling wave, which are illustrated in Figure 14.8: 

• The wavelength, �, is the distance between two successive maxima (“peaks”) or 
minima (“troughs”) in the wave. 
• The amplitude, A, is the maximal distance that a particle in the medium is displaced 

from its equilibrium position. 
• The velocity, ~v, is the velocity with which the disturbance propagates through the 

medium. 
• The period, T , is the time it takes for two successive maxima (or minima) to pass 

through the same point in the medium. 
• The frequency, f , is the inverse of the period (f = 1/T ). 

Figure 14.8: Wavelength, velocity, and amplitude for a transverse wave on a rope. 

The wavelength, speed, and period of the wave are related, since the amount of time that 
it takes for two successive maxima of the wave to pass through a given point will depend 
on the speed of the wave and the distance between maxima, �. Since it takes a time, T , for 
two maxima a distance � apart to pass through a given point in the medium, the speed of 
the wave is given by: 

� 
v = = �f (14.1)

T 

Thus, of the three quantities (speed, period/frequency, and wavelength), only two are inde-
pendent, as the third quantity must depend on the value of the other two. The speed of 
a wave depends on the properties of the medium through which the wave prop-
agates and not on the mechanism that is generating the wave. For example, the 
speed of sound waves depends on the pressure, density, and temperature of the air through 
which they propagate, and not on what is making the sound. When a mechanism generates 
a wave, that mechanism usually determines the frequency of the wave (e.g. frequency with 
which the hand in Figure 14.8 moves up and down), the speed is determined by the medium, 
and the wavelength can be determined from Equation 14.1. 



435 14.2. MATHEMATICAL DESCRIPTION OF A WAVE 

Checkpoint 14-2 

What can you say about the sound emitted by a cello versus that emitted by a violin? 
A) The sound from the violin has a higher frequency. 
B) The sound from the cello has a longer wavelength. 
C) The sound from both instruments propagates at the same speed. 
D) All of the above. 

14.2 Mathematical description of a wave 
In order to describe the motion of a wave through a medium, we can describe the motion 
of the individual particles of the medium as the wave passes through. Specifically, we 
describe the position of each particle using its displacement, D, from its equilibrium position. 
Consider our rope example in which a sine wave is propagating through a medium (the rope) 
in the positive x direction, as shown in Figure 14.9 

Figure 14.9: The displacement (D) of points at di�erent positions (x) on a rope as a sine wave 
passes through. 

Figure 14.10: Displacement as a function of position for particles in a medium as a wave passes 
through. The dotted line shows the dipsplacement as a function of time 1 s after the solid line, and 
corresponds to a wave travelling towards the right. 
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The displacement, D, of each point at position, x, in the medium is shown on the vertical 
axis of Figure 14.10. The solid black line corresponds to a snapshot of the wave at time 
t = 0. The wave has an amplitude, A = 5 m, a velocity, v = 1 m/s, and a wavelength, 
� = 4 m. The dotted line corresponds to a snapshot of the wave one second later, at t = 1 s, 
when the wave has moved to the right by a distance vt = 1 m. 

It is important to note that Figure 14.10 is not restricted to describing transverse waves, even 
if the illustration suggests that the particles’ displacements (vertical axis) are perpendicular 
to the direction of propagation of the wave (horizontal). The quantity, D, that is plotted on 
the vertical axis corresponds to the displacement of a particle from its equilibrium position. 
That displacement could correspond to the longitudinal displacement of a particle in a 
longitudinal wave. 

At time t = 0 (solid line), the displacement of each point in the medium, D(x, t = 0), as a 
function of their distance from the origin, x, can be described by a sine function: �2ˇ � 

D(x, t = 0) = A sin x (14.2)
� 

This corresponds to the displacement being 0 at the origin and at any position, x, that is a 
multiple of the wavelength, �. 

If the wave moves with velocity v in the positive x direction, then at time t, the sine 
function in Figure 14.10 will have shifted to the right by an amount vt (dotted line). The 
displacement of a point located at position x at time t will be the same as the displacement 
of the point at position x − vt at time t = 0. For example, in Figure 14.10 the displacement 
of the point x = 2 m at time t = 1 s is the same as the displacement of the point at position 
x − vt = 1 m at t = 0. 

We can state this condition as: 

D(x, t) = D(x − vt, t = 0) 

That is, at some time t, the displacement of a point at position x is found by finding the 
position of the point at x−vt at t = 0. We already have an equation to find the displacement 
of a point at t = 0. Using the above condition, we can modify Equation 14.2 to write a 
function for the displacement of a point at position x at time t: �2ˇ � 

D(x, t) = A sin (x − vt)
� 

Noting that v/� = 1/T , we can write this as: 
�2ˇx 2ˇt� 

D(x, t) = A sin − 
� T 

In the above derivation, we assumed that at time t = 0, the displacement at x = 0 was 
D(x = 0, t = 0) = 0. In general, the displacement could have any value at x = 0 and 
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t = 0, so we can allow the wave to shift left or right by including a phase, °, which can be 
determined from the displacement at x = 0 and t = 0: 

�2ˇx 2ˇt � 
D(x, t) = A sin − + ° (14.3)

� T 

where ° = 0 corresponds to the displacement being zero at x = 0 and t = 0. 

Checkpoint 14-3 

What is the value of the phase ° if the displacement of the point at x = 0 is D = A/2 
at time t = 0? 

A) ˇ/6. 
B) ˇ/4. 
C) ˇ/3. 
D) ˇ/2. 

The equation above is written in terms of the wavelength, �, and period, T , of the wave. 
Often, one uses the “wave number”, k, and the “angular frequency”, !, to describe the 
wave. These are defined as: 

k = 2ˇ (14.4)
� 

! = 2ˇ (14.5)
T 

Using the wave number and the angular frequency removes the factors of 2ˇ in the expression 
for D(x, t), which can now be written as: 

D(x, t) = A sin (kx − !t + °) (14.6) 

It is important to note that the wave number, k, has no relation to the spring constant that 
we used for springs. 

Using Equation 14.1, we can also relate the wave number and angular frequency to the 
speed of the wave: 

� 
v = = 

T 

ˇ 

ˇ 
k 

! 

2 

2 = ! 
k 

14.2.1 The wave equation 
In Chapter 13, we saw that any physical system whose position, x, satisfies the following 
equation: 

d2x = −!2 x 
dt2 
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will undergo simple harmonic motion with angular frequency !, and that x(t) can be mod-
elled as: 

x(t) = A cos(!t + °) 

Similarly, any system, where the displacement of a particle as a function of position and 
time, D(x, t), satisfies the following equation: 

@2D 

@x2 = 1 
2v

@2D 

@t2 (14.7) 

is described by a wave that propagates with a speed v. The equation above is called the 
“one-dimensional wave equation” and would be obtained from modelling the dynamics of 
the system, just as the equation of motion for a simple harmonic oscillator can be obtained 
from Newton’s Second Law. For the harmonic oscillator, the properties of the system (e.g. 
mass and spring constant) determine the angular frequency, !. For a wave, the properties 
of the medium determine the speed of the wave, v. 

We use partial derivatives in the wave equation instead of total derivatives because D(x, t) 
is multi-variate. A possible solution to the one-dimensional wave equation is: 

D(x, t) = A sin (kx − !t + °) 

which is the function that we used in the previous section to describe a sine wave. 

Furthermore, if multiple solutions to the wave equation, D1(x, t), D2(x, t), etc, exist, then 
any linear combination, D(x, t), of the solutions will also be a solution to the wave equation: 

D(x, t) = a1D1(x, t) + a2D2(x, t) + a3D3(x, t) + . . . 

This last property is called “the superposition principle”, and is the result of the wave 
equation being linear in D (it does not depend on D2, for example). It is easy to check, for 
example, that if D1(x, t) and D2(x, t) satisfy the wave equation, so does their sum. 

In three dimensions, the displacement of a particle in the medium depends on its three 
spatial coordinates, D(x, y, z, t), and the wave equation in Cartesian coordinates is given 
by: 

@2D @2D @2D 1 @2D+ + = 
@x2 @y2 @z2 v2 @t2 

There are many functions that can satisfy this equation, and the best choice will depend 
on the physical system being modelled and the properties of the wave that one wishes to 
describe. 

14.3 Waves on a rope 
In this section, we model the motion of transverse waves on a rope, as this provides insight 
into many properties of waves that extend to waves propagating in other media. 
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14.3.1 A pulse on a rope 
We start by modelling how a single pulse propagates down a horizontal rope that is under 
a tension, FT 1. A wave is generally considered to be a regular series of alternating upwards 
and downwards pulses propagating down the rope. Modelling the propagation of a pulse is 
thus equivalent to modelling the propagation of a wave. Figure 14.11 shows how one can 
generate a pulse in a taught horizontal rope by raising (and then lowering) one end of the 
rope. 

Figure 14.11: (Left:) Pulling upwards and then downwards on a horizontal rope causes a pulse 
to form and propagate. After a short period of time, a pulse is seen propagating down the rope 
(right). 

We can model the propagation speed of the pulse by considering the speed, v, of point B 
that is shown in the left panel of Figure 14.11. Note that point B is not a particle of the 
rope, and is, instead, the location of the “front” of the disturbance that the pulse causes on 

~the rope. We model the rope as being under a horizontal force of tension, FT , and the pulse 
~is started by exerting a vertical force, F , to move the end (point A) of the rope upwards 

0 ~ 0with a speed, v . Thus, by pulling upwards on the rope with a force, F , at a speed v , we 
can start a disturbance in the rope that will propagate with speed v. 

In a short amount of time, t, the point A on the rope will have moved up by a distance v0t, 
whereas point B will have moved to the right by a distance vt. If t is small enough, we can 
consider the points A, B, and C to form the corners of a triangle. That triangle is similar 

~ ~to the triangle that is made by vectorially summing the applied force F and the tension FT , 
as shown in the top left of Figure 14.11. In this case, we mean the geometry term “similar”, 
which describes two triangles which have the same angles. We can thus write: 

0t 0F v v = = 
FT vt v 

0v
∴ F = FT 

v 

Consider the section of rope with length vt that we have raised by applying that force (we 
assume that the distance AB is approximately equal to the distance BC). If the rope has a 

1We do not use T for tension, so as to not confuse with the period of a wave. 
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mass per unit length µ, then the mass of the rope element that was raised (between points 
A and B) has a mass, m, given by: 

m = µvt 

The vertical component of the momentum of that section of rope, with vertical speed given 
by v , is thus: 

p = mv 0 = µvtv0 

~If the vertical force, F , was exerted for a length of time, t, on the mass element, it will give 
it a vertical impulse, Ft, equal to the change in the vertical momentum of the mass element: 

Ft = �p 
0Ft = µvtv 

∴ F = µvv 0 

We can equate this expression for F with that obtained from the similar triangles to obtain 
an expression for the speed, v, of the pulse: 

0v 
µvv 0 = FT 

vs 
FT∴ v = 
µ 

The speed of a pulse (and wave) propagating through a rope with linear mass density, µ, 
under a tension, FT , is given by: s 

FT 
v = (14.8) 

µ 

If the tension in the rope is higher, the pulse will propagate faster. If the linear mass density 
of the rope is higher, then the pulse will propagate slower. 

14.3.2 Reflection and transmission 
In this section, we examine what happens when a pulse travelling down a rope arrives at 
the end of the rope. First, consider the case illustrated in Figure 14.12 where the end of the 
rope is fixed to a wall. 

Figure 14.12: When the end of the rope is held fixed, the reflected pulse will be inverted. 
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When the pulse arrives at the wall, the rope will exert an upwards force on the wall, 
~Ffrom rope. By Newton’s Third Law, the wall will then exert a downwards force on the rope, 
~Ffrom wall. The downwards force exerted on the rope will cause a downwards pulse to form, 
and the reflected pulse will be inverted compared to the initial pulse that arrived at the 
wall. 

Now, consider the case when the end of the rope has a ring attached to it, so that it can 
slide freely up and down a post, as illustrated in Figure 14.13. 

Figure 14.13: When the end of the rope is free, the reflected pulse will be upright. 

In this case, the end of the rope will move up as the pulse arrives, which will then create a 
reflected pulse that is in the same orientation as the incoming pulse. 

Finally, consider a pulse that propagates down a rope of mass per unit length µ1 that is 
tied to a second rope with mass per unit length µ2, which have the same tension. When 
the pulse arrives at the interface between the two media (the two ropes), part of the pulse 
will be reflected back, and part will be transmitted into the second medium (Figure 14.14). 

Figure 14.14: A pulse can be both reflected and transmitted as it changes medium. Left panel: The 
pulse is transmitted from a lighter rope to a heavier rope. Right panel: The pulse is transmitted 
from a heavier rope to a lighter rope 

By considering the boundary conditions, one can derive the coeÿcient of reflection, R (see 
Problem 14-2 for the derivation). This coeÿcient is the ratio of the amplitude of the reflected 
pulse to the amplitude of initial pulse. The ratio is found to be: 

p p
µ1 − µ2

R = p
µ1 + pµ2 

When the pulse moves from a lighter rope to a heavier rope (µ1 < µ2), the reflected pulse 
will be inverted (R < 0). When the pulse moves from a heavier rope to a lighter rope 
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(µ1 > µ2), the reflected pulse will stay upright (R > 0). 

When the end of the rope is fixed to a wall (as in Figure 14.12), this represents a limiting 
case in which the linear mass density of the second material approaches infinity (µ2 !1): 

p p p
µ1 − µ2 − µ2

R = lim p = p = −1 
µ2!1 µ1 + pµ2 µ2 

which means that the amplitude of the reflected pulse will have the same magnitude as the 
initial pulse but will be in the opposite direction. When the end of the rope is free (Figure 
14.13), this represents another limiting case, where µ2 ! 0: 

p p p
µ1 − µ2 µ1

R = lim p = p = 1 
µ2!0 µ1 + pµ2 µ1 

which means that the amplitude of the reflected pulse will be in the same direction and 
have the same amplitude as the initial pulse. 

Checkpoint 14-4 

A wave propagates from a light rope to a heavier rope that is attached to the light rope 
(as the pulse illustrated in Figure 14.14). What can you say about the wavelength of 
the wave on either side of the interface? 

A) It is the same in both sections of rope. 
B) The wavelength in the heavy section of rope is longer. 
C) The wavelength in the light section of rope is longer. 

14.3.3 The wave equation for a rope 
In this section, we show how to use Newton’s Second Law to derive the wave equation for 
transverse waves travelling down a rope with linear mass density, µ, under a tension, FT . 
Consider a small section of the rope, with mass dm, and length dx, as a wave passes through 
that section of the rope, as illustrated in Figure 14.15. 

Figure 14.15: A small section of rope under tension as a wave passes through. 

We assume that the weight of the mass element is negligible compared to the force of tension 
that is in the rope. Thus, the only forces exerted on the mass element are those from the 
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~ ~tension in the rope, pulling on the mass element from each side, with forces, FT 1 and FT 2. 
In general, the forces from tension on either side of the mass element will have di�erent 
directions and make di�erent angles, �, with the horizontal, although their magnitude is 
the same. Let D(x, t) be the vertical displacement of the mass element located at position 
x. We can write the y (vertical) component of Newton’s Second Law for the mass element, 
dm, as: X 

Fy = FT 2y − FT 1y = (dm)ay 
@2D 

FT sin �2 − FT sin �1 = dm 
@t2 

@2D 

@t2
FT (sin �2 − sin �1) = dm 

where we used the fact that the force of tension has a magnitude, FT , on either side of the 
mass element, and that the acceleration of the mass in the vertical direction is the second 

! 

time-derivative of D(x, t), since for a transverse wave, this corresponds to the y position of 
a particle. We now make the small angle approximation: 

@D sin � ̌  tan � = 
@x 

in which the sine of the angle is approximately equal to the tangent of the angle, which is 
equal to the slope of the rope. Applying this approximation to Newton’s Second Law: 

@2D@D @D 
FT − = dm 

@t2@x right @x left 

where we indicated that the term in parentheses is the di�erence in the slope of the rope 
between the right side and the left side of the mass element. If the rope has linear mass 
density, µ, then the mass of the rope element can be expressed in terms of its length, dx: 

dm = µdx 
Replacing dm in the equation gives: ! 

@2D 

@t2 10 
@D @D 

FT − = µdx
@x right left @x 

@D − @D 
FT 

BBB@ CCCA = µ @
2D 

@t2 

@x @x 
right left 

dx 

The term in parentheses is the di�erence in the first derivatives of D(x, t) with respect to x, 
divided by the distance, dx, between which those derivatives are evaluated. This is precisely 
the definition of the second derivative with respect to x, so we can write: 

@2D @2D 
FT = µ

@x2 @t2 

@2D µ @2D
∴ = 
@x2 FT @t2 
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which is precisely the wave equation: 

@2D 1 @2D = 
@x2 v2 @t2 

with speed: s 
FT 

v = 
µ 

as we found earlier. Thus, we find that the speed of the propagation of the wave is related 
to the dynamics of modelling the system, and is not related to the wave itself. 

14.4 The speed of a wave 
In the previous section we found that the speed of a transverse wave in a rope is related to 
the ratio of the tension in the rope to the linear mass density of the rope: s 

FT 
v = 

µ 

The speed of a wave in any medium is usually given by a ratio, where the numerator is a 
measure of how easy it is to deform the medium, and the denominator is measure of the 
inertia of the medium. For a rope, the tension is a measure of how sti� the rope is. A 
higher tension makes it more diÿcult to disturb the rope from equilibrium and it will “snap 
back” faster when disturbed, so the pulse will propagate faster. The heavier the rope, the 
harder it will be for the disturbance to propagate as the rope has more inertia, which will 
slow down the pulse. 

The only way that a wave can propagate through a medium is if that medium can be 
deformed and the particles in the medium can be displaced from their equilibrium position, 
much like simple harmonic oscillators. The wave will propagate faster if those oscillators 
have a sti� spring constant and there is a strong force trying to restore them to equilibrium. 
However, if those oscillators have a large inertia, even with a large restoring force, they will 
accelerate back to their equilibrium with a smaller acceleration. 

In general, the speed of a wave is given by: s 
Sti�ness of medium 

v = Inertia of medium 

For example, the speed of longitudinal pressure waves in a solid is given by: s 
E 

v = 
ˆ 

where E is the “elastic (or Young’s) modulus” for the material, and ˆ is the density of the 
material. The elastic modulus of a solid is a measure of the material’s resistance to being 
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deformed when a force (or pressure) is exerted on it. The more easily it is deformed, the 
lower its elastic modulus will be. 

For the propagation of longitudinal pressure waves through a fluid, the speed is given by: s 
B 

v = 
ˆ 

where B is the bulk modulus of the liquid, and ˆ its density. 

Checkpoint 14-5 

A wave will propagate faster through... 
A) ice. 
B) water. 

14.5 Energy transported by a wave 
In this section, we examine how to model the energy that is transported by waves. Although 
no material moves along with a wave, mechanical energy can be transported by a wave, as 
evidenced by the damage caused by the waves from an earthquake. 

14.5.1 A wave as being made of simple harmonic oscillators 
Consider a wave that is propagating through a medium. We can model the motion of one of 
the particles in the medium as if it were the motion of a simple harmonic oscillator2. This 
is illustrated in Figure 14.16, which shows the displacement as a function of time for 
a point in the medium located at the origin when a wave passes through that point. The 
displacement of that point, at x = 0, if we choose ° = 0, is given by: 

D(x = 0, t) = A sin(−!t) 

Figure 14.16: The displacement as a function of time for one particle in the medium (at x = 0) is 
identical to the motion of a simple harmonic oscillator. 

2If the medium has a linear restoring force or if the amplitude of the oscillations is small. 
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The displacement of the particle in the medium is described by the same equation as the 
position of a simple harmonic oscillator, with the same angular frequency !, as that of the 
wave. 

We can also view a snapshot of the wave in time, and model the di�erent points in the 
medium as di�erent oscillators that all have di�erent displacements. This is shown in Figure 
14.17. 

Figure 14.17: The displacement as a function of position for di �erent points in a medium. Each 
point in the medium can be modelled as a simple harmonic oscillator. 

14.5.2 Energy transported in a one dimensional wave 
In this section, we show how to describe the energy transported by a one-dimensional wave 
along a rope. We model each particle in the rope through which the wave propagates as a 
small simple harmonic oscillator with mass m, attached to a spring with an e�ective spring 
constant, ks 3. 

Of course, there is no actual spring, but we can still determine an e�ective spring constant, 
ks, from the angular frequency: s 

ks
! = 

m 

∴ ks = !2 m 

which corresponds to the spring constant that would give the correct angular frequency for 
the particle of mass m. 

The total mechanical energy of one oscillator, Em, can be evaluated when the oscillator is 
at its maximal displacement, A, from its equilibrium, where its kinetic energy is zero: 

A2Em = 2
1 
ks = 2

1 
!2mA2 

If the rope is infinitely long, and carries a continuous wave, it will have an infinite amount 
of energy, as it will correspond to an infinite number of oscillators. Instead, let us calculate 

3We use ks for the spring constant, to distinguish it from k, the wave number. 
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how much energy, E�, is stored in the wave over one wavelength, �. To do so, we need to 
evaluate how many e�ective oscillators are contained in the rope, over a distance �, so that 
we can sum all of their energies together to obtain the energy stored in one wavelength: 

X 1 
E� = 2!

2mA2 

where the sum is over the number of oscillators in one wavelength. Of course, the rope is 
not actually made of oscillators, but we can model each section of rope of length dx has 
being an oscillator of mass dm = µdx, where µ is the linear mass density of the rope. The 
sum (integral) of the energy of the oscillators over one wavelength can thus be written as: 

Z � 
E� = 2

1 
!2µA2dx = 2

1 
!2µA2� 

0 

The energy stored in one wavelength is not a very useful property of a wave, since the total 
energy in the wave depends on the length of the wave. We can describe the rate at which 
energy is transmitted by the wave (its power), since we know how long, T , it will take the 
wave to travel one wavelength, and we just determined how much energy is stored in one 
wavelength. The average power with which energy is transported by a wave is given by: 

E� 2
1 !2µA2� 1 

P = = = 2!
2µA2 v 

T T 

where T is the period of the wave, and v = �/T is the speed of the wave. The power 
transmitted by a wave on a rope is thus given by: 

P = 2
1 
!2µA2 v (14.9) 

We can see that the power transmitted by a wave goes as the amplitude, A, of the wave 
squared. It thus takes four times more energy to double the amplitude of waves that are 
sent down a rope. 

14.5.3 Energy transported in a spherical, three-dimensional, wave 
In this section, we show how to model the rate at which energy is transported in spherical 
three-dimensional waves, such as the sound waves that are generated when you clap your 
hands. A spherical sound wave is a pressure disturbance in the air that propagates spheri-
cally outwards from a point of emission. We can think of thin spherical shells containing air 
that expand and contract about their equilibrium position as the wave moves through the 
shells. The motion of each shell is similar to that of a simple harmonic oscillator of mass 
dm, where dm is the mass of air in the oscillating shell. 
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Figure 14.18: Left: We divide the air into thin spherical shells. Here we represent three shells (the 
black circles). Center: When you clap, the innermost shell is given energy and expands. Right: 
Energy is transferred to the next shell, which expands as the first shell contracts. This is how 
the wave propagates outwards. When the shells are closer together, the air molecules are closer 
together and exert a pressure that tries to expand the shell. 

Consider a shell at a radial position, r, from the source, with thickness dr, and mass dm: 

Figure 14.19: A spherical shell at radial position r with thickness dr 

If the medium has a density, ˆ, then the mass of the shell is given by: 

dm = ˆdV = ˆ4ˇr2dr 

where dV = 4ˇr2dr is the volume of the shell. Again, if we model each shell as a simple 
harmonic oscillator with mass dm, then the energy, dE, stored in that oscillating shell is 
given by: 

1 1 1 
dE = 2ksA

2 = 2!
2dmA2 = 2!

2A2ˆ4ˇr2dr = 2ˇˆ!2A2 r 2dr 

where ! is the angular frequency of the wave, and A is the amplitude of the wave. We 
expressed the e�ective spring constant, ks, in terms of the angular frequency of the simple 
harmonic oscillator and its mass, as we did in the previous section. It now makes less sense 
to determine the energy that is stored in one wavelength of the wave because the energy, 
dE, stored in one shell depends on the location, r, of that shell. This was not the case for 
a one-dimensional wave, where the energy stored in one oscillator did not depend on the 
position of that oscillator. 
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The rate at which energy is transported by the wave is given by: 
dE 

P = 
dt 

We can use the Chain Rule to change this into a derivative over r: 
dE dr dE 

P = = v 
dr dt dr 

drwhere 
dt 

= v is the speed of the wave (the rate of change of the radius of a shell). The 
power transmitted by the spherical wave is thus given by: 

2P = dE v = 2ˇˆ!2A2 r v 
dr 

where the power appears to depends on how far you are from the source (r). 

Suppose that you have a 50 W speaker emitting sound; each radial shell emanating from 
the speaker must transport energy at a rate of 50 W. This is simply a statement that the 
energy radiated by the speaker has to move from one shell to the next and be conserved. 
Since the power transported by a shell appears to depend on the radius of the shell, if the 
power transmitted by each shell is the same, then the amplitude of the wave in each shell 
must decrease, so that the power does not actually depend on the radius of the shell. In 
particular, for a spherical wave, the amplitude will decrease as a function of distance from 
the source: 

P = constant s 
1 P

∴ A = 
r 2ˇˆ!2v 

This is very di�erent from the propagation of a one-dimensional wave, in which the am-
plitude does not change with distance. In practice, if there are energy losses due to, say, 
friction, then the amplitude of a one-dimensional wave would also decrease with distance 
from the source, but this is a di�erent e�ect. 

Olivia’s Thoughts 

Here’s a slightly di�erent way to think about why the amplitude of the wave decreases 
as you get further from the source. When a spherical wave travels outwards, energy 
is passed from one shell to the next. The outer shells are bigger than the inner shells, 
and so they will contain more particles. Because of conservation of energy, when the 
energy is transferred from one shell to the next, the total energy stays the same. In 
the outer shells, the energy must be shared between a greater number of particles, so 
each particle gets less energy, and therefore oscillates with a smaller amplitude than 
the particles in the previous shell did. 

To remember this, imagine the shells in Figure 14.18 are circles of kids standing side 
by side. The innermost circle has 10 kids and the outermost circle has 100 kids. If you 
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have 100 candies, and you give them to the kids in the innermost circle, each will get 
10 so they will get really hyper and start jumping around a lot. If you instead give the 
100 candies to the kids in the outermost circle, each will only get one. The kids will 
only get a little bit hyper and jump around less. 

The “intensity of a wave”, I, is defined as the power per unit area that is transmitted by 
the wave. For a spherical wave front at radial position r, with area 4ˇr2, the intensity of 
the wave is defined as: 

I = P = 2
1 ̂
!2A2 v4ˇr2 

Usually, the intensity of a wave is something that you can measure, as it corresponds to the 
power delivered into some measuring device with a known surface area. For example, we 
cannot directly measure the total power that is transported by the waves from an earthquake, 
as we would need an instrument that could encompass the entire resulting wave. Instead, 
we can measure the intensity of waves from the earthquake by measuring how much power 
is delivered into some instrument with a known surface area. By knowing our distance from 
the earthquake, we could then determine the total power output of the earthquake. 

The intensity is a measure of how much energy is delivered per unit area by a wave and goes 
down as the square of the distance from the source (since A / 1/r). If the source of the 
wave is an earthquake, then your house will have four times less damage than your friend’s, 
if your house is located only twice as far from the epicentre as your friend’s. You will cause 
four times less damage to your ears if you move only twice as far away from the stage at a 
rock concert. 

14.6 Superposition of waves and interference 
In this section, we consider what happens when two (or more) di�erent waves propagate in 
a medium and interfere with each other. The superposition principle states that if D1(x, t), 
D2(x, t), etc, are functions that satisfy the wave equation, then any linear combination of 
these functions, D(x, t): 

D(x, t) = a1D1(x, t) + a2D2(x, t) + a3D3(x, t) + . . . 

will also satisfy the wave equation. 

Suppose that you hold one end of a rope and shake it with a specific frequency, creating 
waves that are described by: 

D1(x, t) = A1 sin(k1x − !1t + °1) 

Your friend, at the other end of the rope shakes the rope with a di� erent frequency, creating 
waves that propagate in the opposite direction and that are described by: 

D2(x, t) = A2 sin(k2x + !2t + °2) 



451 14.6. SUPERPOSITION OF WAVES AND INTERFERENCE 

The superposition principle states that the net displacement at any position x at some time 
t can be found by summing the displacement from the two waves together: 

D(x, t) = A1 sin(k1x − !1t + °1) + A2 sin(k2x + !2t + °2) 

The superposition of waves is illustrated in Figure 14.20, which shows three waves, and their 
resulting sum in the bottom most panel. 

Figure 14.20: The superposition of three waves to create a resulting wave shown in the bottom 
panel. The waves are shown as the displacement as a function of position at a fixed instant in 
time. 
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The resulting wave is created by the “interference” of the three waves, and mathematically 
is simply a sum of the three individual waves at each position (and instant in time). The 
resulting wave in this example has a rather complicated shape, that is no longer described 
by a sine function. However, by the superposition principle, it is a valid solution to the 
wave equation4. 

The individual waves in the top three panels of Figure 14.20 all have an amplitude of 5 m. 
The resulting wave, at some points (e.g. at x = 2 m), has an amplitude that is larger 
than any of the individual waves; we say that, at those positions, the individual waves have 
“constructively interfered”. In other locations (e.g. at x = 6 m), the resulting wave has a 
smaller amplitude than the individual waves, and we say that the individual waves have 
“destructively interfered”. The interference between waves can be observed easily on a water 
surface, for example by observing the constructive and destructive interference pattern of 
waves that originate from two pebbles being dropped at the same time a certain distance 
apart. Constructive interference between waves is also thought to be behind some reports 
of gigantic waves observed out at sea. 

If two waves have the same wavelength and amplitude, it is possible for them to completely 
destructively interfere, resulting in no net wave. Similarly, they can also completely con-
structively interfere, resulting in a wave with a larger amplitude. Complete destructive 
and constructive interference are illustrated in the left and right panel of Figure 14.21, 
respectively. 

4Fourier’s Theorem states that any periodic function can be described as the linear combination of sine 
(or cosine) functions. This is the reason why we focused on using a sine function to describe a wave. 
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Figure 14.21: Destructive (left) and constructive (right) interference of waves. 

14.7 Standing waves 
As we saw in the last section, when waves have the same frequency, it is possible for them 
to interfere completely, either destructively or constructively. Waves of the same frequency 
that interfere can be generated by propagating waves along a string, as the reflected waves 
from the end of the string will have the same frequency as, and interfere with, the original 
waves. In general, the resulting wave will be quite complicated, but if you “choose” the 
frequency (or wavelength) of the generated waves precisely, then the waves will interfere 
and create a “standing wave”. The standing wave is named this way because it does not 



454 CHAPTER 14. WAVES 

appear to propagate along the string. Instead, each point on the string will oscillate with 
an amplitude that depends on where the point is located along on the string. In contrast, 
for a travelling wave, all of the points oscillate with the same amplitude. 

Three standing waves of di�erent frequencies (wavelengths) are illustrated in Figure 14.22. 

Figure 14.22: The first three standing waves on a string. 

The solid line in each of the three panels corresponds to one particular snapshot of the 
standing wave at a particular instant in time. The dashed lines correspond to snapshots 
at di�erent times. In particular, there is a time where the displacement of all points on 
the string is zero. Each point on the string vibrates with a di�erent amplitude, which 
corresponds to the solid line (and the opposite dashed line). Certain points do not oscillate 
at all; these are called “nodes”. The points at the end of the string are always nodes. Certain 
points vibrate with a maximal amplitude; these are called “anti-nodes”. 

In general, if you pluck a taught string (such as a guitar string), you will create a complicated 
wave, equivalent to many sine waves with di�erent frequencies, that propagate outwards 
from the point where the string was plucked. Those sine waves will be reflected by the ends 
of the string and interfere with each other. Most of the waves will interfere in a complicated 
way and decay away. Those waves that have the correct frequency to create standing waves 
will persist on the string for a longer period of time. The string will eventually vibrate as 
a superposition of the fundamental frequency (the standing wave with one anti-node, also 
called the first harmonic), and the higher “harmonics” (those standing waves with more 
anti-nodes). 

The wavelength of the fundamental standing wave for a string of length, L, is given by the 
condition: 

� = 2L 
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In general, the nth harmonic will have a wavelength of: 

�n = 2L n = 1, 2, 3, . . . (14.10) 
n 

The corresponding frequency is give by: 

fn = nv 2L (14.11) 

where v = f� is the speed of the waves on the string. 

A standing wave is the result of two waves of the same frequency and amplitude travelling 
in opposite directions. Thus, there is no energy that is transmitted by a standing wave (e.g. 
through the nodes at the end of the string). Although we described standing waves for a 
string, these are not restricted to one dimensional waves. For example, the membrane of a 
drum can also support standing waves. 

Checkpoint 14-6 

A standing wave (composed of two travelling waves) has a maximum amplitude A. 
What must the amplitude A0 of each travelling wave be? 

A) A0 = 1/4A 
B) A0 = 1/2A 
C) A0 = A 
D) A0 = 2A 

In general, most objects can be characterized by a harmonic (or “resonant”) frequency that 
corresponds to the standing waves that can exist in the object. If that object is, say, shaken, 
many waves will propagate through the object and cancel out, except those that have the 
resonant frequency. Relatively small vibrations, if at the correct frequency, can lead to large 
standing waves that can result in damage to the object. 

14.7.1 Mathematical description of a standing wave 
A standing wave is the result of two identical waves, travelling in opposite directions, inter-
fering. Consider the waves described by D1(x, t) and D2(x, t) that are modelled as follows: 

D1(x, t) = A sin(kx − !t) 
D2(x, t) = A sin(kx + !t) 

These two waves are identical, but travel in opposite directions (due to the sign in front of 
the !t). The superposition of these waves is given by: 

D(x, t) = D1(x, t) + D2(x, t)� � 
= A sin(kx − !t) + sin(kx + !t) 
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We can use the following trigonometric identity to combine these into a single term: ! ! 
�1 + �2 �1 − �2sin �1 + sin �2 = 2 sin cos2 2 

The resulting wave is thus given by: ! ! 
kx − !t + kx + !t kx − !t − kx − !t 

D(x, t) = 2A sin cos2 2 
= 2A sin(kx) cos(!t) 

If this wave describes the wave on a string of length L with both ends held fixed, and we 
set the origin of our coordinate system at one end of the string, then we require that the 
displacement at x = 0 and x = L is always zero. The first condition is always true, and the 
second requires that: 

D(x = L, t) = 0 
sin(kL) = 0 

∴ kL = nˇ n = 1, 2, 3, . . . 

and kL must be a multiple of 2ˇ. In terms of the wavelength, �, this gives: 

2ˇ 
L = nˇ 

� 
2L

∴ � = 
n 

as we argued before, for the wavelength of the n-th harmonic. The standing wave for the 
n-th harmonic is thus described by � � 

D(x, t) = 2A sin nˇ
x cos(!t) (14.12)

L 

A point at position x will behave like a simple harmonic oscillator and oscillate with an 
amplitude given by: � � 

A(x) = 2A sin nˇ
x 

L 

Each point on the string will vibrate with the same angular frequency, !, but with a di�erent 
amplitude, depending on their position. For the n-th harmonic, the nodes of the standing 
wave are located at: � � 

sin nˇ
x = 0 

L 
nˇ

x = mˇ m = 0, 1, 2, . . . 
L 

L
∴ x = m 

n 
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Thus, for example, the second node (m = 2) of the third harmonic (n = 3), is located at 
x = 2L/3, as can be seen in the bottom panel of Figure 14.22. The anti-nodes are located 
at: 

nˇ

L 
x = mˇ 

2 m = 1, 3, 5, 7, . . . 
L

∴ x = m2n 

where, for example, the first anti-node of the first harmonic is located at x = L/2, as can 
be seen in the top panel of Figure 14.22. 

Checkpoint 14-7 

A standing wave on a string (fixed at both ends) has a fundamental frequency f . If 
you quadruple the tension in the string, how can you change the length of the string so 
that the fundamental frequency remains the same? 

A) half the length. 
B) double the length. 
C) triple the length. 
D) quadruple the length. 

Olivia’s Thoughts 

Let’s take another look at the equation for a standing wave. In this section, we saw 
that the equation for a standing wave is given by: 

D(x, t) = 2A sin(kx) cos(!t) 

We can rearrange this equation to get: 

D(x, t) = 2A cos(!t) sin(kx)| {z }
amplitude 

This looks like the equation for a stationary wave (the displacement is a function of 
x) with an amplitude 2A cos(!t). We know that cos(!t) will give a value that ranges 
between -1 and 1, so we can just think of cos(!t) as a scaling term that modifies the 
amplitude of the wave. 

When we look at a standing wave, this is exactly what we see - a wave whose amplitude 
is always changing but that does not travel one way or the other. Figure 14.23 shows 
a few snapshots of what the wave looks like at di�erent times. 
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Figure 14.23: A standing wave as a stationary wave whose amplitude changes over time 

We can see from the equation that the maximum amplitude will be 2A. This makes sense 
when we remember that the standing wave is made of two travelling waves of amplitude 
A. As these waves move, there will be moments when they completely constructively 
interfere, which is when the amplitude of the standing wave is maximized. When they 
completely destructively interfere, the amplitude is zero. 
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14.8 Summary 

Key Takeaways 

A travelling wave is the propagation of a disturbance with a speed, v, through a medium. 
Particles in the medium oscillate back and forth, about an equilibrium position, as a 
wave passes through the medium, but they are not carried with the wave. Only energy 
is transmitted by a wave. 

In a transverse wave, the particles in the medium oscillate in a direction that is perpen-
dicular to the velocity of the wave. In a longitudinal wave, the particles of the medium 
oscillate in a direction that is co-linear with the velocity of the wave. 

A sine wave is described by it frequency, f , its wavelength, �, its amplitude, A, and 
its speed, v. We can also use the period of the wave, T , in lieu of the frequency. The 
frequency and wavelength of a wave are related to each other by the speed of the wave: 

v = �f 

Mathematically, a one-dimensional travelling sine wave moving in the positive x direc-
tion can be described by: 

D(x, t) = A sin(kx − !t + °) 

where D(x, t) is the displacement of the particle in the medium at position x at time 
t. ° is the phase of the wave and depends on our choice of when t = 0. k is the wave 
number of the wave, and ! its angular frequency. These are related to the wavelength 
and frequency, respectively: 

2ˇ 
k = 

� 
2ˇ 

! = 2ˇf = 
T 

If a dynamical model (e.g. Newton’s Second Law) of a system/medium leads to an 
equation with the following form: 

@2D 1 @2D = 
@x2 v2 @t2 

then waves with a speed of v can propagate through the system/medium. 

The speed of a wave on a rope of linear mass density, µ, under a tension, FT , is given 
by: s 

FT 
v = 

µ 
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Generally, the speed of a wave in a medium depends on the elasticity of the medium 
when it is deformed and the inertia of the particles in the medium. In order for a 
wave to propagate through a medium, the particles in the medium must be able to be 
displaced from their equilibrium position. 

A pulse travelling through a rope will get reflected at the end of the rope and travel 
back in the opposite direction. If the end of the rope is fixed, the reflected pulse will 
be inverted. If the end of the rope can move, the reflected pulse will be in the same 
orientation as the incoming pulse. 

A one-dimensional wave in a rope of linear mass density, µ, will transfer energy at an 
average rate: 

P = 2
1 
!2µA2 v 

A three dimensional spherical wave through a medium with density ˆ will transfer 
energy at an average rate: 

P = 2ˇˆ!2 r 2 v 

at a distance r from the source of the wave. The amplitude of a spherical wave will 
decrease as the distance away from the source increases: s

1 P 
A = 

r 2ˇˆ!2v 

The intensity of a spherical wave is defined as the power per unit area transferred by 
the wave, and is given by: 

I = P = 2
1 ̂
!2A2 v4ˇr2 

The superposition principle states that if D1(x, t), D2(x, t), . . . , are functions that 
satisfy the wave equation, then any linear combination of these functions, D(x, t): 

D(x, t) = a1D1(x, t) + a2D2(x, t) + a3D3(x, t) + . . . 

will also satisfy the wave equation. 

Di�erent waves can interfere constructively or destructively in a medium, and the re-
sulting wave is given by the sum of the functions describing the interfering waves. 

Standing waves are formed when waves of the same frequency and amplitude travelling 
in opposite directions interfere. For standing waves on a string, the displacement of a 
particle on the string is given by: � � 

D(x, t) = 2A sin nˇ
x cos(!t)

L 
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where n is the number of the harmonic and L is the length of the string. In particular, 
a particle at position x will move up and down as a simple harmonic oscillator with 
amplitude: � � 

A(x) = 2A sin nˇ
x 

L 

The condition for a standing wave to exist on a string is that the length of the string 
must be equal to a multiple of half of the wavelength of the standing wave: 

L = n� n = 1, 2, 3, . . .2 
2L 

� = 
n 
nv 

f = 2L 
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Important Equations 

Travelling 1d waves: Spherical waves: 

D(x, t) = A sin(kx − !t + °) P = 2ˇˆ!2 r 2 v s2ˇ 1 Pk = 
� A = 

r 2ˇˆ!2v2ˇ 
! = 2ˇf = P 1 

T I = = 2ˆ!
2A2 v4ˇr2 

v = �f 

Standing waves: 
Wave equation: � �

nˇ 
@2D 1 @2D D(x, t) = 2A sin 

L
x cos(!t) 

= 
@x2 v2 @t2 � � 

A(x) = 2A sin nˇ
x 

L 
Wave velocity: s s s Standing waves on a string (both FT E B 

v = v = v = ends fixed): 
µ ˆ ˆ 

L = n� n = 1, 2, 3, . . .Power (1d wave in a rope): 2 
2L1 � = 

P = 2!
2µA2 v n 

nv 
f = 2L 

Important Definitions 

Wavelength: The distance between two successive maxima (”peaks”) or minima 
(troughs) in a wave. SI units: [m]. Common variable(s): �. 

Amplitude: The maximal distance that a particle in a medium is displaced from its 
equilibrium position when a wave passes by. SI units: [m]. Common variable(s): A. 

Frequency: The number of complete oscillations in one second of a particle in a 
medium as a wave passes by. SI units: [s−1]. Common variable(s): f . 

Bulk modulus: A measurement of an object or substance’s resistance to compression. 
SI units: [Pa]. Common variable(s): B. 

Volume mass density: The mass per unit volume of an object. SI units: [kg · m−3]. 
Common variable(s): ˆ. 

Intensity: The power per unit area transmitted by a wave. SI units: [W · m−2]. 
Common variable(s): I. 
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14.9 Thinking about the material 

Reflect and research 

1. Look up a video of the Tacoma Narrows bridge failing, and explain what hap-
pened. 

2. Why do airlines ask you to turn o� your electronic devices during take-o� ? 
3. Is it true that there is no sound in space? 
4. What type of wave was first observed in 2015? 

To try at home 

1. Confirm that the reflected pulse from a rope on a string is inverted when the end 
of the rope is fixed. 

2. Think of di�erent ways you could create a standing wave at home and try one 
of them out. How many harmonics can you create? How can you modify your 
set-up to create more harmonics? 

To try in the lab 

1. Propose an experiment to verify the relation v = �f . 
2. Propose an experiment which uses di�raction to measure small distances. 
3. Propose an experiment to determine the chemical composition of the sun using a 

CD. 
4. Design a device which acts as a echolocator and test its e �ectiveness in di�erent 

scenarios. 
5. Propose an experiment to observe triboluminescent x-rays produced by ripping 

scotch tape o� of a surface. 
6. Investigate and model refraction. 
7. Investigate and model the doppler e�ect. 
8. Investigate and model how standing waves behave on a stretched string, tube, or 

2D medium. 
9. Investigate and model audible beats. 

10. Investigate and model double-slit interference. 
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14.10 Sample problems and solutions 
14.10.1 Problems 
Problem 14-1: A clarinet can be modelled as an air column that is open at one end and 
closed at the other end, as in Figure 14.24. 

Figure 14.24: A clarinet (of length L) modelled as an air column that is closed at one end. 

a) Draw the first three harmonics for a clarinet (draw the maximum displacement of the 
air molecules as a function of distance in the clarinet). 

b) Find an expression for the wavelength of the nth harmonic for a clarinet of length L. 
c) If a clarinet is 60 cmlong, what is the lowest frequency note it can produce? 

(Solution) 

Problem 14-2: A pulse propagates down a rope of mass per unit length µ1 that is tied to 
a second rope with a mass per unit length µ2 (Figure 14.25). The tensions in the ropes are 
equal in magnitude. 

Figure 14.25: An incident pulse propagates through a rope connected to a another rope with a 
di�erent linear mass density. When it reaches the boundary, part of the pulse will be reflected and 
part will be transmitted. 

a) Write the displacements of the incident pulse, the reflected pulse, and the transmitted 
pulse in the form D(x, t) = D(a(t ± x/v)), where a is some constant that you need 
to determine, and the choice of + or − depends on the direction that the pulse is 
travelling in. 

b) The reflection coeÿcient, R, is the ratio of the amplitude of the reflected pulse to 
the amplitude of the incident pulse. Using the boundary conditions, show that the 
reflection coeÿcient is given by: 

p p
µ1 − µ2

R = p
µ1 + pµ2 
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Note: The boundary is the interface between the two ropes. By “using the boundary 
conditions”, we mean that you should think about what must be true at the boundary for 
this problem to make sense. Boundary conditions are often more obvious than you think! 

(Solution) 
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14.10.2 Solutions 
Solution to problem 14-1: 

(a) The first three harmonics are are shown in Figure 14.26. 

Figure 14.26: The first three harmonics for a clarinet. There is a node at the fixed end and 
an anti-node at the free end. 

(b) The equation for a standing wave is: 

D(x, t) = 2A sin(kx)cos(!t) 

We let the fixed end be at x = 0. At the fixed end, the displacement is equal to zero. 
At the free end (x = L) the displacement is maximized. The first condition is always 
true. The second condition will be met when: 

sin(kL) = 1 
∴ kL = ˇ/2, 3ˇ/2, ... 

This condition can be expressed as: 

(2n − 1)ˇ 
kL = 2 

2ˇL (2n − 1)ˇ = 
� 2 

4L
∴ � = 2n − 1 

where, in the second line, we used k = 2ˇ/�. We can check that this formula works 
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for the first three harmonics: 

n = 1 : 4L 
� = 2(1) − 1 

1 
L = 4� 

n = 2 : 4L 
� = 2(2) − 1 

3 
L = 4� 

n = 3 : 4L 
� = 2(3) − 1 

5 
L = 4� 

Referring back to our diagram (Figure 14.26), we can see that our formula holds true 
for the first three harmonics (i.e. for the first harmonic, the length of the clarinet is 
equal to 1/4 of a wavelength, etc.) 

(c) We found that the wavelength for the nth wavelength is given by: 

4L 
� = 2n − 1 

Writing � in terms of the velocity, v, and frequency, f , gives: 

v 4L = 
f 2n − 1 

v(2n − 1)
∴ f = 4L 

From this formula, we can see that, if we want to find the lowest frequency, we want 
n = 1. The length of the clarinet is 0.6 m, and v is the speed of sound in air which is 
343 m/s at room temperature. Using these values, the lowest frequency is: 

(343 m/s)(2(1) − 1)
f = 4(0.6 m) 
f = 143 Hz 

Discussion: This frequency is close to the D3 note, which has a frequency of 144 Hz, 
so this answer makes sense. However, the value we found di�ers from the true value. 
Why might this be? 

Solution to problem 14-2: 

(a) We let the incident pulse move in the positive x direction (Figure 14.27), and set x = 0 
to be where the ropes connect. 
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Figure 14.27: An incident pulse propagates through a rope connected to a another rope with 
a di�erent linear mass density. When it reaches the boundary, part of the pulse is reflected 
and part is transmitted. Whether the reflected pulse is inverted or upright will depend on the 
reflection coeÿcient. 

The incident pulse (denoted by i) is a travelling wave, moving in one dimension in the 
positive x direction. The incident pulse can thus be described by the function: 

DI (x, t) = AI cos(k1x − !t) 

We will use the formulas k = 2ˇ/� and ! = 2ˇf to rewrite this equation in the form 
D = (a(t ± x/v)). The frequency, f , of the wave will be the same in both ropes. The 
velocity of the wave, and therefore its wavelength, depends on the mass density of the 
rope. Since the incident wave travels through the first rope (µ1), its velocity will be 
v1 and its wavelength will be �1. The incident wave can thus be described by: 

�2ˇ � 
DI = AI cos x − 2ˇft � �1 � 1 �� 

= AI cos 2ˇ x − ft 
�1� � �� 
x = AI cos 2ˇf − t 
v1� � �� 

x = AI cos −2ˇf t − 
v1� � �� 
x 

DI = AI cos 2ˇf t − 
v1 

where we used v = f�, and noted that cos(−x) = cos(x). 

The transmitted wave (denoted by the subscript T ) will also travel in the positive x 
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direction, but its speed will be v2, since it travels through the second rope: � � �� 
x 

DT = AT cos 2ˇf t − 
v2 

The reflected wave (denoted by R) will travel in the −x direction and at the same 
speed as the incident pulse. � � �� 

x 
DR = AR cos 2ˇf t + 

v1 

(b) We will consider the boundary conditions at the interface between the two ropes. 
One boundary condition is that the rope must be continuous. As a result, the ver-
tical displacement on the −x side of the boundary must be the same as the vertical 
displacement on the +x side of the boundary at every instant: 

D−x = D+x at x = 0 

The amplitude on the +x side is equal to the amplitude of the transmitted pulse. 
For the −x side of the boundary, we have to take into account that the incident and 
reflected pulses will superimpose (when the front of the incident pulse reaches the 
boundary, it will be reflected and interfere with the end of the incident pulse). This 
boundary condition can thus be expressed as: 

AI + AR = AT 

The slope of the rope must also be continuous at the boundary. Since the incident 
and reflected pulses superimpose, and the principle of superposition states that the 
net displacement is the sum of the displacement of these two waves, we can write: 

@ (DI + DR) = @ DT
@x x=0 @x x=0 

@ @ @
DI + DR = DT

@x x=0 @x x=0 @x x=0 

Using our equations for the incident, transmitted, and reflected pulses found in part 
a), and taking the appropriate partial derivatives, this equation becomes: � � �� � � �� 

x x(AI /v1) sin 2ˇf t − + (−AR/v1) sin 2ˇf t + = 
v1 x=0 v1 x=0� � �� 

x(AT /v2) sin 2ˇf t − 
v2 x=0 

Evaluating at x = 0 gives: 

(AI /v1) sin(2ˇft) + (−AR/v1) sin(2ˇft) = (AT /v2) sin(2ˇft) 
AI AR AT− = 
v1 v1 v2 
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Using our first condition, AI + AR = AT , we get: 

AI AR AI AR− = + 
v1 v1 v2 v2 

Now, we can rearrange to find the reflection coeÿcient, R = AR/AI : � � � � 
v2 − v1 v2 + v1

AI = AR 
v1v2 v1v2 

v2 − v1
R = 

v2 + v1 

Since the velocities in the first and second rope are v1 = 
q 
FT /µ1 and v2 = 

q 
FT /µ2, 

respectively, the reflection coeÿcient can be written as: q q
FT FT− 
µ2 µ1R = q q
FT FT+ 
µ2 µ1 

p 1 1 p − pFT µ2 µ1= p · 1 1FT p + p
µ2 µ1 p p

µ1 − µ2
∴ R = p

µ1 + pµ2 

as desired. 



15 Fluid mechanics 

In this chapter, we introduce the tools required to model the dynamics of fluids. This will 
allow us to model how objects can float, how water flows through a pipe, and how airplane 
wings create lift. We will start by introducing the concept of pressure and modelling static 
fluids (hydrostatics) before developing models for fluids that flow (hydrodynamics). Fluids 
are generally defined as the phase of matter in which atoms (or molecules) are only loosely 
bound to each other, such as in gases or liquids. Most of the formalism that we develop 
will apply to any fluid (gas, liquid, plasma), although we will often restrict ourselves to 
modelling the most simple situations (e.g. laminar flow of an incompressible liquid). 

Learning Objectives 

• Understand the concept of pressure, and how pressure is modelled in a fluid. 
• Understand how to model the pressure gradient due to gravity. 
• Understand Pascal’s Principle and how to model hydraulic lifts and pressure sens-

ing devices. 
• Understand how a pressure gradient leads to a force of buoyancy. 
• Understand the di�erence between laminar and turbulent flow. 
• Understand the equation of continuity, and the concepts of mass and volumetric 

flow. 
• Understand how to apply Bernoulli’s Principle to model the speed and pressure 

within a flowing fluid. 
• Understand how to model the resistance to flow in a pipe using the viscosity of a 

fluid. 

471 
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Think About It 

You are sailing, and the wind is blowing from the north. You want to travel upwind 
(north). In what direction should you point your boat/sail? 

Figure 15.1: Possible directions you can point your sailboat. 

A) North 
B) South 
C) Point either East or West 
D) Alternate between North-east and North-west 
E) You cannot go upwind. 

15.1 Pressure 
~The pressure exerted by a force, F , over a surface with area, A, is a scalar quantity, P , 

defined as: 

F?
P = 

A 

where F? is the component of the force perpendicular to the surface. The SI unit for 
pressure is the Pascal (Pa). Pressure is related to the area, A, over which a force is exerted, 
and can be thought of as a measure of how concentrated that force is. For example, a force 
of 10 N exerted through a needle (a small area) will result in a much larger pressure than if 
that force was exerted by a flat hand (a larger area). 

When a force is exerted on a fluid, it creates pressure that we model as being everywhere 
in the fluid. For each element in the fluid, the pressure from the surrounding fluid exerts 
an inwards force on the element from all directions (see Figure 15.2). In reaction, the 
element exerts an outwards force in all directions, and these forces act on neighbouring 
elements. 

This is somewhat analogous to the tension that exists everywhere in a rope, where each 
element of the rope experiences forces from the neighbouring elements in rope that try to 
“pull it apart”. Pressure can be thought of as a “negative” tension, in that the material 
under pressure is experiencing forces trying to collapse the element onto itself, rather than 
trying to pull it apart. To create a tension in a rope, one would exert an outwards force 
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on the rope (in order to stretch it), so that the rope exerts an inwards force in reaction. In 
order to create pressure in a fluid, one must exert an inwards force on the fluid, which then 
exerts an outwards force in reaction. 

If we consider a small cubic volume of fluid, as depicted in the centre of Figure 15.2, that 
element of fluid will experience inwards forces in all directions from the pressure in the 
surrounding fluid, as illustrated by the arrows. If the forces from the pressure result in no 
net force on the fluid element, then we say that the fluid is in hydrostatic equilibrium, and 
the element of fluid will be at rest in an inertial frame of reference. 

Figure 15.2: A small element inside of a fluid with pressure will experience no net force from 
the pressure in the fluid, since the force associated with the pressure in the fluid is exerted in all 
directions. 

Consider, instead, an element of fluid that at the edge of a container for the fluid (e.g. a 
cup of water), as depicted in Figure 15.3. 

Figure 15.3: At the edge of a container, a small element of fluid will exert an outwards force on 
the container, and the container will exert an inwards force on the element of fluid. 

In this case, there is no fluid on the right-hand side of the fluid element to exert a force 
towards the left. If the fluid element is in equilibrium, it must then be the container that 

~exerts that force, Fcontainer, on the fluid. By Newton’s Third Law, the element of fluid exerts 
an outwards force on the container. This is true at all points on the surface of container, 
which will all experience an outwards force from the pressure of the fluid. If the pressure is 
constant over a surface, the magnitude of the outwards force on the surface will be equal to 
the pressure of the fluid multiplied by the area of that surface. 

If you place an empty sealed tin can under water, the water will exert a pressure on all of 
the surfaces of the tin can that leads to a net inwards force on all surfaces of the tin can. 
If the water pressure is high enough, the tin can will get crushed. If, on the other hand, 
the tin can is allowed to fill with water, it will not get crushed, as the water inside the tin 
can will have the same pressure as the water outside the tin can and will exert an equal net 
outwards force on all surfaces of the tin can. The net force on each surface of the can will 
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be zero, and the tin can will not get crushed, no matter how high the water pressure is. 

In general, if there is an interface with fluid on either side of it a di�erent pressures, it is 
the di�erence in pressure on either side of the interface that determines the net force 
exerted on the interface, rather than the absolute pressure. 

Checkpoint 15-1 

You place a tin can on a table, and use a pump to create a vacuum inside of the can. 
You observe that the tin can gets crushed. Which explanation is correct? 

A) By sucking the air out of the can, you also suck in on the walls of the can. 
B) You lower the pressure inside the can so that the air outside the can exerts a 

larger inwards force on the can than the outwards force from the air inside the 
can. 

C) You lower the pressure inside the can so that the air inside the can exerts a pulling 
force on the walls of the can. 

D) All of the above are all valid ways to model this. 

15.1.1 The e�ect of gravity 
When discussing Figure 15.2, we argued that the fluid exerts an equal force, from all direc-
tions, on the fluid element, so that the net force on the fluid element is zero. This is not 
quite correct in the presence of gravity, where the fluid element will have a weight. Thus, 
if the fluid element is to be in equilibrium, the upwards force (and pressure) from the fluid 
below must be higher than that from the fluid above the fluid element. 

Figure 15.4 shows an element of fluid that has a height h and a surface area A in the 
horizontal plane. The pressure, P2, in the fluid below the fluid element must be higher than 
the pressure, P1, above the fluid element, if the fluid element is in equilibrium. 

Figure 15.4: In the presence of gravity, the pressure below an element of fluid must be larger if the 
fluid element is to remain in equilibrium. 

The element of fluid has a total mass, m, given by: 

m = ˆV = ˆAh 

where, V = Ah, is the volume of the fluid, and, ˆ, its density. 

The net (horizontal) force exerted by the external fluid on the fluid element is zero along 
the vertical surfaces. Let P1 be the pressure in the fluid above the fluid element, and P2 be 
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the pressure below the fluid element. If we choose a y axis that is positive upwards and the 
fluid element does not accelerate in the vertical direction, then the y component of Newton’s 
Second Law, written for the fluid element, is: X 

Fy = F2 − F1 − mg = 0 
P2A − P1A − mg = 0 

P2A − P1A − ̂Ahg = 0 
∴ P2 − P1 = ˆgh 

where we used the fact that the force resulting from a pressure is given by the pressure 
multiplied by the area over which it is exerted. We thus find that the di�erence in pressure 
due to gravity in a fluid between two positions, y2 and y1, is given by: 

P (y2) − P (y1) = −ˆg(y2 − y1) (15.1) 

where the y axis is defined to increase in the upwards direction. Since the pressure in the 
fluid depends on the location in the fluid, we say that there is a “pressure gradient” in the 
fluid. 

Checkpoint 15-2 

Figure 15.5: Holding water in a vertical straw. 

You use your finger to block o� the top end of a straw and then remove the straw from 
a glass of water. What is the most correct description of why the water stays in the 
straw (Figure 15.5) before you release your finger? 

A) The straw cannot have vacuum inside of it; unless the finger is removed to let air 
in to replace the water, the water will remain in the straw. 

B) There is a small amount of vacuum above the water that sucks the water upwards 
and prevents it from dropping. 

C) The pressure of the air in the straw below the water is higher than the pressure 
of the air in the straw above the water. 

D) The pressure of the air in the straw below the water is lower than the pressure of 
the air in the straw above the water. 

We have assumed that the density of the fluid, ˆ, is constant, and that the fluid cannot be 
compressed. This is a very good approximation for a liquid such as water, but not for a 
gas, whose density will depend on its pressure. If the fluid were a gas (e.g. a column of air 
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in our atmosphere), both the density and the pressure will change as a function of height. 
We can easily take this into account in our model, if we consider the fluid element to have 
a very small height, dy, instead of the finite height, h, as in the derivation above. A fluid 
element with an infinitesimal height, dy, is illustrated in Figure 15.6. 

Figure 15.6: Pressure gradient from gravity on an infinitesimal fluid element. 

In the very small height, dy, the density of the fluid, ˆ, can be taken to be constant, and 
the infinitesimal element of fluid will have a mass dm: 

dm = ˆAdy 

We can model the pressure exerted by the fluid above the fluid element as P + dP , and the 
pressure exerted by the fluid below as P , where dP is a small (negative) change in pressure1. 
The y component of Newton’s Second Law written for the infinitesimal fluid element is thus: X 

Fy = PA − (P + dP )A − dmg = 0 
PA − PA − dPA − ̂Adyg = 0 

∴ −dP − ̂gdy = 0 

We can thus determine how pressure changes with height, y: 

dP = −ˆg (15.2)
dy 

This tells us that the rate of change of pressure with increasing y is negative; in other 
words, the pressure decreases as the elevation increases, as we had already concluded. We 
can integrate the equation to obtain the change in pressure in going from y1 to y2: 

dP = −ˆgdy Z P2 
Z y2 

dp = − ˆgdy 
P1 y1Z y2 

∴ P2 − P1 = − ˆgdy 
y1 

If the density, ˆ, is constant, then this leads to Equation 15.1. Note that, thus far, we have 
only modelled how pressure in a fluid changes with height, but we have not determined the 
absolute pressure in a fluid. 

1We placed the dP on the top part of the fluid, even though the pressure is higher on the bottom part 
of the fluid, because the y axis increases upwards. We are really interested in the change in pressure, dP , 
that corresponds to a change in height, dy, along the positive y direction. 



 

477 15.1. PRESSURE 

Example 15-1 

If we assume that the density of air is proportional to its pressure, how does the density 
of air change with altitude? 

Solution 

We know that the rate of change of pressure with altitude (position y, where positive 
y is defined to be upwards) is given by: 

dP = −ˆg
dy 

Since we can assume that the density is proportional to the pressure, we can introduce 
an arbitrary constant, a, and state that: 

ˆ = aP 
dP d 1 1 dˆ

∴ = ˆ = 
dy dy a a dy 

where the constant a can be evaluated if we know the pressure and density at some 
point. We can thus write that the rate of change of the density with position y is given 
by: 

1 dˆ = −ˆg 
a dy 

∴ 
dˆ = −agˆ 
dy 

This is a separable di�erential equation for ˆ, allowing us to separate the variables and 
integrate from, say, an altitude of y = 0, where the density is ˆ0, to an altitude y, where 
the density is ˆ: 

dˆ = −agdy 
ˆ Z ̂ Z ydˆ = − agdy 

ˆ0 ˆ 0 

ln(ˆ) − ln(ˆ0) = −agy ! 
ln ˆ = −agy 

ˆ0 
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We can take the exponential on each side of the equation to get rid of the logarithm: 
ˆ −agy = e 
ˆ0 

∴ ˆ(y) = ˆ0e 
−agy 

We thus find that the density of the air decreases exponentially with altitude. This is 
why it is more diÿcult to breathe at high altitude. Since we assumed that the density 
of the air is proportional to its pressure, the air pressure will also decrease exponentially 
with increasing altitude: 

P (y) = P0e 
−agy 

where P0 is the pressure at an altitude of y = 0. If we know P0 and ˆ0, then the constant 
a is given by: 

ˆ0 
a = 

P0 

Discussion: If we applied this model to the Earth’s atmosphere, our model would only 
provide qualitative agreement, as the density of the air also depends on its temperature 
and other factors. Nonetheless, it is interesting that, based on the simple requirement 
that an element of air be in hydrostatic equilibrium, we are able to obtain a reasonable 
description of how pressure and density change with altitude in the Earth’s atmosphere. 

15.1.2 Pascal’s Principle 
Pascal’s Principle states that if an external pressure is exerted on a fluid, the pres-
sure everywhere in the fluid increases by that amount. For example, if a fluid is 
contained in a piston with a cross-section area, A, and a force, F , is exerted on the piston 
(Figure 15.7), then the pressure everywhere in the fluid increase by F/A. 

Figure 15.7: A force exerted on the piston will increase the pressure everywhere in the fluid. 

If we wish to determine the absolute pressure in the water at some depth, h, in the ocean, 
we need to include the fact that the Earth’s atmosphere exerts a net downwards force 
on the surface of the ocean in addition to the fact that the pressure changes with depth 
due to gravity. The pressure from the air in the Earth’s atmosphere is called “atmospheric 
pressure”, and depends on a variety of conditions, such as the weather. The average pressure 
from the atmosphere is P0 = 1.013 × 105 Pa. If the atmospheric pressure is P0 at the surface 
of the ocean, then the pressure at some depth, h, is given by: 

P (h) = P0 + ̂ gh 



479 15.1. PRESSURE 

where ˆ is the density of water. As a consequence, the pressure at any depth, h, in a fluid 
is the same everywhere at that depth in the fluid. 

Checkpoint 15-3 

Figure 15.8: Three glasses with di�erent shapes. 

You fill the three glasses in Figure 15.8 such that the liquid reaches a height h above the 
bottom of the glass. What can you say about the pressure of the liquid at the bottom 
of each glass? 

A) It is highest for glass A. 
B) It is highest for glass B. 
C) It is highest for glass C. 
D) It is the same for all glasses. 
E) It is only the same for all glasses if we can neglect atmospheric pressure. 

Example 15-2 

Figure 15.9: A force exerted on the piston of a hydraulic lift in order to lift a mass M . 

A hydraulic lift exploits Pascal’s principle in order to use a small force to exert a large 
force. The hydraulic lift in Figure 15.9 shows a lift that is constructed by having a fluid 
between two vertical movable pistons. The pistons are cylindrical and the diameter of 
their cross-sections are D and D/2. A mass, M , is placed on the piston with the larger 

~diameter. What is the magnitude of the force, F , that must be applied on the smaller 
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piston in order to lift the mass, M? 

Solution 

~If a force F is applied to the small piston, then the pressure in the fluid will increase 
by: 

F F 4F�P = = = 
ˇ D

2A 4 ˇD2 

~This will result in a net upwards force, F 0, on the large piston, with a magnitude: 

4F 
F 0 = �PA0 = �PˇD2 = = 4F 

ˇD2 ̌ D
2 

Thus the force on the large piston will be four times that exerted on the small piston. 
One only needs to exert a force with a magnitude of Mg/4 in order to lift the mass, M . 

15.1.3 Measuring pressure 
In this section, we describe how one can design instruments to measure pressure. The most 
straightforward device is a manometer, which is constructed using a U-shaped tube filled 
with a fluid of known density, ˆ, as shown in Figure 15.10. 

Figure 15.10: A manometer can measure the di�erence between a pressure P and atmospheric 
pressure, P0. That di�erence is called “gauge pressure”. 

A manometer can be used to measure a pressure P relative to atmospheric pressure, P0. One 
end of the tube is open to atmospheric pressure, and the other is connected to the fluid (e.g. 
a gas) for which we want to measure the pressure. If the pressure being measured is larger 
than atmospheric pressure, the fluid in the manometer will experience a greater downwards 
force on the side of the pressure to be measured than on the side open to atmospheric 
pressure, as shown in Figure 15.10. There will be a di�erence, h, in the level of the fluid on 
each side of the tube, which is directly proportional to the di�erence in pressure between 
the two sides of the tube. 

Consider the point in the fluid at location B in Figure 15.10, where the pressure is PB = P , 
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the pressure to be measured. The point in the fluid at location A, which is at the same 
height in the fluid, must have the same pressure as point B. We can write the pressure at 
point A, PA, as the sum of the atmospheric pressure and the pressure from the column of 
water of height, h: 

PA = P0 + ̂ gh 

Since this must also be equal to the pressure at point B, we can find the di�erence between 
the pressure we want to measure and atmospheric pressure: 

PA = PB 
P0 + ̂ gh = P 
∴ P − P0 = ˆgh 

The di�erence between a pressure and the atmospheric pressure is called “gauge pressure”, 
and is all that we can measure if we do not know the absolute value of the atmospheric 
pressure. Using a manometer, the gauge pressure is given by ˆgh, whereas the “absolute 
pressure”, P , is given by adding the atmospheric pressure to the gauge pressure, P = 
P0 + ˆgh. Most pressure measuring devices (“pressure gauges”), measure pressure relative 
to atmospheric pressure, using a similar mechanism. 

The atmospheric pressure at a location on Earth varies based on the weather. A barometer 
is an instrument designed to measure the atmospheric pressure. A simple barometer can be 
built from a manometer, with one end closed, as illustrated in Figure 15.11. 

Figure 15.11: A barometer constructed from a manometer to measure relative changes in atmo-
spheric pressure. 

One end of the manometer is sealed on a day where the atmospheric pressure is, say, P0, 
while the other end of the tube is left open. The height di�erence, h, between the fluid 
in either side of the tube is a measure of how di�erent the current atmospheric pressure, 
P1, is relative to the pressure, P0, when the manometer was sealed. In Figure 15.11, the 
barometer is shown on a day where the atmospheric pressure is lower than on the day the 
manometer was sealed. The di�erence in pressure is given by: 

P1 = P0 + ̂ gh 
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if we define h to be positive when the side with the pressure P0 is higher (so h is negative 
in Figure 15.11 and P1 is less than P0). 

We can also measure the absolute atmospheric pressure if we evacuate the air out of the 
sealed end of the tube, so that P0 = 0. When doing so, the di� erence in height between 
the fluid on either side of the manometer is a measure of the absolute atmospheric pressure. 

Example 15-3 

Figure 15.12: A barometer constructed from a manometer to measure absolute atmospheric 
pressure. 

Using a manometer filled with water (ˆ = 1 × 103 kg/m3), you construct a barometer 
to measure the absolute atmospheric pressure by evacuating the air from one side of 
the manometer, as shown in Figure 15.12. What is the di�erence in height, h, when 
the atmospheric pressure is “nominal”, P1 = 1.013 × 105 Pa? 

Solution 

The pressure, P1, on the open side of the manometer is given by: 

PB = PA 
P1 = P0 + ̂ gh = ˆgh 

if the sealed side of the manometer has a pressure, P0 = 0, above the fluid. If P1 = 
1.013 × 105 Pa, we can find the height, h: 

P1 (1.013 × 105 Pa) 
h = = 

ˆg (1000 kg/m3)(9.8 m/s2) = 10.3 m 

Discussion: The di�erence in height is about 10 m when the atmospheric pressure 
is nominal. This means that the manometer needs to be at least this tall to measure 
absolute atmospheric pressure, which is not practical to construct! If, instead, one 
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uses a liquid with a higher density than that of water, then this height can be reduced 
substantially. Traditionally, barometers have been built using mercury, which has a 
density of (ˆHg = 13.6 × 103 kg/m3), so that the height di�erence at nominal atmo-
spheric pressure is 760 mm. This is a much easier instrument to build (apart from the 
safety concerns of using mercury). For this reason, an often-used unit of pressure is 
“mm of mercury”, which corresponds to the height di�erence in a manometer that is 
built using mercury. 

Checkpoint 15-4 

Figure 15.13: A Torricelli barometer. 

You build a Torricelli barometer, as illustrated in Figure 15.13, to measure the absolute 
atmospheric pressure. The sealed vertical tube has a space at the top that is evacuated 
(a pressure of zero), so that atmospheric pressure on the container of liquid forces the 
liquid up the tube to a height, h, which is proportional to atmospheric pressure. If you 
use olive oil as the liquid, what can you say about the height, h, for nominal atmospheric 
pressure? 

A) It is greater than 10.3 m. 
B) It is equal to 10.3 m. 
C) It is less than 10.3 m. 
D) Not enough information to tell. 

15.2 Buoyancy 
In this section, we examine how the pressure gradient in a fluid leads to a force of buoyancy 
on an object that is immersed in the fluid. 
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Figure 15.14: (Left:) The weight of a fluid element, ~Fg, is supported by the net upwards force from 
the pressure, ~FB, of the fluid below it. (Right:) If the fluid element is removed and replaced with 
an object, there will still be the same net upwards force, ~FB, from the pressure of the fluid, which 
is now exerted on the object. 

In the left panel of Figure 15.14, we show a hemi-spherical element of fluid with a volume V . 
~ ~The weight of the element of fluid, Fg, is supported by the net upwards force, FB, exerted 

by the pressure of the fluid surrounding the fluid element. The mass, M , of the element of 
fluid is given by: 

M = ˆV 

where ˆ is the density of the fluid. The net force from the pressure, FB, must thus have the 
same magnitude as the weight: 

FB = Mg = ˆV g 

Now, suppose that the fluid element is “displaced” and replaced by the hull of a boat, as 
shown in the right panel of Figure 15.14. The net upwards force from the pressure of the 
fluid must remain the same, FB, but that force is now exerted on the hull of the boat. We 
call that force the force of “buoyancy”, which is the reason that a boat can float and the 
reason that you feel lighter when walking in a swimming pool than on land. 

Thus, if an object displaces a volume, V , of a fluid with density ˆ, when immersed in the 
~fluid, that object will experience an upwards force of buoyancy, FB, with magnitude: 

FB = ˆV g (15.3) 

This “principle” was originally discovered by Archimedes, who stated that the force of 
buoyancy is equal to the weight of the displaced fluid. Note that we drew the fluid element 
at the surface of the fluid, but this is not required, and a force of buoyancy will be present 
if the object is completely immersed in the liquid. If you refer back to Figure 15.4, you will 
recall that the net upwards force on an element of fluid must be equal to its weight, even if 
the fluid element is completely immersed. 
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Checkpoint 15-5 

Does the force of buoyancy on a fully submerged object increase with the depth at 
which the object is submerged (ignoring any change from the varying value of ~g)? 

A) Yes, because the force of buoyancy comes from the pressure in the fluid, which 
increases with depth. 

B) No, because the force of buoyancy comes from the di�erence in pressure above 
and below the object, which does not increase with depth. 

Checkpoint 15-6 

You observe that if you pour olive oil slowly into your glass of water, the oil floats above 
the water. What can you conclude? 

A) The mass of a given volume of oil is less than the mass of the same volume of 
water. 

B) The mass of a given volume of oil is more than the mass of the same volume of 
water. 

Example 15-4 

You measure the weight of an object by suspending it with a spring scale. When you 
measure the weight of the object in air, you find that it has a weight Wa. When you 
measure the weight of the object when it is completely submerged in water, you find 
that it has a weight Ww. What is the density of the object? 

Solution 

Given the weight of the object in air, we can easily determine its mass: 

Wa
M = 

g 

However, since we do not know its volume, V , we cannot directly determine its density. 
When the object is submerged in water, the measured weight will be the actual weight 
of the object (as measured in air) minus the magnitude of the force of buoyancy exerted 
by the water: 

Ww = Wa − ̂wgV 
Ww − Wa∴ V = 
ˆwg 

where ˆw is the density of water. Given the volume, we can now determine the object’s 
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density, ˆ: 

M Waˆwg Wa
ˆ = = ) = ˆw

V g(Ww − Wa Ww − Wa 

Discussion: By using Archimedes’ Principle, we were able to determine the volume, 
and thus the density of the object, by comparing measurements of its weight in air and 
in water. This is similar to the method that Archimedes came up with to determine 
if a crown owned by a general was made of real gold or if some of the gold had been 
replaced with an equal weight of silver. Archimedes supposedly went to the baths to 
ponder how to determine if the crown was made of gold and had his Eureka moment 
when we he noticed the water level in the bath went up as he went into the bath. He 
realized that denser gold would displace less water than silver for an equal weight. 

Olivia’s Thoughts 

Whether or not an object will float depends on its density. Let’s consider an object that 
is placed in water. The only forces acting on the object are its weight and the force of 
buoyancy. We want to know when the net force will be zero. I’m going to write out 
Newton’s Second Law for the object, but writing the mass of the object in terms of its 
density and volume. 

Fg = FB 
mOg = FB 

ˆOVOg = ˆW VW g 

where O refers to the object and W refers to the water. Cancelling out the g’s, we can 
write this as: 

ˆO VW= 
ˆW V0 

Consider a solid cube that has the same density as water. In this case, ˆ0/ˆW = 1, 
and so VW /V0 = 1. This means that, in order for the cube to float, a volume of water 
that is equal to the volume of the cube must be displaced. So, the entire cube must be 
submerged. If you placed this cube 5 m deep in the water, it would stay at this depth. 

Now consider a cube whose density is half that of water. We find that ˆ0/ˆW = 0.5, so 
we must have VW /V0 = 0.5. In order for the cube to float, only half of it needs to be 
submerged. If you placed the cube 5 m deep in the water, it would rise to the surface 
and stop when half of it was above water (after bobbing for a bit). 

Finally, what about a cube whose density is 1.5 times the density of water? In this 
case, one and a half cubes worth of water would have to be displaced in order for the 
cube to float. Even when the entire cube is submerged, not enough volume has been 
displaced in order for it to float, so the cube will sink. 
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Objects like pool noodles or life jackets allow us to float because they have low densities. 
They have very little mass (they don’t add much to the weight) in a relatively large 
volume (they can displace water to add to the buoyant force). An object with a density 
less than water will float with some fraction of the object being submerged. 

15.3 Hydrodynamics 
In the previous sections we developed “hydrostatic” models for fluids when those fluids 
are at rest (in some inertial reference frame). In this section, we develop “hydrodynamic” 
models to discuss what happens when fluids flow. We will restrict our models to fluids that 
flow in a “laminar” fashion, rather than a “turbulent” fashion. 

Laminar flow is the flow of a fluid when each particle in the fluid follows a path that can be 
represented by a line (a “streamline”). Turbulent flow is the flow of a fluid where particles 
can follow rather complex paths, usually involving “Eddy currents” (little whirlpools). The 
two types of flow are illustrated in Figure 15.15. 

Figure 15.15: Laminar (left) and turbulent (right) flow of a fluid around an object. 

15.3.1 Continuity of flow 
Consider the laminar flow of a fluid through a pipe whose cross-sectional area narrows from 
A1 to A2 in the direction of flow, as illustrated in Figure 15.16. 

Figure 15.16: Laminar flow of a fluid in a narrowing pipe. 

The particles that make up the fluid have a speed v1 at the wide end of the pipe and speed 
v2 at the narrow end. The equation of continuity is based on the premise that the fluid 
that enters the pipe must exit the pipe, as there is nowhere else for the fluid to go. That is, 
if during a period of time, �t, a mass, �m, of fluid enters the wide end of the pipe, then 
during that same period of time, the same mass of fluid must exit the narrow end of the 
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pipe. 

During a period of time, �t, the fluid at the wide end of the pipe will travel a distance 
l1 = v1�t. Thus, a volume of fluid, �V1, will enter the wide end of the pipe: 

�V1 = A1l1 = A1v1�t 

Similarly, during that period of time, a volume �V2 will exit the narrow end of the pipe: 

�V2 = A2l2 = A2v2�t 

If the fluid is compressible, its density can change. Let ˆ1 be the density of the fluid at the 
wide end of the pipe and ˆ2 be the density of the fluid at the narrow end. The mass of fluid, 
�m, entering the wide end of the pipe is given by: 

�m = ˆ1�V1 = ˆ1A1v1�t 

The mass of fluid exiting the narrow end of the pipe is given by: 

�m = ˆ2�V2 = ˆ2A2v2�t 

The mass of fluid entering the wide end of the pipe must equal the mass exiting the narrow 
end of the pipe: 

ˆ1A1v1�t = ˆ2A2v2�t 

Leading to the equation of continuity: 

ˆ1A1v1 = ˆ2A2v2 (15.4) 

The quantity ˆAv has dimensions of mass per time, and corresponds to the mass of fluid 
passing through a cross section A per unit time. 

If the fluid is incompressible, as are most liquids, then the density is the same on both sides 
of the pipe, and the equation simplifies to: 

A1v1 = A2v2 (Incompressible fluid) (15.5) 

For a liquid, we can define the “volumetric flow”, Q, as: 

Q = Av 

where A is the cross-sectional area of the surface through which a fluid with speed, v, 
flows2. Q has the dimension of volume per time, and corresponds to the volume of fluid 
passing through the cross section A per unit time. For an incompressible fluid, the equation 
of continuity is thus equivalent to stating that the volumetric flow, Q, of the fluid is a 
constant. 

2If the velocity of the fluid is not perpendicular to the surface, then v is the component of the velocity 
perpendicular to the surface. 
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Checkpoint 15-7 

Figure 15.17: Water flowing out of a faucet. 

When water flows out of your faucet, you observe that the stream of water gets narrower 
as the water moves down, as shown in Figure 15.17. Why is this? 

A) The atmospheric pressure increases as the waters moves downwards, so the stream 
of water is more and more compressed. 

B) As the water accelerates due to gravity, the cross-sectional area of the flowing 
water must reduce in order to preserve a constant flow rate. 

Example 15-5 

Your garden hose has a diameter of D = 2 cm. How fast must water flow out of the 
hose if you are to fill a 5 l bucket in one minute? 

Solution 

We need the volume flow rate from the hose to be Q = 5 l/min. We can convert this to 
SI units: � �� 1 �1 5 

Q = (5 l/min) min/s = 1000m3/l 60 6 × 104 m
3/s = 8.3 × 10−5 m3/s 

Since we know the area of the hose, we can determine the speed of the water to achieve 
the given flow rate: 

� �2D 
Q = Av = ˇ v2 

Q (8.3 × 10−5 m3/s)
∴ v = � �2 = = 0.265 m/s 

ˇ D ˇ(0.01 m)2 
2 

15.3.2 Bernoulli’s Principle 
In this section, we examine how the pressure and speed of a fluid change as a the fluid 
flows. We will restrict ourselves to discussing the laminar flow of an incompressible fluid 
with no friction. Bernoulli was the first to quantitatively describe the flow of incompressible 
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fluids, and we will show in this section how to derive “Bernoulli’s Principle”. 

Consider the laminar flow of an incompressible fluid through a pipe that changes height, 
from y1 to y2, as well as cross-sectional area, from A1 to A2, as shown in Figure 15.18. 
The figure shows an element of fluid, in blue, as it moves through the pipe. The top panel 
corresponds to the location of the fluid element at time t = 0, whereas the bottom panel 
shows the location of the element of fluid at time t = �t. 

Figure 15.18: Laminar flow of an incompressible fluid through a pipe that changes cross-sectional 
area and height in the direction of flow. An element of fluid, in blue, is shown at time t = 0 (top 
panel), and then, at a later time, t = �t (bottom panel). 

To model how the fluid moves through this pipe, we can use energy and the Work-Energy 
Theorem. We start by considering the amount of work done on the element of fluid as it 
moves from the position in the top panel to the position in the bottom panel. 

The fluid that is to the left of the element of fluid exerts a pressure, P1, on the fluid element 
~that leads to a net force, F1, towards the right. Similarly, the fluid to the right of the 

~element of fluid exerts a net force F2 in the opposite direction, due to the pressure P2 on 
that side of the fluid element. 

In a period of time, �t, the left part of the fluid element will move a distance l1 = v1�t, 
while the right part of the fluid element will move a distance l2 = v2�t. We can calculate 
the work done by each force, defining positive work to be in the direction of motion: 

W1 = F1l1 = (P1A1)(v1�t) 
W2 = −F2l2 = −(P2A2)(v2�t) 

Gravity will also do (negative) work on the fluid as it changes height. In a period of time, 
�t, a mass of fluid, �m, will move from position y = y1 to position y = y2. The mass of 
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fluid that changes height is given by the part of the fluid that moves a distance, l1, on the 
right side of the pipe: 

�m = V1ˆ = A1l1ˆ = A1v1�tˆ 

Because of the equation of continuity, this is also equal to the mass of fluid that moves a 
distance, l2, on the left side of the pipe: 

�m = V2ˆ = A2l2ˆ = A2v2�tˆ 

since A1v1 = A2v2. 

The force of gravity will thus do negative work on that mass element: 

Wg = −�mg(y2 − y1) = −(A1v1�tˆ)g(y2 − y1) 

The net work done on the element of fluid over the time �t is thus: 

W net = W1 + W2 + Wg = P1A1v1�t − P2A2v2�t − A1v1�tˆg(y2 − y1) 

Note that, because of the equation of continuity, A1v1 = A2v2, we can factor out a A1v1 
from each term: � � 

W net = A1v1�t P1 − P2 − ̂g(y2 − y1) 

The net work done on the fluid must equal the change in kinetic energy, �K, of the mass 
element, �m, from one end of the pipe to the other: 

1 1�K = �mv2
2 − �mv1

2 
2 2 
1 = (A1v1�tˆ)(v2

2 − v1
2)2 

Using the Work-Energy Theorem, we have: 

W net = �K � � 1 
A1v1�t P1 − P2 − ̂g(y2 − y1) = (A1v1�tˆ)(v2

2 − v1
2)2 

P1 − P2 − ̂g(y2 − y1) = 2
1 ̂
v2

2 − 2
1 ̂
v2 

1 

We can re-arrange this so that all the quantities for each side of the pipe are on the same 
side of the equation: 

P1 + 12ˆv1
2 + ̂ gy1 = P2 + 12ˆv2

2 + ̂ gy2 

Since the locations 1 and 2 that we chose are arbitrary, we can state that, for laminar 
incompressible flow, the following quantity evaluated at any position is a constant: 

P + 2
1 ̂
v2 + ̂ gy = constant (15.6) 



492 CHAPTER 15. FLUID MECHANICS 

This statement is what we call Bernoulli’s Equation, and is equivalent to conservation of 
energy for the fluid. If the fluid is not flowing (v1 = v2 = 0), then this is equivalent to the 
statement of hydrostatic equilibrium that we derived in Equation 15.1: 

P1 + ̂ gy1 = P2 + ̂ gy2 

∴ P2 − P1 = −ˆg(y2 − y1) 

If the flow of the fluid is at constant height (y2 = y1), then Bernoulli’s equation can be 
written as: 

1 1 
P1 + 2ˆv1

2 = P2 + 2ˆv2
2 

If a fluid is flowing at constant height such that v2 > v1 (as in Figure 15.16), then P2 < P1; 
that is, the pressure in the fluid is lower if the fluid is flowing faster. Note that P is 
the pressure inside the fluid and is not related to the force that would be exerted by the fluid 
if it were to collide with an object. It makes sense that the fluid has a lower pressure where 
it is moving faster, because the net force exerted on the fluid is related to the di�erence in 
pressure on either side of the fluid. The fluid will accelerate in the direction where pressure 
decreases, thus it will be moving faster when it is in a region of low pressure. 

