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Introduction 

This book is an adaptation from the textbook: Linear Algebra with 

Applications by W. Keith Nicholson. The book can be found here: 

https://lyryx.com/linear-algebra-applications/ 
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1. System of Linear Equations 

1.1 Solutions and elementary operations 

Practical problems in many fields of study—such as biology, 

business, chemistry, computer science, economics, electronics, 

engineering, physics and the social sciences—can often be reduced 

to solving a system of linear equations. Linear algebra arose from 

attempts to find systematic methods for solving these systems, so it 

is natural to begin this book by studying linear equations. 

If , , and  are real numbers, the graph of an equation of the 

form 

    
is a straight line (if  and  are not both zero), so such an equation 

is called a linear equation in the variables  and . However, it 

is often convenient to write the variables as , 

particularly when more than two variables are involved. An equation 

of the form 

    
is called a linear equation in the  variables . 

Here  denote real numbers (called the coefficients 
of , respectively) and  is also a number (called 

the constant term of the equation). A finite collection of linear 

equations in the variables  is called a system of 
linear equations in these variables. Hence, 

    
is a linear equation; the coefficients of , , and  are , , 

and , and the constant term is . Note that each variable in a linear 

equation occurs to the first power only. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5 

 

Given a linear equation , 

a sequence  of  numbers is called a solution to 

the equation if 

    
that is, if the equation is satisfied when the substitutions 

 are made. A sequence of 

numbers is called a solution to a system of equations if it is a 

solution to every equation in the system. 

 

A system may have no solution at all, or it may have a unique 

solution, or it may have an infinite family of solutions. For instance, 

the system ,  has no solution because the 

sum of two numbers cannot be 2 and 3 simultaneously. A system 

that has no solution is called inconsistent; a system with at least 

one solution is called consistent. 

 

 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5 
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Show that, for arbitrary values of  and , 

    

is a solution to the system 

    

 

Simply substitute these values of , , , and  in each 

equation. 

   

Because both equations are satisfied, it is a solution for all choices 

of  and . 

 

The quantities  and  in this example are called parameters, and 

the set of solutions, described in this way, is said to be given in 

parametric form and is called the general solution to the system. It 

turns out that the solutions to every system of equations (if there 

are solutions) can be given in parametric form (that is, the variables 

, ,  are given in terms of new independent variables , , 

etc.). 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5 

When only two variables are involved, the solutions to systems of 

linear equations can be described geometrically because the graph 

of a linear equation  is a straight line if  and 

are not both zero. Moreover, a point  with coordinates 

and  lies on the line if and only if —that is when 

,  is a solution to the equation. Hence the solutions to 

a system of linear equations correspond to the points  that 

lie on all the lines in question. 

In particular, if the system consists of just one equation, there 

must be infinitely many solutions because there are infinitely many 

points on a line. If the system has two equations, there are three 

possibilities for the corresponding straight lines: 

• The lines intersect at a single point. Then the system has a 
unique solution corresponding to that point. 

• The lines are parallel (and distinct) and so do not intersect. 

Then the system has no solution. 

• The lines are identical. Then the system has infinitely many 
solutions—one for each point on the (common) line. 

With three variables, the graph of an equation 

 can be shown to be a plane and so again 

provides a “picture” of the set of solutions. However, this graphical 

method has its limitations: When more than three variables are 

involved, no physical image of the graphs (called hyperplanes) is 

possible. It is necessary to turn to a more “algebraic” method of 

solution. 
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Before describing the method, we introduce a concept that 

simplifies the computations involved. Consider the following system 

    

of three equations in four variables. The array of numbers 

    

occurring in the system is called the augmented matrix of the 

system. Each row of the matrix consists of the coefficients of the 

variables (in order) from the corresponding equation, together with 

the constant term. For clarity, the constants are separated by a 

vertical line. The augmented matrix is just a different way of 

describing the system of equations. The array of coefficients of the 

variables 

    

is called the coefficient matrix of the system and 

 is called the constant matrix of the system. 

Elementary Operations 

The algebraic method for solving systems of linear equations is 

described as follows. Two such systems are said to be equivalent if 
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they have the same set of solutions. A system is solved by writing 

a series of systems, one after the other, each equivalent to the 

previous system. Each of these systems has the same set of 

solutions as the original one; the aim is to end up with a system 

that is easy to solve. Each system in the series is obtained from the 

preceding system by a simple manipulation chosen so that it does 

not change the set of solutions. 

As an illustration, we solve the system , 

 in this manner. At each stage, the corresponding 

augmented matrix is displayed. The original system is 

    

First, subtract twice the first equation from the second. The 

resulting system is 

    

which is equivalent to the original. At this stage we obtain 

 by multiplying the second equation by . The result is 

the equivalent system 

    

Finally, we subtract twice the second equation from the first to 

get another equivalent system. 

    

Now this system is easy to solve! And because it is equivalent to 

the original system, it provides the solution to that system. 

Observe that, at each stage, a certain operation is performed 
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on the system (and thus on the augmented matrix) to produce an 

equivalent system. 

Definition 1.1 Elementary Operations 

The following operations, called elementary operations, 

can routinely be performed on systems of linear equations 

to produce equivalent systems. 

1. Interchange two equations. 

2.  Multiply one equation by a nonzero number. 

3. Add a multiple of one equation to a different 

equation. 

 

Theorem 1.1.1 

Suppose that a sequence of elementary operations is 

performed on a system of linear equations. Then the 

resulting system has the same set of solutions as the 

original, so the two systems are equivalent. 

Elementary operations performed on a system of equations produce 

corresponding manipulations of the rows of the augmented matrix. 

Thus, multiplying a row of a matrix by a number  means 
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multiplying every entry of the row by . Adding one row to another 

row means adding each entry of that row to the corresponding 

entry of the other row. Subtracting two rows is done similarly. Note 

that we regard two rows as equal when corresponding entries are 

the same. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5 

In hand calculations (and in computer programs) we manipulate the 

rows of the augmented matrix rather than the equations. For this 

reason we restate these elementary operations for matrices. 

Definition 1.2 Elementary Row Operations 

The following are called elementary row operations on a 

matrix. 

1. Interchange two rows. 

2. Multiply one row by a nonzero number. 

3. Add a multiple of one row to a different row. 

 

In the illustration above, a series of such operations led to a matrix 

of the form 
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where the asterisks represent arbitrary numbers. In the case of 

three equations in three variables, the goal is to produce a matrix of 

the form 

    

This does not always happen, as we will see in the next section. 

Here is an example in which it does happen. 

Example 1.1.3 Find all solutions to the following system of equations. 

    

 

Solution: 

The augmented matrix of the original system is 

    

To create a  in the upper left corner we could multiply row 1 
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through by . However, the  can be obtained without introducing 

fractions by subtracting row 2 from row 1. The result is 

    

The upper left  is now used to “clean up” the first column, that is 

create zeros in the other positions in that column. First subtract 

times row 1 from row 2 to obtain 

    

Next subtract  times row 1 from row 3. The result is 

    

This completes the work on column 1. We now use the  in the 

second position of the second row to clean up the second column 

by subtracting row 2 from row 1 and then adding row 2 to row 3. For 

convenience, both row operations are done in one step. The result 

is 

    

Note that the last two manipulations did not affect the first 

column (the second row has a zero there), so our previous effort 

there has not been undermined. Finally we clean up the third 

column. Begin by multiplying row 3 by  to obtain 
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Now subtract  times row 3 from row 1, and then add  times row 

3 to row 2 to get 

    

The corresponding equations are , , and 

, which give the (unique) solution. 