Bernoulli’s principle can be used to describe many phenomena. For example, an airplane 
wing (technically, an “airfoil”) creates lift because the pressure of the air above the wing is 
lower than the pressure above the wing. This is illustrated in Figure 15.19, which shows that 
the laminar flow of the air creates a low pressure area above the wing. As the stream lines 
of air encounter the wing, those that are above the wing get compressed together, which 
leads to a faster speed of the air above the wing (equation of continuity). The resulting 
di�erence in air pressure above and below the wing results in a net upwards force on the 
wing. 

Figure 15.19: Laminar flow of air around a airfoil. The curvature of the asymmetric airfoil forces 
the streamlines above the airfoil together, increasing the speed of the air due to the continuity 
equation, and resulting in a low pressure area. 

Bernoulli’s principle also describes why the roof can be lifted o� of a house in high winds 
(Figure 15.20, left panel). It is not the force of the wind against the roof that blows the 
roof o� of a house; it is the di�erence in air pressure in the house (normal) and the pressure 
above the roof (low, due to the flowing wind), that results in a net upwards force on the 
roof. Bernoulli’s principle is also used to construct atomizers which allow liquid in a bottle 
to be sprayed (Figure 15.20, right panel). For example, perfume bottles often have a bulb 
connected to a tube/spout. When you squeeze the bulb, it causes the air in the tube to flow 
quickly, creating a low pressure in the vertical segment of the spout. The liquid is forced 
up by the pressure in the bottle; once the liquid arrives in the fast flowing air, it is sprayed 
out along with the air. 
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Figure 15.20: (Left:) the wind flowing above a roof creates a low pressure zone above the roof. 
(Right:) air flowing above a vertical spout in the atomizer creates a low pressure zone; the air 
pressure in the bottle forces the liquid up the spout. 

Checkpoint 15-8 

When a high speed train is travelling at constant speed, is there a net force on the 
windows from air pressure? 

A) No, since the windows are stationary relative to the train, there is no net force on 
them from air pressure. 

B) Yes, there is a net outwards force on the windows from air pressure. 
C) Yes, there is a net inwards force on the windows from air pressure. 

The following examples illustrate how to apply Bernoulli’s principle. 
Example 15-6 

Figure 15.21: Water leaking out of a horizontal hole in a water tank. 

A water tower is constructed so that the bottom of the water tank is a height h2 above 
the ground, as illustrated in Figure 15.21. The water in the tank is at a height h1 from 
the bottom of the tank. A leak from a hole is found at the base of the tank (the water 
flows horizontally out of the hole). What is the horizontal distance, d, from the bottom 
of the tower to where the water from the leak hits the ground? Assume that the water 
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level in the tank is constant and that atmospheric pressure does not change appreciably 
over the height of the tower. 

Solution 

The pressure in the water tank leads to the water exiting the bottom of the tank with 
a horizontal velocity of magnitude, v. That water then undergoes projectile motion on 
its way to the ground. We can first determine the speed of the water exiting the tank 
and then use the kinematics for projectile motion to model the distance, d. 

We model the flow of the water using a two-dimensional coordinate system with a 
horizontal x axis (positive to the right), and a vertical y axis (positive upwards). We 
place the origin at the bottom of the water tower, on the ground, below the hole, as 
shown in Figure 15.21. 

At the top of tank, at a height y = h1 + h2, the water has a speed of zero and is at 
atmospheric pressure, P0. At the exit of the hole at the bottom of the tank, at a height 
y = h2, the water has a speed v2 and is also at atmospheric pressure. Using Bernoulli’s 
equation at the top (1) and bottom (2) of the tank, we have: 

P1 + 12ˆv1
2 + ̂ gy1 = P2 + 12ˆv2

2 + ̂ gy2 

P0 + (0) + ̂ g(h1 + h2) = P0 + 2
1 ̂
v2 + ̂ gh2 q

∴ v2 = 2gh1 

which is exactly the speed that any object falling a distance h1 would have. 

Using kinematics, we can find the time that it would take the water to fall a distance 
h2 (where the water’s velocity is horizontal as it exits the tank): 

1 2h2 = 2gt s 
2h2∴ t = 
g 

The distance d covered by the water is thus given by: s q q2h2
d = v2t = 2gh1 = 4h1h2 

g 

Discussion: We find that the water coming out of the bottom of the tank, when there 
is a height, h1, of water above it providing pressure, will have the same speed as that 
of a particle which has fallen a distance, h1. This is because there is no net pressure 
di�erence between the top of the water tank and where the water has exited the hole, 
so gravity is the only force doing work on the water. Gravity will do work at the same 



495 15.3. HYDRODYNAMICS 

rate on particles of water as on any other particle, so the speed of the water particles 
at the bottom of the tank is the same as if they had fallen a distance, h1. Again, once 
the water particles are falling through the air, gravity is the only net force exerted on 
those particles, so they undergo projectile motion, just as any other particle would. 

Example 15-7 

You measure that water comes out of your kitchen faucet at a rate of 6 l/min. The 
faucet has a diameter of 2 cm. At what rate will water flow out of your basement 
faucet, which has a diameter of 1 cm and is located a height, h = 3 m, below your 
kitchen faucet? Assume that atmospheric pressure, P0, does not change appreciably 
between your kitchen and basement. 

Solution 

The water flows out of the kitchen faucet at a speed, v1, where the pressure is atmo-
spheric. If the area of the kitchen faucet is A1 we can determine the speed, v1, from 
the given flow rate, Q1 = 6 l/min = 1 × 10−4 m3/s: 

Q1 = A1v1 

Q1 (1 × 10−4 m3/s) 
v1 = = = 0.318 m/s 

A1 ˇ(0.01 cm)2 

The water will flow out of the basement faucet with a speed, v2, where the pressure 
is also atmospheric, P0. We can use Bernoulli’s equation to relate the flow out of the 
basement faucet (2) to that at the kitchen faucet (1). We choose the y axis of a vertical 
coordinate system such that the basement is located at y2 = 0 and the kitchen faucet 
is located at y1 = 3 m: 

P1 + 12ˆv1
2 + ̂ gy1 = P2 + 12ˆv2

2 + ̂ gy2 

P0 + 12ˆv1
2 + ̂ gy1 = P0 + 12ˆv

2 
2 

1 2 1 2 
2v1 + gy1 = 2v2 q 

∴ v2 = v1
2 + 2gy1 

= 
q

(0.318 m/s)2 + 2(9.8 m/s2)(3 m) = 7.67 m/s 

The corresponding flow rate at the basement faucet will be: 

Q2 = A2v2 = ˇ(0.005 m)2(7.67 m/s) = 6.03 × 10−4 m3/s = 36.17 l/min 

https://m)2(7.67
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Discussion: We find that the flow rate out of the basement faucet is six times that at 
the kitchen faucet. The speed of the water coming out of the basement faucet is more 
than 20 times the speed of the water at the kitchen faucet. Although it is true that 
one gets better water pressure out of a faucet that is lower in the building, this change 
in flow is unrealistically high, and this is a poor model for flow of water in the pipes of 
your house. 

You can easily verify that the speed of the water in di� erent levels of your house does 
not vary by a factor near 20 for a 3 m change in height (you could compare the flow 
rate for two faucets with the same diameter). This is because our model neglects the 
e�ect of friction as water flows in the pipes; in reality, there is much greater pressure in 
the pipes than that due to gravity, as well as a gradient in the pressure in your pipes, 
that will lead to the flow rates being similar in your kitchen and basement. 

15.3.3 Viscosity 
So far, we have assumed that fluids flow with no friction. In reality, the particles moving 
in a fluid exert internal friction on each other called “viscosity”. This can be modelled as 
the friction between di�erent layers of fluid in a laminar flow. For example, you may notice 
that the water that flows in a wide river flows much faster in the middle of the river than 
near the river banks, where the water is almost stationary, as shown in Figure 15.22. 

Figure 15.22: Water flowing in a river; the water near the banks is almost immobile due to the 
viscosity of the water. 

One can model the banks of the river as exerting a frictional force on the layer of water 
that is in contact with the banks. That layer then exerts a frictional force on the next layer 
closer to the centre of the river, and so on. 

One can define a viscosity coeÿcient, �, based on measuring the force required to pull a 
plate past another plate when there is a fluid between the plates. Consider two plates that 
have an area, A, that are a distance l apart, and contain the fluid of interest between them, 
as illustrated in Figure 15.23. 
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Figure 15.23: A fluid placed between a moving plate (top) and a fixed plate (bottom) in order to 
measure the viscosity of the fluid. 

The viscosity of the fluid is defined based on the force that is required to pull the top plate 
while the bottom plate remains immobile. The layer of fluid directly below the moving plate 
will move with the plate at a speed, v, while the layer of fluid immediately in contact will 
the stationary plate will also be stationary. Moving one plate will thus lead to a gradient 
(a change) in the speed of the fluid as a function of the position between the two plates. 

~The magnitude of the force, F , required to move one plate with speed, v, was empirically 
determined to be proportional to the area of the plates, A, and the speed, v, while being 
inversely proportional to the distance, l, between the two plates: 

v 
F / A 

l 

The constant of proportionality is defined as the viscosity, �, of the fluid: 
v 

F = �A (15.7)
l 

If the viscosity of the fluid is zero, then no force is required to pull the plate. The more 
viscous the fluid, the more diÿcult it is to pull the top plate. You can experiment with this 
by comparing the force required to move a small piece of paper across the top of a puddle 
of water and across the top of honey. 

The presence of viscosity means that any fluid that flows will lose mechanical energy due 
to internal friction (which will heat up the fluid). Thus, Bernoulli’s equation is not correct 
if the fluid has viscosity, as a fluid cannot flow through a horizontal pipe without a change 
in pressure to overcome the losses due to friction. 

15.3.4 Poiseuille flow 
For the flow of an incompressible viscous fluid through a pipe, one can postulate that the 
flow rate, Q, is proportional to the change in pressure, �P , across the pipe: 

Q / �P 

where �P is taken as the positive di�erence between the pressure at either end of the 
pipe. The fluid flows from high pressure to low pressure. We can introduce a constant of 
proportionality, R, to be the “resistance of the pipe”, so that we can write: 

�P 
Q = 

R 
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where we wrote the constant of proportionality as 1/R, so that a larger value of R corre-
sponds to a pipe with a higher resistance to flow. That is, for a given pressure di�erence, 
as one increases the resistance of the pipe, one decreases the flow rate through that pipe. 
The relationship above can be used to empirically determine the resistance of a pipe. 

The flow through a pipe with a given resistance will be zero if there is no pressure gradient 
in the fluid along the pipe. Conversely, if there is no flow of fluid in the pipe, the pressure is 
the same everywhere in the pipe. We can thus also view a drop in pressure in a pipe to be 
the result of flow of liquid through the pipe. The pressure cannot drop across a horizontal 
pipe if there is no flow. 

When you close the tap on your kitchen faucet, the pressure inside the faucet is close to 
the pressure in the main water line that supplies your house. As soon as you open the tap 
and allow water to flow, the pressure in your faucet drops to atmospheric pressure, and 
the resulting pressure gradient from the main supply forces water to flow out of the faucet. 
If you try to plug your kitchen faucet with your thumb and stop the flow of water, you 
will need to exert a force large enough to overcome the pressure that exists in the main 
water supply. You will find that it is practically impossible to stop the flow of water with 
your thumb, as the pressure in the main supply needs to be high enough to overcome the 
resistance of the pipes and still result in a usable flow of water. 

Poiseuille first developed a model for the laminar flow of a liquid through a uniform 
horizontal cylindrical pipe of length, L, with a circular cross-section with radius r. He 
found that the resistance of such a pipe to a fluid of viscosity, �, is given by: 

8�L 
R = 

ˇr4 

This makes some intuitive sense, as we expect more resistance (more impedance to flow), 
if the pipe is longer and if the fluid is more viscous (the resistance is zero if there is no 
viscosity). We further expect less resistance if the pipe has a larger radius. The resistance 
found by Poiseuille goes down as the fourth power of the radius. Thus, a pipe that is twice as 
wide will have a volume flow that is 24 = 16 times larger because of the reduced resistance. 

The laminar flow rate, Q, of a viscous fluid through a pipe of length L and radius R, when 
there is a pressure di�erence �P , is given by: 

ˇr4 
Q = �P (15.8)8�L 

This is usually referred to as “Poiseuille’s Equation”. 

Checkpoint 15-9 

Does the flow rate of water out of a garden hose depend on the length of the hose? 
A) No, since the volume of water entering the hose must also exit the hose, it does 

not matter how long the hose is. 
B) Yes, the resistance of the hose depends on its length, so the pressure drop across 

the hose will change, and so will the flow rate. 
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Example 15-8 

You are modelling the flow of water for a city. Two houses are connected in parallel to 
the main water supply, so that water from the main supply flows into either house 1 or 
house 2, and the flows out of each house then join up again at the main supply. The 
di�erence in pressure, �P , between the entry and exit point of water is the same for 
each house, and each house can be modelled as having a net resistance, R1 or R2, to 
the flow of water, as illustrated in Figure 15.24. If you model the two houses as being 
the equivalent of a single “e�ective” house with an e�ective resistance R, what is the 
value of R in terms of R1 and R2? 

Figure 15.24: Flow of water being separated into two parallel paths that join up again. 

Solution 

The water from the main will have to flow through either house 1 or house 2. If the 
flow rate through the main is Q, we require that this be equal to the sum of the flow 
rates through each house: 

Q = Q1 + Q2 

The flow through each house is related to the pressure di�erence, �P , across each house 
(which is the same), as well as the resistance of that house: 

�P 
Q1 = 

R1 
�P 

Q2 = 
R2 
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The total flow rate is thus: 

�P �P 
Q = Q1 + Q2 = + 

R1 R2 �� 1 1 = �P + 
R1 R2 

We can write this as the flow through an e�ective resistance, R, with a pressure di�er-
ence �P : 

�P 
Q = 

R 
1

∴ R = 1 + 1 
R1 R2 

Discussion: By requiring that the sum of the flows of water through the houses be the 
same as the flow rate through the main pipe, we were able to model the two houses as 
a single e�ective house with resistance R. You may notice that this is the same relation 
as the equivalent resistance for two electrical resistors combined in parallel. This is 
because the flow of electrical current in a resistor can be modelled using similar tools 
to those required for modelling the flow of a viscous fluid in a pipe. 
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15.4 Summary 
Key Takeaways 

~The pressure from a force, F , exerted over a surface with area, A, is a scalar quantity 
defined as: 

F?
P = 

A 

where F? is the component of the force perpendicular to the surface. 

If a force is exerted on the particles in a fluid (e.g. gravity), a pressure will exist 
everywhere in the fluid. If the fluid is placed in a container, that pressure leads to an 
external force on all surfaces of the container. 

If two fluids at di�erent pressures exist on either side of an interface/object, the net 
force on that interface/object from the pressures of the fluids will be proportional to 
the di�erence in pressure of the fluids on either side. 

A fluid is in hydrostatic equilibrium if the sum of the forces on any fluid element is 
zero. In the presence of gravity, this always leads to a vertical pressure gradient 

dP = −ˆg
dy 

where ˆ is the density of the fluid, g is the magnitude of the Earth’s gravitational field, 
and the y axis is positive upwards. 

If the fluid is incompressible, then the di�erence in pressure between two points at 
heights y1 and y2 is given by: 

P (y2) − P (y1) = −ˆg(y2 − y1) 

Pascal’s Principle states that if an external pressure, P , is applied to one location in a 
fluid, then the pressure everywhere in the fluid increases by P . 

If an object is immersed in a fluid, it will experience a force of buoyancy that is in 
the opposite direction to the gravitational field in that fluid. The magnitude of the 
buoyancy force is given by Archimedes’ Principle: 

FB = ˆV g 

where, ˆ, is the density of the fluid and, V , is the volume of the fluid displaced by the 
object (i.e. the volume of the part of the object that is immersed in the fluid). 

We can distinguish between laminar and turbulent flow of fluids. In laminar flow, indi-
vidual particles in the fluid follow well-defined streamlines. In turbulent flow, individual 
particle follow complicated paths that usually involve Eddy currents. In general, it is 
much easier to model the laminar flow of fluids. 
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The equation of continuity states that the mass flow rate of a fluid through a closed 
system must be the same everywhere in the system (no fluid can appear or disappear). 
For laminar flow of a fluid with density, ˆ, flowing at speed, v, through a pipe with 
cross section, A, the mass flow rate is a constant: 

ˆAv = constant 

A fluid is said to be incompressible if it has constant density. For a fluid of constant 
density, the volume flow rate, Q, must be constant everywhere in a closed system: 

Q = Av = constant 

Bernoulli’s Principle, which is based on the conservation of mechanical energy, states 
that the following quantity is a constant: 

P + 2
1 ̂
v2 + ̂ gy = constant 

for the laminar flow of a fluid with no viscosity. P is the internal pressure of the 
fluid, v its speed, and y the height of the fluid relative to a fixed coordinate system. In 
particular, Bernoulli’s Principle implies that, for a constant height, the internal pressure 
of a fluid must decrease if its speed increases. 

Viscosity, �, for the laminar flow of a fluid can be modelled as the result of the internal 
friction force between layers of the fluid. Because of viscosity, a fluid cannot flow in 
a horizontal pipe unless there is a di�erence in pressure across the pipe. Similarly, 
there will be no horizontal pressure gradient through a fluid unless the fluid is flowing. 
In general, the volume flow rate, Q, of an incompressible fluid through a pipe with 
resistance, R, is given by: 

�P 
Q = 

R 

For the laminar flow of a fluid with viscosity, �, through a horizontal cylindrical pipe 
of length, L, and radius, r, the flow rate is given by Poiseuille’s equation: 

ˇr4 
Q = �P8�L 
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Important Equations 

In the presence of gravity: Bernoulli: 
dP = −ˆg
dy P + 12ˆv

2 + ̂ gy = constant 
P (y2) − P (y1) = −ˆg(y2 − y1) 

FB = ˆV g Viscosity: 
Equation of continuity: 

�PˆAv = constant Q = 
Q = Av = constant (if incompressible) R 

ˇr4 
Q = �P (Poiseuille) 8�L 

Important Definitions 

Pressure: A measurement of force per unit area. SI units: [Pa]. Common variable(s): 
P . 

Viscosity: A measurement of a fluid’s resistance to flow. SI units: [Pas]. Common 
variable(s): �. 

Flow rate: Measurement of a fluid’s motion, in volume per unit time. SI units: [m3s−1]. 
Common variable(s): Q. 
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15.5 Thinking about the material 
End of chapter activities: 

Reflect and research 

1. Does atmospheric pressure increase or decrease when the weather is nice? How 
come? 

2. How does water move from the roots of a tree to the top, for a very tall tree? 
3. When did Bernoulli describe the motion of fluids? 
4. Where did Bernoulli come from? 

To try at home 

1. Place your hand in a plastic bag, and immerse your hand with the bag in water. 
The deeper the column of water, the better. Describe what you feel on your hand 
in terms of the direction of the force exerted by the water pressure. 

2. If you assume that the water that comes out of your bathroom faucet is gravity-
fed from a water tank, determine the height of the corresponding water tower 
relative to your bathroom faucet. Measure the flow rate of water from the faucet 
to determine the height and discuss whether it makes sense. 

3. Try plugging the faucet in your bathroom tap with your thumb. Are you able to 
completely prevent water from coming out when the tap is open? Estimate the 
pressure of the water in the pipes leading to your bathroom faucet. 

4. In your house/building, measure the flow rate between similar faucets at di�erent 
heights, and compare with what one would expect from the model from Example 
15-7. 

To try in the lab 

1. Propose an experiment to build a barometer and track the changes in atmospheric 
pressure as a function of time, and to compare your measurements to those from 
a weather station. 

2. Propose an experiment to characterize how liquid flows in a sponge. Is there a 
maximum height to which a sponge can draw liquid? How is energy conserved if 
water is drawn upwards in a sponge? 

3. Propose an experiment to measure the resistance of a pipe to the flow of water 
and compare with the result expected from Poiseuille’s equation. 

4. Propose an experiment to determiner the viscosity of maple syrup. 
5. Propose an experient to model the water flow in the sections of a cascading foun-

tain. 
6. Investigate the flow of water in a spinning bowl. 
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7. Investigate and model how the pressure in a balloon changes as the balloon in-
creases in volume. 

8. Investigate and model the surface tension of water. 
9. Design and build a blood pressure monitor using a manometer. 
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15.6 Sample problems and solutions 
15.6.1 Problems 
Problem 15-1: A man and a woman, Rebecca (57 kg) and Ryan (63 kg), are on a cruise 
when their ship tragically sinks. They are thrust into the freezing cold ocean. They see 
a large wooden door floating on the surface of the water, and wonder if they could both 
survive if they both lay on top of the door. They estimate that the door measures about 
2 m × 1 m × 0.12 m. The density of salt water is ˆw = 1027 kg/m3. 

Figure 15.25: Rebecca and Ryan wonder if they can stay above water if they get on top of a floating 
door. 

a) What does the density of the wood have to be in order for Rebecca and Ryan to stay 
above the surface of the water? (see Figure 15.25) 

b) If the door is made of oak (ˆd = 750 kg/m3), will they survive? Can one of them 
survive? 

(Solution) 

Problem 15-2: A doctor prescribes an IV drip to a dehydrated patient. She asks a nurse, 
Rob, to administer 2 l of saline solution (� = 1.0 × 10−3 Pa s, ˆ = 997 kg/m3) to the patient 
over 2 hours. An IV drip works by inserting a needle into a vein in a patient’s arm. The 
needle is connected to an IV bag by a tube (Figure 15.26). Lily uses a needle that has a 
diameter of 0.60 mm and a length of 32 mm. The blood pressure in the patient’s veins is 
80 mmHg above atmospheric pressure. Note: 1 mmHg ˇ 133 Pa 
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Figure 15.26: Left: A cylindrical IV needle. Right: The IV needle connected to an IV bag by a 
tube. The free end of the needle goes into the patient’s vein. 

a) What must the pressure be at the entrance of the needle (the side connected to the 
saline, not the patient)? Assume that the needle is essentially horizontal and that the 
diameter of the tube from the IV bag is large enough so that resistance in the vertical 
tube is negligible. Write your answer in Pascals above atmospheric pressure. 

b) How high above the patient’s arm should Lily put the IV bag? 
(Solution) 
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15.6.2 Solutions 
Solution to problem 15-1: 

(a) The forces acting on the door are the force of buoyancy, the door’s weight, and the 
weights of Rebecca and Ryan, as shown in Figure 15.27. 

Figure 15.27: The forces acting on the door when Rebecca and Ryan are on top of it. 

We can combine the weight of the door and the weight of the people into the total 
weight, Fg. We choose the y axis to be positive upwards. The sum of the forces on 
the door in the y direction is given by: X 

Fy = FB − Fg 

For the door to float, the net force on the door must be greater than or equal to zero. 
We want to find the minimum buoyant force for them to float, so we set the net force 
equal to zero: 

Fg = FB 
(mR + mr + md)g = ˆwVwg 
mR + mr + md = ˆwVw 

where the weight includes the mass of Rebecca (mR), Ryan (mr) and the door (md). 
We added the subscript W to the right side of the equation to remind ourselves that 
the buoyant force depends on the density and volume of the displaced water. We 
want to find the maximum density of the wood in order for Rebcca and Ryan to stay 
above the water’s surface. This means that the maximum volume of water that can 
be displaced is the volume of the door, Vw = Vd (so that the surface of the door is 
level with the surface of the water, as in Figure 15.25). We can rewrite the mass of 
the door in terms of its volume and density, and apply our condition that Vw = Vd : 

mR + mr + ̂ dVd = ˆwVd 
ˆwVd − mR − mr

ˆd = 
Vd 

A quick calculation tells us that the volume of the door is (2 m)(1 m)(0.12 m) = 
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0.24 m3. We can now calculate the desired density of the wood: 
ˆwVd − mR − mr

ˆd = 
Vd 

(1027 kg/m3)(0.24 m3) − 57 kg − 63 kg 
ˆd = 0.24 m3 

ˆd = 527 kg/m3 

The maximum density of the wood that would allow them to both float is 527 kg/m3. 
Balsa wood has a density that is about 150 kg/m3, so would allow them to survive. 
However, it is unlikely that a random floating door is made of balsa wood (although 
one would choose lighter materials when constructing a ship). 

(b) No, they could not both stay on the door because the density of oak is greater than 
the maximum density of 527 kg/m3. We can find the amount of mass that can be 
added to the door (mA) in order for the person on it to stay above water: 

Fg = FB 
(mA + md)g = ˆwVwg 
mA + ̂ dVd = ˆwVw 
mA + ̂ dVd = ˆwVd 

mA = Vd(ˆw − ̂d) 

where we again used the condition that Vw = Vd. We can plug in the appropriate 
values and solve: 

mA = Vd(ˆw − ̂d) 
mA = (0.24 m3)(1027 kg/m3 − 750 kg/m3) 
mA = 66 kg 

The door can support an additional mass of 66 kg, so either Rebecca or Ryan can 
survive if the other does not get on the door. 

Solution to problem 15-2: 

(a) Given that the pressure in the patient’s veins is 80 mmHg above atmospheric pressure, 
we want to find the pressure required at the other end of the needle so that we get the 
desired flow rate through the needle. We model the needle as a horizontal cylindrical 
pipe and assume that the saline solution exhibits laminar flow. We can therefore use 
Poiseuille’s equation: 

ˇr4 
Q = (P1 − P2)8�L 

We let P1 be the pressure where the needle connects to the tube. Solving for P1 gives: 
8�L 

P1 = Q + P2
ˇr4 

https://kg/m3)(0.24
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The pressure at the exit of the needle, P2, is just the blood pressure (80 mmHg+1 atm). 
The radius of the needle is 0.60 mm/2 = 0.30 mm. The flow rate has to be in units of 
m3/s. The flow rate in the appropriate units is thus: 

2 l 1 hr 0.001 m3 
Q = = 2.8 × 10−7 m3/s2 hr · 3600 s · 1 l 

Using our values, we can calculate P1: 
8(1.0 × 10−3 Pa s)(0.032 m) 133 Pa 

P1 = (2.8 × 10−7 m3/s) + 80 mmHg · + 1 atm 
ˇ(3 × 10−4 m)4 1 mmHg 

P1 = 2817 Pa + 10 640 Pa + 1 atm 
∴ P2 = 13 457 Pa above atmospheric pressure 

Note that, in the first line, we converted 80 mmHg into Pascals. 
(b) We can easily determine the height of the IV bag that is required to give the desired 

pressure. We choose a coordinate system with a y axis that is vertical (positive 
upwards) with the origin at the location of the needle (Figure 15.28). 

Figure 15.28: The needle is at height 0 and the top of the fluid in the IV bag is at y0. 

At the top of the solution in the IV bag, y0, the solution has a speed of zero and is at 
atmospheric pressure, P0 = 1 atm. The velocity at the needle is 0, and the pressure is 
13 457 Pa + 1 atm. Bernoulli’s principle states: 

P0 + 2
1 ̂
v0

2 + ̂ gy0 = P1 + 2
1 ̂
v1

2 + ̂ gy1 

Using our values to solve for y0, we get: 
P0 + ̂ gy0 = P1 

P1 − P0 
y0 = 

ˆg 
13 457 Pa + 1 atm − 1 atm 

y0 = (997 kg/m3)(9.8 m/s2) 
13 457 Pa 

y0 = (997 kg/m3)(9.8 m/s2) 
y0 = 1.4 m 

Therefore, the IV bag should be placed 1.4 m above the patient’s arm. 

https://mm/2=0.30


16 Electric charges and fields 

In this and subsequent chapters, we start to look at the theories that describe electric and 
magnetic phenomena. Within the framework for dynamics that was developed by Newton, 
we will introduce the theories of electromagnetism which describe the electric force, the 
magnetic force, and how these two interact. This first chapter introduces the description of 
the electric force, analogously to how we introduced Newton’s Universal Theory of Gravity 
to describe the gravitational force. 

Learning Objectives 

• Understand the definition of an electric charge. 
• Understand the di�erence between an insulator and a conductor. 
• Understand di�erent mechanisms for charging objects. 
• Understand Coulomb’s model for the electric force. 
• Understand the definition of an electric field. 
• Understand how to calculate the electric field from a continuous distribution of 

charge. 
• Understand how to model an electric dipole. 

Think About It 

If you rub a balloon against a carpet and bring it near your head, your hair will stand 
up and try to touch the balloon. 

A) The electric charge of the balloon is opposite of that on your hair. 
B) Your hair has no net electric charge, this is an example of charge separation and 

induction. 

16.1 Electric charge 
You have likely experienced or heard about electric charge in your life. For example, on 
a dry Winter day, you might find that after rubbing your bare feet on a polyester carpet 
you feel a small electric shock upon touching a metallic surface such as a doorknob. This 
is a manifestation of the electric charge that has built up on you being released onto the 
doorknob. You probably also have a notion of the existence of positive and negative charges, 
and that equal charges repel each other whereas opposite charges attract. In this chapter, we 
develop the description of how these charges can accumulate and how they exert attractive 
or repulsive forces on each other. 

Ordinary matter is made of atoms, which are themselves made of a small positive nucleus 

511 
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(containing positive protons and neutral neutrons) surrounded by a “cloud” of negatively 
charged electrons. Within a solid object, the atoms in the object can be modelled as being 
e�ectively stationary due to inter-atomic forces that hold the atoms together. As a result, 
the nuclei (the positively charged part of atoms) can be considered to be fixed in space. The 
negative electrons, depending on the material, can often move from one atom to another. 
If an atom looses an electron to another atom, it becomes positive, whereas the atom that 
acquired the extra electron becomes negative. 

We define the net charge on an atom (or an object) based on whether there are more protons 
(positive), more electrons (negative) or an equal amount (neutral). By default, atoms are 
neutral and have an equal number of protons and electrons. The reason that anything 
acquires a net electric charge is because it acquired an excess (or deficit) of electrons from 
another object. We say that “charge is conserved”, since the number of electrons does not 
change and if one object became positively charged, a di�erent object must have become 
negatively charged by the same amount, so that the total net charge (in the Universe) is 
zero. 

When you rub your feet on the carpet, electrons are being removed from one surface (your 
feet) and deposited on the other (the carpet). Your feet thus acquire a net positive charge 
(having lost electrons). When you touch a doorknob, the little spark comes from electrons 
jumping from the doorknob and onto your body. The reason that the electrons leave your 
feet in the first place is that di�erent materials have di�erent “aÿnities” for electrons. 
When you rub two materials together (placing their atoms in close proximity), electrons 
will transfer to the material with the highest aÿnity for electrons. This way of creating a 
net charge on an object is called “charging by friction”. 

The “triboelectic series” is a list of materials that tend to give up or acquire electrons when 
they are placed in close contact with each other; some common materials from the series 
are shown in Figure 16.1. The greatest charge is generated by rubbing together materials 
that are the furthest apart from each other in the diagram. Rubbing silk on a piece of glass 
results in more charge than rubbing wool on the same piece of glass. 

Figure 16.1: A sample of a triboelectric series of materials. The materials on the right-hand side 
have the greatest aÿnity to acquire electrons. 

Checkpoint 16-1 

If you rub a glass rod with silk, which object ends up with an excess of electrons? 
A) glass rod. 
B) silk. 
C) neither, they remain neutral. 
D) both will acquire an excess of electrons. 
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16.1.1 Conductors and insulators 
We can broadly classify materials into conductors (such as metals), and insulators (such 
as wood), depending on how easily the electrons can move around in the material. In a 
conductor, electrons (rather, the outer electron(s) of an atom) are only loosely bound to their 
nuclei, and they can thus move around the material freely. In an insulator, the electrons 
are tightly bound to the nuclei of their atoms and cannot easily move around. There is 
a third class of materials, semi-conductors, that falls somewhere between a conductor and 
an insulator. In a semi-conductor, electrons are typically bound to their atoms, but any 
additional electrons present in the material can move around as if they are in a conductor. 

Within a conductor, such as a solid metallic sphere, charges can move around freely. If 
that sphere has a net charge, for example an excess of electrons, those excess electrons will 
migrate to the outer surface of the sphere. Electrons in the sphere repel each other and will 
quickly settle into a position where they are, on average, the furthest from all of the other 
electrons, which occurs if all of the electrons migrate to the surface. This is illustrated by 
showing the charges on the surface of the charged sphere in the left panel of Figure 16.2. If 
an initially neutral conducting sphere is connected to the charged sphere by a conducting 
wire (right panel of Figure 16.2), some of the electrons will “conduct” (transfer) onto the 
surface of the neutral sphere, so that, on average, they are further from all other electrons. 
This way of adding charge to the neutral sphere is called “charging by conduction”, and the 
second sphere will remain charged if the connection between spheres is broken. 

Figure 16.2: Charging by conduction: a neutral conducting sphere is connected to a negatively 
charged conducting sphere. The charges can “spread out more” if some of the charges move (“con-
duct”) from the charge sphere onto the neutral sphere. 

16.1.2 Electrostatic induction 
Electrostatic induction allows one to “induce” a charge by using the fact that charges can 
move freely in a conductor. The left panel of Figure 16.3 shows a (neutral) rod made of 
a conducting material, with electrons distributed uniformly throughout its volume. In the 
right panel, a negatively charged sphere is brought next to the rod. Since the rod is conduct-
ing, electrons in the rod can easily move and they will thus accumulate on the end of the rod 
that is furthest from the negative sphere (which repels the electrons). Those electrons will 
leave positive charges (corresponding to the atoms that have lost their electrons) on the side 
closest to the sphere. The electrons in the rod will only accumulate for as long as the force 
from the negative sphere is less than the repulsive force from the electrons that have already 
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accumulated. In practice, such an equilibrium is reached almost instantly. In equilibrium, 
we say that the rod is “polarized”, or that the “charges in the rod have separated”, although 
the rod is overall still neutral. 

Note that we can model this as if it where positive charges that move inside of the rod 
instead of negative charges. The positive charges are attracted to the negative sphere, and 
thus accumulate on the end of the rod closest to the sphere, leaving a negative charge on the 
other end. The choice to call electrons “negative” is completely arbitrary. For convenience, 
we usually build models assuming that positive charges can easily move around, even if, in 
reality, it is almost always actually (negative) electrons that move. 

Figure 16.3: Electrostatic induction: when a negatively charged sphere is brought close to a neutral 
conducting rod, the electrons in the rod, which can move freely, accumulate on the side of the rod 
furthest from the sphere, leaving an excess of positive charge near the sphere. 

We can create a net charge on the polarized rod if we provide a conducting path for charges 
to leave (or enter) the rod. The Earth can be modelled as a very large reservoir of both 
positive and negative charges. By connecting the rod to the Earth (we say that we connect 
the rod to “ground”), we provide a path for the electrons in the rod to be even further from 
the negatively charged sphere, and they can thus leave the rod entirely in order to go into 
the ground. This is illustrated in the right-hand panel of Figure 16.4. 

If we then disconnect the rod from the ground, it has now acquired an overall positive 
charge, as in the right hand panel. We call this “charging by induction”. We can also think 
of this in terms of positive charges moving into the rod from the Earth; when we connect 
the rod to the ground, the positive charges in the Earth can move into the rod and get 
closer to the negatively charged sphere. If we disconnect the rod from the ground, the rod 
stays positive, just as we conclude when using a model where it is the negative charges that 
move1. 

1Unless magnetism is involved, it is not possible to distinguish between a flow of positive charges moving 
in one direction or negative charges moving in the opposite direction. 
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Figure 16.4: Charging by induction: when we connect the polarized rod to the ground, electrons 
can leave the rod. If we now disconnect the rod from ground, the rod is left with an overall positive 
charge. 

16.2 The Coulomb force 
Coulomb was the first to provide a detailed quantitative description of the force between 
charged objects. Nowadays, we use the (derived) SI unit of “Coulomb” (C) to represent 
charge. The “charge” of an object corresponds to the net excess (or lack) of electrons on the 
object. An electron has a charge of −e = −1.6 × 10−19 C. Thus, an object with a charge 
of −1 C has an excess of about 1.6 × 1019 electrons on it, which is a very large charge. If 
an object has an excess of electrons, it is negatively charged and we indicate this with a 
negative sign on the charge of the object. An object with a (positive) charge of 1 C thus 
has a deficit of 1.6 × 1019 electrons. 

Through careful studies of the force between two charged spheres, Coulomb observed2 that: 

• The force is attractive if the objects have opposite charges and repulsive if the objects 
have the same charge. 
• The force is inversely proportional to the squared distance between spheres. 
• The force is larger if the charges involved are larger. 

~This leads to Coulomb’s Law for the electric force (or simply “Coulomb’s Law”), F12, exerted 
on a point charge Q1 by another point charge Q2: 

~F12 = kQ1Q 
2

2 
r̂21 

r 

where r̂21 is the unit vector from Q2 to Q1 and r is the distance between the two charges, 
as illustrated in Figure 16.5. k = 8.99 × 109 N · m2/C2 is simply a proportionality constant 
(“Coulomb’s constant”) to ensure that the quantity on the right will have units of Newtons 
when all other quantities are in S.I. units. In some instances, it is more convenient to use the 
“permittivity of free space”, �0, rather than Coulomb’s constant, in which case Coulomb’s 
Law has the form: 

1 Q1Q2~F12 = r̂214ˇ�0 r2 

2Others had initially observed the inverse square law for the electric force, but Coulomb was the first to 
formalize the theory. 
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where �0 = 1 = 8.85 × 10−12 C2 · N−1 · m−2 is a more fundamental constant, as we will see 4ˇk 
in later chapters. 

Figure 16.5: Vectors involved in applying Coulomb’s Law. 

If the two charges have positions ~r1 and ~r2, respectively, then the vector r̂21 is given by: 

~r2 − ~r1 
r̂21 = 

||~r2 − ~r1|| 

Coulomb’s Law is mathematically identical to the gravitational force in Newton’s Universal 
Theory of Gravity. Rather than quantity of mass determining the strength of the gravita-
tional force, it is the quantity of charge that determines the strength of the electric force. 
The only major di�erence is that gravity is always attractive, whereas the Coulomb force 
can be repulsive. 

Checkpoint 16-2 

The Coulomb force is conservative. 
A) True. 
B) False. 

The product Q1Q2 in the numerator of Coulomb’s force is positive if the two charges have 
the same sign (both positive or both negative) and negative if the charges have opposite 
signs. Again, referring to Figure 16.5, if the two charges are positive, the force on Q1 will 
point in the same direction as r̂21 (since all of the scalars are positive in Coulomb’s Law) 
and thus be repulsive. If, instead, the two charges have opposite signs, the product Q1Q2 
will be negative and the force vector on Q1 will point in the opposite direction from r̂21 and 
the force is attractive. 
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Example 16-1 

Calculate the magnitude of the electric force between the electron and the proton in a 
hydrogen atom and compare this to the gravitational force between them. 

Solution 

We model this by assuming that the electron and proton are point charges a distance 
of 1 °A = 1 × 10−10 m apart (1 °Angstrom is about the size of the hydrogen atom). The 
proton and electron have the same charge with magnitude e = 1.6 × 10−19 C, so the 
(attractive) electric force between them has a magnitude of: 

Q1Q2 (1.6 × 10−19 C)(1.6 × 10−19 C)
F e = k = (9 × 109 N · m2/C2) = 2.3 × 10−8 N 

r2 (1 × 10−10 m)2 

which is a small number, but acting on a very small mass. In comparison, the force of 
gravity between an electron (me = 9.1 × 10−31 kg) and a proton (mp = 1.7 × 10−27 kg) 
is given by: 

memp (9.1 × 10−31 kg)(1.7 × 10−27 kg) 
F g = G = (6.7 × 10−11 Nm2/kg2) = 1.04 × 10−47 N 

r2 (1 × 10−10 m)2 

Discussion: As we can see, the electric force between an electron and a proton is 39 
orders of magnitude larger than the gravitational force! This shows that the gravi-
tational force is extremely weak on the scale of particles and has essentially no e�ect 
in particle physics. Indeed, the best current theory of particle physics, and the most 
precisely tested theory in physics, the “Standard Model”, does not need to include grav-
ity in order to provide a spectacularly precise description of particles. One of the big 
challenges in theoretical physics is nonetheless to develop a theory that integrates the 
gravitational force with the other forces. 

Example 16-2 

Three charges, Q1 = 1 nC, Q2 = −2 nC, and q = −1 nC, are held fixed at the three 
corners of an equilateral triangle with sides of length a = 1 cm, with a coordinate 
system as shown in Figure 16.6. What is the electric force vector on charge q? (Note 
that 1 nC = 1 × 10−9 C). 
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Figure 16.6: Three charges arranged in an equilateral triangle of side a. 

Solution 

The net electric force on charge q will be the vector sum of the forces from charges 
Q1 and Q2. We thus need to determine the force vectors on q from each charge using 
Coulomb’s Law, and then add those two vectors to obtain the net force on q. The force 
vectors exerted on q from each charge are illustrated in Figure 16.7. 

Figure 16.7: Force vectors on charge q. 

The force from charge Q1 has magnitude: 

Q1q (1 × 10−9 C)(1 × 10−9 C)
Fq1 = k = (9 × 109 N · m2/C2) = 9 × 10−5 N 

a2 (0.01 m)2 

and components: 

~Fq1 = −Fq1 cos(60�)x̂ − Fq1 sin(60�)ŷ 
= −(4.5 × 10−5 N)x̂ − (7.8 × 10−5 N)ŷ 
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Similarly, the force on q from Q2 has magnitude: 

Q2q (2 × 10−9 C)(1 × 10−9 C)
Fq2 = k = (9 × 109 N · m2/C2) = 1.8 × 10−4 N 

a2 (0.01 m)2 

and components: 

~Fq2 = −Fq2 cos(60�)x̂ + Fq2 sin(60�)ŷ 
= −(9.0 × 10−5 N)x̂ + (1.6 × 10−4 N)ŷ 

Finally, we can add the two force vectors together to obtain the net force on q: 

~ = ~ ~F net Fq1 + Fq2 

= −(4.5 × 10−5 N)x̂ − (7.8 × 10−5 N)ŷ − (9.0 × 10−5 N)x̂ + (1.6 × 10−4 N)ŷ 
= −(13.5 × 10−5 N)x̂ + (8.2 × 10−5 N)ŷ 

which has a magnitude of 15.8 × 10−5 N. 

Discussion: In this example, we determined the net force on a charge by making use 
of the superposition principle; namely, that we can treat the forces exerted on q by Q1 
and Q2 independently, without needing to consider the fact that Q1 and Q2 exert forces 
on each other. 

16.3 The electric field 
~We define the electric field vector, E, in an analogous way as we defined the gravitational 

field vector, ~g. By defining the gravitational field vector, say, at the surface of the Earth, we 
can easily calculate the gravitational force exerted by the Earth on any mass, m, without 
having to use Newton’s Universal Theory of Gravity. As you recall, we can define the 
gravitational field, ~g(~r), at some position, ~r, from a point mass, M , as the gravitational 
force per unit mass: 

~g(~r) = −GM r̂2r 

where ~r is a vector from the position of M to where we want to know the gravitational field. 
As a result, the force exerted on a “test mass”, m, located at position ~r relative to mass M 
is given by: 

F~ g = m~g = −GMm 
r̂2r 

which, of course, is the result from Newton’s Theory of Gravity. As you recall, we can define 
the gravitational field for any object that is not a point mass (e.g. the Earth), and use that 
field to find the force exerted by the Earth on any mass m, without having to re-calculate 
the gravitational field each time (which requires an integral or Gauss’ Law). 

~We proceed in an analogous was to define the “Electric field”, E(~r), as the electric force per 
unit charge. If we have a point charge, Q, located at the origin of a coordinate system, then 
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~the electric field from that point charge, E(~r), at some position, ~r, relative to the origin is 
given by: 

Q~E(~r) = k 2 r̂  
r 

If we place a “test charge”, q, at position ~r in space, it will experience a force given by: 
Qq~ e ~F = qE = k 2 r̂  
r 

just as we find from Coulomb’s Law. 

Checkpoint 16-3 

A negative charge is placed at the origin of a coordinate system. At some point in 
space, the electric field from that charge 

A) points towards the origin. 
B) points away from the origin. 

In Example 16-2, we determined the electric force on charge q, exerted by two other charges 
Q1 and Q2. If we now changed the value of q and wanted to determine the force, we can use 
the electric field to simplify the process considerably. That is, we can determine the value 

~of the electric field, E, from Q1 and Q2 at the position of q, and then simply multiply that 
field vector by a charge q to obtain the force on that charge, without having to add force 
vectors. 

Example 16-3 

Two charges, Q1 = 1 nC, and Q2 = −2 nC are held fixed at two corners of an equilateral 
triangle with sides of length a = 1 cm, with a coordinate system as shown in Figure 
16.6. What is the electric field vector at the third corner of the triangle? 

Figure 16.8: Two charges at the corners of an equilateral triangle of side a. 

Solution 
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The net electric field at the third corner of the triangle will be the vector sum of the 
electric fields from charges Q1 and Q2. We thus need to determine the electric field 
vectors from each charge, and then add those two vectors to obtain the net electric 
field. The vectors are illustrated in Figure 16.9. 

Figure 16.9: Electric field vectors from two charges at the corners of an equilateral triangle of 
side a. 

The electric field from charge Q1 has magnitude: 

Q1 (1 × 10−9 C)
E1 = k = (9 × 109 N · m2/C2) = 9 × 104 N/C 

a2 (0.01 m)2 

and components: 

~E1 = E1 cos(60�)x̂ + E1 sin(60�)ŷ 
= (4.5 × 104 N/C)x̂ + (7.8 × 104 N/C)ŷ 

Similarly, the electric field from Q2 has magnitude: 

Q2 (2 × 10−9 C)
E2 = k = (9 × 109 N · m2/C2) = 1.8 × 105 N/C 

a2 (0.01 m)2 

and components: 

~E2 = E2 cos(60�)x̂ − E2 sin(60�)ŷ 
= (9.0 × 104 N/C)x̂ − (1.6 × 105 N/C)ŷ 

Finally, we can add the two force vectors together to obtain the net force on q: 

E~ net ~ ~= E1 + E2 

= (4.5 × 104 N/C)x̂ + (7.8 × 104 N/C)ŷ + (9.0 × 104 N/C)x̂ − (1.6 × 105 N/C)ŷ 
= (13.5 × 104 N/C)x̂ − (8.2 × 104 N/C)ŷ 
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which has a magnitude of 15.8 × 104 N/C. By knowing the electric field at the empty 
corner of the triangle, we can now calculate the net electric force that would act on 
any charge placed in that location. For example, if we place a charge q = −1 nC (as in 
Example 16-2), we can easily find the corresponding electric force: h i 

~ ~Fq = qE = (−1 nC) (13.5 × 104 N/C)x̂ − (8.2 × 104 N/C)ŷ 
= −(13.5 × 10−5 N)x̂ + (8.2 × 10−5 N)ŷ 

as we found previously. Note that the force on q is in the opposite direction of the 
electric field vector. This is because q is negative. The electric field at some point 
in space thus points in the same direction as the force that a positive test 
charge would experience. 

Discussion: In this example, we determined the net electric field by making use of the 
superposition principle; namely, that we can treat the electric fields from Q1 and Q2 
independently, without needing to consider the fact that Q1 and Q2 exert forces on each 
other. By knowing the electric field at some position in space, we can easily calculate 
the force vector on any test charge, q, placed at that position. Furthermore, the sign of 

~the charge q will determine in which direction the force will point (parallel to E for a 
~positive charge and anti-parallel to E for a negative charge). 

Checkpoint 16-4 

The electric field inside of a conductor must be zero because... 
A) If there is an electric field, electrons will move (since it is a conductor) and arrange 

themselves so as to create an additional field that cancels the original field 
B) If there is an electric field, protons will move (since it is a conductor) and arrange 

themselves so as to create an additional field that cancels the original field 
C) Since electrons can move freely, they move so fast that the electric field is negli-

gible. 
D) Electric fields cannot penetrate conducting materials. 

16.3.1 Visualizing the electric field 
Generally, a “field” is something that has a di�erent value at di�erent positions in space. 
The pressure in a fluid under the presences of gravity is a field: the pressure is di�erent 
at di�erent heights in the fluid. Since pressure is a scalar quantity (a number), we call 
it a “scalar field”. The electric field is called a “vector field”, because it is a vector that 
is di� erent at each position in space. One way to visualize the electric field is to draw 
arrows at di�erent positions in space; the length of the arrow is then proportional to the 
strength of the electric field at that position, and the direction of the arrow then represents 
the direction of the electric field. The electric field for a point charge is shown using this 
method in Figure 16.10. 
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Figure 16.10: Electric field vectors near a point charge. 

One disadvantage of visualizing a vector field with arrows is that the arrows take up space, 
and it can be challenging to visualize how the field changes magnitude and direction con-
tinuously through space. For this reason, one usually uses “field lines” to visualize a vector 
field. Field lines are continuous lines with the following properties: 

• The direction of the vector field at some point in space is tangent to the field line at 
that point. 
• Field lines have a direction to indicate the direction of the field vector along the 

tangent (as there are two possibilities, parallel and anti-parallel). 
• The magnitude of the field is proportional to the density of field lines at that point. 

The more field lines near a location in space, the larger the magnitude of the field 
vector at that point. 

An example of using field lines to represent a vector field in space is shown in Figure 16.11. 
The corresponding field vector is shown at two di�erent positions in space (A and B). At 
both positions, the vector is tangent to the field line at that position in space and points 
in the direction of the little arrow drawn at the end of the field lines. The field vector 
at point A has a larger magnitude than the one at point B, since the field lines are more 
concentrated at point A than at point B (there are more field lines per unit area at that 
position in space, the field lines are closer together). 

Figure 16.11: An example of determining a field vector from the continuous field lines. 
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Checkpoint 16-5 

It is possible for field lines to cross? 
A) Yes. 
B) No. 

Because the electric field vector always points in the direction of the force that would be 
exerted on a positive charge, electric field lines will point out from a positive charge and 
into a negative charge. The electric field lines for a combination of positive and negative 
charges is illustrated in Figure 16.12. 

Figure 16.12: Field lines of two +2q charges and one −3q charge. 

16.3.2 Electric field from a charge distribution 
So far, we have only considered Coulomb’s Law for point charges (charges that are infinitely 
small and can be considered to exist at a single point in space). We can use the principle 
of superposition to determine the electric field from a charged extended/continuous object 
by modelling that object as being made of many point charges. The electric field from that 
object is then the sum of the electric field from the point charges that make up that object. 

Consider a charged wire that is bent into a semi-circle of radius R, as in Figure 16.13. The 
wire carries a net positive electric charge, +Q, that is uniformly distributed along the length 
of the wire. We wish to determine the electric field vector at the centre of the circle. 
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Figure 16.13: A charged wire bent into a semi-circle of radius R. 

We start by choosing a very small section of wire and model that section of wire as a point 
charge with infinitesimal charge dq (as in Figure 16.14). A distance R from that point 
charge, the electric field from that point charge will have magnitude, dE, given by: 

dq
dE = k 

R2 

~The electric field vector, dE, from the point charge dq is illustrated in Figure 16.14. 

Figure 16.14: Infinitesimal electric fields from point charges along the bent wire. 

Using the coordinate system that is shown, we define � as the angle made by the vector 
from the origin to the point charge dq and the x-axis. The electric field vector from dq is 
then given by: 

~dE = dE cos �x̂ − dE sin �ŷ 

The total electric field at the origin will be obtained by summing the electric fields from the 
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di�erent dq over the entire semi-circle: Z Z 
~ ~E = dE = (dE cos �x̂ − dE sin �ŷ) �Z � �Z � 

= dE cos � x̂ − dE sin � ŷ Z 
∴ Ex = dE cos � Z 
∴ Ey = − dE sin � 

We are thus left with two integrals to solve for the x and y components of the electric 
field, respectively. Before jumping into solving the integrals, it is useful to think about 
the symmetry of the problem. Specifically, consider a second point charge, dq0, located 
symmetrically about the x-axis from charge dq, as illustrated in Figure 16.14. The charge 
dq0 will create a small electric field dE~ 0 as illustrated. When we add together dE~ and dE~ 0, 
the two y components will cancel, and only the x components will sum together. Similarly, 
for any dq that we choose, there will always be another dq0 such that when we sum together 
their respective electric fields, the y components will cancel. Thus, by symmetry, we can 
argue that the net y component of the electric field, Ey, must be identically zero. We thus 

~only need to evaluate the x component of E: 
Z Z 

Ex = dE cos � = k
R

dq 
2 cos � 

In order to solve this integral, we need to consider which variables change for di�erent 
choices of the point charge dq. In this case, the distance R is the same anywhere along 
the semi-circle, so only � changes with di�erent choices of dq, as k is a constant. We can 
express dq in terms of d� and then use � as the variable of integration (the variable that 
labels the di�erent dq). d� corresponds to a small change in the angle �, and is the angle 
that is subtended by the charge dq. That is, the charge dq covers a small arc length, ds, of 
the semi-circle, which is related to d� by: 

ds = Rd� 

The total charge on the wire is given by Q, and the wire has a length ˇR (half the circum-
ference of a circle). Since the charge is distributed uniformly on the wire, the charge per 
unit length of any piece of wire must be constant. In particular, dq divided by ds must be 
equal to Q divided by ˇR: 

dq Q= 
ds ˇR 

Q Q
∴ dq = ds = d� 

ˇR ˇ 

where in the last equality we used the relation ds = Rd�. We now have all of the ingredients 
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to solve the integral: Z Z +ˇ/2dq Q
Ex = k

R2 cos � = k
ˇR2 cos �d� 

−ˇ/2 Z +ˇ/2 
= k Q cos �d� = k Q [sin �]+ˇ/2 

ˇR2 ˇR2 −ˇ/2 −ˇ/2 

2Q= k 
ˇR2 

The total electric field vector at the centre of the circle is thus given by: 

2Q~E = k x̂ 
ˇR2 

Note that if we had not realized that we did not need to solve the integral for the y compo-
nent, we would still find that it is zero: Z +ˇ/2 

Ey = −k Q cos �d� = −k Q [− cos �]+ˇ/2 = 0 
ˇR2 −ˇ/2 ˇR2 −ˇ/2 

In order to determine the electric field at some point from any continuous charge distribution, 
the procedure is generally the same: 

1. Make a good diagram. 
2. Choose a charge element dq. 

~3. Draw the electric field element, dE, at the point of interest. 
~4. Write out the electric field element vector, dE, in terms of dq and any other relevant 

variables. 
~5. Think of symmetry: will any of the component of dE sum to zero over all of the dq? 

6. Write the total electric field as the sum (integral) of the electric field elements. 
7. Identify which variables change as one varies the dq and choose an integration variable 

to express dq and everything else in terms of that variable and other constants. 
8. Do the sum (integral). 

Example 16-4 

A ring of radius R carries a total charge +Q. Determine the electric field a distance a 
from the centre of the ring, along the axis of symmetry of the ring. 

Solution 

In order to determine the electric field, we carry out the procedure outlined above, 
and start by drawing a good diagram, as in Figure 16.15, showing: our coordinate sys-

~tem, our choice of dq, the electric field element vector dE that corresponds to dq, and 
variables (r, �) to specify the position of dq. 
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Figure 16.15: Determining the electric field on the axis of a ring of radius R carrying charge 
Q. 

In this case, the figure is challenging to draw and visualize because of the three-
dimensional nature of the problem. With the specific dq that we chose, the electric 
field element vector is given by: 

~dE = −dE sin �x̂ + 0ŷ + dE cos �ẑ  

~where dE has magnitude: 

dq
dE = k 2r 

The x and z components of the total electric field will then be given by: Z Z dq
Ex = − dE sin � = − k 2 sin � Z Z r 

dq
Ez = dE cos � = k 2 cos � 

r 

In general, if we had chosen a dq that is not along one of the axes of the coordinate 
system, the electric field element vector would have components in all three directions. 
However, if we consider the symmetry of the ring, we can note that once we sum 
together all of the electric field elements, only the z components will survive. Indeed, 
we have shown in Figure 16.15 that for each dq, there will be a dq0 located on the 
opposite side of the ring that will create an electric field element that will cancel all 
but the z component of the field element from dq. We thus only need to consider the z 
components of the electric field elements when determining the total electric field: 

~E = Ez ẑ  
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We now have to evaluate the integral for the z component of the electric field: Z dq
Ez = k 2 cos � 

r 

and determine which quantities change as we move dq around the ring. In this case, 
both r2 and cos � are the same for all elements on the ring, and the integral is trivial: 

1 Z Q a = k 2 cos � dq = k 2 cos � = kQ Ez 
r r (R2 + a2) 2

3 

where the integral 
R 
dq simply means “sum all of the charges dq together”, which is 

equal to Q, the total charge on the ring. In the last equality, we replaced cos � with the 
variables a and R that are provided in the question. 

Example 16-5 

You have rubbed a glass rod with a silk cloth such that the glass rod has acquired a 
positive charge. The rod has a length, L, a negligible cross-section, and has acquired 
a total positive charge, +Q, that is uniformly distributed along the length of the rod. 
What is the electric field a distance R from the centre of the rod? 

Solution 

In order to determine the electric field, we carry out the procedure outlined above, and 
start by drawing a good diagram, as in Figure 16.16, showing: our coordinate system, 
our choice of dq at a distance y above the centre of the rod, the electric field element 

~vector dE that corresponds to dq, and variables (y, r, �) to specify the position of dq. 
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Figure 16.16: Determining the electric field a distance R from the centre of a rod of length L 
carrying charge Q. 

We define the origin to be located at the point where we want to determine the electric 
field, and the angle � to be the angle between the horizontal and the position vector of 
dq. We can write the electric field element vector as: 

~dE = dE cos �x̂ − dE sin �ŷ 

~where dE has magnitude: 

dq
dE = k 2r 

The x and y components of the total electric field will then be given by: Z Z dq
Ex = dE cos � = k 2 cos � Z rZ dq
Ey = − dE sin � = − k sin �2r 

Again, before proceeding with the integrals, we consider symmetry. Specifically, if we 
consider a charge dq0 located symmetrically about the x axis from dq (as illustrated 

~in Figure 16.16), we see that the y component of the electric field element dE 0 that it 
~creates will cancel the y component of dE. For each choice of dq, there will exist a 

corresponding choice dq0 which will result in the y component of the net electric field 
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being zero. We thus only need to evaluate the x component of the total electric field: !Z 
~E = Exx̂ = k

dq 
2 cos � x̂ 
r 

Within the integrand, both r and � will change as we sum over the di�erent charges 
dq along the rod. A straightforward option to write the integral is to use y as the 
integration constant, and to write dq, r, and cos � in terms of y. The charge dq covers 
an infinitesimal length of the rod, dy. Since the rod is uniformly charged, the charge 
per unit length must be the same over a small length dy as it is over the whole length 
of the rod: 

dq Q= 
dy L 

Q
∴ dq = dy

L 

It is often useful to introduce a constant charge per unit length, � = Q , so that we can 
write the charge dq as: 

L 

dq = �dy 

We can also express r2 and cos � in terms of y (and R, which is constant): 

r 2 = y 2 + R2 

R R cos � = = p
r y2 + R2 

Finally, we can combine this all into an integral that we can evaluate: Z dq
Ex = k 2 cos � 

rZ L/2 1 R = k � p 
2 + R2 dy −L/2 y2 + R2 yZ L/2 1 = kR� dy 

−L/2 (y2 + R2) 3
2 " #L/2 

y= kR� 
R2
p
y2 + R2 

−L/2 

∴ Ex = k� r� � L 2R L 
2 + R2 
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If the rod were infinitely long (or very long compared to the distance R), the electric 
field becomes: 

2k� lim Ex = 
L!1 R 

By using the charge per unit length, �, we were able to easily generalize our result to 
that expected for an infinitely long rod with uniform charge density. 

Solving the integral above in terms of the integration variable y is diÿcult without some 
knowledge of integrals. For this specific integral, the easiest method to use from calculus 
is “trig substitution”. We show below how we can arrive at a much easier integral if we 
had instead chosen the angle � as the integration variable instead of y, and we will see 
that this is a physical illustration of the “trig substitution method” from calculus! 

We go back to step 7 in our procedure and choose � (instead of y) as the integration 
variable for the integral: Z dq

Ex = k 2 cos � 
r 

That is, we need to express 1/r2 and dq in terms of �. Referring to Figure 16.16, we 
have: 

R 
r = cos � 

1 cos2 �
∴ = 
r2 R2 

y = R tan � 
dy R

∴ dy = d� = d� 
d� cos2 � 

∴ dq = �dy = � R d� cos2 � 

The only diÿculty is in determining the angle d� subtended by dq, which was determined 
above by first relating dy and d�. With these substitutions, the integral becomes trivial: Z dq

Ex = k 2 cos � 
rZ �0 R cos2 � k� Z �0 k� = k � cos �d� = cos �d� = [sin �]�0 

−�0 cos2 � R2 R −�0 R −�0 

2k� = sin �0
R 
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where �0 is the angle subtended by half of the rod. Referring to Figure 16.16, we can 
easily see that: 

L/2sin �0 = r� �2
L + R2 
2 

So that the total electric field is given by: 

2k� k� L 
Ex = sin �0 = r� �2R R L + R2 

2 

as found before. Furthermore, in the limit of an infinitely long rod, the angle �0 tends 
to ˇ 2 , so that the electric field becomes: 

2k� 2k� 
Ex = lim sin �0 = 

�0! ˇ R R2 

Discussion: In this example, we saw how to apply the principle of superposition to 
determine the electric field near a finite and a infinite line of charge with constant charge 
per unit length. We showed that it was relatively straightforward to set up the integral 
in terms of dy, but not so easy to solve the integral. We then showed that by using � 
as the integration variable, we could arrive at a much easier integral. This change of 
variable corresponds to a physical variable in our problem, but is also the basis for the 
more abstract “trig substitution” method used to solve integrals in calculus. 
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Example 16-6 

Calculate the electric field a distance, a, above a infinite plane that carries uniform 
charge per unit area, ˙. 

Solution 

In this case, we need to determine the field above an object that is two dimensional 
(a plane). In the previous examples (a ring, a line of charge), we modelled a one di-
mensional object (e.g. the line), as being made of many point charges (0-dimensional 
objects). We treated those point charges has having an infinitesimal length along the 
object so that we could sum them together to obtain the object (e.g. dy was the length 
of the charge for the rod/line of charge). 

In order to model the two-dimensional object (the plane), we model it has being the 
sum of many one dimensional objects. We can model a plane either as a rectangle of 
width, W , and length, L, as shown in the left panel of Figure 16.17 or as a disk of 
radius, R, as shown in the right panel. To model an infinite plane, we can then take the 
limit of either L and W going to infinity (rectangle), or of R going to infinity (disk). 
We can model the rectangle as being the sum of many lines of finite length, L, and 
infinitesimal width, dx. Similarly, we can model the disk as the sum of infinitesimally 
thin rings of finite radius, r, and thickness, dr. In both cases, we know how to model 
the field from a line of charge (Example 16-5) or from a ring (Example 16-4). 

Figure 16.17: A two-dimensional object such as a plane modelled as a the sum of infinitely 
thin lines (left panel) or as the sum of infinitely thin rings (right panel). 

We proceed by modelling the plane as a disk made up of infinitesimal rings. Our 
infinitesimal charge, dq, is thus the charge on a ring of radius r and thickness dr, as 
illustrated in Figure 16.18. 
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Figure 16.18: Modelling the field from a disk as the sum of fields from concentric thin rings. 

We know from Example 16-4 that the magnitude of the electric field a distance a from 
the centre of the ring, along its axis of symmetry (the z axis in Figure 16.18), is given 
by: 

a 
dE = kdq

(r2 + a2) 3
2 

By symmetry, for all of the di�erent infinitesimal rings that make up the disk, the 
field will always point along the z axis. In order to determine the total field, we sum 
(integrate) the values of dE, over all of the rings, from a radius of r = 0 to a radius 
r = R. For each ring, the value of r will be di�erent, so we need to express dq in terms 
of dr in order to perform the integral. We know that the plane has a uniform charge 
per unit area given by ˙. The charge dq of an infinitesimal ring is given by: 

dq = ˙dA = ˙2ˇrdr 

where dA = 2ˇrdr is the area of the infinitesimal ring of radius r and thickness dr (think 
of unfolding the ring into a rectangle of height dr and length 2ˇr, the circumference of 
the circle, in order to determine the area). We now have all of the ingredients in order 
to determine the total electric field: Z Z R Z Ra r = 2ˇka˙ E = dE = kdq 

0 
dr3

2 
3
2(r2 + a2) (r2 + a2)0 " #R � �−1 a = 2ˇka˙ p = 2ˇk˙ 1 −

2 R2 + a2r2 + a 0 

Finally, we can take the limit of R ! 1 in order to get the electric field above an 
infinite plane: � � 

E = lim 2ˇk˙ 1 − a = 2ˇk˙ = ˙ 
R!1 R2 + a2 2�0 

where we used �0 in the last equality as the result is a little cleaner without the factors 
of ˇ. Note that for an infinite plane of charge, the electric field does not depend on the 
distance (our variable a) from the plane! 
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Discussion: In this example, we showed how we can model a two-dimensional charge 
distribution as the sum of one-dimensional charge distributions. In particular, we 
showed that an infinite plane of charge can be modelled as the sum of many lines 
charges or of many rings of charge (we chose the latter in the above). We also found 
that the electric field above an infinite plane of charge does not depend on the distance 
from the plane; that is, the electric field is constant above an infinite plane of charge. 

Josh’s Thoughts 

A common source of confusion is the process of solving for the electric field produced by 
continuous charges. Point charges are well defined in space as being entirely contained 
within a single point, while continuous charges are objects which occupy 1, 2, or 3 

~dimensions. The electric field produced by point charges are easily modelled by E = 
kQ 

2 r̂, but the electric fields produced by continuous charges must usually be obtained 
r

from an integral. 

When a charge is distributed, the charge on the object must be broken down into many 
small charges which are written as dq. From there, dq is rewritten in terms of a position 
variable over which it is convenient to integrate. Think of the position variable as a 
variable that you can use to distinguish charges, dq, located at di�erent positions along 
the object. 

For example, referring to Figure 16.19, if I wanted to determine E at the top of a rod 
(left-hand panel), it would be most convenient for me to integrate over x, but if I wanted 
to determine E on the side of a rod, it would be most convenient to integrate over �. 

Figure 16.19: Calculating the electric field produced by a rod at di�erent positions. 

In order to determine the bounds of the integral, think of the range in position variable 
that is required in order to cover the entire object. I recommend paying close attention 
to examples 16-4, 16-5, and 16-6, and attempting questions which require integration 
on the Question Library. 
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16.4 The electric dipole 
Electric dipoles are a specific combination of a positive charge +Q held at a fixed distance, 
l, from an equal and opposite charge, −Q, as illustrated in Figure 16.20. 

Figure 16.20: An electric dipole and its corresponding dipole vector, p~. 

Dipoles can be represented by their “electric dipole vector” (or “electric dipole moment”), 
p~, defined to point in the direction from the negative charge to the positive charge, 
with magnitude: 

p = Ql 

Dipoles arise often in nature, for example, a water molecule can be modelled as a dipole, 
because the two hydrogen atoms are not symmetrically arranged around the oxygen atom. 
The electrons in a water molecule tend to stay closer to the oxygen atom, which acquires an 
excess of 2 electrons, while each proton has a deficit of 1 electron, resulting in a separation 
of charge (polarization), which can be modelled as a an electric dipole, as in Figure 16.21. 

Figure 16.21: A water molecule can be modelled as an electric dipole. 

When a dipole is immersed in a uniform electric field, as illustrated in Figure 16.22, the net 
force on the dipole is zero because the force on the positive charge will always be equal and 
in the opposite direction from the force on the negative charge. 

Figure 16.22: An electric dipole in a uniform electric field. 
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Although the net force on the dipole is zero, there is still a net torque about its centre that 
will cause the dipole to rotate (unless the dipole vector is already parallel to the electric 
field vector). If the dipole vector makes an angle, �, with the electric field vector (as in 
Figure 16.22), the magnitude of the net torque on the dipole about an axis perpendicular 
to the page and through the centre of the dipole is given by: 

l l l l 
˝ = 2F 

+ sin � + 2F 
− sin � = 2QE sin � + 2QE sin � = QlE sin � = pE sin � 

In Figure 16.22, the torque vector is into the page (the forces will make it rotate clockwise), 
~which is the same direction as the cross product, p~ × E. Note that the magnitude of the 

torque is also equal to the magnitude of the cross product. Thus, in general, the torque 
~vector on a dipole, ~p, from an electric field, E, is given by: 

~ ~̋ = p~ × E 

In particular, note that the torque is zero when the dipole and electric field vectors are 
parallel. Thus, a dipole will always experience a torque that tends to align it with the 
electric field vector. The dipole is thus in a stable equilibrium when it is parallel to the 
electric field. 

Checkpoint 16-6 

When an electric dipole is such that its dipole vector is anti-parallel to the electric field 
vector, the dipole is 

A) not in equilibrium. 
B) in a stable equilibrium. 
C) in an unstable equilibrium. 

We can also model the behaviour of the dipole using energy. If a dipole is rotated away 
from its equilibrium orientation and then released, it will gain (rotational) kinetic energy 
as it tries to return to equilibrium, and will oscillate about the equilibrium position. When 
the dipole is held out of equilibrium, we can think of it has having potential energy. To 
determine the functional form of that potential energy function, we consider the work done 
in rotating the dipole from an angle �1 to an angle �2 (where the angle is between the dipole 
and the electric field vectors): Z �2 

Z �2 
Z �2 

W = ˝d� = −pE sin �d� = −pE sin �d� 
�1 �1 �1 

= pE[cos �]�� 21 
= pE cos �2 − pE cos �1 

where the negative sign in the torque is to indicate that the torque is in the opposite 
direction from increasing � (in Figure 16.22, the torque is clockwise whereas the angle � 
increases counter-clockwise). The net work done in going from position �1 to �2 is the 
negative of the change in potential energy in going from �1 to �2. Thus, we define the 

~potential energy of an electric dipole, p~, in an electric field, E, as: 

~U = −pE cos � = −p~ · E 
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which has a negative sign, and we also recognize that this is equivalent to the scalar product 
~between p~ and E. Note that the negative sign makes sense because systems experience a 

force/torque that will decrease their potential energy. When the angle is zero, cos � = 1, is 
maximal. Since we need the position with � = 0 to have the lowest potential energy, the 
minus sign guarantees that all values of � other than zero will give a potential energy that is 
higher (greater than (−1)pE. Remember that only changes in potential energy are relevant, 
so the minus sign should not bother you, although you should think about whether it makes 
sense. 

16.5 Summary 

Key Takeaways 

Objects can acquire a net charge if they acquire a net excess or deficit of electrons. 
Charges are never created, they are only transferred from one object to another. One 
can charge an object by friction, conduction, or induction. Materials can be classified 
broadly as conductors, where electrons can move freely in a material, or conductors, 
in which electrons remain tightly bound to the atoms in the material. If a conducting 
object acquires a net charge, those charges will migrate to the surface of the conductor. 

Coulomb was the first to quantitatively describe the electric force exerted on a point 
charge, Q1, by a second point charge, Q2, located a distance, r, away: 

Q1Q2 1 Q1Q2~F12 = k r̂21 = r̂21 
r2 4ˇ�0 r2 

where r̂21 is the unit vector from Q2 to Q1. One can write the force using either 
Coulomb’s constant, k, or the permittivity of free space, �0. Coulomb’s force is attractive 
if the product Q1Q2 is negative, and repulsive if the product is positive. Thus, charges 
of the same sign exert a repulsive force on each other, whereas opposite charges exert 
an attractive for on each other. 

Mathematically, Coulomb’s Law is identical to the gravitational force in Newton’s Uni-
versal Theory of Gravity, which implies that it is conservative. The electric field vector 
at some position in space is defined to be the electric force per unit charge at that 
position in space. That is, at some position in space where the electric field vector is 
~E, a charge, q, will experience an electric force: 

~ ~F = qE 

much like a mass, m, will experience a gravitational force, m~g, in a position in space 
where the gravitational field is ~g. A positive charge will experience a force in the same 
direction as the electric field, whereas a negative charge will experience a force in the 
direction opposite of the electric field. The electric field at position, ~r, from a point 
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charge, Q, located at the origin, is given by: 

~E = kQ 2 r̂  
r 

One can visualize an electric field by using “field lines”. The field vector at any point in 
space has a magnitude that is proportional to the number of field lines at that point, 
and a direction that is tangent to the field lines at that point. 

We can model the electric field from a continuous charged object (i.e. not a point 
charge) by modelling the object as being made up of many point charges. Often, it is 
easiest to model an N -dimensional object as being the sum of objects of dimension N −1 
and an infinitesimal length in the remaining dimension. For example, we modelled a 
line of charge as the sum of point charges that have an infinitesimal length, and we 
modelled a disk of charge as the the sum of rings that have an infinitesimal thickness. 
In general, the strategy to model the electric field from a continuous distribution of 
charge is the same: 

1. Make a good diagram. 
2. Choose a charge element dq. 

~3. Draw the electric field element, dE, at the point of interest. 
~4. Write out the electric field element vector, dE, in terms of dq and any other 

relevant variables. 
~5. Think of symmetry: will any of the component of dE sum to zero over all of the 

dq? 
6. Write the total electric field as the sum (integral) of the electric field elements. 
7. Identify which variables change as one varies the dq and choose an integration 

variable to express dq and everything else in terms of that variable and other 
constants. 

8. Do the sum (integral). 

Finally, we introduced the electric dipole, which is an object comprised of two equal 
and opposite charges, +Q and −Q, held at fixed distance, l, from each other. One can 
model an electric dipole using its dipole vector, ~p, defined to point in the direction from 
−Q to +Q, with magnitude: 

p = Ql 

~When a dipole is immersed in a uniform electric field, E, it will experience a torque 
given by: 

~ ~̋ = p~ × E 

The torque will act such as to align the vector p~ with the electric field vector. We can 
define a potential energy, U , to model the energy that is stored in a dipole when it is 
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not aligned with the electric field: 

U = − · 

The point of lowest potential energy corresponds to the case when and are parallel, 
whereas the point of highest potential energy is when the two vectors are anti-parallel. 

~E~p 

~E~p 

Important Equations 

Electric field: Electric dipole moment: 

= k 2Z 
= 

~r 

~E 

Q 

r

d

~E

~E

p = Ql 

Torque on a dipole: 

~E~p~̋ = × 

Electric force: 

~F = q ~E 
~E~p

Potential energy stored in a dipole: 

U = − · 
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Important Definitions 

Charge: An object will have a charge if it has an excess or deficit of electrons. SI 
units: [C]. Common variable(s): Q, q. 

Electric field: The electric field is defined to be the electric force per unit charge. SI 
~units: [N/C, V/m]. Common variable(s): E. 

Coulomb’s constant: A fundamental physical constant which relates charge and 
distance to electric field. SI units: [Nm2C−2]. Common variable(s): k. 

Electric dipole moment: A vector used to represent an electric dipole. SI units: 
[Cm]. Common variable(s): ~p. 

Linear charge density: The charge per unit length of an object. SI units: [C/m]. 
Common variable(s): �. 

Surface charge density: The charge per unit area of an object. SI units: [Cm−2]. 
Common variable(s): ˙. 

Volume charge density: The charge per unit volume of an object. SI units: [Cm−3]. 
Common variable(s): ˆ. 
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16.6 Thinking about the material 

Reflect and research 

1. Which molecule has the largest dipole moment? Why? 
2. How does a laser printer exploit physical properties covered in this chapter? 
3. How does a Van de Gra� generator work? 
4. On the 20th of May, 2019, SI base units were redefined. How does this a�ect 

Coulomb’s constant? 

To try at home 

1. Rub your hands or feet along various household items to test their electron aÿnity. 
Which household items produce a static charge? 

2. After charging your body, research the electron aÿnity of the surface you used 
to charge yourself. Knowing this, how many electrons were transferred while you 
charged yourself? 

To try in the lab 

1. Propose an experiment to measure the Coulomb’s constant. 
2. Propose an experiment to organize various materials based on their electron aÿn-

ity. 
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16.7 Sample problems and solutions 
16.7.1 Problems 
Problem 16-1: Consider three charged rods of length L which are arranged to form a 
triangle, as shown in Figure 16.23. If the charge on each rod is evenly distributed, what is 
the net electric field at the centre of the triangle? 

Figure 16.23: A triangle made up of charged rods 

(Solution) 

Problem 16-2: (Solution) 
~Suppose a dipole is in an electric field E. Show that the dipole will experience simple 

harmonic motion if the angle between the dipole vector and the electric field vector is small. 
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16.7.2 Solutions 
Solution to problem 16-1: We can model the object as the sum of three finite length 
wires of the length, L. In Example 16-5, we determined that the electric field produced by 
a finite wire is: 

2k� 
E = sin �0

R 

= ˇWe can determine geometrically that �0 6 , as in Figure 16.24. The distance, R: 

R = L sin �02 

Figure 16.24: Geometrically solving for �0 and R 

Thus, the field from one wire is given by: 

E = 2k� sin(ˇ )
R 6 
k� 

E = 
R 

Given that the charge Q is evenly distributed along the rod of length L, we can rewrite the 
charge density as Q

L 
, which gives: 

kQ kQ 6kQ 
E = = p = p

RL L 3 L 3L2 
6 

This is the magnitude of the electric field for each side of the triangle. The two positive 
wires will produce electric fields whose vertical components cancel. The negative wire will 
produce a field that points downwards. Summing together the electric field vectors: � � � � �� � � ��X 6kQ ˇ ˇ 6kQ ˇ ~E = p cos − cos x̂+ p −1 − 2 sin ŷ

3L2 6 6 3L2 6 X 12kQ ~E = −p ŷ
3L2 
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Which is the final answer. 

Solution to problem 16-2: The only net torque on the dipole is from the force from the 
electric field: 

˝ = −pE sin � 

where we have inserted a minus sign to indicate that this is a restoring torque, in the 
opposite direction of increasing angle �. The net torque is equal to the moment of inertia 
times the angular acceleration: 

−pE sin � = I 
pE pE

∴ = − sin � ̆ − � 
I I 

where in the last equality, we made the small angle approximation (sin � ̆  �). This has the 
form for simple harmonic motion: 

d2� = −!2� 
dt2 s 

pE
! = 

I 



17 Gauss’ Law 

In this chapter, we take a detailed look at Gauss’ Law applied in the context of the electric 
field. We have already encountered Gauss’ Law briefly in Section 9.2.3 when we examined 
the gravitational field. Since the electric force is mathematically identical to the gravita-
tional force, we can apply the same tools, including Gauss’ Law, to model the electric field 
as we do the gravitational field. Many of the results from this chapter are thus equally 
applicable to the gravitational force. 

Learning Objectives 

• Understand the concept of flux for a vector field. 
• Understand how to calculate the flux of a vector field through an open and a 

closed surface. 
• Understand how to apply Gauss’ Law quantitatively to determine an electric field. 
• Understand how to apply Gauss’ Law qualitatively to discuss charges on a con-

ductor. 

Think About It 

A neutral spherical conducting shell encloses a point charge, Q, located at the centre 
of the shell. Due to separation of charge, the outer surface of the shell will acquire a 
net positive charge. What is the magnitude of that charge? 

A) less than Q. 
B) exactly Q. 
C) more than Q. 

17.1 Flux of the electric field. 
Gauss’ Law makes use of the concept of “flux”. Flux is always defined based on: 

• A surface. 
• A vector field (e.g. the electric field). 

and can be thought of as a measure of the number of field lines from the vector field that 
cross the given surface. For that reason, one usually refers to the “flux of the electric field 
through a surface”. This is illustrated in Figure 17.1 for a uniform horizontal electric field, 

~and a flat surface, whose normal vector, A, is shown. If the surface is perpendicular to the 
~field (left panel), and the field vector is thus parallel to the vector, A, then the flux through 

that surface is maximal. If the surface is parallel to the field (right panel), then no field 
lines cross that surface, and the flux through that surface is zero. If the surface is rotated 
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with respect to the electric field, as in the middle panel, then the flux through the surface 
is between zero and the maximal value. 

Figure 17.1: Flux of an electric field through a surface that makes di�erent angles with respect 
to the electric field. In the leftmost panel, the surface is oriented such that the flux through it is 
maximal. In the rightmost panel, there are no field lines crossing the surface, so the flux through 
the surface is zero. 

~ ~We define a vector, A, associated with the surface such that the magnitude of A is equal to 
~the area of the surface, and the direction of A is such that it is perpendicular to the surface, 

~as illustrated in Figure 17.1. We define the flux, �E, of the electric field, E, through the 
~surface represented by vector, A, as: 

~ ~�E = E · A = EA cos � 

~since this will have the same properties that we described above (e.g. no flux when E and 
~A are perpendicular, flux proportional to number of field lines crossing the surface). Note 
that the flux is only defined up to an overall sign, as there are two possible choices for the 

~direction of the vector A, since it is only required to be perpendicular to the surface. By 
~convention, we usually choose A so that the flux is positive. 

Checkpoint 17-1 

What are the S.I. units of electric flux? 
A) N · m/C 
B) V · m 
C) V/m 
D) The units of flux depend on the dimensions of the charged object. 

Example 17-1 

~A uniform electric field is given by: E = E cos �x̂ + E sin �ŷ throughout space. A 
rectangular surface is defined by the four points (0, 0, 0), (0, 0, H), (L, 0, 0), (L, 0, H). 
What is the flux of the electric field through the surface? 
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Solution 

The surface that is defined corresponds to a rectangle in the xz plane with area A = LH. 
Since the rectangle lies in the xz plane, a vector perpendicular to the surface will be 
along the y direction. We choose the positive y direction, since this will give a positive 
number for the flux (as the electric field has a positive component in the y direction). 

~The vector A is given by: 

~A = Aŷ = LHŷ 

The flux through the surface is thus given by: 

~ ~�E = E · A = (E cos �x̂+ E sin �ŷ) · (LHŷ) 
= ELH sin � 

~ ~where one should note that the angle �, in this case, is not the angle between E and A, 
but rather the complement of that angle. 

Discussion: In this example, we calculated the flux of a uniform electric field through 
a rectangle of area, A = LH. Since we knew the components of both the electric field 

~ ~vector, E, and the surface vector, A, we used their scalar product to determine the 
flux through the surface. In some cases, it is easier to work with the magnitude of the 
vectors and the angle between them to determine the scalar product (although note 

~ ~that in this example, the angle between E and A is 90� − �). 

17.1.1 Non-uniform fields 
~So far, we have considered the flux of a uniform electric field, E, through a surface, S, 

~described by a vector, A. In this case, the flux, �E, is given by: 

~ ~�E = E · A 

However, if the electric field is not constant in magnitude and/or in direction over the 
entire surface, then we divide the surface, S, into many infinitesimal surfaces, dS, and sum 
together (integrate) the fluxes from those infinitesimal surfaces: Z 

~ ~�E = E · dA 

~where, dA, is the normal vector for the infinitesimal surface, dS. This is illustrated in Figure 
17.2, which shows, in the left panel, a surface for which the electric field changes magnitude 
along the surface (as the field lines are closer in the lower left part of the surface), and, in 
the right panel, a scenario in which the direction and magnitude of the electric field vary 
along the surface. 

In order to calculate the flux through the total surface, we first calculate the flux through 
~an infinitesimal surface, dS, over which we assume that E is constant in magnitude and 
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direction, and then, we sum (integrate) the fluxes from all of the infinitesimal surfaces 
together. Remember, the flux through a surface is related to the number of field lines that 
cross that surface; it thus makes sense to count the lines crossing an infinitesimal surface, 
dS, and then adding those together over all the infinitesimals surfaces to determine the flux 
through the total surface, S. 

Figure 17.2: Examples of surfaces that need to be sub-divided in order to determine the net 
flux through them. The surface on the left must be subdivided because the electric field changes 
magnitude over the surface, whereas the one on the right needs to be subdivided because the angle 
between ~E and d ~A is not constant (and the magnitude of ~E also changes along the surface). 

Example 17-2 

An electric field points in the z direction everywhere in space. The magnitude of the 
electric field depends linearly on the x position in space, so that the electric field vector 

~is given by: E = (a − bx)ẑ, where, a, and, b, are constants. What is the flux of the 
electric field through a square of side, L, that is located in the positive xy plane with 
one of its corners at the origin? 

Solution 

We need to calculate the flux of the electric field through a square of side L in the xy 
~ ~plane. The electric field is always in the z direction, so the angle between E and dA 

(the normal vector for any infinitesimal area element) will remain constant. 

We can calculate the flux through the square by dividing up the square into thin strips of 
length L in the y direction and infinitesimal width dx in the x direction, as illustrated in 
Figure 17.3. In this case, because the electric field does not change with y, the dimension 
of the infinitesimal area element in the y direction is finite (L). If the electric field varied 
both as a function of x and y, we would start with area elements that have infinitesimal 
dimensions in both the x and the y directions. 
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Figure 17.3: Dividing a square in the xy plane into thin strips of length L and width dx. 

As illustrated in Figure 17.3, we first calculate the flux through a thin strip of area, 
~dA = Ldx, located at position x along the x axis. Choosing, dA, in the direction to 

give a positive flux, the flux through the strip that is illustrated is given by: 

~ ~d�E = E · dA = EdA = (ax − b)Ldx 

~ ~ ~ ~where E · dA = EdA, since the angle between E and A is zero. Summing together the 
fluxes from the strips, from x = 0 to x = L, the total flux is given by: Z Z L 

�E = d�E = (ax − b)Ldx = 2
1 
aL3 − bL2 

0 

Discussion: In this example, we showed how to calculate the flux from an electric field 
that changes magnitude with position. We modelled a square of side, L, as being made 
of many thin strips of length, L, and width, dx. We then calculated the flux through 
each strip and added those together to obtain the total flux through the square. 

17.1.2 Closed surfaces 
One can distinguish between a “closed” surface and an “open” surface. A surface is closed 
if it completely defines a volume that could, for example, be filled with a liquid. A closed 
surface has a clear “inside” and an “outside”. For example, the surface of a sphere, of a 
cube, or of a cylinder are all examples of closed surfaces. A plane, a triangle, and a disk 
are, on the other hand, examples of “open surfaces”. 

~ ~For a closed surface, one can unambiguously define the direction of the vector A (or dA) 
as the direction that it is perpendicular to the surface and points towards the outside. 
Thus, the sign of the flux out of a closed surface is meaningful. The flux will be positive if 

~there is a net number of field lines exiting the volume defined by the surface (since E and 
~A will be parallel on average) and the flux will be negative if there is a net number of field 

~ ~lines entering the volume (as E and A will be anti-parallel on average). The flux through a 
closed surface is thus zero if the number of field lines that enter the surface is the same as 
the number of field lines that exit the surface. 

When calculating the flux over a closed surface, we use a di�erent integration symbol to 
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show that the surface is closed: I 
~ ~�E = E · dA 

which is the same integration symbol that we used for indicating a path integral when the 
initial and final points are the same (see for example Section 8.1). 

Checkpoint 17-2 

Figure 17.4: A non-uniform electric field flowing through an irregularly shaped closed surface. 

~A non-uniform electric field E flows through an irregularly-shaped closed surface, as 
shown in figure 17.4. The flux through the surface is 

A) positive. 
B) zero. 
C) negative. 

Example 17-3 

A negative electric charge, −Q, is located at the origin of a coordinate system. Calcu-
late the flux of the electric field through a spherical surface of radius, R, that is centred 
at the origin. 

Solution 

Figure 17.5 shows the spherical surface of radius, R, centred on the origin where the 
charge −Q is located. 
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Figure 17.5: Calculating the flux through a spherical surface. 

At all points along the surface, the electric field has the same magnitude: 

1 Q
E = 4ˇ�0 R2 

~as given by Coulomb’s law for a point charge. Although the vector, E, changes direc-
tion everywhere along the surface, it always makes the same angle (−180�) with the 

~corresponding vector, dA, at any particular location. Indeed, for a point charge, the 
electric field points in the radial direction (inwards for a negative charge) and is thus 
perpendicular to the spherical surface at all points. Since the surface is closed, the vec-

~tor, dA, points outwards anywhere on the surface. Thus, at any point on the surface, 
~we can evaluate the flux through an infinitesimal area element, dA: 

~ ~d�E = E · dA = EdA cos(−180�) = −EdA 

~ ~where the overall minus sign comes from the fact that, E, and, dA, are anti-parallel. 
The total flux through the spherical surface is obtained by summing together the fluxes 
through each area element: I I I 

�E = d�E = −EdA = −E dA = −E(4ˇR2) 

where we factored, E, out of the integral, since the magnitude of the electric field is 
constant over the entire surface (a constant distance R from the charge). In the last 
equality, we recognized that, 

H 
dA, simply means “sum together all of the areas, dA, of 

the surface elements”, which gives the total surface area of the sphere, 4ˇR2. The flux 
through the spherical surface is negative, because the charge is negative, and the field 
lines point towards −Q. 

Using the value that we obtained for the magnitude of the electric field from Coulomb’s 
Law, the total flux is given by: 

1 Q Q�E = −E(4ˇR2) = − (4ˇR2) = −4ˇ�0 R2 �0 
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which, surprisingly, is independent of the radius of the spherical surface. Note that we 
used �0 instead of Coulomb’s constant, k, since the result is cleaner without the extra 
factor of 4ˇ. 

Discussion: In this example, we calculated the flux of the electric field from a negative 
point charge through a spherical surface concentric with the charge. We found the flux 
to be negative, which makes sense, since the field lines go towards a negative charge, 
and there is thus a net number of field lines entering the spherical surface. Perhaps 
surprisingly, we found that the total flux through the surface does not depend on the 
radius of the surface! In fact, that statement is precisely Gauss’ Law: the net flux out 
of a closed surface depends only on the amount of charge enclosed by that surface (and 
the constant, �0). Gauss’ Law is of course more general, and applies to surfaces of any 
shape, as well as charges of any shape (whereas Coulomb’s Law only holds for point 
charges). 

17.2 Gauss’ Law 
Gauss’ Law is a relation between the net flux through a closed surface and the amount of 
charge, Qenc, in the volume enclosed by that surface: I Qenc 

~ ~E · dA = 
�0 

In particular, note that Gauss’ Law holds true for any closed surface, and the shape of that 
surface is not specified in Gauss’ Law. That is, we can always choose the surface to 
use when calculating the flux. For obvious reasons, we often call the surface that we choose 
a “gaussian surface”. But again, this surface is simply a mathematical tool, there is no 
actual property that makes a surface “gaussian”; it simply means that we chose that surface 
in order to apply Gauss’ Law. In Example 17-3 above, we confirmed that Gauss’ Law is 
compatible with Coulomb’s Law for the case of a point charge and a spherical gaussian 
surface. 

Physically, Gauss’ Law is a statement that field lines must begin or end on a charge (electric 
field lines originate on positive charges and terminate on negative charges). Recall, flux is a 
measure of the net number of lines coming out of a surface. If there is a net number of lines 
coming out of a closed surface (a positive flux), that surface must enclose a positive charge 
from where those field lines originate. Similarly, if there are the same number of field lines 
entering a closed surface as there are lines exiting that surface (a flux of zero), then the 
surface encloses no charge. Gauss’ Law simply states that the number of field lines exiting 
a closed surface is proportional to the amount of charge enclosed by that surface. 

Primarily, Gauss’ Law is a useful tool to determine the magnitude of the electric field from 
a given charge, or charge distribution. We usually have to use symmetry to determine 
the direction of the electric field vector. In general, the integral for the flux is diÿcult 
to evaluate, and Gauss’ Law can only be used analytically in cases with a high degree of 
symmetry. Specifically, the integral for the flux is easiest to evaluate if: 

1. The electric field makes a constant angle with the surface. When this is the 
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~case, the scalar product can be written in terms of the cosine of the angle between E 
~and dA, which can be taken out of the integral if it is constant: I I I 

~ ~E · dA = E cos �dA = cos � EdA 

Ideally, one has chosen a surface such that this angle is 0 or 180�. 
2. The electric field is constant in magnitude along the surface. When this is the 

case, the integral can be simplified further by factoring out, E, and simply becomes 
an integral over dA (which corresponds to the total area of the surface, A):I I I 

~ ~E · dA = cos � EdA = E cos � dA = EA cos � 

Ultimately, the points above should dictate the choice of gaussian surface so that the 
integral for the flux is easy to evaluate. The choice of surface will depend on the symmetry 
of the problem. For a point (or spherical) charge, a spherical gaussian surface allows the 
flux to easily be calculated (Example 17-3). For a line of charge, as we will see, a cylindrical 
surface results is a good choice for the gaussian surface. Broadly, the steps for applying 
Gauss’ Law to determine the electric field are as follows: 

1. Make a diagram showing the charge distribution. 
2. Use symmetry arguments to determine in which way the electric field vector points. 
3. Choose a gaussian surface that goes through the point for which you want to know 

the electric field. Ideally, the surface is such that the electric field is constant in 
magnitude and always makes the same angle with the surface, so that the flux integral 
is straightforward to evaluate. H ~ ~4. Calculate the flux, E · dA. 

5. Calculate the amount of charge located within the volume enclosed by the surface, 
Qenc. H 

A = Qenc ~ ~6. Apply Gauss’ Law, E · d 
�0 

. 

Example 17-4 

An insulating sphere of radius, R, contains a total charge, Q, which is uniformly dis-
tributed throughout its volume. Determine an expression for the electric field as a 
function of distance, r, from the centre of the sphere. 

Solution 

Note that this is identical, mathematically, to the derivation that was done in Section 
9.2.3 for the case of gravity. 

When applying Gauss’ Law, we first need to think about symmetry in order to determine 
the direction of the electric field vector. We also need to think about all possible regions 
of space in which we need to determine the electric field. In particular, for this case, 
we need to determine the electric field both inside (r � R) and outside (r � R) of the 
charged sphere. 
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Figure 17.6 shows the charged sphere of radius R. If we consider the direction of the 
~electric field outside the sphere (where Eout is drawn), we realize that it can only point 

in the radial direction (towards or away from the centre of the sphere), as this is the 
only choice that preserves the symmetry of the sphere. Being a sphere, the charge looks 
the same from all angles; thus, the electric field must also look the same from all angles, 
otherwise, there would be a preferred orientation for the sphere. The same argument 

~holds for the electric field vector inside the sphere (drawn as Ein). 

Figure 17.6: For a spherical charge distribution, the electric field inside and outside must 
point in the radial direction, by symmetry. 

We now need to choose a gaussian surface that will make the flux integral easy to 
evaluate. Ideally, we can find a surface over which the electric field makes the same 
angle with the surface and over which the electric field is constant in magnitude. Again, 
based on the symmetry of the charge distribution, it is clear that a spherical surface of 
radius, r, will satisfy these properties. 

We start by applying Gauss’ Law outside the charge (with r � R) to determine the 
~electric field, Eout. Figure 17.7 shows our choice of spherical gaussian surface (labelled 

S) of radius, r, which is concentric with the spherical charge distribution of radius, R, 
and total charge, +Q. 

Figure 17.7: A spherical gaussian surface to determine the electric field outside of a sphere 
of radius, R, holding charge, +Q. 

In order to apply Gauss’ Law, we need to calculate: 
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• the net flux through the surface. 
• the charge in the volume enclosed by the surface. 

The net flux through the surface is found in the same way as in Example 17-3, and is 
given by: I I I 

~ ~�E = E · dA = EdA = E dA = E(4ˇr2) 

~ ~ ~ ~where our choice of spherical surface led to E · dA = EdA, since E and dA are always 
parallel. Furthermore, by symmetry, the electric field must be constant in magnitude 
along the whole surface, or the spherical symmetry would be broken. This allowed us 
to factor the E out of the integral, leaving us with, 

H 
dA, which is simply the area of 

our gaussian spherical surface, 4ˇr2. 

The gaussian surface with r � R encloses the whole charged sphere, so the charge 
enclosed is simply the charge of the sphere, Qenc = Q. Applying Gauss’ Law allows us 
to determine the magnitude of the electric field: I Qenc 

~ ~E · dA = 
�0 

E(4ˇr2) = Q 
�0 

1 Q
∴ E = 4ˇ�0 r2 

which is the same as the electric field a distance r from a point charge. Thus, from the 
outside, a spherical charge distribution leads to the same electric field as if the charge 
were concentrated at the centre of the sphere. 

Next, we determine the magnitude of the electric field inside the charged sphere. In 
this case, we choose a spherical gaussian surface of radius r � R, that is concentric 
with the sphere, as illustrated by the surface labelled, S, that is shown in Figure 17.8. 
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Figure 17.8: A spherical gaussian surface to determine the electric field inside of a sphere of 
radius, R, holding charge, +Q. 

The flux integral is trivial again, since the electric field always makes the same angle with 
the gaussian surface, and the magnitude of the electric field is constant in magnitude 
along the surface: I I I 

~ ~�E = E · dA = EdA = E dA = E(4ˇr2) 

In this case, however, the charge in the volume enclosed by the gaussian surface is 
less than Q, since the whole charge is not enclosed. We are told that the charge is 
distributed uniformly throughout the spherical volume of radius R. We can thus define 
a volume charge density, ˆ, (charge per unit volume) for the sphere: 

Q Q
ˆ = = 

V 3
4 ̌ R3 

The volume enclosed by the gaussian surface is 4
3 ̌ r

3, thus, the charge, Qenc, contained 
in that volume is given by: 

4 4 Q r3 
Qenc = 3ˇr

3ˆ = 3ˇr
3 = Q4 

3 ̌ R
3 R3 

Finally, we apply Gauss’ Law to find the magnitude of the electric field inside the 
sphere: I Qenc 

~ ~E · dA = 
�0 

E(4ˇr2) = Q r3 

R3�0 
Q

∴ E = 4ˇ�0R3 r 

Note that the electric field increases linearly with radius inside of the charged sphere, 
and then decreases with radius squared outside of the sphere. Also, note that at the 
centre of the sphere, the electric field has a magnitude of zero, as expected from sym-
metry. 

Discussion: In this example, we showed how to use Gauss’ Law to determine the 
electric field inside and outside of a uniformly charged sphere. We recognized the 
spherical symmetry of the charge distribution and chose to use a spherical surface in 
order to apply Gauss’ Law. This, in turn, allowed the flux to be easily calculated. 
We found that outside the sphere, the electric field decreases in magnitude with radius 
squared, just as if the entire charge were concentrated at the centre of the sphere. Inside 
the sphere, we found that the electric field is zero at the centre, and increases linearly 
with radius. 
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Checkpoint 17-3 

Figure 17.9: A charged spherical shell with a cubic device inside of it. 

A thin charged spherical shell carries a uniformly distributed charge of +Q. If we place 
a cube inside the shell, as shown in Figure 17.9, what is the total flux out of the surface 
of the cube? 

A) 12 
Q
ˇ 
Vm. 

B) 2 
Q
ˇ 
Vm. 

C) Q 6 Vm. 
D) 0 Vm. 

Example 17-5 

An infinitely long straight wire carries a uniform charge per unit length, �. What is 
the electric field at a distance, R, from the wire? 

Solution 

We start by making a diagram of the charge distribution, as in Figure 17.10, so that 
we can use symmetry arguments to determine the direction of the electric field vector. 
The electric field vector could be either: 

1. in the radial direction (point to/from the centre of the wire). 
2. such that electric field lines form concentric circles with the wire. 
3. co-linear with the wire. 

In all three possibilities above, you would not be able to infer that one particular direc-
tion in the plane perpendicular to the wire is preferred. All three possibilities preserver 
the rotational symmetry of the wire (the wire looks the same from all directions in the 
plane perpendicular to the wire). 

The second and third options can be eliminated, because we expect the electric field 
lines to have at least a radial component, since we expect that a negative charge would 
be attracted to the wire. The electric field will thus look like that illustrated in Figure 
17.10. 
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~Ad~E~Ad~E~Ad~E~Ad~E 

Figure 17.10: An infinite line of charge carrying uniform charge per unit length, �. The left 
panel shows a side view and the right panel a view from above. The electric field must be in 
the radial direction or there would be a preferred direction. 

Next, we need to choose a gaussian surface in order to apply Gauss’ Law. A convenient 
choice is a cylinder (a “pill box”) of radius, R, and length, L, as shown in Figure 17.11, 
as this goes through a point that is a distance, R, from the wire (where we are asked 
for the electric field). At all points on the cylindrical surface, the electric field vector is 
either perpendicular or parallel to the surface. 

Figure 17.11: A cylindrical gaussian surface is used to calculate the flux from an infinite line 
of charge. 

We can think of the cylindrical surface as being composed of three surfaces: 2 disks 
on either end (the lids of the pill box), and the curved surface that makes up the side 
of the cylinder. The flux through the entire cylindrical surface will be the sum of the 
fluxes through the two lids plus the flux through the side: I Z Z Z 

· = · + · + · 
side lid lid 

where you should note that the closed integral (
H 

) was separated into three normal 
integrals (

R 
) corresponding to the three “open” surfaces that make up the closed sur-

face. Again, remember that the flux is proportional to the net number of field lines 
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exiting/entering the closed surface, so it make sense to count those lines over the three 
open surfaces and add them together to get the total number for the closed surface. 

The flux through the lids is identically zero, since the electric field is perpendicular to 
~dA everywhere on the lids. The total flux is thus equal to the flux through the curved 

~side surface, for which the electric field vector is always parallel to dA, and for which 
the electric field vector is constant in magnitude: I Z Z Z 

~ ~ ~ ~E · dA = E · dA = EdA = E dA = E(2ˇRL) 
side side side 

where we recognized that the side surface can be unfolded into a rectangle of height, L, 
and width, 2ˇR, corresponding to the circumference of the cylinder, so that the area of 
the side of the cylinder is given by A = 2ˇRL. 

Next, we determine the charge inside the volume enclosed by the surface. Since the 
cylinder encloses a length, L, of wire, the enclosed charge is given by: 

Qenc = �L 

where � is the charge per unit length on the wire. Putting this altogether into Gauss’ 
Law gives us the electric field at a distance, R, from the wire: I Qenc 

~ ~E · dA = 
�0 

E(2ˇRL) = �L 
�0 
�

∴ E = 2ˇ�0R 

Note that this is the same result that we obtained in Example 16-5 when we took the 
limit of the finite line of charge having infinite length. 

Discussion: In this example, we applied Gauss’ Law to determine the electric field at 
a distance from an infinitely long charged wire. We used symmetry to argue that the 
field should be radial and in the plane perpendicular to the wire, and recognized that 
a cylindrical gaussian surface would exploit the symmetry so that the flux can easily 
be calculated. We obtained the same result as we did from integrating Coulomb’s Law 
in Example 16-5. However, using Gauss’ Law was much less work than integrating 
Coulomb’s Law. 
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Checkpoint 17-4 

Why is it diÿcult to apply Gauss’ Law to a finite wire? 
A) It is easy to apply Gauss’ Law to a finite wire. 
B) Because the flux of a finite wire is undefined. 
C) Because we do not know the charge density of a finite wire. 
D) Because the symmetry argument does not hold. 

Josh’s Thoughts 

Gauss’ Law requires us to choose a “gaussian” surface, but which surface should we 
choose? Generally, it is useful to choose a surface such that the flux can easily be 
determined, ideally without having to actually do an integral. If symmetry can be 

~ ~exploited such that E has a constant magnitude and direction relative to dA at every 
~ ~location of the gaussian surface, then 

R 
E ·dA will be equal to EA. This is why gaussian 

surfaces are often of the same shape as the charged object they are enclosing. 

For example, if I need to enclose a cylindrical charge, it would be reasonable to enclose 
the charge with a cylindrical gaussian surface, as shown in Figure 17.12 

Figure 17.12: A cylindrical gaussian surface to enclose a cylindrical charge. 

When dealing with point charges which have no shape and are thus spherically sym-
metric, it makes sense to choose a spherical gaussian surface, as shown in Figure 17.13, 
since the electric field is in the radial direction for a point charge. 

Figure 17.13: . A spherical gaussian surface to enclose a point charge. 

Finally, there are some cases of less than ideal choices for the gaussian surfaces. While 
never wrong, they may require rather complicated integrals to determine the flux. These 
cases will still provide a correct answer if the situation is modelled correctly. 

Suppose that I enclose a spherical charge with a cylindrical gaussian surface, as shown in 
Figure 17.14. The electric field will be stronger near the middle of the cylinder’s length 

~ ~ ~than at the centre of its endcaps, which means that E is not constant in 
R 
E · dA, so 

the integral cannot be simplified to EA. A better choice for a gaussian surface in this 
case would be a sphere, which exploits the symmetry of the charge distribution and 
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~provides results in a E of constant magnitude everywhere along the surface. Figures 
17.2 and 17.3 give other examples of when we cannot assume � to be equal to EA. 

Figure 17.14: . A cylindrical surface is not a good choice to enclose a spherical charge. 

Example 17-6 

Determine the electric field above an infinitely large plane of charge with uniform sur-
face charge per unit area, ˙. 

Solution 

Figure 17.15 shows a portion of the infinite plane. The electric field vector must be 
perpendicular to the plane or a preferred direction could otherwise be inferred from 
the direction of the electric field. We can also argue that the horizontal components 
of the electric field will cancel everywhere above the plane, since the plane is infinite. 
The electric field will point away from (towards) the plane, if the charge is positive 
(negative). 
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Figure 17.15: The electric field above an infinite plane with uniform charge per unit area, ˙, 
must be perpendicular to the plane. 

A cylindrical or box-shaped gaussian surface would both lead to the flux integral being 
easy to calculate, as illustrated in Figure 17.16. Indeed, since the electric field is per-
pendicular to the plane, only the parts of the surface that are parallel to the plane (the 
lids on the cylinder, the two horizontal planes in the box) will have a net flux through 
them. 

Figure 17.16: A cylindrical surface or a box are both good choices for a gaussian surface above 
a plane, since only the parts of the surface parallel to the plane will have net flux through them. 

Let us choose a box (right panel of Figure 17.16) of length, L, with a square cross-
section of side, a. We place the box such that the plane intersects the centre of the 
box (although this is not required, since we already know that the electric field will 
not depend on distance from the plane). The flux through the box is simply the flux 
through the two horizontal planes (of area a2): I Z Z 

~ ~E · dA = EdA + EdA = 2Ea2 
top bottom 

The box encloses a section of the plane with area a2, so that the net charge enclosed 
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by the surface is: 

Qenc = ˙a2 

Applying Gauss’ Law allows us to determine the magnitude of the electric field: I Qenc 
~ ~E · dA = 

�0 
˙a2 

2Ea2 = 
�0 
˙

∴ E = 2�0 

which is the same result that we found in Example 16-6. 

Discussion: In this example, we used Gauss’ Law to determine the electric field above 
an infinite plane. We found that we had a choice of gaussian surfaces (cylinder, box) 
that allowed us to apply Gauss’ Law. We found the same result that we had found 
in Example 16-6 where we had integrated Coulomb’s Law (twice, once for a ring of 
charge, then for a disk, then took the limit of the disk radius going to infinity). Again, 
we see that in configurations with a high degree symmetry, Gauss’ Law can be very 
straightforward to apply. 

17.3 Charges in a conductor 
We can use Gauss’ Law to understand how charges arrange themselves on a conductor. 
Consider (again) an infinite plane that carries a total charge per unit area, ˙, similar to 
what we considered in Example 17-6. In this case, we explicitly consider the plane to be a 
conductor and to have a finite thickness. If we zoom into the plane, we can illustrate that 
the charges are located on the surface of the plane, as illustrated in Figure 17.17, where the 
plane is seen edge on. Thus, the charge density at the surface is half of the total 
charge density of the plane. 

Figure 17.17: Cross-section of a conducting plane where the charges migrate to the surface. A 
box-shaped gaussian surface is also shown as seen from the side (the third dimension of the box is 
perpendicular to the plane of the page). 
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To determine the electric field near the plane, we choose a gaussian surface that is a box 
(as in Example 17-6), but require the lower end of the box to go through the plane, as 
illustrated in Figure 17-6. With this choice of gaussian surface, only the top surface (area 
a2) will have flux through it, since the electric field inside a conductor must be zero1. 
The total flux is given by: I Z 

~ ~E · dA = EdA = Ea2 
top 

The charge enclosed is given by: 
˙ 

Qenc 2= 2 a 

where we used the fact that only half of the charges are inside the volume enclosed by our 
gaussian surface, so that the charge per unit area is half (˙ 2 ) of that for the entire plane. 
Applying Gauss’ Law, we find that the electric field is given by: I Qenc 

~ ~E · dA = 
�0 
˙a2 

Ea2 = 2�0 

∴ E = 2 
˙

�0 
(Field above an infinite plane) 

as before, but the factor of 2 now came from the charge density, rather than from the fact 
that two of the faces of the box had non-zero flux (as was the case in Example 17-6). We 
can generalize this result to determine the electric field near the surface of any conductor. 
Very close to the surface of any object, one can consider the surface as being similar to an 
infinite plane. If that surface carries charge per unit area, ˙, then the electric field just 
above the surface is given by: 

E = ˙ (Field near a conducting surface) 
�0 

In this case, there is no factor of 2, because the charge density in this equation is the charge 
density of the conductor (not the charge density one side of the surface). In the previous 
equation, the charge density on the surface of the conducing plane was ˙ 2 . 

Consider, now, a neutral spherical conducting shell, as shown from the side in the left panel 
of Figure 17.18. When a charge, +Q, is placed at the centre of the shell (right panel), 
charges inside the shell will move until the field inside the conducting material of the shell 
is identically zero. The negative charges will move towards the inner surface (as they are 
attracted to +Q) and positive charges will be repelled onto the outer surface, under the 

~influence of the electric field created by +Q (shown in the diagram as EQ). Eventually, 
~the separation of charges will lead to an electric field (shown in the diagram as E˙) in 

the opposite direction. The charges will stop moving once the total electric field in the 
conductor is zero (when the two fields cancel exactly everywhere in the conductor). 

1Since charges can freely move in a conductor, they will move until there is no reason to move. Eventually, 
the charges accumulate in such a way that the net field in the conductor is zero. For a plane, this means 
that half of the charges will move to each side, as illustrated. 
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Figure 17.18: Left: a neutral conducting spherical shell (seen edge on). Right: A positive charge, 
+Q, placed at the centre of the shell. Charges in the shell will separate in order to keep the electric 
field inside the conductor zero. 

We can use Gauss’ Law to determine the amount of charge that has accumulated on the inner 
surface. Consider the gaussian spherical surface, S1, in Figure 17.18, that is concentric with 
the shell and has a radius such that the surface is just inside the shell. Since the electric field 
is zero inside the shell, the flux out of the gaussian surface must be zero. By Gauss’ Law, 
the amount of charge enclosed by the surface must also be zero. Thus, a total charge, −Q, 
will have accumulated on the inner surface of the conductor (since Qenc = −Q + Q = 0). 
Because one cannot just create charge from nothing, there must be an equal amount of 
opposite charge, +Q, on the outer surface of the shell. This is true of any conducting 
material with a cavity inside of it: if you place a charge +Q in the cavity, a charge, −Q will 
accumulated on the inner surface and a charge, +Q, will accumulate on the outer surface. 

If we now consider the flux out of the surface, S2, outside of the shell, the net charge enclosed 
will be Qenc = +Q − Q + Q = +Q. The flux out of the spherical surface of radius, say, r, 
is then given by: I 

~ ~E · dA = E(4ˇr2) 

and the electric field, from Gauss’ Law, is simply that of a point charge, +Q: 
1 Q

E = 4ˇ�0 r2 

and the shell has no e�ect on the field in regions where there is no conducting material from 
the shell. Right at the surface of the shell (outer radius, R), the surface charge density is 
given by: 

Q
˙ = 4ˇr2 

Above, we found the electric field at the surface of a conductor that carries charge per unit 
area, ˙, to be: 

˙ 
E = 

�0 
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which is clearly the same result that we obtained using the spherical surface, S2: 

˙ 1 Q
E = = 

�0 4ˇ�0 r2 

Note that we found the electric field using Gauss’ Law only in this last case, and found it to 
be equal to the electric field that one obtains from Coulomb’s law. Thus, Gauss’ Law only 
works if the field has an “inverse square law” dependence. If Gauss’ Law does not provide 
the correct electric field, then the force does not depend on 1/r2. Gauss’ Law can be used 
to make extremely stringent tests of whether the force goes as 1/r2 or deviates from this 
model. 

17.4 Interpretation of Gauss’ Law and vector calculus 
In this section, we provide a little more theoretical background and intuition on Gauss’ Law, 
as well as its connection to vector calculus (which is beyond the scope of this textbook, but 
interesting to have a feeling for). Very generally, Gauss’ Law is a statement that connects 
a property of a vector field to the “source” of that field. We think of mass as the source 
for the gravitational field, and we think of charge as the source for the electric field. The 
property of the field that we considered in this case was its “flux out of a closed surface”. 

Recall that determining the flux of a field out of a closed surface is equivalent to counting the 
net number of field lines that exit that closed surface. Field lines must start on a positive 
charge and must end on a negative charge. Thus, if there is a net number of field lines 
exiting the surface, there must be a positive charge in the volume defined by the surface 
(a “source” of field lines). If there is a net number of field lines entering the surface, then 
the volume defined by the surface must enclose a negative charge (a “sink” of field lines). 
Gauss’ Law is simply a statement that the number of field lines entering/exiting a closed 
surface is proportional to the amount of charge enclosed in that volume. 

The flux out of a closed surface is tightly connected to the vector calculus concept of 
“divergence”, which describes whether field lines are diverging (spreading out or getting 
closer together). When a point charge is present, field lines will emanate radially from that 
point charge; in other words, they will diverge. We say that the electric field has non-
zero divergence if there is a source of the electric field in that position of space. The key 
di�erence between the concept of divergence and that of “flux out of a closed surface”, is 
that divergence is a local property of the field (it is true at a point), whereas the flux out 
of a surface must be calculated using a finite volume and makes it challenging to define the 
field at a specific position. Gauss’s Law defined using flux is thus not as useful for describing 
how the field changes at specific positions, and is usually limited to situations with a high 
degree of symmetry. 

~ ~The divergence, r · E, of a vector field, E, at some position is defined as: 

@E @E @E ~ r · E = + + 
@x @y @z 

and corresponds to the sum of three partial derivatives evaluated at that position in space. 
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Gauss’ Theorem (also called the Divergence Theorem) states that: Z I 
~ ~ ~ r · E = E · dA 

V S 

where the V (S) on the integral indicates whether the sum (integral) should be carried out 
over a volume, V , or over a closed surface, S, as we have practised in this chapter. While it 
is not important at this level to understand the theorem in detail, the point is that one can 
convert a “flux over a closed surface” into an integral of the divergence of the field. In other 
words, we can convert a global property (flux) to a local property (divergence). Gauss’ Law 
in terms of divergence can be written as: 

ˆ ~ r · E = (Local version of Gauss’ Law) 
�0 

where ˆ is the charge per unit volume at a specific position in space. This is the version 
of Gauss’ Law that is usually seen in advanced textbooks and in Maxwell’s unified theory 
of electromagnetism. This version of Gauss’s Law relates a local property of the field (its 
divergence) to a local property of charge at that position in space (the charge per unit 
volume at that position in space). If we integrate both sides of the equation over volume, 
we recover the original formulation of Gauss’ Law: the left hand side, by the Divergence 
Theorem, leads to flux when integrated over volume, whereas on the right hand side, the 
integral over volume of charge per unit volume, ˆ, will give the total charge enclosed in that 
volume, Qenc: Z Z � �� � ˆ ~ r · E dV = dV 

V V �0I Qenc 
~ ~E · dA = 

S �0 
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17.5 Summary 

~A 

~A 

Key Takeaways 

We can define the flux of a uniform and constant vector field, , through a flat surface, 
as: 

�E = · = EA cos � 

~E 

~E 

area of that surface, and, �, is the angle between and . The flux of a field through a ~E 

is parallel to the field ( and are thus perpendicular), the flux through that surface 
is zero (no field lines cross the surface, the scalar product is zero). 

be perpendicular the surface element with infinitesimalvector to to an area,d dA. 

~E 

~A 

~A 
relative each other along the surface), then the surface being made of to treatwe as 

~A

~A 

~Ad 

infinitesimal surface elements over which the two vectors are constant. We define a 

~A

~E 

~E 

~E 

The total flux is then obtained by summing the fluxes through each surface element: Z Z 

~E 

~A 

�E = · = EdA cos � 

where, is a vector that is perpendicular to the surface with a magnitude equal to the , 

surface is proportional to the number of field lines that cross that surface. If the surface

If and change the surface ( and/or change magnitude and/or direction ~ over A 

Note that the direction of the (or ) is ambiguous, choose either vector ~ as one canAd 

of two directions perpendicular to surface. Usually, chooses the direction of a one so 
that the flux is positive (i.e. has component parallel to ). However, if the surface a 
is “closed” (that is, it defines volume), then always choose the direction of a we sod 
that it points outwards from the surface (since the surface encloses volume, a one can 

~A 

~A 

~A 

define “inside” and “outside”).an an 

~E 

In the of the electric field, Gauss’ Law relates the flux of the electric field from case a 
closed surface to the amount of charge, Qenc, contained in the volume enclosed by that 
surface: I Qenc 

· d = 
�0 

Physically, Gauss’ Law is a statement that field lines must begin or end on a charge 
(electric field lines originate on positive charges and terminate on negative charges). 
If there is a net number of lines coming out of a closed surface (a positive flux), that 
surface must enclose a positive charge from where those field lines originate. Similarly, 
if there are the same number of field lines entering a closed surface as there are lines 
exiting that surface (a flux of zero), then the surface encloses no charge. Gauss’ Law 
states that the number of field lines exiting a closed surface is proportional to the 
amount of charge enclosed by that surface. 
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Gauss’ Law is useful to determine the electric field. However, this can only be done 
analytically for charge distributions with a very high degree of symmetry. This is 
because the flux integral is not usually easy to evaluate unless: 

1. The electric field makes a constant angle with the surface. When this 
is the case, the scalar product can be written in terms of the cosine of the angle 

~ ~between E and dA, which can be taken out of the integral if it is constant: I I I 
~ ~E · dA = E cos �dA = cos � EdA 

2. The electric field is constant in magnitude along the surface. When this 
is the case, the integral can be simplified further by factor out E, and simply 
becomes an integral over dA (which corresponds to the total area of the surface, 
A): I I I 

~ ~E · dA = cos � EdA = E cos � dA = EA cos � 

Note that Gauss’ Law does not specify a closed surface over which to calculate the flux; 
it holds for any surface. We can thus choose a surface that will make the flux integral 
easy to evaluate - we call this choice a “gaussian surface” (not because it has some 
special property, but because we chose that surface to apply Gauss’ Law). A procedure 
for applying Gauss’ Law to determine the electric field at some point in space can be 
written as: 

1. Make a diagram showing the charge distribution. 
2. Use symmetry arguments to determine in which way the electric field vector 

points. 
3. Choose a gaussian surface that goes through the point for which you want to know 

the electric field. Ideally, the surface is such that the electric field is constant in 
magnitude and always makes the same angle with the surface, so that the flux 
integral is straightforward to evaluate. H ~ ~4. Calculate the flux, E · dA. 

5. Calculate the amount of charge in the volume enclosed by the surface, Qenc.H 
A = Qenc ~ ~6. Apply Gauss’ Law, E · d 

�0 
. 

We showed how Gauss’ Law can be used to understand and quantify how charges ar-
range themselves on a conductor, in such a way that the electric field is zero everywhere 
in the conductor. Finally, we briefly introduced a more modern version of Gauss’ Law 
that uses divergence instead of flux: 

ˆ ~ r · E = 
�0 

This last version has the advantage that it relates a local property of the field (diver-
gence) to a local property of charge (charge density at some position in space). 
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Important Equations 

Gauss’ Law: 
Qenc� = 
�0Z 

� = · ~Ad~E 

Important Definitions 

Electric flux: A measure of the number of electric field lines crossing a surface. SI 
units: [Vm]. Common variable(s): �E. 
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17.6 Thinking about the material 

Reflect and research 

1. Could Gauss’ law be applied to magnetism? Why or why not? 
2. What else has Gauss done? 
3. Are there other interaction for which Gauss’ Law can be applied? 
4. What are Maxwell’s equations? 
5. How are measurements of flux used in environmental research? 
6. How does one use Gauss’ Law to test the 1/r2 dependence of Coulomb’s Law? 

To try in the lab 

1. Propose an experiment to measure the charge of an object using Gauss’ law. 
2. Propose an experiment to measure the electric field of a charged object, then 

compare your experimental results to the theoretical results predicted calculated 
by Gauss’ law. 

3. Simulate the surface charge distribution on the inside and outside of a conducting 
cubic shell which encloses a point charge. 
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17.7 Sample problems and solutions 
17.7.1 Problems 
Problem 17-1: Consider a charged sphere of radius, R, which has a non-uniform charge 
density, that varies with radius, as ˆ(r) = ar2. (Solution) 

a) What is the total charge on the sphere? 
b) What is the electric field as a function of distance from the centre of the sphere outside 

the sphere, r > R? 
c) What is the electric field as a function of distance from the centre of the sphere inside 

the sphere, r � R? 

Problem 17-2: Consider two conducting plates which are illustrated in Figure 17.19. Both 
plates have a hollow circle of radius, R, at their centre. One plate is a square on the outside 
and the other is a triangle on the outside, both of the outside shapes have a side length of 
L. A point charge of charge +Q is placed at the centre of the hollowed out circle of both 
plates. (Solution) 

a) What is the electric field outside of the shells? 
b) What is the average linear charge density on the inner and outer surfaces of the shells? 
c) Which sections of the two plates would have the largest charge density? 

Figure 17.19: A triangular and square shell, both with a hollowed out circular centre and a 
point charge. 
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17.7.2 Solutions 
Solution to problem 17-1: 

a) In order to determine the total charge of the sphere, we divide the sphere into infinites-
imal shells of radius r, and thickness, dr. The volume, dV , of one of these infinitesimal 
shells is their area (given by the area of the surface of a sphere of radius r), multiplied 
by their thickness, dr: 

dV = 4ˇr2dr 

The charge, dQ, of one of those shells is given by the charge per unit volume, ˆ(r): 

dQ = ˆ(r)dV = ar 24ˇr2dr = 4aˇr4dr 

The total charge of the sphere is found by summing the charge from each shell: 
Z Z R 

Q = dQ = 4aˇr4dr = 5
4 
aˇR5 

0 

b) Outside of the sphere, we can use a spherical gaussian surface of radius r, so that the 
flux is given by: I 

~ ~E · dA = 4ˇr2E 

The entire charge of the sphere is enclosed. Applying Gauss’ Law, we can determine 
the electric field outside the sphere: 

I Qenc 
~ ~E · dA = 

�0 
4aˇR5 

4ˇr2E = 5�0 
aR5 

∴ E(r) = 5�0r2 

and we see that the electric field decreases as the radius squared, which makes sense, 
since from outside the sphere, we do not know how the charge is distributed within. 

c) Inside the volume of the sphere, we still use a gaussian spherical surface of radius, r, 
so that the flux is given by: I 

~ ~E · dA = 4ˇr2E 

However, inside the sphere, the gaussian surface only encloses the charge up to a radius 
of r, which we find by integration, similar to part a): 

Z Z 4 
Qenc = dQ = 

r 

4aˇr4dr = 5aˇr
5 

0 
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Applying Gauss’ Law: I Qenc 
~ ~E · dA = 

�0 
4aˇr5 

4ˇr2E = 5�0 
3ar

∴ E(r) = 5�0r2 

and we find that the electric field is zero at the centre of the sphere and increases with 
radius cube inside the sphere. 

Solution to problem 17-2: 
a) The conducting shells have no net charge, so the only charge in the system is the point 

charge Q. If we draw a spherical gaussian surface, the only enclosed charge will be Q, 
and we can ignore the charges on the plates. The electric field is thus the field from 
a point charge: 

kQ 
E = 2r 

b) Let’s begin with the shell that has a triangle on the outside. We will use Gauss’ law 
to determine the charge density of the inner and outer shells. To do this, we will draw 
a circle within the shell, S1 and a triangle outside of the outer shell, S2 as shown in 
Figure 17.20. 

Figure 17.20: A solution to the triangular conducting shell. 

When considering S1, we know that the electric field inside of the (conducting) shell 
is 0, so that the flux out of S1 will be zero. This means that the point charge on the 
inside of the shell will be equal and opposite to the sum of the surface charges on the 
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inner shell. From here, we divide the net charge by the circumference of the inner 
shell to determine the linear charge density: 

−Q
�circle = 2ˇR 

When considering S2, we know that the Qenc = +Q, which means that the total linear 
charge on the outer triangle will be +Q such that it cancels the −Q along the inner 
circle. The sum of charges would be Qenc = Qpoint + Qtriangle − Qcircle. Knowing this, 
we must divide the total charge on the outer surface by the sum of the length of each 
of the triangle’s sides in order to find the average linear charge density: 

Q
�circle = 3L 

Now, we consider the inner and outer linear charge densities of the square conducting 
shell. We choose two gaussian surfaces, S1, and S2, as shown in Figure 17.21: 

Figure 17.21: A solution to the square conducting shell. 

For S1, the circle is treated as it was while solving the triangular shell. The electric 
field is also 0 within the square conducting shell, so we know that the average linear 
charge density is −Q .2ˇR 
When considering S2, we know that Qenc is +Q, so we know that the total charge on 
the square surface of the shell will be +Q. This leave us with the following average 
linear charge density: 

Q
�square = 4L 
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c) These plates are charged by the electric field generated by the point charge held within 
them, which means that the linear charge density of the two plates will be highest at 
the points along the outer sides which are the shortest distance from the point charge. 
These points occur in the triangular and square plates at the point which is the closest 
to the charge, Q, as shown in Figure 17.22. 

Figure 17.22: A solution to the square conducting shell. 



18 Electric potential 

In this chapter, we develop the concept of electric potential energy and electric potential. 
This will allow us to describe the motion of charges using energy instead of forces. We will 
also introduce the capacitor, a common circuit component that is used to store charge. 

Learning Objectives 

• Understand the di�erence between electrical potential energy and electric poten-
tial. 
• Understand how to calculate stored electrostatic potential energy. 
• Understand how to calculate the electric potential di�erence between two points 

near a point charge or a distribution of charges. 
• Understand how to use electric potential to determine electrical potential energy. 
• Understand how to determine electric potential from electric field. 
• Understand how to determine electric field from electric potential. 
• Understand how to model a capacitor. 

Think About It 

A proton and an electron are both accelerated by the 110 V electric potential di�erence 
from your outlet. Which particle has the highest speed? 

A) The proton. 
B) The electron. 
C) They will have the same speed, since they were accelerated by the same potential 

di�erence. 

18.1 Electric potential energy 

Review Topics 

• Section 8.1 on conservative forces. 
• Section 9.3 on the derivation of gravitational potential energy. 

Mathematically, Coulomb’s Law for the electric force is identical to Newton’s Universal 
Theory of Gravity for the gravitational force. The electric force is thus conservative, and 
the work done by the electric force on a charge, q, when the charge moves from position, A, 
in space to some other position, B, cannot depend on the path taken. Since the work done 
by the electric force only depends on the location of the initial (A) and final (B) positions, 
we can define an electrical potential energy function, U(~r), that depends on position, ~r. 

579 
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F~EThe work done by the electric force, , on a charge in going from position, A (defined by 
position vector, ~rA), to position, B (defined by position vector, ~rB), can be written as: Z B 

~W = F E · d~r = −�U = − [U(~rB) − U(~rA)] (18.1) 
A 

In order to determine the function, U(~r), we can choose a path over which the integral for 
work is easy to calculate. Consider the work done by the electric force from a point charge, 
+Q, exerted on a charge, +q, when +q moves from a distance rA to a distance rB from the 
centre of +Q, as illustrated in Figure 18.1. 

Figure 18.1: Calculating the work done on a charge +q by the electric force exerted by charge +Q 
when charge +q moves from a distance rA to a distance rB from the centre of charge +Q. 

Placing +Q at the origin of a coordinate system, the force exerted on charge, +q, when it 
is located at position, ~r, is given by: 

Qq
F~ E = k 2 r̂  

r 

The work done by the electric force when +q moves from A to B is given by: Z � � ZZ B ~rB Qq rB 1 
W = F~ E · d~r = k r̂  · d~r = kQq 2 dr2A ~rA r rA r �rB �−1 kQq kQq 

! 
= kQq = − − 

r rA rB rA 

~where we noted that since FE and d~r are parallel, their scalar product is simply the product 
of their magnitudes. By comparing with Equation 18.1, we can identify the potential energy, 
U(~r), of a charge, +q, located at a relative position, ~r, from a point charge, +Q, as: 

U(~r) = kQq + C 
r 

where the potential energy is only defined up to some constant, C, which cancels when we 
take the di�erence in potential energy between two positions. Note that this is very similar 
to the function for the gravitational potential energy of a mass, m, a distance, r, from a 
mass, M (see Section 9.3). 

The potential energy function that we derived above remains the same if one or both of the 
charges change sign, as the derivation did not depend on the sign of the charges, q and Q, as 
changing the sign of one charge changes the direction of the force. For example, a positive 
charge, +q, near a negative charge, −Q, would have negative electric potential energy with 
the choice C = 0, in exact analogy with gravity. 



581 18.1. ELECTRIC POTENTIAL ENERGY 

18.1.1 Electrostatic potential energy 
When we hold two positive charges together a distance, r, apart, we need to exert a force 
on the charges in order to keep the charges in place (as they repel each other). If we release 
the charges, they will move apart from each other, and eventually all of the stored electric 
potential energy is converted into kinetic energy. The energy that was originally stored in 
this “system” of two charges is called “electrostatic potential energy”. In this section, we 
show how to model the energy stored in a collection of point charges. 

Consider a single positive charge, q1, located at the origin of empty space. Since there are 
no other charges present, it does not “cost” us any energy to place that charge there - we 
do not need to do any work. If we now bring in a second positive charge, q2, and place it a 
distance, r12, from q1 (Figure 18.2), we will need to do work since q1 exerts a force on q2. 
If we define zero potential energy to be at infinity (choosing C = 0 for electric potential 
energy), the work, Wq2, that we must do on q2 to bring it from infinity to a distance, r12, 
from q1 is given by the corresponding change in potential energy of q2: 

q1q2 q1q2
Wq2 = �U = Ufinal − Uinitial = k − 0 = k 

r12 r12 

Note that the work is done by us (not by the electric field), so it has the same sign as the 
change in potential energy (we must do positive work to increase potential energy). The 
work that we did corresponds to the same amount of electrostatic potential energy stored 
in this arrangement of two charges (the only source of that stored electrostatic potential 
energy is the work that we did on the charge q2). 

Figure 18.2: Three positive charges arranged together will store a certain amount of electrostatic 
potential energy. 

Now, we bring in a third positive charge, q3, also from infinitely far away, as illustrated 
in Figure 18.2. In order to bring in q3, we need to do work against the forces exerted by 
both q1 and q2. Suppose that we place q3 a distance r13 from q1 and r23 from q2. Then, the 
amount of work done by us to bring in q3 is given by: 

q1q3 q2q3
Wq3 = k + k 

r13 r23 

and the total electrostatic energy stored in the system of three charges is given by the sum 
of the work done to place q2 and the work done to place q1: 

q1q2 q1q3 q2q3
E = Wq1 + Wq2 + Wq3 = 0 + k + k + k 

r12 r13 r23 
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If we have any number of charges (positive and negative), we can always calculate the stored 
electrostatic energy by proceeding in a similar fashion. 

Checkpoint 18-1 

Four charges of varying magnitude are fixed in position. If the electric potential energy 
stored in the system were to be calculated as above, how many terms would be in the 
sum? 

A) Four. 
B) Two. 
C) One. 
D) Six. 

18.2 Electric potential 
~As you recall, we defined the electric field, E(~r), to be the electric force per unit 

charge. By defining an electric field everywhere in space, we were able to easily determine 
the force on any test charge, q, whether the test charge is positive or negative (since the 

~sign of q will change the direction of the force vector, qE): 

F~E(~r)~E(~r) = 
q 

~ ~∴ FE(~r) = qE(~r) 

Similarly, we define the electric potential, V (~r), to be the electric potential energy 
per unit charge. This allows us to define electric potential, V (~r), everywhere in space, 
and then determine the potential energy of a specific charge, q, by simply multiplying q 
with the electric potential at that position in space. 

U(~r)
V (~r) = 

q 

∴ U(~r) = qV (~r) 

The S.I. unit for electric potential is the “volt”, (V). Electric potential, V (~r), is a scalar field 
whose value is “the electric potential” at that position in space. A positive charge, q = 1 C, 
will thus have a potential energy of U = 10 J if it is located at a position in space where the 
electric potential is V = 10 V, since U = qV . Similarly, a negative charge, q = −1 C, will 
have negative potential energy, U = −10 J, at the same location. 

Since only di�erences in potential energy are physically meaningful (as change in poten-
tial energy is related to work), only changes in electrical potential are physically 
meaningful (as electric potential is related to electric potential energy). A di�erence in 
electric potential is commonly called a “voltage”. One often makes a clear choice of where 
the electric potential is zero (typically the ground, or infinitely far away), so that the term 
voltage is used to describe potential, V , instead of di�erence in potential, �V ; this should 
only be done when it is clear where the location of zero electric potential is defined. 
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We can describe a free-falling mass by stating that the mass moves from a region where it has 
high gravitational potential energy to a region of lower gravitational potential energy under 
the influence of the force of gravity (the force associated with a potential energy always 
acts in the direction to decreases potential energy). The same is true for electrical potential 
energy: charges will always experience a force in a direction to decrease their 
electrical potential energy. However, positive charges will experience a force driving 
them from regions of high electric potential to regions of low electric potential, whereas 
negative charges will experience a force driving them from regions of low electric potential 
to regions of higher electric potential. This is because, for negative charges, the change in 
potential energy associated with moving through space, �U , will be the negative of the 
corresponding change in electric potential, �U = q�V , since the charge, q, is negative. 

Checkpoint 18-2 

Electric potential increases along the x axis. A proton and an electron are placed at 
rest at the origin; in which direction do the charges move when released? 

A) the proton moves towards negative x, while the electron moves towards positive 
x. 

B) the proton moves towards positive x, while the electron moves towards negative 
x. 

C) the proton and electron move towards negative x. 
D) the proton and electron move towards positive x. 

If the only force exerted on a particle is the electric force, and the particle moves in space such 
that the electric potential changes by �V , we can use conservation of energy to determine 
the corresponding change in kinetic energy of the particle: 

�E = �U + �K = 0 
�U = q�V 

∴ �K = −q�V 

where �E is the change in total mechanical energy of the particle, which is zero when 
energy is conserved. The kinetic energy of a positive particle increases if the particle moves 
from a region of high potential to a region of low potential (as �V would be negative and 
q is positive), and vice versa for a negative particle. This makes sense, since a positive and 
negative particle feel forces in opposite directions. 

In order to describe the energies of particles such as electrons, it is convenient to use a 
di�erent unit of energy than the Joule, so that the quantities involved are not orders of 
magnitude smaller than 1. A common choice is the “electron volt”, eV. One electron volt 
corresponds to the energy acquired by a particle with a charge of e (the charge of the 
electron) when it is accelerated by a potential di�erence of 1 V: 

�E = q�V 
1 eV = (e)(1 V) = 1.6 × 10−19 J 
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An electron that has accelerated from rest across a region with a 150 V potential di�erence 
across it will have a kinetic of 150 eV = 2.4 × 10−17 J. As you can see, it is easier to describe 
the energy of an electron in electron volts than Joules. 

Checkpoint 18-3 

A particle moves from an electric potential of −260 V to an electric potential of −600 V 
and loses kinetic energy. What is the charge of this particle? 

A) Neutral. 
B) It could have a positive or a negative charge. 
C) Positive. 
D) Negative. 

Josh’s Thoughts 

It is often useful in physics to take previously learned concepts and compare them to 
new ones, in this case, gravitational potential energy and electric potential energy can 
be compared to help understand the physical meaning of electric potential. 

Suppose that an object with a large mass, M , is sitting in space. Now place an object 
of a much smaller mass, m, at any distance, r, from the centre of M . The gravitational 
potential energy of the small mass is given by the following formula: 

GMm 
Ug = 

r 

Which is very similar to the formula for electrical potential energy: 

U(~r) = kQq 
r 

Now, if we were to remove the mass m from its position, we would no longer have 
an object with gravitational potential energy. However, we could still describe the 
gravitational potential for the point, r, which would result in gravitational potential 
energy when any mass m is placed there. This is the gravitational equivalent to electric 
potential, and can be defined as: 

Ug
Vg = 

m 

which is also very similar to the formula for electric potential: 

UE
VE = 

q 

This comparison is illustrated in Figure 18.3. 
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Figure 18.3: Gravitational potential energy and gravitational potential (left) next to its elec-
trical analogue (right). 

Example 18-1 

A proton and an electron move from a region of space where the electric potential 
is 20 V to a region of space where the electric potential is 10 V. If the electric force 
is the only force exerted on the particles, what can you say about their change in speed? 

Solution 

The two particles move from a region of space where the electric potential is 20 V to 
a region of space where the electric potential is 10 V. The change in electric potential 
experienced by the particles is thus: 

�V = Vfinal − Vinitial = (10 V) − (20 V) = −10 V 

and we take the opportunity to emphasize that one should be very careful with signs 
when using potential. The change in potential energy of the proton, with charge q = +e, 
is thus: 

�Up = q�V = (+e)(−10 V) = −10 eV 

The potential energy of the proton thus decreases by 10 eV (which you can easily convert 
to Joules). Since we are told that no other force is exerted on the particle, the total 
mechanical energy of the particle (kinetic plus potential energies) must be constant. 
Thus, if the potential energy decreased, then the kinetic energy of the proton has 
increased by the same amount, and the proton’s speed increases. 

The change in potential energy of the electron, with charge q = −e, is thus: 

�Ue = q�V = (−e)(−10 V) = 10 eV 

The potential energy of the electron thus increases by 10 eV. Again, the mechanical 
energy of the electron is conserved, so that an increase in potential energy results in 
the same decrease in kinetic energy and the electron’s speed decreases. 



586 CHAPTER 18. ELECTRIC POTENTIAL 

Discussion: By using the electric potential, V , we modelled the change in electric 
potential energy of a proton and an electron as they both moved from one region of 
space to another. 

We found that when a proton moves from a region of high electric potential 
to a region of lower electric potential, its potential energy decreases. This 
is because the proton has a positive charge and a decrease in electric potential will 
also result in a decrease in potential energy. Since no other forces are exerted on the 
proton, the proton’s kinetic energy must increase. Because the potential energy of the 
proton decreases, the proton is moving in the same direction as the electric force, and 
the electric force does positive work on the proton to increase its kinetic energy. 

Conversely, we found that when an electron moves from a region of high electric 
potential to a region of lower electric potential, its potential energy increases. 
This is because it has a negative charge and a decrease in electrical potential thus results 
in an increase in potential energy. Since no other forces are exerted on the electron, 
the electron’s kinetic energy must decrease, and the electron slows down. This makes 
sense, since the force that is exerted on an electron will be in the opposite direction 
from the force exerted on a proton. 

18.2.1 Electric potential from electric field 
At the beginning of Section 18.1, we determined the potential energy of a point charge, q, 
in the presence of another point charge, Q (Figure 18.1). This was done by calculating the 
work done by the Coulomb (electric) force exerted by charge Q on q. We can write the same 

~integral for the work done by the electric force on q, but using the electric field, E, to write 
the force: Z B Z B Z B 

F~E ~ ~W = · d~r = qE · d~r = q E · d~r 
A A A 

where we recognized that the charge, q, is constant and can come out of the integral. The 
~integral that is left is thus the work done by the electric field, E, per unit charge. In other 

words, this is the negative change in electric potential: Z B 
~W = q E · d~r = −q�V = −q [V (~rB) − V (~rA)] 

A Z B 
~∴ �V = V (~rB) − V (~rA) = − E · d~r 

A 

which allows us to easily determine the change in electric potential associated with an electric 
field. Note that this result is general and does not require the electric field to be that of 
a point charge, and can be used to determine the electric potential associated with any 
electric field. We can also specify a function for the potential, up to an arbitrary constant, 
C, (think definite versus indefinite integrals): Z 

~V (~r) = − E · d~r + C 
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The relation between electric potential and electric field is analogous to the relation between 
electric potential energy and electric force: Z B 

~�V = V (~rB) − V (~rA) = − E · d~r 
AZ B 
~�U = U(~rB) − U(~rA) = − FE · d~r 

A 

as the bottom equation is just q times the first equation. We can think of electric potential 
being to potential energy what electric field is to electric force. Electric potential and electric 
field are electric potential energy and electric force, per unit charge, respectively. 

For a point charge, Q, located at the origin, the electric field at some position, ~r, is given 
by Coulomb’s Law: 

kQ ~E = 2 r̂  
r 

The potential di�erence between location A (at position ~rA) and location B (at position 
~rB), as in Figure 18.1, is given by: !Z B Z kQ kQ kQ �V = − E~ · d~r = − 

~rB 

2 r̂  · d~r = − − 
A ~rA r rB rA 

and we note that we can write a function for the electric potential, V (~r), at a distance r 
from a point charge, Q, as: 

V (~r) = kQ + C 
r 

where C is an arbitrary constant. This, of course, is identical to the result that we obtained 
earlier, for the potential energy of a charge, q, a distance, r, from Q. 

U(~r) = qV (~r) = kQq + C 0 
r 

where the constant, C 0 = qC, does not have any physical impact. Often, as is the case 
for gravity, one chooses the constant C = 0. This choice corresponds to defining potential 
energy to be zero at infinity. Equivalently, this corresponds to choosing infinity to be at an 
electric potential of 0 V. 

Checkpoint 18-4 

What causes a positively charged particle to gain speed when it is accelerated through 
a potential di�erence?: 

A) The particle accelerates because it loses potential energy as it moves from high to 
low potential. 

B) The particle accelerates because it loses potential energy as it moves from low to 
high potential 

C) The particle accelerates because it gains potential energy. 
D) The particle accelerates because it moves towards negative charges. 
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Example 18-2 

What is the electric potential at the edge of a hydrogen atom (a distance of 1 °A from 
the proton), if one sets 0 V at infinity? If an electron is located at a distance of 1 °A 
from the proton, how much energy is required to remove the electron; that is, how much 
energy is required to ionize the hydrogen atom? 

Solution 

We can easily calculate the electric potential, a distance of 1 °A from a proton, since this 
corresponds to the potential from a point charge (with C = 0): 

kQ (9 × 109 N · m2/C2)(1.6 × 10−19 C)
V (~r) = = = 14.4 V 

r (1 × 10−10 m) 

We can calculate the potential energy of the electron (relative to infinity, where the 
potential is 0 V, since we chose C = 0): 

U = (−e)V = (−1.6 × 10−19 C)(14.4 V) = −14.4 eV = −2.3 × 10−18 J 

where we also expressed the potential energy in electron volts. In order to remove the 
electron from the hydrogen atom, we must exert a force (do work) until the electron 
is infinitely far from the proton. At infinity, the potential energy of the electron will 
be zero (by our choice of C = 0). When moving the electron from the hydrogen atom 
to an infinite distance away, we must do positive work to counter the attractive force 
from the proton. The work that we must do is exactly equal to the change in potential 
energy of the electron (and equal to the negative of the work done by the force exerted 
by the proton): 

W = �U = (Ufinal − Uinitial) = (0 J −−2.3 × 10−18 J) = 2.3 × 10−18 J 

The positive work that we must do, exerting a force that is opposite to the electric 
force, is positive and equal to 2.3 × 10−18 J, or 14.4 eV. If you look up the ionization 
energy of hydrogen, you will find that it is 13.6 eV, so that this very simplistic model is 
quite accurate (we could improve the model by adjusting the proton-electron distance 
so that the potential is 13.6 V). 

Discussion: In this example, we determined the electrical potential energy of an elec-
tron in a hydrogen atom, and found that it is negative, when potential energy is defined 
to be zero at infinity. In order to remove the electron from the atom, we must do posi-
tive work in order to increase the potential energy of the electron from a negative value 
to zero (the potential energy at infinity). This is analogous to the work that must be 
done on a satellite in a gravitationally bound orbit for it to reach escape velocity. 

https://C)(14.4V
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Example 18-3 

Two large parallel plates are separated by a distance, L. The plates are oppositely 
charged and carry the same magnitude of charge per unit area, ˙. What is the poten-
tial di�erence between the two plates? Write an expression for the electric potential in 
the region between the two plates. Assume that the plates are large enough that you 
can treat them as infinite (that is, neglect what happens near the edges). 

Solution 

Figure 18.4 shows a diagram of the two parallel plates with surface charge on them. 

Figure 18.4: Two parallel plates with equal and opposite surface charge densities. In the region 
between the plates, the electric field is uniform. 

We know from the previous chapters that the electric field from the positive plate does 
not depend on distance from the plate and is given by: 

~E+ = − ˙ x̂2�0 

if we approximate the plate as being infinitely large. This is a reasonable approximation 
for most points except those near the edges of the plate, which we ignore. The electric 
field from the negative plate will have the same magnitude and direction, so that the 

~total electric field, E, everywhere between the two parallel plates (as long as we are not 
near the edges) is given by: 

~E = − ˙ x̂ 
�0 

Note that the electric field outside the region between the two plates is zero everywhere, 
as the field from the positive and negative plates point in opposite directions outside 
the plates and thus cancel (except near the edges of the plates). For example, below 
the negative plate, the field from the negative plate points in the positive x direction 
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(towards the negative plate), whereas the field from the positive plate points in the 
positive x direction (towards the positive plate). 

We can now determine the potential di�erence between the two plates, since we know 
the electric field in that region. Using the coordinate system that is shown, we calculate 
the potential di�erence between the positive plate located at x = L and the negative 
plate located at x = 0: Z L Z L Z L−˙ ˙ ˙ ~�V = V (L) − V (0) = − E · d~x = − x̂ · d~x = dx = L 

0 0 �0 �0 0 �0 

where we recognized that x̂ and d~x are parallel. It is very easy to get the wrong sign 
when calculating potential di�erences, so be careful! 

Since the potential di�erence, �V = V (L)−V (0), is positive, the plate at x = L is at a 
higher electric potential than the plate at x = 0. This makes sense, as a positive charge 
at rest would move from the positive plate to the negative plate, thus decreasing its 
potential energy, which corresponds to moving from a region of high electric potential 
to a region of low electric potential. Conversely, a negative charge at rest would move 
from the negative plate to the positive plate, decreasing its potential energy, but moving 
from a region of low electric potential to a region of high electric potential. 

In general, if the electric field is constant, the change in potential between two points 
separated by a distance, L, along an axis that is anti-parallel with the field (in this 
example, the field points in the negative x direction) is given by: Z L Z L 

~�V = − E · d~x = E dx = EL 
0 0 

Note that we can only calculate the di�erence in electric potential between plates, not 
the actual value of the potential, V . If we want to define a specific value of electric 
potential, we need to choose a location where we define 0 V to be. By convention, when 
possible, one chooses the negative plate to be the location of 0 V. In order to determine 
the electric potential anywhere between the two plates, we can calculate the potential 
di�erence between the plate at x = 0 (the one at 0 V) and some position between the 
plates along the x axis (x < L): Z x 

�V = V (x) − V (0) = − Ex̂ · d~x = Ex = ˙ x 
0 �0 

∴ V (x) = V (0) + Ex = Ex = ˙ x 
�0 

where we find that the electric potential increases linearly between its value at the 
negative plate (0 V) and its value at the positive plate (EL). Of course, we could have 
chosen any value of the electric potential for the negative plate, which is equivalent to 
choosing the value of the arbitrary constant, C. 
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In general, we can write the electric potential in a region of constant electric field, 
~E = −Ex̂, as: 

V (x) = Ex + C 

This scenario is very similar to the gravitational force near the surface of the Earth, 
where the gravitational field is (almost) constant. If you choose to define zero grav-
itational potential energy at the surface of the Earth, then, as you move up a dis-
tance h from the ground, your gravitational potential energy increases linearly with h 
(U(h) = mgh). In our case, we defined zero electrical potential energy to correspond to 
the location of the negative plate (the negative plate is thus like the surface of the Earth, 
with a constant electric field pointing towards it). As a positive charge moves a distance 
h away from the negative plate, it gains electric potential energy, U(h) = qV (h) = qEh, 
linearly with distance from the plate. If we release that positive charge, it will “fall” 
back onto the negative plate. The main di�erence with gravity, is that we can also have 
negative charges, which under gravity, would be similar to “negative masses” (it’s not 
a thing), which would “fall upwards” (towards the positive plate). 

Discussion: In this example, we examined the electric field between two parallel plates 
with opposite charges on them, and saw that the field is constant and uniform between 
the plates and zero outside (except for a small region near the edge of the plates where 
the assumption of infinitely large plates breaks down). We found that the electric 
potential decreases linearly as a function of distance from one of the plates. Because 
the electric field is constant between the two plates, the electric force on a charge can 
be treated in a similar way as the gravitational force on a mass near the surface of the 
Earth. The resulting electric potential is linear in the distance from the negative plate, 
just as mgh is linear in h, the distance to the surface of the Earth. Parallel plates are 
often used to accelerate charges, so they are useful to understand. 

Checkpoint 18-5 

If we defined a gravitional potential, V(h), for particles a small distance, h, from the 
surface of the Earth, it would have the form: 

A) V (h) = mgh + C. 
B) V (h) = gh + C. 
C) V (h) = mg + C. 
D) V (h) = −mgh + C. 

18.2.2 Electric field from electric potential 

Review Topics 

• Section 8.2.1 on determining force from potential energy. 
• Section B.2.2 on gradients. 

In the previous section, we found that we could determine the electric potential (a scalar) 
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from the electric field vector. In this section, we show how to do the reverse, and determine 
the electric field vector from the electric potential. Consider, first, a one-dimensional case, 

~where the electric field, E(x) = E(x)x̂, point in the x direction and depends on position, 
x. In this one-dimensional case, the electric potential is obtained from the negative anti-
derivative of the electric field: Z Z 

~V (x) = − E(x) · d~x = − E(x)dx 

The electric field must then be given by the negative of the derivative of the electric potential 
function: 

dV (x)~E(x) = − x̂ 
dx 

Note that we can tell from the above that the electric field must have dimensions of electric 
potential over distance. The most common S.I. unit used to describe the electric field is 
V/m (Volts per meter). 

This result is very similar to that obtained in Section 8.2.1, where we examined how one 
could use the scalar potential energy, U(x, y, z), to determine the vector for the force as-
sociated with that potential energy. The same holds for the electric force, where we can 

~determine the electric force vector, F , from the electric potential energy, and similarly the 
electric field from the electric potential. In three dimensions, if we know the electric po-
tential energy as a function of position, U(~r) = U(x, y, z), then the electric force vector is 
given by: 

@U @U @U ~F (x, y, z) = −rU = − x̂ − ŷ − ẑ  
@x @y @z 

Similarly, but using force per unit charge (i.e. electric field) and potential energy per unit 
charge (i.e. electric potential), we find: 

@V @V @V ~E(x, y, z) = −rV = − x̂ − ŷ − ẑ  
@x @y @z 

where, as you recall, rV , is called the gradient of the scalar field, V (x, y, z). The gradient 
is a vector that points in the direction of maximal increase of the value of V (x, y, z). For a 
positive charge, this corresponds to the direction of maximal increase in potential energy. A 
positive charge will experience a force in the opposite direction (in the direction where the 
potential energy decreases the fastest), and the electric field is thus in the opposite direction 
from the gradient of the electric potential. 

18.2.3 Equipotential surfaces 
We can visualize electric potential in several ways, since it is a scalar field (it has a single 
value that can di�er everywhere in space). Figure 18.5 shows the electric potential near a 
positive charge, +Q, where one has chosen 0 V to be located at infinity. The right panel 
shows the electric potential as a “surface plot”, where the vertical direction is the value of 
the electric potential. The left panel shows a “heat map” of the electric potential, where 
the colour corresponds to the value of the electric potential. 
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Figure 18.5: Electric potential heat map (left) and surface plot (right) near a single positive charge. 

The most common way to visualize the electric potential is to draw “contour lines”, similar 
to how one draws contour lines on a geographical map. On a geographical map, contours 
correspond to lines of constant altitude, which are also lines of constant gravitational po-
tential energy. Similarly, we can draw lines of constant electric potential to visualize the 
electric potential. Lines of constant potential are called “equipotential lines”. In general, in 
three dimensions, regions of constant electric potential can be surfaces or volumes, called 
“equipotential surfaces/volumes”. In Example 18-3 (with the parallel plates) each of the 
plates forms an equipotential surface (e.g. the electric potential was fixed to 0 V everywhere 
on the negative plate). 

Recall that, at some point in space, the electric field vector always points in the opposite 
direction of the gradient of the electric potential. Namely, the electric field points in the 
direction in which the electric potential decreases the fastest. That direction must be 
perpendicular to the direction in which the electric potential does not change; in other words, 
the electric field vector is always perpendicular to equipotential lines/surfaces. 
More intuitively, one can think about a charge moving along an equipotential. By definition, 
the electric potential energy of the charge does not change if its moves along an equipotential. 
As a result, the electric force/field cannot do any work on the charge, and must thus be 
perpendicular to the path of the charge (which we chose to be an equipotential). 

Conducting materials are always equipotential surfaces (or volumes) if charges are not mov-
ing inside the conductor. The electric field inside a conductor is always zero (in electrostatics, 
when charges are not moving), and thus, a charge moving through a conductor experiences 
no electric force and its electrical potential energy will be constant; in other words, the 
entire conductor is an equipotential. Similarly, because the electric field must always be 
perpendicular to an equipotential, electric field lines are always perpendicular to the surface 
of a conductor (in electrostatics). 

In order to draw equipotential lines, one can start by drawing electric field lines, and then 
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draw (closed) contour lines that are everywhere perpendicular to the electric field lines. 
This is illustrated in Figure 18.6. 

Figure 18.6: The electric field and equipotential lines caused by two +2q charges and one −3q 
charge (left) and its corresponding electric potential heatmap (right). 

In general, it is preferable to draw equipotential lines that are separated by equal increments 
in electric potential (just as on a geographical map, the contour lines correspond to constant 
increments in altitude). This requires knowing a functional form for the electric potential. 
For example, the equipotential lines for a point charge located at the origin consist in con-
centric circles centred at the origin (in three dimensions, this results in concentric spherical 
equipotential surfaces). If we define 0 V to be at infinity, the electric potential is given by: 

V (r) = kQ 
r 

In order to draw equipotential lines every, say, 10 V, the radii of the corresponding equipo-
tential circles, for V = 10 V, V = 20 V, V = 30 V, etc., are given by: 

kQ 
r = 

V 
kQ kQ kQ 

r10V = r20V = r30V = . . .(10 V) (20 V) (30 V) 

18.3 Calculating electric potential from charge distri-
butions 

In this section, we give two examples of determining the electric potential for di�erent charge 
distributions. We have two methods that we can use to calculate the electric potential from 
a distribution of charges: 

1. Model the charge distribution as the sum of infinitesimal point charges, dq, and add 
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together the electric potentials, dV , from all charges, dq. This requires that one choose 
0 V to be located at infinity, so that the dV are all relative to the same point. 

2. Calculate the electric field (either as a integral or from Gauss’ Law), and use: Z B 
~�V = V (~rB) − V (~rA) = − E · d~r 

A 

The first method is similar to how we calculated the electric field for distributed charges in 
chapter 16, but with the simplification that we only need to sum scalars instead of vectors. 
The second method was already introduced in this chapter. 

Example 18-4 

A ring of radius R carries a total charge +Q. Determine the electric potential a distance 
a from the centre of the ring, along the axis of symmetry of the ring. Assume that zero 
electric potential is defined at infinity. 

Solution 

Figure 18.7 shows a diagram of the ring, and our choice of infinitesimal charge, dq. 

Figure 18.7: Determining the electric potential on the axis of a ring of radius R carrying 
charge Q. 

In order to calculate the electric potential at point, P , with 0 V defined to be at infinity, 
we first calculate the infinitesimal potential at P from the infinitesimal point charge, 
dq: 

dq
dV = k 

r 

The total electric potential is then the sum (integral) of these potentials: Z Z Zdq k Q Q
V = dV = k = dq = k = k p

r r r a2 + R2 
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where we recognized that k and r are the same for each dq, so that they could factor 
out of the integral. 

R 
dq = Q is then just the sum of the infinitesimal charges, which 

must add to the charge of the ring. 

Discussion: In this example, we determined the electric potential, relative to infinity, 
a distance a from the centre of a charge ring, along its axis of symmetry. We modelled 
the ring as being made of many infinitesimal point charges, and summed together the 
infinitesimal electric potentials from those charges relative to infinity. This was much 
simpler than determining the electric field, since electric potential is a scalar and we do 
not need to consider how the components from di�erent dq along the ring will cancel. 

Example 18-5 

A long, thin, straight wire carries uniform charge per unit length, �. The electric 
potential di�erence between points located at distances rB = 2 cm and rA = 1 cm from 
the wire is found to be V (rB) − V (rA) = −100 V. What is the linear charge density on 
wire, �? 

Figure 18.8: A long thin wire with measurements of electric potential at varying points. 

Solution 

In this case, we can use Gauss’ Law to determine the electric field at a certain distance 
from the wire. From that, we can calculate the electric potential di�erence between any 
two points near the wire, and thus the charge density on the wire. 

By using a cylindrical surface of length, L, and radius, r, we can use Gauss’ Law to 
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determine the field at a distance, r, from the wire: I Qenc 
~ ~E · dA = 

�0 

2ˇrLE = �L 
�0 

~∴ E(r) = �
r̂2ˇ�0r 

Using the electric field, we can calculate the potential di�erence between two points 
that are at distances, rA and rB, from the wire: Z 

~�V = V (rB) − V (rA) = − 
rB 
E · d~r 

rA!Z Z Z rB � � rB 1 � rB 1 = − r̂  · d~r = − r̂  · d~r = − dr 
rA 2ˇ�0r 2ˇ�0 rA r 2ˇ�0 rA r � �
� � rB= − [| ln(r)|]rB = − ln rA2ˇ�0 2ˇ�0 rA� �

� rA∴ �V = ln2ˇ�0 rB 

where, in the second last line, we removed the absolute value from the logarithm, since 
rA < rB, and in the last line, we removed the minus sign by inverting the argument of 
the logarithm. Since we know the potential di�erence, �V , for two points located at 
distances rB = 2 cm and rA = 1 cm, we can determine the charge density on the wire: 

�V = V (rB) − V (rA) = −100 V � �
� rA�V = ln2ˇ�0 rB 

2ˇ�0�V 2ˇ(8.85 × 10−12 C2 · N−1 · m−2)(−100 V) 
∴ � = � � = � � = 8.02 × 10−9 C/m 

rA 1ln ln 
rB 2 

where, again, one needs to be very careful with the signs! Note that it also makes sense 
that the potential di�erence, �V = V (rB) − V (rA), is negative, since rA is closer to the 
positively charged wire. A positive charge at rest would move away from the positively 
charged wire, from rA to rB, from high potential to low potential. 

Discussion: In this example, we showed how to determine the electric potential near 
an infinitely long charged wire by using the electric field that we determined from Gauss’ 
Law. By knowing the potential di�erence between two points near the wire, we were 
then able to infer the charge density on the wire. 
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18.4 Electric field and potential at the surface of a 
conductor 

If we consider a conducting sphere of radius, R, with charge, +Q, the electric field at the 
surface of the sphere is given by: 

Q
E = k 

R2 

as we found in the Chapter 17. If we define electric potential to be zero at infinity, then the 
electric potential at the surface of the sphere is given by: 

Q
V = k 

R 

In particular, the electric field at the surface of the sphere is related to the electric potential 
at its surface by: 

V 
E = 

R 

Thus, if two spheres are at the same electric potential, the one with the smaller radius will 
have a stronger electric field at its surface. 

Because a conducting sphere is symmetric, the charges will distribute themselves symmet-
rically around the whole outer surface of the sphere. The charge per unit area, ˙, at the 
surface of the sphere is thus given by: 

Q
˙ = 4ˇR2 

The charge density can be related to the electric field at the surface of the sphere: 

Q 4ˇR2˙ ˙ 
E = k = k = 4ˇ˙k = 

R2 R2 �0 

where in the last equality, we used k with �0 and confirmed the general result from Section 
17.3, where we determined the electric field near a conductor with surface charge, ˙. 

Consider a sphere of radius, R1, that carries total charge, +Q. A neutral second, smaller, 
conducting sphere, of radius R2 is then connected to the first sphere, using a conducting 
wire, as in Figure 18.9. 
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Figure 18.9: Two conducting spheres are connected by a conducting wire. The charge Q that was 
originally on the larger sphere distributes itself onto the two spheres. 

Because the charges on the large sphere can move around freely, some of them will move to 
the smaller sphere. Very quickly, the charges will stop moving and the spheres of radius, R1 
and R2, will end up carrying charges, Q1 and Q2, respectively (we assume that the wire is 
small enough that negligible amounts of charge are distributed on the wire). Since the two 
conducting spheres are connected by a conductor, they form an equipotential, and are thus 
at the same voltage, V , relative to infinity. Since the two spheres are at the same electric 
potential, the electric field at the surface of each sphere are related: 

V 
E1 = 

R1 
V 

E2 = 
R2 

E2 R1∴ = 
E1 R2 

R1∴ E2 = E1 
R2 

and the electric field at the surface of the smaller sphere, E2, is stronger since R2 < R1. We 
can also compare the surface charge densities on the two spheres: 

˙1
E1 = 

�0 
˙2

E2 = 
�0 

˙2 E2 R1∴ = = 
˙1 E1 R2 

R1∴ ˙2 = ˙1 
R2 

and we find that the charge density is higher on the smaller sphere. Thus, there are more 
charges per unit area on the smaller sphere than the bigger sphere. 

We can generalize this model to describe charges on any charged conducting object. If 
charges are deposited on a conducting object that is not a sphere, as in Figure 18.10, they 
will not distribute themselves uniformly. Instead, there will be a higher charge density 
(charges per unit area), near parts of the object that have a small radius of curvature 
(sharp points on the object in particular), just as the charge density was higher on the 
smaller sphere described above. As a consequence of the higher concentration of charges 
near the “pointier” parts of the object, the electric field at the surface will be the strongest 
in those regions (as it is stronger at the surface of the smaller sphere described above). 
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Figure 18.10: On an uneven conductor, charges will accumulate on the sharper points, where the 
radius of curvature is the smallest. 

In air, if the electric field exceeds a magnitude of approximately 3 × 106 V/m, the air is said 
to ”electrically breakdown”. The strong electric field can remove electron from atoms in the 
air, ionizing the air in a chain reaction and making it conductive. Thus, if the electric field 
at a point on the surface of a conductor is very strong, the air near that point will break 
down, and charges will leave the conductor, through the air, to find a location with lower 
electric potential energy (usually the ground). Electric breakdown is what we experience as 
a spark (or lightning, on a larger scale), and is usually a discrete (and potentially dramatic) 
event. Corona discharge is another mechanism whereby the strong electric field can make 
the air conductive, but in this case charges leak into the air more gradually, unlike in the 
case of electrical break down. Charges leaking into air through Corona discharge will emit 
a faint blueish light (the “Corona”) as well as an audible hissing sound. 

Objects that are designed to hold a high electric potential (for example the electrodes on 
high voltage lines) are usually made very carefully so that they have a very smooth surface 
and no sharp edges. This reduces the risk of breakdown or corona discharge at the surface 
which would result in a loss of charge. 

Contrary to popular belief, lightning rods are not designed to attract lightening. Instead, 
lightning rods are designed to be conductors with a very sharp point, so that corona dis-
charge can occur at their tip. This allows charges to slowly leak o� from the Earth into 
the cloud through Corona discharge, thereby reducing the potential di�erence between the 
cloud and Earth so that a lightning strike (electrical breakdown) does not occur. When a 
lightning strike does occur, it will hit the lightning rod, since the electric field at the top of 
the rod is high and that is the most likely point for the air to break down; but, that is not 
the goal of the lightning rod! 
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18.5 Capacitors 
Capacitors are common electronic devices that are used to store electric charge for a vari-
ety of applications. A capacitor is usually constructed with two conducting plates (called 
“terminals” or “electrodes”) separated by either air or an insulating material. 

Figure 18.11: Two examples of capacitors. The left panel shows a “parallel plate” capacitor, and 
the right panel shows a cylindrically shaped capacitor obtained by “rolling up” a parallel plate 
capacitor. 

Figure 18.11 shows two examples of capacitors. The left panel shows a “parallel plate” 
capacitor, consisting of two conducting plates separated by air or an insulator. The plates 
are conducting in order for one to be able to easily add and remove charge to the plates. 
The plates always hold equal and opposite charges. The right panel shows a more practical 
implementation of a capacitor that could be used in a circuit, which is simply made by 
“rolling up” a parallel plate capacitor (with an insulator instead of air separating the plates 
so that they do not touch). 

18.5.1 Capacitance 
As long as the quantities of charge involved are not too large, it has been observed that 
the amount of charge, Q, that can be stored on a capacitor1, is linearly proportional to the 
potential di�erence, �V , between the two plates: 

Q / �V 
Q = C�V 

The constant of proportionality, C, between charge and potential di�erence across the ca-
pacitor (usually called voltage across the capacitor) is called “capacitance”, and has S.I. 
units of “Farads”, F . The capacitance of a particular capacitor is a measure of how much 
charge it can hold at given voltage and depends on the geometry of the capacitor as well as 
the material between the terminals. If too much charge is placed on a capacitor, the mate-
rial between the two plates will break down, and a spark will usually damage the capacitor 
as well as discharge it. 

1This is the amount of charge on one of the plates. As a whole, the capacitor is neutral. 
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We can easily calculate the capacitance of a parallel plate capacitor. We model the capacitor 
as being made of two conducting plates, each with area, A, separated by a distance, L, and 
holding charge with magnitude, Q. The surface charge density on one of the plates, ˙, is 
just given by: 

Q
˙ = 

A 

In Example 18-3, we found an expression for the potential di�erence between two parallel 
plates: � � 

�V = ˙ L = L
Q

�0 A�0 

Comparing with, Q = C�V , the capacitance of the parallel plate capacitor is found to be: 
A 

C = �0 
L 

It makes sense that the capacitance, the amount of charge that can be stored at a given 
voltage, increases if the plates have a larger area (more space for charges), and decreases if 
the plates are further apart (smaller electric field). 

Capacitors are used in many touch screens. For example, these might be made of glass (an 
insulator), with a thin metal coating that one touches to interact with the screen (one of the 
plates). As you touch the metal plate, you e�ectively change the capacitance of the screen, 
which can be sensed and modelled to determine the location of your finger(s). Modern 
touch screen have many capacitors built directly into the screen, and function based on this 
principle. 

Checkpoint 18-6 

A capacitor holds 0.2C of charge when it has a potential di�erence of 500V between 
its plates. If the same capacitor holds 0.15C of charge, what is the potential di�erence 
between its plates? 

A) 375 V. 
B) 500 V. 
C) 75 V. 
D) 150 V. 

18.5.2 Dielectric materials 
In practice, capacitors always have an insulating material between the two plates. The 
material is chosen to have a higher breakdown voltage than air, so that more charges can 
be stored before a breakdown occurs. It has also been experimentally observed that the 
capacitance increases with certain materials, so called “dielectric materials”. A dielectric 
material has a “dielectric constant”, K, defined to be the amount by which the capacitance 
increases: 

C = KC0 
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where C is the capacitance with the material in place, and C0 is the capacitance when there 
is vacuum between the plates (the dielectric constant of air is very close to 1). Often, rather 
than the dielectric constant, one uses the “permittivity”, �, of a material: 

� = K�0 

based on the permittivity of free space, �0. The capacitance of a parallel plate capacitor, 
with a material that has permittivity, �, is thus given by: 

A A 
C = K�0 = � 

L L 

Dielectrics materials are made of molecules that can be polarized (as water), namely molecules 
that have a non-zero electric dipole moment. When the dielectric material is placed between 
the plates, the dipoles inside the material align themselves with the electric field from the 
plates. This leads to a second electric field, from the dipoles, in the opposite direction of 
the field from the plates, thus reducing the total electric field between the plates. This, in 
turn, allows more charges to be held on the plate for a given voltage. This is illustrated in 
Figure 18.12 

Figure 18.12: A dielectric material is placed between the two plates of a capacitor. The electric 
dipoles in the dielectric have random orientations when the plates are neutral (left panel). When 
the plates are charged (right panel), the dipoles align themselves with the field from the plates, 
allowing more charge to be on the plates at a given potential di�erence. 