 

1.2 Gaussian elimination 

The algebraic method introduced in the preceding section can be 

summarized as follows: Given a system of linear equations, use a 

sequence of elementary row operations to carry the augmented 

matrix to a “nice” matrix (meaning that the corresponding equations 

are easy to solve). In Example 1.1.3, this nice matrix took the form 

    

The following definitions identify the nice matrices that arise in 

this process. 
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Definition 1.3 row-echelon form (reduced) 

 

A matrix is said to be in row-echelon form (and will be 

called a row-echelon matrix if it satisfies the following 

three conditions: 

1. All zero rows (consisting entirely of zeros) are at 

the bottom. 

2. The first nonzero entry from the left in each 

nonzero row is a , called the leading  for that row. 

3. Each leading  is to the right of all leading s in the 

rows above it. 

A row-echelon matrix is said to be in reduced row-
echelon form (and will be called a reduced row-echelon 
matrix if, in addition, it satisfies the following condition: 

4.     Each leading  is the only nonzero entry in its 

column. 

 

 

An interactive or media element has been excluded 

from this version of the text. You can view it online 
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here: 

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5 

 

The row-echelon matrices have a “staircase” form, as indicated by 

the following example (the asterisks indicate arbitrary numbers). 

    

The leading s proceed “down and to the right” through the matrix. 

Entries above and to the right of the leading s are arbitrary, but 
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all entries below and to the left of them are zero. Hence, a matrix 

in row-echelon form is in reduced form if, in addition, the entries 

directly above each leading  are all zero. Note that a matrix in 

row-echelon form can, with a few more row operations, be carried 

to reduced form (use row operations to create zeros above each 

leading one in succession, beginning from the right). 

The importance of row-echelon matrices comes from the 

following theorem. 

Theorem 1.2.1 

Every matrix can be brought to (reduced) row-echelon 

form by a sequence of elementary row operations. 

In fact we can give a step-by-step procedure for actually finding a 

row-echelon matrix. Observe that while there are many sequences 

of row operations that will bring a matrix to row-echelon form, the 

one we use is systematic and is easy to program on a computer. 

Note that the algorithm deals with matrices in general, possibly with 

columns of zeros. 

Gaussian Algorithm 

Step 1. If the matrix consists entirely of zeros, stop—it is 

already in row-echelon form. 

Step 2. Otherwise, find the first column from the left 
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containing a nonzero entry (call it ), and move the row 

containing that entry to the top position. 

Step 3. Now multiply the new top row by  to create a 

leading . 

Step 4. By subtracting multiples of that row from rows 

below it, make each entry below the leading  zero. This 

completes the first row, and all further row operations are 

carried out on the remaining rows. 

Step 5. Repeat steps 1–4 on the matrix consisting of the 

remaining rows. 

The process stops when either no rows remain at step 5 

or the remaining rows consist entirely of zeros. 

 

Observe that the gaussian algorithm is recursive: When the first 

leading  has been obtained, the procedure is repeated on the 

remaining rows of the matrix. This makes the algorithm easy to use 

on a computer. Note that the solution to Example 1.1.3 did not use 

the gaussian algorithm as written because the first leading  was not 

created by dividing row 1 by . The reason for this is that it avoids 

fractions. However, the general pattern is clear: Create the leading 

s from left to right, using each of them in turn to create zeros below 

it. Here is one example. 

Example 1.2.2 Solve the following system of equations. 
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Solution: 

The corresponding augmented matrix is 

    

Create the first leading one by interchanging rows 1 and 2 

    

Now subtract  times row 1 from row 2, and subtract  times row 

1 from row 3. The result is 

    

Now subtract row 2 from row 3 to obtain 

    

This means that the following reduced system of equations 
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is equivalent to the original system. In other words, the two have 

the same solutions. But this last system clearly has no solution 

(the last equation requires that ,  and  satisfy 

, and no such numbers exist). Hence the 

original system has no solution. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5 

To solve a linear system, the augmented matrix is carried to reduced 

row-echelon form, and the variables corresponding to the leading 

ones are called leading variables. Because the matrix is in reduced 

form, each leading variable occurs in exactly one equation, so that 

equation can be solved to give a formula for the leading variable 

in terms of the nonleading variables. It is customary to call the 

nonleading variables “free” variables, and to label them by new 

variables , called parameters. Every choice of these 

parameters leads to a solution to the system, and every solution 

arises in this way. This procedure works in general, and has come to 

be called 

Gaussian Elimination 

System of Linear Equations  |  19

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5#pb-interactive-content


To solve a system of linear equations proceed as follows: 

1.  Carry the augmented matrix\index{augmented 

matrix}\index{matrix!augmented matrix} to a 

reduced row-echelon matrix using elementary row 

operations. 

2.  If a row  occurs, the 

system is inconsistent. 

3.  Otherwise, assign the nonleading variables (if any) 

as parameters, and use the equations corresponding 

to the reduced row-echelon matrix to solve for the 

leading variables in terms of the parameters. 

 

There is a variant of this procedure, wherein the augmented matrix 

is carried only to row-echelon form. The nonleading variables are 

assigned as parameters as before. Then the last equation 

(corresponding to the row-echelon form) is used to solve for the 

last leading variable in terms of the parameters. This last leading 

variable is then substituted into all the preceding equations. Then, 

the second last equation yields the second last leading variable, 

which is also substituted back. The process continues to give the 

general solution. This procedure is called back-substitution. This 

procedure can be shown to be numerically more efficient and so is 

important when solving very large systems. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 
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Rank 

It can be proven that the reduced row-echelon form of a matrix 

is uniquely determined by . That is, no matter which series of row 

operations is used to carry  to a reduced row-echelon matrix, 

the result will always be the same matrix. By contrast, this is not 

true for row-echelon matrices: Different series of row operations 

can carry the same matrix  to different row-echelon matrices. 

Indeed, the matrix  can be carried (by one 

row operation) to the row-echelon matrix , and 

then by another row operation to the (reduced) row-echelon matrix 

. However, it is true that the number  of leading 

1s must be the same in each of these row-echelon matrices (this will 

be proved later). Hence, the number  depends only on  and not 

on the way in which  is carried to row-echelon form. 

Definition 1.4 Rank of a matrix 

The rank of matrix  is the number of leading s in any 

row-echelon matrix to which  can be carried by row 

operations. 
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Example 1.2.5 

Compute the rank of . 

Solution: 

The reduction of  to row-echelon form is 

   

Because this row-echelon matrix has two leading s, rank 

. 

Suppose that rank , where  is a matrix with  rows 

and  columns. Then  because the leading s lie in different 

rows, and  because the leading s lie in different columns. 

Moreover, the rank has a useful application to equations. Recall that 

a system of linear equations is called consistent if it has at least one 

solution. 

Theorem 1.2.2 
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Suppose a system of  equations in  variables is 

consistent, and that the rank of the augmented matrix is . 

1. The set of solutions involves exactly 

parameters. 