Note that, in a dielectric material with permittivity, �, Gauss’ Law is modified to read: 
I Qenc 
~ ~E · dA = 

� 

where the permittivity of free space, �0, is simply replaced with the permittivity of the 
material, �. 

18.5.3 Energy stored in a capacitor 
The charges stored on a capacitor have electrical potential energy: if one were to place a 
conductor between the plates, charges would immediately conduct from one plate to the 
other and gain kinetic energy. We can model the amount of energy stored on the capacitor 
by considering how much work it takes to place the charges on the capacitor. 
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Imagine that both plates on the capacitor start with a charge of magnitude, q. We then 
remove an infinitesimal negative charge, with magnitude dq, from the positive plate and 
place it on the negative plate. This required work, since we had to pull this negative charge 
away from the positive plate. If the potential di�erence across the plates is �V , then we 
had to do an amount of work given by: 

dW = �V dq 

since the charge dq has now gained potential energy, �V dq. The potential di�erence is 
however dependent on the (constant) capacitance of the capacitor, and the amount of charge, 
q, already stored on the plates: 

q = C�V 
q

∴ �V = 
C 

In order to determine the work required to transfer a total amount of charge, Q, we sum 
the work in transferring each infinitesimal charge, dq: 

Z Z Q Z Q Q2q 1 
W = dW = �V dq = dq = 

0 0 C 2 C 

Thus, the total potential energy that is stored on a capacitor is given by: 

1 Q2 1 1 
U = = 2Q(�V )2 = 2Q�V2 C 

where we made use of Q = C�V to show the formula with di�erent choices of variables. In 
either case, the amount of energy that is stored increases with the amount of charge, the 
capacitance, and the voltage across the capacitor. Capacitors are useful because this energy 
can be released quickly, as in the bright flash of light required for flash photography. 
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18.6 Summary 

Key Takeaways 

The electric force is conservative, so we can define a potential energy function, U(~r). 
The potential energy function for a point charge, q, at position, ~r, relative to a point 
charge, Q, is given by: 

U(~r) = kQ q + C 
r 

where, C, is an arbitrary constant, since only di�erence in potential energy are phys-
ically meaningful (as they correspond to work). Note that the sign of the electrical 
potential energy will depend on the relative sign of q and Q. 

If a collection of charges are held together, the total electrical potential energy that is 
stored is called “electrostatic potential energy”. 

~In a similar way as the electric field, E(~r), corresponds to electric force per unit charge, 
“electric potential”, V (~r), corresponds to electric potential energy per unit charge. The 
electric potential at a position, ~r, relative to a point charge, Q, is given by: 

U(~r) kQ 
V (~r) = = + C 0 

q r 

and also depends on an arbitrary constant, C 0, since only di�erences in electric potential 
will lead to di�erences in potential energy. The value of the electric potential, V , at 
some position in space, ~r, allows us to determine the electric potential energy, U , at 
that position for any charge, q: 

U = qV 

This is analogous to determining the force on a charge q when we know the electric field 
at some point in space: 

~ ~F = qE 

Di�erences in electric potential are called “voltages”, and the S.I. unit of potential is 
called the “volt” (V). In S.I. units, the electric field is often expressed in units of volts 
per metre (V/m). 

When a particle with charge, q, changes position such that the corresponding change 
in electric potential is �V , the particle’s potential energy will change by: 

�U = q�V 

In particular, a negative charge will experience a decrease in potential energy when 
the electric potential increases, whereas a positive charge will experience an increase in 
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potential energy when the electric potential increases. This reflects the fact that the 
electric force associated with the electric potential will act in opposite directions on a 
positive and a negative charge. 

In order to describe the energies of particles interacting with electric forces, it is more 
convenient to use the “electron volt” instead of the Joule. An electron volt is defined as 
the energy that is gained by a charge with a magnitude e (the magnitude of the charge 
of the electron) when accelerated through a potential di�erence of �V = 1V : 

1 eV = (e)(1 V) = 1.6 × 10−19 J 

The electric potential function can be determined in two di�erent ways: 

1. By modelling the charge distribution as the sum of infinitesimal point charges, dq, 
and adding together the electric potentials, dV , from all charges, dq. This requires 
that one choose 0 V to be located at infinity, so that the dV are all relative to the 
same point. 

2. By calculating the electric field (either as a integral or from Gauss’ Law), and 
using: Z B 

~�V = V (~rB) − V (~rA) = − E · d~r 
A 

It is worth noting that one needs to be very careful with the signs when using the above 
integral. In particular note that one takes the negative of the integral, from A to B, to 
determine the potential at B minus the potential at A. 

~ ~Similarly, one can determine the value of the electric field, E(~r) = E(x, y, z), from the 
electric potential, V (~r) = V (x, y, z): 

@V @V @V ~E(x, y, z) = −rV = − x̂ − ŷ − ẑ  
@x @y @z 

where, rV , is the gradient of the electric potential. 

The electric potential can be visualized in a number of ways. The most common is to 
draw contours of constant electric potential, akin to the contours on geographical maps 
that are used to show regions of constant altitude (i.e. constant gravitational potential 
energy). 

Regions of constant electric potential are called “equipotentials”, and can be lines, 
surfaces or volumes. Equipotentials are always perpendicular to the electric field. In 
electrostatics (when charges are not moving), the electric field in a conductor must be 
zero, so that a conductor always forms an equipotential, and the electric field at the 
surface of a conductor is always perpendicular to the surface. 

When charges are placed on a conductor, they will spread out along the outer surface of 
the conductor. The surface density of charges will be the highest where the conductor 
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has the smallest radius of curvature (e.g. at a sharp point). Consequently, the electric 
field at the surface of a charged conductor is highest near sharp points. 

Capacitors are devices that are used to store charge. They are usually made using two 
conducting plates (“terminals” or “electrodes”) that hold equal and opposite charge, 
Q, at a fixed potential di�erence, �V , between the electrodes. The amount of charge 
that is stored on the capacitor is observed to be proportional to the potential di�erence 
between the electrodes: 

Q = C�V 

where the constant of proportionality, C, is called the “capacitance” of the capacitor. 
The S.I. unit of capacitance is the “Farad” (F). The capacitance of a capacitor depends 
on its geometry (e.g. its size) and the materials that it is placed between the electrodes. 

Usually, one places a dielectric material between the two electrodes in order to increase 
the capacitance, and to reduce the risk of breakdown. If that material has a “dielectric 
constant”, K, then the capacitance is given by: 

C = KC0 

where, C0, corresponds to the capacitance if there were vacuum between the electrodes. 
The dielectric constant of air is very close to 1, so that a capacitor in air is very similar 
to a capacitor in vacuum. A dielectric material is one that is made of molecules that 
can be polarized under the presence of an electric field; that is, the molecules have an 
electric dipole moment. When the molecules in a material are polarized, this reduces 
the total electric field in the material, which increases the capacitance of the capacitor. 
Inside a dielectric material, we can define the “permittivity”, �, as: 

� = K�0 

where �0 is the permittivity of free space. Within a dielectric material, Gauss’ Law is 
modified to: I Qenc 

~ ~E · dA = 
� 

Since charges are held at a fixed potential di�erence on a capacitor, capacitors are a 
way of storing electric potential energy. The amount of electric potential energy stored 
in a capacitor with capacitance, C, when the capacitor has a potential di�erence, �V , 
across its electrodes, is given by: 

1 Q2 1 1 
U = = 2C(�V )2 = 2Q�V2 C 
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Important Equations 

Electric potential energy from a point Electric potential from a point charge 
charge 

V (r) = kQ + C 
rU(r) = kQq + C 

r 

Electric potential between two paral-Electric potential lel plates 
U 

V = �V = EL q 

Electric potential: Charge stored in a capacitor: 
�V = V (~rB) − V (~rA)Z B Q = C�V 

~�V = − E · d~r 
A 

Energy stored in a capacitor
Electric field: 

1 Q2 1 1@V @V @V 
E~ = −rV = − x̂ − ŷ − ẑ  U = = 2C(�V )2 = 2Q�V2 C@x @y @z 

Important Definitions 

Electric Potential: Electric potential energy per unit charge. SI units: [V]. Common 
variable(s): V , often appearing as �V (potential di�erence). 

Capacitance: How much charge a capacitor can hold given the potential di�erence 
between the terminals of the capacitor. SI units: [F]. Common variable(s): C. 

Dielectric constant: A constant which is defined as the (dimensionless) ratio of 
the dielectric permittivity of a substance and the dielectric permittivity of a vacuum. 
Common variable(s): K. 
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18.7 Thinking about the material 

Reflect and research 

1. Explain how the capacitance can increase when a dielectric material is used. 
2. Explain how a corona ring works. 
3. Which shapes of electrodes are most common? Why? 

To try at home 

1. Try to release a static discharge from your finger to some metal object. Measure 
the distance between your finger and the metal object at the time of the discharge. 
Knowing the breakdown voltage of air, what was the potential di�erence between 
your finger and the metal object just before the discharge? 

To try in the lab 

1. Propose an experiment to measure the point at which various substances experi-
ence electric breakdown. 

2. Propose an experiment to measure the vacuum permittivity constant (�0).) 
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18.8 Sample problems and solutions 
18.8.1 Problems 
Problem 18-1: A long cylinder of radius, R, carries a uniform charge per unit volume 
density, ˆ. If the electric potential at the surface of the cylinder is VS = 100 V, then what 
is the electric potential inside and outside of the cylinder as a function of r, the distance 
from the centre of the cylinder? (Solution) 

Problem 18-2: A capacitor is constructed by placing a concentric conducting cylindrical 
shell of negligible thickness and inner radius, RB, around a solid conducting cylinder of 
radius, RA, as illustrated in Figure igure 18.13. What is the capacitance of this capacitor, 
where the solid cylinder and the cylindrical shell form the two electrodes? 

Figure 18.13: A capacitor constructed from concentric cylinders. 

(Solution) 



611 18.8. SAMPLE PROBLEMS AND SOLUTIONS 

18.8.2 Solutions 
Solution to problem 18-1: To determine the electric potential inside and outside of the 
cylinder, we can use the electric field, which we must first determine. We will do this using 
Gauss’ Law. We will use a gaussian surface that is a cylinder of radius, r, and length, L. 
In both regions, the flux of the electric field will be given by: 

Z 
EdA = E2ˇrL 

since the electric field points in the radial direction, away from the centre of the cylinder. 
Outside of the cylinder (r > R), the total charge enclosed is the total charge on a length, 
L, of the cylinder, which has a volume, ˇR2L: 

Qenc = ˆˇR2L 

Thus, applying Gauss’ Law outside the cylinder, gives the electric field for r > R: 

Z Qenc
EdA = 

�0 
ˆˇR2L 

E2ˇrL = 
�0 

ˆR2 
∴ E(r) = (r � R)2�0r 

Inside the cylinder, the enclosed charge is that enclosed by a cylinder of radius, r, and 
length, L: 

Qenc = ˆˇr2L 

Applying Gauss’ Law, the electric field inside the cylinder is given by: 

Z Qenc
EdA = 

�0 
ˆˇr2L 

E2ˇrL = 
�0 

∴ E(r) = 2 
ˆr

�0 
(r < R) 

Given the electric field everywhere in space, we can now determine the electric potential. 
We will begin by calculating the electric potential anywhere in the cylinder, V (r), using the 
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potential di�erence between that point and the surface of the cylinder: Z R 
~�V = VS − V (r) = − E · d~r Z R ˆr r 

= − r̂  · d~r 
r 2�0Z R ˆr = − dr 
r 2�0 
ˆ(R2 − r2)= − 4�0 

ˆ(R2 − r2)
∴ V (r) = VS + 4�0 

= 100 V + ˆ(R 
4 
2 

� 

− 
0 

r2) 

Thus, everywhere inside the cylinder, the electric potential is larger than 100 V, since R2 − 
r2 > 0. This makes sense, as the electric field points away from the centre, and positive 
charges will decrease their potential energy by moving further from the centre. 

We proceed in the same way to determine the di�erence in potential between a point at a 
distance, r > R, and the potential, VS, at the surface of the cylinder:Z 

~�V = V (r) − VS = − 
r 

E · d~r 
RZ ˆR2 

= − 
r 

r̂  · d~r 
R 2�0r Z rˆR2 1 = − dr2�0 R r � �
ˆR2 R = − ln2�0 r � �

ˆR2 R
∴ V (r) = VS − ln2�0 r � �

ˆR2 R = 100 V − ln2�0 r 

We find that, outside the cylinder, the electric potential decreases from 100 V as one moves 
away from the cylinder, as expected. 

Solution to problem 18-2: We will determine the capacitance by relating the potential 
di�erence between the electrodes to the charge stored on the electrodes. By using Gauss’ 
Law, we can determine the electric field between the electrodes based on the charge on those 
electrodes, and from there, we can determine the potential di�erence. We will ignore the 
fact that the cylinder has a finite length and that Gauss’ Law will not hold near the edges 
of the cylinder, where the electric field is no longer exactly in the radial direction. 

We assume that each electrode carries an equal and opposite charge per unit length, �. In 
order to determine the electric field in the region RA < r < RB, we consider a gaussian 
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surface that is a cylinder of radius, r, and length, L, as illustrated in Figure 18.14, which 
will enclose a charge Qenc = �L from the inner cylinder. 

Figure 18.14: Solving for E between two cylinders using Gauss’ law. 

Applying Gauss’ Law: 

Z Qenc
EdA = 

�0 

E2ˇrL = �L 
�0 

∴ E(r) = � 

2ˇ�0r 

and the electric field points in the radial direction (outwards if the inner electrode is positive). 
We can find the potential di�erence between the two electrodes using the electric field: 

Z RB 
~�V = V (RB) − V (RA) = − E · d~r 

RAZ RB � = − dr 
RA 2ˇ�0r � �
� RB= − ln2ˇ�0 RA 

where we should note that the minus sign is ambiguous, as the actual sign of the potential 
di�erence will depend on the sign of, �, the charge on the inner cylinder. If the charge on 
the inner cylinder is positive, the potential di�erence is negative, indicating that the outer 
cylinder is at a lower potential than the inner one (which makes sense, as the electric field 
would point outwards between the two cylinders). 

We can determine the capacitance between the electrodes, by taking the absolute value of 
the potential di�erence above, and using the fact that the charge, Q, on a length, L, of one 
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electrode is given by Q = �L: 

Q = C�V � �
� RB

�L = C ln2ˇ�0 RA 

2ˇ�0∴ C = � � 
L ln R

R 
B

A 

We note that the capacitance does not depend on the (arbitrary) charge per unit length, � 
that we placed on the inner cylinder in order to model the capacitor. The capacitance only 
depends on the geometry of the capacitor, and the material that is used between the plates. 



19 Electric current 

In this chapter, we introduce tools to model electric current, namely, the motion of charges 
inside a conductor. We will show how we can connect the microscopic motion of electrons to 
macroscopic quantities, such as current and voltage, that can be measured in the laboratory. 
We will also introduce the notion of resistance, as well as the resistor, a common component 
in electric circuits. 

Learning Objectives 

• Understand the di�erences in modelling conductors when charges are stationary 
or moving. 
• Understand how to define current and current density. 
• Understand the di�erences between resistance, resistivity, and conductivity. 
• Understand Ohm’s Law. 
• Understand how to model how power is dissipated in a resistor. 
• Understand how to model alternating current. 
• Understand some elements of electrical safety. 

Think About It 

Why is it safe to touch the 300 000 V terminal of a Van de Graaf generator, and not 
the 12 V terminal of a car battery? 

A) The Van de Graaf generator cannot sustain a large current. 
B) The Van de Graaf generator produces alternating current. 
C) The car battery produces 12 V of alternating voltage. 

19.1 Current 
In the preceding chapters, we examined “electrostatic” systems; those for which charges are 
not in motion. In electrostatic systems, the electric field inside of a conductor is zero (by 
definition, or charges would be moving, since they are free to move in a conductor). We 
argued that if charges are deposited onto a conductor, they would quickly arrange themselves 
into a static configuration (on the surface of the conductor). 

Instead, we can build systems were charges move in a conductor. If we apply a fixed potential 
di�erence across a conductor, this will result in an electric field inside the conductor and 
the charges within will move as a result. In general, this requires that there be some sort 
of circuit formed, whereby charges enter one end of the conductor and exit the other. The 
most simple circuit that one can construct is to connect the two terminals of a battery to 
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the ends of a conductor, as illustrated in Figure 19.1. 

Figure 19.1: A simple circuit is created by connecting the terminals of a battery to a conducting 
material such as a copper wire. Note that while electrons flow from the negative to the positive 
terminal of the battery, conventional current is defined as if it were positive charges moving in the 
opposite direction. 

A battery (as we will see in more detail in Section 20) is a device that provides a source of 
charges and a fixed potential di�erence. For example, a 9 V battery has two terminals with 
a constant voltage of 9 V between them. 

“Electric current” is defined to be the rate at which charges cross a given plane (usually a 
plane perpendicular to some conductor through which we want to define the current). We 
define current, I, as the total amount of charge, �Q, that flows through any cross-section 
of the conductor during an amount of time, �t: 

�Q dQ
I = = �t dt 

where we take a derivative if the rate at which charges flow is not constant in time. The 
S.I. unit of current is the Ampère (A). Current is defined to be positive in the direction in 
which positive charges flow. In almost all cases, it is negative electrons that flow through 
a material; the current is defined to be in the opposite direction from which the actual 
electrons are flowing, as illustrated in Figure 19.1. To distinguish that the current is in the 
direction opposite to that of the flowing electrons, one sometimes uses the term “conventional 
current” to indicate that the current is referring to a flow of positive charges. 

Note that the definition of electric current is very similar to the “flow rate”, Q, that we 
defined as the volume flow of a liquid across a given cross-section (Section 15.3.1). As 
we continue to develop our description of current, you will notice that there are many 
similarities between describing the flow of an incompressible fluid and describing the flow 
of charges in a conductor. 
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We think of current as a macroscopic quantity, something that we can easily measure in 
the lab. Current is a measure of the average rate at which charges are moving through the 
conductor, and not a measure of what is going on at a microscopic level. In order to model 
the motion of charges at the microscopic level, we introduce the “current density”, ~j: 

~ I ̂
j = E 

A 

where, I, is the current that flows through a surface with cross-sectional area, A, and Ê 
is a unit vector in the direction of the electric field at the point where we are determining 
the current density. The current density allows us to develop a microscopic description of 
the current, since it is the electric current per unit area and points in the direction of the 
electric field at some position. Given the current density, ~j, one can always determine the 
current through a surface with area, A, and normal vector, n̂: 

~I = A(j · n̂) 

If the current density changes over the surface, one must take an integral instead: Z 
~ ~I = j · dA 

~where dA, is a surface element with area, A, and direction given by the normal to the surface 
at that point. The overall sign of the current will be determined by the direction of the flow 
of positive charges. 

Example 19-1 

Electric current flows through a conductor with a narrowing cross section, as illustrated 
in Figure 19.2. If the cross-sectional area the conductor is A1 at one end, and A2, at 
the other end, what is the ratio of the current densities, j1/j2, at the two ends of the 
conductor? 

Solution 

Figure 19.2: Current flows through a conductor with a cross-section that decreases from A1 
to A2. 

This situation is very similar to the flow of an incompressible fluid. In this case, the 



618 CHAPTER 19. ELECTRIC CURRENT 

number of charges entering the conductor must be equal to the number of charges 
exiting the conductor during a given amount of time. That is, the total current, I, 
must be the same at both ends, since there is no place in the conductor for charges 
to accumulate. Since the current must be the same on both ends, we can relate the 
current densities at each end: 

I 
j = 

A 
∴ I = j1A1 = j2A2 

j2 A1∴ = 
j1 A2 

and we find that the current density at the exit of the conductor must be higher than at 
the entrance. This is similar to the continuity equation in the Fluid Mechanics chapter 
(Section 15.3.1), where the current density plays a role analogous to the velocity in the 
fluids case. 

19.2 Microscopic model of current 
Consider a cylindrical conductor of cross-sectional area, A, and length, L, as shown in 
Figure 19.3. A potential di�erence, �V , is applied across the length of the conductor, so 

~that there is an electric field, E, everywhere within the conductor. If the conductor were 
made of empty space, electrons would enter one end of the conductor, accelerate through the 
potential di�erence, and arrive at the other end with a high speed, having gained e�V of 
kinetic energy. In reality, the conductor is made of matter, and electrons do not accelerate 
continuously through the whole length of the conductor. Instead, they can only accelerate 
over a short distance before colliding with an atom in the material (rather, a tightly bound 
electron in the material), and losing their kinetic energy to the material, before accelerating 
again. The motion of electrons flowing in a conductor is illustrated in Figure 19.3 and shows 
electrons moving with a wide range of velocities following the collisions, and only an average 
motion in the direction anti-parallel to the electric field. 

Figure 19.3: Electrons moving inside a conductor only “drift” on average in the direction anti-
parallel to the electric field. In reality, they constantly collide with atoms in the material, trans-
ferring their kinetic energy into thermal energy of the conductor. 
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Thus, when the electrons arrive at the positive side of the conductor, they have not gained 
any kinetic energy. Instead, they have lost that kinetic energy to atoms of the conducting 
material through collisions; those atoms then vibrate which we can measure as an increase 
in temperature of the material. When current flows through a conductor, that conductor 
will heat up; this is how the heating elements in your toaster work! 

We model the motion of electrons as charges “drifting” through the conductor with a veloc-
ity, ~vd, the “drift velocity”, as illustrated in Figure 19.4. In reality, of course, the electrons 
are only moving on average with the drift velocity, and their instantaneous speed is gener-
ally much larger than the drift velocity and can be in any direction, as illustrated in Figure 
19.3. 

Figure 19.4: A section of electrons of length l drifting through a conductor of cross-sectional area, 
A. 

In a conducting material, each atom will generally have one “free” electron that is loosely 
bound and able to easily move through the material. The number of free electrons available 
for conduction per unit volume, n, will depend properties of the material (its density, how 
many electrons per atom are available, etc). Consider, then, the motion of the conduction 
electrons present in a section of length, l, of a conductor, as illustrated in Figure 19.4. The 
amount of charge, �Q, contained in a section of the conductor with length, l, is given by: 

�Q = −enAl 

where Al is the volume of that section of the conductor, and, e, is the magnitude of the 
charge of the electron. The negative sign is to indicate that the charges are negative (they 
are electrons). That charge will take an amount of time, �t, to flow through a given plane 
of the conductor, so that we can relate the length of the section, l, to the drift speed and 
�t: 

l = vd�t 

Thus, the current that flows through a cross-section of the conductor is given by: 

�Q −enAl 
I = = = −enAvd�t �t 

∴ I = −enAvd 
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which allows us to connect a macroscopic quantity, current, to the microscopic description 
of charges moving. Note that the negative sign reflects the fact that the current (of positive 
charges) is in the opposite direction from the drift velocity of the (negative) electrons. The 
current density is directly related to the microscopic quantities, since it does not depend on 
the (macroscopic) cross-sectional area, A, of the conductor: 

~ I ̂
j = E = −en~vd

A 

~∴ j = −en~vd 

where, again, the negative sign indicates that the current density is in the opposite direction 
from the actual drift velocity of the electrons, which itself is anti-parallel to the electric field. 

Example 19-2 

A current of 1 A is measured in a copper wire with a diameter of 1 mm. What is the 
drift velocity of the electrons? Assume that each atom of copper provides one “free 
electron” for conduction. 

Solution 

In order to determine the drift velocity of electrons, we need to know the density of free 
electrons in copper. To do this, we need to determine how many copper atoms there 
are per unit volume. The density of copper is ˆ = 8.92 × 103 kg/m3 and the atomic 
mass unit of copper is 63.5 amu (1 mole of copper weighs 63.5 g). The number of copper 
atoms per unit volume is thus: 

(6.022 × 1023 mole−1)(8.92 × 103 kg/m3) 
n = = 8.46 × 1028 m−3 

(63.5 × 10−3 kg/mole) 

Since each copper atom contributes one free electron, this is the same as the density of 
free electrons. From this, we easily obtain the drift velocity, from the current: 

j I (1 A) 
vd = = = 

en Aen ˇ(0.0005 m)2(1.6 × 10−19 C)(8.46 × 1028 m−3) 
= 9.4 × 10−5 m/s ˘ 0.1 mm/s 

The drift velocity is thus very slow, less than one millimetre per second. Note that a 
1 mm diameter copper wire would not actually be able to sustain such a high current 
density without damage. 

https://mole�1)(8.92
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Josh’s Thoughts 

There are a few types of velocities which can be easily confused when discussing current: 
Fermi velocity, drift velocity, and the velocity at which a circuit is “completed”. 

Understanding the Fermi velocity requires quantum mechanics and is beyond the scope 
of this textbook. However, the Fermi velocity is representative of the actual velocity 
of electrons in a conducting material, mostly due to their thermal energy. In a good 
conductor, these speed are roughly 1/200 the speed of light. 

While electrons do move at their Fermi velocity in a conductor, they do not move 
in a uniform path through the conductor towards the end of the circuit. Most of an 
electron’s movement in a wire is chaotic, but in a DC circuit, the electrons have a drift 
velocity through the conductor. This drift velocity is defined as the net velocity of 
electrons in a conductor, and is caused by the applied electric field which has a small 
amount of influence on the direction of the quickly moving electron’s motion. The drift 
velocity of electrons is very slow, often having a magnitude as small as tens of microns 
per second. 

When comparing drift velocity to Fermi speed, imagine yourself standing inside of 
a large horizontal cylinder, which will represent the conductor in this analogy. The 
interior of this cylinder is lined with cannons that shoot rubber balls in all directions, 
which will be the electrons moving at their Fermi velocity. Now, imagine that you are 
attempting to move these high-speed rubber balls from one end of the cylinder to the 
other by blowing a hair dryer in that direction, which is the electric field inducing a 
drift velocity. 

Now that we understand the quantum chaos that occurs in a conductor, you may be 
thinking to yourself, ”why does the light bulb turn on so quickly after I flick the light 
switch?”. This is a reasonable thought, because we have only covered the motion of 
single particles in a conductor. When an electron moves very slightly (at its drift 
velocity), it will push other electrons in the conductor forward, causing a chain reaction 
of electrons pushing one another forward. This movement causes electrons to flow 
through the circuit, much like how water flows through a pipe. The velocity at which a 
light bulb turns on after the flicking of a switch is theoretically the speed of light, but 
short delays caused by irregularities in the way electrons bump into one another causes 
the velocity to be roughly 50 to 99 percent of the speed of light. 

19.3 Ohm’s Law 
In the previous section, we developed a microscopic model of charges moving in a conductor, 
but did not describe how this motion is a�ected by the electric field in the conductor (or 
equivalently, the potential di�erence across the conductor). “Ohm’s Law” states that the 
current density, ~j, at some position in the conductor is proportional to the electric field, ~E, 
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at that same position in the conductor: 
~ ~j / E 

~ ~j = ˙E 
where we have introduced the “conductivity”, ˙, as the constant of proportionality. Con-
ductivity is a property of the material from which the conductor is made, and is a measure 
of how large a current density (and by extension, current) there will be in material given 
a certain electric field. Materials with a high conductivity are said to be good conductors, 
as a large current will result from a small electric field. Gold and copper are examples of 
materials with a high conductivity. 

Checkpoint 19-1 

What is the conductivity of an ideal insulator? 
A) 0. 
B) Roughly 1. 
C) Infinite. 

19.3.1 Resistivity 
For convenience, one often describes how well a material conducts charges using the “resis-
tivity”, ˆ, which is simply defined as the inverse of conductivity: 

1 
ˆ = 

˙ 
Materials with a high resistivity are poor conductors; they tend to “resist” the formation of 
a current when an electric field is applied. Insulators have high resistivity. 

The resistivity of most (but not all) materials has been observed to increase linearly with 
the temperature of the material. One can picture that, as atoms in the material vibrate 
more, it is more diÿcult for electrons to conduct through the material as they will interact 
with more atoms. The resistivity, ˆ, at a certain temperature, T , is usually modelled as 
follows: 

ˆ(T ) = ˆ0 [1 + (T − T0)] 
where, ˆ0, is a “reference resistivity” measured at a “reference temperature”, T0 (usually 
20 �C). is the “temperature coeÿcient” of the material. The temperature dependence of 
the resistivity is illustrated in Figure 19.5. 
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Figure 19.5: A linear model of resistivity can be used for most conductors over a large range of 
temperatures. 

This “linear model” (since resistivity increases linearly with temperature) is empirically 
found to be valid for many materials over a large range of temperatures, although it is not 
expected to hold at extreme temperatures (either very low or very high). Furthermore, for 
semi-conducting materials (such as silicon and germanium), resistivity is found to decrease 
as a function of temperature. 

Checkpoint 19-2 

What is the slope of the resistivity vs temperature as shown in Figure 19.5? 
A) . 
B) ˆ0 T . 
C) ˆ0T . 
D) ˆ0 . 

Table 19.1 shows a list of common materials and their conductivity, resistivity, and temper-
ature coeÿcients (defined at a reference temperature T0 = 20 �C). 

Material Resistivity [
 · m] Temperature co-
eÿcient [�C−1] 

Free electron 
density [m−3] 

Silver 

Copper 

Gold 

Aluminum 

Iron 

Silicon 

Rubber 

Quartz 

1.59 × 10−8 

1.68 × 10−8 

2.44 × 10−8 

2.74 × 10−8 

9.70 × 10−8 

0.1-1000 

(1-100) × 1013 

7.5 × 1017 

0.0038 

0.0040 

0.0034 

0.0039 

0.0050 

-0.0750 

0 

0 

5.86 × 1028 

8.46 × 1028 

5.90 × 1028 

18.1 × 1028 

17.0 × 1028 

0 

0 

0 
Table 19.1: Resistivity, free electron density and temperature coeÿcients of common materials. 
All properties are listed for a reference temperature of 20�C. 

19.4 Resistors 
A conductor with current going through it (or current that could go through it) is gener-
ally called a “resistor”, to emphasize that charges will experience resistance as they travel 
through the conductor (as they collide with atoms in the resistor). In this section, we de-
scribe resistors, how to combine them, and how to model the heat that is generated when 
charges collide with the atoms in the resistor. 
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19.4.1 Resistance 
Consider a resistor, with length, L, and cross-sectional area, A, made out of a material with 
resistivity, ˆ, as illustrated in Figure 19.6. 

Figure 19.6: A simple resistor of length, L, cross-sectional area, A, made from a materials with 
resistivity, ˆ. A potential di�erence, �V , is applied across the resistor, leading to an electric field 
and current in the resistor. 

A potential di� erence, �V , is applied across the length of the resistor, resulting in an 
~electric field, E, within its volume. To good approximation, one can model the two ends of 

the conductor as parallel plates, so that the magnitude of the electric field throughout the 
conductor is constant in magnitude and direction and has strength given by: 

�V 
E = 

L 

Combining this with Ohm’s Law, we have: 

j = ˙E 
�V

∴ j = ˙ 
L 

Since the current density is a microscopic quantity, we can replace it with the current, I, a 
macroscopic quantity, for the conductor of cross-sectional area, A, to find: 

I 
j = 

A 
�V

∴ I = jA = ˙ A 
L 

This last equation is often written by isolating the potential di�erence: 

�V = ˆLI 
A 

where we replaced the inverse of the conductivity with the resistivity. This last equation is 
the equivalent of Ohm’s Law, but written for a (macroscopic) resistor of length, L, cross-
sectional area, A, and made of a material with resistivity, ˆ. Written in this way, Ohm’s 
Law is a statement that the current through a resistor is proportional to the voltage 
applied across it. The constant of proportionality, R, is called the “resistance”: 

�V = RI 
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This last equation is often called “Ohm’s Law”, even if, technically, Ohm’s Law is the 
relation between current density and electric field. A resistor is a macroscopic object whose 
“resistance” can be characterized by a single value, R, its resistance. The resistance of a 
resistor can be determined from its macroscopic properties (length and cross-sectional area) 
and from the material from which it is made (with a given resistivity): 

L 
R = ˆ 

A 

The (derived) S.I. unit of resistance is the “Ohm”, (
). 

Checkpoint 19-3 

What are the SI units of conductivity? 
A) C . 
B) 1


m . 
C) N

C 
2 . 

D) C
s . 

The model to describe the resistance of a conductor to the flow of electric current under a 
fixed potential di�erence, �V , is identical to the model that we derived in Section 15.3.4 to 
describe the Poiseuille flow, Q, of an viscous incompressible fluid in a pipe with resistance, 
R, under a pressure di�erence, �P : 

�P = RQ 

Thus, one can think of electric current by analogy to the incompressible flow of a viscous 
fluid through a pipe. If the pipe is longer, it opposes more resistance to the flow of liquid, 
just as a longer resistor has a larger resistance to current. A pipe with a larger cross-sectional 
area has less resistance to the flow of liquid, just as a resistor with a larger cross sectional 
area, A, has a lower resistance. 

19.4.2 Combining resistors 
Resistors are the most common component in circuits, and we show below how to model 
the equivalent resistance of two resistor that are combined in “parallel” or in “series”. 

Figure 19.7 shows two resistors, R1 and R2, connected in “series”, to form an an e�ective 
resistor with resistance, Reff . A potential di�erence, �V , is applied across the combination 
of resistors. 
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Figure 19.7: When two resistors are connected in series, the same current flows through each 
resistor. 

By analogy with fluid mechanics, the charges that enter resistor, R1, must exit the resistor 
at the same rate, and then cross the second resistor, R2. In other words, what comes into 
R1 must come back out of R2, since there is no place for the charges to go. This is the 
electrical equivalent of “continuity” in fluid mechanics. When resistors are combined 
in series, both resistors will have the same current, I, through them. 

Ohm’s Law (the macroscopic version), must also be true for each resistor: 

�V1 = R1I 

�V2 = R2I 

where, �V1 and �V2, are the potential di�erences across each resistor. �V1 and �V2 must 
sum to �V : 

�V1 + �V2 = �V 

since the potential energy (per unit charge) that is lost in each resistor must equal to the 
total potential energy (per unit charge) that is made available by the battery. Combining 
this last equation with Ohm’s Law for each resistor, we can model the series combination 
of resistor as having an “e �ective resistance”, Reff , given by: 

�V = �V1 + �V2 = R1I + R2I = (R1 + R2)I = Reff I 

(Series resistors) Reff = R1 + R2 

It makes sense that the equivalent resistance if found by summing the two resistors, when 
these are in series. If the two resistors are made of the same material and have the same 
cross-sectional area, combining them in series is equivalent to fabricating a longer resistor 
with the two lengths added together. The result is easily extended to any number of resistors: 

Reff = R1 + R2 + R2 + . . . 

Figure 19.8 shows two resistors, with resistances R1 and R2, combined in parallel to form 
an e�ective resistor with resistance, Reff . A potential di�erence, �V , is applied across the 
combination of resistors. When resistors are combined in parallel, both resistors 
have the same potential di�erence across them. 
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Figure 19.8: When two resistors are connected in parallel, the same voltage is applied across each 
resistor. 

Applying Ohm’s Law to each resistor, we find that they each have di�erence currents going 
through them: 

�V 
I1 = 

R1 
�V 

I2 = 
R2 

The total current, I, that enters the combination of resistors, must also exit the combination 
of resistor (continuity), so that the total current, I, is the sum of the current through each 
resistor: 

I = I1 + I2 

Combining this with Ohm’s Law, we find: �� 1�V �V 1 
I = I1 + I2 = + = + �V 

R1 R2 R1 R2 
1

∴ �V = 1 I+ 1 
R1 R2 

Thus, the e�ective resistance, Reff , of two resistors connected in parallel is given by: 

1 R1R2
Reff = 1 = + 1 R1 + R2R1 R2 

(Parallel resistors) 

where the two forms that are given are equivalent. The e�ective resistance of two resistors in 
parallel is smaller than the resistance of either resistor. This makes sense, because combining 
resistors in parallel is analogous to fabricating a single resistance with a larger cross-sectional 
area, allowing for “more space” for the charges to flow. Again, this result is easily extended 
for more than two resistors: 

1 
Reff = 1 + 1 + 1 + . . .

R1 R2 R3 
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Example 19-3 

A R2 = 2 resistor is placed in parallel with a R3 = 3 resistor and the combination is 
placed in series with a R1 = 1 resistor, as shown in Figure 19.9. What is the e�ective 
resistance of this combination? 

Solution 

Figure 19.9: A combination of three resistors. 

In order to determine the e�ective resistance of the combination, we can first combine 
the parallel resistors R2 and R3 into an e�ective resistor, R0, which we can then combine 
in series with the resistor R1, to obtain the e�ective resistance of the three resistors. 
First, combining the parallel resistors, R2 and R3, we find: 

R0 
R2R3 6 = = 
R2 + R3 5 

We can then combine this in series with R1, to obtain the total e�ective resistance of 
the combination of three resistors: 

11 
Reff = R1 + R0 = 5 

Discussion: In this example, we showed how to determine the e�ective resistance of a 
combination of series and parallel resistors. We can determine the e�ective resistance 
of complex combinations of resistors in the same manner, by first combining subsets of 
resistors and then including those with other resistors. 

19.4.3 Electrical power dissipated in resistors 
As we discussed in Section 19.2, charges that move through a resistor do not gain kinetic 
energy. Instead, the electric potential energy available from the voltage applied across the 
resistor is converted into heat, as a result of charges colliding with atoms in the material. 
The net potential energy, �U , available to a single charge, q, is given by: 

�U = q�V 
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If there are many charges going through the resistor, the rate, P , at which they will dissipate 
energy in the resistor is given by: 

P = d �U = d q�V = I�V 
dt dt 

∴ P = I�V 

where we recognized that dq/dt = I, is the definition of current. P corresponds to the rate 
at which energy is dissipated in the resistor, and has dimensions of power. Combining this 
with Ohm’s Law, the power that is dissipated in a resistor can be written in di�erent ways: 

(�V )2 
P = I�V = = I2R 

R 

Example 19-4 

A hair-dryer is rated as consuming 1500 W when connected to an outlet with a 120 V 
potential di�erence. What is the resistance of the hair-dryer, and how much current 
goes through it when it is running? 

Solution 

Since the power of the hair-dryer and the potential di�erence across it are known, we 
can easily determine its resistance: 

(�V )2 
P = 

R 
(�V )2 (120 V)2 

∴ R = = 
P (1500 W) = 9.6 

Similarly, we can determine the current through the hair dryer: 

P = I�V 
P (1500 W) 

∴ I = = = 12.5 A �V (120 V) 

Discussion: Most household appliances are rated by the electrical power that they 
consume. This rating assumes that the appliance will be connected to a fixed potential 
di�erence (120 V in North America), so it is straightforward to determine the current 
that they will draw. This is important, because the current that is drawn by the 
appliance has to go through the wiring in the house, and if the current is too large, the 
wiring (which has resistance) will heat up (P = I2R) which could result in an electrical 
fire. Circuits in a house have safety devices (fuses or breakers) that are designed to 
interrupt the circuit if the current is too large. 
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One can rate a power supply, such as a battery, by the amount of power that it can deliver. 
Power supplies are usually designed to supply a fixed potential di�erence; for example, a 
9 V battery supplies a constant voltage of 9 V. If a small resistor is connected across the 
terminals of the battery, a large current, I, will flow through the resistor. In principle, 
the current through the resistor will be given by Ohm’s Law, I = �V/R. However, by 
reducing the resistance, the current will increase, and the power dissipated by the resistor, 
P = I�V , would increase indefinitely. Obviously, this is not possible, as it requires the 
battery to supply energy at the same ever increasing rate. In practice, as the resistance 
is decreased, the current through the resistor will only increase until I�V is equal to the 
maximal power that can be dissipated by the battery. As the resistance across the battery 
is further decreased, the voltage across the battery will start to decrease as well, so that the 
power dissipated in the resistor, �V I, does not exceed the power that the battery could 
possibly supply. 

19.4.4 Superconductors 
Superconductors are materials that, under certain conditions, have zero resistivity. A re-
sistor made from a superconducting material will thus have zero resistance. It is beyond 
the scope of this textbook to describe how superconductivity arises in materials, however, 
it is worth knowing that these exist. Typically, superconductivity arises in materials when 
they are cooled to temperatures close to absolute zero, although some materials exhibit su-
perconductivity at much higher temperatures (˘ 140 �K or ˘ −130 �C). Superconducting 
materials are often used when one needs a large electric current, such as in a powerful electro-
magnet. By having no resistance, a large current can be sustained without dissipating any 
power. 

19.5 Alternating voltages and currents 
So far, we have modelled how current propagates through a resistor under a constant poten-
tial di�erence, �V . This is called “direct current” (DC) as the charges move in a constant 
direction through the resistor. Batteries supply fixed voltages, and circuits with batteries 
will almost always have DC current. The voltage that is supplied between two of the sockets 
in a household electrical outlet is “alternating”, and leads to “alternating current” (AC), 
where charges move back and forth, with no net displacement. 

The potential di�erence across a household outlet varies sinusoidally: 

�V (t) = �V0 sin(!t) 

where �V0 is the maximal amplitude of the voltage (120 V in North America, 220 V in 
Europe), and ! = 2ˇf , is the angular frequency of the voltage (f = 60 Hz in North America, 
f = 50 Hz in Europe). When a resistor with resistance, R, is connected to an AC voltage, 
the resulting current, given by Ohm’s Law, is also alternating: 

�V (t) �V0
I(t) = = sin(!t) = I0 sin(!t)

R R 

On average, the alternating current through a resistor is zero. However, this does not mean 
that zero energy is dissipated, since the electrons in the resistor will still collide with atoms 
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¯ as they oscillate back and forth. We can define the average power, P , that is dissipated in 
the resistor as the power that is dissipated over one oscillation cycle (with period, T ). To 
obtain the latter, we calculate the total energy, E, dissipated in the resistor over one cycle so 
that the power is simply given by E/T . We divide the interval of time, T , into infinitesimally 
small intervals, dt, so that the infinitesimal energy, dE, dissipated in an infinitesimal time, 
dt, is given by: 

dE = P (t)dt 

The total energy dissipated in one period is then given by: Z Z T 
E = dE = P (t)dt 

0 

so that the power dissipated in one cycle is given by: Z TE 1¯ P = = P (t)dt 
T T 0 

The instantaneous power, P (t), can be described in terms of the instantaneous current, 
P (t) = I2(t)R, so that the average power can be written as: Z T Z T Z T1 1 1 1¯ P = P (t)dt = I(t)2Rdt = RI2 sin2(!t)dt = 2RI0

2 
0T 0 T 0 T 0 

= 2ˇwhere we used the fact that T 
! 

to evaluate the integral. In order to make the formula 
similar to the DC equivalent (without the additional factor of 1/2), we can define the “root 
mean square” current, Irms, as an average current, from which we can calculate the average 
power that is dissipated in a resistor: 

I0
Irms = p

2 
∴ P ¯ = I2 Rrms 

Similarly, one can define the “root mean square” voltage, �Vrms, so that the average power 
dissipated with alternating current can be written in the same form as for the DC case: 

�V0
Vrms = p

2 
�V 2¯ = I2 rms ∴ P rmsR = = Irms�Vrms 
R 

19.6 Electrical safety 
The models that we have developed to describe current can inform us on ways to avoid being 
injured by electricity in our common lives. The two main hazards associated with electricity 
are fire and electrocution. Typically, an electrical fire is the result of a large current going 
through a resistor, as the power dissipated in a resistor is proportional the square of the 






632 CHAPTER 19. ELECTRIC CURRENT 

current through that resistor. If you connect an appliance that draws a large current to 
your outlets, the wires in your house (i.e. resistors) could heat up enough to cause a fire 
(e.g. by heating up insulation that is close by). This danger is primarily mitigated by using 
“fuses” or “circuit breakers” that will interrupt the circuit if the current is too large. A fuse 
is a simple device with a thin wire (high resistance) that will melt and break if too much 
current goes through it (which is designed to happen long before the wires in your house 
start to overheat). A circuit breaker is a resettable switch that opens under a large current. 
Modern houses do not use fuses any more, since they have to be replaced every time they 
are “blown”. 

Electrocution is a form of injury that is the result of a current crossing the body; we can 
think of the body as a resistor connected between the terminals of a battery. Injuries can be 
caused simply by burns (tissue destroyed), or by muscles contracting involuntarily due to 
the current. For example, one’s muscles may contract in such a way that the person cannot 
let go of the source of current. If a current of more than about 80 mA passes through the 
mid section of a person, enough current could go through the heart so that it starts to 
beat very irregularly (“ventricular fibrillation”) which can lead to death since blood stops 
flowing normally. A very large current can cause the heart to simply stop beating, which 
could sometimes be less dangerous than ventricular fibrillation (if for a short period of time, 
and of course, the burns will be more severe from a larger current). A “defibrillator” is 
designed to provide such a high current that the heart stops briefly, with the hope that 
when it starts back, the beats will be regular. This can be used in cases of ventricular 
fibrillation (caused by electrocution or other). One often hears that “it’s current that kills”, 
which is a statement that being electrocuted by a certain voltage is not a good measure of 
the resulting injury, since the current will depend on the resistance of the person’s body. 

The amount of current that will go through a person will depend on the resistance of the 
person’s body. Internal tissues and organs are typically quite conductive and have low 
resistance. The outer layer of the skin, on the other hand, has a high resistance when dry 
and helps to limit the current that can go through the body. The resistance of dry skin is 
usually considerably above 1 × 104 , while it can be much less than 1 × 103 when wet. 
With wet skin, a potential di�erence of 120 V (as in a North American outlet) can easily 
lead to a current above 100 mA, which could easily be fatal. Note that being barefoot and 
in contact with the ground is usually a low resistance connection, since there is often a thin 
layer of sweat on your feet. 

In North America, electrical outlets have a minimum of two sockets: a “live” socket (with 
an oscillating voltage, usually a black wire1), and a “neutral” socket which is connected to 
the ground and relative to which the oscillating voltage has an amplitude of 120 V (usually 
a white wire). One can obviously be electrocuted by simultaneously touching the wires in 
both sockets, and usually simply by touching the wire in the live socket, since one’s feet 
are usually connected to ground. Electrocution by directly touching the socket is fairly 
uncommon, since most people know not to do that (right?!). Usually, one is electrocuted by 
an appliance with faulty wiring; perhaps the insulation on the live wire is worn out and you 
touch the wire by mistake, or the wiring in the appliance is faulty, causing the casing of the 

1Never trust the colouring of wires, always test them! 



633 19.6. ELECTRICAL SAFETY 

appliance to be live. In order to mitigate the risk of electrocution from an appliance with 
faulty wiring, most outlets will have a third socket, the “dedicated ground”. The dedicated 
ground wire is connected to the ground inside the socket, and to the casing of the appliance, 
as illustrated in Figure 19.10. Thus, if the live wire were to be in contact with the casing of 
the appliance, the dedicated ground provides a low resistance path for current to take that 
is in parallel with your body (so that most current will go through the low resistance path). 

Figure 19.10: When an appliance has three prongs on its electrical cable, the middle prong grounds 
the case to the dedicated ground as a safety measure. Note that the live wire is not necessarily the 
right-hand side socket on an outlet! 
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19.7 Summary 

Key Takeaways 

Electric current, I, is defined as the rate at which charges cross some plane (for example 
a plane perpendicular to a wire) per unit time. That is, if an amount of charge, �Q, 
enters a wire during an amount of time, �t, the current, I, in that wire is defined to 
be: 

�Q dQ
I = = �t dt 

where a derivative is taken if the rate at which charges are moving is not constant with 
time. 

Electric current is a macroscopic quantity that can be measured. Conventional current is 
defined to be positive in the direction in which positive charges flow. In most situations, 
it is electrons that move inside a conductor, so the current is defined to be positive in 
the opposite direction of the actual motion of the (negative) electrons. 

The current density, ~j, is defined to be the current per unit area at some point in a 
conductor, and is a vector in the direction of the electric field, Ê, at that point: 

~ I ̂
j = E 

A 

The current density can be related to the microscopic motion of charges within the 
~conductor. If the current density, j, is known, the corresponding current, I, that crosses 

a surface with area, A, and normal vector, n̂, is given by: Z 
~ ~ ~I = Aj · n̂ = j · dA 

where the integral must be taken if the current density is not constant over the surface. 

A conducting material through which current is flowing is called a resistor. When a 
potential di�erence is applied across a resistor, the resulting electric field will drive 
the flow of electrons through the resistor. The electrons will flow with an average 
“drift velocity”, ~vd, which is much lower than the actual (Fermi) speed of the electrons 
in the material. Inside the resistor, electrons are constantly accelerated before they 
collide with atoms in the material losing their kinetic energy, and then accelerating 
again. Thus, the potential energy that is available to the electrons is “used” to heat 
the resistor, and the electrons, on average, drift quite slowly through the resistor. 

The current density in a resistor can be related to the drift velocity of the electrons and 
the “density of free electrons” in the material, n: 

~j = −en~vd 



�

�

�
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where, e, is the magnitude of the charge of the electrons and the minus sign indicates 
that the current density is in the opposite direction of the velocity of the (negative) 
electrons. 

Ohm’s Law states that the current density, ~j, at some point in the conductor is pro-
~portional to the electric field, E, at that point: 

1 ~ ~ ~j = ˙E = E 
ˆ 

where the constant of proportionality, ˙, is called the “conductivity” of the material 
(and is a property of the material through which current is flowing). The resistivity, 
ˆ, is a material property that is simply the inverse of the conductivity. Both of these 
properties are a measure of how large a current (or current density) will exist in a 
material given a certain electric field. For example, the conductivity of an insulating 
material is close to zero (and its resistivity close to infinity). 

For most materials, resistivity usually increases linearly with temperature: 

ˆ(T ) = ˆ0[1 + (T − T0)] 

where ˆ0 is the resistivity as measured at some reference temperature, T0 (usually 
20 �C), and , is the “temperature coeÿcient” for that material. Note that this model 
of resistivity does not hold for extreme temperatures (very cold or very hot), and for 
some materials, resistivity decreases with temperature ( is negative). 

If we apply Ohm’s Law to a resistor of length, L, cross-sectional area, A, made of 
a material with resistivity, ˆ, we find that the potential di�erence applied across the 
resistor, �V , is proportional to the current flowing through the resistor: 

�V = ˆLI 
A 

The constant of proportionality depends on the material with which the resistor is made 
(through the resistivity) and on the dimensions of the resistor (through the length and 
cross-sectional area). The constant of proportionality is called the “resistance” of the 
resistor, R: 

L 
R = ˆ 

A 

Ohm’s Law is often written for a resistor as the relationship between the current through 
the resistor, I, and the potential di�erence across the resistor, �V : 

�V = RI 

although, technically, Ohm’s Law is the relation between current density and electric 
field. 
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Resistors can be combined in series, in which case, the e�ective resistance of the com-
bination is found by adding the resistances of the individual resistors: 

Reff = R1 + R2 + R2 + . . . (Series resistors) 

When combined in parallel, the inverse of the e� ective resistance is given by the inverse 
of the sum of the inverse of the resistances of the individual resistors: 

1 
Reff = (Parallel resistors) 1 + 1 + 1 + . . .

R1 R2 R3 

As charges move through a resistor of resistance, R, under a potential di�erence, �V , 
and current, I, they transfer their kinetic energy into heating up the resistor. The rate 
at which they transfer the energy, also called the “power dissipated in the resistor”, is 
given by: 

(�V )2 
P = I�V = = I2R 

R 

where the various combinations can be obtained by applying the macroscopic version 
of Ohm’s Law. 

The electrical outlets in our daily lives provide an “alternating” voltage, �V (t), which 
oscillates sinusoidally: 

�V (t) = �V0 sin(!t) 

with a maximum amplitude, �V0, and an angular frequency, ! = 2ˇf . When this 
potential di�erence is applied across a resistor, an alternating current is formed, in 
which the electrons move back and forth, with no net displacement: 

�V0
I(t) = = I0 sin(!t)

R 

Even though there is not net displacement, the electrons will still transfer energy into 
the resistor in the form of heat. The average rate at which power is dissipated in the 
resistor is given by: 

¯ P = 2
1 
RI2 

0 
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We introduce the “root mean square” current (voltage), Irms (�Vrms), as an average 
e�ective current (voltage): 

1 pIrms = I02 
1�Vrms = p �V02 

such that the power can be expressed using a similar formula as in the direct current 
case, using the root mean square values: 

¯ = I2 (�VRms)2 
P rmsR = Irms�Vrms = 

R 

There are two main types of hazards associated with the use of electricity: fire and 
electrocution. Electrical fires can arise when a large current goes through a wire, since 
this will dissipate a large amount of heat into the wire (which could set fire to its 
insulation or other nearby flammable items). Electrocution occurs when a current 
traverses the human body. If a current above ˘ 80 mA crosses the upper body, this can 
result in ventricular fibrillation, whereby the heart beats very irregularly. Of course, 
one can also be burned by a large current. The amount of current through the body is 
what will ultimately determine the severity of injuries, and is why one often hears that 
“it’s current that kills”. A large voltage may not lead to a large current if the resistance 
of the person is large or if the power supply cannot provide a large current at that large 
voltage. 



�
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Important Equations 

Current: Resistivity: 

1 
ˆ = 

�Q dQ ˙ 
I = = ˆ(T ) = ˆ0[1 + (T − T0)]�t dt 

Resistance: 

Current density: L 
R = ˆ 

A 

I Ohm’s Law (macroscopic):~ ˆj = E Z a 
�V = RI ~ ~I = j · dA 

Combining resistors: 

Reff = R1 + R2 + R2 + . . . (Series)Microscopic model of current: 
1 

Reff = 1 (Parallel) + 1 + 1 + . . .
R1 R2 R3 

~j = −en~vd Power dissipated in a resistor: 

(�V )2 
P = I�V = = I2R 

R 

Ohm’s Law: 
RMS voltage and current: 

1 
Irms = p I0~ ~j = ˙E 2 

1�Vrms = p �V02 
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Important Definitions 

Current: The rate at which charges flow across a given surface. SI units: [A]. Common 
variable(s): I. 

Current density: A measure of current per unit area, in the direction of the local 
electric field. SI units: [Am−1]. Common variable(s): ~j. 

Resistance: A measure of a specific object’s opposition to the flow of charge. SI units: 
[
]. Common variable(s): R. 

Resistivity: A measure of a material’s opposition to the flow of charge. SI units: [
m]. 
Common variable(s): ˆ. 

Conductivity: The inverse of resistivity. SI units: [
 −1m−1]. Common variable(s): ˙. 

Drift velocity: The average velocity of an electron drifting in a conductor under the 
influence of an electric field. SI units: [ms−1]. Common variable(s): ~vd. 



�
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19.8 Thinking about the material 

Reflect and research 

1. Describe how superconductivity arises in certain materials (hint: research “Cooper 
pairs”). 

2. What are some example of superconducting materials, and at what temperature 
do they become superconducting? 

3. Is there a limit to how much current a conductor can carry? 
4. Does an AC current have a drift velocity? Why or why not? 

To try at home 

1. Use Ohm’s law and the electrical information on an appliance to determine the 
current produced drawn by your appliance (e.g. a hair dryer). 

2. What is the current produced by your phone’s battery? What is the total power 
stored in your phone’s battery? Check the technical information of your phone. 

To try in the lab 

1. Propose an experiment to create an AC circuit and measure its current. 
2. Propose an experiment to measure the temperature coeÿcient ( ) and resistivity 

of a wire. 
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19.9 Sample problems and solutions 
19.9.1 Problems 
Problem 19-1: (Solution) A cylindrical wire as a current density that increases with radius 
as j(r) = ar, where r, is the radial distance from the centre of the wire, and a, is a constant. 
If the wire has a radius of R = 1.5 cm, what is the total current in the wire? 

Problem 19-2: A resistor is measured to have a resistance of R1 = 103.4 at a temperature 
of T1 = 30 �C, and a resistance of R2 = 106.8 at a temperature of T1 = 40 �C. Using the 
values in Table 19.1, determine the material from which the resistor is made. (Solution) 
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19.9.2 Solutions 
Solution to problem 19-1: To determine the current through the entire cross section of 
the wire, we first divide the cross-section of the wire into infinitesimally small concentric 
rings of radius, r, and width, dr. The cross-sectional area of one ring is given by: 

dA = 2ˇrdr 

so that the current through one ring is given by: 

dI = j(r)dA = 2ˇar2dr 

The current through the whole wire is then found by summing the currents through each 
ring: Z Z R 

I = dI = 2ˇar2dr = 3
2 ̌
aR3 

0 

Solution to problem 19-2: To determine the material of the resistor, we can find the 
temperature coeÿcient, , since we are given measurements of resistance, R1 and R2, at 
two di�erent temperatures, T1, and T2, respectively. The reference temperature is set to be 
T0 = 20 �C, so that we can compare with table 19.1. 

We know that the resistance will vary with temperature, since the resistivity is temperature-
dependent. The temperature dependence of resistivity is given by: 

ˆ(T ) = ˆ0[1 + (T − T0)] 

If the resistor has length, L, and cross-sectional area, A, it will have resistance, R, given by: 
ˆ0L 

R(T ) = ˆ(T )L = [1 + (T − T0)] = R0[1 + (T − T0)]
A A 

where R0 is the resistance at the reference temperature, T0. Since we are given the resistance 
at two di�erent temperatures, we can determine both and R0, for a choice of T0 = 20 �C: 

R1 = R0[1 + (T1 − T0)] 
R2 = R0[1 + (T2 − T0)] 
R1 1 + (T1 − T0)

∴ = 
R2 1 + (T2 − T0) 

R1[1 + (T2 − T0)] = R2[1 + (T1 − T0)] 
(R1(T2 − T0) − R2(T2 − T0)) = R2 − R1 

R2 − R1∴ = 
R1(T2 − T0) − R2(T1 − T0) 

(106.8 
) − (103.4 
)= (103.4 )((40 �C) − (20 �C)) − (106.8 
)((30 �C) − (20 �C)) 
= 0.0034 

Referring to table 19.1, the material could likely be gold. 



20 Electric circuits 

In this chapter, we develop the tools to model electric circuits. This will allow us to deter-
mine the current and voltages across di�erent components, such as resistors and capacitors, 
within a circuit. We will also discuss how a battery can provide a current at a fixed potential 
di�erence, and how one can construct devices to measure current and voltages. 

Learning Objectives 

• Understand how a battery works. 
• Understand Kirchho� rules and how to apply them. 
• Understand how to model a circuit with resistors and/or capacitors. 
• Understand how an ammeter and voltmeter function, and how to model them. 

Think About It 

If two outlets in your house are connected to the same circuit, are the outlets connected 
in series or in parallel? 

A) series 
B) parallel 

20.1 Batteries and simple circuits 
A battery is an electric component that provides a constant electric potential di�erence 
(a fixed voltage) across its terminals. Luigi Galvani was the first to realize that certain 
combination of metals placed into contact with each other can lead to an electric potential 
di�erence (or rather, they can make the legs of a dead frog twitch, which we now understand 
to be from the potential di�erence due to the metals). E�ectively, Galvani created the first 
“electrochemical cell”. Alessandro Volta then combined several of these cells together to 
form the “voltaic pile”, which is what we would now call a battery (a battery, technically, is 
a combination of several cells, a battery of cells, although one often uses the term battery 
even if only a single electric cell is involved). 

20.1.1 The electrochemical cell 
An electric cell can be constructed from metals that have di�erent aÿnities to be dissolved 
in acid. A simple cell, similar to that originally made by Volta, can be made using zinc 
and carbon as the “electrodes” (Volta used silver instead of carbon) and a solution of dilute 
sulfuric acid (the liquid is called the “electrolyte”), as illustrated in Figure 20.1. Before the 
cell is constructed, the electrodes and the electrolyte are all electrically neutral. 

643 
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Figure 20.1: A simple electric cell, where zinc ions dissolve in sulfuric acid leaving electrons on 
the metal. 

Once the zinc is immersed in the electrolyte, the zinc atoms tend to dissolve into the 
electrolyte in the form of zinc ions (doubly charged, Zn2+). This leaves an excess of electrons 
on the zinc electrode, resulting in a net negative electric charge. Similarly, the positively 
charged zinc ions attract electrons from the carbon electrode into the solution, leaving 
the carbon electrode positively charged. Very quickly, an equilibrium is reached, since at 
some point, the negative charge of the zinc electrode will electrically attract positive zinc 
ions, preventing any more zinc ions from dissolving into the solution. Similarly, as the 
carbon electrode builds a positive charge, that charge will eventually prevent electrons from 
“jumping” into the solution. At this point, there will be a fixed electric potential di�erence 
between the two electrodes (terminals) of the battery. 

If the two electrodes are connected together through a resistor, the electrons will leave 
the zinc electrode, cross the resistor, and end up on the positive carbon electrode. This 
will leave space for more electrons on the zinc electrode, so more zinc ions will dissolve 
into the solution. Thus, a circuit is formed, where electron travel up the zinc electrode, 
through the resistor and back down the carbon electrode. At the same time, more and more 
zinc ions dissolve into the electrolyte, until the zinc electrode is completely dissolved. In 
practice, the zinc ions travel through the solution and plate onto the carbon electrode (the 
electrons do not quite “jump” into the electrolyte, rather, it is the zinc ions that move in the 
electrolyte). Since the charge on the electrodes is continuously replenished, the potential 
di�erence between the electrodes remains constant even as current is flowing. 

The electric cell will stop working once the zinc electrode has completely dissolved (this 
is what happens when your battery is dead). Note that there is also a maximum current 
that the cell can supply, which depends on the rate at which the zinc can dissolve into the 
electrolyte and plate onto the carbon electrode. If the electrodes of the cell are connected 
with a very low resistance resistor, the resulting current will be too large for the potential 
di�erence to be maintained. Most electric cells work in similar ways, although the chemical 
reactions can be much more complex. Sometimes, the chemical reaction is reversible; one 
could use a di�erent battery to apply a negative voltage to the carbon electrode to reverse 
the reaction and plate the zinc back onto the zinc electrode, thus “recharging the battery” 
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(and converting electric energy back into stored chemical potential energy). 

20.1.2 The ideal battery in a circuit 
As we proceed, we will use the term “battery” loosely to refer to a device (such as an electric 
cell or collection of cells) that can provide a fixed potential di�erence between two terminals 
(or electrodes). Figure 20.2 shows the circuit diagram for a battery, consisting in two (or 
four) vertical bars, with the larger bar indicating the positive terminal of the battery. 

Figure 20.2: Circuit diagram symbols that can be used for a battery. 

Figure 20.3 shows the circuit diagram symbols that are used for a resistor (di�erent symbols 
are used in North American and in Europe). 

Figure 20.3: Circuit diagram symbols for a resistor, using the North American convention (left), 
and the European convention (right). 

Figure 20.4 shows a circuit diagram for a very simple circuit consisting of a single 9 V battery 
connected to a 2 resistor. When drawing a circuit diagram (or making a real circuit), one 
connects the various components together (e.g. batteries and resistors) with segments of 
wire that have zero resistance, even if, in practice, wires always have some resistance. 
However, since the wires are connected in series with resistors (or other components that 
have a resistance), one can always include the resistance of the wires by adding it to the 
resistance of the other components. For example, in Figure 20.4, if the wires have a total 
resistance of 1 , we could simply model the circuit as if the resistor had a resistance of 3 
instead of 2 . In practice, this is usually accounted for when a circuit diagram is made (i.e. 
any resistors include the resistance of the wires connected to it). 

Figure 20.4: A simple circuit, showing a 9 V battery and a 2 resistor. For ease in analyzing 
circuits, we suggest drawing a “battery arrow” above batteries that goes from the negative to the 
positive terminal. 
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The circuit in Figure 20.4 is simple to analyze. In this case, whichever charges exit one 
terminal of the battery, must pass through the resistor and then enter the other terminal of 
the battery. We always use conventional current to analyze a circuit. Thus, we model 
the circuit as if positive charges exit the positive terminal of the battery, go through the 
resistor, and then enter the negative terminal of the battery. 

We recommend that you always draw a “battery arrow” for each battery in a circuit diagram 
to indicate the direction in which the electric potential increases and in which direction the 
conventional current would exit the battery if a simple resistor were connected across the 
battery. In complex circuits, the current may not necessarily flow in the same direction as 
the battery arrow, and the battery arrow makes it easier to analyze those circuits. We also 
indicate the current that is flowing in any wire of the circuit by drawing an arrow in the 
direction of current on that wire (labelled I in Figure 20.4). 

It is helpful to think of the value of the electric potential along di�erent parts of a circuit, 
as illustrated in Figure 20.5 for the same circuit as in Figure 20.4. 

Figure 20.5: The same circuit as in Figure 20.4 showing the two regions over which the electric 
potential is constant. 

Since the wires have no resistance, the electric potential is constant along a wire. In other 
words, because the wire has no resistance, the charges/current cannot dissipate any power in 
the wire (P = I2R), and the charges do not “loose” any potential energy (and the potential 
thus cannot change). The only place where the charges can dissipate energy is inside the 
resistor. Once the charges have crossed the resistor, the electric potential in the wire is again 
constant until they reach the other terminal of the battery. Thus, in this simple circuit, 
the electric potential di�erence across the resistor is the same as the potential di�erence 
across the terminals of the battery. This is shown by the coloured areas in Figure 20.5. If 
we choose 0 V to be defined at the negative terminal of the battery, then the potential is 
9 V everywhere in the red area (to the right of the resistor), and 0 V everywhere in the grey 
area (to the left of the resistor). 

We can apply Ohm’s Law (the macroscopic version) to the resistor and determine the current 
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in the circuit, since we know the potential di�erence across the resistor: 
�V = RI 

�V (9 V) 
∴ I = = (2 ) = 4.5 A 

R 

It is helpful to think of circuits in terms of energy. Charges move along the circuit and 
their potential energy changes as they go through components, while it remains constant 
as they move through a wire. If a positive charges enters the negative terminal of a battery 
and exits the positive terminal, its potential energy will have increased. If that charge then 
enters a resistor, its potential energy will decrease as it moves through the resistor, since the 
charge will “use” its potential energy to heat up the resistor. Batteries provide the energy 
to “push” the charges through the resistors in the circuit by converting chemical potential 
energy into the electrical potential energy of the charges. 

It is also useful to make the analogy with fluid dynamics; one can think of the battery as 
a pump that is continuously pushing a viscous incompressible fluid through a pipe with a 
narrow section, as illustrated in Figure 20.6. The wide section of the pipe is akin to the wires 
with no resistance, and the narrow section is akin to the resistor. The pressure di�erence 
generated by the pump is analogous to the voltage produced by the battery, and the flow 
rate of the liquid is analogous to the electric current. The pressure in the pipe does not 
drop in the wide section, if there is no resistance. The entire pressure drop of the fluid is 
across the narrow section, just as the voltage only drops across the resistor. 

Figure 20.6: A fluid dynamics analogue of the circuit in Figure 20.4, where a pump plays the role 
of the battery, and a narrow pipe that of a resistor. 

Example 20-1 

Two resistors, of 2 and 4 , respectively, are connected in series to a 12 V battery. 
What is the current through each of the resistors, and what is the voltage across each 
resistor? 

Solution 

We start by making a circuit diagram, as in Figure 20.7, showing the resistors, the cur-
rent, I, the battery and the battery arrow. Note that since this is a closed circuit with 
only one path, the current through the battery, I, is the same as the current through 
the two resistors. 
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Figure 20.7: Two resistors connected in series with a battery. 

If we choose the potential on the negative side of the battery to be 0 V, then points a 
and e on the diagram are at a potential of 0 V, since potential cannot change in a wire 
with no resistance. Similarly, the points at b and c are at a potential of 12 V (relative to 
points a and e). At point d, between the two resistors, the potential will be between 0 V 
and 12 V, since the potential will “drop” as the current goes through the 2 resistor. 

The easiest way to determine the current through this simple circuit is to combine the 
two resistors into a single e�ective resistor with resistance: 

Reff = (2 
) + (4 ) = 6 

so that the circuit can be simplified to that shown in Figure 20.8: 

Figure 20.8: The resistors from the circuit in Figure 20.7 have been combined in series to 
simplify the circuit. 

The potential di�erence across the e�ective resistor is the same as that across the 
battery (between points e and c), so that Ohm’s Law can be applied to the e�ective 
resistor to determine the current that traverses it: 

�V = Reff I 

�V (12 V) 
∴ I = = = 2 A 

Reff (6 ) 

This current is the same that traverses each individual resistor, since it is the same as 
the current that goes through the battery. Referring back to the full circuit (Figure 
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20.7), we can now use Ohm’s Law to calculate the voltage drop across each resistor, 
since we know the current through each resistor. The voltage across the 2 resistor is 
given by: 

�V2
 = RI = (2 
)(2 A) = 4 V 

and the voltage across the 4 resistor is given by: 

�V4
 = RI = (4 
)(2 A) = 8 V 

Note that the sum of these two voltages is equal to the voltage increase across the 
battery, by conservation of energy. Consider the electric potential at di�erent points in 
Figure 20.7 as you move clockwise around the loop starting at point a. If the electric 
potential is defined to be 0 V at the negative end of the battery (points a and e), the 
potential at point d (between the resistors) is the potential at point e plus the potential 
di�erence across the 4 resistor: 

Vd = Ve + �V4
 = (0 V) + (�V4
 ) = 8 V 

If we then add the potential di�erence across the 2 resistor to the potential at point 
d, we find that the potential at point c is Vc = Vd + �V2
 = 12 V, as expected, since 
this corresponds to the potential at the positive terminal of the battery. 

Discussion: In this example, we showed how one can model a circuit by combining 
resistors together into e�ective resistors to simplify the circuit. We also showed how the 
potential di� erences across di�erent components in a circuit must add up to zero (the 
voltage drops across the resistors must sum to the voltage increase across the battery). 

Checkpoint 20-1 

What is the voltage across the combination of a 3 V battery connected in series with a 
6 V battery, where the negative terminal of the 6 V battery faces the positive terminal 
of the 3 V battery? 

A) 9 V. 
B) 6 V. 
C) 3 V. 
D) 0 V. 

20.1.3 The real battery in a circuit 
So far, we have modelled batteries as “ideal” devices that provide a fixed potential di�erence. 
In reality, this neglects the fact that the materials that make the battery will themselves 
have a resistance. For example, if electrons want to leave the zinc rod in the electric cell 
illustrated in Figure 20.1, they will loose some energy as they pass through the zinc. Thus, 
when modelling a real battery in a circuit, it is important to include its “internal resistance”, 
as a resistor in series with the potential di�erence. This is illustrated in Figure 20.9, which 
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shows the two terminals of a real battery, an ideal battery (with a fixed potential di�erence, 
�Videal), and its internal resistance, r (which can be drawn on either side of the battery). 

Figure 20.9: Model of a real battery, showing an ideal battery in series with a resistor to model 
the internal resistance of the battery. 

It is important to note that the potential di�erence across the terminals of the real battery 
is only equal to the potential di�erence across the ideal battery if there is no current 
flowing through the battery. If there is a current, I, flowing through the internal 
resistance, the electric potential will decrease by an amount Ir across the internal resistance, 
and the voltage across the real terminals will be �Videal − Ir. 

Example 20-2 

When no resistance is connected across a real battery, the potential di�erence across 
its terminals is measured to be 6 V. When a R = 2 resistor is connected across the 
battery, a current of 2 A is measured through the resistor. What is the internal resis-
tance, r, of the battery, and what is the voltage across its terminals when the R = 2 
resistor is connected? 

Solution 

The real battery can be modelled as an ideal battery with potential di�erence, �Videal, 
in series with an internal resistance, r. While we do not know the value of the internal 
resistance, we are told that the potential di�erence across the terminals of the real 
battery is 6 V when no current flows through it. Since no current flows through 
the internal resistance, the voltage does not drop across the internal resistance, and the 
voltage across the terminals of the real battery (e.g. Figure 20.9) must thus be equal 
to the voltage across the terminals of the ideal battery, so that �Videal = 6 V. 

With this information, we can make a circuit diagram for the case when the 2 resistor 
is connected across the terminals of the real battery, as in Figure 20.10. 
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Figure 20.10: A circuit showing a real battery (with internal resistance r) in series with a 
resistor. 

The terminals of the real battery are located at points a and c of the diagram, whereas 
the terminals of the ideal battery corresponds to points a and b. When no current flows 
through the internal resistor, r, there is no voltage drop across that resistor and the 
potential at b will be equal to the potential at c, as we argued above. 

The circuit in Figure 20.10 is now identical to that analyzed in Example 20-1, and can 
be treated the same way. We can combine the 2 resistor with the internal resistance, 
r, in series to obtain an e�ective resistor, Reff = r + R. The voltage drop across the 
e�ective resistor will be the same as the potential di�erence across the ideal battery, 
and we can make use of Ohm’s Law to find the internal resistance, r: 

�Videal = Reff I = (r + R)I 
�Videal (6 V) 

∴ r = − R = 
I (2 A) − (2 ) = 1 

Now that we know the internal resistance, we can determine the voltage drop across 
the internal resistor, using Ohm’s Law: 

�Vr = rI = (1 
)(2 A) = 2 V 

The voltage drop across the real terminals of the battery (between points a and c), is 
thus given by: 

�Vreal = �Videal − �Vr = (6 V) − (2 V) = 4 V 

Again, you can verify that the voltage drops across the two resistors will sum to the 
total voltage drop across the terminals of the ideal battery. 

Discussion: Modelling real batteries is not so di�erent from modelling ideal batteries, 
since one only needs to include an internal resistance into the circuit. The key di�erence 
with a real battery is that the voltage across its real terminals depends on what is 
connected to the battery. In the example above, the battery has a voltage of 6 V across 
its (real) terminals when nothing is connected, but the voltage drops to 4 V when a 2 
resistor is connected. 
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Checkpoint 20-2 

Suppose that you would like to measure the ideal voltage of a real battery by connecting 
a measurement device (a voltmeter) across its terminals. 
accurate reading, should you choose a voltmeter with a high resistance, or a voltmeter 

In order to get the most 

with a low resistance? 
A) High resistance. 
B) Low resistance. 
C) It doesn’t matter if the voltmeter has a high or low resistance. 

20.2 Kirchho� ’s rules 
Kirchho� ’s rules correspond to concepts that we have already covered, but allow us to easily 
model more complex circuits, for instance, those where there is more than one path for the 
current to take. Kirchho� ’s rules refer to “junctions” and “loops”. Junctions and loops 
depend only on the shape of the circuit, and not on the components in the circuit. Figure 
20.11 shows a circuit with no components in order to illustrate what is meant by a junction 
and a loop. 

Figure 20.11: A circuit that has 3 loops and 2 junctions. 

The locations at points d and c are considered “junctions”, because there are more than 2 
segments of wire connected to that point. The points at locations a, b, e and f only have 
two segments of wire connected to them. The circuit in Figure 20.11 thus has 2 junctions. 

A loop is a closed path that one can trace around the circuit without passing over the same 
segment of wire twice. The circuit in Figure 20.11 has 3 such loops, which we can identify 
using the letters at the various nodes of the circuit: 

1. abcda 
2. abcefda 
3. dcefd 

Note that it does not matter where one starts on the loop, only that one can identify how 
many di�erent loops are present in the circuit. 
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Checkpoint 20-3 

Figure 20.12: Circuit layout 

How many loops and junctions does the circuit in Figure 20.12 have? 
A) The circuit has five loops and four junctions 
B) The circuit has three loops and eight junctions 
C) The circuit has seven loops and four junctions. 
D) The circuit has four loops and four junctions. 

20.2.1 Junction rule 
The junction rule states that: The current entering a junction must be equal to the 
current exiting a junction. 

This is in fact a simple statement about conservation of charge. If charges are flowing into 
a junction (from one or more segments of wire in that junction), then the same amount of 
charges must flow back out of the junction (through one or more di�erent segments of wire). 

Consider the junction illustrated in Figure 20.13, comprised of 5 segments of wire, each 
carrying a di�erent current. As shown, currents I1 and I4 flow into the junction, whereas 
currents I2, I3 and I5 all flow out of the junction. 

Figure 20.13: A junction with 5 segments and 5 currents. 

The junction rule states that the current entering the junction must equal the current coming 
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out of the junction. This allows us to relate the currents to each other in an equation: 

incoming currents = outgoing currents 
I1 + I4 = I2 + I3 + I4 

20.2.2 Loop rule 
The loop rule states that: The net voltage drop across a loop must be zero. 

This is a statement about conservation of energy, that we already noted in Example 20-1. 
Once you have identified a specific loop, if you trace a closed path around the loop, the 
electric potential must be the same at the end of the path as at the beginning of the path 
(since it is literally the same point in space). This means that if there is a voltage drop 
along the path (e.g. due to one or more resistors), then there must be equivalent voltage 
increases somewhere else on the path (e.g. due to one or more batteries). If this were not 
the case, it would be possible to have a path where charges could gain a net amount of 
energy by going around that path, which they could keep doing indefinitely and create an 
infinite amount of energy; instead, if charges gain potential energy in a battery, they must 
then loose exactly the same amount of energy inside one or more resistors along the path. 

Figure 20.14 shows a loop (which could be part of a larger circuit) to which we can apply 
the loop rule. The loop contains two batteries, facing in opposite directions (which would 
not normally be a good use of batteries), as illustrated by the battery arrows. 

Figure 20.14: A loop with 2 batteries and 3 resistors. 

The procedure for applying the loop rule is as follows: 

1. Identify the loop, including starting position and direction. 
2. Start at the beginning of the loop, and trace around the loop. 
3. Each time a battery is encountered, add the battery voltage if you are tracing 

the loop in the same direction as the corresponding battery arrow, subtract 
the voltage otherwise. 

4. Each time a resistor is encountered, subtract the voltage across that resistor 
(RI, from Ohm’s Law) if tracing the loop in the same direction as the 
current, add the the voltage otherwise. 

5. Once you have traced back to the starting point, the resulting sum must be zero. 
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To illustrate the procedure, we trace out the loop abcedfga in Figure 20.14. We thus start 
at point a and trace the loop in the counter-clockwise direction. 

• Between points a and b we encounter a battery, and we are tracing in the opposite 
direction of that battery’s arrow, so we subtract the voltage from that battery: 
−�V1. 
• Between points b and c, we encounter a battery, and we are tracing in the same 

direction as that battery’s arrow, so we add the voltage from that battery: +�V2. 
• Nothing happens to the potential along the wire from c to d. 
• Between points d and e, we encounter a resistor, and we are tracing in the same 

direction as the current through that resistor, so subtract the voltage across 
that resistor: −R1I). 
• Similarly, we subtract the voltages across resistors R2 and R3, as we are tracing in the 

same direction as the current through those resistors: −IR2 − IR3. 
• We are back at the beginning of the loop, so the terms must sum to zero. 

We can now use the loop rule, which states that the sum of the above voltages must be 
zero: 

−�V1 + �V2 − R1I − R2I − R3I = 0 (loop abcdefga) 

This equation then gives us a relation between the various quantities (current, resistors, 
battery voltages) in the circuit which can be used to model the circuit. 

Checkpoint 20-4 

Suppose that the equation describing loop abcdefga (Figure 20.14) was obtained from 
a di�erent starting position and the loop was traced in the opposite direction. Would 
this produce a di�erent equation? 

A) Yes, the equation would be incorrect if the loop is traced in the direction opposite 
to the flow of current. 

B) Yes, the equation must start from the point a because the creator of the circuit 
assumes the person calculating current and voltage will begin at point a. 

C) Yes, there is no incorrect starting point, but choosing to trace the circuit in the 
direction opposite to the flow of current would produce an incorrect equation. 

D) No, there is no incorrect direction or starting point. 

20.3 Applying Kirchho� ’s rule to model circuits 
In this section, we show how to model a circuit using Kirchho� ’s rules. In general, one can 
consider a circuit to be fully modelled if one can determine the current in each segment of 
the circuit. We will show how one can apply the same procedure to model any circuit that 
contains batteries and resistors. The procedure is as follows: 

1. Make a good diagram of the circuit. 
2. Simplify any resistors that can easily be combined into e�ective resistors (in series or 

in parallel). 
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3. Make a new diagram with the e�ective resistors, showing battery arrows, and labelling 
all of the nodes so that loops can easily be described. 

4. Make a guess for the directions of the current in each segment. 
5. Write the junction rule equations. 
6. Write the loop equations. 
7. This will lead to N independent equations that one can solve for the N di�erent 

currents in the circuit. 
8. Once you have determined all of the currents, if some of them are negative numbers, 

switch the direction of those currents in the diagram (they will be negative if you 
guessed the direction incorrectly). 

We will illustrate the procedure on the circuit shown in Figure 20.15, for which we would like 
to know the current through each resistor and each battery. The circuit contains 5 resistors 
(R1-R5), 2 real batteries (with ideal voltages �V1 and �V2), and 2 additional resistors to 
model the internal resistances of the real batteries (r1, r2) 

Figure 20.15: A circuit that can be simplified and then solved with Kirchho� ’s rules. 

Checkpoint 20-5 

How many di�erent currents are in the circuit shown in Figure 20.15 ? 
A) 3 
B) 4 
C) 5 
D) 6 

Simplifying the resistors (step 2): In this circuit, resistors r2, R1 and R2 are in series, 
so that they can be combined into an e�ective resistor, R6: 

R6 = r2 + R1 + R2 

With this simplification, we obtain the circuit illustrated in Figure 20.16 
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Figure 20.16: The resistors r2, R1 and R2 in series from the circuit in Figure 20.15 have been 
combined into the e�ective resistor, R6, to simplify the circuit. 

Next, we note that resistors R4 and R5 are in parallel and can be easily combined into a 
resistor, R7: 

R4R5
R7 = 

R4 + R5 

which leads to the circuit illustrated in Figure 20.17. 

Figure 20.17: The resistors R4 and R5 in parallel from the circuit in Figure 20.16 have been 
combined into the e�ective resistor, R7, to simplify the circuit. 

Finally, we note that r1 and R7 are in series and can be combined into an e�ective resistor, 
R8: 

R4R5
R8 = r1 + R7 = r1 + 

R4 + R5 

leading to the simplified circuit illustrated in Figure 20.18, which we have labelled with 
nodes and battery labels. 
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Figure 20.18: The resistors r1 and R7 in series from the circuit in Figure 20.17 have been combined 
into the e�ective resistor, R8, to simplify the circuit. 

Guessing the directions of the currents (step 4): Before we can write the equations 
from Kirchho� ’s rules, we need to label the currents in the circuit diagram. In general, it is 
not always obvious in which way the currents will go, so we make a guess that we can fix 
later if we guessed wrong. 

In order to guess the current directions, choose one point on the circuit and move along 
a segment. Label the current in that segment and continue moving through the circuit, 
splitting up the current when a junction is encountered. Make sure to only have one current 
per segment. We guess the currents as follows, referring to Figure 20.19: 

• We start at point a and move upwards to point f . We will call the current in that 
segment, I1. 
• Since there is no junction, the current I1 continues through the resistor R8 to point e. 
• There is a junction at point e, so we split the current I1 into currents I2 (towards 

point d), and I3 (downwards to point b). 
• We follow current I2 first; I2 flows from e to d, then down to c, through the battery 

�V2, and to point b, where there is again junction. 
• We follow current I3, which just flows down to the junction at point b, where it “meets 

up” with current I2. 
• Currents I2 and I3 both flow into the junction at point b, and the current flowing out 

of the junction, through the battery �V1, and towards point a is, again, I1, since this 
current then flows up to point f . 
• All segments of wire have a labelled current, so we are done guessing currents. 

You can proceed in an analogous way for any circuit. The final circuit, with currents 
labelled, is shown in Figure 20.19: 

Figure 20.19: Final and labelled circuit diagram that is simplified from the one in Figure 20.15. 

We can now proceed with using Kirchho� ’s rules to solve for the values of the currents in 
the circuit. It is useful to note that there are 3 unknown currents in this circuit; we thus 
hope that Kirchho� ’s rules will give us 3 independent equations. 

Applying the junction rule (step 5): In the circuit from Figure 20.19, there are two 
junctions (at points b and e), so we will get two equations from the junction rule. To apply 
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the junction rule, the sum of the currents coming into the junction must be equal to the 
currents going out of the junction: 

incoming currents = outgoing currents 
I2 + I3 = I1 (junction b) 

I1 = I2 + I3 (junction e) 

Note that the two equations are not independent (in fact, they are the same). It is generally 
the case that if there N junctions, one will obtain less than N independent equations 
(usually, N − 1 equations will be independent). In this case, the two junctions only gave us 
one equation. 

Applying the loop rule (step 6): This circuit contains 3 di�erent loops: abcdefa, 
abefa, and bcdeb, which will lead to 3 equations from the loop rule. We expect that these 
equations will not be independent, since this would lead to 4 equations and 3 unknowns 
when combined with the junction rule equation. Let us start with the loop abcdefa: 

• From a to b, we trace through the battery in the opposite direction from the 
battery arrow: −�V1. 
• From b to c, we trace through the battery in the same direction as the battery 

arrow: +�V2. 
• From c through d and through to e we go through the resistor R6 in the opposite 

direction from the current, I2, in that resistor: +I2R6. 
• From e to f , we go through the go through the resistor R8 in the opposite direction 

from the current, I1, in that resistor: +I1R8. 
• And we are back at the starting point, so the sum of the above terms is equal to zero. 

which gives the equation: 

−�V1 + �V2 + I2R6 + I1R8 = 0 (loop abcdefa) 

Similarly, for the loop abefa, we obtain: 

−�V1 + I3R3 + I1R8 = 0 (loop abefa) 

and for loop bcdeb: 

�V2 + I2R6 − I3R3 = 0 (loop bcdeb) 

Although it appears that we have obtained 3 additional equations, only two of these are 
independent. For example, if you sum the second and third equations (loops abefa, and 
bcdeb), you simply obtain the first equation (loop abcdefa). In general, if there are N 
di�erent loops, one will obtain less than N independent equations (usually N−1 independent 
equations, as we did here). 
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At this point, after choosing one of the junction equations, and two of the loop equations, 
we have 3 independent equations that we can solve for the 3 unknown currents1: 

I1 = I2 + I3 (junction e) 
−�V1 + �V2 + I2R6 + I1R8 = 0 (loop abcdefa) 

−�V1 + I3R3 + I1R8 = 0 (loop abefa) 

It is only a matter of some simple math to solve for the 3 unknowns from these 3 equations 
(which we carry out in the example below). 

Example 20-3 

Referring to the circuit in Figure 20.20, what is the voltage across the real terminal of 
the battery with ideal voltage �V1 (the voltage between points a and b)? What is the 
current through resistor R5? 

Solution 

Figure 20.20: The same circuit as in Figure 20.15, with values filled in. 

Since this circuit is the same that we just analyzed, we know that it can be simplified 
into the circuit shown in Figure 20.21, with resistors: 

R6 = r2 + R1 + R2 = (1 
) + (3 
) + (4 ) = 8 
R4R5 (2 )(2 )

R8 = r1 + = (1 
) + 
R4 + R5 (2 
) + (2 ) = 2 

1The 3 unknowns do not necessarily have to be the currents, and could be any combination of the 
currents, battery voltage and resistors. As long as there at most 3 unknown quantities, this circuit can be 
solved. 
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Figure 20.21: Simplified version of the circuit in Figure 20.20. 

From above, we know that this leads to the following three equations: 

I1 = I2 + I3 (junction e) 
−�V1 + �V2 + I2R6 + I1R8 = 0 (loop abcdefa) 

−�V1 + I3R3 + I1R8 = 0 (loop abefa) 

In order to solve these types of equations, it is usually convenient to place the battery 
voltages on the right hand side, and the resistor voltages on the left hand side. Although 
it is generally bad practice to fill numbers into the equations before solving them, 
it is almost always a good idea when solving the N equations for the N currents. 
Furthermore, in order to make the equations legible, it is also useful to not write in 
the units (which is very bad practice in general!). Thus, filling in the values for the 
resistors and the battery voltages, moving the voltages to the right hand side, we obtain 
the following system of equations: 

I1 − I2 − I3 = 0 (junction e) 
2I1 + 8I2 = 8 (loop abcdefa) 
2I1 + 4I3 = 12 (loop abefa) 

Subtracting the second equation from the third equation (to eliminate I1): 

4I3 − 8I2 = 4 
∴ I3 = 1 + 2I2 

Substituting this into the junction equation: 

I1 − I2 − I3 = 0 
I1 − I2 − 1 − 2I2 = 0 

1
∴ I2 = (I1 − 1)3 

Finally, substituting this into the equation from loop abcdefa, allows us to determine 
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I1 and the other two currents: 

2I1 + 8I2 = 8 �1 � 
2I1 + 8 (I1 − 1) = 83 

16
∴ I1 = = 2.29 A 7 

1
∴ I2 = (I1 − 1) = 0.43 A 3 
∴ I3 = 1 + 2I2 = 1.86 A 

In this case, the currents are all positive, so the diagram in Figure 20.21 is correct and 
we do not need to reverse the direction of any of the currents. 

We can now determine the potential di�erence across the real terminals of the battery 
�V1. The current through the battery is I1 = 2.29 A, which cause a voltage drop, �Vr1, 
across its internal resistance, r1 of: 

�Vr1 = I1r1 = (2.29 A)(1 ) = 2.29 V 

The voltage across the real terminals of the battery is then: 

�Vreal = �V1 − �Vr1 = (12 V) − (2.29 V) = 9.7 V 

The current through the resistor R5 (Figure 20.20) requires a little more thought, since 
we calculated the current, I1 through the e�ective resistor R8, which we must now 
“break apart”. Figure 20.22 shows the components of R8. 

Figure 20.22: The components of the e�ective R8 resistor from Figure 20.21. The current, 
I1, coming from the battery goes through r1 and then splits up. 

The current I1, that goes through the �V1 battery also goes through the r1 internal 
resistance of the battery. That current then splits up into currents, I4 and I5, to go 
through the resistors R4 and R5. Although it should be obvious that half of I1 will 
go through each resistor (since these are equal), we can determine this from applying 
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Kirchho� ’s rules to the combination of resistors in Figure 20.22: 

I1 = I4 + I5 (junction) 
I5R5 − I4R4 = 0 (clockwise loop) 

From the loop equation, we have: 

R4
I5 = I4 = I4

R5 

since R4 = R5 = 2 . Since I4 = I5, the junction equation gives: 

1 
I5 = = 1.15 A 2I1 

By solving for I4 and I5, we have now determined all of the currents through all of the 
segments of the original circuit in Figure 20.20. 

Discussion: In this example, we showed how one can use a simplified circuit to solve 
the current through the e� ective resistors in the simplified circuit. Once those currents 
are known, we showed that it is straightforward to determine the currents through 
individual resistors that have been combined into e�ective resistors. 

Josh’s Thoughts 

Solving a circuit can be daunting, especially if the diagram is drawn in an unfamiliar 
way. While the circuits in this chapter are designed to be as easy to read as possible, 
many circuits are much more strange. For example, here is a circuit which you may 
come across: 

Figure 20.23: A weird looking circuit. 

The circuit in Figure 20.23 May look like it is a diÿcult circuit to solve, but the diagram 
can be re-drawn to reveal the simplicity of the circuit: 
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Figure 20.24: A much less weird looking circuit. 

What used to be a strange kite shape is now just a parallel circuit, which can be further 
simplified by calculating the e�ective resistance: 

Reff = (R1 
−1 + R2 

−1 + (R3 + R4)−1)−1 

Which gives a series circuit with only one resistor: 

Figure 20.25: A simple circuit. 

Circuits can be drawn in many unique or potentially confusing ways, but knowing how 
to read the circuit and re-draw it can help make the diagram more legible and the 
circuit easier to solve. 

20.4 Measuring current and voltage 
In this section, we describe how one can build devices to measure current and voltage. A 
device that measures current is called an “ammeter” and a device that measured voltage 
is called a “voltmeter”. Nowadays, these are usually found within the same physical device 
(a “multimeter”), which can also measure resistance (by measuring voltage and current, 
resistance can easily determined). We will limit our description to the design of simple 
analogue ammeters and voltmeters. 

As we will see in Chapter 21, it is straightforward to build a device that can measure very 
small amounts of current, by running the current through a coil in a magnetic field so that 
the coil can deflect a needle that indicates the amount of current. Such a device is called 
a “galvanometer” and is usually limited to measuring very small current (of order mA). In 
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this section, we describe how one can use a galvanometer in order to build ammeters to 
measure large currents, and voltmeters. 

20.4.1 The ammeter 
An ammeter is built by placing a galvanometer in parallel with a “shunt” resistor, Rs. 
The shunt resistor is a small resistor that “shunts” (deflects) the current away from the 
galvanometer, so that most of the current goes through the shunt resistor. This is illustrated 
in Figure 20.26, which shows the galvanometer (circle with the G inside), the internal 
resistance of the galvanometer, RG, and the shunt resistor, RS. The actual ammeter would 
be contained in a box and have two connectors (shown as A and B in the figure). 

Figure 20.26: Constructing an ammeter from a galvanometer by placing a “shunt” resistor in 
parallel with the galvanometer. 

By modelling the ammeter, we can determine the total current, I, that we would like to 
measure using the known values of the resistors and the current, IG, measured by the 
galvanometer. Considering any of the two junctions, and a clockwise loop, we have: 

I = IG + IS (junction) 
IGRG − ISRS = 0 (clockwise loop) 

RG∴ IS = IG
RS � � 

∴ I = IG+S = 1 + RG 
RG

RS 

which allows us to determine the current, I, from the current, IG, measured by the gal-
vanometer. We also see that most of the current goes through the shunt (since RS is chosen 
to be smaller than RG). The ammeter, will have a total resistance, RA, given by: 

RGRS
RA = 

RG + RS 

In order to measure the current through a specific segment of a circuit, an ammeter must 
be placed in series with that segment (so that the current that we want to measure will 
pass through the ammeter). Figure 20.27 shows how to connect an ammeter (circle with 
the letter A) in order to measure the current through a resistor, R. 
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Figure 20.27: An ammeter is placed in series with a resistor to measure the current through the 
resistor. 

20.4.2 The voltmeter 
A voltmeter is constructed by placing a large resistor, RV , in series with a galvanomenter 
(that has internal resistance RG), as illustrated in Figure 20.28. The voltmeter is designed 
to measure the potential di�erence between the terminals of the voltmeter (labelled A and 
B in the Figure). 

Figure 20.28: Constructing an voltmeter from a galvanometer by placing a resistor in series with 
the galvanometer. 

Given the values of the resistors, and the current measured by the galvanometer, one can 
easily determine the potential di�erence between points A and B, since the current measured 
by the galvanometer goes directly through each resistor: 

�V = VB − VA = −IG(RV + RG) 
In order to measure a potential di�erence across a component, the voltmeter must be placed 
in parallel with the component. Figure 20.29 shows how to connect a voltmeter (circle with 
the letter V ) in order to measure the voltage across a resistor, R. 

Figure 20.29: A voltmeter is placed in parallel with a resistor to measure the voltage across the 
resistor. 

When using an ammeter or a voltmeter, you will notice that these usually have buttons 
or dials to choose the range of currents or voltages to be measured. All the dial does is 
change the value of the shunt or series resistor in order to maintain a given maximum current 
through the galvanometer. An ohmmeter, to measure resistance, is simply an ammeter with 
a built-in fixed potential di�erence (so that by measuring current across a known potential 
di�erence, the resistance of the component can be determined). 

Example 20-4 

Two resistors with a resistance of 1 k
 are placed in series with a 12 V battery. A 
voltmeter with a total resistance of RV = 10 k
 is used to measure the voltage across 
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one of the resistors. What reading does the voltmeter show? 

Solution 

Since the two resistors have the same resistance, and are in series with the battery, 
when no voltmeter is connected, the voltage across either resistor is easily shown to be 
6 V. However, by connecting the voltmeter across one of the resistors, we modify the 
circuit, and we should expect the voltage that is read to be di�erent than 6 V (can you 
tell if it will be larger or smaller?). The circuit, with the voltmeter connected is shown 
in Figure 20.30. 

Figure 20.30: When using a voltmeter, the circuit is modified. 

We can model this circuit quite easily by combining the voltmeter (modelled as a 
resistor) in parallel with one of the resistors: 

RV R (10 k
)(1 k
) 10 
Reff = = k
 = 0.91 k
 

RV + R (10 k
) + (1 k
 ) = 11 

The sum of the voltage drops across the e�ective resistor and the other resistor must 
equal the potential di�erence across the battery (Kirchho� ’s loop rule): 

Reff I + RI = �V 
�V (12 V) 

∴ I = = 
Reff + R (0.91 k
) + (1 k
) = 6.29 × 10−3 A 

The voltage drop across the e �ective resistor is the same as the reading on the voltmeter: 

�Vvoltmeter = IReff = (6.29 × 10−3 A)(0.91 k
) = 5.7 V 

and the voltmeter reads a smaller voltage than there would be without the voltmeter. 

Discussion: In this example, we saw that by using a voltmeter to measure a voltage 
in a circuit, we actually disturb the circuit. By placing the voltmeter in parallel with 
one resistor, we created an e�ective resistor with a resistance that is lower than the 
resistance of either the voltmeter or the resistor. This lowered the total resistance of 
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the circuit, which increased the current. A larger current through the second resistor 
(without the voltmeter) leads to a larger voltage drop than 6 V across that resistor. 
Thus, the voltage drop across the resistor with the voltmeter will be less than 6 V, as 
we found, since the two voltage drops need to add to 12 V. 

In general, when using a voltmeter, one needs a voltmeter with a very high resistance in 
order to minimize the disturbance to the circuit (if the voltmeter has a high resistance, 
only a small amount of current will be shunted from the resistor). In practice, voltmeters 
have resistance that are typically of the order of 1 M
. 

20.5 Modelling circuits with capacitors 

Review Topics 

• Section 18.5 on capacitors. 

So far, we have modelled circuits where the current does not change with time. When a 
capacitor is included in a circuit, the current will change with time, as the capacitor charges 
or discharges. The circuit shown in Figure 20.31 shows an ideal battery2 (�V ), in series 
with a resistor (R), a capacitor (C, two vertical bars) and a switch (S) that is open. 

Figure 20.31: A simple circuit with a resistor, battery, and capacitor. 

When the switch is open, current cannot flow through the circuit. If we assume that the 
capacitor has no charge on it, once we close the switch, current will start to flow and charges 
will accumulate on the capacitor. Electrons will leave the negative terminal of the battery, 
flow through the resistor and accumulate on the left side of the capacitor, which acquires 
a negative charge. This pushes electrons o� of the right hand side of the capacitor, which 
then becomes positively charged. The electrons from the positive side of the capacitor then 
flow into the positive side of the battery, completing the circuit. 

Eventually, the charges on the capacitor will build up to a point were they prevent any 
further flow of current. Once the left side of the capacitor is at the same potential as the 
left side of the battery, current will cease to flow. That is, eventually, the potential di�erence 
across the capacitor will be equal to that across the battery, and we can think of this as a 

2The model still holds for a real battery, since the internal resistance of the battery can just be included 
into the resistance of the resistor, R. 
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circuit used to charge a capacitor. The current is high when the switch is first opened, but 
eventually goes down to zero as the capacitor charges. The current is thus time-dependent. 

We can model this simple circuit (with the switch closed) using Kirchho� ’s loop rule. The 
sum of the voltages across each component must sum to zero: 

Q�V − IR − = 0 
C 

where we used the fact that the charge, Q, on a capacitor is related to the potential dif-
ference, �VC , across the capacitor by Q = C�VC . The current, I, is the rate at which 
charges flow through the circuit, and is thus equal to rate at which charges accumulate on 
the capacitor: 

dQ
I = 

dt 

Substituting this into the loop equation, we obtain a separable di�erential equation for the 
charge on the capacitor as a function of time, Q(t): 

Q�V − IR − = 0 
C 

dQ Q�V − R − = 0 
dt C 

Q dQ�V − = R 
C dt 

dQ
C�V − Q = RC 

dt 
dt dQ

∴ = 
RC C�V − Q 

This is similar to di�erential equations that we have solved previously (in fact, it is the 
same equation as in Example 6-4 where we looked at the e�ect of velocity-dependent drag). 
The solution to the equation, assuming that the switch is closed at t = 0, is given by an 
exponential: � � 

RC Q(t) = C�V 1 − e − t 

Thus, the charge on the capacitor starts at zero when the switch is closed, and grows 
asymptotically until it reaches a value of Q = C�V , which corresponds to the capacitor 
having the same potential di�erence across it as the battery. The value ˝ = RC is called 
the “time constant” of the RC circuit, and corresponds to the time at which the capacitor 
will reach about (1 − e−1) = 63% of its maximal charge. The current as a function of time 
is given by: 

dQ �V − 
RC I(t) = = e 
t 

dt R 

and we can see that at time t = 0 the current is the same as if there were no capacitor 
present, and the current then decreases exponentially until it reaches zero. 
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20.6 Summary 
Key Takeaways 

Batteries are usually formed from a collection of electrochemical cells. Batteries provide 
a constant electric potential di�erence across their terminals, usually sustained by a 
chemical reaction, as long as the current through the battery is not too large (or the 
chemical reactions cannot be sustained). An ideal battery has no resistance and can be 
modelled as a simple potential di�erence in a circuit. A real battery includes an internal 
resistance and be modelled in a circuit as an ideal battery in series with a resistor. The 
voltage across the terminals of a real battery is equal to the voltage across the terminals 
of the ideal battery only when no current flows through the internal resistance. 

Circuits are modelled using circuit diagram that include components (such as batteries 
and resistors) and wires. Wires are always modelled as having no resistance, since 
their resistance can be included by placing the appropriate resistor along the wire. The 
electric potential is always constant along a wire with no resistance. When modelling a 
circuit, one always models the direction of conventional current; that is, current 
is always indicated as the direction in which positive charges flow (even if in reality, it 
is negative electrons that flow in the opposite direction). 

Circuits should be thought of in terms of conservation of energy. Components produce 
a potential di�erence between sections of wire. Batteries correspond to an increase 
in potential (if going from the negative to the positive terminal), whereas resistors 
corresponds to a decrease in potential (if going in the same direction as current through 
the resistor). 

Kirchhoo� ’s rules allow us to model complex circuits: 

The junction rule states that: The current entering a junction must be equal to 
the current exiting a junction. This is a statement about conservation of charge. 
If charges are flowing into a junction, then the same amount of charges must flow back 
out of the junction per unit time. 

The loop rule states that: The net voltage drop across a loop must be zero. This 
is a statement about conservation of energy indicating that as the potential energy of 
a positive charge increases as it goes through a battery, it will decrease by the same 
amount if it goes through a resistor that is connected to the terminals of that battery. 

In order to apply the loop rule, we strongly suggest using the following procedure, 
after having made a clear, labelled diagram showing battery arrows and currents in the 
circuit: 

1. Identify the loop, including starting position and direction. 
2. Start at the beginning of the loop, and trace around the loop. 
3. Each time a battery is encountered, add the battery voltage if you are trac-

ing the loop in the same direction as the corresponding battery arrow, 
subtract the voltage otherwise. 
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4. Each time a resistor is encountered, subtract the voltage across that resistor 
(RI, from Ohm’s Law) if tracing the loop in the same direction as the 
current, add the the voltage otherwise. 

5. Once you have traced back to the starting point, the resulting sum must be zero. 

In general, we suggest the following procedure in order to use Kirchhoo� ’s rules to 
model any circuit: 

1. Make a good diagram of the circuit. 
2. Simplify any resistors that can easily be combined into e�ective resistors (in series 

or in parallel). 
3. Make a new diagram with the e�ective resistors, showing battery arrows, and 

labelling all of the nodes so that loops can easily be described. 
4. Make a guess for the directions of the current in each segment. 
5. Write the junction rule equations. Usually, you will get M − 1 independent 

equations for M loops. 
6. Write the loop equations. Usually, you will get M − 1 independent equations for 
M loops. 

7. This will lead to N independent equations that one can solve for the N di�erent 
currents in the circuit. 

8. Once you have determined all of the currents, if some of them are negative num-
bers, switch the direction of those currents in the diagram (they will be negative 
if you guessed the direction incorrectly). 

Current and voltage measuring devices (ammeters and voltmeters, respectively) can 
be constructed from a galvanometer, which measures small currents. An ammeter is 
constructed by placing a small shunt resistor in parallel with the galvanometer so that 
most of the current passes through the shunt resistor. The resulting ammeter must 
be placed in series with a component in order to measure the current through that 
component. 

A voltmeter is constructed by placing a resistor in series with the galvanometer in 
order to reduce the current through the galvanometer. The resulting voltmeter must 
be placed in parallel with a component in a circuit in order to measure the voltage 
across that component. Note that because voltmeters and ammeters have a non-zero 
resistance, they will a�ect the circuit once they are connected. 

When a capacitor is placed in a circuit, the current in the circuit will no longer be 
constant in time. If an uncharged capacitor with capacitance, C, is placed in a series 
circuit with a battery and a resistor of resistance, R, the capacitor will charge until the 
voltage across the capacitor is equal to that across the battery. Once the capacitor is 
charged, current ceases to flow in the circuit. The charges on a capacitor accumulate 
with a rate that decays exponentially; it will take an infinite amount of time for the 
capacitor to become fully charged. It will be charged to about 63% of maximum charge 
after a period of time, ˝ = RC, called the time constant of the capacitor. 
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Important Equations 

Ohm’s Law: 

�V = IR 

Junction Rule: X X 
Iin = Iout 

Loop Rule: X 
�V = 0 

loop 
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20.7 Thinking about the material 

Reflect and research 

1. When did Galvani and Volta experiment with electric cells? 
2. What is the largest voltage that Volta obtained with his voltaic pile? 
3. How does one charge a rechargeable battery? What would the circuit look like? 

To try at home 

1. Research circuit diagrams of appliances you have at home. 

To try in the lab 

1. Propose an experiment to measure the change in current of an RC circuit as a 
capacitor builds up and releases charge. 

2. Propose an experiment to determine the RC constant for a capacitor charging 
circuit. 

3. Propose an experiment to measure the resistance of a voltmeter and compare your 
results with the manufacturer’s. 
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20.8 Sample problems and solutions 
20.8.1 problems 
Problem 20-1: A simple RC circuit as shown in Figure 20.31 contains a charged capacitor 
of unknown capacitance, C, in series with a resistor, R = 2 . When charged, the potential 
di�erence across the terminals of the capacitor is 9 V. 

At time t = 0 s, the switch, S, is closed, allowing the capacitor to discharge through the 
resistor. The current is then measured to be I = 0.05 A at t = 5 s after opening the switch. 
(Solution) 

a) What is the capacitance of the capacitor? 
b) What charge did the capacitor hold at t = 2 s? 

Figure 20.32: A simple circuit with a resistor and a capacitor. 
Problem 20-2: (Solution) A voltmeter with a resistance of RV = 20 k is attached to a 
circuit with a battery of unknown voltage and two resistors with a resistance of R = 2.5 k 
as shown in Figure 20.33. The voltmeter reads that the voltage drop over one of the resistors 
is �Vvm = 5.647 V. What is the voltage drop, VR, over each resistor when the voltmeter is 
removed from the circuit? 

Figure 20.33: A circuit with a battery of unknown voltage. 
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20.8.2 Solutions 
Solution to problem 20-1: 

a) In this case, the capacitor is discharging as a function of time. At time t = 0, the 
voltage across the capacitor is �V = 9 V. We can model this discharging circuit in a 
similar way as we modelled the charging circuit. 
We start with Kirchho� ’s junction rule, which leads to a di�erential equation for the 
charge stored on the capacitor, Q(t), as function of time: 

�V − IR = 0 
Q − IR = 0 
C 

Q dQ− R = 0 
C dt 

dQ 1
∴ = − Q
dt RC 

This di�erential equation is straightforward to solve, since it says that the derivative 
of Q(t) is equal to a constant multiplied by Q(t). Thus, Q(t), must be an exponential 
function: 

Q(t) = Q0e 
− t 
RC 

where, Q0, is the (unknown) charge on the capacitor at t = 0. You can easily verify 
that taking the derivative of this equation will result in the di� erential equation being 
satisfied. 
The current, I(t), as a function of time is given by: 

dQ 1 Q0 − −
RC RC I = = − Q = e 
t = I0e 

t 

dt RC RC 

where I0 = Q0 is the current at t = 0.
RC 

We also know that the current through the resistor at t = 0 is given by Ohm’s Law, 
since, at that time, the voltage, Q

C 
0 = 9 V: 

Q0 (9 V) 
I0 = = (2 ) = 4.5 A 

RC 

We then know that the current, at time t = 5 s, is equal to I(5) = 0.05 A, allowing us 
to determine the capacitance: 

RC I(5) = I0e 
− t 

I(5)
! 

tln = − 
I0 RC 

t (5 s) 
∴ C = � � = � � = 0.56 F 

I0 (4.5 A) R ln (2 
) ln 
I(5) (0.05 A) 
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b) To find the charge stored in the capacitor at t = 2 s, we can use the function Q(t) that 
we determined before: 

RC Q(t = 2 s) = Q0e 
− t 

where we can determine, Q0, now that we know the capacitance. Q0 is the charge on 
the capacitor at time t = 0, when the voltage across the capacitor is 9 V: 

Q0 = C�V = (0.56 F)(9 V) = 5.0 C 

At t = 2 s, the charge on the capacitor is thus: 
(2 s) 

(2 )(0.56 F)Q(t = 2 s) = (5.0 C)e − = 0.84 C 

Solution to problem 20-2: In order to know the voltage across one of the resistors, we 
need to determine the voltage that is across the battery. Once we have determined the 
voltage across the battery, the voltage across one of the resistors will just be half of that 
across the battery, since the two resistors have the same resistance. 

We can model the circuit with the voltmeter in place, since we know the voltage across 
the parallel combination of the voltmeter and resistor (that voltage which is readout by the 
voltmeter). We can combine the voltmeter and one of the resistors into a an equivalent 
resistor, Reff : 

1 
Reff = 

R−1 
V + R−1 

1 
Reff = (20 k ) −1 + (2.5 k ) −1 

Reff = 2.22 k 

Now that we have the e�ective resistance as well as the voltage drop across that e�ective 
resistor, we can solve for current through the circuit: 

�Vvm 
I = 

Reff 

5.647 V 
I = 2.22 k 
I = 2.541 mA 

Now that we have the current through the circuit, we can determine the voltage drop across 
the second resistor. By adding that voltage drop to the known voltage across the e�ective 
resistor, we can determine the battery voltage: 

�Vbattery = I(Reff + R) 
�Vbattery = (2.541 mA)(2.222 k + 2.5 k ) 
�Vbattery = 12 V 
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Thus, with no voltmeter present, the voltage across each resistor is 6 V. 



21 The magnetic force 

This chapter introduces the tools to model the magnetic force, which is something that 
we have all experienced with magnets. As we will see, the magnetic force acts on moving 
(electric) charges, and is thus fundamentally di�erent from the electric force which acts on 
stationary and moving charges. In later chapters, we will develop the tools that allow us to 
make connections between the electric and magnetic fields. 

Learning Objectives 

• Understand the key characteristics of a magnetic field and what makes it di�erent 
from an electric field. 
• Understand how to model the magnetic force on a moving charge. 
• Understand how to model the magnetic force on a wire carrying current. 
• Understand how to model the torque exerted on a current-carrying loop by a 

magnetic field. 
• Understand how to model the Hall E�ect. 
• Understand simple applications of the magnetic force. 

Think About It 

When you go through airport security, they sometimes sample your luggage with sticky 
tape and place that tape into a machine to detect trace amounts of explosives. How 
does that machine work? 

A) The machine detects trace amounts by “sniÿng” the sample using similar chemical 
reactions as those in our olfactory system. 

B) The machine vaporizes the sample and accelerates the resulting charged vapour 
around a circle to determine its constituents. 

21.1 Magnetic fields 
Just as we can model the electric force on a charge by using the electric field (e.g. from 
another charge), we can model the force on a magnet by using a magnetic field (e.g. from 
another magnet). In your experience, every magnet that you have seen always has a “North” 
pole and a “South” pole. Most likely, you have noticed that the North pole of a magnet is 
attracted to the South pole of another magnet, and that the two North (or South) poles 
of di�erent magnets repel each other. Thus, the magnetic force is attractive between two 
opposite poles, and repulsive otherwise. 

The Earth itself can be modeled as a giant bar magnet, with North and South magnetic 
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poles. The poles on a magnet are labeled North and South according to which geographic 
pole of the Earth they are attracted to (a magnetic compass needle has a magnetic North 
pole on the side that point to the Earth’s North geographic pole). 

Checkpoint 21-1 

Is the magnetic North pole of the Earth located closer to the Earth’s geopgraphic North 
pole or closer to its geographic South Pole? 

A) Earth does not have a magnetic field. 
B) Earth’s magnetic North pole is at Earth’s geographic North pole. 
C) Earth’s magnetic North pole is at Earth’s geographic South pole. 
D) Earth’s magnetic North pole depends on the charge of the observer. 

It may seem that the magnetic force can be described in the same way as the electric force, 
having two opposite sign “charges” (or poles for magnets), although this is not the case. 
As far as we can tell, there are no magnets that have only a North or a South pole. Every 
magnet must have a North and a South pole. This is fundamentally di�erent from the 
electric force, where an object can have a net positive or negative charge. In the context 
of magnetism, we say that “monopoles do not exist” (an object that has only a North or 
a South pole would be called a monopole). This is illustrated in Figure 21.1, which shows 
what happens as one cuts a bar magnet into two pieces; rather than ending up with a North 
and a South piece (monopoles), we end up with two smaller bar magnets, each with their 
own North and South poles, and so on if we try to subdivide the magnets further. 

Figure 21.1: When a bar magnet is cut through the middle, one obtains two magnets, each with a 
North and South pole, rather than a North and a South magnet. 

We model the magnetic force using a magnetic field vector, usually labeled, ~B. The mag-
nitude of the magnetic field has the S.I. units of Teslas (T). We draw magnetic field lines 
in much the same way that we draw electric field lines. The magnetic field lines are such 
that the magnetic field vector, ~B, at some point in space is tangent to the field line at that 
point. The strength of the magnetic field is determined by the density of field lines at that 
position in space. The direction of the magnetic field, ~B, indicates the direction of the force 
that is exerted on the North pole of a magnet. Magnetic field lines thus flow away from 
North poles and towards South poles. 

The magnetic field description is similar to that of the electric field, with North magnetic 
poles being similar to positive electric charges, and vice versa. However, because magnetic 
monopoles do not exist, magnetic field lines do not end (or start) on the pole of a magnet. 
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Rather, magnetic field lines must always form closed loops. Figure 21.2 shows the magnetic 
field lines for a bar magnet, highlighting that the field lines do not end at the poles, but 
rather continue through the magnet (and some of the lines only “close” outside of the 
figure). The magnetic field from a bar magnet is very similar to the electric field created by 
an electric dipole (and for that reason, we often use the term magnetic dipole to describe 
objects that create a magnetic field with the same shape). 

Figure 21.2: The magnetic field lines for a bar magnet always form closed loops as they do not 
end at the North or South pole of the magnet. 

We will discuss how to model magnetic fields in the next chapter, but it is important to 
understand that magnetic fields are created by moving electric charges. The electrons in the 
material that forms a bar magnet are the moving charges that create the magnetic field. As 
we will see, the magnetic field from a charge moving around in a circle (or a circular loop of 
current), has exactly the same shape as that of a bar magnet, as illustrated in Figure 21.3. 
We can thus think of charge moving in a circle as a small bar magnet, or more precisely, as 
a magnetic dipole. 

Figure 21.3: The magnetic field lines produced by a circular loop of current, I, are the same as 
those produced by a bar magnet. 

In a magnet, the electrons in the material are moving in such a way that the magnetic 



681 21.2. THE MAGNETIC FORCE ON A MOVING CHARGE 

fields that they generate are all in the same direction. Each atom is like a small magnetic 
dipole, and all of these are aligned. This allows us to understand why cutting a magnet 
does not result in two monopoles (Figure 21.1): when we cut the bar magnet, we end 
up with less material, but each piece of material still contains magnetic dipoles that are 
aligned with each other, each having a North and South side. Note that it is not the motion 
of electrons around their nuclei that results in the magnetic field, and that one requires 
quantum mechanics and the notion of “spin” to describe this all in detail. 

Most materials will respond to magnetic fields, but the behaviour is most evident in “fer-
romagnetic” materials, such as iron (Fe). Ferromagnetic materials can be magnetized by 
an external magnetic field, e�ectively transforming them into magnets. One can think of 
a material as containing many little magnetic dipoles (from the motion of the electrons), 
which themselves are like bar magnets. If that material is ferromagnetic, an external mag-
netic field can act on the little “bar magnets”, orienting them all in the same way, so that 
the material as a whole becomes magnetic. For some ferromagnetic materials, that common 
orientation will remain when the external magnetic field is removed, creating a “permanent 
magnet”. For other ferromagnetic materials, the common orientation disappears when the 
external field is removed; those materials are thus attracted to a magnet, but they cannot 
form a magnet. 

21.2 The magnetic force on a moving charge 
Review Topics 

Section A.3.4 on the vector product. 

When an electric charge, q, has a velocity, ~v, relative to a magnetic field, ~B, a magnetic 
force is exerted on the particle: 

~B~FB = q~v × 

We can make a few remarks about the magnetic force: 

• The magnetic force is always perpendicular to the velocity and to the magnetic field 
(since it is given by their cross-product). 
• The direction of the magnetic force depends on the sign of the charge. 
• The magnetic force can do no work, since it is always perpendicular to the velocity 

(and thus to displacement). 
• There is no force if the particle’s velocity is in the same direction as the magnetic field 

vector. 
• The force increases with charge, speed, and strength of the magnetic field. 
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Checkpoint 21-2 

A proton moves East in Earth’s magnetic field, which way is it deflected? 
A) Away from the Earth. 
B) Towards the Earth. 
C) North. 
D) South. 

Checkpoint 21-3 

An electron moves West in Earth’s magnetic field, which way is it deflected? 
A) Away from the Earth. 
B) Towards the Earth. 
C) North. 
D) South. 

Josh’s Thoughts 

It is very important to remember what each part of the right-hand rule for cross-
products represents. To help remember what each finger represents, I say ”velocity” as 
I extend my thumb, ”field” as I extend my index finger, and ”force” as I extend my 
middle finger. When using the right hand rule, it is also important to remember the q 

~ ~in the equation FB = q~v × B. This q could be negative, which would mean that the 
force acts in the opposite direction. 

Figure 21.4: The way that Josh remembers the right hand rule for magnetism. 

If you find yourself forgetting the right-hand rule on a test or exam, just remember 
that you can still find the correct answer by setting up a three-dimensional coordinate 
system and evaluating the cross product. 
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You should be somewhat bothered by the fact that the force depends on the velocity of the 
charge, since velocity depends on the frame of reference from which it is measured. The 
above equation has a strange implication: if we observe an electron moving in a magnetic 
field, we will see its motion be deflected by the magnetic field. If we move along with the 
electron, so that it has a velocity of zero in our frame of reference, we should not see the 
electron being deflected, since the magnetic force would be zero. Clearly, the motion of the 
electron cannot depend on the frame of reference from which we observe it. Thus, the only 
way that this equation can make sense is if the magnetic field also depends on our frame 
of reference. We will revisit this in a subsequent chapter, but for now, remember that this 
equation only makes sense if the velocity is measured in the same reference frame as that 
in which the magnetic field is defined. 

Another bothersome issue with the magnetic force is that it appears to depend on the fact 
that most humans are right-handed. Indeed, the direction of the force requires one to use 
the right-hand rule, which appears arbitrary. This is a common occurrence in physics, as 
many quantities are defined using a cross-product. However, no physical quantity can ever 
depend on our choice of right or left hand for determining cross-products. It turns out 
that any physical quantity (such as the force on a particle, which will deflect the particle 
in a clearly identifiable direction that does not depends on human’s choice of right and 
left), always depends on two successive applications of the right-hand rule. In this case, 
the direction of the magnetic field is also given by a right-hand rule applied to the moving 
charges that create the field (as we will see in the next chapter). The successive uses of the 
right hand twice “cancel”; one finds that a charge is deflected in the same direction if one 
had used the left hand to define the magnetic field, and then again the left-hand for the 
cross-product! We will revisit this issue in the next chapter. 

Consider the motion of a charged particle in a region where the magnetic field is uniform 
(constant in magnitude and direction). If the velocity vector of the particle is perpendicular 
to the magnetic field, the particle will undergo uniform circular motion, as illustrated in 
Figure 21.5. 

Figure 21.5: The motion of a charged particle in a uniform magnetic field (out of the page) is 
uniform circular motion. 

Indeed, the force is always perpendicular to the velocity, and the force is constant in magni-
tude since both the speed and magnetic field remain constant. These are the only conditions 
required for uniform circular motion. We can easily determine the radius, R, of the circle, 



684 CHAPTER 21. THE MAGNETIC FORCE 

since the magnetic force is responsible for the centripetal acceleration: 
2v 

FB = m 
R 

2v 
qvB = m 

R 
mv

∴ R = 
qB 

The radius is called the “cyclotron radius”. 

Checkpoint 21-4 

Is the particle illustrated in Figure 21.5 positively or negatively charged? 
A) The particle is positively charged. 
B) The particle is negatively charged. 
C) Not enough information to tell. 
D) The particle has no charge. 

Referring to Figure 21.5, if the velocity of the particle is in the plane of the page (per-
pendicular to the magnetic field), as illustrated, the particle will undergo uniform circular 
motion. If the velocity of the particle has a component that is parallel to the magnetic field 
(for example a component coming out of the page, towards you), the particle will undergo 
“helical motion” (a spiral). The radius of the helix is determined by the component of the 
velocity, ~v?, that is perpendicular the magnetic field: 

mv?∴ R = 
qB 

The charged particle would also have a component of velocity towards you that is constant, 
resulting in the spiral motion illustrated in Figure 21.6. Note that the distance between two 
spirals (labeled h in the figure) is called the “pitch”, and is determined by the component 
of velocity that is parallel to the magnetic field, ~vk, since that component is not a�ected by 
the magnetic force. 

Figure 21.6: The helical motion of a charged particle with a component of velocity parallel to the 
magnetic field. The distance, h, between spirals is called the “pitch”. 
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Example 21-1 

A particle of unknown charge and unknown mass is observed to undergo uniform circu-
lar motion with a period, T , when traveling perpendicular to a uniform magnetic field, 
B. What is the ratio of the particle’s charge to its mass, q/m? 

Solution 

We can use the period of the motion to determine the speed of the particle in terms of 
the radius of the circular path: 

2ˇR 
v = 

T 

and then use the equation for the cyclotron radius to relate this to the charge-to-mass 
ratio of the particle: 

mv 
R = 

qB 
2ˇRm = 
qBT 

q 2ˇ
∴ = 
m BT 

Discussion: When a charged particle undergoes uniform circular motion in a magnetic 
field, the radius of the motion depends on the particle’s charge-to-mass ratio. This can 
often be used to measure the mass of, say, an ion, if the charge of the ion is known 
(usually one or two units of the electron charge). A mass spectrometer makes use of this 
principle in order to determine the composition of a sample. The sample is vaporized 
and ionized, the ions are then accelerated using an electric potential di�erence, before 
they undergo uniform circular motion. Ions of di�erent masses (and same charge) 
will then undergo circular motion with di�erent radii, which allows their masses to be 
determined, and thus the composition of the sample to be known. 

21.3 The magnetic force on a current-carrying wire 

Review Topics 

Section 19.2 on the microscopic model of current. 

In this section, we examine the force that is exerted by a magnetic field on a wire that 
carries electric current. Since a current is formed by moving charges, it is natural to expect 
that a wire that carries current will experience a force if immersed in a magnetic field. 

Consider a vertical wire with cross-sectional area, A, carrying current, I, upwards that is 
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~immersed in a uniform magnetic field, B, into the page, as illustrated in Figure 21.7. Inside 
the wire, on average, electrons have a drift velocity, ~vd, in the downwards direction (since 
they move in the direction opposite to that of conventional current). 

Figure 21.7: A section of wire carries conventional current, I, upwards while being immersed in 
~a uniform magnetic field, B, into the page. We introduce the vector, ~l, to represent a section of 

wire of length l carrying current in the direction of ~l. 

~A single electron (with charge q = −e) will experience a magnetic force, Fe, given by: 

~ ~Fe = −e~vd × B 

as illustrated in Figure 21.7. A section of wire of length, l, will contain N = nAl drifting 
electrons, where n is the density of free electrons for the wire (the number of electrons per 
unit volume that are available to produce a current). Thus, the magnetic force on that 
section of wire will be N times the force on a single electron: 

~ ~ ~F = NF~ e = nAl(−e~vd × B) = −nAle~vd × B 

Recall the microscopic model of current to relate the drift velocity to the conventional 
current in the wire: 

I = −nAevd 

where the minus sign indicates that negative electrons flow in the opposite direction from 
~the conventional current. We also introduce a vector, l, with a magnitude equal to the 

length of the section of wire, and a direction that is parallel to the conventional current 
(thus anti-parallel to the electron drift velocity). The force on the section of the length, l, 
of the wire is thus given by: 

~ ~F = −nAle~vd × B 
~ ~F = I~l × B 
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Checkpoint 21-5 

Figure 21.8: A current carrying wire moving through a magnetic field. 

In which direction does the magnetic force point on the current-carrying wire that is 
placed in the magnetic field between the poles of the horseshoe magnet shown in Figure 
21.8? 

A) Up. 
B) Down. 
C) Into the page. 
D) Out of the page. 

Note that if the wire is not straight, then we can model the wire as being made of many 
infinitesimally short sections (Figure 21.9), of length dl, and sum the forces on those sections 
to get the total force on a section of length, L: Z L 

~ ~ ~F = Idl × B 
0 

Figure 21.9: The magnetic force on a curved current-carrying wire is obtained by modelling the 
~forces exerted on infinitesimal sections of wire, each with length dl, and summing together those 

forces to get the total force on the wire. 

Example 21-2 

A wire carrying current, I, is bent so as to have a semi-circular section with radius, R, 
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~as shown in Figure 21.10. The wire is immersed in a uniform magnetic field, B, that is 
perpendicular to the plane of the wire, as shown. Using the given coordinate system, 
what is the net force on the wire? 

Figure 21.10: A current-carrying wire with a semi-circular section is immersed in a uniform 
magnetic field. 

Solution 

We can model the wire as being made of three sections: a straight section carrying cur-
rent in the positive y direction, a curved section, and another straight section carrying 
current in the negative y direction. 

Consider the first straight section, carrying current in the positive y direction. The 
force on that section of wire, by the right hand rule, will be towards the left (negative 
x direction): 

= I~ ~FS l × B 
= I(lŷ) × (−Bẑ) 
= −IlB(ŷ × ẑ) = −IlBx̂ 

where, l, is the (unknown) length of that section of wire. The force exerted on the other 
straight section of wire will have the same magnitude, but the opposite direction (since 
the current, and thus the vector ~l, is in the opposite direction). Thus, the forces from 
the two straight sections of the wire cancel, as illustrated in Figure 21.11. 
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Figure 21.11: The magnetic force on di�erent sections of wire. 

In order to calculate the force exerted on the semi-circular section, we need to add 
together the forces exerted on the infinitesimal sections of the wire that make up that 
section. Consider the magnetic force on the two infinitesimal sections illustrated in 
Figure 21.11. The x components of the forces will cancel, whereas the y components 
will add. Thus, by symmetry, we anticipate that the net force on the semi-circular 
section will be in the positive y direction. 

Consider the small force on the section of wire located at an angle, �, as illustrated in 
~Figure 21.11. We can write the vector dl as: 

~dl = dl(sin �x̂ + cos �ŷ) 

Thus, the infinitesimal force on that section of wire is given by: 

~ ~ ~dF = Idl × B = Idl(sin �x̂ + cos �ŷ) × (−Bẑ) 
= −IBdl(sin �x̂ × ẑ  + cos �ŷ × ẑ) 
= −IBdl(− sin �ŷ + cos �x̂) 
= IBdl sin �ŷ − IBdL cos �x̂ = dFyŷ + dFxx̂ 

where, in the last line, we explicitly wrote out the x and y component of the infinitesimal 
force vector. In order to sum together these infinitesimal forces, it is most convenient 
to use the angle � to identify each segment. d� is related to dl, since dl is the length of 
the circle subtended by the infinitesimal angle d�: 

dl = Rd� 

Summing together all of the y components of the infinitesimal forces: Z Z ̌ Z ̌ 

Fy = dFy = IBR sin �d� = IBR sin �d� = 2IBR 
0 0 



690 CHAPTER 21. THE MAGNETIC FORCE 

Note that the x components sum to zero, as we predicted from symmetry: Z Z ̌ Z ̌ 

Fx = dFx = − IBR cos �d� = −IBR cos �d� = 0 
0 0 

The net force on the wire is thus given by: 

~F = 2IBRŷ 

Discussion: In this example we found the magnetic force on a curved section of 
current-carrying wire. The calculation was simplified by symmetry arguments, as we 
could use the right hand rule to anticipate that the force would have no component 
in the x direction. This is because there is as much current flowing in the positive y 
direction as there is in the negative y direction, so that the corresponding forces cancel. 
There is however a net flow of charges in the positive x direction, leading to a net force 
in the positive y direction. As a corollary, the net magnetic force on any closed loop of 
current must be zero. 

21.4 The torque on a current-carrying loop 
Review Topics 

• Section 11.3 on torque. 
• Section 16.4 on electric dipoles. 

As noted in example 21-2, the net magnetic force on any closed loop immersed in a uniform 
magnetic field is zero. Consider, for example, the current-carrying rectangular loop of height, 

~h, and width, w, immersed in a uniform magnetic field, B, as illustrated in Figure 21.12 
(note that the field is not perpendicular to the plane of the loop, as it was in Example 21-2). 

Figure 21.12: A rectangular loop carrying counter-clockwise current in a uniform magnetic field. 
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The magnetic force on the two horizontal sections of the wire are zero, since the current 
is co-linear with the magnetic field along those sections. In the left vertical section (with 
current flowing downwards), the magnetic force is out of the page (positive z direction), 
and is given by: 

~F = IhBẑ  

Similarly, the force on the right vertical section (with current flowing upwards) will have 
the same magnitude but the opposite direction. The net force on the loop is thus zero. 

However, the net torque on the loop about its vertical axis of symmetry (shown by the 
vertical dashed line in the figure) is not zero. The total torque is found by summing the 
torques from the forces exerted on the two vertical sections of wire: 

~ ~̋ = ~r × F~ + (−~r ×−F )� � 
w = 2~r × F = 2 − x̂ × IhBẑ = IBwh(−x̂ × ẑ)2 

∴ ~̋ = IBwh(ŷ) 

where ~r is the vector from the axis of rotation to the location where the force is exerted. 

21.4.1 Magnetic dipole moment 
Describing the torque on a loop can be diÿcult in three dimensions, so we introduce the 
“magnetic dipole moment” to simplify the description. 

If a closed loop carries a current, I, the magnetic dipole moment vector, ~µ, is defined such 
that it has a magnitude: 

µ = IA 

where, A, is the area enclosed by the loop. The direction of the magnetic dipole moment 
vector is such that it is perpendicular to the surface defined by the loop. Of the two such 
possible directions, the direction of the magnetic dipole moment is given by the right-hand 
rule for axial vectors; by curling the fingers in the direction of the current, the thumb will 
point in the direction of the magnetic dipole moment. This is illustrated in Figure 21.13. 

Figure 21.13: The right hand rule for axial vectors is used to determine the direction of the 
magnetic dipole moment vector for a loop carrying current, I. 
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In terms of the magnetic dipole moment, the torque on a loop, with magnetic dipole moment, 
~ ~ B, is given by: µ, immersed in a magnetic field, 

~ ~̋ = ~µ × B 

The magnitude of the torque is given by: 

˝ = µB sin � 

where � is the angle between the magnetic dipole moment and the magnetic field vectors. 

We can verify that this formula gives the correct torque for the rectangular loop in Figure 
21.12 that we calculated above. The magnetic dipole moment of that loop is given by: 

~µ = IAẑ = Iwhẑ  

where the direction of the vector is given by the right hand rule for axial vectors (out of the 
page, since the current is in the counter-clockwise direction in Figure 21.12). The torque 
on the loop is thus: 

~ ~̋ = µ~ × B = (Iwhẑ) × (Bx̂) = IBwh(ŷ) 

as we found previously. 

The magnetic dipole moment can be used to describe a current-carrying loop in a magnetic 
field. That is, instead of drawing a loop carrying current, we can equivalently simply draw 
the associated magnetic dipole moment vector. This is useful because the magnetic dipole 
moment vector behaves in the same way as a bar magnet (with the tip of the arrow acting 
like a North pole). Indeed, a magnetic field will always create a torque that will try to 
align the magnetic dipole moment with the magnetic field, just as the needle of a compass 
experience a torque if it is not aligned with the magnetic field of the Earth. The torque 
from the magnetic field is then zero when the magnetic dipole moment is parallel to the 
magnetic field (as the cross-product between co-linear vectors is zero). 

Figure 21.14 shows a way to visualize a current-carrying loop in a magnetic field using its 
magnetic dipole moment vector, ~mu. 

Figure 21.14: Three loops of current with di�erent orientations relative to a uniform magnetic 
field. The loops are seen from above, and the current is shown coming in and out of the page on 
each loop, along with the corresponding magnetic dipole moment vector. 
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Three loops are shown (as lines), seen from above, and the direction of the current in each 
loop is shown as going in or out of the page. Equivalently, one can simply draw the magnetic 
dipole moment vector for each loop (perpendicular to the plane of the loop). For the top 
loop, the magnetic dipole moment is parallel to the magnetic field, so the magnetic field 
exerts no torque. For the middle loop, the magnetic dipole moment makes an angle � 
with the magnetic field vector, so that the torque on that loop has a magnitude given by 
˝ = µB sin �, and points into the page (clockwise rotation). The bottom loop makes an 
angle of −ˇ/2 with the magnetic field, which results in a torque in the counter-clockwise 
direction. In all cases, the torque is such that it always tries to align the magnetic dipole 
moment vector with the magnetic field, just as if the magnetic dipole moment were the 
needle of a compass. 

Example 21-3 

Determine the magnetic dipole moment of the electron orbiting a hydrogen atom, if 
you assume that the electron is in a circular orbit with a radius of R = 0.5 °A. 

Solution 

As the electron orbits around the circle, it results in a circular loop of current, I. The 
current is the rate at which charge passes through a point per unit time. If the electron 
orbit has a period, T , then the corresponding current, I, is given by: 

�Q e 
I = = �t T 

The centripetal force on the electron is provided by the Coulomb force, FC , exerted 
by the proton, which allows us to obtain the orbital speed, and thus the period of the 
orbit: 

2v
FC = m 

R 
2e 2v

k 
R2 = m 

Rs 
ke2 

∴ v = 
mR 

2ˇR 
∴ T = 

v 
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The magnetic dipole moment is then given by: 

e ev 1 1 ke4R 
µ = IA = ˇR2 = ˇR2 = 2evR = 

T 2ˇR 2 m 

1 (9 × 109 N/C2 m2)(1.6 × 10−19 C)4(0.5 ° · A) = 9 × 1024 A m2= · 2 (9.1 × 10−31 kg) 

Discussion: In this example we calculated the orbital magnetic dipole moment of the 
electron in a hydrogen atom. This was a very simple model, since in reality, electrons 
do not orbit atoms in circular orbits, and one must use quantum mechanics to describe 
the motion precisely. 

s 
vuut 

21.4.2 Potential energy for a magnetic moment in a magnetic field 
A magnetic dipole moment in a magnetic field behaves in the same way as an electric dipole 
in an electric field. By analogy, we can then define a potential energy, U , for a magnetic 

~dipole moment, ~µ in a magnetic field, B: 

~U = −~µ · B = −µB cos � 

where � is the angle between the magnetic moment and the magnetic field. If a magnetic 
dipole is not aligned with a magnetic field and it is released, it will start to rotate (gain 
rotational kinetic energy) until it reaches a minimum in potential energy (� = 0). The 
magnetic moment would oscillate back and forth about � = 0 if there are no losses. Note 
that the point where � = ˇ, is an unstable equilibrium. 

Checkpoint 21-6 

When a magnetic dipole moment is paralell with a magnetic field and points in the 
same direction as the magnetic field, it will have... 

A) ... its maximum torque and maximum potential energy. 
B) ... its maximum torque and minimum potential energy. 
C) ... its minimum torque and maximum potential energy. 
D) ... its minimum torque and minimum potential energy. 

Checkpoint 21-7 

When a magnetic dipole moment is placed such that the torque from the magnetic field 
is maximized, it will have... 

A) ... zero potential energy. 
B) ... its minimum potential energy. 

21.5 The Hall E�ect 
Figure 21.15 shows a simple circuit to illustrate the Hall e�ect. A flat slab of metal, with 
width, w, is connected to a battery, so that current flows through the slab. The slab is 
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~immersed in a uniform magnetic field, B, that is perpendicular to the plane of the slab. 

Figure 21.15: Illustration of the Hall e�ect, as electrons flow through a slab that is immersed in a 
magnetic field, the magnetic force pushes them to one side, creating an electric potential di�erence, 
�VHall, transverse to the motion of the current through the slab. 

As the electrons enter the right-hand side of the slab (Figure 21.15) and drift towards the 
left, they will experience an upwards force from the magnetic field. As they move to the 
left through the slab, they also move upwards and “pile up” on that side of the slab. There 
will thus be an excess of negative charge on the top side of the slab, leading to an electric 
potential di�erence between the top and the bottom of the slab. This potential di�erence 
is called the “Hall potential”, �VHall. An equilibrium between the magnetic force and the 
electric force associated with the Hall potential is quickly reached, so that the Hall potential 
remains constant. 

If we model the slab as two parallel plates, with a potential di�erence, �VHall, between 
them, the electric field in the slab is constant and given by: 

E = �VHall 
w 

The equilibrium condition (that the electric force on an electron is equal to the magnetic 
force) is given by: 

FE = FB 
eE = evdB 

�VHall = vdB 
w 

∴ �VHall = vdwB 

If the drift velocity of electrons is known, then the Hall e ect can be used to measure 
the strength of the magnetic field by simply measuring the Hall voltage. This is the most 
common way to measure the strength of a magnetic field (and the device to do so is called 
a Hall probe). Conversely, if the magnetic field is known, the Hall e�ect can be used to 
characterize the drift velocity of electrons and other microscopic quantities for the material 
from which the Hall probe is made. 
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The Hall e�ect allows us to determine that it is negative charges that flow, and not positive 
charges. Indeed, consider Figure 21.15, but replace the electrons with positive charges 
flowing to the right, which is equivalent as far as analysing the circuit goes. In this case, 
those positive charges will be deflected upwards. Thus, if positive charges flow, the top side 
of the Hall probe becomes positive, whereas it becomes negative if it is negative charges 
that flow. By measuring the sign of the Hall potential, one can show that it is electrons 
that flow in an electric current. 

21.6 Applications 
In this section, we briefly outline a few applications of the magnetic force. 

21.6.1 Velocity selector and mass spectrometer 
In Example 21-1, we described how charged particles with di�erent charge-to-mass ratios 
will undergo uniform circular motion with di�erent radii, if they all have the same speed. 
This principle is used in mass spectrometers, which are devices that are able to detect trace 
amounts of matter in a sample. For example, when your bag gets swiped with a sticky 
tape at a security check at the airport, that piece of sticky tape is then analyzed by a mass 
spectrometer. 

The tape is vaporized in a way to ionize the atoms on the tape. The ions are then accelerated 
through an electric potential di�erence and then pass through a region with a magnetic field. 
The ions typically execute half of a circular orbit before being detected, as illustrated in 
Figure 21.16. The charge-to-mass ratio of the ions is determined from the radius of their 
orbit. Usually, their charge is either one or two times the electron charge, allowing their 
mass to be determined. 

Figure 21.16: Illustration of how a mass spectrometer can separate ions based on their charge-to-
mass ratio. A detector is placed to measure the number of ions that appear at each radius, allowing 
the composition of a sample to be determined. 
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In order for the mass spectrometer to function as designed, it is important that all of the 
charged particles enter the region of magnetic field with the same speed. A velocity selector 
is a device that combines perpendicular electric and magnetic fields in order to select only 
particles of a certain speed, regardless of their mass. The velocity selector is illustrated in 
Figure 21.17 

Figure 21.17: Illustration of a velocity selector. Only charged particles with a specific speed can 
make it through without colliding with one of the plates. 

In a velocity selector, both an electric and a magnetic force are exerted. Figure 21.17 shows 
a positive particle moving toward the right with speed, v. The particle will experience an 
upwards electric force and a downwards magnetic force. If those two forces are equal, then 
the particle will move in a straight line. If, instead, one of the forces is larger than the other, 
the particle will be deflected and hit one of the charged plates. The condition for the two 
forces to be equal is given by: 

FB = FE 
qvB = qE 
E

∴ v = 
B 

Thus, the electric and magnetic fields can be tuned so that their ratio gives the desired 
speed. Note that the speed selector works regardless of the sign of the charge or its mass, 
which makes it ideal to filter the particles entering a mass spectrometer. 

21.6.2 Galvanometer 
The galvanometer makes use of the magnetic force in order to measure electric current. 
In a galvanometer, a coil (many loops) is placed in a known magnetic field. As current 
passes through the coil, the magnetic dipole moment of the coil increases, and the magnetic 
field exerts a torque on the coil. The torque from the magnetic force is balanced by the 
restoring torque of a torsional spring (a coil spring). A needle is attached to the coil, and 
the deflection of the needle, proportional to the current in the coil, is then a measure of the 
current through the coil. A galvanometer is illustrated in Figure 21.18. 
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Figure 21.18: Illustration of a galvanometer. Current passes through the coil, and the coil rotates 
due to the torque from a magnetic field created by a permanent magnet. The torque from the 
magnetic force is balanced by a torsional spring. 

21.6.3 Electric motor 
In an electric motor, a current-carrying coil (many loops) is immersed in a fixed and uniform 
magnetic field. As current passes through the coil, the coil experiences a torque and rotates. 
Once the coil has reached a position where its magnetic dipole moment vector is parallel to 
the magnetic field, the direction of the current is reversed, so that the coil continues to feel 
a torque for another half turn, until the direction of the current is reversed again. This is 
illustrated in Figure 21.19. 



699 21.6. APPLICATIONS 

Figure 21.19: Illustration of a DC electric motor. Current circulates in the coil resulting in a 
torque from the magnetic field. Once the coil is aligned with the magnetic field, the direction of the 
current in the coil is inverted, so that the coil continues to feel a torque. The current is inverted 
using mechanical brushes that reverse the leads on the coil every half turn. 

21.6.4 Cathode ray tube 
The cathode ray tube is the main component of old televisions and monitors. In those 
devices, a beam of electrons is accelerated by an electric potential di�erence. The electrons 
then hit a phosphorescent screen, that emits light when the electrons collide with the screen. 
A magnetic field is used to deflect the electron beam to di�erent parts of the screen and 
create the desired image, in a rapid sweeping motion, fast enough that the human eye cannot 
detect the sweeping motion. An example of a cathode ray tube is shown in Figure 21.20. 

Figure 21.20: Illustration of a cathode ray tube from a side view (top) and a top view (bottom). 
A magnetic field is used to deflect a beam of electrons onto a screen. The perpendicular magnetic 
fields are used to sweep the beam rapidly across the whole screen to create an image. 

21.6.5 Loudspeaker 
In a loudspeaker, a coil is immersed in a non-uniform magnetic field. The coil is attached to 
a membrane so that the membrane moves with the coil when a magnetic force is exerted on 
the coil. AC current circulates in the coil, with the same frequencies as the desired sound. 
The coil then moves at those frequencies and the membrane then displaces the air, creating 
the desired sound waves. 
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Figure 21.21: Illustration of a loud speaker. As current moves through the coil, the coil is pushed 
back and forth by the magnetic force exerted by a permanent magnet. The motion is transferred 
to a membrane that move the air and creates the sound wave. 
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21.7 Summary 

Key Takeaways 

~In order to describe the magnetic force, we introduced the magnetic field, B. While 
there are some similarities with the electric field, the key di�erence in magnetism is 
that there are no “magnetic charges” (so-called monopoles), and magnets thus always 
have a North and a South pole. As a result, magnetic field lines never end and must 
always form closed loops. The magnetic field points in the direction of the force that 
would be exerted on the North pole of a magnet placed at that position. 

Electric charges can feel a force from a magnetic field only if they are moving relative 
to the frame of reference in which the magnetic field is described. If a charge, q, has 

~velocity, ~v, in a magnetic field, B, it will feel a magnetic force given by: 

~ ~FB = q~v × B 

The magnetic force can do no work, since it always acts in a direction perpendicular 
to the velocity (and thus to the displacement). The magnetic field acts in opposite 
directions for charges of opposite signs. 

In a uniform magnetic field, a charged particle with charge, q, mass m, and velocity 
~vector, ~v, perpendicular to a magnetic field, B, will undergo uniform circular motion, 

with a cyclotron radius, R, given by: 
mv 

R = 
qB 

A straight wire of length, l, carrying current, I, will experience a magnetic force in a 
~magnetic field, B: 

~F~ B = I~l × B 

where the vector ~l points in the same direction as the current. 

If the wire is curved (or the magnetic field changes direction along the wire), then we 
~can integrate the force, dF , exerted on each infinitesimal section of wire with length, 

~ ~dl. Again, the direction of dl is in the same direction as the current in the wire. The 
infinitesimal force on an infinitesimal section of wire, is given by: 

~ ~ ~dF = Idl × B 

A closed loop of wire carrying current will experience no net force in a uniform magnetic 
field. However, it will experience a torque, if the loop is not “aligned” with the magnetic 
field (the torque is zero if the magnetic field is perpendicular to the plane of the loop). 
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We define the magnetic dipole moment, ~µ of a loop of wire carrying current, I, to be a 
vector with magnitude: 

µ = IA 

where A is the area enclosed by the loop. The magnetic dipole moment vector is 
perpendicular to the plane of the loop, and points in the direction given by the right-
hand rule for axial vectors applied to the current (think of the current as rotating in 
the loop). 

~The torque from a magnetic field, B, exerted on a loop with a magnetic dipole moment, 
~µ, is given by: 

~ ~̋ = ~µ × B 

The torque is zero when the magnetic dipole moment vector is parallel to the magnetic 
field vector (corresponding to the loop being “aligned” with the magnetic field). One 
can think of the magnetic dipole moment as a small bar magnet, or the needle of a 
compass, that always experiences a torque to align it with a magnetic field. 

We can define the potential energy of a magnetic dipole moment in a magnetic field as: 

~U = −~µ · B = µB cos � 

The Hall e�ect can be observed when current flows through a slab that is immersed in 
a magnetic field that is perpendicular to the slab. As the electrons move longitudinally 
through the slab, they will also be pushed to one side by the magnetic force, result-
ing in an excess of negative charge on that side. An electric potential di�erence (the 
“Hall potential”) is then established between the two sides of the slab (in the direction 
perpendicular to the motion of the electrons). The Hall potential is given by: 

�VHall = vdwB 

where w is the width of the slab in the perpendicular direction, B is the strength of the 
magnetic field, and vd is the drift velocity of electrons. The most common use of the 
Hall e�ect is to build a Hall probe to measure magnetic fields. However, Hall probes 
can also measure the drift velocity of electrons and other microscopic properties. The 
sign of the Hall potential also indicates the sign of the charges moving in the slab. 

There are many applications of the magnetic force in our daily lives, including electric 
motors, loudspeakers, cathode ray tubes, mass spectrometers, and galvanometers. 
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Important Equations 

Magnetic force on a moving charge: Magnetic dipole moment: 

B = q~v × 
µ = IA 

Magnetic force on a current-carrying 

~B 

wire: 

~µ 

B = I × Torque on a magnetic dipole: 

~Cyclotron radius: ˝ = × 
mv 

R = 
qB 

~B 

~B~l 

~F 

~F 

~µ 

Important Definitions 

Magnetic field: A field used to model the magnetic force. SI units: [T]. Common 
variable(s): . 

Magnetic dipole moment: A property of an object which describes the torque it will 
experience in a magnetic field. SI units: [C · m2 · s−1]. Common variable(s): . 

~B 
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21.8 Thinking about the material 

Reflect and research 

1. When was magnetism first discovered? 
2. What is the origin of the word “magnetism”? 
3. What experiments support that magnetic monopoles do not exist? 
4. What did J.J. Thomson measure, and how? 
5. How do debit and credit cards use magnetism? 

To try at home 

1. Attempt to construct a compass using household materials. 

To try in the lab 

1. Propose an experiment to measure the magnitude of Earth’s magnetic field. 
2. Propose an experiment to construct a galvanometer and test its accuracy. 
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21.9 Sample problems and solutions 
21.9.1 Problems 
Problem 21-1: A cathode ray tube in a television accelerates an electron using a potential 
di�erence of �V = 500 V. The electron must be deflected upwards by a distance h = 3 cm 

~using a uniform magnetic field, B, before striking the phosphorescent screen, which is a 
distance d = 5 cm away. What direction and magnitude must the magnetic field have in 
order to steer the electron towards its destination? (Solution) 

Problem 21-2: A galvanometer has a square coil with a side length of a = 2.5 cm and N = 
70 loops between two magnets which generate a radial magnetic field of B = 8 mT. When 
a current runs through the coil, it generates a torque which is opposed by a spring with a 
torsional spring constant of � = 1.5 × 10−8 Nmrad−1. If the deflection of the galvanometer’s 
needle is 0.7 rad, what is the current running through the coil? (Solution) 

~ ~Problem 21-3: Integrate the equation dF = Idl × B~ over a circular path to show that the 
torque exerted on a circular loop of radius, R, carrying current, I, immersed in a uniform 

~magnetic field, B, has a magnitude given by ˝ = µB, where ~µ is the magnetic dipole moment 
of the loop. You may simplify the problem by modelling the loop when its magnetic moment 
is perpendicular to the magnetic field. (Solution) 
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21.9.2 Solutions 
Solution to problem 21-1: First, we determine the velocity of the electron that were 
accelerated over a potential di�erence of �V = 500 V. Their kinetic energy is given by their 
charge times the potential di�erence:: 

K = e�V 
1 2 = e�V2mv s vuut2(1.602 × 10−19 C)(500 V) 2e�V
∴ v = = 

m (9.109 × 10−31 kg) 
= 1.326 × 107 ms−1 

Now that we have the velocity, we must determine the direction of the magnetic field. We 
know that the electron is moving directly towards the phosphorescent screen (which we will 
define as ~x) and the electron must be deflected directly upwards (which we will define as 
~z). Knowing this, we can use the right hand rule to quickly determine that the magnetic 
force will be acting in the −~y direction. 

In the region with a magnetic field, the electron will undergo uniform circular motion with 
a radius give by the cyclotron radius, R: 

mv 
R = 

qB 

We thus need to determine the radius of that circle for the electron to arrive that desired 
location on the screen. A section of the circle about which the electron moves is illustrated 
in Figure 21.22. 

Figure 21.22: Deflection of an electron moving in a uniform magnetic field. 

From geometry and Pythagoras’ Theorem, we have: 

R2 = (R − h)2 + d2 

R2 = R2 − 2Rh + h2 + d2 

h2 + d2 (3 cm)2 + (5 cm)2 
∴ R = = = 5.67 cm 2h 2(3 cm) 
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The strength of the magnetic field is then given by: 

mv (9.11 × 10−31 kg)(1.326 × 107 ms−1)
B = = = 0.001 35 T 

qR (1.6 × 10−19 C)(0.0567 m) 

Solution to problem 21-2: First, we will determine the magnetic dipole moment of the 
square coil: 

µ = NIA 
µ = NIa2 

Now that we have the magnetic dipole moment, we can calculate the torque on the square 
coil that is produced by the magnetic field. Note that, in a galvanometer, the magnetic field 
is configured such that it is radial and always perpendicular to the magnetic dipole moment 
of the coil: 

˝B = NµBsin(90�) = NIa2B 

The deflection, �, for a given current will occur when the torque produced by the wire is 
equal to the torque produced by the spring. The torque produced by the spring is given by: 

˝s = �� 

where � is measured in radians. The above equation is the rotational equivalent of Hooke’s 
Law. Equating the torque from the spring and from the magnetic field, we can determine 
the current: 

˝B = ˝S 
NIa2B = �� 

�� (1.5 × 10−8 Nm(rad)−1)(0.7 rad) 
I = = 

Na2B 70(0.025 m)2(8 × 10−3 T) 
= 30 µA 

Solution to problem 21-3: Figure 21.23 illustrates a loop of radius, R, carrying current, 
~I. The loop is in the x−z plane, and there is a magnetic field, B, in the negative x direction. 

By setting the loop up this way, it is easier to visualize some of the three-dimensional aspects. 
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Figure 21.23: A current-carrying loop in a magnetic field. 

Consider an infinitesimal section of the loop, with length, dl, located on the loop at a 
~position labelled by the angle, �, as illustrated. The vector, dl, is given by: 

~dl = dl(− sin �x̂ + cos �ẑ) 

The magnetic force on that element of the loop is given by: 

~ ~ ~dF = Idl × B 
= Idl(− sin �x̂ + cos �ẑ) × (−Bx̂) 
= −IBdl cos �(ẑ × x̂) 
= −IBdl cos �ŷ 

and the force on that element of wire is out of the page (negative y direction), as illustrated. 
That infinitesimal force will create an infinitesimal torque: 

~d~̋ = ~r × dF 

where ~r is the vector from the axis of rotation (through the centre of the loop, parallel 
to the z axis) to the point where the force is exerted. The length of the vector, ~r, is 
simply r = R cos �, and the force is perpendicular to the vector ~r. Thus, the torque on the 
infinitesimal element is given by: 

~d~̋ = ~r × dF = (R cos �x̂) × (−IBdl cos �ŷ) 
= −IBR cos2 �dl(x̂ × ŷ) = −IBR cos2 �dlẑ  

and the torque on that infinitesimal element is in the negative z direction, as anticipated 
from the direction of the force. Note that had we considered the loop to be oriented such 
that the magnetic field is not in the plane of the loop, the vector ~r in the torque would have 
a component in the y direction. 

We can sum the torques on each element of the loop, from � = 0 to � = 2ˇ. We can express 
the length, dl, using the infinitesimal angle, d�, that subtends the arc of length, dl, on the 
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circle of radius, R: 

dl = Rd� 

The net torque is then given by: Z Z Z 2ˇ 
~̋ = d~̋ = −IBR cos2 �dlẑ = (−IBR2 ẑ) cos2 �d� = (−IBR2 ẑ)ˇ 

0 

The magnetic moment of the loop is: 

µ = IA = IˇR2 

so that the torque is indeed given by ˝ = µB. If we had rotated the loop so that the vector, 
~r, had a y component, then we would have found the general formula with a cross-product. 



22 Source of magnetic field 

In this chapter, we develop the tools to model the magnetic field that is produced by an 
electric current. We will introduce the Biot-Savart Law, which is analoguous to Coulomb’s 
Law in that it can be used to calculate the magnetic field produced by any current. We 
will also introduce Ampère’s Law, which can be thought of as the analogue to Gauss’ Law, 
allowing us to easily determine the magnetic field when there is a high degree of symmetry. 

Learning Objectives 

• Understand how to apply the Biot-Savart Law to determine the magnetic field 
from an electric current. 
• Understand how to apply Ampère’s Law. 
• Understand how to model the forces that are exerted on each other by two wires 

carrying current. 
• Understand how to model a solenoid and a toroid. 

Think About It 

How does an electromagnet work? 
A) Current is passed through a magnet, increasing its strength. 
B) Current is passed through a circular coil, creating a magnetic field. 

22.1 The Biot-Savart Law 
The Biot-Savart law allows us to determine the magnetic field at some position in space 
that is due to an electric current. More precisely, the Biot-Savart law allows us to calculate 

~ ~the infinitesimal magnetic field, dB, that is produced by a small section of wire, dl, carrying 
~current, I, such that dl is co-linear with the wire and points in the direction of the electric 

current: 

~ µ0I dl × r̂  ~dB = 4ˇ r2 

~where, ~r, is the vector from the element of wire, dl, to the point where we would like to 
determine the magnetic field, as illustrated in Figure 22.1. µ0 is a constant of proportionality 
called the “permeability of free space”, and has the value µ0 = 4ˇ × 10−7 T · m/A. 

710 
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~Figure 22.1: The infinitesimal magnetic field, dB, that is created by an infinitesimal section of 
~ ~wire, dl, carrying current I. Note that the vector, ~r, goes from dl to the point where we wish to 

calculate the field. 

The Biot-Savart Law has some similarities with the Coulomb Law to calculate the electric 
field, as the magnitude of the magnetic field decreases as the inverse of the square distance 
between the source and the field. However, it can only be expressed in di�erential form 
(i.e. as an infinitesimal), and it requires working in three dimensions, because of the cross 
product. It is usually more convenient to use the Biot-Savart Law in the form: 

~ µ0I dl × ~r ~dB = 4ˇ r3 

where the unit vector r̂  was replaced by ~r/r. 

The procedure for applying the Biot-Savart Law is as follows: 

1. Make a really good diagram, as you will have to include some 3D aspects. 
~2. Choose an infinitesimal section of wire, dl. 

3. Determine the vector ~r. 
~4. Determine the cross-product, dl × ~r, which will point in the direction of the magnetic 

field from that infinitesimal section of wire. 
~5. Write out the infinitesimal vector dB, and determine its components. 

~6. Think about symmetry! As you sum the dB, will some components cancel? If yes, 
you do not need to do those integrals. 

7. Determine the total magnetic field, component by component, by summing (integrat-
~ing) the components of dB over the wire. 

22.1.1 Magnetic field from a straight current-carrying wire 
In this section, we use the Biot-Savart Law to determine the magnetic field a distance, h, 
from the centre of a finite straight wire of length, L, carrying current, I, as illustrated in 
Figure 22.2. 
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Figure 22.2: Setting up the model to use the Biot-Savart Law to calculate the magnetic field a 
distance h from the centre of a current-carrying wire of length L. 

~We start by choosing an infinitesimal element of wire, dl, a distance y above the centre of 
the wire, as shown (we choose the origin to be located at the centre of the wire). The vector 
~dl is thus given by: 

~dl = dlŷ 

~The vector, ~r, from dl to the point at which we would like to know the magnetic field is 
given by: 

~r = r cos �x̂ − r sin �ŷ q 
h2 + y2 h 

r = = cos � 
~The cross-product between dl and ~r is easily found with the right-hand rule to point into 

the page (corresponding to the negative z direction). The magnitude of the cross-product 
is given by: 

~||dl × ~r|| = dlr sin ° 

~where ° = ˇ/2 + � is the angle between dl and ~r, so that sin ° = cos �. The cross-product 
can thus be written in terms of � as: 

~dl × ~r = −dlr cos �ẑ  

Note that we can also determine the cross-product algebraically instead of using the right-
hand rule and the magnitude: 

~dl × ~r = (dlŷ) × (r cos �x̂ − r sin �ŷ) 
= dlr cos �(ŷ × x̂) − rdl sin �(ŷ × ŷ) 
= −dlr cos �ẑ  
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~The infinitesimal magnetic field element, dB, is given by: 
~ µ0I dl × ~r µ0I dl cos � ~dB = = − ẑ4ˇ r3 4ˇ r2 

Any segment along the wire will result in a magnetic field that is into the page (negative z 
direction), thus there will be no cancellations due to any symmetries. We can now proceed 
to perform the integral. 

We can use either � or y to label the wire elements and carry out the integration. We will 
choose to integrate over �, requiring us to express dl and r in terms of � (and constants), as 

~ ~those are the only quantities in dB that depend on the position of dl. In order to express 
dl in terms of d�, we first relate � to y, the position of the wire element: 

dy h 
y = h tan � ! dl = dy = d� = d� 

d� cos2 � 

and r is given by: 
h 1 cos2 � 

r = ! = cos � r2 h2 

~Putting this altogether into dB: 
µ0I dl cos � µ0I h 

! 
cos2 � 

! 
µ0I ~dB = − 2 ẑ = − d� cos �ẑ = − cos �d�ẑ = dBz ẑ4ˇ r 4ˇ cos2 � h2 4ˇh 

We define the angle, �0, to be the maximum amplitude of the angle � when integrating over 
the wire (see Figure 22.2), so that we integrate � from −�0 to +�0: Z +�0 

Z +�0µ0I µ0I µ0I 
Bz = dBz = − cos �d� = − (2 sin �0) = − sin �0 

−�0 4ˇh −�0 4ˇh 2ˇh 
Using the given dimensions: 

L/2sin �0 = q 
h2 + L2 

4 

~Thus, the magnetic field, B, a distance, h, from the centre of a wire of length, L, carrying 
current, I, in the positive y direction is given by: 

~B = − µ0I q L/2 
ẑ  (finite wire) 2ˇh h2 + L2 

4 

The magnetic field must be rotationally symmetric; that is, if the wire is vertical, the 
magnetic field at a distance h must look the same regardless of the angle from which we 
view the vertical wire (we should always see the magnetic field going into the page at the 
point that we use in Figure 22.2). Thus, the magnetic field lines must form circles around 
the wire, as illustrated in Figure 22.3. Note that the direction of the magnetic field is given 
by the right-hand rule for axial vectors; when you align your thumb with the current, your 
fingers curl in the direction of the magnetic field. 
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Figure 22.3: The magnetic field from a current-carrying wire forms concentric circles centred on 
the wire. 

It is of particular interest to investigate the limiting case of an infinitely long wire, in the 
limit of L !1, or equivalently, �0 ! ˇ 2 . The latter is easiest to evaluate, since sin �0 ! 1. 

~The magnitude of the magnetic field, B, a distance, h, from an infinite wire carrying current, 
I, is given by: 

µ0I 
B = (infinite wire) 2ˇh 

One can often make the approximation that the wire is infinite in length, when the distance, 
h, is small compared to the length, L, of the wire. 

22.1.2 Magnetic field from a circular current-carrying wire 
In this section, we examine the magnetic field that is created by a circular current-carrying 
loop of wire. We can determine the shape of the magnetic field, by considering small sections 
as straight wires, with circular magnetic field lines around them. As we move closer to the 
centre of the ring, those fields sum together, as illustrated in Figure 22.4. Note that the 
magnetic field from a loop of current is identical to that from a bar magnet (as a bar magnet 
is, of course, a collection of current loops). 

Figure 22.4: The magnetic field from a current-carrying loop of wire can be thought of as the sum 
of the fields from small straight sections of wire. 
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Below, we use the Biot-Savart Law to derive an expression for the magnitude of the magnetic 
field at a distance, h, from the centre of a ring of radius, R, along its axis of symmetry, 
when there is a current, I, in the ring. While the mathematics are much easier than the 
case for the straight wire, the challenge in this case is to visualize the calculation in three 
dimensions! Figure 22.5 shows the loop of current, as well as our choice of coordinate system 
(with the origin at the centre of the ring). In particular, we wish to calculate the magnetic 
field at a distance, h, along the z axis. The x axis goes into the page. 

Figure 22.5: Diagram to apply the Biot-Savart Law in order to determine the magnetic field along 
the symmetry axis of a ring carrying current, I. The x axis goes into the page. 

~In order to apply the Biot-Savart Law, we choose an element, dl, of wire at the top of the 
~ring, as illustrated. At this position, the element, dl, points in the positive x direction (into 

the page): 

~dl = dlx̂ 

The vector, ~r, from the wire element to the point where we wish to determine the magnetic 
field is given by: 

~r = −r sin �ŷ + r cos �ẑ  

and the angle � will be the same for all wire elements along the ring. The cross-product, 
~dl × ~r, can be evaluated algebraically: 

~dl × ~r = (dlx̂) × (−r sin �ŷ + r cos �ẑ) 
= −rdl sin �(x̂ × ŷ) + rdl cos �(x̂ × ẑ) 
= −rdl sin �ẑ + rdl cos �(−ŷ) 
= −rdl sin �ẑ  − rdl cos �ŷ 
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~ ~so that the element of magnetic field, dB, corresponding to that choice of dl, will lie in the 
~ y − z plane, as illustrated in Figure 22.5. Note that the vector dB is perpendicular to the 

vector ~r (since it is the cross-product of ~r with another vector). The magnetic field element, 
~dB, is given by: 

~ µ0I dl × ~r µ0I ~dB = = (−rdl sin �ẑ  − rdl cos �ŷ)4ˇ r3 4ˇr3 

µ0I = (−dl sin �ẑ  − dl cos �ŷ) = dBz ẑ + dByŷ4ˇr2 

~As the wire element, dl, moves around the circle, the tip of the resulting magnetic field 
vector element traces a circle centred on the z axis, as illustrated in Figure 22.6. Note that, 

~in general, dB will also have an x component. Thus, only the z component of the magnetic 
field will not be cancelled when we sum together the magnetic field elements that come from 
the di�erent wire elements. 

~Figure 22.6: As the wire element, dl, moves along the ring, the tip of corresponding magnetic field 
~element vector, dB, describes a circle centred on the z axis. Thus, only the (negative) z component 

~of dB will survive when these are all added together. 

The total magnetic field will be in the negative z direction, as anticipated from Figure 22.4. 
Summing together the z components of the infinitesimal magnetic fields: 

dBz = −4 
µ

ˇr 
0I 

2 dl sin � Z Z 
Bz = dBz = − 4 

µ

ˇr 
0I 

2 dl sin � 

~Note that in this case, both r and � are constant for all of the dl, allowing us to take them 
out of the integral. The integral is then just a sum of the dl elements, which must add up 
to the circumference of the ring: 

Z Z 2ˇR µ0I µ0I µ0I 
Bz = dBz = − sin � dl = − sin �(2ˇR) = − 2 R sin �4ˇr2 0 4ˇr2 2r 
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In terms of the variables that we are given: 
p

r = R2 + h2 

R Rsin � = = p
r R2 + h2 

R2µ0I ~∴ B = − ẑ  (field from a loop of current) 2 (R2 + h2) 3 
2 

In this case, the math was relatively straightforward (no substitutions to evaluate the inte-
gral), however it is challenging to visualize the problem in three dimensions. 

Checkpoint 22-1 

A coil is made of N loops of current-carrying wire packed closely together. What is the 
magnetic field at the centre of the coil? 

A) µ 2 
0 
R
I 

B) Nµ 2R 
0I 

Nµ0IC) 2R2 

D) µ
R 
0I 

22.2 Force between two current-carrying wires 
Consider two infinite parallel straight wires, a distance h apart, carrying upwards currents, 
I1 and I2, respectively, as illustrated in Figure 22.7. 

Figure 22.7: Two parallel current-carrying wires will exert an attractive force on each other, if 
their currents are in the same direction. 

~The first wire will create a magnetic field, B1, in the shape of circles concentric with the 
wire. At the position of the second wire, the magnetic field B1 is into the page, and has a 
magnitude: 

µ0I1
B1 = 2ˇh 
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Since the second wire carries a current, I2, upwards, it will experience a magnetic force, 
~F2, from the magnetic field, B1, that is towards the left (as illustrated in Figure 22.7 and 

~determined from the right-hand rule). The magnetic force, F2, exerted on a section of 
length, l, on the second wire has a magnitude given by: 

µ0I2I1l ~ ~F2 = I2||l × B1|| = I2lB1 = 2ˇh 

~where we used the fact that the angle between ~l and B is 90�. We expect, from Newton’s 
Third Law, that an equal and opposite force should be exerted on the first wire. Indeed, 

~the second wire will create a magnetic field, B2, that is out of the page at the location of 
the first wire, with magnitude: 

µ0I2
B2 = 2ˇh 

~This leads to a magnetic force, F1, exerted on the first wire, that points to the right (from 
the right-hand rule). On a section of length, l, of the first wire, the magnetic force from the 

~magnetic field, B2, has magnitude: 

µ0I1I2~ ~F1 = I1||l × B2|| = I1lB2 = 2ˇh 

which does indeed have the same magnitude as the force exerted on the second wire. Thus, 
when two parallel wires carry current in the same direction, they exert equal and opposite 
attractive forces on each other. 

Checkpoint 22-2 

Figure 22.8: Two wires that carry current in opposite directions. 

Two parallel wires carry current in opposite directions, as shown in Figure 22.8. What 
force do they exert on each other? 

A) There will be no force, since the currents cancel. 
B) There will be an attractive force between the wires. 
C) There will be a repulsive force between the wires. 

The attractive force between two wires used to be the basis for defining the Ampère, the S.I. 
(base) unit for electric current. Before 2019, the Ampère was defined to be “that constant 
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current which, if maintained in two straight parallel conductors of infinite length, of negli-
gible circular cross-section, and placed one metre apart in vacuum, would produce between 
these conductors a force equal to 2 × 10−17 N per metre of length”. Recently, the definition 
was updated to be based on defining the Coulomb in such a way that the elementary charge 
has a numerical value of e = 1.602 176 634 × 10−19 C, and the Ampère corresponds to one 
Coulomb per second. 

The force between two wires is a good system to understand how any physical quantity 
cannot depend on our choice of the right-hand to define cross-products. As mentioned in 
the previous chapter, any physical quantity, such as the direction of the force exerted on a 
wire, will always depend on two successive uses of the right hand. In this system, we first 
used the right-hand rule for axial vectors to determine the direction of the magnetic field 
from one of the wires. We then used the right-hand rule to determine the direction of the 
cross-product to determine the direction of the force on the other wire. You can verify that 
you get the same answer if you, instead, use your left-hand to define the direction of the 
magnetic field (which will be in the opposite direction), and then again for the cross-product. 
This also highlights that the magnetic field (and the electric field) is just a mathematical 
tool that we use to, ultimately, describe the motion of charges or compass needles. 

Checkpoint 22-3 

When current is flowing in a straight cable, how to you expect the charges to be dis-
tributed radially through the cross-section of the cable? 