2. If , the system has infinitely many solutions. 

3. If , the system has a unique solution. 

Proof: 

The fact that the rank of the augmented matrix is  means there 

are exactly  leading variables, and hence exactly 

nonleading variables. These nonleading variables are all assigned 

as parameters in the gaussian algorithm, so the set of solutions 

involves exactly  parameters. Hence if , there is at 

least one parameter, and so infinitely many solutions. If , 

there are no parameters and so a unique solution. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5 

 

Theorem 1.2.2 shows that, for any system of linear equations, 

exactly three possibilities exist: 

1. No solution. This occurs when a row 

occurs in the row-echelon form. This is the case where the 

system is inconsistent. 
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2.  Unique solution. This occurs when every variable is a leading 

variable. 

3.  Infinitely many solutions. This occurs when the system is 

consistent and there is at least one nonleading variable, so at 

least one parameter is involved. 

 

Many important problems involve linear inequalities rather than 

linear equations For example, a condition on the variables  and 

might take the form of an inequality  rather than an 

equality . There is a technique (called the simplex 
algorithm) for finding solutions to a system of such inequalities that 

maximizes a function of the form  where  and 

are fixed constants. 

1.3 Homogeneous equations 

A system of equations in the variables  is called 

homogeneous if all the constant terms are zero—that is, if each 

equation of the system has the form 

    
Clearly  is a solution to such a 

system; it is called the trivial solution. Any solution in which at least 

one variable has a nonzero value is called a nontrivial solution. 
Our chief goal in this section is to give a useful condition for a 

homogeneous system to have nontrivial solutions. The following 

example is instructive. 

Example 1.3.1 
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Show that the following homogeneous system has 

nontrivial solutions. 

    

Solution: 

The reduction of the augmented matrix to reduced row-echelon 

form is outlined below. 

   

The leading variables are , , and , so  is assigned as 

a parameter—say . Then the general solution is 

, , , . Hence, taking  (say), we get a 

nontrivial solution: , , , . 

The existence of a nontrivial solution in Example 1.3.1 is ensured 

by the presence of a parameter in the solution. This is due to the fact 

that there is a nonleading variable (  in this case). But there must 
be a nonleading variable here because there are four variables and 

only three equations (and hence at most three leading variables). 

This discussion generalizes to a proof of the following fundamental 

theorem. 
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Theorem 1.3.1 

If a homogeneous system of linear equations has more 

variables than equations, then it has a nontrivial solution (in 

fact, infinitely many). 

Proof: 

Suppose there are  equations in  variables where 

m" title="Rendered by QuickLaTeX.com" height="11" width="49" 

style="vertical-align: 0px;">, and let  denote the reduced row-

echelon form of the augmented matrix. If there are  leading 

variables, there are  nonleading variables, and so 

parameters. Hence, it suffices to show that . But 

because  has  leading 1s and  rows, and  by 

hypothesis. So , which gives . 

Note that the converse of Theorem 1.3.1 is not true: if a 

homogeneous system has nontrivial solutions, it need not have 

more variables than equations (the system , 

 has nontrivial solutions but .) 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5 

Theorem 1.3.1 is very useful in applications. The next example 

provides an illustration from geometry. 
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Example 1.3.2 

We call the graph of an equation 

 a conic if 
the numbers , , and  are not all zero. Show that there is 

at least one conic through any five points in the plane that 

are not all on a line. 

Solution: 

Let the coordinates of the five points be , , 

, , and . The graph of 

 passes through 

 if 

    

This gives five equations, one for each , linear in the six variables 

, , , , , and . Hence, there is a nontrivial solution by Theorem 

1.1.3. If , the five points all lie on the line with 

equation , contrary to assumption. Hence, 

one of , ,  is nonzero. 

Linear Combinations and Basic Solutions 

As for rows, two columns are regarded as equal if they have the 

same number of entries and corresponding entries are the same. 

Let  and  be columns with the same number of entries. As for 

elementary row operations, their sum  is obtained by adding 

corresponding entries and, if  is a number, the scalar product 
is defined by multiplying each entry of  by . More precisely: 
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A sum of scalar multiples of several columns is called a linear 
combination of these columns. For example,  is a linear 

combination of  and  for any choice of numbers  and . 

Example 1.3.3 

If  and 

then . 

 

Example 1.3.4 
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Let 

and . If 

and , 

determine whether  and  are linear combinations of , 

 and . 

 

Solution: 

For , we must determine whether numbers , , and  exist such 

that , that is, whether 

   

Equating corresponding entries gives a system of linear equations 

, , and  for , , and 

. By gaussian elimination, the solution is , 

, and  where  is a parameter. Taking 

, we see that  is a linear combination of , , and . 

Turning to , we again look for , , and  such that 

; that is, 
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leading to equations , , and 

 for real numbers , , and . But this time there is 

no solution as the reader can verify, so  is not a linear combination 

of , , and . 

Our interest in linear combinations comes from the fact that they 

provide one of the best ways to describe the general solution of a 

homogeneous system of linear equations. When 

solving such a system with  variables , write the 

variables as a column matrix: . The trivial solution is 

denoted . As an illustration, the general solution in 

Example 1.3.1 is , , , and , where 

 is a parameter, and we would now express this by 

saying that the general solution is , where  is 

arbitrary. 

Now let  and  be two solutions to a homogeneous system 

with  variables. Then any linear combination  of these 
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solutions turns out to be again a solution to the system. More 

generally: 
   

In fact, suppose that a typical equation in the system is 

, and suppose that 

,  are solutions. Then 

 and 

. 

Hence  is also a solution because 

   

A similar argument shows that Statement 1.1 is true for linear 

combinations of more than two solutions. 

The remarkable thing is that every solution to a homogeneous 

system is a linear combination of certain particular solutions and, 
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in fact, these solutions are easily computed using the gaussian 

algorithm. Here is an example. 

Example 1.3.5 

Solve the homogeneous system with coefficient matrix 

    

Solution: 

The reduction of the augmented matrix to reduced form is 

   

so the solutions are , , , and 

 by gaussian elimination. Hence we can write the general 

solution  in the matrix form 
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Here  and  are particular solutions 

determined by the gaussian algorithm. 

The solutions  and  in Example 1.3.5 are denoted as follows: 

Definition 1.5 Basic Solutions 

The gaussian algorithm systematically produces solutions 

to any homogeneous linear system, called basic solutions, 

one for every parameter. 

Moreover, the algorithm gives a routine way to express every 
solution as a linear combination of basic solutions as in Example 

1.3.5, where the general solution  becomes 
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Hence by introducing a new parameter  we can multiply 

the original basic solution  by 5 and so eliminate fractions. 

For this reason: 

Convention: 

Any nonzero scalar multiple of a basic solution will still be 

called a basic solution. 

 

In the same way, the gaussian algorithm produces basic solutions 

to every homogeneous system, one for each parameter (there are 

no basic solutions if the system has only the trivial solution). 

Moreover every solution is given by the algorithm as a linear 

combination of 

these basic solutions (as in Example 1.3.5). If  has rank , Theorem 

1.2.2 shows that there are exactly  parameters, and so 

basic solutions. This proves: 

Theorem 1.3.2 
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Let  be an  matrix of rank , and consider the 

homogeneous system in  variables with  as coefficient 

matrix. Then: 

1. The system has exactly  basic solutions, one 

for each parameter. 

2. Every solution is a linear combination of these 

basic solutions. 