A) Uniformly in radius (current density does not depend on r). 
B) There will be an excess of positive charges on the outside of the cable. 
C) There will be an excess of negative charges on the outside of the cable. 

22.3 Ampère’s Law 
Ampère’s Law is similar to Gauss’ Law, as it allows us to (analytically) determine the 
magnetic field that is produced by an electric current in configurations that have a high 
degree of symmetry. Ampère’s Law states: I 

~ ~l = µ0I
encB · d 

where the integral on the left is a “path integral”, similar to how we calculate the work 
done by a force over a particular path. The circle sign on the integral means that this is 
an integral over a “closed” path; a path where the starting and ending points are the same. 
Ienc is the net current that crosses the surface that is defined by the closed path, often called 
the “current enclosed” by the path. This is di�erent from Gauss’ Law, where the integral 
is over a closed surface (not a closed path, as it is here). In the context of Gauss’ Law, we 
refer to “calculating the flux of the electric field through a closed surface”; in the context 
of Ampère’s Law, we refer to “calculating the circulation of the magnetic field along a 
closed path”. 

We apply Ampère’s Law in much the same way as we apply Gauss’ Law: 
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1. Make a good diagram, identify symmetries. 
2. Choose a closed path over which to calculate the circulation of the magnetic field (see 

below for how to choose the path). The path is often called an “Amperian loop” 
(think “Gaussian surface”). 

3. Evaluate the circulation integral. 
4. Determine how much current is “enclosed” by the Amperian loop. 
5. Apply Ampère’s Law. 

Similarly to Gauss’ Law, we need to choose the path (instead of the surface) over which 
we will evaluate the integral. The integral will be easy to evaluate if: 

~ ~1. The angle between B and dl is constant along the path, so that: I I I 
~ ~B · dl = Bdl cos � = cos � Bdl 

~ ~where � is the angle between B and dl. 
~2. The magnitude of B is constant along the path, so that: I I 

cos � Bdl = B cos � dl 

Choosing a path that meets these two conditions is only possible if there is a high degree 
of symmetry. 

Consider an infinitely long straight wire, carrying current, I, out of the page, as illustrated 
in Figure 22.9. The magnetic field from the wire must look the same regardless of the angle 
from which we view the wire (“azimuthal symmetry”). Thus, the magnetic field must either 
form concentric circles around the wire (which we know is the case from the Biot-Savart 
Law) or it must be in the radial direction (pointing towards or away from the wire). These 
two possibilities are illustrated in Figure 22.9, and we will pretend, for now, that we do not 
know which is correct. 

Figure 22.9: By symmetry, the magnetic field from an current-carrying infinite wire (illustrated 
with current coming out of the page), must either form concentric circles (left panel), or be in the 
radial direction (right panel). We know that the former (circles, left panel) is the correct choice. 
The dotted lines show “Amperian loops” that one can use to calculate the integral in Ampère’s 
Law. 

In order to apply Ampère’s Law, we choose an Amperian loop (instead of a “Gaussian 
surface”). In the case of an infinite current-carrying wire, a circle that is concentric with 
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the wire will meet the properties above, regardless of the two possible configurations of the 
magnetic field: with a circular Amperian loop, the angle between the magnetic field and 

~the element dl is constant along the entire loop, and the magnitude of the magnetic field 
is constant along the loop. Our choice of loop is illustrated in Figure 22.10, where we have 
illustrated the magnetic field for the case where it forms concentric circles. 

Figure 22.10: An Amperian loop that is a circle of radius, h, will allow us to determine the 
magnetic field at a distance, h, from an infinitely-long current-carrying wire. 

The circulation of the magnetic field along a circular path of radius, h, is given by: I I I I 
~ ~B · dl = Bdl cos � = cos � Bdl = B cos � dl = B cos �(2ˇh) 

where cos � is 1 if the field forms circles (correct) or 0 if the field is radial (incorrect). We 
can now evaluate the current that is enclosed by the Amperian loop. The current that is 
enclosed is given by the net current that traverses the surface defined by the Amperian loop 
(in this case, a circle of radius h). Since the loop encloses the entire wire, the enclosed 
current is simply, I. Applying Ampère’s Law: I 

~ ~l = µ0I
encB · d 

B cos �(2ˇh) = µ0I 

At this point, it is clear that cos � cannot be zero, since the right-hand side of the equation 
is not zero. We can thus conclude that the magnetic field must indeed make concentric 
circles, as we had previously determined. The magnitude of the magnetic field is given by: 

µ0I 
B = 2ˇh 

as we found previously with the Biot-Savart Law. Again, in analogy with Gauss’ Law, one 
needs to apply some knowledge of symmetry and argue in which direction the magnetic field 
should point, in order to use Ampère’s Law e�ectively. 

Checkpoint 22-4 

Ampère’s law proves that the magnetic field at the centre of a current-carrying loop is 
zero because there is no enclosed current: 

A) True. 
B) False. 
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Example 22-1 

A long solid uniform cable of radius, R, carries current, I, with a current density that is 
uniform through the cross-section of the cable. Determine the strength of the magnetic 
field as a function of, r, the distance from the centre of the cable, inside and outside of 
the cable. 

Solution 

In this case, we need to determine the magnetic field both inside and outside of the ca-
ble. Figure 22.11 shows two circular Amperian loops that we can use to apply Ampère’s 
Law to determine the magnetic field inside and outside of the cable. 

Figure 22.11: Two circular Amperian loops to determine the magnitude of the magnetic field 
inside and outside of a current-carrying cable of radius, R (with uniform current coming out 
of the page). 

By symmetry, and following the discussion in this chapter, we know that the magnetic 
field must form concentric circles, both inside and outside of the cable. Outside the 
cable, we proceed in the same fashion as above, choosing an Amperian loop of radius, 
r > R, such that the circulation is given by: I 

~ ~B · dl = B2ˇr 

The entire cable is enclosed by the loop, so that the enclosed current is, I. Thus, 
Ampère’s Law gives: I 

~ ~l = µ0I
encB · d 

B(2ˇr) = µ0I 

∴ B = µ0I (r � R)2ˇr 

Inside of the cable, the circulation integral around a circular path of radius, r < R, is 
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the same: I 
~ ~B · dl = B2ˇr 

However, in this case, the smaller Amperian loop does not enclose all of the current 
flowing through the cable. We are told that the current density, j, is uniform in the 
cable. We can thus determine the current per unit area (i.e. the current density) 
that flows through the whole cable, and use that to determine how much current flows 
through the surface with area ˇr2 that is defined by the Amperian loop: 

I I 
j = = 

A ˇR2 
2I r

∴ Ienc = j(ˇr2) = (ˇr2) = I 
ˇR2 R2 

Finally, we can apply Ampère’s Law to determine the magnitude of the magnetic field 
inside the cable: I 

~ ~l = µ0I
encB · d 

2r 
B(2ˇr) = µ0I 

R2 

µ0I∴ B = 2ˇR2 r 

and we find that the magnetic field is zero at the centre of the cable (r = 0), and 
increases linearly up to the edge of the cable (r = R). 

Discussion: In this example, we used Ampère’s Law to model the strength of the 
magnetic field inside and outside of a current-carrying cable. In order to apply Ampère’s 
Law inside the cable, we took into account that only a fraction of the current is enclosed 
by the Amperian loop. This problem is analoguous to applying Gauss’ Law to determine 
the electric field inside and outside of a uniformly charged sphere. 

22.3.1 Interpretation of Ampère’s Law and vector calculus 
In this section, we discuss Ampère’s Law in the context of vector calculus and provide 
a di� erent perspective, mostly for informational purposes. The integral that appears in 

~Ampère’s Law is called the “circulation” of the vector field, B: I 
~ ~B · dl 

The circulation, as its name implies, is a measure of “how much rotation there is in the 
field”. To visualize this, imagine that the vector field is a velocity field for points in a fluid. 
Regions of the fluid where there are little whirlpools (so called “eddies”), correspond to 
regions of the field with non-zero circulation (the sign of the integral tells us the direction 
of rotation, using the right-hand rule for axial vectors). Examples of field with and without 
circulation are shown in Figure 22.12. You will recognize that static electric charges create 
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electric fields with no circulation (right panel), whereas static currents create magnetic fields 
with circulation. 

Figure 22.12: Examples of field with (left panel) and without (right panel) circulation, as evaluated 
along the closed loop shown with the dashed line. 

Ampère’s Law is thus a statement that an electric current will result in a field with a 
magnitude proportional to the current, that has some degree of rotation to it. The direction 
of rotation of that field corresponds to the right-hand rule for axial vectors as applied to 
the current (your thumb points in the direction of the current so that your fingers curl in 
the direction of the rotation of the associated field). 

Circulation, as defined by the integral over a closed loop, is not a local property of the 
field, since it depends on what the field is doing as a whole over the path of the loop. Just 
as one can obtain a “local” version of Gauss’ Law, one can also obtain a local version of 
Ampère’s Law using techniques from advanced vector calculus (that are beyond the scope 
of this textbook). 

Stokes’ theorem allows one to convert the circulation integral (a path integral on a closed 
loop) into a integral over the (open) surface that is defined by the loop: I Z 

~ ~ ~ ~Bdl = (r× B) · dA 
C S 

where the subscript C indicates that the integral is over a one-dimensional path, whereas 
the subscript S indicates that the integral is over a two-dimensional surface. The term, 

~ r × B, is called the “curl” of the magnetic field and is a local measure of the amount of 
rotation in the field. Applying Stokes’ theorem to Ampère’s Law yield: I 

~ ~l = µ0I
encB · d Z 

~ A~ = µ0I
enc(r× B) · d 

S 

Note that we can also write the current, Ienc, that is enclosed by the loop as the integral of 
~the current density, j, over the surface defined by the loop: Z 

Ienc ~ ~= j · dA 
S 



   

 

725 22.4. SOLENOIDS AND TOROIDS 

Thus, we can write Ampère’s Law with integrals over the same surface on either side of the 
equation, implying that the integrands must be the same: Z Z 

~ ~ ~ ~(r× B) · dA = µ0 j · dA 
S S 

~∴ r× B = µ0 ~j 

This last equation now relates a local property (current density) to the magnetic field at that 
point, and is the usual form in which Ampère’s Law is presented (the so-called “di�erential 
form”, rather than the “integral form”). 

~The curl of the magnetic field, r× B, is a vector that is given by the following: ! ! ! 
~r × B = @Bz @By− x̂ + @Bx @Bz− ŷ + @By @Bx− ẑ 

@y @z @z @x @x @y 

and the name “curl” is chosen because this is a measure of the amount of rotation (curl) in 
the field. In di�erential form, Ampère’s Law can read as: “a current density will create a 
(magnetic) field that has non-zero curl”. 

Since Ampère’s Law in di� erential form is a vector equation (both sides are vectors), it 
really corresponds to three equations in Cartesian coordinates, one per component. For 
example, the x component of the equation is a “partial di�erential equation” for the y and 
z components of the magnetic field: ! 

@Bz @By− = µ0jx
@y @z 

that is in general diÿcult to solve without a computer (and all three equations are required, 
as these are “coupled”, since a given component of the magnetic field appears in two of 
three equations). 

22.4 Solenoids and toroids 
In order to create strong magnetic fields, the most practical method is to combine many 
loops of current together into a “solenoid” (a coil). Electromagnets function on this principle 
and are ubiquitous in our lives. Figure 22.13 shows the magnetic field from a single loop of 
current. 

Figure 22.13: The magnetic field from a single loop of current. 

When several loops of current are brought close together, as in Figure 22.14, the magnetic 
field inside the solenoid becomes uniform, and the magnetic field just outside the solenoid 
approaches zero. 
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Figure 22.14: As multiple loops of current are brought together to form a solenoid, the magnetic 
field inside the solenoid becomes uniform and the field outside the solenoid approaches zero. 

We can use Ampère’s Law to determine the strength of the magnetic field inside of a solenoid, 
under the assumption that the magnetic field is uniform in the volume of the solenoid and 
zero just outside. Consider a solenoid with current, I, going through it, that contains n 
loops per unit length. In order to determine the magnetic field, B, inside of the solenoid, 
consider the rectangular Amperian loop, abcd, of length, l, illustrated in Figure 22.15. 

Figure 22.15: We use Ampère’s Law with a rectangular loop to evaluate the strength of the magnetic 
field inside a solenoid. 

In order to evaluate the circulation of the magnetic field around the loop, abcd, we divide 
~ ~the loop up into segments, and evaluate the path integral (

R 
B · dl) over each segment, then 

add those together to obtain the integral over the closed path: 
I Z ZZ b c Z d a 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~B · dl = B · dl + B · dl + B · dl + B · dl 
abcd a b c d 

~Over each segment, the vector dl will be parallel to that segment. Only the last term is 
non-zero. The integrals over the segments ab and cd are zero because the magnetic field is 

~perpendicular to dl over those segments (so the scalar product is zero). The integral over 
the segment bc is zero because the magnetic field is zero just outside the solenoid. The 

~ ~integral over the last segment, where dl and B are parallel, is simply given by: I Z Z a a 
~ ~ ~ ~B · dl = B · dl = B dl = Bl 

abcd d d 

since the length of the segment is l, and the magnetic field is constant in magnitude. 

In order to apply Ampère’s Law, we must determine the current that is enclosed by our 
Amperian loop. Since the rectangular loop has a length, l, it will enclose N = nl loops of 
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current, I, since there are n loops per unit length. Thus the enclosed current is Ienc = nlI. 
Applying Ampère’s Law, we find the magnetic field inside a solenoid: 

I 
~ ~l = µ0I

encB · d 

Bl = µ0nIl 

∴ B = µ0nI (Field inside a solenoid) 

which does not depend on our (arbitrary) choice of making an Amperian loop with an 
arbitrary length of l. In practice, when solenoids are used as electromagnets, they are 
typically filled with a ferromagnetic material, which will magnetise when there is a current, 
resulting in a stronger magnetic field. This is usually done by winding a wire around an 
iron rod. 

Note that if we extend the Amperian loop so that the bottom segment is also outside the 
solenoid, as in Figure 22.16, it is easy to show that the magnetic field immediately outside of 
the solenoid must be zero. Indeed, in this case, there are an equal number of currents coming 
out of the page as there are going into the page, so that the net current that is enclosed by 
the Amperian loop (the net current that crosses the plane of the loop) is identically zero, 
so that the circulation must be zero, implying that the magnetic field is zero just outside 
the solenoid. 

Figure 22.16: By extending the Amperian loop to both sides of the solenoid, we conclude that the 
magnetic field just outside the solenoid must be zero, because the net current enclosed is zero. 

A toroid can be thought of as a solenoid that has been bent into the shape of a circle (or 
rather, a torus), as illustrated in Figure 22.17. Inside the toroid, the magnetic field forms 
concentric circles (not shown). 
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Figure 22.17: An Amperian loop of radius r to determine the magnetic field inside of a toroid. Note 
that the magnetic field everywhere outside the toroid must be zero (think of the current enclosed 
by Amperian loops). 

Again, we can use Ampère’s Law to determine the strength of the magnetic field inside the 
toroid. Consider the circular Amperian loop of radius r that is illustrated in Figure 22.17. 
Since the magnetic field is parallel to the Amperial loop everywhere along the loop, and the 
magnetic field does not change magnitude (by symmetry), the circulation is given by: 

I 
~ ~B · dl = B(2ˇr) 

If the toroid contains N loops of current, then the enclosed current is given by Ienc = NI, 
since the Amperian loop include N times the current I coming out of the page. Ampère’s 
Law thus gives the magnitude of the magnetic field as: I 

~ ~l = µ0I
encB · d 

B(2ˇr) = µ0NI 

µ0NI ∴ B = 2ˇr 

which decreases in magnitude with increasing radius, as long as we are inside the toroid. It 
is easy to show, by using Amperian loops that are either smaller or bigger than the toroid, 
that the magnetic field everywhere outside of the toroid is exactly zero (as those Amperian 
loops will enclose no net current). In a toroid, the magnetic field lines form closed circles. 
For a solenoid, there must exist a magnetic field somewhere outside the solenoid, in order 
for the field lines inside the solenoid to close. We can usually ignore these if the solenoid is 
long, as the field outside will be very weak, and very close to zero very close the solenoid 
(as we showed with Ampère’s Law above). 
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Checkpoint 22-5 

In Figure 22.17, the magnetic field makes concentric circles. What direction do the field 
lines point?: 

A) Clockwise. 
B) Counter clockwise. 
C) Upwards. 
D) Not enough information to tell. 
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22.5 Summary 

Key Takeaways 

Magnetic fields are created by moving charges. The Biot-Savart Law allows us to 
~determine the infinitesimal magnetic field, dB, that is produced by the current, I, 

~flowing in an infinitesimal section of wire, dl: 

~ µ0I dl × r̂  ~dB = 4ˇ r2 

where µ0 is a constant called the permeability of free space. The vector ~r points from 
~the wire element, dl, to the point at which we want to determine the magnetic field. In 

order to determine the magnetic field from a finite wire, one must sum (integrate) the 
contributions that come from each section of wire. It is often easier to work with the 
Biot-Savart law written without the unit vector, r̂: 

~ µ0I dl × ~r ~dB = 4ˇ r3 

The magnetic field at a distance, h, from an infinitely long wire carrying current, I, is 
given by: 

µ0I 
B = 2ˇh 

The magnetic field from a straight current-carrying wire forms concentric circles centred 
around the wire. The direction of the magnetic field is given by the right-hand rule for 
axial vectors; with the thumb pointing in the direction of current, the fingers curl in 
the direction of the magnetic field. 

The magnitude of the magnetic field, a distance, h, from the centre of a circular loop 
of wire with radius, R, carrying current, I, along the axis of symmetry of the loop is 
given by: 

R2µ0I 
B = 2 (R2 + h2) 3 

2 

The direction of the magnetic field can also be found using the right-hand rule for axial 
currents. In this case, if your fingers curl in the direction of the current loop, your 
thumb points in the same direction as the magnetic field at the centre of the loop. 

Two parallel wires carrying currents, I1 and I2, separated by a distance, h, will exert 
equal and opposite forces on each other with a magnitude: 

µ0I1I2
F = 2ˇh 
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The force is attractive if the two currents flow in the same direction and repulsive 
otherwise. 

Ampère’s Law is the magnetism analogue to Gauss’ Law. Just like Gauss’ Law, it 
requires a high degree of symmetry to be applied analytically, although it is always 
valid. Ampère’s Law relates the circulation of the magnetic field around a closed path 
to the current enclosed by that path: I 

~ ~l = µ0I
encB · d 

In order to apply Ampère’s Law, we must first choose an Amperian loop over which 
to compute the closed path integral (instead of choosing a Gaussian surface to calcu-
late the flux of the electric field on a closed surface). The circulation integral will be 
straightforward to evaluate if: 

~ ~1. The angle between B and dl is constant along the path, so that: I I I 
~ ~B · dl = Bdl cos � = cos � Bdl 

~ ~where � is the angle between B and dl. 
~2. The magnitude of B is constant along the path, so that: I I 

cos � Bdl = B cos � dl 

The current enclosed, Ienc, corresponds to the net current that crosses the surface that 
is defined by the Amperian loop (a closed path always defines a surface). 

Ampère’s Law is straightforward to use in situations with a high degree of symmetry, 
such as infinitely long wires carrying current. 

Solenoids are formed by combining many loops of current together, in order to form 
a strong and uniform magnetic field. The magnetic field inside of a solenoid has a 
magnitude of: 

B = µ0nI 

where, I, is the current in the solenoid, and n, is the number of loops per unit length 
in the solenoid. The magnetic field just outside of a solenoid is zero, and generally, the 
magnetic field is negligible outside of a solenoid. 

A toroid is formed by bending a solenoid into a circle to form a torus. The magnetic 
field lines inside of a toroid form concentric circles. The magnetic field decreases with 
radius inside of a toroid and is identically zero everywhere outside a toroid. 
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Important Equations 

Biot-Savart law: Force between two wires: 
~ ~ µ0I dl × r̂  µ0I dl × ~r ~ µ0I1I2dB = = F =4ˇ r2 4ˇ r3 2ˇh 

Magnetic field from a 
Ampère’s law: finite wire: Iµ0I 

B = B~ · d~l = µ0I
enc

2ˇh 

Magnetic field from an 
infinitely long wire: 

µ0I 
B = 2ˇh 

Magnetic field from a 
circular loop of current: 

R2µ0I 
B = 2 (R2 + h2) 3 

2 
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22.6 Thinking about the material 

Reflect and research 

1. Who discovered Ampère’s Law? What did Ampère discover? 
2. What are three common uses of electromagnets. 
3. How does a coil gun work? 

To try at home 

1. Use a battery and some wire to build an electromagnet. Is it stronger if you use 
a ferromagnetic core? 

2. Research the current that your household electronics have. Are design choices 
e�ected by the magnetic fields generated by the current in these electronics? 

To try in the lab 

1. (Simulation) Calculate the magnetic field from a loop of current at all positions 
in space (not only on the axis of symmetry). 

2. Propose an experiment to characterize the magnetic field produced by Helmholtz 
coils. 

3. Propose an experiment to build and test a coil gun. 
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22.7 Sample problems and solutions 
22.7.1 Problems 
Problem 22-1: A square loop of wire with side length, L, carries current, I, as shown in 
Figure 22.18. What is the magnetic field at the centre of the loop? 

Figure 22.18: A square loop of current. 

(Solution) 

Problem 22-2: Helmholtz coils are an arrangement of two parallel loops of current which 
produce a nearly uniform magnetic field. Helmholtz coils are formed by two identical circular 
loops of radius, R, carrying the same current, I, where the centres of the coils are separated 
by the distance, R, as illustrated in Figure 22.19. Determine the magnetic field as a function 
of z, along the axis of symmetry of the coils, where the origin is located half way between 
the two coils. Make a plot of the magnetic field as a function of z from each coil, as well as 
the total electric field to show that it is close to uniform between the coils. 

Figure 22.19: A Helmholtz coil arrangement. 

(Solution) 
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22.7.2 Solutions 
Solution to problem 22-1: The square loop is simply made of four straight sections of 
wire of length, L. The magnetic field from each section of wire is into the page, which you 
can easily verify with your right-hand (with your thumb in the direction of current, your 
fingers curl in the direction of the resulting magnetic field). 

The magnetic field at the centre is just four times the magnetic field produced by a single 
segment, which we determined in this chapter. The magnetic field at the centre of the loop 
is thus four times the magnetic field at a distance, h = L 2 , from a wire of length, L: 

µ0I L/2 p
2µ0I 

B = 4 × q = 2
2ˇ L 2 

L2 + L2 ˇL 
4 4 

Solution to problem 22-2: We know that the magnetic field at a distance, h, from the 
centre of a loop of current, along its axis of symmetry is given by: 

µ0I R2 
B(h) = 2 (R2 + h2) 3

2 

For the two coils in the Helmholtz configuration, the magnetic field from each coil will be 
in the same direction. The centre of the two coils are located at z = ±R 

2 . Thus, if we are 
located at position, z, along the z axis, one coil will be at a distance of z + R 2 , and the other 
at a distance z − R 2 . The total magnetic field as a function of z is then given by: � � � � 

Btot(z) = B R R 
z + + B z +2 2 

µ0I R2 µ0I R2 
= +� �2 � �22 (R2 + 2 (R2 +) 3

2 ) 3
2z + R 2 z − R 2 

We can plot this function, as well as the two individual terms using python. For information, 
we show the code below. In order to make the plot, we need to choose some reasonable 
values for the radius of the coils and the current through the coils, for example: 

• R = 0.3 m 
• I = 0.1 A 

Python Code 22.1: Numerical integration of a function 

#Import the modules that we need : 
import numpy as np 
import pylab as p l 

#Def ine some cons tant s : 
mu0 = 4�np . p i �1e−7 #4 p i 
I = 0 .5 
R = 0 . 3 
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#Def ine the va lue s on the z ax i s , from −2R to +2R, in 100 increments 
z = np . l i n s p a c e (−2�R, 2 �R, 1 0 0 ) 

#Determine the magnetic 
#The c o i l at z = − R/2 : 

f i e l d from the c o i l s at those va lue s o f z 

B1 = 
#The 

(mu0� I ) /2 � R�� 2/((R��2+(z+R/2) �� 2) �� (3/2) ) 
c o i l at z = + R/2 : 

B2 = (mu0� I ) /2 � R�� 2/((R��2+(z−R/2) �� 2) �� (3/2) ) 
#The sum : 
B = B1 + B2 

#Make the p l o t 
p l . f i g u r e ( f i g s i z e =(10 ,6) ) 
p l . p l o t ( z , B1 , l a b e l= ’ Co i l 
p l . p l o t ( z , B2 , l a b e l= ’ Co i l 

at 
at 

z=−R/2 ’ ) 
z=+R/2 ’ ) 

p l . p l o t ( z ,B, l a b e l= ’ Total ’ ) 
p l . l egend ( ) 
p l . x l a b e l ( ’ z p o s i t i o n [m] ’ ) 
p l . y l a b e l ( ’ Magnetic f i e l d [T] ’ ) 
p l . show ( ) 

Output 22.1: 

Figure 22.20: Magnetic field from each coil, as well as their sum, for two coils in the Helmholtz 
configuration 

As advertised, we see a region between the Helmholtz coils where the magnetic field is nearly 
uniform. 



23 Electromagnetic Induction 

In this chapter, we introduce the tools to model the connection between the magnetic and 
the electric field. In particular, we will see how a changing magnetic field can be used to 
induce an electric current, which is the basic principle behind the electric generators that 
power our life. We will also briefly discuss how electromagnetic waves are formed. 

Learning Objectives 

• Understand how to apply Faraday’s Law to determine an induced voltage. 
• Understand how to model the induced voltage in a moving conductor. 
• Understand how to model an electric generator. 
• Understand how electromagnetic induction a�ects electric motors. 
• Understand how to model electric transformers. 
• Understand how electromagnetic waves are formed. 

Think About It 

How does one make electricity with a hydroelectric dam? 
A) By running water through a coil to induce a current. 
B) By using water to rotate a coil inside of a fixed magnetic field. 
C) By using water to charge a metallic surface by friction, and then maintaining that 

potential di�erence. 

23.1 Faraday’s Law 
In the previous chapter, we described how an electric current produces a magnetic field. In 
this chapter, we describe how an electric current can be produced (or rather, “induced”) 
by a magnetic field. The most important aspect of electromagnetic induction is that it 
always involves quantities that change with time. In past chapters, we have only dealt with 
static electric and magnetic fields, static charges (for electric fields), and static currents (for 
magnetic fields). 

Faraday’s Law connects the flux of a time-varying magnetic field to an induced voltage 
(rather than a current). For historical reasons, the induced voltage is also called an induced 
“electromotive force” (emf), even if it is a voltage and not a force. Faraday’s Law is as 
follows: 

d�B�V = − 
dt 

737 
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where �V is the induced voltage, and �B is the flux of the magnetic field through an open 
surface, defined in the same way as the flux of the electric field (Section 17.1): 

Z 
�B = ~B · d ~A 

S 

If the magnetic field has a constant magnitude over the surface, S, and always makes the 
same angle with the surface, then the flux can be written as: 

�B = ~B · ~A 

where the magnitude of the vector ~A is equal to the area of the surface, and the vector ~A 
is normal to the surface. 

The surface, S, is defined by a closed path. The induced voltage can be thought of as an ideal 
battery placed in the closed path that defines the surface (right-hand panel of Figure 23.1). 
The minus sign indicates the direction of the current associated with the induced voltage. 
It is important to note that an induced voltage only exists if the flux of the magnetic field 
changes (since the induced voltage is given by the time-derivative of the flux). Remember, 
induction is all about time-varying fields! This is better illustrated with an example. 

Consider a loop of wire that is immersed in a uniform magnetic field, ~B, that is perpendicular 
to the plane of the loop, as illustrated in Figure 23.1. As time goes by, the magnetic field 
increases in strength, as shown in going from the left panel to the right panel. The flux of 
the magnetic field through the loop increases in magnitude, and a voltage is thus induced 
across the wire (illustrated by the ideal battery on the loop in the right panel), leading to 
an induced current, I. 

Figure 23.1: As the magnetic field increases, so does the flux through the loop that is shown. The 
changing flux results in an induced voltage, which produces an induced current that has a magnetic 
moment, ~µI . The induced current produces a magnetic field in a direction to oppose the changing 
flux. 

When calculating the flux of the magnetic field, we have to choose the surface element 
vector, d ~A, to be perpendicular to the surface over which we calculate the flux. There 
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~are two choices1 (upwards or downwards, referring to Figure 23.1); we chose to define dA 
to point upwards. Thus, the magnetic flux is positive in both panels, and increases with 

~time. The derivative, dB/dt, is thus positive, and the right-hand side of Faraday’s equation 
~is negative because of the negative sign in front. Had we chosen to define dA to point 

downwards, the right-hand side of Faraday’s Law would be negative. 

We can describe the direction of the induced current, I, in terms of its magnetic dipole 
moment (Section 21.4.1), ~µI , also shown in Figure 23.1. The overall sign on the right-hand 

~side of Faraday’s Law is determined by our (arbitrary) choice of the direction dA. With 
this choice, we found that the right-hand side of Faraday’s Law is negative: 

d�B�V = − = a negative number 
dt 

The overall sign of �V indicates whether the magnetic moment of the induced 
~current is parallel (�V positive) or anti-parallel (�V negative) to dA. This allows 

us to determine the direction of the induced current, and thus the direction of the ideal 
battery that represents the induced voltage. In general, when possible, it is common to 

~choose the direction of dA to be parallel to the magnetic field vector, so that the flux is 
positive (although this does not guarantee that its derivative is positive). 

23.1.1 Lenz’ Law 
The minus sign in Faraday’s Law is sometimes called “Lenz’s Law”, and ultimately comes 
from the conservation of energy. In Figure 23.1 above, we found that as the magnetic 
flux increases through the loop, a current is induced. That induced current will also 
produce a magnetic field (in the direction of its magnetic dipole moment vector, ~µI ). 

Lenz’s Law states that the “induced current will always be such that the magnetic field that 
it produces counteracts the changing magnetic field that induced the current”. In Figure 
23.1, the magnetic field points in the upwards direction, and increases in magnitude with 
time. The induced current produces a magnetic field that points downwards to counteract 
the changing magnetic field, and preserve a constant flux through the loop. If this were 
not the case, the induced current would be in the opposite direction, contributing to the 
increasing magnetic flux through the loop, inducing more current, producing more flux, 
inducing more current, etc. Clearly, this would lead to an infinite current and solve the 
world’s energy crisis. Unfortunately, conservation of energy (expressed here as Lenz’s Law) 
prevents this from happening. 

You can use Lenz’s Law to determine the direction of induced currents. In general: 

• If the magnitude of the magnetic flux is increasing in the loop, then the induced 
current produces a magnetic field that is in the opposite direction from the original 
magnetic field. 

~1Recall that this ambiguity is resolved when using Gauss’ Law by always choosing dA to point “outwards”, 
which only makes sense when the surface is closed. With an open surface, there is no inside or outside, and 
we are left with the ambiguity. 
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• If the magnitude of the magnetic flux is decreasing in the loop, then the induced cur-
rent produces a magnetic field that is in the same direction as the original magnetic 
field. 

The negative sign in Faraday’s Law is not arbitrary (as we saw above, it gives the correct 
direction for the magnetic moment of the induced current, given our arbitrary choice of 

~direction for dA). In practice, one can often use Lenz’s Law to determine the direction 
of the induced current (so that it counteracts the changing flux), and Faraday’s Law to 
determine the magnitude of the induced voltage. 

Checkpoint 23-1 

A loop of wire is immersed in a constant and uniform magnetic field out of the page, 
perpendicular to the plane of the loop, as shown in Figure 23.2. If the radius of the 
loop increases with time, in which direction will be the current induced in the loop? 

Figure 23.2: A loop whose radius increases with time. 

A) Since the magnetic field is constant, there is no induced current. 
B) Clockwise. 
C) Counter-clockwise. 

Checkpoint 23-2 

A loop of wire is immersed in a constant and uniform magnetic field out of the page, 
perpendicular to the plane of the loop, as shown in Figure 23.3. If the loop is pulled 
out of the region of magnetic field, as shown, in which direction is the induced current 
in the loop? 

Figure 23.3: A loop being pulled out of a region with uniform magnetic field. 

A) Since the magnetic field is constant, there is no induced current. 
B) Clockwise. 
C) Counter-clockwise. 
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Example 23-1 

A uniform time-varying magnetic field is given by: 

~B(t) = B0(1 + at)ẑ 

where B0 and a are positive constants. A coil, made of N circular loops of radius, r, 
lies in the x − y plane. If the coil has a total resistance, R, what is the magnitude and 
direction of the current induced in the coil? 

Solution 

The coil is made of N loops of wire. Each loop of wire can be treated independently, 
and each will have its own induced voltage across it. Since each loop is the same, they 
will all have the same induced voltage, and the total voltage induced across the coil, 
�V , will be given by: 

d�B�V = −N 
dt 

where �B is the flux through any one of the loops. That is, each loop is similar to an 
ideal battery, and the coil is similar to placing all of these batteries in series, so that 
the voltages from each battery sum together. 

The coil lies the x − y plane, perpendicular to the increasing magnetic field, similar 
to the situation depicted in Figure 23.1. Since the magnetic field is uniform over the 
surface of the coil, we do not need an integral to determine the flux. We define the area 

~vector, A, to be in the positive z direction (parallel to the magnetic field): 

~A = Aẑ = ˇr2 ẑ  

The flux through one circular loop of radius, r, is given by: 

~ ~�B(t) = B · A = (B0(1 + at)ẑ) · (ˇr2 ẑ) = B0(1 + at)(ˇr2) 

We can apply Faraday’s Law to determine the induced voltage: 

d�B d�V = −N = −N B0(1 + at)(ˇr2)
dt dt 

= −NB0aˇr
2 

Since the induced voltage is negative, the magnetic moment of the induced current 
~points in the negative z direction (opposite to our choice of direction for A). This is 

consistent with Len’z Law, since the magnetic field increases in the positive z direc-
tion, the induced current will produce a magnetic field in the negative z direction to 
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counteract the changing flux. The magnitude of the induced current is given by Ohm’s 
Law: 

�V NB0aˇr
2 

I = = 
R R 

Discussion: In this example, we determined the induced voltage and current in a coil 
made of N identical loops. We argued that one can sum the induced voltages from 
the N loops, as these can be thought of as ideal batteries in series. We found that the 
direction of the induced current as obtained from Faraday’s Law was consistent with 
the expectation from Lenz’s Law. 

23.2 Induction in a moving conductor 
If we define a loop of wire, there are two ways in which the magnetic flux through that loop 
can change: 

1. The magnetic field can change magnitude or direction, as we saw in Example 23-1. 
2. The loop can change size or orientation relative to the magnetic field. 

In this section, we examine the latter case, sometimes called “motional emf”, as the induced 
voltage is the result of motion from the loop in which the voltage is induced. 

23.2.1 Motion of a bar on two parallel rails 
Consider a U-shaped rail in a uniform magnetic field on top of which a bar can slide with 
no friction, as illustrated in Figure 23.4. The bar of length L moves to the right with a 
constant speed, v. 

Figure 23.4: A U-shaped rail on top of which a bar of length, L, can slide. The system is immersed 
in a magnetic field that points out of the page. The bar moves to the right with a constant speed v. 

The bar and the rails form a closed loop of area: 

A(t) = Lw(t) = Lvt 
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that increases with time. The magnitude of the flux through the loop will increase with 
time, resulting in an induced current (clockwise, according to Lenz’s Law). At some time, 
t, the flux through the loop is given by: 

~ ~�B(t) = B · A = BA = BLvt 

~where we chose A to be parallel to the magnetic field vector. 

Since we already used Lenz’s Law to argue that the current must be in the clockwise 
direction, we can use Faraday’s Law to determine the magnitude of the induced voltage and 
ignore the negative sign: 

d�B d�V = = BLvt = BLv 
dt dt 

Suppose that the rails are superconducting (have no resistance), and that the bar has a 
resistance, R. The current through the loop is then given by Ohm’s Law: 

�V BLv 
I = = 

R R 

As the current moves through the bar, it will heat up the bar by dissipating energy at a 
rate of: 

B2L2 2v 
P = I2R = 

R 

Thus, the bar cannot possibly move at a constant speed by its own, or energy would be 
produced out of nothing. There must be a force exerted on the bar to keep it moving at 
constant speed. 

Recall that a current-carrying wire in a magnetic field will experience a force from the 
~magnetic field. In this case, the bar of length L, carries current, I, in a magnetic field, B 

(perpendicular to the current), so that the force exerted on the bar is given by: 

~ ~ ~FB = IL × B 

and points to the left (right-hand rule). The magnitude of the force is given by: 

B2L2v 
FB = ILB = 

R 

Thus, in order for the bar to move at constant velocity towards the right, a force with the 
same magnitude must be exerted towards the right. In other words, work must be done to 
pull the bar to the right, by exerting a force with the magnitude, FB. The rate at which 
that work must be done is given by: 

d d dx ~ ~ ~P = W = F · dx = F · = F · ~v = Fv 
dt dt dt 
B2L2v2 

= 
R 
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where we assumed that the bar moves in the positive x direction. This is exactly the rate 
at which electric energy is dissipated in the bar! In other words, by doing mechanical work 
on the bar, we can create an induced current that will dissipate that energy at the same 
rate at which we do work. We can convert mechanical work into electrical energy! 

Finally, also note that this situation is closely related to the Hall e� ect, which is simply a 
di�erent way to think about this problem. Consider the electrons that are in the bar, as the 
bar moves at constant speed to the right through the magnetic field (ignore the existence 
of the U-shaped rail). The electrons will experience a magnetic force that is upwards 
(consistent with the direction of the induced current discussed above). Eventually, electrons 
accumulate at the top of the bar, and start preventing more electrons from accumulating 

~there, by producing an electric field, E, in the bar. The equilibrium condition is that the 
magnetic force and the electric force have the same magnitude (and opposite directions): 

qvB = qE 
E = vB 

The (Hall) potential di�erence, across the bar of length, L, with an electric field, E, is given 
by: 

�VHall = EL = vBL 

where we assumed that the electric field is uniform in the bar. This potential di�erence is 
identical to the one that we calculated from Faraday’s Law. Viewing this example as a dif-
ferent manifestation of the Hall e�ect provides some insight into what is actually happening 
at the microscopic level when a current is induced. 

23.2.2 The generator 
An electrical generator is used to create an alternating induced voltage/current, by rotating 
a coil inside of a constant and uniform magnetic field. In this case, the current is induced 

~because the angle between the magnetic field and the surface element vector dA changes 
with time. 

Consider a single loop of wire with area A, that can rotate in a uniform and constant 
~magnetic field, B, as illustrated in Figure 23.5. 
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Figure 23.5: A loop of wire rotates in a constant and uniform magnetic field. At time t = 0 (left 
panel), the loop lies in the yz plane. The loop rotates about the y axis, with a constant angular 
velocity, !~ . At some time t later, the loop has rotated through an angle � = !t (right panel, as 
seen from above, looking down on the xz plane). 

Referring to the coordinate system that is illustrated in Figure 23.5, the loop has a constant 
angular velocity, ~!, in the positive y direction and rotates about the y axis (with the origin 
at the centre of the coil). At time t = 0 (left panel), the loop lies in the yz plane, and 

~we choose the vector, A, (used to calculate the flux) to be in the positive x direction at 
~time t = 0. As the coil rotates, so will the vector A, which is easier to visualize than the 

~coil. At some time t, the vector A will make an angle � = !t with the x axis (right panel). 
~The magnetic field is constant and in the positive x direction, B = Bx̂. That is, the angle 

~ ~between the vector A and the magnetic field, B, will be given by � = !t. 
~At some time, t, the vector, A, is given by: 

~A(t) = A(cos �x̂ − sin �ẑ) = A(cos(!t)x̂ − sin(!t)ẑ) 

We can calculate the flux of the magnetic field through the loop at some time t: 

~ ~�B(t) = B · A = (Bx̂) · (cos(!t)x̂ − sin(!t)ẑ) = AB cos(!t) 

where we did not use the integral for the flux, since the magnetic field is constant over the 
area of the loop. The induced voltage is given by Faraday’s Law: 

d�B d�V = − = − AB cos(!t) = AB! sin(!t)
dt dt 

If the generator includes N loops in a coil, then the induced voltage is given by: 

�V = NAB! sin(!t) 
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As you can see, the voltage oscillates with time, between ±NAB!, corresponding to al-
ternating voltage. Furthermore, since the sign of �V changes with time (due to the sine 

~function), the relative orientation between A, and the magnetic dipole moment of the in-
duced current, also changes with time, indicating that the induced current in the coil changes 
direction every half-turn (alternating current). 

The generators that produce the alternating voltages that we find in our outlets work on the 
same principle. For example, in a hydro-electric dam, the water pressure from the height 
of the dam is used to force water through a turbine (essentially a propeller) that rotates 
a set of coils inside of a strong permanent magnet. Various controls allow the rotational 
frequency of the turbine to be adjusted in order to produce alternating current of the desired 
frequency (50 Hz in most of the world, 60 Hz in North America and a few other countries). 

Since the generator produces current that can dissipate electrical energy, one must have to 
do work in order to keep the coil in the generator rotating. As the coil rotates, a current is 
induced in the coil. A current in a circular loop that is immersed in a magnetic field will 
experience a torque, ~̋, given by: 

~ ~̋ = ~µ × B 

where ~µ is the magnetic dipole moment of the coil with induced current, I. If the current 
from the coil dissipates its energy in a system with resistance, R, then the current in the 
coil is given by Ohm’s Law: 

�V NAB! sin(!t)
I = = 

R R 

The magnetic moment, ~µ, for the current in the coil is given by: 

NAB! sin(!t) 
~µ = IA~ = (A(cos(!t)x̂ − sin(!t)ẑ))

R 
NA2B! sin(!t)= (cos(!t)x̂ − sin(!t)ẑ)

R 

The torque exerted by the magnetic field on the coil with the induced current is thus given 
by: 

NA2B! sin(!t) 
! 

~ ~̋ = µ~ × B = (cos(!t)x̂ − sin(!t)ẑ) × (Bx̂)
R 

NA2B2! sin(!t)= (cos !(t)(x̂ × x̂) − sin(!t)(ẑ × x̂))
R 

NA2B2! sin2(!t)= − ŷ 
R 

Note that the torque exerted on the loop, is always in the negative y direction, as every term 
in the torque is either strictly positive (N, R) or squared (sin2(!t)). The torque exerted by 
the magnetic field on the coil is thus always in the opposite direction of rotation (recall 
that the coil has an angular velocity in the positive y direction). This is sometimes called 
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“counter torque”. If we want the coil to maintain a constant angular velocity, then we must 
exert a torque in the positive y direction to counter the torque from the magnetic field. 
Note that the torque that we must exert to keep the coil rotating with constant angular 
velocity is not constant in time (but always in the same direction). 

You can easily verify that the work that you must do by exerting the torque is the same 
as the electrical power dissipated by the current in the resistor, R. The generator is thus a 
device to convert mechanical work into electrical energy (with AC current, in particular). 

23.3 Back EMF in an electric motor 
There are many similarities between electric motors and generators, and in fact, they can 
be thought of as the same device. In an electric motor, current is passed through a coil in a 
magnetic field, so that a torque is exerted on the coil, and it starts to rotate. In a generator, 
one exerts a torque to rotate the coil, thus inducing a current. 

Consider an electric motor. As we supply current to the motor, the coil starts to rotate. 
But, a rotating coil in a magnetic field results in an induced current. By Lenz’s Law, the 
induced current in the coil of a motor has to be in the direction opposite to the current that 
we put in, since otherwise, the motor would start to spin infinitely fast. We call this e�ect 
“back emf”, as the motor e�ectively acts like a battery that opposes current, as illustrated 
in Figure 23.6 

Figure 23.6: A simple circuit illustrating how a motor, with resistance, Rmotor, will generate a 
“back emf”, equivalent to a battery that produces a voltage in the direction to oppose the current 
from the actual battery that is powering the motor, �V . 

If you connect an electric motor to a voltage source, initially, the motor is at rest, so there 
will be no back emf and the current through the circuit will be very large (motors have a 
small resistance, so that the electrical energy is converted into work rather than heating 
up the motor). As the motor starts to spin faster, the back emf from the motor grows, 
reducing the current in the circuit. If there is no load on the motor (i.e. the motor can 
rotate freely with no friction), then the rotational speed of the motor will increase until the 
back emf exactly matches the voltage supplied to the motor. The motor will then rotate at 
constant speed, with (almost) no current in the circuit (if the motor slows down, the emf 
will decrease, and the current will increase to speed up the motor). If there is a load on the 
motor (because it’s making something turn), then the motor will rotate at a speed that is 
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lower than that which would result in zero current, since some of that current is now used 
by the motor to exert a torque. 

You may notice that the lights in your house dim briefly as your refrigerator turns on. This 
is because your refrigerator uses an electric motor that initially draws a large current when 
it turns on, large enough to produce a voltage drop in the circuit of your house to observe 
a dimming of your lights. You may also notice that if you plug the inlet or outlet of a hair 
dryer, the hair dryer turns o� quickly. In this case, by blocking the flow of air, you prevent 
the motor in the hair dryer from rotating; this results in a large current through its coil, 
since there is no back emf. Most hair dryers have a circuit breaker that will detect this large 
current and open the circuit to prevent the coil in the motor from over heating and melting. 
In general, one should not prevent an electric motor from rotating, as this will result in a 
large current through the motor that could melt its internal components. 

23.4 The induced electric field and eddy currents 
So far, we have described electromagnetic induction in terms of the voltage that is induced 
by a changing magnetic field. This voltage is related to an electric field, which we discuss 
in this section. In Faraday’s Law, the voltage is induced across a closed loop (and can be 
thought of as an ideal battery placed in the loop). This is illustrated in Figure 23.7 which 
shows a loop in the plane of the page, and a magnetic field out of the plane of the page. 

Figure 23.7: A varying magnetic field will induce a circular electric field. 

Checkpoint 23-3 

In Figure 23.7, with the induced voltage as shown, is the magnetic field increasing or 
decreasing? 

A) The magnetic field is increasing. 
B) The magnetic field is decreasing. 

As you recall, the electric potential di�erence between two points, A and B, is obtained 
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from the electric field: Z B 
~ ~�V = E · dl 

A 

In the case of an induced voltage across a loop, the points A and B are the same. The 
integral is thus over a closed path: I 

~ ~�V = E · dl 

We can include this into Faraday’s Law by using the electric field instead of the potential 
di�erence: 

d�B�V = − 
dt I d�B~ ~∴ E · dl = − 
dt 

where the last line is a more general form of Faraday’s Law. Note that in the case of 
electrostatics, where the electric field is produced by a distribution of charges, the integral 
~ ~ H 
E · dl must be zero, since the electric force is conservative; the work done by the electric 

field on a charge q over a closed path, which is just a charge q multiplied by that integral, 
must be zero. The force from an electric field that is induced by a time-varying magnetic 
field is not conservative! 

Faraday’s Law as expressed with the electric field is much more general, and implies that a 
time-varying magnetic field will induce an electric field. This is true, independently of there 
existing a physical wire to carry the induced current. 

Example 23-2 

A circular region with radius, R, of space contains a magnetic field that is uniform, and 
decreasing in magnitude with time: 

~B(t) = B0(1 − at)ẑ 

where a and B0 are positive constants. Determine the electric field at a distance, r, 
from the centre of the region, inside and outside of the region with the magnetic field. 

Solution 

Figure 23.8 shows the circular region of magnetic field, as well as a circular path of 
radius, r, that defines the region over which we calculate the flux of the magnetic field. 
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Figure 23.8: The induced electric field lines form closed circles when the magnetic field 
changes. 

First, we consider the induced electric field in the region with a magnetic field, where 
r < R. We choose a circle of radius r to calculate the flux of the magnetic field. Since 
the magnetic field is uniform within that region, the flux is given by: 

~ ~�B = B · A = BA = B0(1 − at)ˇr2 

The circulation of the electric field is easily found, since the electric field forms concentric 
circles (by symmetry): I I I 

~ ~E · dl = Edl = E dl = E(2ˇr) 

Applying Faraday’s Law, the electric field is found to be: I d�B~ ~E · dl = − 
dt 
d 

E(2ˇr) = − B0(1 − at)ˇr2 
dt 

2E = B0ar 

∴ E = B 2 
0a
r (inside the region of magnetic field) 

and we see that, inside the region with the magnetic field, the strength of the induced 
electric field is proportional to the distance from the centre of the region (i.e. it increases 
linearly with r). 

For the region where the magnetic field is zero, we again calculate the circulation of the 
electric field around a circular loop of radius r > R: I I I 

~ ~E · dl = Edl = E dl = E(2ˇr) 
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The flux of the magnetic field through that loop is however related to the area of the 
region with the magnetic field (of radius, R): 

~ ~�B = B · A = BA = B0(1 − at)ˇR2 

Again, applying Faraday’s Law: I d�B~ ~E · dl = − 
dt 
d 

E(2ˇr) = − B0(1 − at)ˇR2 
dt 

2Er = B0aR
2 

B0aR
2 

∴ E = (outside the region of magnetic field) 2r 

Outside the region with a magnetic field, the magnitude of the electric field decreases 
with the distance from the centre of the region. 

Discussion: In this example, we determined the electric field that is induced by a 
varying magnetic field. In this case, the electric field lines form closed circles and result 
in a non-conservative force. When the electric field is formed by a distribution of electric 
charges, the field lines begin and end on charges, which is not the case for an induced 
electric field. 
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23.4.1 Magnetic braking 
When a conducting material moves into a region of magnetic field, an electric field forming 
closed loops is induced in the material, thus inducing small current loops, called “eddy 
currents”. The magnetic field can then exert a force on those currents, e�ectively resulting 
in a force on the material. This is the principle behind magnetic braking, which is used in 
some trains and in other applications. 

Figure 23.9 illustrates how a magnetic brake can be used to slow a rotating wheel made 
of a conducting material (the material must conduct or the induced electric field will not 
produce any current). A magnetic field is produced (e.g. by a fixed permanent magnet) in 
a direction perpendicular to the wheel, over a small area (shown at the bottom of the wheel 
in Figure 23.9). 

Figure 23.9: A rotating wheel made of a conducting material has a small region with a magnetic 
field. The eddy currents in the region of changing flux result in a net downwards current at the 
centre of the region. The magnetic force that is exerted on that current slows down the wheel. 

For material located at the bottom left of the wheel, the magnetic flux is increasing, since the 
material is moving from a region with no magnetic field into a region with a magnetic field. 
In that part of the region, clockwise eddy currents will form, as those result in a magnetic 
field into the page, to counter the increasing magnetic flux (Lenz’s Law). The bottom right 
side of the wheel is leaving the magnetic field, and will thus have eddy currents in the 
opposite direction. The currents from both sides add up in the centre, resulting in a net 
downwards current. The magnetic force on that downwards current is to the left, resulting 
in a torque that slows the wheel. This is magnetic braking. 

Again, this is no more than conservation of energy at play. Since we induce currents by 
making the wheel move into/out of a region of magnetic field, the electrical energy in those 
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currents must come from somewhere (either we do work to keep the wheel rotating, or the 
wheel loses kinetic energy). Any time that we try to move a conductor through a magnetic 
field, in a way that current is induced, we will have to exert a force and do work. In the case 
of magnetic braking, the wheel will convert its rotational kinetic energy into heat (the eddy 
currents will heat up the wheel). The main issue with magnetic braking is that one needs 
to be able to dissipate the heat. The main advantage is that there are no parts that wear 
out, as opposed to braking with friction. In addition, magnetic braking is very smooth, and 
only acts when there is motion. As soon as the wheel stops rotating, the magnetic flux is 
constant everywhere and the eddy currents disappear. 

Checkpoint 23-4 

Suppose that the magnetic field in Figure 23.9 pointed into the page. Would the 
magnetic break still work? 

A) Yes. 
B) No. 

23.5 Transformers 
The electric power generated in power stations is transmitted using high-voltage transmis-
sion lines, typically with voltages above 300 000 V for long distances. However, that voltage 
is not usable in our households, as our appliances expect a voltage around 120 V (or 220 V 
in Europe). Transformers use electromagnetic induction to transform one alternating 
voltage into another. Figure 23.10 illustrates a transformer. 

Figure 23.10: A transformer converts a primary alternating voltage, �Vp, to a secondary alter-
nating voltage, �Vs. The magnetic flux produced in one coil is transmitted by an iron core to 
the secondary coil, where a di�erent voltage is induced, depending on the ratio of the number of 
windings in each coil. 

The transformer has two coils, the “primary” and the “secondary”, with di�erent numbers 
of loops, Np, and Ns, respectively. The coils are wrapped around an iron core, which can 
transmit the magnetic flux generated in the primary coil to the secondary coil. In the 
transformer, an alternating voltage, �Vp, is applied to the primary coil, and transformed 
into the desired voltage, �Vs, in the secondary coil. 
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The current in the primary coil creates a magnetic field. Those field lines are transmitted 
by the iron core into the second coil. A voltage is only induced in the secondary coil if the 
magnetic flux through the secondary coil changes with time. Thus, transformers only work 
with alternating voltages, so that the magnetic field created by the primary coil changes 
continuously. Both coils will have the same magnetic flux, �B, through them, since they 
have the same area. The voltage in the primary coil is given by Faraday’s Law: 

d�B�Vp = Np 
dt 

as is the voltage in the secondary coil: 
d�B�Vs = Ns 
dt 

Since the flux (and thus its time-derivative) are the same in both coils, we can isolate the 
time-derivative in each equation to obtain the relationship between the voltages in the two 
coils: 

�Vp �Vs= 
Np Ns 

∴ �Vs = Np �Vp
Ns 

Thus, with a transformer, one simply needs to set the ratio of the number of loops in each 
coil in order to transform one voltage into another. 

Checkpoint 23-5 

Which coil in Figure 23.10 has the highest voltage? 
A) The one with the most loops. 
B) The one with the least loops. 

Checkpoint 23-6 

Which coil in Figure 23.10 will have the highest current? 
A) The one with the most loops. 
B) The one with the least loops. 
C) Not enough information to tell. 

Example 23-3 

A power plant produces energy at rate of P = 150 kW, and wishes to transmit this 
power as eÿciently as possible to a town. The power lines between the power plant and 
the town have a resistance of R = 0.5 . Compare the amount of power dissipated in 
the transmission lines depending on whether the power is transmitted through a voltage 
of 300 000 V or 300 V. 

Solution 
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We model the transmission of power from the power plant to the town using the circuit 
shown in Figure 23.11. 

Figure 23.11: Circuit for a power plant transmitting power to a town. 

We do not know the resistance of the town, but we can still calculate the power that is 
dissipated in the transmission lines that have a total resistance of R = 0.5 . The power 
plant produces power, P , and transmits it through the lines at a potential di�erence, 
�V , resulting in a current, I: 

P = I�V 
P

∴ I = �V 

The current, I, will dissipate power in the lines at a rate of: 

Pline = I2R = � 
P

V 

2

2 R 

With the two di�erent voltages, this corresponds to: 

P 2 (150 × 103 W)2 
Pline = �V 2 R = (0.5 ) = 0.1 W (300 000 V)2 

P 2 (150 × 103 W)2 
Pline = (0.5 ) = 125 000 W �V 2 R = (300 V)2 

Thus, when the power is transmitted at low voltage, more than 80% is dissipated in 
the transmission lines, whereas an insignificant fraction is dissipated when the power is 
transmitted at high voltage. This is why we need transformers. 
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23.6 Maxwell’s equations and electromagnetic waves 
This section is meant to be informative, as the material is beyond the scope of this textbook. 
Nonetheless, it is worth summarizing what we have learned about electricity and magnetism, 
as Maxwell did. We can summarize the main laws from electromagnetism as follows: 

I 
~E · d ~A = Q (Gauss’ Law) 

�0I 
= 0 (No magnetic monopoles) 

= µ0I
enc (Ampère’s Law) 

~B ~A 

~dl 

· d I 
~B · I Zd · d ~A (Faraday’s Law) ~E ~ld = − ~B· 

dt 

where we wrote the magnetic flux in Faraday’s Law using the integral explicitly. As you 
recall, Gauss’ Law is equivalent to Coulomb’s Law, relating the electric field to electric 
charges that produce the electric field. Although we did not explicitly use the second 
equation, it is the equivalent to Gauss’ Law for the magnetic field. The flux of the magnetic 
field out of a closed surface must always be zero, since there are no magnetic monopoles, so 
that magnetic field lines never end. 

When we covered Ampère’s Law, we only considered a static current as the source of the 
magnetic field. However, if there is an electric field present, that is created by charges that 
are moving, then those can also contribute a current to Ampère’s Law: 

I Q (Gauss’ Law) ~E · ~Ad = 
�0 I 

∴ Q = �0 ~E · ~A 
d 

d IdQ
∴ I = = �0 ~E · ~Ad 

dt dt 

so that Ampère’s Law, in its most general form, is written: 

!I I 
~B · ~ld Ienc + �0= µ0 

d 

dt 
~E · d ~A (Ampère’s Law) 
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Writing out the four equations again: I 
~E · ~Ad = Q (Gauss’ Law) 

�0I 
· d 

· d 

~l 

~l 

= 0 (No magnetic monopoles) ~B ~Ad· I !I d (Ampère’s Law) Ienc + �0= µ0 ~B ~E · ~Ad 
dt I Zd (Faraday’s Law) ~E ~B · ~Ad= − 

dt 

These four equations are known as Maxwell’s equation, and form our most complete theory 
of classical electromagnetism. It is quite interesting to note the similarities and relations 
between the electric and magnetic field. Maxwell’s equations contain equations for the cir-
culation and the total flux out of a closed surface for both fields. Ampère’s Law implies 
that a changing electric field will produce a magnetic field. Faraday’s Law implies that a 
changing magnetic field produces an electric field. If a point charge oscillates up and down, 
it will produce a changing electric field, which will produce a changing magnetic field, which 
will induce a changing magnetic field, etc. This is precisely what an electromagnetic wave 
is! The light that we see, the wifi signals for our precious phones, the highly penetrat-
ing radiation from nuclear reactors are all examples of electromagnetic waves (of di�erent 
wavelenghts). 

In fact, as Maxwell did, we can obtain the wave equation (Section 14.2.1) from Maxwell’s 
equations. We sketch out the derivation here, but it is definitely beyond the scope of this 
textbook. However, you’re so close to seeing one of the most exciting revelations of physics 
that it would be a shame to skip! 

We first write out Maxwell’s equations in di�erential form, as we have already shown for 
Gauss’ Law (Section 17.4) and Ampère’s Law (Section 22.3.1) 

ˆ (Gauss’ Law) ~E 

~B 

=r · 

r · 
�0 

= 0 (No magnetic monopoles) 

~j 

0 1 @ ~E@ (Ampère’s Law) A+ �0 ~B = µ0r× 
@t 

~B@ (Faraday’s Law) ~E = −r× 
@t 

If we consider a vacuum region in space, with no charges and no currents, these equations 
reduce to: 

= 0 r · ~B = 0~Er · 
~E@ 

@t @t 

~B@~B ~E= µ0�0 = −r× r× 
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We will make use of the following identity from vector calculus: 

r× (r× E~ ) = r(r · E~ ) −r 2E~ 

where: 

E E E2 ~ @2 ~ @2 ~ @2 ~ 
r E = + + 

@x2 @y2 @z2 ! ! 
@2Ex @2Ex @2Ex @2Ey @2Ey @2Ey= + + x̂+ + + ŷ 
@x2 @y2 @z2 @x2 @y2 @z2 

@2Ez @2Ez @2Ez 
! 

+ + + ẑ  
@x2 @y2 @z2 

is called the “vector Laplacian”. 

Consider taking the curl (r×) of the equation that has the curl of the electric field (Faraday’s 
Law): ! 

~@B ~ r× r× E = − 
@t 

~ 
r(r · E~ ) −r 2E~ = −r × @B 

@t 
@ ~−r2E~ = − r× B 
@t 

−r2E~ = − @ µ0�0 
@E 

@t @t 

@2 ~ 
−r2E~ = −µ0�0 

E 

@t2 

~where, in the third line, we made use of Gauss’ Law (r · E = 0), and, in the fourth line, 
~Ampère’s Law (r× B = µ0�0 

@E ). The last equation that we obtained is a vector equation 
@t 

~(the vector Laplacian has three components, as does the time-derivative of E on the right-
hand side). Consider the x component of this equation: 

@2Ex @2Ex @2Ex @2Ex+ + = µ0�0
@x2 @y2 @z2 @t2 

If we define the quantity: 

1 
c = p

�0µ0 

then, the x component of the equation can be written as: 

@2Ex @2Ex @2Ex 1 @2Ex+ + = 
@x2 @y2 @z2 c2 @t2 
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which is exactly the wave equation for the component, Ex, of the electric field, propagating 
with a speed, c, the speed of light! Thus, the speed of light is directly related to the constant 
�0, and µ0. You can write out similar equations for the y and z components of the electric 
field, and find the similar equations for the magnetic field if you start by taking the curl of 
Ampère’s Law instead of Faraday’s Law. 

We have just shown that electric and magnetic fields can behave as waves, which we now 
understand to be the waves that are responsible for light, radio waves, gamma rays, infra-red 
radiation, etc. All of these are types of electromagnetic waves, with di�erent frequencies. 
Although we did not demonstrate this, the electromagnetic waves that propagate are such 
that the magnetic and electric field vectors are always perpendicular to each other. Electro-
magnetic waves also carry energy. Thus, a charge that is oscillating (say on a spring) and 
creating an electromagnetic wave must necessarily be losing energy (or work must be done 
to keep the charge oscillating with the same amplitude). Finally, it is worth noting that, 
according to Quantum Mechanics, light (and the other frequencies of radiation), are really 
carried by particles called “photons”. Those particles are strange, since their propagation is 
described by a wave equation. 
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23.7 Summary 

Key Takeaways 

Faraday’s Law connects a changing magnetic flux to an induced voltage: 

d�B�V = − 
dt 

The magnetic flux, �B, is calculated as the flux of the magnetic field through an open 
surface, S: Z 

~ ~�B = B · dA 
S 

The induced voltage, �V , is the potential di�erence that is induced along the closed 
path (a “loop”) that bounds the surface, S. If a charge, q, were to move around that 
closed path, it would gain (or lose) energy, q�V . Note that the potential di�erence that 
is induced corresponds to a non-conservative electric force, as a charge can gain/lose 
energy by moving along a closed path. The induced voltage is often called an induced 
electromotive force (emf), even if it is a voltage. 

The minus sign in Faraday’s Law is sometime referred to as “Lenz’a Law”, since it 
indicates in which direction the induced voltage will be. It is easiest to think of the 
closed path as a physical wire (e.g. a loop of wire) through which a current will be 
induced as a result of the induced voltage. The minus sign is easiest to interpret in 
terms of the relative direction between the area vector used to define the flux, and the 
magnetic dipole moment vector, ~µ, associated with the induced current (which points 
in the same direction as the magnetic field that is produced by the induced current). 

~When calculating the flux of the magnetic field, the surface element vector dA, must be 
perpendicular to the surface through which the flux is calculated, which leads to two 
possible choices. Once a choice is made, and Faraday’s Law has been applied, the sign 
of �V will indicate if the magnetic dipole moment of the induced current points in the 

~same direction as dA (positive �V ) or in the opposite direction (negative �V ). 

If N loops of wire are combined together into a coil, the voltages across each loop sum 
together, so that the voltage induced across the coil is given by: 

d�B�V = −N 
dt 

Lenz’s Law is a statement about conservation of energy. Indeed, the induced current 
must create a magnetic field that opposes the change in flux, otherwise, the induced 
current would grow indefinitely. Lenz’s Law can be summarized as follows: 
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• If the magnitude of the magnetic flux is increasing in the loop, then the induced 
current produces a magnetic field that is in the opposite direction from the 
original magnetic field. 
• If the magnitude of the magnetic flux is decreasing in the loop, then the induced 

current produces a magnetic field that is in the same direction as the original 
magnetic field. 

A voltage is induced along a closed path any time that the flux of the magnetic field 
through the corresponding surface changes. The flux can change either because the 
magnetic field is changing, or because the loop is changing (in size or orientiation 
relative to the magnetic field). In the latter case (changing loop), one speaks of a 
“motional emf”. A generator creates a motional emf by rotating a coil (with N loops, 

~each with area, A), inside a fixed uniform magnetic field, B. The voltage produced by 
a generator is given by: 

�V = NAB! sin(!t) 

where ! is the angular speed of the coil. A generator thus produces alternating volt-
age/current. The current that is induced in the coil of the generator will dissipate 
energy as it flows through a resistance, R. Thus, one must do work in order to keep the 
generator spinning. The current induced in the coil of the generator will also result in 
a magnetic moment, and a “counter torque” will be exerted on the coil. One must thus 
exert a torque in order to keep the generator spinning (and the work done by exert-
ing that torque is converted into the electrical energy dissipated in the resistor). The 
counter torque on the generator is always in the same direction, and has a magnitude: 

NA2B2! sin2(!t)
˝ = 

R 

When an electric motor is used, a “back emf” is induced in the coil of the motor. The 
back emf is such that it resists the direction of current (Lenz’s Law), or else the motor 
would spin infinitely fast. As the motor spins faster, the back emf grows, until it reaches 
an equilibrium. Motors thus draw a large current when they first start up, since at low 
speed, they have no back emf. 

Since a changing magnetic flux induces a voltage, an electric field is also induced. We 
can replace the voltage in Faraday’s Law with the circulation of the electric field to 
write a more general version of Faraday’s Law: I d�B~ ~E · dl = − 

dt 

The induced electric field forms closed field lines, and is di�erent than the electric field 
that is produced by static charges, since the latter will have field lines that start and 
end on charges. The force associated with the induced electric field is not conservative. 
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When a metallic object passes through a region of magnetic field, the induced electric 
field will induce current loops in the material called eddy currents. The magnetic field 
will also exert a force on these eddy currents to oppose the motion that is creating the 
currents (Lenz’s Law); as the eddy currents dissipate electrical energy in the material, 
the metallic object must lose kinetic energy unless a force is acting on it. Magnetic 
brakes make use of this principle. 

Transformers are used to convert an alternating voltage, �Vp, into a di�erent alternating 
voltage, �Vs. A “primary” coil, with Np windings, creates a changing magnetic flux 
that is guided (e.g. by an iron core) to a “secondary” coil, with Ns windings. The 
voltage induced in the secondary coil is given by: 

�Vs = Np �Vp
Ns 

Maxwell’s four equations form our best classical theory of electromagnetism. Those 
equations imply that a changing magnetic field produces an electric field (Faraday’s 
Law), while a changing electric field can produce a magnetic field (Ampère’s Law). By 
combining Maxwell’s equation (with some heavy vector calculus), one can show that 
this leads to the formation of electromagnetic waves, that propagate with a speed, c, 
given by: 

1 
c = p

�0µ0 

Important Equations 

Magnetic flux: Z 
~ ~�B = B · dA 

S 

Faraday’s Law: 
d�B�V = −N 
dt 

Faraday’s Law: I d�B~ ~E · dl = − 
dt 

Voltage produced by a generator: 

�V = NAB! sin(!t) 

Counter torque on a generator: 

NA2B2! sin2(!t)
˝ = 

R 

Secondary voltage in a transformer: 

�Vs = Np �Vp
Ns 
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23.8 Thinking about the material 

Reflect and research 

1. Who first discovered induction? Why is it called Faraday’s Law? 
2. Give a few examples of applications of magnetic braking. 
3. How does a microphone make use of electromagnetic induction? 
4. What is magnetic damping? 
5. How does an induction stove work? 
6. How does a credit card swipe reader make use of induction? 
7. What is the origin of Maxwell’s equations? When did he publish them? 
8. Who was the first to detect electromagnetic waves? How were they produced and 

detected? 

To try at home 

1. Demonstrate magnetic braking by moving a conducting piece of material through 
a magnetic field. 

To try in the lab 

1. Construct an AC generator. 
2. Propose an experiment to measure Earth’s magentic field using induction. 
3. Propose an experiment to measure a bar magnet’s strength using induction. 
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23.9 Sample problems and solutions 
23.9.1 Problems 
Problem 23-1: In the 1950s, the Royal Canadian Air Force developed a jet airplane called 
the Avro Arrow. This jet reached a speed of mach 1.9 (652 ms−1), and was considered one 
of the most advanced airplanes that existed at the time. Suppose that the Avro Arrow 
is travelling at a velocity of v = 652 ms−1 above the Sout Pole through Earth’s vertical 
magnetic field, B = 5.2 × 10−5 T, as shown in Figure 23.12. If the Avro Arrow had a 
wingspan of l = 15 m, determine the induced voltage across its wings. 

Figure 23.12: The Avro Arrow moving through a magnetic field. 

(Solution) 

Problem 23-2: A generator is made of N circular loops of radius, R = 0.3 m, rotating at 
a frequency of f = 60 Hz, in a uniform magnetic field, B = 0.1 T. How many coils must the 
generator have in order for it to produce an alternating voltage with a maximum amplitude 
of �V = 110 V. (Solution) 
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23.9.2 Solutions 
Solution to problem 23-1: This is identical to the motional emf that is generated by a 
bar moving in a magnetic field. As the airplane moves as illustrated (towards the left, in an 
upwards magnetic field), the electrons in the wing of the airplane will be pushed into the 
page. Eventually, the electric field from the electrons will prevent further electrons from 
accumulating at that side of the wing, and there will be a constant (Hall) voltage, �V , 
across the wing tips. This will happen when the magnetic and electric force are equal and 
opposite: 

�V 
qvB = qE = q 

L 

where L is the wingspan of the airplane. The induced potential is thus given by: 

�V = BLv = (5.2 × 10−5 T)(15 m)(652 ms−1) = 0.51 V 

Solution to problem 23-2: The voltage produced by a generator is given by: 

�V = NAB! sin(!t) 

and the angular frequency is given by ! = 2ˇf . The number of required coils is thus: 

�V �V (110 V) 
N = = = 

AB! ˇR2B2ˇf 2ˇ2(0.3 m)2(0.1 T)(60 Hz) = 10.3 

Thus, one requires 10 loops in the coil to generate the desired voltage. 

https://ms�1)=0.51


24 The theory of special relativity 
In this chapter, we introduce the theory of Special Relativity, originally formulated by Albert 
Einstein in 1905. Along with the development of Quantum Mechanics, Special Relativity 
marks the start of “modern physics”, and the introduction of theories to describe our world 
that are decidedly counter-intuitive. 

Learning Objectives 

• Understand the motivation for developing the Theory of Special Relativity. 
• Understand Einstein’s postulates and their consequences. 
• Understand how to apply Einstein’s postulates to describe simultaneity. 
• Understand how to model length contraction and time dilation. 
• Understand how to apply Lorentz transformations and make space-time diagrams. 
• Understand how to model the energy and momentum of a relativistic object. 

Think About It 

Is it possible to time-travel into the future, so that you will be younger than people 
that are currently older than you? 

A) Yes, it’s possible. 
B) No, it is impossible because it would violate causality. 
C) No, it is impossible because it’s a ridiculous idea. 

24.1 Introduction: The issue with Maxwell’s equa-
tions 

In Chapter 23, we summarized our knowledge of electromagnetism using Maxwell’s four 
equations. As far as we can tell, this is the best description that we have of classical electric 
and magnetic phenomena (classical in the sense that the equations do not describe the 
behaviour of particles that are described by Quantum Mechanics). One of the consequences 
of Maxwell’s equations is that they describe the existence of electromagnetic waves that 
propagate with a speed, c, given by: 

1 
c = p

�0µ0 

where �0 and µ0 are the permittivity and permeability of free-space, respectively. The 
obvious question to ask about these electromagnetic waves is: “In what medium do these 
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waves propagate?”. In the late 1800s, it was thought that the Universe was bathed in 
a substance called the “luminous ether” (or just “ether”), through which electromagnetic 
waves propagate. It was then thought that the speed, c, of these waves was, naturally, 
measured with respect to the ether. This led to the idea that there exists a special inertial 
frame of reference in the Universe, corresponding to that frame of reference in which light 
travels at a speed, c. This frame of reference would be at rest relative to the ether. 

In the late 1880s, Michelson and Morley developed a clever experiment to measure the speed 
of the Earth relative to the ether. If the ether exists, and the Earth is moving through it, 
then a beam of light travelling parallel to the motion of the Earth should travel at a slightly 
di�erent speed than a beam of light travelling in the perpendicular direction. However, 
Michelson and Morley conclusively demonstrated that this was not the case. There is no 
detectable motion of the Earth through a medium in which light (a electromagnetic wave) 
propagates. There is no ether. This was a very puzzling discovery, with strange implications 
for Maxwell’s equations. 

Let us demonstrate, through a simple example, an “issue” with the theory of electromag-
netism. Rather, it is not an issue, but a very strange implication. Consider two infinitely-
long wires, separated by a distance, r, each carrying a uniform charge per unit length, �, 
as illustrated in Figure 24.1. 

Figure 24.1: Two infinitely long charged wires exert a repulsive electric force on each other. 

~We can easily calculate the magnitude of the repulsive electric force, FE, exerted by one 
charged wire on a section of length, l, of the other wire. The magnitude of the electric field 
at a distance, r, from an infinitely-long wire with charge per unit length, �, is given by: 

� 
E = 2ˇ�0r 

A section of length, l, of the other wire carries charge, q = l�, so that the force on that 
section of wire has a magnitude: ! 

� �2l 
FE = qE = �l = 2ˇ�0r 2ˇ�0r 
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And the force per unit length, on either one of the wires, has a magnitude: 

�2FE = 
l 2ˇ�0r 

This is the only force exerted on one of the wires, and will thus allow us to completely 
specify the motion of that wire (we know all of the forces exerted on the wire, so we can 
use Newton’s Second Law to determine its acceleration and describe its motion). 

Consider the same two wires, each carrying charge per unit length but as viewed from a 
frame of reference that is moving downwards (parallel to the wires), with a speed, v. In 
this frame of reference, the infinite wires still have a net charge per unit length, but they 
also appear to have an upwards moving current, I, since we observe positive charges moving 
upwards through space. 

Figure 24.2: Two infinitely-long charged wires as viewed from a down-going frame of reference will 
appear to have upwards-going currents that will result in an attractive magnetic force between the 
wires. 

In this new frame of reference, we see two wires with charges on them, moving upwards 
with speed, v. In a length of time, �t, we see a length of wire, �x = v�t, go by, with total 
charge, �Q = �0�x. For reasons that will be clear below, we use a di�erent charge density, 
�0, in the moving frame of reference, although we expect that �0 = �. This corresponds to 
a current, I, given by: 

�Q �x 
I = = �0 = �0 v�t �t 

Thus, in the downward going frame of reference, we see two wires with upwards current in 
them, and these wires must extract an attractive magnetic force between each other, with 
magnitude (per unit length): 

F 0 B 
l 

µ0I1I2= − 2ˇr 
µ0I

2 
= − 2ˇr 

2µ0�
02v= − 2ˇr 

where the prime (’) on the force indicates that the force is measured in this di�erent inertial 
frame of reference, and the minus sign indicates that it is in the opposite direction from the 
repulsive electric force. 
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In the downwards going frame of reference, the wires are still charged, and must still exert 
a repulsive force, with magnitude (per unit length): 

F 0 �02 
E = 
l 2ˇ�0r 

where, again, we used primes (’), to denote quantities that are measured in the moving 
frame of reference. 

The description of how the wires will move should not depend on the frame of reference that 
we choose to model the wires (they will move under the forces exerted on them regardless 
of whether we are observing them from a fixed or a moving point, and indeed regardless of 
whether we observe them at all!). Thus, the net force (per unit length) exerted on a wire 
cannot depend on our frame of reference. The total repulsive electric force, FE, calculated 
in the stationary frame of reference must be equal to the sum of the magnetic, FB 0 , and 
electric force, FE 0 , calculated in the moving frame of reference 1: 

F 0 F 0FE = E + B 

l l l 
�2 �02 µ0�

02 2v 

2ˇ�0r 
= 2ˇ�0r 

− 2ˇr 

where we recognized that the charge per unit length, �0, must be di�erent in the moving 
frame of reference, or the above would give an inconsistent equation (the electric forces 
would cancel and we would find that the magnetic force is equal to zero). Thus, the repulsive 
electric force must be larger as observed in the moving frame of reference, or the net force 
on the wire would be di�erent when evaluated in the two frames of reference. This is a truly 
bizarre conclusion, as we will see. 

Before proceeding, let us clearly state our assumptions in modelling the force between the 
two charged wires: 

1. The net force on the wire, allowing us to describe its motion, cannot depend on our 
frame of reference. We expect the laws of physics to be applicable from any inertial 
frame of reference. 

2. We assume that Maxwell’s equations hold in all inertial frames of reference. In par-
ticular, we assume that the constants, µ0 and �0, are the same in all inertial reference 
frames. 

The first assumption allows us to state that the net force in the two frames of reference 
must be the same. The second assumption implies that we must change the charge density, 
�0, in the moving frame of reference, since the constants must remain the same, and this is 
the only quantity that can lead to a di�erent electric force in the moving frame of reference 
(which is required if the net force is to be the same, according to our first assumption). Let 
us determine the new charge density, �0, in terms of the charge density that is measured at 

1This statement is generally true for Special Relativity, because the force is exerted in the direction 
perpendicular to that of motion. 
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rest. Starting with the requirement that the net force on the wire must not depend on the 
frame of reference, we find: 

�2 �02 µ0�
02v2 

2ˇ�0r 
= 2ˇ�0r 

− 2ˇr 
�2 = �02 − �0µ0�

02 2 v 

�2 = �02(1 − �0µ0v 
2) 

∴ �0 p 1 = � 2�0µ0 − v 

Finally, recognizing that we can use the speed of light, c, to replace the combination of 
constants, �0µ0, we find: 

1 
�0 = �q

1 − v2 

c2 

Thus, the charge per unit length on the wire is larger when measured from the moving 
frame of reference (the factor that multiplies, �, is larger than one if v < c). It should 
be somewhat bothersome to you that the charge per unit length depends on the frame of 
reference in which it is measured, but this is the only way for our two assumptions to hold. 

So far, this has just been some math to ensure that “things work out”, namely that our 
description of the motion of the wire does not depend on our frame of reference. However, 
the consequences of what we just derived are profound. We concluded that the charge per 
unit length on a wire depends on our frame of reference. 

Imagine drawing two lines on one of the wires, and imagine that you can actually see the 
charges on the wire (maybe they fluoresce or something). The charge per unit length on 
the wire, �, is found by counting the number of charges between the two lines and dividing 
that by the distance between the two lines. Now, both an observer at rest with the wire, 
and one that is moving relative to the wire will agree on the number of charges contained 
between the two lines. They will both count the same number. Thus, if the observer moving 
relative to the wire is to measure a larger charge density, then the distance between the lines 
must be smaller for that observer! To the observer moving relative to the wire, the wire is 
actually shorter. It does not appear to be shorter, it IS shorter! 

To summarize, by requiring that the laws of physics are the same in all inertial frames of 
reference, and by requiring that Maxwell’s equation are the same in all inertial frames of 
reference, we conclude that the charge per unit length that is measured on a wire must 
depend on the frame of reference in which it is measured. Since it cannot be the number of 
charges on the wire that depends on the frame of reference, it must be the length of the wire 
that depends on the frame of reference. Thus, either we accept that Maxwell’s equations 
are incorrect, or we accept that they are correct but that they imply that objects shrink 
in length when they are moving (regardless of whether charges are involved). It turns out 
that the latter choice provides a better description of nature (and one that has not been 
invalidated!). 
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As an additional consequence of accepting these implications from Maxwell’s equations is 
that the definition of the electric and magnetic fields must depend on the frame of reference. 
In the example from this section, we saw that what looks like an electric field in the sta-
tionary frame of reference, can appear as the combination of a magnetic and electric fields 
in a moving frame of reference. 

24.2 Einstein’s postulates 
Albert Einstein was the first to provide a complete description of how to deal with the issues 
that arise from Maxwell’s equations when these are examined in di�erent inertial frames of 
reference. The Theory of Special Relativity, is based on Einstein’s two postulates: 

1. The laws of physics are the same in all inertial reference frames. There is no experiment 
that can be performed to determine whether one is at rest or moving with constant 
velocity. 

2. The speed of light propagating in vacuum is the same in all inertial reference frames. 
Any observer in an inertial frame of reference, regardless of their velocity, will measure 
that light has a speed of c, when it propagates in vacuum. 

These postulates are equivalent to the assumptions that we made above to model the force 
between the two wires (we stated that the constants, �0 and µ0, were independent of reference 
frame, instead of c). While the first postulate is perhaps “acceptable” to our common sense, 
the second one grossly defies common intuition. Consider two archers, as illustrated in 
Figure 24.3. 

Figure 24.3: Two archers can fire an arrow with speed vA. As measured in the frame of reference 
of the ground (of the target), the arrow fired from the archer that is on the train will have a higher 
speed. 

Both archers can fire an arrow with a speed, vA. One archer fires her arrow from the ground, 
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at a target on the ground, and that arrow will hit the target with a speed, vA. The other 
archer is located on a train that is moving with speed v, in the same direction that she 
wishes to shoot her arrow. She measures her arrow to leave her bow with speed, vA, but, 
as seen from the ground (and from the target), her arrow has a speed vA + v, and it will hit 
the target with a higher speed, as expected. 

Now, consider two space cops that instead fire a pulse of laser light at a target on the 
ground, as illustrated in Figure 24.4. 

Figure 24.4: Two people fire a laser pulse. Regardless of whether the pulse of laser light was fired 
from a moving train or from the ground, it will have a speed of c in all frames of reference. 

In this case, according to Einstein’s second postulate, the speed of the pulses as measured 
on the ground (by the target), will be c, regardless of whether one of the pulses was fired 
from a moving train. This is truly strange and not compatible with our experience. Imagine 
that the train is moving close to the speed of light. The space cop on the train would fire 
a laser pulse that he would observe to move away from him at the speed of light. When 
observed from the ground, we will see the pulse of light moves away from him very slowly, 
since he is on a train going at almost the speed of light. 

24.2.1 Simultaneity 
As a first consequence of Einstein’s postulates, let us consider the notion of simultaneity. 
Figure 24.5 shows Alice on the platform of a train station. Alice is midway between two 
clocks, A and B. Both identical clocks were configured so that they send a pulse of laser 
light when the time is 20 minutes past four o’clock. Since Alice is midway between the 
clocks, if they emit their pulses of light at the same time, then Alice will see two pulses of 
light arrive at her location at the same time. She signals that the two pulses of light have 
reached her at the same time by raising her hands. 
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Figure 24.5: Alice is equidistant from two clocks. The clocks fire a laser pulse when the time is 20 
past four, and Alice observes both pulses arriving at her location at the same time, concluding that 
the pulses were emitted by the clocks at the same time. 

Brice is located on a train that is travelling with speed, v, in the direction from clock A to 
clock B, as illustrated in Figure 24.6. He sees Alice and the platform moving towards him. 

Figure 24.6: Brice is on a moving train, and, from his perspective, it is Alice and the platform 
that are moving towards him. Brice must conclude that the pulse from clock B was emitted earlier, 
since it must travel further than the pulse emitted from clock A to reach Alice at the same time. 
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Brice must agree that the two pulses arrived at Alice’s location at the same time, since he 
can also see her raise her hands. In Brice’s frame of reference, the two pulses of light must 
travel with the speed of light (Einstein’s second postulate). Once the pulse of light has been 
emitted from clock B, Brice observes that Alice is moving away from the location of where 
the pulse was emitted, so that pulse must travel a large distance, dB. On the other hand, 
once the pulse from clock A is emitted, Brice observes that Alice moves towards where the 
pulse was emitted, so it only needs to travel a shorter distance, dA, in order to reach Alice. 
Thus, for both pulses to arrive at Alice at the same time and travel at the speed of light, 
the pulse from clock B had to be emitted first, according to Brice. 

That is, while Alice measures the clocks to be synchronized and emit pulses at the same 
time, Brice measures that clock B is running ahead of clock A. The two observers, Alice and 
Brice, in di�erent reference frames, cannot agree on whether two events are simultaneous. 
Even worse, if a third observer, Chloë, is located on a train going in the opposite direction 
from Brice’s train, she will conclude that the pulse from clock A was emitted earlier than 
the pulse from clock B. A consequence of Einstein’s postulates is that observers in di�erent 
frames of reference will not agree on whether two events happen at the same time, and in 
some cases, as the one we illustrated, the observers will not agree on which event happened 
first. Think of the implications for causality! 

24.3 Time dilation 
Einstein was famous for his “thought experiments”, which allow us to understand the con-
sequences of a theory by performing thought experiments that would be impractical to 
actually carry out (such as the experiment with Alice and Brice described above, which 
would be impractical to carry out, since the speed of light is so high that Brice would never 
notice that clock A emitted the pulse slightly earlier). 

Imagine that we build a clock using a pulse of light travelling (oscillating) back and forth 
between two mirrors, separated by a distance, L, as illustrated in Figure 24.7. 

Figure 24.7: A clock is made by having a pulse of light bounce back and forth between two parallel 
mirrors separated by a distance, L. 

Since the speed of light is, c, the time that it will take for the pulse of light to travel back 
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and forth between the two mirrors, namely the period of the clock, is given by: 

2L�t = 
c 

where the speed of light, c, is given by the total distance travelled by the pulse of light 
divided by the time taken to do so: 

2L 
c = �t 

Now, imagine placing this clock on a spaceship that travels with speed, v, perpendicular to 
the direction of the movement of the light. The clock is illustrated in Figure 24.8, as seen 
from the ground. 

Figure 24.8: A clock is made by having a pulse of light bounce back and forth between two parallel 
mirrors separated by a distance, L. When the clock is placed on a spaceship moving with speed, 
v, the light travels a longer distance before completing a full cycle, as observed by someone not 
travelling with the clock. 

From the perspective of a person watching the clock go by, the pulse of light travels a larger 
distance over one clock period, since the mirrors move to the right as the pulse of light 
moves up and down. However, by Einstein’s second postulate, the pulse of light must still 
travel with the same speed, c, so it must take the pulse of light longer to bounce between 
the two mirrors than it did when the clock is at rest. Let us determine the relationship 
between the period of the clock, �t, measured when the clock is at rest, and the period of 
the clock, �t0, as measured by an observer that sees the clock go by with speed, v. 

To an observer that sees the clock move by with speed, v, the speed of the pulse of light, 
which must also be equal to c, is given by: r � �2

2 L2 + v�
2 
t0 

c = �t0 

where the distance in the numerator was simply found by Pythagoras’ theorem, as the 
spaceship will travel a horizontal distance, v�t0, as measured by the observer that is not 
moving with the spaceship. Squaring this relationship, we can isolate the period of the 
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clock, �t0, as measured by the observer that sees the clock move with speed, v: 

4L2 
2 2 c = + v�t02 

�t02(c 2 − v 2) = 4L2 

0 1 2L 1
∴ �t = 2Lp = q

2c2 − v c 21 − v
c2 

Note that the term, 2L/c, is simply the period of the clock as measured in a frame of 
reference where the clock is stationary. Thus, we can relate the two clock periods: 

0 1�t = �tq
1 − v2 

c2 

To re-iterate: the period of the clock, �t0, as measured in a frame of reference that is 
moving relative to the clock is longer than the period of the clock, �t, as measured in the 
“rest frame” of the clock (the reference frame where the clock is stationary). We call this 
e�ect “time dilation”, and it is not just some mathematical curiosity. The clock that we 
imagined with a pulse of light is a real clock that one could actually construct; we could 
use it to measure time. That clock will appear to tick slower if it is moving. Time goes 
by slower in a moving reference frame. If a person climbs on a ship that is moving, 
that person will age at a slower rate than a person that remained on Earth. By travelling 
at high speeds, you e�ectively travel into the future, as observed on Earth. The equation 
above allows us to relate the amount of time that went by in one reference frame to the 
amount of time that went by in a di�erent frame of reference. 

We define the time that is measured at rest as the “proper time”. In our example, �t, is the 
proper time (proper period) for the clock, since it is defined in a frame of reference where 
the clock is at rest. The “dilated time”, �t0, is measured in a frame of reference that is 
moving relative to the clock. 

The factor by which time is dilated comes up often in Special Relativity, and is called the 
gamma factor: 

1 = q 
21 − v 
c2 

As a corollary to Einstein’s postulates, we will see that nothing can ever exceed the speed of 
light in vacuum. The gamma factor is always greater than 1, since v (the speed between the 
two di�erent inertial frames of reference), must always be smaller than c. You may also rec-
ognize that the gamma factor appeared in our introductory example with the force between 
two wires. Here, we derived the gamma factor from kinematical considerations, whereas in 
the example with the two wires, it came straight out of the equations for electromagnetism. 
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Checkpoint 24-1 

What is gamma for a speed of v = 0.75c? 
A) 1.51 
B) 0.75 
C) 75 
D) 1.68 

Checkpoint 24-2 

What speed corresponds, v, to a gamma factor of 2.5? 
A) v = 2.5c 
B) v = 0.92c 
C) v = 0.25c 
D) v = 0.47c 

Time-dilation is a real e�ect that has been observed, for example by placing high precision 
atomic clocks on an airplane to observe their period slow down. Another example of time-
dilation is the fact that we observe many particles called muons at the surface of the Earth. 
Muons are very similar to electrons, except that they have a larger mass, and that they are 
unstable (they radioactively decay into an electron and neutrinos, after 2.2 µs on average). 
Muons are produced in large amounts when cosmic rays (high energy particles from outside 
our Solar System) strike the molecules in our upper atmosphere, at altitudes of tens of 
kilometres. As the muons travel down towards the Earth, they decay. 

Suppose that muons are produced travelling at the speed of light; in that case, they would 
travel a distance d = (3 × 108 m/s)(2.2 × 10−6 s) = (660 m), on average, before decaying. 
However, muons are produced tens of kilometres above the surface of the Earth, travel 
slower than the speed of light, and yet, we are able to detect many muons at the surface of 
the Earth. We would expect that all muons would have decayed before reaching the surface 
of the Earth. 

We can understand this in terms of time dilation; in the reference frame of the muon, the 
muon decays after �t = 2.2 µs. In a reference frame from which the muon appears to move 
with speed, v, the “clock” that measures how long the muon has existed ticks slower. Thus, 
from the Earth, we observe that the muon takes longer than 2.2 µs to decay, giving it time 
to reach the surface of the Earth. 

Example 24-1 

A muon travels with a speed of 0.9c as observed from the surface of the Earth. As 
measured in the frame of reference of the Earth, how far has the muon travelled after 
2.2 µs have elapsed in the muon’s frame of reference? 

Solution 
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The muon is travelling with a speed of v = 0.9c relative to the Earth, thus the gamma 
factor is given by: 

= q 1 = p 1 = 2.29 
1 − v

c2
2 1 − 0.92 

The amount of time that goes by in the frame of reference of the Earth, �t, when 
�t0 = 2.2 µs has gone by in the muon’s frame of reference will be dilated by the gamma 
factor. �t0 is the proper time in the muon frame’s of reference, which corresponds to a 
longer time in Earth’s frame of reference: 

�t = �t0 = (2.29)(2.2 µs) = 5.0 µs 

In the frame of reference of the Earth, the muon has travelled a distance: 

d0 = v�t0 = (0.8c)(5.0 µs) = 1350 m 

Discussion: In this example, we see that an object, such as a muon, that travels with 
a speed that is 90 percent of the speed of light will have a gamma factor around 2. 
Thus, from the Earth’s frame of reference, it appears that the muons “ages” at about 
half of the rate at which one would observe the muon to age if moving along with the 
muon. This is the mechanism that allows muons to exist much longer than 2.2 µs when 
they are travelling relative to the Earth. 

Also, in Earth’s reference frame, the muons travel a distance of 1350 m in the period of 
time between being produced and decaying. In the reference frame of the muon, only 
2.2 µs elapse as the Earth moves closer to the muon, at the same speed. In the reference 
frame of the muon, the Earth has travelled a distance: 

d0 = v�t = (0.9c)(2.2 µs) = 594 m 

Thus, as viewed from the muon’s frame of reference, the distance that it travelled be-
tween being produced and decaying is about half the distance as measured in the Earth’s 
reference frame. This is called “length contraction” and is a necessary consequence of 
time-dilation. 

Example 24-2 

A spaceship carrying your friend Alice speeds away at a speed of 0.99c towards the 
nearest star, Proxima Centauri, a distance of 4.2 ly (light-years) away. How much time 
does the trip take as measured by Alice? How far has the spaceship travelled, according 
to Alice? 

Solution 
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Alice’s trip is illustrated in Figure 24.9, showing the trip as viewed from Earth’s and 
from Alice’s frame of reference. 

Figure 24.9: Alice travels in a spaceship from the Earth to the star Proxima Centauri. In the 
Earth frame of reference, the star is 4.2 ly away. 

In Earth’s frame of reference, the spaceship travels a distance of 4.2 ly at a speed of 
0.99c, which will take a time, �t0, given by: 

0 (4.2 ly) �t = (0.99c) = 4.2 y 

which is not surprising, since Alice is travelling at almost the speed of light. This is the 
time that goes by on planet Earth. Since Alice’s spaceship is moving, less time will go 
by on the spaceship, as the 4.2 y is the dilated time measured at Earth, not the proper 
time measured by Alice. First, we determine the gamma factor: 

1 1 = q = p = 7.1 
1 − v2 1 − 0.992 

c2 

The proper time measured by Alice is: 

�t0 (4.2 y) �t = = = 0.6 y (7.1) 

That is, Alice only ages by 0.6 y (about 7 months), while everyone on Earth ages by 
4.2 y! 

In Alice’s frame of reference, she is not moving, and Proxima Centauri moves towards 
her at a speed of 0.99c. Since her trip only lasts about 7 months (0.6 y), Proxima 
Centauri moves towards her by a distance, L0: 

L0 = (v)(�t) = (0.99c)(0.6 y) = 0.6 ly 

https://0.99c)(0.6y




780 CHAPTER 24. THE THEORY OF SPECIAL RELATIVITY 

as illustrated in Figure 24.9. Thus, Alice concludes that the distance between Earth 
and Proxima Centauri is only 0.6 ly instead of 4.2 ly. The distance that she observes is 
contracted compared to the “proper distance” between Earth and Proxima (the distance 
measured when we are at rest relative to Earth and Proxima). 

Discussion: In this example we saw, again, how the time that one measures depends 
on the frame of reference. In particular, if one can build spaceships that goes close to 
the speed of light, one can cover large distances in the Universe without ageing much. 
We also saw that length contraction is a necessary corollary to time-dilation. Objects 
appear contracted when they move, relative to their length when they are measured at 
rest (their “rest length” or their “proper length”). 

One interesting issue uncovered by Example 24-2 is the so-called “twin-paradox”. Imagine 
that Alice has a twin brother, Brice, that remains on Earth. Alice travels to Proxima 
Centauri and back (return trip), and will have aged by about 14 months, whereas Brice, will 
have aged by about 8.4 years (using the numbers in Example 24-2). However, Einstein’s 
first postulate implies that there are no special frames of reference that are at rest. We 
should be able to think about this situation from the perspective where Alice is at rest, and 
it is the Earth (with Brice on it), that moves away from her and then back. In this case, 
Alice is at rest, and she will conclude that it takes about 8.4 years for Brice to move away 
and come back, and that Brice would have aged by about 7 months. When Alice and Brice 
meet up again, clearly Alice cannot be both younger and older than Brice, so which one 
is it? (You will have to look this up, see associated question in the “Thinking about the 
material” section). 

24.4 Length contraction 
As we saw in the examples from the previous section, time dilation implies “length contrac-
tion”. When an object is measured in a frame of reference that is at rest relative to the 
object, the length of the object, L, is called the “rest length” or the “proper length” of the 
object. If that object is moving relative to an observer, the observer will measure the object 
to be shorter, and have a “contracted length”, L0, given by: 

s 
2v L 

L0 = L 1 − 2 = 
c 

In Example 24-2, Alice measured a contracted distance between Earth and Proxima Cen-
tauri, as she was in a frame of reference that is moving relative to the Earth-Proxima 
Centauri reference frame. One point that is important to note is that length contraction 
only occurs along the direction parallel to the direction of motion. 
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Example 24-3 

A square painting hanging in a museum has a side with a length of 1 m. If you view the 
stationary painting from a train moving in the horizontal direction at a speed of 0.85c, 
what is the surface area of the painting that you measure? 

Solution 

Since your train is moving horizontally, only the horizontal dimension of the painting 
will be contracted. The gamma factor is given by: 

= q 1 = p 1 = 1.9 
1 − v

c2
2 1 − 0.852 

Thus, the horizontal side of the painting will have a contracted length: 

L (1 m) 
L0 = = = 0.53 m (1.9) 

The area of the painting, as measured in the moving frame of reference, is given by: 

A = (1 m)(0.53 m) = 0.53 m2 

Checkpoint 24-3 

What speed must an object travel in order for it to appear 1 % shorter 
A) 0.01c 
B) 0.04c 
C) 0.99c 
D) 0.65c 

Length contraction also allows us to discuss a famous paradox (the “barn”, or “ladder” or 
“barn-pole” paradox). Consider a train that has a rest length of 500 m, travelling at a speed 
such that = 2.5. As the train goes by, from Earth, it appears to have a (contracted) 
length: 

L0 train = (500 m) 
2.5 = 200 m 

Suppose that there is a tunnel on Earth that is exactly 200 m long, so that the train, when 
contracted, will fit in the tunnel. When the train passes, an operator briefly closes (and 
re-opens) the doors at the ends of the tunnel, briefly “capturing” the train, and since the 
train is contracted, it never hits any of the doors, and all is fine. 

From the train’s frame of reference, the train has a proper length of 500 m, and the tunnel 
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is contracted to a length of: 

(200 m) 
L0 = = 80 m tunnel (2.5) 

Thus, from the train’s perspective, if the doors of the tunnel are closed, there is no way that 
the 500 m long train can ever fit in the 80 m long tunnel, as illustrated in Figure 24.10. So 
what happens when the operator on Earth closes the doors of the tunnel to briefly “capture” 
the train? 

Figure 24.10: In the ground’s reference frame, the contracted train appears to fit inside the tunnel. 
From the train, the (proper length) train will not fit in the contracted tunnel. 

Clearly, people on the Earth and people on the train have to agree on whether the train was 
destroyed by the tunnel doors. The operator on Earth can clearly close both doors of the 
tunnel when the train is inside and not destroy the train. Hence, people on the train must 
agree that the train never collided with the doors, and that the doors were closed. The 
answer to this paradox lies in the fact that simultaneity is relative. The tunnel operator 
believes that she has closed the two doors of the tunnel at exactly the same time, precisely 
when the contracted train is lined up with the tunnel. However, to people on the train, in 
a di�erent frame of reference, the doors did not close at the same time, since events that 
are simultaneous in one frame of reference are not necessarily simultaneous in a di�erent 
frame of reference. To people on the train, there was never a time when the train was in 
the tunnel and both doors were closed at the same time! 

Checkpoint 24-4 

Referring to the above paradox, to people on the train, which tunnel door closes first? 
A) The door at the entrance of the tunnel closes first. 
B) The door at the exit of the tunnel closes first. 

24.5 Electric and magnetic fields and Special Relativ-
ity 

In this section, we present one more example to show how Special Relativity is connected 
to electromagnetism. Consider a wire that carries an electric current towards the left, and 
a positive charge, +Q, located next to the wire, as illustrated in Figure 24.11. 
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Figure 24.11: A stationary positive charge, +Q, near a wire carrying current towards the left. 
This leads to a magnetic field out of the page at the location of Q+. 

Inside the wire, negative electrons are moving towards the right, with a drift velocity, 
~vd, while positive ions remain stationary. Since the charge +Q has a velocity of zero, it 
experiences no magnetic force. Furthermore, the wire appears to be neutral, with no net 
electric charge. 

If the charge, +Q, has a velocity, ~vd, towards the right, it will experience a downwards 
magnetic force, as illustrated in Figure 24.12. 

Figure 24.12: A positive charge, +Q, moving towards the right, near a wire carrying current 
~ ~towards the left, will experience a downwards magnetic force, FB = Q~vd × B. 

Now, consider this from the perspective of the charge, +Q, as illustrated in Figure 24.13. 
The charge Q is moving towards the right at the same speed as the electrons in the wire. 
In the reference frame of the charge, +Q, the charge has a velocity of zero, and thus will 
experience no magnetic force. The wire still appears to have a (di�erent) current, I 0, as the 

~positive ions move to the left, creating a magnetic field, B 0, out of the page. 

In the “lab” frame of reference, where the electrons and the charge +Q move towards the 
right at the same speed, vd, the electrons appear closer together (length contracted) than 
they are in the frame of reference of the electrons (or of the charge +Q, since it is moving 
with the electrons). In the frame of reference of the charge +Q, the electrons thus appear 
to be spaced further apart (less dense). On the other hand, in the frame of reference of +Q, 
the positive ions, which are moving towards the left, appear closer together, as the distance 
between them is now contracted, as illustrated in Figure 24.13. 
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Figure 24.13: In the frame of reference of the charge +Q, the charge has a velocity of zero and 
cannot experience a magnetic force. The ions appear to move to the left, and thus appear denser, 
since the distance between ions is contracted. The distance between electrons, on the other hand, 
is larger in this frame of reference. It thus appears that the wire is positively charged, and would 
exert a downwards electric force on the charge, +Q. 

In the frame of reference of the charge +Q, the wire no longer appears neutral, but appears 
to have a net positive charge. This results in an electric field away from the wire that will 
exert a downwards force on +Q. In both frames of reference, we conclude that the charge 
will experience a downwards force. Whether that force is magnetic or electric depends on the 
frame of reference! Here, we came to the conclusion by using the notion of length contraction, 
but, remember that it is in fact length contraction that is a consequence of Maxwell’s 
equations holding in di�erent frames of reference, as we illustrated at the beginning of this 
chapter. 

In most real-world applications, we do not see the e�ects of Special Relativity, as the 
speeds involved must be very high for the gamma factor to be appreciably di�erent from 
1. However, as you recall, the drift speed of electrons in a wire is usually (much) less than 
mm/s, yet, when dealing with the electric and magnetic forces (fields), even the minuscule 
length contraction of the electrons/ions at those speeds, leads to relativistic e�ects. This 
can be thought of in terms of how strong the electric force really is; even a minute change 
in charge density (due to length contraction) has an appreciable relativistic e�ect in how 
we model the dynamics of a charged particle. 

24.6 Lorentz transformations and space-time 
24.6.1 Four-dimensional space-time 
So far, we have seen that our notions of time intervals (the time between two events) and 
space intervals (the distance between two locations) depend on our frame of reference. We 
also saw how space and time are connected, for example by the fact that time-dilation 
must go hand-in-hand with length contraction. We also concluded that there is no absolute 
concept of time, and that time is relative (depends on your frame of reference). 

In the context of Special Relativity, we introduce the concept of space-time. To describe the 
location of an object in space-time, we must specify both the location/position coordinates 
(x, y, z) and the time “coordinate”, t. Since time, t, has the dimension of time, we usually 
specify the time coordinate by multiplying it by speed of light, ct, so that it has dimensions 
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of length. Thus, position in space-time is given by 4 coordinates: (x, y, z, ct). 

24.6.2 Space-time diagrams 
It is practically impossible to visualize situations in three dimensions, so four dimensions 
is hopeless! However, we can gain a lot of insight into Special Relativity models by using 
“space-time diagrams”. In a space-time diagram, we use only one of the space coordinates 
(typically x) along with the time coordinate, ct, to define the two axes of a space-time 
diagram. Space-time diagrams are analogous to “position as a function of time” graphs 
that one would draw in kinematics, although they are fundamentally di�erent in that, for 
a space-time diagram, the coordinates should be thought of as independent (one is not 
plotting a dependent variable as a function of an independent variable). 

Figure 24.14 shows a space-time diagram for an object that was located at position x = x1 
at time t = t1 (location A), and at position x = x2 at time t = t2 (location B). The path 
of an object through space-time, indicated by the line that connects A and B, is called the 
“world line” of the object. 

Figure 24.14: World line of an object that moved from locations A in space-time to location B in 
space-time. 

Checkpoint 24-5 

What does the world-line of a stationary particle look like? 
A) A vertical line. 
B) A horizontal line. 
C) A point. 

A pulse of light travelling in the x direction will always have a world-line that makes a 45� 
angle with the horizontal (space) axis (since x = ct). The world line of any object that 
travels with a speed below the speed of light must always make an angle with the horizontal 
axis that is greater than 45�. 

A position in space-time is usually called an “event”. We can draw a set of lines, at 45� 
degrees from the horizontal axis, that intersect at an event in space-time. Those lines define 
two “light cones” corresponding to: (1) locations in space-time in the past that could have 
had a causal e�ect on the event (the “past light cone”), and (2), locations in space-time in 
the future for which the event can have a causal e�ect (the “future light cone”). 
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Figure 24.15 shows the light cones associated with an event, A, in space-time. The past light 
cone is the only region of space-time in which a di�erent event could have had an impact 
on the event A. For example, the event A might be that “the object is at position x = x1 at 
time t = t1”, so that the past light cone corresponds to the only locations in space-time that 
the object could have been in the past. Similarly, the future light-cone defines the locations 
in space-time upon which the event A could have an e�ect. For example, this could define 
the possible locations of the object in the future. The regions outside the light cones can 
never have an e�ect on the event A; they are not causally connected. A signal or object 
would need to travel faster than the speed of light in order to have an e�ect on something 
outside of its light cone. There are locations in space-time, in the future of our Universe, 
that we cannot influence, no matter what we do. 

Figure 24.15: The past and future light cones associated with the space-time event, A. 

When two events in space-time are within each other’s light cones, we say that the space-time 
interval between them (the line that you draw from one event to the other) is “time-like”. 
Time-like events are such that all observers, in any frame of reference, will agree that one 
event happened before the other. Thus, events that are causally related must have a time-
like interval between them (they are connected by a line that makes an angle greater than 
45� with the horizontal axis). 

Two events that are outside of each other’s light cones are said to be “space-like”. Events 
that are connected by space-like intervals cannot be causally related (one cannot cause the 
other). Observers in di�erent frames of reference will disagree on the time ordering of space-
like events. For example, when Alice observed the two clocks on the platform to emit pulses 
of light at the same time, Brice disagreed; those two events are connected by a space-like 
interval. 

Finally, the space-time interval between events that are on each other’s light-cone (connected 
by a line that makes a 45� angle with the x-axis), is said to be “light-like” or “null”. 

24.6.3 Lorentz transformations 
In this section, we consider how to transform the space-time coordinates, (x, y, z, ct), as 

0 0 0measured in a frame of reference, S, to coordinate (x , y , z , c0t), as measured in a frame 
of reference, S 0, that is moving with a constant speed, v, relative to the frame, S. For 
simplicity, we assume that frame S 0 is moving with speed v in the positive x direction, as 
measured in frame, S, and that the origin of the two coordinate systems coincided at time 
t = 0. Figure 24.16 shows an illustration of how the two frames of reference are related 
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(note that these are actual coordinate systems, not space-time diagrams). 

Figure 24.16: The reference frame S0 is moving relative to reference frame, S, with speed v in the 
x direction. At time t = 0, the origins of the two coordinate systems coincided. 

If we ignore any of Special Relativity, then the coordinates in S 0 are easily related to those 
in the S frame of reference using the “Galilean transformations”: 

x 0 = x − vt 
y 0 = y 
0 z = z 
0t = t 

and this corresponds to transformations that we have implicitly used before considering 
Special Relativity. These equations also allow us to relate the speeds measured in di�erent 
frames of reference. Suppose that an object has a velocity, ~u = (ux, uy, uz), as measured 

0in the frame of reference, S. We can obtain the components of the velocity vector, ~u , as 
measured in the frame of reference, S 0, by taking the time derivatives of the above equations: 

0 dx0 dx0 d dx 
u = = = (x − vt) = − v = ux − vx dt0 dt dt dt 

0 dy0 
u = = uyy dt0 

dz0 
uz 
0 = = uz

dt0 

which is trivial, since t = t0. The transformation above are equivalent (identical) to the 
rules for transforming velocity that we derived in Section 3.4 for kinematics. In Galilean 
relativity, time is an absolute quantity that does not depend on the frame of reference. In 
Special Relativity, the time coordinate is di�erent between di�erent frames of reference, so 
we cannot simply convert a time derivative in t0 to a derivative in t. Instead, we must use 
the Lorentz transformations. 

We can use the formulas for length contraction and time dilation to derive the Lorentz 
Transformations. Referring to Figure 24.16, x refers to the distance between a point in 
space-time and the origin of the x axis in the frame, S, as measured in frame, S. Similarly, 
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x0, is the distance to the point in space-time as measured in frame S 0, from the origin of 
S 0. In frame, S, the distance x0 will be contracted to the length x0/ , so that the Galilean 
transformation for the x coordinate is modified as follows: 

x 0 = x − vt (Galilean) 
0x = x − vt 

∴ x 0 = (x − vt) (Lorentz) 

The y and z coordinates are the same between frames of references, since all of the length 
contraction will take place in the direction of the relative motion between frames of reference, 
which we chose to be in the x direction. 

We can obtain the equation for the time coordinate by considering that, in the S 0 frame of 
reference, it is the x coordinate that is contracted to x/ . In the S 0 frame of reference, the 
distance between the origins of the two systems is vt0 (note the prime on t). We can thus 
write the contracted distance x, in the S 0 frame of reference: 

x 0= vt0 + x 

0 1 x 
! 

t = − x 0 
v 

We can eliminate x0 from the last equation using the Lorentz transformation for x0 that we 
just found: 

0 1 x 0 
! 

t = − x 
v !
1 x 

t0 = − x + vt 
v ! 

t0 1 x = 2 − x + vt 
v ! !
1 v2 

= x 1 − 2 − x + vt 
v c !
1 v2 

= − 2 x + vt 
v c 

vx = t − 2 � c � 
vx 

∴ t0 = t − 2c 

where we wrote out the factor out explicitly in the fourth line. We can summarize the 
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Lorentz transformations as follows: 

x 0 = (x − vt) 
y 0 = y 
0 z = z � � 

vx 
t0 = t − 2c 

and the inverse relations are easily found: 

x = (x 0 + vt0) 
0 y = y 
0 z = z ! 
0 + vx

0 
t = t 2c 

Note that the Lorentz transformations reduce to the Galilean transformations when the 
speed, v, between frames of reference is small (so that ˘ 1). 

Example 24-4 

In a frame, S, a pulse of light is emitted (at the speed of light) in the positive x di-
rection, at t = 0, from the origin. The pulse is then absorbed at time t, at position 
x = d. Use the Lorentz transformation to show that, in a frame, S 0, moving in the pos-
itive x direction with speed v, relative to S, the pulse also travelled at the speed of light. 

Solution 

In order to use the Lorentz transformations, we need to define “events”, with coordi-
nates in space-time, that we can then convert from one frame of reference to another. 
Let A be the event that corresponds to the emission of the pulse of light, and B the 
event that corresponds to the absorption of the pulse. In frame, S, the coordinates of 
these events are: 

xA = 0 
tA = 0 
xB = d 

d 
tB = 

c 

where in the last line, we used the fact that, in frame, S, the pulse travels at the speed 
of light. Applying the Lorentz transformations, we can find the coordinates of the same 
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events in frame, S0: 

xA = (xA − vtA) = 0 � � 
vxA 

tA = tA − 2 = 0 
c ! 

xB = (xB − vtB) = d − vd 
c !� � 

vxB d vd 
tB = tB − = −2 2c c c 

The speed, vp, of the pulse of light in frame, S 0, is given by: � � 
(xB − xA) d − v d

c 
v = = � � 
p (tB − tA) d − vd 2c c� � � � 

d d dd − v − v 
c c c2 

= � � = c � � = c 
d − vd d − vd 

0 

0 

2 2c c c c 

0 

0 

which is the speed of light, as expected. 

Discussion: In this example, we showed how to use the Lorentz transformations, 

0 

0

0

0 

0 

by clearly defining “events” and their coordinates in space-time. We that thesaw 
Lorentz transformation are consistent with Einstein’s second postulate and that the 
speed of light is the same all frames of reference. This of course makes sense, as we 
derived the Lorentz transformations from time dilation and length contraction, which 
are consequences of the postulate. 

0 

Einstein’s second postulate states that the speed of light is independent of the frame of 
reference. Consider two points in space-time corresponding to the emission (A) and the 
absorption (B) of a pulse of light. In the reference frame, S, the distance squared in 
space between these two events must be equal to the distance (squared) that light travelled 
between the time of emission and absorption: 

(xB − xA)2 + (yB − yA)2 + (zB − zA)2 = c 2(tB − tA)2 

∴ �x 2 + �y 2 + �z 2 = c 2�t2 

where (xA, yA, zA, ctA) and (xB, yB, zB, ctB) are the space-time coordinates of events A and 
B. The above equation must hold in all frame of references (e.g. adding a prime to each 
coordinate), since it is a statement that the speed of light is c. 

We can define, s, the ”space-time interval”, between events, A and B: 

s 2 = �x 2 + �y 2 + �z 2 − c 2�t2 

which turns out to be “Lorentz invariant” (meaning that this value is the same in all reference 
frames). The space-time interval can be thought of as a “distance” in space-time that is 
the same in all reference frames. If the events A and B corresponds to the emission and 

https://inspace-time.We
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absorption of light, then s = 0, and we say that the interval between A and B is light-like or 
null. If s < 0, the events are on a time-like interval, and if s > 0, the events are separated 
by a space-like interval. Since s does not depend on the frame of reference, all observers 
will agree on whether events are separated by time or space-like intervals. 

We can visualize the e�ect of Lorentz transformations on space-time diagrams, as in Figure 
24.17, which shows the space-time diagrams for a reference frame, S, and a second reference 
frame, S 0, moving with speed v in the x direction relative to S. 

Figure 24.17: The reference frame S0 is moving relative to reference frame, S, with speed v in the 
x direction. We can illustrate this on a space-time diagram by tilting the axes of the S0 coordinate 
system by an angle tan = v/c, as shown. 

The e�ect of the Lorentz transformation on a space-time diagram is to tilt both the space 
and time axes “inwards”2, by an angle, , given by: 

tan = v 
c 

Figure 24.17 shows a light-like interval between two points, A and B, and how to determine 
the space-time coordinates in the two reference frames. You can think of space-time as the 
sheet of paper on which events happen. You can then draw di�erent coordinate systems on 
that piece of paper to describe the position (in space and time) of di�erent events. 

Example 24-5 

Use a space-time diagram to show how two events at di�erent locations that are si-

�

�

�

2Outwards if the speed of S0 is in the negative x direction relative to S. 



792 CHAPTER 24. THE THEORY OF SPECIAL RELATIVITY 

multaneous in one frame of reference are not simultaneous in a reference frame that is 
moving relative to the one where the events are simultaneous. This is an illustration of 
the relativity of simultaneity that we uncovered at the beginning of the chapter when 
examining Alice on a train platform and the two pulses of light. 

Solution 

Let S be the frame of reference where events, A and B, are simultaneous. These events 
are connected by a space-like interval, since they are separated in space, but not in 
time. There is no way for one event to have caused the other. In the frame, S, these 
events are on a horizontal line in a space-time diagram. 

Let us define a second reference frame, S 0, that is moving with speed v, relative to 
S. We have illustrated space-time diagrams for the the two reference frames, and the 
events A and B, in Figure 24.18. 

Figure 24.18: In the frame of reference, S, the events A and B occur at the same time. In 
frame, S0, event B occurs before event A (since tB < tA). The two events are space-like, so 
observers in di�erent frames of reference cannot agree on which happened first. 

From the space-time diagram, it is clear that, in the frame of reference, S 0, the event 
B happened first. If the frame of reference S0 was moving in the opposite (negative x) 
direction, event A would occur first, and the axes of S 0 would be tilted in the other 
direction (so that the opening angle between the axes is greater than 90�). 

Discussion: This example illustrates how space-time diagrams can be used to qualita-
tively model events in space-time between two di�erent reference frames. In particular, 
we showed how two events that are simultaneous in one frame (S) are not simultaneous 
in a di�erent frame. For events connected by space-like intervals, there exist frames of 
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reference where the events are simultaneous, or where either one happened first. If two 
events are separated by a time-like interval, there is no frame of reference in which one 
will disagree in the ordering of the events (although observers in di�erent frames of ref-
erence will still measure di�erent lengths of time between events due to time-dilation). 
For time-like events, the moving frame of reference would have to go faster than the 
speed of light for the time ordering to be di�erent. This would violate causality, and is 
a good argument as to why nothing can go faster than the speed of light! 

Josh’s Thoughts 

This chapter is where the bubble of intuitive reality is popped, and students (like you 
and me) are given the oppourtunity to challenge our understanding of how the universe 
operates. As amazing and exciting as this is, it can also be incredibly frustrating. 
Many students rely on intuition to guide them as they problem solve, but hit a wall 
in special relativity. To avoid this issue, I suggest drawing spacetime diagrams and 
using Lorentz transformations. Practicing with these tools will help make the process 
of understanding the strange consequences of Einstein’s postulates less awkward. 

In addition to the practical advice I have given, I reccommend embracing the strangeness 
of reality. Throughout history, scientists have ventured into the unknown in attemps 
to discover and decode the universe. In many cases, the answer to a question has 
posed more questions than answers, and humanity is given the oppourunity to further 
understand the world we live in. As a student, you are participating in a process 
of understanding which allows us to continue the adventure that is scientific inquiry. 
Confusion can be frustrating, but don’t let it discourage you, being confused means 
that you’re only a few steps away from understanding! 

24.6.4 Lorentz addition of velocities 
In the previous section, we reviewed the Galilean velocity transformations, that allow us to 

0convert a velocity, ~u, as measured in one frame of reference, to a velocity, ~u , measured in 
a di�erent frame of reference. We now derive the equivalent relations based on the Lorentz 
transformation. Again, we assume that frame, S 0, moves in the positive x direction with 
speed, v, relative to frame, S. 

0The x component of the velocity vector, ~u , for some object in the S0 frame of reference is 
given by: 

d0 0 u = xx dt0 

In Galilean relativity, we could simply replace the derivative over t0 by a derivative over t, 
since the two are equivalent. This is no longer the case. However, we can use the Chain 
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Rule and the Lorentz transformations to convert a derivative over t0 to a derivative over t: 

d dt d = 
dt0 dt0 dt ! 0d vx d0 += t 2dt0 c dt ! 

dx0 d = 1 + v 2c dt0 dt ! 
x d = 1 + vu
0 

2c dt 

0where we recognized that dx0 = ux. The x component of the velocity, as measured in the S 0 
dt0 

frame of reference, is then given by: ! 
d d0 0 x 0 ux = x = 1 + vu 2 

0 
x 

dt0 c dt ! 
= 1 + vux 

0 d (x − vt)2c dt ! 
= 2 1 + vux 

0 
(ux − v)2c 

0 0 2 0u vu ux v ux = ux − v + x − x 
2 2 2 ! c c 

2 0 2 0v vu ux v u 
u 0 x 1 − = ux − v + x − x 

2 2 2c c c � � 
vux 

u 0 x 1 − 2 = ux − v 
c 

0 ux − v∴ u = x 1 − vux 
c2 

0where we made use of the Lorentz transformation: x = (x − vt). We can proceed in a 
similar way to determine the y and z components. Note that, unlike the Galilean case, all 
of the velocity components must transform, since the time derivative is involved for each 
component. Intuitively, we expect all components of velocity to be a �ected, since one needs 
to guarantee that the total speed is always below c. The velocity transformations for all 
components are given by the following: 

0 ux − v 
u = x 1 − vux 

c2 

u 0 = � uy � 
y 1 − vux 

c2 

uz 
uz 
0 = � � 

1 − vux 
c2 
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and the reverse transformations are given by: 

ux 
0 + v 

ux = 1 + vux 
c2 

0uy= � �uy 
1 + vux 

c2 

0 
z= � u � 

1 + vu 
c2 
x 

uz 

Example 24-6 

An archer can shoot a very fast arrow with a speed of 0.5c. The archer is on a train 
moving with speed, v = 0.7c, and fires an arrow in the direction of motion. What is 
the speed of the arrow, as measured in the frame of reference of the ground? 

Solution 

Let the train be the frame of reference, S 0, moving in the positive x direction with speed 
v = 0.7c relative to the frame, S, which corresponds to the ground. The speed of the 
arrow, as seen from the train (S 0), is given by: 

ux 
0 = 0.5c 

The speed of the arrow, as measured from the ground, is thus given by: 

u0 + v 
ux = x 

1 + vux 
c2 

(0.5c) + (0.7c)= 
1 + (0.7c)(0.5c) 

c2 

(1.2c) 1.2‘ = 1.35c = 0.89c1 + (0.7)(0.5) = 

Discussion: By using the Lorentz transformations for velocity, we see that the arrow 
does not exceed the speed of light. Had we used Galilean relativity, we would have 
concluded that the arrow has a speed of 1.2c when measured from the ground. 

24.7 Relativistic momentum and energy 
In this section, we show how to define momentum and energy in a way that is consistent 
with the postulates of Special Relativity. We expect that, since time and space depend 
on the frame of reference of the observer, so too will the momentum and the energy of an 
object. Consider an object of mass m0, moving in a frame of reference, S, with velocity, 
~u (we reserve ~v to represent the speed between two inertial frames of reference), in the x 

https://0.7c)(0.5c
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direction. At some time, t, the object will be at position, x, along the x axis. We define the 
relativistic momentum as: 

dx 
p = m0 

dt0 

where t0 is the time as measured in the rest frame of the object. By defining momentum 
in terms of the proper time of the object, all observers will agree on the value of t0. In the 
frame of reference, S, (with time t) this corresponds to: 

dx dt dx dt 
p = m0 = m0 = m0 u 

dt0 dt0 dt dt0 

where u is the speed of the particle in frame, S. We can use time dilation to re-express the 
derivative: 

�t = �t0 

�t = �t0 
dt

∴ = 
dt0 

where in the last line, we simply took the limit of an infinitesimally short time interval. 
Therefore, the relativistic momentum of the particle, in frame, S, can be defined: 

m0~u 
~ ~u = qp = m0 

1 − u2 

c2 

where is calculated with the same speed, u, since that is the speed of the reference frame 
of the object relative to S. Note that as the speed, u, of the particle approaches the speed 
of light, the factor of approaches infinity. This means that an object with a mass can 
never reach the speed of light, as it would have an infinite momentum. In order to define 
momentum in a way that resembles the classic definition, one can think of the mass of the 
object as depending on the speed of the object. We define the rest-mass, m0, of the object 
as the mass that is measured when the object is at rest. We can then model the mass of 
the object as increasing with its speed: 

m0 
m(u) = m0 = q

1 − u2 

c2 

so that the relativistic momentum would be defined as: 

~ up = m(u)~ 

In this case, we can think of the mass of the object as increasing with its speed. The object 
would acquire infinite mass if it were to reach the speed of light. 

With the relativistic definition of momentum, Newton’s Second Law can be written as: 
d~p d ~F = = m0 ~u 
dt dt 
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Example 24-7 

A constant force of 1 × 10−22 N is applied to an electron (with mass me = 9.11 × 10−31 kg) 
in order to accelerate it from rest to a speed of u = 0.99c. Compare the length of time 
over which the force must be applied using classical and relativistic dynamics. 

Solution 

In both cases, we can start with Newton’s Second Law: 

d~p~F = 
dtZ 

~∴ Fdt = �~p = p~ 

where ~p is the final momentum of the electron (which is di�erent depending on whether 
we use the classical or the relativistic definition of momentum). Since the force is 
constant: Z 

~ ~Fdt = F �t = ~p 
p

∴ �t = 
F 

where �t is the length of time over which the force is applied. With the classical 
definition of momentum, the time is given by: 

p mu (9.11 × 10−31 kg)(0.99)(3 × 108 m/s)�t = = = = 2.71 s 
F F (1 × 10−22 N) 

With the relativistic definition of momentum, we first need the gamma factor: 

1 1 = q = q = 7.1 
1 − u

c2
2 1 − (0.99)2 

We can then calculate the time over which the force needs to be applied: 
p m0u m0u�t = = = = (7.1)(2.71 s) = 19.2 s 
F F F 

Discussion: When using the relativistic definition of momentum, we find that the 
time over which the force must be applied to reach a given speed is longer. This makes 
sense, since it will take infinitely long to reach the speed of light. Also, note that the 
time that is required using relativistic dynamics is just the time-dilated time that is 
required in classical dynamics. 

Recall how we defined kinetic energy, in Section 7.2, by defining the change in kinetic energy 
of an object as the net work done on that object. We use the same formalism here to redefine 
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kinetic energy using relativistic dynamics. 
~The work done by the net force, F , on an object that goes from a position A to a position 

B, is given by !Z B Z t d ~ ~W = F · dl = m0 ~u · (~udt) 
A 0 dt 

~where we recognized that a infinitesimal segment dl along the path of the object is given by 
~dl = ~udt. The time infinitesimals, dt, cancel, and we are left with: !Z 

W = 
t d

m0 ~u · (~udt)
0 dt Z 

= d(m0 ~u) · ~u 

which we can integrate by parts. We can integrate this over the speed, u, and we assume 
that the object started with a speed of u = 0 at the beginning of the path and has a speed, 
u = U , at the end of the path: Z U � �U Z U 

W = d(m0 ~u) · ~u = m0~u · ~u − m0 udu (int. by parts) 
0 0 0Z U udu = m0U

2 − m0 q 
20 1 − u 
c2 s 

u = m0U
2 − m0 

� 
c 2 1 − 

2 �U 
2c 0s 

= m0U
2 − m0c 

2 + m0c 
2 1 − U 2

2 

!!c 
U2 

= m0U
2 + m0c 

2 1 − 2 − m0c 
2 

c 

= m0c 
2( − 1) 

Since the object started at rest (with a speed u = 0) the above integral corresponds to what 
we would call the kinetic energy of the object, with a speed, u: 0 1 

1 
K = m0c 

2( − 1) = m0c 
2 @q − 1A 

1 − u 2
2 

c 

This form for the relativistic kinetic energy of the object is not at all similar to the form 
that we obtained in classical physics. As the speed of the object approaches the speed of 
light, the factor approaches infinity, as does the kinetic energy. Thus, it would take an 
infinite amount of work to accelerate an object to the speed of light, and again, we see that 
it is impossible for anything with mass to ever reach the speed of light. The formula above, 
however, should always be correct, even in the non-relativistic limit, when v << c. We can 
approximate the gamma factor using the binomial expansion for the case where x << 1: 

(1 + x)n ˘ 1 + nx + . . . 
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So that, when v << c (and v2/c2 << 1), the gamma factor is approximated by: !− 12 2 2u 1 u = 1 − 2 ˘ 1 + 2c 2 c 
In this limit, the relativistic kinetic energy reduces to: !

1 u2 1lim K = lim m0c 
2( − 1) ˘ m0c 

2 1 + 2 − 1 = 2mu 
2 

v<<c v<<c 2 c 
which is the classical definition of kinetic energy. The kinetic energy is also zero when the 
speed is zero. 

The kinetic energy has two terms in it: 
2 2K = m0c − m0c 

The first term increases with speed and behaves as we would expect. The second term is 
constant, and depends only on the rest mass of the object (we call this term the rest mass 
energy). We can think of this in slightly di�erent terms. Let us define the total energy, E, 
of the object as: 

2E = m0c 

2∴ E = K + m0c 

so that the total energy is just the rest mass energy plus the kinetic energy. This highlights 
a key aspect of Special Relativity. An object will have energy, E, even when it is at rest. 
That energy, at rest, is called the rest mass energy, and corresponds to energy that an object 
has by virtue of having mass. This is, of course, Einstein’s famous equation: 

2 (rest mass energy)E = m0c 

This equation implies that mass can be thought of as a form of energy. Nuclear reactors 
function by converting a small amount of mass of uranium atoms into energy (in the form 
of heat), that is then used to produce high pressure steam to rotate a turbine. 

Einstein’s relation is often used to express the mass of subatomic particles in terms of energy. 
For example, an electron has a mass of 511 × 103 eV/c2 in these units. 

Example 24-8 

What is the mass of a proton, mp = 1.67 × 10−27 kg, in units of MeV/c2 (where the M 
stands for “Mega”, and corresponds to 1 MeV = 1 × 106 eV)? 

Solution 

We can first calculate the rest mass energy of the proton in Joules: 

E = mpc 
2 = (1.67 × 10−27 kg)(3 × 108 m/s)2 = 1.503 × 10−10 J 
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We can then convert from Joules to electron-volts: 

(1.503 × 10−10 J) 
(1.6 × 10−19 J/eV) = 939.4 × 106 eV = 939.4 MeV 

The mass of the proton can then be expressed as mp = 939.4 MeV/c2. 

Finally, it is interesting to examine the relationship between the momentum and the energy 
of a relativistic object. Consider the quantity c2p2: ! 

u2 12 2 2 2 2 2 4 2 2 4 2 2 c p = c 2( m0u)2 = c m0u = c m0 = c m0 1 −2 2c 
4 2 2 4 2= c m m0 − c 0 

= E2 − c 4 m0
2 

where we recognized that c4 2m0
2 is simply the energy, E, squared. This is generally called 

the “energy-momentum” relation and written: 

2 2 4E2 = p c 2 + m0c 

An interesting consequence of this relationship is that particles with no mass will still have 
a momentum. For example, the photon, which is a particle of light and must thus have a 
mass of zero (or it could not move at the speed of light), will have a momentum given by: 

E 
p = 

c 

Thus, one can use light to impart momentum to something. This is how a solar sail, a 
proposed propulsion mechanism for space travel, operates. 

24.8 Closing remarks 
In this chapter, we introduced the first hints of how the laws of physics become counter-

F~ netintuitive, and quite bizarre. One can wrap one’s head around Newton’s Second Law, = 
m~a, and develop some intuition as to how an object may behave. However, it is diÿcult to 
imagine how people age slower if they travel faster, and how cars become shorter when they 
are moving. However, as far as we can tell, this is the best way to describe the Universe 
around us. 

This all goes back to our original statements about physics. The goal is to come up with rules 
that allow us to describe Nature. It’s nice when those rules make sense, but, unfortunately, 
that is not a requirement. It does appear that the rules that describe Nature do not make 
sense, at least not based on our common experience, living in a macroscopic world where 
speeds are much less than the speed of light. With Special Relativity, we introduced the 
modern framework for modelling dynamics. We have not introduced Quantum Mechanics, 
which describes how elementary particles behave. 

Quantum Mechanics is even less intuitive than Special Relativity, as it implies that particles 
act as if they are in multiple places at the same time. Even worse, Quantum Mechanics 
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requires us to abandon the concept of determinism that is critical in Classical Mechanics; in 
Quantum Mechanics, we can only ever determine probabilities. For example, we can only 
determine the probability that a particle will be at a particular location at a particular time, 
but we cannot use kinematics and dynamics to predict where it will be at some time based 
on the forces acting upon it. 

If you decide to pursue further studies in physics, you will get to learn more about these 
theories, which are quite marvellous. It should not bother you that physics is not intuitive, 
as that is not the purpose. The exciting part of physics is that, even if Nature behaves in 
an exquisitely weird way, it does appear that this can all be described with a rather limited 
set of mathematical equations. One can argue that there is beauty in the fact that succinct 
mathematics can describe a large number of seemingly unrelated phenomena, as Newton’s 
Universal Theory of Gravity was able to describe both the motion of a falling apple and the 
orbit of the moon. 
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24.9 Summary 
Key Takeaways 

The Theory of Special Relativity is based on Einstein’s two postulates: 

1. The laws of physics are the same in all inertial reference frames. There is no 
experiment that can be performed to determine whether one is at rest or moving 
with constant velocity. 

2. The speed of light propagating in vacuum is the same in all inertial reference 
frames. Any observer in an inertial frame of reference, regardless of their velocity, 
will measure that light has a speed of c, when it propagates in vacuum. 

These postulates are required in order for the equations from electromagnetism to be 
valid in all inertial frames of reference. However, they lead to very counter-intuitive 
results. For example, if two events, A and B, are simultaneous in one frame of reference, 
an observer in a di�erent frame of reference will observe event A to happen earlier/later 
than event B (earlier or later will depend on the direction of motion of the moving 
observer). 

The Theory of Special Relativity allows us to relate observations made in one inertial 
frame of reference, S, to observations made in a di�erent inertial frame of reference, S 0, 
that is moving with constant velocity, ~v, relative to S. We always choose to define the x 
axis in the S and S 0 frames of reference so that they are both co-linear with the velocity 
of S 0, ~v, which is defined to be in the positive x direction in frame, S. Furthermore, we 
assume that the origin of both frames of reference coincided at time t = 0. 

We define the gamma factor, , based on the speed, v, of S 0 relative to S: 

1 = q 
21 − v 
c2 

The gamma factor is always greater or equal to 1. 

If a time interval, �t, is measured in frame, S, then a “dilated” time interval, �t0, will 
be measured in frame S0: 

�t0 = �t 

since � 1. We call the time that is measured in a frame of reference that we consider 
“at rest” to be the “proper time” in that frame of reference. For example, a muon 
decays in 2.2 µs when at rest. If a muon moves at high speed, in the frame of reference 
where the muon is moving, it will take longer (time dilation), for the muon to decay. 
The time 2.2 µs is the “proper time” for the muon decay (since it is measured when the 
muon is at rest). 

As a consequence of time dilation, observers in di�erent frames of reference will measure 
di�erent lengths due to “length contraction”. If an object has a “proper length”, L, in 
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a frame of reference, S, that is at rest relative to the object, the object will have a 
contracted length, L0, in a reference frame, S 0, moving with speed, v, relative to S: 

L 
L0 = 

Note that only the dimension of the object that is co-linear with the velocity vector, ~v, 
is contracted. 

We also noted that Special Relativity is intimately connected to electromagnetism. 
In particular, we described how what we model as a magnetic force in one frame of 
reference might be modelled as an electric force in a di�erent frame of reference. 

In order to describe the motion of objects, we found that we need to define a four-
dimensional space-time, where positions in space-time are labelled by 4 “coordinates”, 
(x, y, z, ct), instead of the usual 3 (space) position coordinates. This is a result of the 
fact that time is no longer absolute and depends on the frame of reference (e.g. time 
dilation). 

In space-time, we think in terms of events that occur at specific locations in space and 
instants in time. We can visualise space-time using “space-time diagrams”, where one 
axis corresponds to space (x), and the other axis corresponds to time (ct). The path of 
an object through space-time is called its “world line”. 

For a given event in space-time, we can define past and future “light cones”. Only 
events in the past light-cone could have had a causal e�ect on the event. Similarly, only 
events in the future light-cone can ever be influenced by that event. Events that can be 
causally connected (within each other’s light cones) are said to be “time-like”. Events 
that are outside of each other’s light cones are said to be “space-like”. If two events are 
time-like, all observers will agree on the order in which the events happened, preserving 
the notion of causality. Di�erent observers can disagree on the order in which space-like 
events occurred. 

The Lorentz transformations allow us to convert the coordinates of events in one frame 
of reference, S, to those in a frames, S 0, moving with constant speed, v, relative to S: 

x 0 = (x − vt) 
y 0 = y 
0 z = z � � 

vx 
t0 = t − 2c 
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and the inverse relations are easily found: 

x = (x 0 + vt0) 
y = y 0 

0 z = z ! 0vx 0 +t = t 2c 

Certain quantities, which are measured to be the same in all frames of reference, are 
said to be “Lorentz invariant”. In particular, we can define the space-time interval, s, 
between two events in space-time as: 

s 2 = �x 2 + �y 2 + �z 2 − c 2�t2 

One can think of this as a sort of “distance” in space-time, that does not depend on 
the frame of reference. 

If an object has a velocity vector, ~u, as measured in frame of reference S, then its 
velocity, ~u 0, in a frame, S 0, moving with speed, v, relative to S, is given by: 

0 ux − v 
u = x 1 − vux 

c2 

0 uy = � uy � 
1 − vux 

c2 

uz 
u 0 = � � 
z 1 − vux 

c2 

and the reverse transformations are given by: 

ux 
0 + v 

ux = 1 + vu 
c2 
x 

0u 
uy = � y � 

1 + vux 
c2 

z uz = � u0 � 
1 + vux 

c2 

In order for momentum and energy to be conserved in Special Relativity, these need to 
be redefined. If a particles with rest mass, m0, has a velocity, ~u, in an inertial frame of 
reference, its relativistic momentum, p~, is defined to be: 

~p = m0~u 
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where the gamma factor is evaluated using the speed, u: 

1 = q 
21 − u
c2 

This relativistic definition of momentum is equivalent to the classical definition when 
u << c. We can think of relativistic momentum in the same way as classical momentum, 
if we model the mass of the object as increasing with its speed: 

m(u) = m0 

∴ ~p = m(u)~u 

where m0 is the mass of the object measured when the object is at rest (its “rest mass”). 
An object with a rest mass can never reach the speed of light, as this would correspond 
to it having infinite momentum (or infinite mass). 

With the relativistic definition of momentum, one can still use Newton’s Second Law 
in the form: 

d~p~F = 
dt 

We define the total energy, E, of an object as: 

E = K + m0c 
2 

which has a contribution from its kinetic energy, K, and from its mass (the second 
term). The energy that an object has by virtue of having a mass is called “rest mass 
energy”, which implies that mass and energy can really be thought of as the same thing; 
one can convert mass into energy and vice versa (as in a nuclear reactor). 

The kinetic energy of an object moving with speed, u, is given by: 

K = m0c 
2( − 1) 

where the gamma factor is obtained using the speed, u. This relativistic definition of 
kinetic energy is equivalent to the classical definition when u << c. The total energy 
of a particle can also be written as: 

2E = m0c 

Since energy and mass are simply related by a constant, one can use units of energy to 
describe the mass of a particle. It is common in particle physics to express the mass of 
particles in units of MeV/c2. 
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Finally, we saw that the relativistic momentum and energy of an object are related: 

E2 2 2 + m 2 4= p c 0c 

In particular, particles of light, which have no mass but have kinetic energy, have non-
zero momentum: 

E 
p = 

c 

Important Equations 

Lorentz factor: Relativistic momentum: 
1 = q 

2 p~ = m0~u1 − v
c2 

Time dilation 
Relativistic energy: 

�t0 = �t 
E = m0c 

2 = K + m0c 
2 

Length contraction 
L 

L0 = Relativistic kinetic energy: 

K = ( − 1)m0c 
2 

Lorentz transformations: 
x 0 = (x − vt) 
0 Newton’s Second Law y = y 
z 0 = z d~p

F~ =� � 
vx dt 

t0 = t − 2c 

Energy-momentum relation:
Velocity addition: 

2 2 4 
0 ux − v E2 = p c 2 + m0c u = x 1 − vux 

c2 

u 0 y = � 
1 
u 

− 
y 

vux 
� 

c2 

u 0 = � uz � 
z 1 − vux 

c2 

The spacetime interval: 
s 2 = �x 2 + �y 2 + �z 2 − c 2�tt 
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Important Definitions 

Proper time: The time measured in a frame of reference considered at rest. SI units: 
[s]. Common variable(s): �t. 

Proper length: The length of an object as measured at rest relative to the object. SI 
units: [m]. Common variable(s): L. 

24.10 Thinking about the material 

Reflect and research 

1. How did Michelson and Morley demonstrate that the ether does not exist? 
2. Why is 1905 the “year of physics”? 
3. Give an example of a device that you use that is a�ected by relativistic e ects. 
4. How do you resolve the twin paradox? Can you show it on a space-time diagram? 
5. What did Lorentz do and when? 
6. Apart from the space-time interval, s, what else is Lorentz invariant? 
7. What is Cherenkov radiation? 

To try at home 

1. Build a particle accelerator. 
2. Look up a video illustrating the barn paradox, and other relativistic e�ects. 

To try in the lab 

1. Propose an experiment to measure the speed of light. 
2. Propose an experiment to test relativistic e� ects with electro magnetism. 



�

�

�
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24.11 Sample problems and solutions 
24.11.1 Problems 
Problem 24-1: The Sun is powered by nuclear fusion reactions in which, predominantly, 
hydrogen atoms are fused together into helium atoms. Inside the Sun, the material, mostly 
hydrogen, is in a form of a plasma, where the electrons are not attached to the nuclei of 
their atoms. E�ectively, one can model the solar fusion reactions3 as: 

4p + 2e − ! + 2� 

where the four protons correspond to the nuclei of four hydrogen atoms, is the nucleus of 
a helium atom, with two neutrons and two protons, and the two � are neutrinos, particles 
with virtually zero mass. The reaction above is exothermic, and releases energy, because 
the total mass of particles on the right is less than the total mass on the left. Given that 
the mass of a proton is mp = 938.3 MeV/c2, the mass of an electron is me = 0.511 MeV/c2, 
and the mass of the alpha particle is m = 3727.4 MeV/c2, how much energy (in MeV and 
in J) is released in each fusion reaction? (Solution) 

Problem 24-2: A proton is measured by a scientist to have a total energy of 2.5 × 103 MeV. 
(Solution) 

a) What is the speed of the proton? 
b) How far does the proton travel (in the lab) when 1 s goes by in the scientist’s frame 

of reference? 
c) How far does the proton travel (in the lab) when 1 s goes by in the proton’s frame of 

reference? 

3In reality, there are many more reactions involved in getting from hydrogen to helium. 



�

�
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24.11.2 Solutions 
Solution to problem 24-1: In order to determine the amount of energy released in each 
reaction, we need to determine the di� erence in mass between the two sides of the equation: 

4p + 2e − ! + 2� 

On the left-hand side, the total mass is: 

MLHS = 4mp + 2me = 4(938.3 MeV/c2) + 2(0.511 MeV/c2) = 3754.22 MeV/c2 

whereas on the right-hand side, the total mass is: 

MRHS = m = 3727.4 MeV/c2 

Thus, the total energy released in each reaction is given by: 

E = c 2�M = c 2(MLHS − MRHS) = c 2((3754.22 MeV/c2) − (3727.4 MeV/c2)) 
= 26.8 MeV = 4.29 × 10−12 J 

where we showed the answer in both MeV and J. Although it may not seem like that much 
energy per reaction, keep in mind that there are of order 1 × 1038 reactions per second in 
the Sun, corresponding to a power output of order 4 × 1026 W, enough to keep us warm in 
the summer. 

Solution to problem 24-2: 
a) From the total energy, we can calculate the gamma factor, which will give us the 

velocity of the proton (in the reference frame of the scientist): 
2E = m0c 

1 m0c
2 

= 
E s 

2 2v m0c1 − 2 = 
c E 

2 2 4v m0c = 1 −2 E2c 0 1 
4 

1 − m0c A c 
E2 

s @
0 

∴ v = 

1vuut (938.3 MeV/c2)2c4 
1 − A c@

0 
= (2.5 × 103 MeV)2 1vuut (938.3 MeV)2 

1 − A c@= (2.5 × 103 MeV)2 

= 0.92c 
= 2.76 × 108 m/s 

https://2((3754.22
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b) In the frame of the lab, when one second goes by, the proton will travel a distance: 

d = vt = (2.76 × 108 m/s)(1 s) = 2.76 × 108 m 

c) In order to find out how far the proton travels in the lab when one second of proper 
time goes by in the proton’s frame of reference, we need to determine how much time 
went by in the lab’s frame of reference. 
The gamma factor for the proton can be obtained from the speed that we determined 
in part a), or from the total energy directly: 

E (2.5 × 103 MeV) (2.5 × 103 MeV) = 2 = 2 = = 2.66 
m0c (938.3 MeV/c2)c (938.3 MeV) 

Thus, when �t = 1 s elapses in the proton’s frame of reference, a time dilated time, 
�t0, elapses in the lab frame of reference: 

�t0 = �t = 2.66 s 

In the lab frame, the proton will travel a distance: 

d = vt = (2.76 × 108 m/s)(2.66 s) = 7.34 × 108 m 



A Vectors 

This appendix gives a very brief introduction to coordinate systems and vectors. 

Learning Objectives 

• Understand the definition of a coordinate system 
• Understand the definition of a vector and of a scalar 
• Be able to perform algebra with vectors (addition, scalar products, vector prod-

ucts) 

A.1 Coordinate systems 
Coordinate systems are used to describe the position of an object in space. A coordinate 
system is an artificial mathematical tool that we construct in order to describe the position 
of a real object. 

A.1.1 1D Coordinate systems 
The easiest coordinate system to construct is one that we can use to describe the location 
of objects in one dimensional space. For example, we may wish to describe the location of a 
train along a straight section of track that runs in the East-West direction. In order to do 
so, we must first define an “origin”, which is the reference point of our coordinate system. 
For example, the origin for our train track may be the Kingston train station (Figure A.1). 

We can describe the position of the train by specifying how far it is from the train station 
(the origin), using a single real number, say x. If the train is at position x = 0, then we 
know that it is at the Kingston station. If the object is not at the origin, then we need to 
be able to specify on which side (East or West in our train example) of the origin the object 
is located. We do this by choosing a direction for our one dimensional coordinate x. For 
example, we may choose that the East side of the track corresponds to positive values of x 
and that the West side of the track correspond to the negative values of x. Thus, in order 
to fully specify a one-dimensional coordinate system we need to choose: 

• the location of the origin. 
• the direction in which the coordinate, x, increases. 
• the units in which we wish to express x. 

In one dimension, it is common to use the variable x to define the position along the “x-

811 
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axis”. The x-axis is our coordinate system in one dimension, and we represent it by drawing 
a line with an arrow in the direction of increasing x and indicate where the origin is located 
(as in Figure A.1). 

Figure A.1: A 1d coordinate system describing the position of a train. The Kingston train station 
is the origin and the East side of the track corresponds to positive values of x. The train is located 
at position x1. 

A.1.2 2D Coordinate systems 

Figure A.2: Example of Cartesian coordinate system and a point P with coordinates (xp, yp). 

To describe the position of an object in two dimensions (e.g. a marble rolling on a table), 
we need to specify two numbers. The easiest way to do this is to define two axes, x and 
y, whose origin and direction we must define. Figure A.2 shows an example of such a 
coordinate system. Although it is not necessary to do so, we chose x and y axes that are 
perpendicular to each other. The origin of the coordinate system is where the two axes 
intersect. One is free to choose any two directions for the axes (as long as they are not 
parallel). However, choosing axes that are perpendicular (a “Cartesian” coordinate system) 
is usually the most convenient. 

To fully describe the position of an object, we must specify both its position along the x 
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and y axes. For example, point P in Figure A.2 has two coordinates, xp and yp, that 
define its position. The x coordinate is found by drawing a line through P that is parallel 
to the y axis and is given by the intersection of that line with the x axis. The y coordinate 
is found by drawing a line through point P that is parallel to the x axis and is given by the 
intersection of that line with the y axis. 

Checkpoint A-1 

Figure A.3 shows a coordinate system that is not orthogonal (where the x and y axes 
are not perpendicular). Which value on the figure correctly indicates the y coordinate 
of point P ? 

Figure A.3: A non-orthogonal coordinate system (the x and y axes are not perpendicular). 

A) y1 
B) y2 
C) y3 

The most common choice of coordinate system in two dimensions is the Cartesian coordinate 
system that we just described, where the x and y axes are perpendicular and share a common 
origin, as shown in Figure A.2. When applicable, by convention, we usually choose the y 
axis to correspond to the vertical direction. 

Another common choice is a “polar” coordinate system, where the position of an object is 
specified by a distance to the origin, r, and an angle, �, relative to a specified direction, 
as shown in Figure A.4. Often, a polar coordinate system is defined alongside a Cartesian 
system, so that r is the distance to the origin of the Cartesian system and � is the angle 
with respect to the x axis. 
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Figure A.4: Example of a polar coordinate system and a point P with coordinates (r, �). 

One can easily convert between the two Cartesian coordinates, x and y, and the two corre-
sponding polar coordinates, r and �: 

x = r cos(�) 
y = r sin(�) q 
r = x2 + y2 

tan(�) = y 
x 

Polar coordinates are often used to describe the motion of an object moving around a circle, 
as this means that only one of the coordinates (�) changes with time (if the origin of the 
coordinate system is chosen to coincide with the centre of the circle). 

A.1.3 3D Coordinate systems 
In three dimensions, we need to specify three numbers to describe the position of an object 
(e.g. a bird flying in the air). In a three dimensional Cartesian coordinate system, we simply 
add a third axis, z, that is mutually perpendicular to both x and y. The position of an 
object can then be specified by using the three coordinates, x, y, and z. By convention, we 
use the z axis to be the vertical direction in three dimensions. 

Two additional coordinate systems are common in three dimensions: “cylindrical” and 
“spherical” coordinates. All three systems are illustrated in Figure A.5 superimposed onto 
the Cartesian system. 
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Figure A.5: Cartesian (left), cylindrical (centre) and spherical (right) coordinate systems used in 
three dimensions. The y and z axes are in the plane of the page, whereas the x axis comes out of 
the page. 

Cylindrical coordinates can be thought of as an extension of the polar coordinates. We keep 
the same Cartesian coordinate z to indicate the height above the xy plane, however, we 
use the azimuthal angle, °, and the radius, ˆ, to describe the position of the projection of a 
point onto the xy plane. ° is the angle between the x axis and the line from the origin to the 
projection of the point in the xy plane and ˆ is the distance between the point and the z axis. 
Thus, cylindrical coordinates are very similar to the polar coordinate system introduced in 
two dimensions, except with the addition of the z coordinate. Cylindrical coordinates are 
useful for describing situations with azimuthal symmetry, such as the motion along the 
surface of a cylinder. For example, consider point P in Figure A.6. Point P is located a 
distance ˆ from the z axis, as it is located on the surface of the cylinder (the circular end 
of the cylinder has a radius ˆ). Point P is a height z above the xy plane, and a line from 
the z axis to point P makes an angle ° with the x axis. 

Figure A.6: Describing the position of P , located on the surface of a cylinder, in cylindrical 
coordinates. 

The cylindrical coordinates are related to the Cartesian coordinates by: q 
ˆ = x2 + y2 

tan(°) = y 
x 

z = z 

In spherical coordinates, a point P is described by the radius, r, the polar angle �, and the 
azimuthal angle, °. The radius is the distance between the point and the origin. The polar 
angle is the angle with the z axis that is made by the line from the origin to the point. The 
azimuthal angle is defined in the same way as in polar coordinates. Note that the value of 
° must be between 0 and 2ˇ, whereas the value of � must be between 0 and ˇ. 

Spherical coordinates are useful for describing situations that have spherical symmetry, such 
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as a person walking on the surface of the Earth, since the radial coordinate will not change. 
For example, this is shown with Point P in Figure A.7, located on the surface of a sphere 
of radius r. 

Figure A.7: Describing the position of P , located on the surface of a sphere, in spherical coordi-
nates. 

The spherical coordinates are related to the Cartesian coordinates by: q 
r = x2 + y2 + z2 

z zcos(�) = = p 2 + y2 + z2r x 

tan(°) = y 
x 

A.2 Vectors 
So far, we have seen how to use a coordinate system to describe the position of a single point 
in space relative to an origin. In this section, we introduce the notion of a “vector”, which 
allows us to describe quantities that have a magnitude and a direction. For example, you 
can use a vector to describe the fact that you walked 5 km in the North direction. A vector 
can be visualized by an arrow. The length of the arrow is the magnitude that we wish to 
describe, and the direction of the arrow corresponds to the direction that we would like to 
describe. 

Unlike a point in space, vectors have no location. That is, vectors are simply an arrow, 
and you can choose to draw that arrow anywhere you like. In two dimensional space, one 
requires two numbers to completely define a vector. In three dimensional space, one requires 
three numbers to completely define a vector. Figure A.8 shows a two dimensional vector, 
~d, twice. Because both arrows in the figure have the same magnitude and direction, they 
represent the same vector. When we refer to quantities that are vectors, we usually draw an 

~arrow on top of the quantity (d) to indicate that they are vectors. We use the word “scalar” 
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to refer to numbers that are not vectors (a regular number is thus also called a scalar to 
distinguish it from a quantity that is a vector). 

~Figure A.8: A vector d shown twice, once with its Cartesian components (dx, dy) and once with 
its magnitude and direction (d, °). 

In analogy with coordinate systems, we have multiple ways to choose the numbers that we 
use to describe the vector. The most convenient choice is usually to use the “Cartesian 
components” of the vector which correspond to the length of the vector when projected 
onto a Cartesian coordinate system. For example, in Figure A.8, the Cartesian components 

~of the vector d are labelled as (dx, dy) indicating that the vector has a length of dx in the 
x direction and dy in the y direction. Furthermore, the number dx is negative, since the 
vector points in the negative x direction. Another common choice is to use the length of 
the vector, which we label d (the name of the vector without the arrow on top), and the 
angle, ° that the vector makes with the x-axis, as illustrated in Figure A.8. In terms of the 
two dimensional Cartesian components, the magnitude of the vector is given by: 

q 
~ d2d = ||d|| = + d2 

x y 

~where we also introduced the notation that placing two vertical bars around a vector (||d||) is 
used to indicated its magnitude. Note that in three dimensions, it is usually not convenient 
to specify the direction unless the vector lies in one of the planes defined by the coordinate 
system (e.g the xy plane). In three dimensions, it is usually most convenient to specify the 
three Cartesian components. 

A.2.1 Unit vectors 
A special category of vectors is “unit vectors”, which are simply vectors that have a length 
(magnitude) of 1 (in whichever units the coordinate system is defined). Unit vectors are 
particularly useful for indicating direction. For example, in Figure A.8, we may be interested 
in indicating the direction of the vector d~ . Unit vectors are denoted by using a “hat” instead 
of an arrow. Thus, the vector d̂, is the vector of length 1 that points in the same direction 

~as d. The (Cartesian) components of d̂  are easily found by dividing the corresponding 
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~components of d by d (the magnitude): 

dx dx= q(d̂)x = 
d2 
x + d2 

y 
d 

dy dy(d̂)y = = q 
d2 
x + d2 

y 
d 

= 

vuut r 
∴ d = ||d̂|| = (d̂)2 + (d̂)2 

x y 

d2 d2 
yx = 1+ 

d2 
x + d2 

y d2 
x + d2 

y 

A specific type of unit vector is the units vectors that are parallel to the axes of the coordinate 
system. Those vectors are denoted x̂, ŷ, ẑ  (and sometimes î, ĵ, k̂ or êx, êy, êz) for the x, y, 
and z axes, respectively. Thus, the vector dx̂, is the vector of length d that points in the 
positive x direction. 

A.2.2 Notations and representation of vectors 
There are multiple notations for describing a vector using its components. The following 

~are all equivalent ways to write down the vector d in terms of its components dx and dy: 

, dy10 ) row vector ~d = (dx 

= B@ dxCA column vector 
dy 

= dxx̂+ dyŷ using x̂, ŷ 
= dx ̂i + dy ̂j using î, ̂j 

The vectors x̂ (̂i) and ŷ (ĵ) are unit vectors in x and y directions respectively. For exam-
ple, the unit vector ŷ can be written down as (0,1) in two dimensions or (0,1,0) in three 
dimensions, using the row notation. 

Checkpoint A-2 

What is the magnitude (the length) of the vector 5x̂ − 2ŷ? 
A) 3.0 
B) 5.4 
C) 7.0 
D) 10.0 

Illustrating a vector graphically in two dimensions is straightforward, but diÿcult in three 
dimensions. To help remedy this, a notation is introduced in order to draw vectors that 
point in or out of the page (perpendicular to the plane of the page). The notation comes 
from imagining that the vector is an archery arrow. If the vector is coming out of the 
page (at you!), then you would see the head of the arrow, which we represent as a circle 
with a dot (the dot is the point of the arrow, the circle is the base of the conically shaped 
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arrowhead). If instead, the vector points into the page, then you would see the back of the 
arrow, which we represent as a cross (the cross being the feathers in the tail of the arrow). 
This is illustrated in Figure A.9. 

Figure A.9: Geometric representation of three vectors. The vector ~a lies in the plane of the page, 
the vector ~b is pointing out of the page, and the vector ~c is pointing into the page. 

A.3 Vector algebra 
In this section, we describe the various algebraic operations that can be performed using 
vectors. 

A.3.1 Multiplication/division of a vector by a scalar 
One can multiply (or divide) a vector by a scalar (a number). Suppose that we are given a 
vector ~v = (vx, vy, vz) and a scalar a. The multiplication a~v is defined to be a new vector, 
say w~ , whose components are the components of ~v multiplied by a: 

w~ = a~v = (avx, avy, avz) 

Similarly, the division of a vector by a scalar is defined analogously by dividing each Carte-
sian component by the scalar:: 

� � 
~w = ~v = vx 

, 
vy 
, 
vz 

a a a a 

Checkpoint A-3 

What happens to the length of a vector if the vector is multiplied by 2 (a scalar)? 
A) The length doubles 
B) The length is halved 
C) The length is quadrupled 
D) It depends on the direction of the vector 

In particular, this makes it easy to determine the unit vector, v̂, that points in the same 
direction as ~v: 

~v 
v̂ = 

v 

where v is the (scalar) magnitude of ~v. 
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A.3.2 Addition/subtraction of two vectors 

The sum of two vectors, ~a and ~b, is found by adding the components of the two vectors. 
Similarly, the di�erence between two vectors is found by subtracting the components. For 

~example, if ~c = ~a + b, the components of ~c are given by: 

~c = ~a +~b = 

0 B@ ax 
1 CA+ 

10 B@ bxCA 
ay by 1010 

∴ B@ cxCA = B@ ax + bxCA 
cy ay + by 

where we chose to use the “column vector” notation. The column vector notation highlights 
the fact that the algebra (addition, subtraction) is performed independently on the x and y 
components. We can thus use write this sum equivalently as two scalar equations, one for 
each coordinate: 

cx = ax + bx 
cy = ay + by 

Vectors can thus be used as a short-hand notation for representing multiple equations (one 
equation per component). When we use vectors to write an equation such as: 

~F = m~a 
we really mean that there is one scalar equation per component of the vectors: 

Fx = max 
Fy = may 
Fz = maz 

Example A-1 

~ ~Given two vectors, ~a = 2x̂ + 3ŷ, and b = 5x̂ − 2ŷ, calculate the vector ~c = 2~a − 3b. 

Solution 

This can easily be solved algebraically by collecting terms for each component, x̂ and 
ŷ: 

~ ~c = 2~a − 3b 
= 2(2x̂ + 3ŷ) − 3(5x̂ − 2ŷ) 
= (4x̂ + 6ŷ) − (15x̂ − 6ŷ) 
= (4 − 15)x̂ + (6 + 6)ŷ 
= −11x̂ + 12ŷ 
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We can think of these operations as being performed independently on the components: 

cx = 2ax − 3bx = −11 
cy = 2ay − 3by = 12 

Geometrically, one can easily visualize the addition and subtraction of vectors. This is 
illustrated in Figure A.10 for the case of adding vectors ~a and ~b to get the vector ~c. Ge-
ometrically, the sum of the vectors ~a and ~b (sometimes also called the “resultant”) can be 
found by: 

~1. Placing the “tail” of vector b at the “head” of ~a (think of an arrow, the pointy part is 
the head and the feathery part is the tail) 

~2. Drawing the vector that goes from the tail of vector ~a to the head of vector b. 

Figure A.10: Geometric addition of the vectors ~a and ~b by placing them “head to tail”. 

Subtracting two vectors geometrically is done in the same way as addition. For example, 
~ ~the vector ~c, given by ~c = ~a − b can also be expressed as ~c = ~a + (−1)b. That is, first 

multiply the vector ~b by minus 1 (which just reverses its direction), then add that vector, 
“head to tail”, to the vector ~a. 

Now that we know how to add vectors, we can better understand the notation ~a = axx̂+ayŷ. 
This is not simply a notation, but is in fact algebraically correct. It means: “multiply the 
vector x̂ by ax (thus giving it a length of ax) and then add ay times the vector ŷ”. This is 
illustrated in Figure A.11, which shows the unit vectors, x̂ and ŷ, which are then multiplied 
by ax and ay, respectively, and then added together “head to tail”. 
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Figure A.11: Illustration that the notation ~a = axx̂+ ayŷ is in fact the vector addition of axx̂ and 
ayŷ. 

A.3.3 The scalar product 
There are two ways to “multiply” vectors: the “scalar product” and the “vector product”. 
The scalar product (or “dot product”) takes two vectors and results in a scalar (a number). 
The vector product (or “cross product”) takes two vectors and results in a third vector. 

~ ~The scalar product, ~a · b, of two vectors ~a and b, is defined as the following: 

~ ~a · b = axbx + ayby 

That is, one multiplies the individual components of the two vectors and then adds those 
products for each component. This is easily extended to the three dimensional case by 
adding a term azbz to the sum. The scalar product is also related to the angle between the 
two vectors when the vectors are placed “tail to tail”, as in Figure A.12 

~ ~a · b = ab cos � 

Figure A.12: Illustration of the angle between vectors ~a and ~b when these are placed tail to tail. 

The scalar product between two vectors of a fixed length will be maximal when the two 
vectors are parallel (cos � = 1) and zero when the vectors are perpendicular (cos � = 0). 
The scalar product is thus useful when we want to calculate quantities that are maximal 
when two vectors are parallel. 
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Checkpoint A-4 

~The vectors ~a and b in the three diagrams below have the same magnitude. Order the 
~diagrams from the one that gives the smallest scalar product ~a · b to the largest scalar 

product. 

Figure A.13: Put these in order of the magnitude of their scalar product. 

A.3.4 The vector product 
The vector (or cross) product takes two vectors to produce a third vector that is mutually 
perpendicular to both vectors. The vector product only has meaning in three dimensions. 
Two vectors that are not co-linear, meaning they can not be arranged so that they lie along 
the same line, can always be used to define a plane in three dimensions. The cross product 
of those two vectors will give a third vector that is perpendicular to the plane (making it 
perpendicular to both vectors). 

~Algebraically, the three components of the vector product, ~a × b, of vectors ~a and ~b are 
found as follows: 10 

~ ~a × b = 
BBBBB@ 
aybz − azby 
azbx − axbz 

CCCCCA (A.1) 

axby − aybx 

~ ~One important property to note is that ~a × b = −b × ~a; that is, the cross product is not 
commutative (the order matters). The magnitude of the vector obtained by a cross product 
is given by: 

~||~a × b|| = ab sin � (A.2) 

~where � is the angle between the vectors ~a and b when these are placed tail to tail (Figure 
A.12). The vector resulting from a cross product will be null (have a zero length) if the 

~vectors ~a and b are parallel, and will have a maximal length when these are perpendicular. 
The cross product is useful to determine quantities that are maximal when two vectors are 
perpendicular. 

Geometrically, one can determine the direction of the cross product of two vectors by using 
a “right hand rule”. To distinguish it from another right hand rule (see Section A.4.3), we 
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will call it “the right hand rule for the cross product”). This is done by using your right 
hand, aligning your thumb with the first vector and your index with the second vector. The 
cross product will point in the direction of your middle finger (when you hold your middle 
finger perpendicular to the other two fingers). This is illustrated in Figure A.14. Thus, you 
can often avoid using equation A.1 and instead use the right hand rule to determine the 
direction of the cross product and equation A.2 to find its magnitude. 

Figure A.14: Using the right hand rule for cross products to find the direction of the cross product 
of vectors ~a (upwards) and ~b (into the page). 

The unit vectors that define a coordinate system have the following properties relative to 
the cross product: 

~x × ~y = ~z 
~y × ~z = ~x 
~z × ~x = ~y 

For these properties to be correct, it should be noted that the direction of the z axis in 
three dimensions is specified by the choice of x and y axes. That is, one can freely choose 
the direction of the x and y axes, which then define a plane to which the z axis will be 
perpendicular. The direction of the z axis must be chosen so that ~x×~y = ~z (this guarantees 
that the coordinate system is “right handed”), as in Figure A.15. 
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Figure A.15: Two possible orientations for a three dimensional coordinate system. You can confirm 
using the right hand rule that the z axis is the cross product ~x × y~. 

A.4 Example uses of vectors in physics 
This section gives a quick overview of some applications of vectors in physics. 

A.4.1 Kinematics and vector equations 
Kinematics is the description of the position and motion of an object (Chapters 3 and 
4). The laws of physics are the principles that ultimately allow us to determine how the 
position of an object changes with time. For example, Newton’s Laws are a mathematical 
framework that introduce the concepts of force and mass in order to model and determine 
how an object will move through space. 

We often use a position vector, ~r(t), to describe the position of an object as a function 
of time. Because the object can move, the position vector is a function of time. A position 
vector is a special vector in the sense that it should be considered to be fixed in space; the 
position vector for an object points from the origin of a coordinate system to the location 
of the object. 

The three components of the position vector in Cartesian coordinates, are the x, y, and z 
coordinates of the object: 10 

x(t) 

y(t)~r(t) = 
BBBBB@ 

CCCCCA 
z(t) 

where the three coordinates of the object are functions of time if the object can move. 
Suppose that the object was initially at position ~r1 = (x1, y1, z1) at some time t = t1, and 
that later, at time t = t2, the object was at as second position, ~r2 = (x1, y1, z1). We can 

~define the displacement vector, d, as the vector from position ~r1 to position ~r2: 1010 BBBBB@ 
x2 − x1CCCCCA 

BBBBB@ 
�xCCCCCA ~d = ~r2 − ~r1 = �yy2 − y1 = 

�zz2 − z1 
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~The displacement vector is such that one can add the vector d to the vector ~r1 to describe 
the new position of the object at time t2: 

~d = ~r2 − ~r1 

∴ ~r2 = ~r1 + d~ 

The components of the displacement vector, �x, �y, and �z correspond to the displace-
ments (the distance travelled) along the x, y, and z axes, respectively. This is illustrated 
for the two dimensional case in Figure A.16. 

~Figure A.16: Illustration of a displacement vector, d = ~r2 − ~r1, for an object that was located at 
position ~r1 at time t1 and at position ~r2 at time t2. 

The velocity vector of the object, ~v = (vx, vy, vz), is defined to be the displacement vector, 
~d, divided by the amount of time (a scalar) that elapsed, �t = t2 − t1, while the object 
moved by the corresponding displacement: 10 

~d 
~v = = �t 

BBBBB@ 
�x 
�t 
�y 
�t 
�z 
�t 

CCCCCA 
We used the property that dividing a vector by a scalar (�t) is defined as dividing each 
component by the scalar. If we write the components of the velocity vector out explicitly, 
we have: 1010 BBBBB@ 

vx 

vy 

CCCCCA = 
BBBBB@ 

�x 
�t 
�y 
�t 
�z 

CCCCCA 
vz �t 

That is, we can think of each row in this “vector equation” as an independent equation. 
That is, when we write the vector equation: 

~d 
~v = �t 
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we are really just using a shorthand notation for writing the three independent equations 
that are true for each individual component of the vectors: 

�x 
vx = �t 

�y 
vy = �t 

�z =vz �t 

Whenever we write an equation using vectors, we are really writing out multiple equations 
all at once, one for each component. Newton’s Second Law: 

~F = m~a 

thus corresponds to the three (scalar) equations: 

Fx = max 
Fy = may 
Fz = maz 

A.4.2 Work and scalar products 
As we will see, “work” is a scalar quantity that allows us to determine the change in the 
speed (squared) of an object that results from a force exerted over a particular displacement 
(Chapter 7). Both force and the displacement are vector quantities (a force has a magni-

~tude and is exerted in a particular direction). The work, W , done by a force, F , over a 
~displacements, d, is defined as: 

F~ · ~W = d 

The work energy theorem tells us that this work is related to the change in speed squared 
of the object as it moves along the displacement vector d. If the work is zero, the object has 
the same speed at the beginning and end of the displacement. If the work is positive, the 
object is moving faster at the end of the displacement (and slower if the work is negative). 

~A one dimensional example is shown in Figure A.17, which shows a force F being applied 
to a block as it slides along the ground over a distance d (represented by the displacement 

~vector d). 

~d 
Figure A.17: Example of a force 

. 
~F being applied on an object as it moves along the displacement 

vector 
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Intuitively, it makes sense that only the horizontal component of the force would contribute 
to changing the speed of the object as it moves along the horizontal trajectory defined by 

~the vector d. The vertical component of the force does not contribute to changing the speed 
of the object. Thus, the work (the change in speed), should only depend on the component 
of the force that is parallel to the displacement vector. The scalar product allows us to 
formalize this in an equation. The scalar product is given by: 

~F · d~ = Fd cos � = Fkd 

~ ~where we introduced Fk = F cos � as the component of F that is parallel to d (see Figure 
~ ~A.17). The scalar product thus “picks out” the component of F that is parallel to d, which 

is exactly what we need to in order for work to make sense. 

A.4.3 Using vectors to describe rotational motion 
Often, we need to describe rotational motion in physics. If an object is rotating, one must 
specify: 

1. The axis about which the object is rotating 
2. The direction about that axis in which the object is rotating (e.g. clockwise or counter-

clockwise) 
3. How fast the object is rotating 

We introduce a new type of vector, an “axial vector”, to describe this kind of rotational 
motion. We choose the direction of the vector to be co-linear with the axis of rotation and 
the magnitude of the vector to represent the speed with which the object is rotating. We are 
thus left with two choices for the direction of the vector. For example, consider the wheels 
on a car that is moving away from you (Figure A.18, the car is moving into the page). The 
axis of rotation is the axis of the wheel, so we know that the vector describing the wheel’s 
rotation (the angular velocity vector) must point either to the left or to the right. 

Figure A.18: The wheels on a car that is driving away from you. 