Example 1.3.6 

Find basic solutions of the homogeneous system with 

coefficient matrix , and express every solution as a linear 

combination of the basic solutions, where 

    

Solution: 

The reduction of the augmented matrix to reduced row-echelon 

form is 
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so the general solution is , , 

, , and  where , , and  are 

parameters. In matrix form this is 

   

Hence basic solutions are 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5 

 

System of Linear Equations  |  37

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5#pb-interactive-content


2. Matrix Algebra 

Introduction 

In the study of systems of linear equations in Chapter 1, we found 

it convenient to manipulate the augmented matrix of the system. 

Our aim was to reduce it to row-echelon form (using elementary 

row operations) and hence to write down all solutions to the system. 

In the present chapter we consider matrices for their own sake. 

While some of the motivation comes from linear equations, it turns 

out that matrices can be multiplied and added and so form an 

algebraic system somewhat analogous to the real numbers. This 

“matrix algebra” is useful in ways that are quite different from the 

study of linear equations. For example, the geometrical 

transformations obtained by rotating the euclidean plane about the 

origin can be viewed as multiplications by certain  matrices. 

These “matrix transformations” are an important tool in geometry 

and, in turn, the geometry provides a “picture” of the matrices. 

Furthermore, matrix algebra has many other applications, some of 

which will be explored in this chapter. This subject is quite old and 

was first studied systematically in 1858 by Arthur Cayley. 

Arthur Cayley (1821-1895) showed his mathematical 

talent early and graduated from Cambridge in 1842 as 

senior wrangler. With no employment in mathematics in 

view, he took legal training and worked as a lawyer while 

continuing to do mathematics, publishing nearly 300 

papers in fourteen years. Finally, in 1863, he accepted 

the Sadlerian professorship in Cambridge and remained 
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there for the rest of his life, valued for his administrative 

and teaching skills as well as for his scholarship. His 

mathematical achievements were of the first rank. In 

addition to originating matrix theory and the theory of 

determinants, he did fundamental work in group theory, 

in higher-dimensional geometry, and in the theory of 

invariants. He was one of the most prolific 

mathematicians of all time and produced 966 papers. 

2.1 Matrix Addition, Scalar Multiplication, 
and Transposition 

A rectangular array of numbers is called a matrix (the plural is 

matrices), and the numbers are called the entries of the matrix. 

Matrices are usually denoted by uppercase letters: , , , and so 

on. Hence, 

   

are matrices. Clearly matrices come in various shapes depending 

on the number of rows and columns. For example, the matrix 

shown has  rows and  columns. In general, a matrix with  rows 

and  columns is referred to as an  matrix or as having 

size . Thus matrices , , and  above have sizes 
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, , and , respectively. A matrix of size  is called a 

row matrix, whereas one of size  is called a column matrix. 

Matrices of size  for some  are called square matrices. 

Each entry of a matrix is identified by the row and column in 

which it lies. The rows are numbered from the top down, and the 

columns are numbered from left to right. Then the -entry of 

a matrix is the number lying simultaneously in row  and column . 

For example, 

    

A special notation is commonly used for the entries of a matrix. If 

 is an  matrix, and if the -entry of  is denoted as 

, then  is displayed as follows: 

    

This is usually denoted simply as . Thus  is the 

entry in row  and column  of . For example, a  matrix in 

this notation is written 
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It is worth pointing out a convention regarding rows and columns: 

Rows are mentioned before columns. For example: 

• If a matrix has size , it has  rows and  columns. 

• If we speak of the -entry of a matrix, it lies in row  and 

column . 

• If an entry is denoted , the first subscript  refers to the 

row and the second subscript  to the column in which 

lies. 

Two points  and  in the plane are equal if and 

only if they have the same coordinates, that is  and 

. Similarly, two matrices  and  are called equal
(written ) if and only if: 

1. They have the same size. 

2. Corresponding entries are equal. 

If the entries of  and  are written in the form , 

, described earlier, then the second condition takes the 

following form: 

   

Example 2.1.1 

Given ,  and 

discuss the possibility that , , . 
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Solution: 

 is impossible because  and  are of different sizes: 

 is  whereas  is . Similarly,  is impossible. 

But  is possible provided that corresponding entries are 

equal: 

means , , , and . 

An interactive or media element has 
been excluded from this version of the 
text. You can view it online here: 

https://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66 

Matrix Addition 

Definition 2.1 Matrix Addition 

If  and  are matrices of the same size, their sum 
 is the matrix formed by adding corresponding 

entries. 

If  and , this takes the form 

    

Note that addition isnot defined for matrices of different sizes. 
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Example 2.1.2 

If 

and , 

compute . 

Solution: 

   

Example 2.1.3 

Find , , and  if 

. 

Solution: 

Add the matrices on the left side to obtain 

    

Because corresponding entries must be equal, this gives three 
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equations: , , and . Solving 

these yields , , . 

 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

If , , and  are any matrices of the same size, then 

(commutative law)  

In fact, if  and , then the -entries of 

 and  are, respectively,  and 

. Since these are equal for all  and , we get 

   

The associative law is verified similarly. 

The  matrix in which every entry is zero is called the 

 zero matrix and is denoted as  (or  if it is important 

to emphasize the size). Hence, 

    
holds for all  matrices . The negative of an 

matrix  (written ) is defined to be the  matrix 

obtained by multiplying each entry of  by . If , this 

becomes . Hence, 
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holds for all matrices  where, of course,  is the zero matrix of 

the same size as . 

A closely related notion is that of subtracting matrices. If  and 

 are two  matrices, their difference  is defined 

by 

    

Note that if  and , then 

    

is the  matrix formed by subtracting corresponding 

entries. 

Example 2.1.4 

Let , 

, . 

Compute , , and . 

Solution: 
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Example 2.1.5 

Solve 

where  is a matrix. 

We solve a numerical equation  by subtracting the 

number  from both sides to obtain . This also works 

for matrices. To solve 

simply subtract the matrix 
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from both sides to get 

   

The reader should verify that this matrix  does indeed satisfy 

the original equation. 

The solution in Example 2.1.5 solves the single matrix equation 

 directly via matrix subtraction: . 

This ability to work with matrices as entities lies at the heart of 

matrix algebra. 

It is important to note that the sizes of matrices involved in some 

calculations are often determined by the context. For example, if 

    

then  and  must be the same size (so that  makes 

sense), and that size must be  (so that the sum is ). For 

simplicity we shall often omit reference to such facts when they are 

clear from the context. 

Scalar Multiplication 

In gaussian elimination, multiplying a row of a matrix by a number 

means multiplying every entry of that row by . 

 

Definition 2.2 Matrix Scalar Multiplication 
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More generally, if  is any matrix and  is any number, 

the scalar multiple  is the matrix obtained from  by 

multiplying each entry of  by . 

The term scalar arises here because the set of numbers from which 

the entries are drawn is usually referred to as the set of scalars. We 

have been using real numbers as scalars, but we could equally well 

have been using complex numbers. 

 

Example 2.1.6 

If 

and 

compute , , and . 

Solution: 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

If  is any matrix, note that  is the same size as  for all 

scalars . We also have 
    
because the zero matrix has every entry zero. In other words, 

 if either  or . The converse of this 

statement is also true, as Example 2.1.7 shows. 

Example 2.1.7 
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If , show that either  or . 

Solution: 

Write  so that  means  for all 

and . If , there is nothing to do. If , then 

implies that  for all  and ; that is, . 

For future reference, the basic properties of matrix addition and 

scalar multiplication are listed in Theorem 2.1.1. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

Theorem 2.1.1 

Let , , and  denote arbitrary  matrices 

where  and  are fixed. Let  and  denote arbitrary 

real numbers. Then 

1.  . 

2. . 
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3.  There is an  matrix , such that 

 for each . 

4. For each  there is an  matrix, , such 

that . 

5.  . 

6.  . 

7.  . 

8.  . 

Proof: 

Properties 1–4 were given previously. To check Property 5, let 

 and  denote matrices of the same size. Then 

, as before, so the -entry of 

 is 

    

But this is just the -entry of , and it follows that 

. The other Properties can be similarly 

verified; the details are left to the reader. 

The Properties in Theorem 2.1.1 enable us to do calculations with 

matrices in much the same way that 

numerical calculations are carried out. To begin, Property 2 implies 

that the sum 

    

is the same no matter how it is formed and so is written as 

. Similarly, the sum 

    
is independent of how it is formed; for example, it equals both 

 and . 

Furthermore, property 1 ensures that, for example, 

    
In other words, the order in which the matrices are added does 
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not matter. A similar remark applies to sums of five (or more) 

matrices. 

Properties 5 and 6 in Theorem 2.1.1  are called distributive 
laws for scalar multiplication, and they extend to sums of more than 

two terms. For example, 

    

    

Similar observations hold for more than three summands. These 

facts, together with properties 7 and 8, enable us to simplify 

expressions by collecting like terms, expanding, and taking common 

factors in exactly the same way that algebraic expressions involving 

variables and real numbers are manipulated. The following example 

illustrates these techniques. 

Example 2.1.8 

Simplify 

where  and  are all matrices of the same size. 

Solution: 

The reduction proceeds as though , , and  were variables. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

Transpose of a Matrix 

Many results about a matrix  involve the rows of , and the 

corresponding result for columns is derived in an analogous way, 

essentially by replacing the word row by the word column 
throughout. The following definition is made with such applications 

in mind. 

 

Matrix Algebra  |  53

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content
https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content


Definition  2.3 Transpose of a Matrix 

If  is an  matrix, the transpose of , written 

, is the  matrix whose rows are just the 

columns of  in the same order. 

In other words, the first row of  is the first column of  (that is 

it consists of the entries of column 1 in order). Similarly the second 

row of  is the second column of , and so on. 

 

Example 2.1.9 

Write down the transpose of each of the following 

matrices. 

   

Solution: 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

If  is a matrix, write . Then  is the th 

element of the th row of  and so is the th element of the th 

column of . This means , so the definition of  can 

be stated as follows: 

(2.1)   

This is useful in verifying the following properties of 

transposition. 

 

Theorem 2.1.2 
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Let  and  denote matrices of the same size, and let 

denote a scalar. 

1. If  is an  matrix, then  is an 

matrix. 

2. . 

3.  . 

4. . 

Proof: 

Property 1 is part of the definition of , and Property 2 follows 

from (2.1). As to Property 3: If , then , so (2.1) 

gives 

    

Finally, if , then  where 

 Then (2.1) gives Property 4: 

   

There is another useful way to think of transposition. If 

 is an  matrix, the elements 

 are called the main diagonal of . Hence the 

main diagonal extends down and to the right from the upper left 

corner of the matrix ; it is shaded in the following examples: 
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Thus forming the transpose of a matrix  can be viewed as 

“flipping”  about its main diagonal, or as “rotating”  through 

 about the line containing the main diagonal. This makes 

Property 2 in Theorem~?? transparent. 

Example 2.1.10 

Solve for  if 

. 

Solution: 

Using Theorem 2.1.2, the left side of the equation is 

   

Hence the equation becomes 

    

Thus 

, so 

finally 

. 

Note that Example 2.1.10 can also be solved by first transposing 
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both sides, then solving for , and so obtaining . 

The reader should do this. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

The matrix  in Example 2.1.9 has the property 

that . Such matrices are important; a matrix  is called 

symmetric if . A symmetric matrix  is necessarily 

square (if  is , then  is , so  forces 

). The name comes from the fact that these matrices exhibit 

a symmetry about the main diagonal. That is, entries that are 

directly across the main diagonal from each other are equal. 

For example,  is symmetric when , 

, and . 

Example 2.1.11 

If  and  are symmetric  matrices, show that 

 is symmetric. 

Solution: 

58  |  Matrix Algebra

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content
https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content


We have  and , so, by Theorem 2.1.2, we 

have . Hence  is 

symmetric. 

 

 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

Example 2.1.12 

Suppose a square matrix  satisfies . Show 

that necessarily . 

Solution: 

If we iterate the given equation, Theorem 2.1.2 gives 

    

Subtracting  from both sides gives , so 

. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

2.2 Matrix-Vector 
Multiplication 
Up to now we have used matrices to solve systems of linear 
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equations by manipulating the rows of the augmented matrix. In this 

section we introduce a different way of describing linear systems 

that makes more use of the coefficient matrix of the system and 

leads to a useful way of “multiplying” matrices. 

Vectors 

It is a well-known fact in analytic geometry that two points in the 

plane with coordinates  and  are equal if and only 

if  and . Moreover, a similar condition applies to 

points  in space. We extend this idea as follows. 

An ordered sequence  of real numbers is 

called an ordered –tuple. The word “ordered” here reflects our 

insistence that two ordered -tuples are equal if and only if 

corresponding entries are the same. In other words, 

   

Thus the ordered -tuples and -tuples are just the ordered pairs 

and triples familiar from geometry. 

 

Definition 2.4 The set  of ordered -tuples of real numbers 

Let  denote the set of all real numbers. The set of all 

ordered -tuples from  has a special notation: 
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There are two commonly used ways to denote the -tuples in 

: As rows  or columns ; 

the notation we use depends on the context. In any event they are 

called vectors or –vectors and will be denoted using bold type 

such as x or v. For example, an  matrix  will be written as 

a row of columns: 

   

 

If  and  are two -vectors in , it is clear that their matrix 

sum  is also in  as is the scalar multiple  for any 

real number . We express this observation by saying that  is 

closed under addition and scalar multiplication. In particular, all 

the basic properties in Theorem 2.1.1 are true of these -vectors. 

These properties are fundamental and will be used frequently below 

without comment. As for matrices in general, the  zero 

matrix is called the zero –vector in  and, if  is an -vector, 

the -vector  is called the negative . 

Of course, we have already encountered these -vectors in 

Section 1.3 as the solutions to systems of linear equations with 

 variables. In particular we defined the notion of a linear 

combination of vectors and showed that a linear combination of 

solutions to a homogeneous system is again a solution. Clearly, a 
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linear combination of -vectors in  is again in , a fact that 

we will be using. 

Matrix-Vector Multiplication 

Given a system of linear equations, the left sides of the equations 

depend only on the coefficient matrix  and the column  of 

variables, and not on the constants. This observation leads to a 

fundamental idea in linear algebra: We view the left sides of the 

equations as the “product”  of the matrix  and the vector . 

This simple change of perspective leads to a completely new way of 

viewing linear systems—one that is very useful and will occupy our 

attention throughout this book. 

To motivate the definition of the “product” , consider first the 

following system of two equations in three variables: 

(2.2)   

and let , , 

denote the coefficient matrix, the variable matrix, and the constant 

matrix, respectively. The system (2.2) can be expressed as a single 

vector equation 

    

which in turn can be written as follows: 

    

Now observe that the vectors appearing on the left side are just 

the columns 
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of the coefficient matrix . Hence the system (2.2) takes the form 

(2.3)   
This shows that the system (2.2) has a solution if and only if the 

constant matrix  is a linear combination of the columns of , and 

that in this case the entries of the solution are the coefficients , 

, and  in this linear combination. 