We choose the direction of the vector by using another right hand rule. We will refer to 
this as “the right hand rule for axial vectors” to distinguish it from the right hand rule for 
the cross product. When using the right hand rule for axial vectors, the vector points in 
the direction of your thumb when you curl your fingers in the direction of rotation, as in 
Figure A.19. For the car moving away from you, the wheels will be turning such that the 
closest point to you is moving up and the furthest point is moving down. Using the right 
hand rule, we find that the rotation vector points to the left. 
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Figure A.19: Using the right hand rule for axial quantities. In this case, the direction of rotation 
is counter clockwise when looking at the page (the direction that the fingers curl), so the rotation 
vector points out of the page (the direction of the thumb). 

We have to distinguish axial vectors from “true” vectors because they do not behave like 
true vectors in all cases. For instance, imagine that there is a giant mirror that runs parallel 
to the road (Figure A.20). When the car is reflected in the mirror, the reflected car will also 
be moving away from you. This means that the wheels will be turning in the same direction 
as before, so the rotation vector still points to the left. Now consider a true vector, like a 
velocity vector. If the velocity vector initially pointed to the left (i.e. if the car was moving 
to the left), the reflected car would be moving to the right. So, we expect a true vector to 
change directions when it is reflected in this way. Since the rotation vector does not always 
behave like a true vector, we call it an axial vector or a “pseudovector.” 

Figure A.20: Left: The angular velocity vector for the rotation of the wheels, ~!, which points to 
the left, also points left in the reflection. Right: The velocity vector, pointing to the left, points to 
the right in the reflection of the car. The angular velocity vector is called an “axial” or “pseudo” 
vector because it does not change direction under a reflection. 

A.4.4 Torque and vector products 
We will introduce the concept of a torque in order to describe how a force can cause an 
object to rotate. Consider the disk illustrated in Figure A.21 that is free to rotate about 
an axis that goes through its centre and that is perpendicular to the plane of the page. A 
force ~F is applied at the edge of the disk (imagine pulling on a string attached to the edge 
of the disk), at a position that is displaced from the axis of rotation by the vector ~r. The 

~ 

torque, ~̋, of the force about the centre of the disk is defined to be: 

˝ = ~F~r × 

and represents how much the force ~F will contribute to making the disk rotate about its 
axis. If the force vector were parallel to the vector ~r, the disk would not rotate; if you pull 
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outwards on a disk, it will not rotate about its centre. However, if the force is perpendicular 
to the vector ~r (i.e. tangent to the circumference of the disk), then it will maximally cause 
the disk to rotate. The magnitude of the torque (cross-product) is given by: 

˝ = rF sin � = F?r = Fr? 

where � is the angle between the vectors when placed tail to tail, as in the right side of 
Figure A.21. In the last two equalities, we have defined F? = F sin � or r? = r sin � to refer 

~to the part of the vector F that is perpendicular to the vector ~r or the part of the vector ~r 
~that is perpendicular to the vector F . That is, the vector product “picks out” the part of 

a vector that is perpendicular to the other, which is exactly the property that we need for 
the physical quantity of torque. 

Figure A.21: A force, ~F , is exerted in the plane of a disk at a position given by the vector ~r relative 
to the centre of the disk. 

Checkpoint A-5 

Referring to Figure A.21, in which direction does the torque vector point? 
A) to the right 
B) to the left 
C) out of the page 
D) into the page 
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A.5 Summary 

Key Takeaways 

Cartesian coordinate systems can be defined using an origin, and mutually perpendicu-
lar axes that specify a direction in which each corresponding coordinate increases. The 
position of a point is described by the coordinates of the point (one coordinate per 
axis). Polar, cylindrical and spherical coordinate systems can be defined relative to a 
Cartesian coordinate system and sometimes facilitate the description of situations with 
cylindrical (azimuthal) or spherical symmetry. 

Vectors can be represented by arrows and are quantities that have both a magnitude 
and a direction, as opposed to “scalars”, which are simply numbers. Vectors are not 
fixed in space, so two vectors are equal if they have the same magnitude and direction, 

1 CCCCCA 

~regardless of where they are drawn. We place a little arrow above a variable, d, to 
indicate that it is a vector. There are several, equivalent, notations to indicate the 

0 BBBBB@ 

components of a vector: 

~d = (dx, dy, dz) row vector 

dx 

= dy column vector 

1 CCCCCA 
dz 

0 BBBBB@ 
= dxx̂+ dyŷ + dz ẑ  using x̂, y,̂ ẑ  
= dx ̂i + dy ̂j + dz ̂j using î, ̂j, k̂ 

If we multiply (divide) a vector by a scalar, we multiply (divide) each component of the 
vector individually by that quantity. As a result, the magnitude of the vector will also 
be multiplied (divided) by that quantity: 

adx 

~ ad = ady 

adz 

In particular, we can define a unit vector, d̂, to be a vector of length 1 in the same 
~ ~direction as d, by simply dividing d by its magnitude, d: 

~ ˆ d 
d = 

d 

~where the magnitude of the vector, ||d|| = d, expressed in Cartesian coordinates, is 
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given by: q
2 2 2+ d + dx y z 

~||d|| = d = d 

We can add two vectors by independently adding the individual components of the 
vectors: 

~ ~c = ~a + b 
∴ cx = ax + bx 
∴ cy = ay + by 
∴ cz = az + bz 

Graphically, this corresponds to adding vectors “head to tail”. This also highlights 
that an equation written using vectors (as the first line above) really represents three 
independent equations, one for each coordinate of the vectors (or two in two dimensions). 
Subtraction of vectors is treated in the same way as addition (but using minus signs 
where appropriate). 

One can define the scalar (or dot) product between two vectors, as a scalar quantity 
that is obtained from the two vectors: 

~ ~a · b = axbx + ayby + azbz 

The scalar product is also related to the angle, �, between the two vectors when these 
are placed “tail to tail”: 

~ ~a · b = ab cos � 

In particular, the scalar product between two vectors is zero if the two vectors are 
perpendicular to each other (cos � = 0), and maximal when these are parallel to each 
other. 

The vector (or cross) product between two vectors is a vector that is mutually perpen-
dicular to both vectors and is defined as the following: 10 

~ ~a × b = 
BBBBB@ 
aybz − azby 
azbx − axbz 

CCCCCA 
axby − aybx 

The vector product can only be defined in three dimensions, since it must be mutually 
perpendicular to the vectors. The magnitude of the vector product is given by: 

~||~a × b|| = ab sin � 
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where � is the angle between the two vectors when these are placed tail to tail. In 
particular, the vector product between two vectors is zero if the two vectors are parallel 
to each other (and maximal when these are perpendicular). The direction of the vector 
product is given by the right-hand rule for the cross product. 

An axial vector can be used to describe a quantity that is related to rotation. The 
direction of the axial vector is co-linear with the axis of rotation, its magnitude is given 
by the magnitude of the rotational quantity (e.g. angular speed), and its direction is 
defined using the right-hand rule for axial vectors. 

A.6 Thinking about the Material 

Reflect and research 

1. What are some quantities that need to be represented by a vector? 
2. Can a vector in three dimensions be represented using spherical coordinates? 

How would you calculate the scalar product between two vectors represented in 
spherical coordinates? 

A.7 Sample problems and solutions 
A.7.1 Problems 
Problem A-1: (Solution) 

a) What is the displacement vector from position (1, 2, 3) to position (4, 5, 6)? 
b) What angle does that displacement vector make with the x axis? 
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A.7.2 Solutions 
Solution to problem A-1: 

a) The displacement vector is given by: 101010 
~d = 

BBBBB@ 
4 

5 

6 

CCCCCA − 
BBBBB@ 

1 

2 

3 

CCCCCA = 
BBBBB@ 

3 

3 
CCCCCA 

3 

b) We can find the angle that this vector makes with the x axis by taking the scalar 
product of the displacement vector and the unit vector in the x direction (1,0,0): 

x̂ · d~ = (1)(3) + (0)(3) + (0)(3) = 3 

~This is equal to the product of the magnitude of x̂ and d multiplied by the cosine of 
the angle between them: 

p p
~ x̂ · d~ = ||x̂||||d|| cos � = (1)( 32 + 32 + 32) cos � = 27 cos � 

p
3 = 27 cos � 

∴ cos � = p 3 = p 1 
27 3 

� = 54.7� 



B Calculus 

This appendix gives a very brief introduction to calculus with a focus on the tools needed 
in physics. 

Learning Objectives 

• Understand how to determine a derivative and that it measures a rate of change. 
• Understand how to determine partial derivatives and gradients. 
• Understand how to determine anti-derivatives and that integrals are sums. 

B.1 Functions of real numbers 
In calculus, we work with functions and their properties, rather than with variables as we 
do in algebra. We are usually concerned with describing functions in terms of their slope, 
the area (or volumes) that they enclose, their curvature, their roots (when they have a value 
of zero) and their continuity. The functions that we will examine are a mapping from one 
or more independent real numbers to one real number. By convention, we will use x, y, z 
to indicate independent variables, and f() and g(), to denote functions. For example, if we 
say: 

f(x) = x 2 

∴ f(2) = 4 

we mean that f(x) is a function that can be evaluated for any real number, x, and the result 
of evaluating the function is to square the number x. In the second line, we evaluated the 
function with x = 2. Similarly, we can have a function, g(x, y) of multiple variables: 

g(x, y) = x 2 + 2y 2 

∴ g(2, 3) = 22 

We can easily visualize a function of 1 variable by plotting it, as in Figure B.1. 

835 
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Figure B.1: f(x) = x2 plotted between x = −5 and = +5. 

Plotting a function of 2 variables is a little trickier, since we need to do it in three dimensions 
(one axis for x, one axis for y, and one axis for g(x, y)). Figure B.2 shows an example of 
plotting a function of 2 variables. 

Figure B.2: g(x, y) = x2 + 2y2 plotted for x between -5 and +5 and for y between -5 and +5. A 
function of two variables can be visualized as a surface in three dimensions. One can also visualize 
the function by look at its “contours” (the lines drawn in the xy plane). 

Unfortunately, it becomes diÿcult to visualize functions of more than 2 variables, although 
one can usually look at projections of those functions to try and visualize some of the 
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features (for example, contour maps are 2D projections of 3D surfaces, as shown in the xy 
plane of Figure B.2). When you encounter a function, it is good practice to try and visualize 
it if you can. For example, ask yourself the following questions: 

• Does the function have one or more maxima and/or minima? 
• Does the function cross zero? 
• Is the function continuous everywhere? 
• Is the function always defined for any value of the independent variables? 

B.2 Derivatives 
Consider the function f(x) = x2 that is plotted in Figure B.1. For any value of x, we can 
define the slope of the function as the “steepness of the curve”. For values of x > 0 the 
function increases as x increases, so we say that the slope is positive. For values of x < 0, 
the function decreases as x increases, so we say that the slope is negative. A synonym for 
the word slope is “derivative”, which is the word that we prefer to use in calculus. The 
derivative of a function f(x) is given the symbol df to indicate that we are referring to the 
slope of f(x) when plotted as a function of x. 

dx 

We need to specify which variable we are taking the derivative with respect to when the 
function has more than one variable but only one of them should be considered independent. 
For example, the function f(x) = ax2 + b will have di�erent values if a and b are changed, 
so we have to be precise in specifying that we are taking the derivative with respect to x. 
The following notations are equivalent ways to say that we are taking the derivative of f(x) 
with respect to x: 

df = d f(x) = f 0(x) = f 0 
dx dx 

The notation with the prime (f 0(x), f 0) can be useful to indicate that the derivative itself 
is also a function of x. 

The slope (derivative) of a function tells us how rapidly the value of the function is changing 
when the independent variable is changing. For f(x) = x2, as x gets more and more positive, 
the function gets steeper and steeper; the derivative is thus increasing with x. The sign of 
the derivative tells us if the function is increasing or decreasing, whereas its absolute value 
tells how quickly the function is changing (how steep it is). 

We can approximate the derivative by evaluating how much f(x) changes when x changes 
by a small amount, say, �x. In the limit of �x ! 0, we get the derivative. In fact, this is 
the formal definition of the derivative: 

df �f f(x + �x) − f(x)= lim = lim (B.1)
dx �x!0 �x �x!0 �x 

where �f is the small change in f(x) that corresponds to the small change, �x, in x. This 
makes the notation for the derivative more clear, dx is �x in the limit where �x ! 0, and 
df is �f , in the same limit of �x ! 0. 
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As an example, let us determine the function f 0(x) that is the derivative of f(x) = x2. We 
start by calculating �f : 

�f = f(x + �x) − f(x) 
= (x + �x)2 − x 2 

2 − x 2= x 2 + 2x�x + �x 
= 2x�x + �x 2 

We now calculate �
� 
f
x 
: 

�f 2x�x + �x2 
= �x �x 
= 2x + �x 

and take the limit �x ! 0: 
df �f = lim 
dx �x!0 �x 

= lim (2x + �x)
�x!0 

= 2x 

We have thus found that the function, f 0(x) = 2x, is the derivative of the function f(x) = x2. 
This is illustrated in Figure B.3. Note that: 

• For x > 0, f 0(x) is positive and increasing with increasing x, just as we described 
earlier (the function f(x) is increasing and getting steeper). 
• For x < 0, f 0(x) is negative and decreasing in magnitude as x increases. Thus f(x) 

decreases and gets less steep as x increases. 
• At x = 0, f 0(x) = 0 indicating that, at the origin, the function f(x) is (momentarily) 

flat. 

Figure B.3: f(x) = x2 and its derivative, f 0(x) = 2x plotted for x between -5 and +5. 
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Checkpoint B-1 

When a function has a maximum, its derivative at that point 
A) also has a maximum 
B) is zero 
C) has a minimum 
D) is infinite 

B.2.1 Common derivatives and properties 
It is beyond the scope of this document to derive the functional form of the derivative for any 
function using equation B.1. Table B.1 below gives the derivatives for common functions. 
In all cases, x is the independent variable, and all other variables should be thought of as 
constants: 

Function, f(x) Derivative, f 0(x) 

f(x) = a f 0(x) = 0 
n n−1f(x) = x f 0(x) = nx 

f(x) = sin(x) f 0(x) = cos(x) 

f(x) = cos(x) f 0(x) = − sin(x) 

f(x) = tan(x) f 0(x) = 1 
cos2(x) 

x xf(x) = e f 0(x) = e 

f(x) = ln(x) f 0(x) = 
x 
1 

Table B.1: Common derivatives of functions. 

If two functions of 1 variable, f(x) and g(x), are combined into a third function, h(x), then 
there are simple rules for finding the derivative, h0(x), based on the derivatives f 0(x) and 
g0(x). These are summarized in Table B.2 below. 

Function, h(x) Derivative, h0(x) 

h(x) = f(x) + g(x) h0(x) = f 0(x) + g0(x) 

h(x) = f(x) − g(x) h0(x) = f 0(x) − g0(x) 

h(x) = f(x)g(x) h0(x) = f 0(x)g(x) + f(x)g0(x) (The product rule) 

h0(x) = f
0(x)g(x)−f(x)g0(x)h(x) = f(x) 

2(x) (The quotient rule) 
g(x) g 

h(x) = f(g(x)) h0(x) = f 0(g(x))g0(x) (The Chain Rule) 
Table B.2: Derivatives of combined functions. 
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Example B-1 

Use the properties from Table B.2 to show that the derivative of tan(x) is 1 
cos2(x) 

Solution 

sin(x)Since tan(x) = cos(x) , we can write: 

f(x)
h(x) = 

g(x) 
f(x) = sin(x) 
g(x) = cos(x) 

Using the fourth row in Table B.2, and the common derivatives from Table B.1, we 
have: 

f 0(x) = cos(x) 
g 0(x) = − sin(x) 
g 2(x) = cos2(x) 

f 0(x)g(x) − f(x)g0(x)
h0(x) = 

g2(x) 
cos(x) cos(x) − sin(x)(− sin(x))= cos2 

cos2(x) + sin2(x)= cos2 

1 = cos2(x) 

as required. 

Example B-2 

Use the properties from Table B.2 to calculate the derivative of h(x) = sin2(x) 

Solution 

To calculate the derivative of h(x), we need to use the Chain Rule. h(x) is found by 



841 B.2. DERIVATIVES 

first taking sin(x) and then taking that result squared. We can thus identify: 

h(x) = sin2(x) = f(g(x)) 
f(x) = x 2 

g(x) = sin(x) 

Using the common derivatives from Table B.1, we have: 

f 0(x) = 2x 
g 0(x) = cos(x) 

Applying the Chain Rule, we have: 

h0(x) = f 0(g(x))g 0(x) 
= 2 sin(x)g 0(x) 
= 2 sin(x) cos(x) 

where f 0(g(x)) means apply the derivative of f(x) to the function g(x). Since the 
derivative of f(x) is f 0(x) = 2x, when we apply it to g(x) instead of 2x, we get 2g(x) = 
2 cos(x). 

B.2.2 Partial derivatives and gradients 
So far, we have only looked at the derivative of a function of a single independent variable and 
used it to quantify how much the function changes when the independent variable changes. 
We can proceed analogously for a function of multiple variables, f(x, y), by quantifying how 
much the function changes along the direction associated with a particular variable. This 
is illustrated in Figure B.4 for the function f(x, y) = x2 − 2y2, which looks somewhat like 
a saddle. 



842 APPENDIX B. CALCULUS 

Figure B.4: f(x, y) = x2 − 2y2 plotted for x between -5 and +5 and for y between -5 and +5. The 
point P labelled on the figure shows the value of the function at f(−2, −2). The two lines show the 
function evaluated when one of x or y is held constant. 

Suppose that we wish to determine the derivative of the function f(x) at x = −2 and y = −2. 
In this case, it does not make sense to simply determine the “derivative”, but rather, we 
must specify in which direction we want the derivative. That is, we need to specify in which 
direction we are interested in quantifying the rate of change of the function. 

One possibility is to quantify the rate of change in the x direction. The solid line in Figure 
B.4 shows the part of the function surface where y is fixed at -2, that is, the function 
evaluated as f(x, y = −2). The point P on the figure shows the value of the function when 
x = −2 and y = −2. By looking at the solid line at point P , we can see that as x increases, 
the value of the function is gently decreasing. The derivative of f(x, y) with respect to x 
when y is held constant and evaluated at x = −2 and y = −2 is thus negative. Rather than 
saying “The derivative of f(x, y) with respect to x when y is held constant” we say “The 
partial derivative of f(x, y) with respect to x”. 

Since the partial derivative is di�erent than the ordinary derivative (as it implies that we 
are holding independent variables fixed), we give it a di�erent symbol, namely, we use @ 
instead of d: 

@f = @ f(x, y) (Partial derivative of f with respect to x)
@x @x 
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Calculating the partial derivative is very easy, as we just treat all variables as constants 
except for the variable with respect to which we are di�erentiating1. For the function 
f(x, y) = x2 − 2y2, we have: 

@f = @ (x 2 − 2y 2) = 2x 
@x @x 
@f = @ (x 2 − 2y 2) = −4y
@y @y 

At x = −2, the partial derivative of f(x, y) is indeed negative, consistent with our observa-
tion that, along the solid line, at point P , the function is decreasing. 

A function will have as many partial derivatives as it has independent variables. Also 
note that, just like a normal derivative, a partial derivative is still a function. The partial 
derivative with respect to a variable tells us how steep the function is in the direction in 
which that variable increases and whether it is increasing or decreasing. 

Example B-3 

Determine the partial derivatives of f(x, y, z) = ax2 + byz − sin(z). 

Solution 

In this case, we have three partial derivatives to evaluate. Note that a are b constants 
and can be thought of as numbers that we do not know. 

@f = @ (ax 2 + byz − sin(z)) = 2ax 
@x @x 
@f = @ (ax 2 + byz − sin(z)) = bz 
@y @y 
@f = @ (ax 2 + byz − sin(z)) = by − cos(z)
@z @z 

Since the partial derivatives tell us how the function changes in a particular direction, we 
can use them to find the direction in which the function changes the most rapidly. For 
example, suppose that the surface from Figure B.4 corresponds to a real physical surface 
and that we place a ball at point P . We wish to know in which direction the ball will roll. 
The direction that it will roll in is the opposite of the direction where f(x, y) increases the 
most rapidly (i.e. it will roll in the direction where f(x, y) decreases the most rapidly). 
The direction in which the function increases the most rapidly is called the “gradient” and 
denoted by rf(x, y). 

Since the gradient is a direction, it cannot be represented by a single number. Rather, we 
use a “vector” to indicate this direction. Since f(x, y) has two independent variables, the 

1To take the derivative is to “di�erentiate”! 
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gradient will be a vector with two components. The components of the gradient are given 
by the partial derivatives: 

@f @f rf(x, y) = x̂+ ŷ 
@x @y 

where x̂ and ŷ are the unit vectors in the x and y directions, respectively (sometimes, the 
unit vectors are denoted î and ĵ). The direction of the gradient tells us in which direction 
the function increases the fastest, and the magnitude of the gradient tells us how much the 
function increases in that direction. 

Example B-4 

Determine the gradient of the function f(x, y) = x2 − 2y2 at the point x = −2 and 
y = −2. 

Solution 

We have already found the partial derivatives that we need to evaluate at x = −2 and 
y = −2: 

@f = 2x 
@x 
@f = −4y
@y 

@f @f 
∴ rf(x, y) = x̂+ ŷ 

@x @y 

= 2xx̂ − 4yŷ 

Evaluating the gradient at x = −2 and y = −2: 

rf(x, y) = 2xx̂ − 4yŷ 
= −4x̂ + 8ŷ 
= 4(−x̂ + 2ŷ) 

The gradient vector points in the direction (−1, 2). That is, the function increases the 
most in the direction where you would take 1 pace in the negative x direction and 2 
paces in the positive y direction. You can confirm this by looking at point P in Figure 
B.4 and imagining in which direction you would have to go to climb the surface to get 
the steepest climb. 

The gradient is itself a function, but it is not a real function (in the sense of a real number), 
since it evaluates to a vector. It is a mapping from real numbers x, y to a vector. As you 
take more advanced calculus courses, you will eventually encounter “vector calculus”, which 
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is just the calculus for functions of multiple variables to which you were just introduced. 
The key point to remember here is that the gradient can be used to find the vector that 
points in the direction of maximal increase of the corresponding multi-variate function. This 
is precisely the quantity that we need in physics to determine in which direction a ball will 
roll when placed on a surface (it will roll in the direction opposite to the gradient vector). 

Checkpoint B-2 

The gradient of a function of one variable, f(x), is 
A) undefined 
B) zero 
C) equal to its derivative 
D) infinite 

B.2.3 Common uses of derivatives in physics 
The simplest case of using a derivative is to describe the speed of an object. If an object 
covers a distance �x in a period of time �t, it’s “average speed”, vavg, is defined as the 
distance covered by the object divided by the amount of time it took to cover that distance: 

�x 
vavg = �t 

If the object changes speed (for example it is slowing down) over the distance �x, we can 
still define its “instantaneous speed”, v, by measuring the amount of time, �t, that it takes 
the object to cover a very small distance, �x. The instantaneous speed is defined in the 
limit where �x ! 0: 

�x dx 
v = lim = 

�x!0 �t dt 

which is precisely the derivative of x(t) with respect to t. x(t) is a function that gives the 
position, x, of the object along some x axis as a function of time. The speed of the object 
is thus the rate of change of its position. 

Similarly, if the speed is changing with time, then we can define the “acceleration”, a, of an 
object as the rate of change of its speed: 

dv 
a = 

dt 

B.3 Anti-derivatives and integrals 
In the previous section, we were concerned with determining the derivative of a function 
f(x). The derivative is useful because it tells us how the function f(x) varies as a function 
of x. In physics, we often know how a function varies, but we do not know the actual 
function. In other words, we often have the opposite problem: we are given the derivative 
of a function, and wish to determine the actual function. For this case, we will limit our 
discussion to functions of a single independent variable. 
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Suppose that we are given a function f(x) and we know that this is the derivative of some 
other function, F (x), which we do not know. We call F (x) the anti-derivative of f(x). 
The anti-derivative of a function f(x), written F (x), thus satisfies the property: 

dF = f(x)
dx 

Since we have a symbol for indicating that we take the derivative with respect to x ( d ), we R dx

also have a symbol, dx, for indicating that we take the anti-derivative with respect to x: Z 
f(x)dx = F (x) �Z � 

∴ 
d

f(x)dx = dF = f(x)
dx dx 

Earlier, we justified the symbol for the derivative by pointing out that it is like �
� 
f
x 

but 
for the case when �x ! 0. Similarly, we will justify the anti-derivative sign, 

R 
f(x)dx, by 

showing that it is related to a sum of f(x)�x, in the limit �x ! 0. The 
R 

sign looks like 
an “S” for sum. 

While it is possible to exactly determine the derivative of a function f(x), the anti-derivative 
can only be determined up to a constant. Consider for example a di�erent function, F̃ (x) = 
F (x) + C, where C is a constant. The derivative of F̃ (x) with respect to x is given by: 

dF̃ d = (F (x) + C)
dx dx 

dF dC = + 
dx dx 

= dF + 0 
dx 

= f(x) 

Hence, the function F̃ (x) = F (x)+C is also an anti-derivative of f(x). The constant C can 
often be determined using additional information (sometimes called “initial conditions”). 
Recall the function, f(x) = x2, shown in Figure B.3 (left panel). If you imagine shifting 
the whole function up or down, the derivative would not change. In other words, if the 
origin of the axes were not drawn on the left panel, you would still be able to determine the 
derivative of the function (how steep it is). Adding a constant, C, to a function is exactly 
the same as shifting the function up or down, which does not change its derivative. Thus, 
when you know the derivative, you cannot know the value of C, unless you are also told 
that the function must go through a specific point (a so-called initial condition). 

In order to determine the derivative of a function, we used equation B.1. We now need to 
derive an equivalent prescription for determining the anti-derivative. Suppose that we have 
the two pieces of information required to determine F (x) completely, namely: 

1. the function f(x) = dF (its derivative). 
2. the condition that F (

dx 

x) must pass through a specific point, F (x0) = F0. 
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Figure B.5: Determining the anti-derivative, F (x), given the function f(x) = 2x and the initial 
condition that F (x) passes through the point (x0, F0) = (1, 3). 

The procedure for determining the anti-derivative F (x) is illustrated above in Figure B.5. 
We start by drawing the point that we know the function F (x) must go through, (x0, F0). 
We then choose a value of �x and use the derivative, f(x), to calculate �F0, the amount 
by which F (x) changes when x changes by �x. Using the derivative f(x) evaluated at x0, 
we have: 

�F0 ˇ f(x0) (in the limit�x ! 0)�x 
∴ �F0 = f(x0)�x 

We can then estimate the value of the function F1 = F (x1) at the next point, x1 = x0 +�x, 
as illustrated by the black arrow in Figure B.5 

F1 = F (x1) 
= F (x + �x) 
ˇ F0 + �F0 

ˇ F0 + f(x0)�x 

Now that we have determined the value of the function F (x) at x = x1, we can repeat the 
procedure to determine the value of the function F (x) at the next point, x2 = x1 + �x. 
Again, we use the derivative evaluated at x1, f(x1), to determine �F1, and add that to F1 
to get F2 = F (x2), as illustrated by the grey arrow in Figure B.5: 

F2 = F (x1 + �x) 
ˇ F1 + �F1 

ˇ F1 + f(x1)�x 
ˇ F0 + f(x0)�x + f(x1)�x 
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Using the summation notation, we can generalize the result and write the function F (x) 
evaluated at any point, xN = x0 + N�x: 

i=NX 
F (xN ) ˇ F0 + f(xi−1)�x 

i=1 

The result above will become exactly correct in the limit �x ! 0: 

i=NX 
F (xN ) = F (x0) + lim f(xi−1)�x (B.2)

�x!0 
i=1 

Let us take a closer look at the sum. Each term in the sum is of the form f(xi−1)�x, and is 
illustrated in Figure B.6 for the same case as in Figure B.5 (that is, Figure B.6 shows f(x) 
that we know, and Figure B.5 shows F (x) that we are trying to find). 

Figure B.6: The function f(x) = 2x and illustration of the terms f(x0)�x and f(x1)�x as the 
area between the curve f(x) and the x axis when �x ! 0. 

As you can see, each term in the sum corresponds to the area of a rectangle between the 
function f(x) and the x axis (with a piece missing). In the limit where �x ! 0, the missing 
pieces (shown by the hashed areas in Figure B.6) will vanish and f(xi)�x will become 
exactly the area between f(x) and the x axis over a length �x. The sum of the rectangular 
areas will thus approach the area between f(x) and the x axis between x0 and xN : 

i=NX
lim f(xi−1)�x = Area between f(x) and x axis from x0 to xN

�x!0 
i=1 

Re-arranging equation B.2 gives us a prescription for determining the anti-derivative: 

i=NX 
F (xN ) − F (x0) = lim f(xi−1)�x 

�x!0 
i=1 
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We see that if we determine the area between f(x) and the x axis from x0 to xN , we can 
obtain the di�erence between the anti-derivative at two points, F (xN ) − F (x0) 

The di�erence between the anti-derivative, F (x), evaluated at two di�erent values of x is 
called the integral of f(x) and has the following notation: 

Z i=NxN X 
f(x)dx = F (xN ) − F (x0) = lim f(xi−1)�x (B.3)

�x!0x0 i=1 

As you can see, the integral has labels that specify the range over which we calculate the area 
between f(x) and the x axis. A common notation to express the di�erence F (xN ) − F (x0) 
is to use brackets: Z xN h i 

f(x)dx = F (xN ) − F (x0) = F (x) 
xN 

x0 x0 

Recall that we wrote the anti-derivative with the same 
R 

symbol earlier: Z 
f(x)dx = F (x) 

The symbol 
R 
f(x)dx without the limits is called the indefinite integral. You can also 

see that when you take the (definite) integral (i.e. the di�erence between F (x) evaluated at 
two points), any constant that is added to F (x) will cancel. Physical quantities are always 
based on definite integrals, so when we write the constant C it is primarily for completeness 
and to emphasize that we have an indefinite integral. 

As an example, let us determine the integral of f(x) = 2x between x = 1 and x = 4, as well 
as the indefinite integral of f(x), which is the case that we illustrated in Figures B.5 and 
B.6. Using equation B.3, we have: 

Z i=NxN X 
f(x)dx = lim f(xi−1)�x 

�x!0x0 i=1 
i=NX 

= lim 2xi−1�x 
�x!0 

i=1 

where we have: 

x0 = 1 
xN = 4 

xN − x0�x = 
N 

Note that N is the number of times we have �x in the interval between x0 and xN . Thus, 
taking the limit of �x ! 0 is the same as taking the limit N ! 1. Let us illustrate the 
sum for the case where N = 3, and thus when �x = 1, corresponding to the illustration in 



850 APPENDIX B. CALCULUS 

Figure B.6: 
i=N=3X 

2xi−1�x = 2x0�x + 2x1�x + 2x2�x 
i=1 

= 2�x(x0 + x1 + x2) 

= 2x3 − x0 (x0 + x1 + x2)
N 

(4) − (1)= 2 (1 + 2 + 3) (3) 
= 12 

where in the second line, we noticed that we could factor out the 2�x because it appears 
in each term. Since we only used 4 points, this is a pretty coarse approximation of the 
integral, and we expect it to be an underestimate (as the missing area represented by the 
hashed lines in Figure B.6 is quite large). 

If we repeat this for a larger value of N, N = 6 (�x = 0.5), we should obtain a more 
accurate answer: 

i=6 
2xi−1�x = 2x6 − x0X 

(x0 + x1 + x2 + x3 + x4 + x5)
Ni=1 

4 − 1 = 2 (1 + 1.5 + 2 + 2.5 + 3 + 3.5)6 
= 13.5 

Writing this out again for the general case so that we can take the limit N ! 1, and 
factoring out the 2�x: 

i=N i=NX X
2xi−1�x = 2�x xi−1 

i=1 i=1 

= 2xN − x0 
i=NX 

xi−1
N i=1 

Now, consider the combination: 

1 i=NX 
xi−1

N i=1 

that appears above. This corresponds to the arithmetic average of the values from x0 to 
xN−1 (sum the values and divide by the number of values). In the limit where N ! 1, 
then the value xN−1 ˇ xN . The average value of x in the interval between x0 and xN is 
simply given by the value of x at the midpoint of the interval: 

i=N1 X 1lim xi−1 = (xN + x0)
N!1 N i=1 2 
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Putting everything together: 

i=N i=NX 1 Xlim 2xi−1�x = 2(xN + x0) lim xi−1 
N!1 N!1 Ni=1 i=1 

1 = 2(xN − x0) (xN + x0)2 
2 2= x − xN 0 

= (4)2 − (1)2 = 15 

where in the last line, we substituted in the values of x0 = 1 and xN = 4. Writing this as 
the integral: 

Z xN 
2xdx = F (xN ) − F (x0) = xN 2 − x0

2 
x0 

we can immediately identify the anti-derivative and the indefinite integral: 

F (x) = x 2 + C Z 
2xdx = x 2 + C 

This is of course the result that we expected, and we can check our answer by taking the 
derivative of F (x): 

dF d 2 + C) = 2x= (x 
dx dx 

We have thus confirmed that F (x) = x2 + C is the anti-derivative of f(x) = 2x. 

Checkpoint B-3 R bThe quantity a f(t)dt is equal to 
A) the area between the function f(t) and the f axis between t = a and t = b 
B) the sum of f(t)�t in the limit �t ! 0 between t = a and t = b 
C) the di�erence f(b) − f(a). 

B.3.1 Common anti-derivative and properties 
Table B.3 below gives the anti-derivatives (indefinite integrals) for common functions. In 
all cases, x, is the independent variable, and all other variables should be thought of as 
constants: 
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Function, f(x) Anti-derivative, F (x) 

f(x) = a F (x) = ax + C 
n 1 n+1 + Cf(x) = x F (x) = 

n+1 x 

f(x) = 1 F (x) = ln(|x|) + C 
x 

f(x) = sin(x) F (x) = − cos(x) + C 

f(x) = cos(x) F (x) = sin(x) + C 

f(x) = tan(x) F (x) = − ln(| cos(x)|) + C 
xf(x) = e F (x) = ex + C 

f(x) = ln(x) F (x) = x ln(x) − x + C 
Table B.3: Common indefinite integrals of functions. 

Note that, in general, it is much more diÿcult to obtain the anti-derivative of a function than 
it is to take its derivative. A few common properties to help evaluate indefinite integrals 
are shown in Table B.4 below. 

Anti-derivative Equivalent anti-derivative R R R
(f(x) + g(x))dx f(x)dx + g(x)dx (sum) R R R
(f(x) − g(x))dx f(x)dx − g(x)dx (subtraction) R 
af(x)dx a 

R 
f(x)dx (multiplication by constant) R 

f 0(x)g(x)dx f(x)g(x) − 
R 
f(x)g0(x)dx (integration by parts) 

Table B.4: Some properties of indefinite integrals. 

B.3.2 Common uses of integrals in Physics - from a sum to an 
integral 

Integrals are extremely useful in physics because they are related to sums. If we assume 
that our mathematician friends (or computers) can determine anti-derivatives for us, using 
integrals is not that complicated. 

The key idea in physics is that integrals are a tool to easily performing sums. As we 
saw above, integrals correspond to the area underneath a curve, which is found by summing 
the (di�erent) areas of an infinite number of infinitely small rectangles. In physics, it is 
often the case that we need to take the sum of an infinite number of small things that keep 
varying, just as the areas of the rectangles. 

Consider, for example, a rod of length, L, and total mass M , as shown in Figure B.7. If the 
rod is uniform in density, then if we cut it into, say, two equal pieces, those two pieces will 
weigh the same. We can define a “linear mass density”, µ, for the rod, as the mass per unit 
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length of the rod: 
M 

µ = 
L 

The linear mass density has dimensions of mass over length and can be used to find the 
mass of any length of rod. For example, if the rod has a mass of M = 5 kg and a length of 
L = 2 m, then the mass density is: 

M (5 kg) 
µ = = = 2.5 kg/m 

L (2 m) 
Knowing the mass density, we can now easily find the mass, m, of a piece of rod that has a 
length of, say, l = 10 cm. Using the mass density, the mass of the 10 cm rod is given by: 

m = µl = (2.5 kg/m)(0.1 m) = 0.25 kg 

Now suppose that we have a rod of length L that is not uniform, as in Figure B.7, and 
that does not have a constant linear mass density. Perhaps the rod gets wider and wider, 
or it has a holes in it that make it not uniform. Imagine that the mass density of the rod 
is instead given by a function, µ(x), that depends on the position along the rod, where x is 
the distance measured from one side of the rod. 

Figure B.7: A rod with a varying linear density. To calculate the mass of the rod, we consider 
a small mass element �mi of length �x at position xi. The total mass of the rod is found by 
summing the mass of the small mass elements. 

Now, we cannot simply determine the mass of the rod by multiplying µ(x) and L, since we 
do not know which value of x to use. In fact, we have to use all of the values of x, between 
x = 0 and x = L. 

The strategy is to divide the rod up into N pieces of length �x. If we label our pieces of 
rod with an index i, we can say that the piece that is at position xi has a tiny mass, �mi. 
We assume that �x is small enough so that µ(x) can be taken as constant over the length 
of that tiny piece of rod. Then, the tiny piece of rod at x = xi, has a mass, �mi, given by: 

�mi = µ(xi)�x 

where µ(xi) is evaluated at the position, xi, of our tiny piece of rod. The total mass, M , of 
the rod is then the sum of the masses of the tiny rods, in the limit where �x ! 0: 

i=NX 
M = lim �mi

�x!0 
i=1 
i=NX 

= lim µ(xi)�x 
�x!0 

i=1 

https://kg/m)(0.1m
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But this is precisely the definition of the integral (equation B.2), which we can easily evaluate 
with an anti-derivative: 

i=NX 
M = lim µ(xi)�x 

�x!0 
i=1Z L 

= µ(x)dx 
0 

= G(L) − G(0) 

where G(x) is the anti-derivative of µ(x). 

Suppose that the mass density is given by the function: 

µ(x) = ax 3 

with anti-derivative (Table B.3): 

1 
G(x) = a 4 + C4x 

Let a = 5 kg/m4 and let’s say that the length of the rod is L = 0.5 m. The total mass of 
the rod is then: Z L 

M = µ(x)dx Z0 
L 

= ax 3dx 
0 

= G(L) − G(0)� � � � 
= a 14L

4 − a 104 
4 

= 5 kg/m4 1(0.5 m)4 
4 

= 78 g 

With a little practice, you can solve this type of problem without writing out the sum 
explicitly. Picture an infinitesimal piece of the rod of length dx at position x. It will have 
an infinitesimal mass, dm, given by: 

dm = µ(x)dx 

The total mass of the rod is the then the sum (i.e. the integral) of the mass elements Z 
M = dm 

and we really can think of the 
R 

sign as a sum, when the things being summed are infinites-
imally small. In the above equation, we still have not specified the range in x over which 
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we want to take the sum; that is, we need some sort of index for the mass elements to make 
this a meaningful definite integral. Since we already know how to express dm in terms of 
dx, we can substitute our expression for dm using one with dx: Z Z L 

M = dm = µ(x)dx 
0 

where we have made the integral definite by specifying the range over which to sum, since 
we can use x to “label” the mass elements. 

One should note that coming up with the above integral is physics. Solving it is math. We 
will worry much more about writing out the integral than evaluating its value. Evaluating 
the integral can always be done by a mathematician friend or a computer, but determining 
which integral to write down is the physicist’s job! 
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B.4 Summary 

Key Takeaways 

The derivative of a function, f(x), with respect to x can be written as: 

d
f(x) = df = f 0(x)

dx dx 

and measures the rate of change of the function with respect to x. The derivative of a 
function is generally itself a function. The derivative is defined as: 

f(x + �x) − f(x)
f 0(x) = lim 

�x!0 �x 

Graphically, the derivative of a function represents the slope of the function, and it is 
positive if the function is increasing, negative if the function is decreasing and zero if the 
function is flat. Derivatives can always be determined analytically for any continuous 
function. 

A partial derivative measures the rate of change of a multi-variate function, f(x, y), 
with respect to one of its independent variables. The partial derivative with respect to 
one of the variables is evaluated by taking the derivative of the function with respect 
to that variable while treating all other independent variables as if they were constant. 
The partial derivative of a function (with respect to x) is written as: 

@f 

@x 

The gradient of a function, rf(x, y), is a vector in the direction in which that function 
is increasing most rapidly. It is given by: 

@f @f rf(x, y) = x̂+ ŷ 
@x @y 

Given a function, f(x), its anti-derivative with respect to x, F (x), is written: Z 
F (x) = f(x)dx 

F (x) is such that its derivative with respect to x is f(x): 

dF = f(x)
dx 
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The anti-derivative of a function is only ever defined up to a constant, C. We usually 
write this as: Z 

f(x)dx = F (x) + C 

since the derivative of F (x) + C will also be equal to f(x). The anti-derivative is also 
called the “indefinite integral” of f(x). 

The definite integral of a function f(x), between x = a and x = b, is written: Z b 
f(x)dx 

a 

and is equal to the di�erence in the anti-derivative evaluated at x = a and x = b: Z b 
f(x)dx = F (b) − F (a) 

a 

where the constant C no longer matters, since it cancels out. Physical quantities only 
ever depend on definite integrals, since they must be determined without an arbitrary 
constant. 

Definite integrals are very useful in physics because they are related to a sum. Given 
a function f(x), one can relate the sum of terms of the form f(xi)�x over a range of 
values from x = a to x = b to the integral of f(x) over that range: 

i=N ZX xN
lim f(xi−1)�x = f(x)dx = F (xN ) − F (x0) = 

�x!0 
i=1 x0 

B.5 Thinking about the Material 

Reflect and research 

1. When was calculus first discovered, and by whom? 
2. What is an example of a physical quantity that is given by a derivative (other 

than speed or acceleration)? 
3. What is a case when you would need to perform an integral to evaluate a physical 

quantity? 

B.6 Sample problems and solutions 
B.6.1 Problems 
Problem B-1: You find that the number of customers in your store as a function of time 
is given by: 

N(t) = a + bt − ct2 
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where a, b and c are constants. At what time does your store have the most customers, and 
what will the number of customers be? (Give the answer in terms of a, b and c). (Solution) 

Problem B-2: You measure the speed, v(t), of an accelerating train as function of time, 
t, to be given by: 

v(t) = at + bt2 

where a and b are constants. How far does the train move between t = t0 and t = t1? 
(Solution) 
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B.6.2 Solutions 
Solution to problem B-1: We need to find the value of t for which the function N(t) is 
maximal. This will occur when its derivative with respect to t is zero: 

dN = b − 2ct = 0 
dt 

b
∴ t = 2c 

At that time, the number of customers will be: ! 
b 2N t = = a + bt − ct2c 

b2 b2 3b2 
= a + − = a +2c 4c 4c 

Solution to problem B-2: We are given the speed of the train as a function of time, 
which is the rate of change of its position: 

v(t) = dx 
dt 

We need to find how its position, x(t), changes with time, given the speed. In other words, 
we need to find the anti-derivative of v(t) to get the function for the position as a function 
of time, x(t): Z Z 

x(t) = v(t)dt = (at + bt2)dt 

2 += 2
1 
at 3

1 
bt3 + C 

where C is an arbitrary constant. The distance covered, �x, between time t0 and time t1 
is simply the di�erence in position at those two times: 

�x = x(t1) − x(t0) 
1 1 1 1 = 2at

2
1 + 3bt

3
1 + C − 2at

2
0 + 3bt

3
0 − C 

1 2 2 1 3 3= 2a(t1 − t0) + 3b(t1 − t0) 



C Guidelines for lab related activities 

This chapter introduces the skills that are necessary for thinking about how to design an 
experiment and to report on its results. 

Learning Objectives 

• Develop skills in general scientific writing. 
• Learn to write scientific proposals and experimental reports. 
• Learn to review others’ scientific proposals and experimental reports. 

C.1 The process of science and the need for scientific 
writing 

Conducting experiments that test a scientific theory is integral to the advancement of science 
and to the refining of scientific theories. In practice, scientists do not have a lab full of 
equipment ready to go and to be used for testing whichever theory suits their fancy. Instead, 
they need to write a “proposal” for conducting a particular experiment to a funding source 
(e.g. a funding agency). That funding source will then select a panel of experts in the field 
to review whether the proposal is feasible and useful in advancing science, to decide whether 
it should be funded. If the scientist is awarded with funds, they are then expected to carry 
out their experiment and report on the results in a peer-reviewed scientific journal. Again, 
before the results are published, the scientific journal will ask a panel of experts to review 
the results to ensure that they are scientifically valid and interesting. 

In order for a proposal to be funded, it must thus propose an experiment that is well-thought 
out and feasible. For example, the reviewers will want to make sure that the proposed 
experiment is designed in the best possible way to test a theory. Often, this means that 
thought has been put into designing an experiment that minimizes the uncertainty on the 
result, so that the test of the theory is as stringent as possible. 

A proposal needs to be well-written and precise. We generally call this type of writing 
“scientific writing”, and it is a style of writing that takes some practice. Similarly, when 
reporting on the results of an experiment, the report will need to be clear and precise as 
well. For example, in scientific writing, one avoids giving opinions or using sentences that 
do not add necessary information or that are not factual. 

This chapter provides some guidelines for scientific writing, writing proposals, and writing 
reports. In addition to this, guidelines for reviewing others’ proposals and reports are also 
presented. Not only is it important to develop the ability to critically evaluate others’ work, 
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but it is also helpful in learning to reflect and improve on one’s own work. 

C.2 Scientific writing 
Scientific writing is important in communicating with other scientists. Think of scientific 
writing as a style of writing where every word counts. It makes for rather “dry” reading, 
but it is important for clearly and precisely communicating factual information. The main 
guidelines for scientific writing are be concise, precise, factual, and clear. Below are 
some tips to help with scientific writing: 

• Avoid subjective/imprecise terms: avoid using subjective and imprecise terms, stick 
to factual statements and avoid opinions. Instead of saying “our calculated value 
of g was much greater than the expected value”, say “our calculated value of g was 
greater than the expected value”. Your opinion that it was ”much greater” does not 
communicate anything and is imprecise (much greater in relation to what?). 
• Definitive statements: avoid attributing definitive causes to your experimental out-

comes. You can never prove a theory to be correct, so at most, your results will be 
consistent with a theory. For example, instead of saying “as the data exhibit, we have 
detected the Purple Particle”, you should state that “the data are consistent with the 
detection of the Purple Particle”. 
• Data is the plural of datum. “This data shows” is incorrect, rather, “these data show”, 

or “this set of data shows”. 
• Active vs. passive voice: when writing scientific papers, it is recommended to use the 

third person, passive voice. For example, this would mean saying “the drop time for 
balls at various heights was measured” rather than “we measured the drop time for 
balls at various heights”. However, both passive and active voices are acceptable in 
scientific writing, as long as it is consistent throughout the text. 
• Tense. Generally, for a proposal, you would use the future tense, and you would use 

the past tense for reporting on your results. 
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Emma’s Thoughts 

Writing and editing - how can I be more concise? We’ve all felt that our writing 
was lacking at some point or another. Here are some general tips to avoid overall 
“wordiness” and to increase ease of reading when writing scientifically: 

• What would you want to read? Let’s say that you wanted to know the strength 
of Earth’s magnetic field, and how it was found, so you decide to do a literature 
search. Would you choose a brief, succinct article, or a wordy Magnetic Field 
Manifesto? 
• The kindergarten test: If you had to explain your concept to a six year old cousin, 

how would you break it down in a way that they could understand it? If you can’t 
break it down enough to explain to a six year old, perhaps you need to revisit 
your own understanding of the concept before writing about it scientifically. 
• Avoid unnecessary adjectives: while this might be ok in a creative writing class, 

in scientific writing, the goal is to get your point across as succinctly as possible. 
Using “big” words might be ok (as long as they properly describe what you are 
trying to say), but it is important to communicate your message in the simplest 
manner. 
• Think about it: every time you use a comma, dash or even an “and”, you should 

reconsider the brevity of your statement. In scientific writing, commas are care-
fully placed, and semicolons are rare. 
• Cut it in half: For every word you read, think of another that you can cut. For 

every sentence that you read, think of three sentences that communicate the same 
idea. Pick the sentence that is the shortest and most concise. 
• Proofread - the more, the better. 

The following sections provide basic outlines for writing a proposal and a lab report, as 
well as rubrics for evaluating/reviewing proposals and reports. Additionally, samples of a 
proposal, proposal review, report, and report review for the experiment “Measuring g using 
a pendulum” are provided. In the sample proposal and lab report, errors are purposefully 
included and addressed in the reviews. It is important to entirely read the rest of this 
section to capture the common proposal/lab mistakes and their corresponding corrections. 
That is, do not take the sample proposal as a “perfect proposal”, but rather, consider it in 
the light of the corresponding review. 
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C.3 Guide for writing a proposal 

Summary and Goal 

Write a few short sentences briefly summarizing the aim of your experiment, how it will be 
conducted, and how precise of a result you expect to obtain. 

Method and equipment 

Clearly describe, in as much detail as required, the method/procedure that you will use to 
carry out your experiment, and how you will analyse the results. Justify the choices that 
you made (no need to say you chose to use a ruler because you will need to measure a 
distance, but perhaps say why you need to measure a given distance, or that you chose to 
measure something in a particular way as it would reduce the corresponding uncertainty). 
Provide a list of the equipment that you will need. Also, propose a method of assessing 
whether or not your project was successful. 

Consider the following questions: 

• What theory are you testing and through what model? 
• How precisely do you estimate that you will be able to make your measurement? 

Estimate the uncertainty that you will obtain with the proposed experiment. Use this 
in guiding the design of your experiment. 
• What materials, equipment and/or tools are necessary in making your measurements? 
• What are the cost of these materials? Can they be easily obtained? 
• Where should this experiment be conducted? 
• Are there any safety concerns? 
• How will you make your measurements? How many times will you make them? 
• How will you record your measurements? 
• How will you maximize the precision of your experiments? 
• How will you determine uncertainties? 
• How will you analyse the data? 
• What issues could arise in your experiment? How do you plan to resolve these issues? 

Timeline and Team 

Provide the names of team members, and assign relevant duties to each member. Give a 
rough outline of the timeline to conduct the experiment, to analyse the data, and to report 
on the results. 
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C.4 Guide for reviewing a proposal 

Summary 

Summarize your overall evaluation of the proposal in 2-3 sentences. Focus on the exper-
iment’s methods and goals. For example, “The authors wish to drop balls from di�erent 
heights to determine the value of g”. You don’t need to go into the specific details, just give 
a high level summary of the proposal and your opinion on whether this is a strong proposal. 
If the proposal is unclear, specify this. 

Review 

This is where you give your detailed review of the proposal. Consider the following questions: 

• Is the proposed experiment well thought-out and feasible? 
• Is the experimental procedure clear and concise? Could you could carry out the 

experiment without asking the authors for additional information? Do the authors 
specify what instruments to use to measure di�erent quantities and how to determine 
the associated uncertainties? 
• Does the experimental design minimize uncertainties? 
• Is it possible to complete the experiment in a reasonable period of time? 
• Is it possible to obtain the equipment/materials to conduct the experiment? 
• Do the authors describe how to analyse the data (correctly)? 
• Does the plan incorporate a mechanism to assess success? 
• Is a troubleshooting plan in place, in case of unexpected diÿculties? 

Overall Rating of the Experiment 

Give the proposal an overall score, based on the criteria described above. Use one of the 
following to rate the proposal and include a sentence to justify your choice. 

• Excellent 
• Good 
• Satisfactory 
• Needs work 
• Incomplete 
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C.5 Guide for writing a lab report 

Abstract 

Write a few short sentences briefly summarizing what you did, how you did it, what you 
found and whether anything went wrong in your experiment. 

Procedure 

Describe relevant theories that relate to your experiment here, and the steps to carry out 
your procedure. 

Consider the following questions: 

• What are the relevant theories/principles that you used? 
• What equations did you use? Show how you modelled your experiment. 
• What materials, equipment and/or tools were necessary in making your measure-

ments? 
• Where was this experiment conducted? 
• How did you make your measurements? How many times did you make them? 
• How did you record your measurements? 
• How did you determine and minimize the uncertainties in your measurements? Why 

did you choose to measure a specific quantity in a certain way? 

Prediction It can be useful to predict the value (and uncertainty) that you expect to 
measure before conducting the measurement. You should report on this initial prediction 
in order to help you better understand the data from your experiment. 

Consider the following questions: 

• Predict your measured values and uncertainties. How precise do you expect your 
measurements to be? 
• What assumptions did you have to make to predict your results? 
• Have these predictions influenced how you should approach your procedure? Make 

relevant adjustments to the procedure based on your predictions. 

Data and Analysis 

Present your data. Include relevant tables/graphs. Describe in detail how you analysed the 
data, including how you propagated uncertainties. If the data do not agree with your model 
prediction (or the prediction from your proposal), examine whether you can improve your 
model. 

Consider the following questions: 

• How did you obtain the “final” measurement/value from your collected data? 
• How did you propagate uncertainties? Why did you do it that way? 
• What is the relative uncertainty on your value(s)? 

Discussion and Conclusion 
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Summarize your findings, and address whether or not your model described the data. Dis-
cuss possible reasons why your measured value is not consisted with your model expectation 
(is it the model? is it the data?). 

Consider the following questions: 

• Were there any systematic errors that you didn’t consider? 
• Did you learn anything that you didn’t previously know? (eg. about the subject of 

your experiment, about the scientific method in general) 
• If you could redo this experiment, what would you change (if anything)? 
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C.5.1 Guide for reviewing a lab report 

Summary 

Summarize your overall evaluation of the report in 2-3 sentences. Focus on the experiment’s 
method and its result. For example, “The authors dropped balls from di�erent heights to 
determine the value of g”. You don’t need to go into the specific details, just give a high 
level summary of the report. If the report is unclear, specify this. 

Review 

Consider the following questions: 

• Is the the procedure well thought-out, clearly and concisely described? 
• Do you have suÿcient information that you could repeat this experiment? 
• Does the report clearly describe how di� erent quantities were measured and how the 

uncertainties were determined? 
• Does the report motivate why the specific procedure was chosen? (e.g. to minimize 

uncertainties). 
• Does the experiment clearly state how uncertainties were propagated and how the 

data were analysed? 
• Do you believe their result to be scientifically valid? 

Overall Rating of the Experiment 

Give the report an overall score, based on the criteria described above. Use one of the 
following to rate the proposal and include a sentence to justify your choice. 

• Excellent 
• Good 
• Satisfactory 
• Needs work 
• Incomplete 
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C.6 Sample proposal (Measuring g using a pendulum) 

Summary and Goal 

One can measure the gravitational constant, g, by measuring the period of a pendulum of 
a known length, requiring only a string, mass, ruler and timer. Because the experimental 
design can be easily adjusted and the experiment is simple, the experiment has a high chance 
of success. 

Method and equipment 

The period of a pendulum of length L is easily shown to be given by: 

s 
T = 2ˇ L 

g 

Thus, by measuring the period, T , of a pendulum as well as its length, one can determine 
the value of g: 

4ˇ2L 
g = 

T 2 

One can carry out the experiment using the following materials: 

• a mass 
• inextensible string 
• a metre stick 
• stand to attach string 
• cell-phone with timer and slow-motion camera 

The materials listed above are all inexpensive and can be easily obtained. It is recommended 
that the experiment be completed indoors at room temperature, in order to minimize any 
environmental e�ects. 

One should tie the string to the mass at one end and the stand at the other, and measure 
the length, L, of the string from the point on the stand to the centre of mass of the mass. 

The period of the pendulum is measured by timing how long it takes the pendulum to 
complete 20 oscillations and dividing that time by 20. This will be more precise than trying 
to time the period of a single oscillation. 

The pendulum should be released from 90�. When releasing the pendulum, the string should 
be pulled taught, and the team member’s eye that is measuring the angle should be situated 
parallel to the measuring device. 

A slow-motion video will be taken of the pendulum to track the time of the oscillation 
in order to minimize error due to reaction time. The team member in charge of taking 
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the video will start the video shortly before the pendulum is released. After releasing the 
pendulum, the team should record 20 oscillations before stopping the pendulum and the 
video. Data from the video should be entered into a Jupyter Notebook. It is recommended 
that this measurement be repeated at least 5 times. 

The uncertainty in the time should be taken as half of the smallest division of the cell-phone 
timer, and the uncertainty in the length of the pendulum as half the smallest division of 
the metre stick used to measure the length of the pendulum. 

Foreseeable issues in this experiment may arise when trying to find a string that is optimally 
inextensible, as any extensibility will cause error in the results. Additionally, being able to 
measure exactly 90� as the drop-angle for the pendulum could be diÿcult. In order to correct 
for this, the team member who is dropping the pendulum must stand directly parallel to 
the measuring device, minimizing parallax error. 

The measure of success will be determined by the uncertainty and precision of the measured 
value of g. If the measured value of g has a relative uncertainty that is less than 10 %, and 
is consistent with the accepted value, then one can consider the experiment to have been 
carried out successfully. 

Team and timeline 

One should be able to complete the experiment and analysis in approximately 1 hour and 
30 minutes with the data being collected in the first 30 minutes. The remainder of the 
time should be spent processing the data and writing the experimental report. Following 
the strengths of the members of the team, the following people should be responsible for 
leading the following tasks, while everyone participates: 

• Alice: building the pendulum 
• Brice: taking the measurements 
• Chloë: analysing the data 
• Dennis: writing and formatting 
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C.7 Sample proposal review (Measuring g using a pen-
dulum) 

Summary and Goal 

The authors propose to measure the value of g to within 10% by measuring the period of a 
simple pendulum, using the SHM equations and theory. The proposal is reasonably clear, 
but lacks some details in how to measure the initial angle of the pendulum. The authors 
propose to use a an amplitude of 90� for the pendulum, but at such a large angle, the motion 
is not expected to be SHM, since it is only so at small angles. By using a smaller angle, the 
experiment has a good chance of being successful in the proposed timeline. 

Review 

The experimental methods are described clearly and succinctly, with most information 
clearly stated. For the materials list, it is stated that “a mass” must be used. Here, it 
should be stated that a small, solid, non-deformable mass should be used to minimize drag 
and to act as a point mass. The authors refer to a “measuring device” when determining 
the amplitude of the pendulum, but this is not described. Anyhow, the amplitude of the 
oscillations in irrelevant for a pendulum in SHM, as long as the amplitude is small. 

Most equations are described in the theory section, but it is incorrectly assumed that the 
period of a pendulum is independent of the drop angle for all angles. The small angle 
approximation is not expected to apply with an oscillation amplitude of 90�. 

No justification is provided for the use of 20 oscillations prior to measuring the period - it 
may be necessary to iterate on the reason why 20 oscillations was chosen. 

The equipment can be easily obtained and is fairly inexpensive. Adequate resources are 
available to the group to perform this experiment. A clear troubleshooting plan is described 
and a method for evaluating success is included. 

Timeline and team 

This experiment is fairly simple and the equipment/setup is not diÿcult to handle. The 
proposed team should be qualified to perform this experiment in the proposed amount of 
time, although I worry a little bit about Dennis, as he seems to be a bit of a menace. 

Overall Rating of the Proposal 

Good - this proposal was clearly explained and is scientifically sound, apart from the use 
of a large angle for the oscillations. It was succinctly written, and most components of 
the experiment were clearly described. A little more detail in the justification for using 20 
oscillations is necessary. 
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C.8 Sample lab report (Measuring g using a pendu-
lum) 

Abstract 

In this experiment, we measured g by measuring the period of a pendulum of a known 
length. We measured g = (7.650 ± 0.378) m/s2. This correspond to a relative di�erence of 
22% with the accepted value (9.8 m/s2), and our result is not consistent with the accepted 
value. 

Theory 

A pendulum exhibits simple harmonic motion (SHM), which allowed us to measure the 
gravitational constant by measuring the period of the pendulum. The period, T , of a 
pendulum of length L undergoing simple harmonic motion is given by: s 

T = 2ˇ L 

g 

Thus, by measuring the period of a pendulum as well as its length, we can determine the 
value of g: 

4ˇ2L 
g = 

T 2 

We assumed that the frequency and period of the pendulum depend on the length of the 
pendulum string, rather than the angle from which it was dropped. 

Predictions 

We built the pendulum with a length L = (1.0000 ± 0.0005) m that was measured with a 
ruler with 1 mm graduations (thus a negligible uncertainty in L). We plan to measure the 
period of one oscillation by measuring the time to it takes the pendulum to go through 20 
oscillations and dividing that by 20. The period for one oscillation, based on our value of L 
and the accepted value for g, is expected to be T = 2.0 s. We expect that we can measure 
the time for 20 oscillations with an uncertainty of 0.5 s. We thus expect to measure one 
oscillation with an uncertainty of 0.025 s (about 1% relative uncertainty on the period). We 
thus expect that we should be able to measure g with a relative uncertainty of the order of 
1% 

Procedure 

The experiment was conducted in a laboratory indoors. 

1. Construction of the pendulum 

We constructed the pendulum by attaching a inextensible string to a stand on one end and 
to a mass on the other end. The mass, string and stand were attached together with knots. 
We adjusted the knots so that the length of the pendulum was (1.0000 ± 0.0005) m. The 
uncertainty is given by half of the smallest division of the ruler that we used. 
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2. Measurement of the period 

The pendulum was released from 90� and its period was measured by filming the pendulum 
with a cell-phone camera and using the phone’s built-in time. In order to minimize the 
uncertainty in the period, we measured the time for the pendulum to make 20 oscillations, 
and divided that time by 20. We repeated this measurement five times. We transcribed the 
measurements from the cell-phone into a Jupyter Notebook. 

Data and Analysis 

Using a 100 g mass and 1.0 m ruler stick, the period of 20 oscillations was measured over 5 
trials. The corresponding value of g for each of these trials was calculated. The following 
data for each trial and corresponding value of g are shown in the table below. 
Trial Angle (Degrees) Measured Period (s) Value of g (m/s2) 

1 90 2.24 7.87 

2 90 2.37 7.03 

3 90 2.28 7.59 

4 90 2.26 7.73 

5 90 2.22 8.01 

Our final measured value of g is (7.650 ± 0.378) m/s2. This was calculated using the mean 
of the values of g from the last column and the corresponding standard deviation. The 
relative uncertainty on our measured value of g is 4.9% and the relative di�erence with the 
accepted value of 9.8 m/s2 is 22%, well above our relative uncertainty. 

Discussion and Conclusion 

In this experiment, we measured g = (7.650 ± 0.378) m/s2. This has a relative di�erence of 
22% with the accepted value and our measured value is not consistent with the accepted 
value. All of our measured values were systematically lower than expected, as our measured 
periods were all systematically higher than the §2.0s that we expected from our prediction. 
We also found that our measurement of g had a much larger uncertainty (as determined 
from the spread in values that we obtained), compared to the 1% relative uncertainty that 
we predicted. 

We suspect that by using 20 oscillations, the pendulum slowed down due to friction, and 
this resulted in a deviation from simple harmonic motion. This is consistent with the fact 
that our measured periods are systematically higher. We also worry that we were not able 
to accurately measure the angle from which the pendulum was released, as we did not use 
a protractor. 

If this experiment could be redone, measuring 10 oscillations of the pendulum, rather than 
20 oscillations, could provide a more precise value of g. Additionally, a protractor could be 
taped to the top of the pendulum stand, with the ruler taped to the protractor. This way, 
the pendulum could be dropped from a near-perfect 90� rather than a rough estimate. 
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C.9 Sample lab report review (Measuring g using a 
pendulum) 

Summary 

The authors measured the period of a pendulum to determine g. They measured g to 
be (7.650 ± 0.378) m/s2 which is inconsistent with the accepted value. The authors were 
incorrect in assuming that the pendulum would undergo simple harmonic motion in the 
conditions that they used. 

Review 

The experimental procedure was clearly written and one could mostly reproduce this ex-
periment with the given description. 

The authors thought about minimizing uncertainties by measuring the period over several 
oscillations, although it appears that 20 was perhaps too large, as friction was likely to 
have an e�ect. The authors should have taken more care in determining the number of 
oscillations to use so that the uncertainty in the time is minimized while also keeping the 
e�ects of friction negligible. Ultimately, the authors did not specify the uncertainty in the 
time that they measured. 

The authors also claim to have measured the length of the pendulum with a precision of 
0.5 mm, but did not specify the length of the ruler that they used. I would not expect the 
measurement to be that precise unless they used a very precise ruler that is longer than 
1 m. However, the authors made the length of the pendulum as long as possible so as to 
minimize the uncertainty in the length. 

The authors did not describe the mass that was attached at the end of the pendulum, and 
whether its size would be expected to cause significant air drag. 

The authors made a mistake in assuming that a pendulum would undergo simple harmonic 
motion with an amplitude of 90�, as the small angle approximation used to determine the 
period does not apply in this case. 

The experimental procedure was scientifically sound, other than the choices for the number 
of oscillations and their amplitude. 

Overall rating of the Experiment 

Satisfactory - The experiment was well described, but the authors should have paid more 
attention to their choice of 20 oscillations, and they made a mistake in assuming that their 
pendulum would exhibit simple harmonic oscillation with a large amplitude. 
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This appendix gives a very brief introduction to programming in python and is primarily 
aimed at introducing tools that are useful for the experimental side of physics. 

Learning Objectives 

• Be able to perform simple algebra using python. 
• Be able to plot a function in python. 
• Be able to propagate uncertainties in python. 
• Be able to plot and fit data to a straight line. 
• Understand how to use Python to numerically calculate any integral. 

In this textbook, we will encourage you to use computers to facilitate making calculations 
and displaying data. We will make use of a popular programming language called Python, 
as well as several “modules” from Python that facilitate working with numbers and data. 
Do not worry if you do not have any programming experience; we assume that you have 
none and hope that by the end of this book, you will have some capability to decrease your 
workload by using computer programming. 

The only way to become proficient at programming is through practice. If you want to 
e�ectively learn from this chapter, it is important that you take the time to actually type 
the commands into a Python environment rather than simply reading through the chapter. 
Reading through the chapter will at least give you a sense of what is possible and some 
terminology, but it will not teach you programming! 

D.1 A quick intro to programming 
In Python, as in other programming languages, the equal sign is called the assignment 
operator. Its role is to assign the value on its right to the variable on its left. The following 
code does the following: 

• assigns the value of 2 to the variable a 
• assigns the values of 2*a to the variable b 
• prints out the value of the variable b 

Python Code D.1: Declaring variables in Python 

#This i s a comment , and i s i gnored by Python 
a = 2 
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b = 2�a 
p r i n t (b ) 

Output D.1: 

Note that any text that follows a pound sign (#) is intended as a comment and will be 
ignored by Python. Inserting comments in your code is very important for being able 
to understand your computer program in the future or if you are sharing your code with 
someone who would like to understand it. In the above example, we called the print() 
function and passed to it the variable b as an argument; this allowed us to print (display) 
the value of the variable b and verify that it was indeed equal to the number 4. 

In Python, if you want to have access to “functions”, which are a more complex series of 
operations, then you typically need to load the module that defines those operations. 

A large number of functions are provided in Python. Most of these functions need to be 
“imported” from “modules”. For example, if you want to be able to take the square root of 
a number, then you need to load (import) the “math module” which contains the square 
root function, as in the following example: 

Python Code D.2: Using functions from modules 

#Fir s t , we load ( import ) the math module 
import math as m 
a = 9 
b = m. s q r t ( a ) 
p r i n t (b ) 

Output D.2: 

3 

In the above code, we loaded the math module (and renamed it m); this then allows us to use 
the functions that are part of that module, including the square root function (m.sqrt()). 

D.2 Arrays 
It is often the case that we need to represent a series of numbers. For example, imagine 
that you have measured the position of an object as a function of time. Arrays are a 
convenient way to hold a series of numbers that are all alike, for example, all of the values 
of the position and corresponding time values for the trajectory of the object. In Python, 
we can define variables that hold arrays instead of a single value (arrays are called “lists” 
in Python): 

Python Code D.3: Arrays in python 

#d e f i n e an array o f va lue s f o r the p o s i t i o n o f the ob j e c t 
p o s i t i o n = [ 0 , 1 , 4 , 9 , 1 6 , 2 5 ] 
#d e f i n e an array o f va lue s f o r the cor re spond ing t imes 
time = [ 0 , 1 , 2 , 3 , 4 , 5 ] 
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D.3 Plotting 
Several modules are available in python for plotting. We will show here how to use the 
pylab module (which is equivalent to the matplotlib module). For example, we can easily 
plot the data in the two arrays from the previous section in order to plot the position versus 
time for the object: 
Python Code D.4: Plotting two arrays 

#import the pylab module 
import pylab as p l 

#d e f i n e an array o f va lue s f o r the p o s i t i o n o f the ob j e c t 
p o s i t i o n = [ 0 , 1 , 4 , 9 , 1 6 , 2 5 ] 
#d e f i n e an array o f va lue s f o r the cor re spond ing t imes 
time = [ 0 , 1 , 2 , 3 , 4 , 5 ] 

#make the p l o t showing po in t s and the l i n e (. −) 
p l . p l o t ( time , po s i t i on , ’ .− ’ ) 
#add some l a b e l s : 
p l . x l a b e l ( ” time ” ) #l a b e l f o r x−a x i s 
p l . y l a b e l ( ” p o s i t i o n ” ) #l a b e l f o r y−a x i s 
#show the p l o t 
p l . show ( ) 

Output D.4: 

Figure D.1: Using two arrays and plotting them. 

Checkpoint D-1 

How would you modify the Python code above to show only the points, and not the 
line? 

We can use Python to plot any mathematical function that we like. It is important to realize 
that computers do not have a representation of a continuous function. Thus, if we would 
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like to plot a continuous function, we first need to evaluate that function at many points, 
and then plot those points. The numpy module provides many useful features for working 
with arrays of numbers and applying functions directly to those arrays. 

Suppose that we would like to plot the function f(x) = cos(x2) between x = −3 and x = 5. 
In order to do this in Python, we will first generate an array of many values of x between 
−3 and 5 using the numpy package and the function linspace(min,max,N) which generates 
N linearly spaced points between min and max. We will then evaluate the function at all 
of those points to create a second array. Finally, we will plot the two arrays against each 
other: 
Python Code D.5: Plotting a function of 1 variable 

#import the pylab and numpy modules 
import pylab as p l 
import numpy as np 

#Use numpy to generate 1000 va lue s o f x between −3 and 5 . 
#xva l s i s an array with 1000 va lue s in i t : 
xva l s =np . l i n s p a c e ( −3 ,5 ,1000) 

#Now, eva luate the f unc t i on f o r a l l o f those va lue s o f x . 
#We use the numpy v e r s i on o f cos , s i n c e i t a l l ows us to take the cos 
#o f a l l va lue s in the array . 
#f v a l s w i l l be an array with the 1000 cor re spond ing c o s i n e s o f the xva l s 

squared 
f v a l s = np . cos ( xva l s �� 2) 

#make the p l o t showing only a l i n e , and c o l o r i t 
p l . p l o t ( xvals , f v a l s , c o l o r=’ red ’ ) 
#show the p l o t 
p l . show ( ) 

Output D.5: 

Figure D.2: Plotting a function using arrays. 
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D.4 The QExpy python package for experimental physics 
QExpy is a Python module that was developed with students from Queen’s University to 
handle all aspects of undergraduate physics laboratories. In this section, we look at how to 
use QExpy to propagate uncertainties and to plot experimental data. 

D.4.1 Propagating uncertainties 
In Chapter 2, we saw how to use the “derivative method” to propagate the uncertainty from 
measurements into the uncertainty in a value that depended on those measurements. In 
Example 2-7, we propagated the uncertainties x = (3.00 ± 0.01) m and t = (0.76 ± 0.15) s 

tto the quantity k = p . We show below how easily this can be done with QExpy: 
x 

Python Code D.6: QExpy to propagate uncertainties 

#Fir s t , we load the QExpy module 
import qexpy as q 
#Now d e f i n e our measurements with u n c e r t a i n t i e s : 
t = q . Measurement ( 0 . 7 6 , 0 . 1 5 ) # 0 .76 +/− 0 .15 
x = q . Measurement ( 3 , 0 . 1 ) # 3 +/− 0 .1 
#Now d e f i n e k , which depends on t and x : 
k = t /q . s q r t ( x ) # use the QExpy v e r s i o n o f s q r t ( ) s i n c e x i s o f type 

Measurement 
#Print the r e s u l t : 
p r i n t ( k ) 

Output D.6: 

0 .44 +/− 0 .09 

which is the result that we obtained when manually applying the derivative method. Note 
that we used the square root function from the QExpy module, as it “knows” how to take 
the square root of a value with uncertainty (a “Measurement” in the language of QExpy). 

We also saw that when we had repeated measurements of the same quantity (Section 2.3.1), 
one could define a central value and uncertainty for that quantity by using the mean and 
standard deviations of the measurements. QExpy can easily take a set of measurements (an 
array of values) and convert them into a single quantity (a “Measurement”) with a central 
value and uncertainty that correspond to the mean and standard deviation of the set of 
measurements: 
Python Code D.7: QExpy to calculate mean and standard deviation 

#Fir s t , we load the QExpy module 
import qexpy as q 
#We d e f i n e $t$ as an array o f va lue s ( note the square b racket s ) : 
t = q . Measurement ( [ 1 . 0 1 , 0 . 76 , 0 . 64 , 0 . 73 , 0 . 6 6 ] ) 
#Choose the number o f s i g n i f i c a n t f i g u r e s to p r i n t : 
q . s e t s i g f i g s ( 2 ) 
#Print the r e s u l t : 
p r i n t ( ” t = ” , t ) 

Output D.7: 

t = 0 .76 +/− 0 .15 

https://Measurement([1.01
https://Measurement(0.76
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By using QExpy, we do not need to tediously calculate the mean and standard deviation, 
as we had in Example 2-6. 

D.4.2 Plotting experimental data with uncertainties 
In Chapter 2 we had presented the data in Table D.1 which corresponded to our measure-
ments of how long it took (t) for an object to drop a certain distance, x. We had also 
introduced Chloë’s Theory of gravity that predicted that the data should be described by 
the following model: 

p
t = k x 

where k was an undetermined constant of proportionality. 
p

x [m] t [s] x [m ]1
2] k [s m−1

2 

1.00 0.33 1.00 0.33 

2.00 0.74 1.41 0.52 

3.00 0.67 1.73 0.39 

4.00 1.07 2.00 0.54 

5.00 1.10 2.24 0.49 
Table D.1: Measurements of the drop times, t, for a bowling ball to fall di�erent distances, x. We 
have also computed 

p
x and the corresponding value of k. 

The easiest way to visualize and analyse those data is to plot them. In particular, if we plotp
(graph) t versus x, we expect that the points will fall on a straight line that goes through 
zero, with a slope of k (if the data are described by Chloë’s Theory). We can use QExpy to 
graph the data as well as determine (“fit”) for the slope of the line that best describes the 
data, since we expect that the slope will correspond to the value of k. When plotting data 
and fitting them to a line (or other function), it is important to make sure that the values 
have at least an uncertainty in the quantity that is being plotted on the y axis. In this case, 
we have assumed that all of the measurements of time have an uncertainty of 0.15 s and 
that the measurements of the distance have no (or negligible) uncertainties. The python 
code below shows how to use QExpy to plot and fit the data to a straight line. 
Python Code D.8: Using QExPy to plot and fit linear data 

#Fir s t , we load the QExpy module : 
import qexpy as q 

#Use matp lo t l i b as the p l o t eng ine ( t ry us ing ’ bokeh ’ i n s t ead o f ’ mpl ’ ) 
q . p l o t e n g i n e = ’ mpl ’ 

#Set the number o f s i g n i f i c a n t f i g u r e s to 2 : 
q . s e t s i g f i g s ( 2 ) 

#Then we ente r the data : 
#s t a r t with the va lue s f o r the square root o f he ight : 
sqx = [ 1 . , 1 . 41 , 1 . 73 , 2 . , 2 . 2 4 ] 
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#and then , the cor re spond ing t imes : 
t = [ 0 . 33 , 0 . 7 4 , 0 . 67 , 1 . 07 , 1 . 1 ] 

#Let 
t e r r 

us a t t r i b u t e 
= 0 .15 

an unce r ta in ty o f 0 .15 to each measured va lue s o f t : 

#We now make the p l o t . F i r s t , we c r e a t e the p l o t o b j e c t with the 
#Note that x and y r e f e r to the x and y axes 
f i g = q . MakePlot ( xdata = sqx , xname = ” s q r t ( d i s t a n c e ) [mˆ 0 . 5 ] ” , 

ydata = t , y e r r = t e r r , yname = ” time [ s ] ” , 
data name = ”My data ” ) 

data 

#Ask QExpy to a l s o 
f i g . f i t ( ” l i n e a r ” ) 

determine the l i n e o f bes t f i t 

#Then , we show 
f i g . show ( ) 

i t : 

Output D.8: 

−−−−−−−−−−−−−−−−−Fit r e s u l t s −−−−−−−−−−−−−−−−−−− 
Fit o f My data to l i n e a r 
F i t parameters : 
My d a t a l i n e a r f i t 0 f i t p a r s i n t e r c e p t = −0.24 +/− 0 . 22 , 
My d a t a l i n e a r f i t 0 f i t p a r s s l o p e = 0 .61 +/− 0 .13 

Cor r e l a t i on matrix : 
[ [ 1 . −0.968] 
[ −0.968 1 . ] ] 

ch i2 / ndof = 2 .04/2 
−−−−−−−−−−−−−−−End f i t r e s u l t s −−−−−−−−−−−−−−−− 

p
Figure D.3: QExpy plot of t versus x and line of best fit. 
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The plot in Figure D.3 shows that the data points are consistent with falling on a straight 
line, when their error bars are taken into account. We’ve also asked QExpy to show us 
the line of best fit to the data, represented by the line with the shaded area. When we 
asked for the line of best fit, QExpy not only drew the line, but also gave us the values 
and uncertainties for the slope and the intercept of the line. The shaded area around the 
line corresponds to other possible lines that one would obtain using di� erent values of the 
slope and intercept within their corresponding uncertainties. The output also provides a 
line that tells us that chi2/ndof = 2.04/2; although you do not need to understand the 
details, this is a measure of how well the data are described by the line of best fit. Generally, 
the fit is assumed to be “good” if this ratio is close to 1 (the ratio is called “the reduced 
chi-squared”). The “correlation matrix” tells us how the best fit value of the slope is linked 
to the best fit value of the intercept, which you do not need to worry about here. 

Since we expect the slope of the data to be k, this provides us a method to determine k from 
the data as (0.61 ± 0.13) s m− 1 Performing a linear fit of the data is the best way 2 . 
to determine a constant of proportionality between the measurements. Finally, 
we expect the intercept to be equal to zero according to our model. The best fit line 
from QExpy has an intercept of (−0.24 ± 0.22) s, which is slightly below, but consistent, 
with zero. From these data, we would conclude that the measurements are consistent with 
Chloë’s Theory. 

D.5 Advanced topics 
This section introduces a few more advanced topics that allow you to use computer pro-
gramming to simplifying many tasks. In this section, we will show you how you can write 
your own program to numerically estimate the value of an integral of any function. 

D.5.1 Defining your own functions 
Although Python provides many modules and functions, it is often useful to be able to 
define your own functions. For example, suppose that you would like to define a function 
that calculates 1

3 x
2 + 4

1 x3 + cos(2x), for a given value of x. This is done easily using the def 
keyword in Python: 
Python Code D.9: Defining a function 

#import the math module in order to use cos 
import math as m 

#d e f i n e our f unc t i on and c a l l i t myfunction : 
de f myfunction ( x ) : 

r e turn x��2 / 3 + x��3 / 4 + m. cos (2 �x ) 

#Test our f unc t i on by p r i n t i n g out the r e s u l t o f eva lua t ing i t at x = 3 
p r i n t ( myfunction (3 ) ) 

Output D.9: 

10.710170286650365 

A few things to note about the code above: 
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• Functions are defined using the def keyword followed by the name that we choose for 
the function (in our case, myfunction) 
• If functions take arguments, those are specified in parenthesis after the name of the 

function (in our case, we have one argument that we chose to call x) 
• After the name of the function and the arguments, we place a colon 
• The code that belongs to the function, after the colon, must be indented (this allows 

Python to know where the code for the function ends) 
• The function can “return” a value; this is done by using the return keyword. 
• We used the “operator” ** to take the power of a number (x**2), and the operator 

*, to multiply numbers. Python would not understand something like 2x; you need 
to use the multiplication operator, i.e. 2*x. 

In the example above, we wrote a Python function to represent a mathematical function. 
However, one can write a function to execute any set of tasks, not just to apply a mathe-
matical function. Python functions are very useful in order to avoid having to repeatedly 
type the same code. 

Recall that the numpy module allows us to apply functions to arrays of numbers, instead 
of a single number. We can modify the code above slightly so that, if the argument to the 
function, x, is an array, the function will gracefully return an array of numbers to which the 
function has been applied. This is done by simply replacing the call to the math version of 
the cos function by using the numpy version: 
Python Code D.10: Defining a function that works on an array 

#import the numpy module in order to use cos to an array 
import numpy as np 

#d e f i n e our f unc t i on and c a l l i t myfunction : 
de f myfunction ( x ) : 

r e turn x��2 / 3 + x��3 / 4 + np . cos (2 �x ) 

#Test our f unc t i on by p r i n t i n g out the r e s u l t o f eva lua t ing i t at x = 3 ( same 
as b e f o r e ) 

p r i n t ( myfunction (3 ) ) 

#Test i t with an array 
xva l s = np . array ( [ 1 , 2 , 3 ] ) 
p r i n t ( myfunction ( xva l s ) ) 

Output D.10: 

10.710170286650365 
[ 0 .1671865 2 .67968971 10 .71017029 ] 

where we created the array xvals using the numpy module. 

D.5.2 Using a loop to calculate an integral 
The ability to define our own functions in Python allows us to easily simplify complex tasks. 
Using “loops” is another way that computer programming can greatly simplify calculations 
that would otherwise be very tedious. In a loop, one is able to repeat the same task many 
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times. The example below simply prints out a statement five times: 
Python Code D.11: A simple loop 

#A loop to p r i n t out a statement 5 t imes : 

f o r i in range (5 ) : 
p r i n t ( ”The va lue o f i i s ” , i ) 

Output D.11: 

The va lue o f i i s 0 
The va lue o f i i s 1 
The va lue o f i i s 2 
The va lue o f i i s 3 
The va lue o f i i s 4 

A few notes on the code above: 

• The loop is defined by using the keywords for ... in 
• The value after the keyword for is the “iterator” variable and will have a di�erent 

value each time that the code inside of the loop is run (in our case, we called the 
variable i) 
• The value after the keyword in is an array of values that the iterator will take 
• The range(N) function returns an array of N integer values between 0 and N-1 (in our 

case, this returns the five values 0,1,2,3,4) 
• The code to be executed at each “iteration” of the loop is preceded by a colon and 

indented (in the same way as the code for a function also follows a colon and is 
indented) 

We now have all of the tools to evaluate an integral numerically. Recall that the integral of 
the function f(x) between xa and xb is simply a sum: 

Z i=XN−1xb 
f(x)dx = lim f(xi)�x 

�x!0xa i=0 
xb − xa�x = 
N 

xi = xa + i�x 

The limit of �x ! 0 is equivalent to the limit N ! 1. Our strategy for evaluating the 
integral is: 

1. Define a Python function for f(x). 
2. Create an array, xvals, of N values of x between xa and xb. 
3. Evaluate the function for all those values and store those into an array, fvals. 
4. Loop over all of the values in the array fvals, multiply them by �x, and sum them 

together. 

Let’s use Python to evaluate the integral of the function f(x) = 4x3 +3x2 +5 between x = 1 
and x = 5: 
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Python Code D.12: Numerical integration of a function 

#import numpy to work with a r rays : 
import numpy as np 

#d e f i n e our f unc t i on 
de f f ( x ) : 

r e turn 4�x��3 + 3�x��2 + 5 

#Make N and the range o f i n t e g r a t i o n v a r i a b l e s : 
N = 1000 
xmin = 1 
xmax = 5 

#c r e a t e the array o f va lue s o f x between xmin and xmax 
xva l s = np . l i n s p a c e ( xmin , xmax , N) 

#eva luate the f unc t i on at a l l those va lue s o f x 
f v a l s = f ( xva l s ) 

#c a l c u l a t e d e l t a x 
de l tax = (xmax − xmin ) / N 

#i n i t i a l i z e the sum to be ze ro : 
sum = 0 

#loop over the va lue s f v a l s and add them to the sum 
f o r f i in f v a l s : 

sum = sum + f i � de l tax 

#pr in t the r e s u l t : 
p r i n t ( ”The i n t e g r a l between {} and {} us ing {} s t ep s i s { : . 2 f } ” . format ( xmin , 

xmax , N, sum) ) 
Output D.12: 

The i n t e g r a l between 1 and 5 us ing 1000 s t ep s i s 768 .42 

One can easily integrate the above function analytically and obtain the exact result of 768. 
The numerical answer will approach the exact answer as we make N bigger. Of course, 
the power of numerical integration is to use it when the function cannot be integrated 
analytically. 

Checkpoint D-2 

What value of N should you use above in order to get within 0.01 of the exact analytic 
answer? 
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