Moreover, this holds in general. If  is any  matrix, it 

is often convenient to view  as a row of columns. That is, if 

 are the columns of , we write 

    

and say that  is given in terms 

of its columns. 

Now consider any system of linear equations with 

coefficient matrix . If  is the constant matrix of the system, and 

if 

is the matrix of variables then, exactly as above, the system can be 

written as a single vector equation 

(2.4)   

Example 2.2.1 

Write the system 
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in the form given in (2.4). 

Solution: 

   

As mentioned above, we view the left side of (2.4) as the product of 

the matrix  and the vector . This basic idea is formalized in the 

following definition: 

 

Definition 2.5 Matrix-Vector Multiplication 

Let  be an 

matrix, written in terms of its columns . If 
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is any n-vector, the product  is defined to be the 

-vector given by: 

    

In other words, if  is  and  is an -vector, the product 

 is the linear combination of the columns of  where the 

coefficients are the entries of  (in order). 

Note that if  is an  matrix, the product  is only 

defined if  is an -vector and then the vector  is an -vector 

because this is true of each column  of . But in this case the 

system of linear equations with coefficient matrix  and constant 

vector  takes the form of asingle matrix equation 
    
The following theorem combines Definition 2.5 and equation (2.4) 

and summarizes the above discussion. Recall that a system of linear 

equations is said to be consistent if it has at least one solution. 

Theorem 2.2.1 

1. Every system of linear equations has the form 

 where  is the coefficient matrix,  is the 

constant matrix, and  is the matrix of variables. 

2. The system  is consistent if and only if 

is a linear combination of the columns of . 

3. If  are the columns of  and if 
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, then  is a solution to the linear 

system  if and only if  are 

a solution of the vector equation 

    

 

A system of linear equations in the form  as in (1) of 

Theorem 2.2.1 is said to be written in matrix form. This is a useful 

way to view linear systems as we shall see. 

Theorem 2.2.1 transforms the problem of solving the linear system 

 into the problem of expressing the constant matrix 

as a linear combination of the columns of the coefficient matrix 

. Such a change in perspective is very useful because one approach 

or the other may be better in a particular situation; the importance 

of the theorem is that there is a choice. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 
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Example 2.2.2 

If  and 

, compute . 

Solution: 

By Definition 2.5: 

. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

Example 2.2.3 
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Given columns , , , and  in , write 

 in the form  where  is a 

matrix and  is a vector. 

 

Solution: 

Here the column of coefficients is 

Hence Definition 2.5 gives 

    
where  is the matrix with , 

, , and  as its columns. 

 

Example 2.2.4 

Let  be the 

matrix given in terms of its columns 

, , , and 
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. 

In each case below, either express  as a linear 

combination of , , , and , or show that it is not 

such a linear combination. Explain what your answer means 

for the corresponding system  of linear 

equations. 

1. 

2. 

 

Solution: 

By Theorem 2.2.1,  is a linear combination of , , , and 

 if and only if the system  is consistent (that is, it has 

a solution). So in each case we carry the augmented matrix  of 

the system  to reduced form. 

1.  Here 

, so 

the system  has no solution in this case. Hence  is 

\textit{not} a linear combination of , , , and . 

2.  Now 
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, so 

the system  is consistent. 

 

Thus  is a linear combination of , , , and  in this 

case. In fact the general solution is , 

, , and  where  and  are 

arbitrary parameters. Hence 

for any choice of  and . If we take  and , this 

becomes , whereas taking  gives 

. 

Example 2.2.5 

Taking  to be the zero matrix, we have  for all 

vectors  by Definition 2.5 because every column of the 

zero matrix is zero. Similarly,  for all matrices 

because every entry of the zero vector is zero. 

 

Example 2.2.6 
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If , show that  for any 

vector  in . 

Solution: 

If  then Definition 2.5 gives 

   

The matrix  in Example 2.2.6 is called the  identity 
matrix, and we will encounter such matrices again in future. Before 

proceeding, we develop some algebraic properties of matrix-vector 

multiplication that are used extensively throughout linear algebra. 

Theorem 2.2.2 

Let  and  be  matrices, and let  and  be 

-vectors in . Then: 

1. . 
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2.  for all scalars . 

3. . 

 

Proof: 

We prove (3); the other verifications are similar and are left as 

exercises. Let  and 

 be given in terms of their 

columns. Since adding two matrices is the same as adding their 

columns, we have 

    

If we write 

Definition 2.5 gives 

   

Theorem 2.2.2 allows matrix-vector computations to be carried 

out much as in ordinary arithmetic. For example, for any 

matrices  and  and any -vectors  and , we have: 
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We will use such manipulations throughout the book, often 

without mention. 

Linear Equations 

Theorem 2.2.2 also gives a useful way to describe the solutions to a 

system 
    
of linear equations. There is a related system 
    
called the associated homogeneous system, obtained from the 

original system  by replacing all the constants by zeros. 

Suppose  is a solution to  and  is a solution to 

 (that is  and ). Then  is 

another solution to . Indeed, Theorem 2.2.2 gives 

    

This observation has a useful converse. 

Theorem 2.2.3 

Suppose  is any particular solution to the system 

 of linear equations. Then every solution  to 

 has the form 
    

for some solution  of the associated homogeneous 

system . 

 

Proof: 
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Suppose  is also a solution to , so that 

. Write . Then  and, using 

Theorem 2.2.2, we compute 

    

Hence  is a solution to the associated homogeneous system 

. 

Note that gaussian elimination provides one such representation. 

Example 2.2.7 

Express every solution to the following system as the 

sum of a specific solution plus a solution to the associated 

homogeneous system. 

    

Solution: 

Gaussian elimination gives , 

, , and  where  and  are 

arbitrary parameters. Hence the general solution can be written 
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Thus 

is a particular solution (where ), and 

 gives all solutions to the 

associated homogeneous system. (To see why this is so, carry out 

the gaussian elimination again but with all the constants set equal 

to zero.) 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 
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The following useful result is included with no proof. 

Theorem 2.2.4 

Let  be a system of equations with augmented 

matrix . Write . 

1.  is either  or . 

2. The system is consistent if and only if 

. 

3. The system is inconsistent if and only if 

. 

 

The Dot Product 

Definition 2.5 is not always the easiest way to compute a matrix-

vector product  because it requires that the columns of  be 

explicitly identified. There is another way to find such a product 

which uses the matrix  as a whole with no reference to its 

columns, and hence is useful in practice. The method depends on 

the following notion. 

 

Definition 2.6 Dot Product in 
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If  and  are two 

ordered -tuples, their  is defined to be 

the number 

    

obtained by multiplying corresponding entries and 

adding the results. 

To see how this relates to matrix products, let  denote a 

matrix and let  be a -vector. Writing 

   

in the notation of Section 2.1, we compute 
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From this we see that each entry of  is the dot product of the 

corresponding row of  with . This computation goes through in 

general, and we record the result in Theorem 2.2.5. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

Theorem 2.2.5 Dot Product Rule 
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Let  be an  matrix and let  be an -vector. 

Then each entry of the vector  is the dot product of the 

corresponding row of  with . 

This result is used extensively throughout linear algebra. 

If  is  and  is an -vector, the computation of  by 

the dot product rule is simpler than using Definition 2.5 because the 

computation can be carried out directly with no explicit reference 

to the columns of  (as in Definition 2.5. The first entry of  is 

the dot product of row 1 of  with . In hand calculations this is 

computed by going across row one of , going down the column 

, multiplying corresponding entries, and adding the results. The 

other entries of  are computed in the same way using the other 

rows of  with the column . 

 

In general, compute entry 

of  as follows (see the 

diagram): 

Go across row  of  and 

down column , multiply 

corresponding entries, and add 

the results. 

As an illustration, we rework Example 2.2.2 using the dot product 

rule instead of Definition 2.5. 

 

 

Example 2.2.8 
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If 

and , compute . 

Solution: 

The entries of  are the dot products of the rows of  with : 

   

Of course, this agrees with the outcome in Example 2.2.2. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 
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Example 2.2.9 

Write the following system of linear equations in the form 

. 

    

Solution: 

Write , 

, and . Then the dot product rule 

gives , so the 

entries of  are the left sides of the equations in the linear 

system. Hence the system becomes  because matrices are 

equal if and only corresponding entries are equal. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

Example 2.2.10 

If  is the zero  matrix, then  for each 

-vector . 

Solution: 

For each , entry  of  is the dot product of row  of  with 

, and this is zero because row  of  consists of zeros. 

 

Definition 2.7 The Identity Matrix 

For each  2" title="Rendered by QuickLaTeX.com" 

height="12" width="42" style="vertical-align: 0px;">, the 

  is the  matrix with 1s on 

the main diagonal (upper left to lower right), and zeros 

elsewhere. 
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The first few identity matrices are 

   

In Example 2.2.6 we showed that  for each -vector 

using Definition 2.5. The following result shows that this holds in 

general, and is the reason for the name. 

Example 2.2.11 

For each  we have  for each -vector 

 in . 

Solution: 

We verify the case . Given the -vector 

the dot product rule gives 
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In general,  because entry  of  is the dot product 

of row  of  with , and row  of  has  in position  and zeros 

elsewhere. 

Example 2.2.12 

Let  be any 

matrix with columns . If  denotes 

column  of the  identity matrix , then 

 for each . 

Solution: 

Write 

where , but  for all . Then Theorem 2.2.5 gives 

   

Example 2.2.12will be referred to later; for now we use it to prove: 
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Theorem 2.2.6 

Let  and  be  matrices. If  for all 

 in , then . 

Proof: 

Write  and 

 and in terms of their columns. 

It is enough to show that  holds for all . But we are 

assuming that , which gives  by Example 

2.2.12. 

We have introduced matrix-vector multiplication as a new way 

to think about systems of linear equations. But it has several other 

uses as well. It turns out that many geometric operations can be 

described using matrix multiplication, and we now investigate how 

this happens. As a bonus, this description provides a geometric 

“picture” of a matrix by revealing the effect on a vector when it is 

multiplied by . This “geometric view” of matrices is a fundamental 

tool in understanding them. 

2.3 Matrix Multiplication 

In Section 2.2 matrix-vector products were introduced. If  is an 

 matrix, the product  was defined for any -column 

 in  as follows: If  where the 
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 are the columns of , and if , 

Definition 2.5 reads 

(2.5)   
This was motivated as a way of describing systems of linear 

equations with coefficient matrix . Indeed every such system has 

the form  where  is the column of constants. 

In this section we extend this matrix-vector multiplication to a 

way of multiplying matrices in general, and then investigate matrix 

algebra for its own sake. While it shares several properties of 

ordinary arithmetic, it will soon become clear that matrix arithmetic 

is different in a number of ways. 

Definition 2.9 Matrix Multiplication 

Let  be an  matrix, let  be an  matrix, 

and write  where  is 

column  of  for each . The product matrix  is the 

 matrix defined as follows: 

   

 

Thus the product matrix  is given in terms of its columns 

: Column  of  is the matrix-vector 

product  of  and the corresponding column  of . Note 

that each such product  makes sense by Definition 2.5 because 

 is  and each  is in  (since  has  rows). Note also 
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that if  is a column matrix, this definition reduces to Definition 2.5 

for matrix-vector multiplication. 

Given matrices  and , Definition 2.9 and the above 

computation give 

   

for all  in . We record this for reference. 

Theorem 2.3.1 

Let  be an  matrix and let  be an 

matrix. Then the product matrix  is  and 

satisfies 

    

Here is an example of how to compute the product  of two 

matrices using Definition 2.9. 

Example 2.3.1 

Compute  if 

and 
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. 

Solution: 

The columns of  are 

 and , so Definition 2.5 gives 

   

Hence Definition 2.9 above gives 

. 

 

While Definition 2.9 is important, there is another way to 

compute the matrix product  that gives a way to calculate each 

individual entry. In Section 2.2 we defined the dot product of two 

-tuples to be the sum of the products of corresponding entries. 

We went on to show (Theorem 2.2.5) that if  is an  matrix 

and  is an -vector, then entry  of the product  is the dot 

product of row  of  with . This observation was called the 

“dot product rule” for matrix-vector multiplication, and the next 

theorem shows that it extends to matrix multiplication in general. 
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Theorem 2.3.2 Dot Product Rule 

Let  and  be matrices of sizes  and , 

respectively. Then the -entry of  is the dot 

product of row  of  with column  of . 

Proof: 

Write  in terms of its columns. 

Then  is column  of  for each . Hence the -entry 

of  is entry  of , which is the dot product of row  of 

with . This proves the theorem. 

Thus to compute the -entry of , proceed as follows (see 

the diagram): 

Go across row  of , and down column  of , multiply 

corresponding entries, and add the results. 

Note that this requires that the rows of  must be the same length 

as the columns of . The following rule is useful for remembering 

this and for deciding the size of the product matrix . 

Compatibility Rule 
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Let  and  denote matrices. If  is  and  is 

, the product  can be formed if and only if . In this case 

the size of the product matrix  is , and we say that 

is defined, or that  and  are compatible for multiplication. 

The diagram provides a useful mnemonic for remembering this. We 

adopt the following convention: 

Whenever a product of matrices is written, it is tacitly assumed 

that the sizes of the factors are such that the product is defined. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

To illustrate the dot product rule, we recompute the matrix product 

in Example 2.3.1. 
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Example 2.3.3 

Compute  if 

and . 

Solution: 

Here  is  and  is , so the product matrix  is 

defined and will be of size . Theorem 2.3.2 gives each entry 

of  as the dot product of the corresponding row of  with the 

corresponding column of  that is, 

   

Of course, this agrees with Example 2.3.1. 

Example 2.3.4 

Compute the – and -entries of  where 
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Then compute . 

Solution: 

The -entry of  is the dot product of row 1 of  and 

column 3 of  (highlighted in the following display), computed by 

multiplying corresponding entries and adding the results. 

Similarly, the -entry of  involves row 2 of  and column 

4 of . 

Since  is  and  is , the product is . 
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An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66 

Example 2.3.5 

If  and , compute 

, , , and  when they are defined. 

Solution: 

Here,  is a  matrix and  is a  matrix, so  and 

 are not defined. However, the compatibility rule reads 

    

so both  and  can be formed and these are  and 

 matrices, respectively. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

Unlike numerical multiplication, matrix products  and 

need not be equal. In fact they need not even be the same size, 

as Example 2.3.5 shows. It turns out to be rare that 

(although it is by no means impossible), and  and  are said to 

commute when this happens. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

Example 2.3.6 

Let  and . 

Compute , , . 

Solution: 

, so 

 can occur even if . Next, 

    

Hence , even though  and  are the same 

size. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

Example 2.3.7 

If  is any matrix, then  and , and 

where  denotes an identity matrix of a size so that the 

multiplications are defined. 

Solution: 

These both follow from the dot product rule as the reader should 

verify. For a more formal proof, write 

 where  is column  of . Then 

Definition 2.9 and Example 2.2.1 give 

   

If  denotes column  of , then  for each  by 

Example 2.2.12. Hence Definition 2.9 gives: 
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The following theorem collects several results about matrix 

multiplication that are used everywhere in linear algebra. 

Theorem 2.3.3 

Assume that  is any scalar, and that , , and  are 

matrices of sizes such that the indicated matrix products 

are defined. Then: 

1.  and  where  denotes an identity 

matrix. 

2. . 

3. . 

4. . 

5. . 

6. . 

Proof: 

Condition (1) is Example 2.3.7; we prove (2), (4), and (6) and leave 

(3) and (5) as exercises. 

1. If  in terms of its columns, then 

 by Definition 2.9, so 
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4. We know (Theorem 2.2.) that 

holds for every column . If we write 

 in terms of its columns, we get 

   

6. As in Section 2.1, write  and , so that 

 and  where  and 
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for all  and . If  denotes the -entry of , then 

is the dot product of row  of  with column  of . Hence 

   

But this is the dot product of row  of  with column  of ; 

that is, the -entry of ; that is, the -entry of 

. This proves (6). 

Property 2 in Theorem 2.3.3 is called the associative law of matrix 

multiplication. It asserts that the equation 

holds for all matrices (if the products are defined). Hence this 

product is the same no matter how it is formed, and so is written 

simply as . This extends: The product  of four 

matrices can be formed several ways—for example, 

, , and —but the associative law implies 

that they are all equal and so are written as . A similar 

remark applies in general: Matrix products can be written 

unambiguously with no parentheses. 

However, a note of caution about matrix multiplication must be 

taken: The fact that  and  need not be equal means that 

the order of the factors is important in a product of matrices. For 

example  and  may not be equal. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 
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Warning: 

If the order of the factors in a product of matrices is changed, the 

product matrix may change (or may not be defined). Ignoring this 

warning is a source of many errors by students of linear algebra!} 

Properties 3 and 4 in Theorem 2.3.3 are called distributive laws. 

They assert that  and 

 hold whenever the sums and 

products are defined. These rules extend to more than two terms 

and, together with Property 5, ensure that many manipulations 

familiar from ordinary algebra extend to matrices. For example 

   

Note again that the warning is in effect: For example 

 need not equal . These rules make 

possible a lot of simplification of matrix expressions. 

 

Example 2.3.8 

Simplify the expression 

. 

Solution: 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

Example 2.3.9 and Example 2.3.10 below show how we can use 

the properties in Theorem 2.3.2to deduce other facts about matrix 

multiplication. Matrices  and  are said to commute if 

. 

 

Example 2.3.9 

Suppose that , , and  are  matrices and that 

both  and  commute with ; that is,  and 

. Show that  commutes with . 

102  |  Matrix Algebra

https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content
https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content


Solution: 

Showing that  commutes with  means verifying that 

. The computation uses the associative law 

several times, as well as the given facts that  and 

. 

   

Example 2.3.10 

Show that  if and only if 

. 

Solution: 

The following always holds: 

(2.6)  

Hence if , then 

 follows. Conversely, if this 

last equation holds, then equation (2.6 becomes 

    

This gives , and  follows. 

In Section 2.2 we saw (in Theorem 2.2.1 ) that every system of 

linear equations has the form 

    

where  is the coefficient matrix,  is the column of variables, 

and  is the constant matrix. Thus the system of linear equations 

becomes a single matrix equation. Matrix multiplication can yield 

information about such a system. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

Example 2.3.11 

Consider a system  of linear equations where 

 is an  matrix. Assume that a matrix  exists 

such that . If the system  has a 

solution, show that this solution must be . Give a 

condition guaranteeing that  is in fact a solution. 

Solution: 

Suppose that  is any solution to the system, so that 

. Multiply both sides of this matrix equation by  to obtain, 

successively, 

   

This shows that if the system has a solution , then that solution 

must be , as required. But it does not guarantee that the 

system has a solution. However, if we write , then 
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Thus  will be a solution if the condition  is 

satisfied. 

The ideas in Example 2.3.11 lead to important information about 

matrices; this will be pursued in the next section. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

2.4 Matrix Inverse 

Three basic operations on matrices, addition, multiplication, and 

subtraction, are analogs for matrices of the same operations for 

numbers. In this section we introduce the matrix analog of 

numerical division. 

To begin, consider how a numerical equation  is solved 

when  and  are known numbers. If , there is no solution 

(unless ). But if , we can multiply both sides by the 

inverse  to obtain the solution . Of course 

multiplying by  is just dividing by , and the property of 

that makes this work is that . Moreover, we saw in 

Section~?? that the role that  plays in arithmetic is played in matrix 

algebra by the identity matrix . This suggests the following 

definition. 
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Definition 2.11 Matrix Inverses 

If  is a square matrix, a matrix  is called an inverse of 

 if and only if 
    

A matrix  that has an inverse is called an 

Note that only square matrices have inverses. Even though it is 

plausible that nonsquare matrices  and  could exist such that 

 and , where  is  and  is 

, we claim that this forces . Indeed, if 

there exists a nonzero column  such that  (by Theorem 

1.3.1), so , a 

contradiction. Hence . Similarly, the condition 

implies that . Hence  so  is square.} 

 

Example 2.4.1 

Show that 

is an inverse of . 

Solution: 
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Compute  and . 

   

Hence , so  is indeed an inverse of . 

 

Example 2.4.2 

Show that 

has no inverse. 

Solution: 

Let 

denote an arbitrary  matrix. Then 

   

so  has a row of zeros. Hence  cannot equal  for any 

. 

The argument in Example 2.4.2 shows that no zero matrix has an 

inverse. But Example 2.4.2 also shows that, unlike arithmetic, it is 

possible for a nonzero matrix to have no inverse. However, if a matrix 

does have an inverse, it has only one. 
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Theorem 2.4.1 

If  and  are both inverses of , then . 

Proof: 

Since  and  are both inverses of , we have 

. Hence 

    

If  is an invertible matrix, the (unique) inverse of  is denoted 

. Hence  (when it exists) is a square matrix of the same 

size as  with the property that 

    

These equations characterize  in the following sense: 

Inverse Criterion: If somehow a matrix  can be found such that 

 and , then  is invertible and  is the inverse 

of ; in symbols, .} 

This is a way to verify that the inverse of a matrix exists. Example 

2.3.3 and Example 2.3.4 offer illustrations. 

Example 2.4.3 

If , show that  and so find 

. 

Solution: 
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We have 

, and so 

   

Hence , as asserted. This can be written as 

, so it shows that  is the inverse of . That 

is, . 

The next example presents a useful formula for the inverse of 

a  matrix  when it exists. To state it, we 

define the   and the   

of the matrix  as follows: 

   

 

Example 2.4.4 

If , show that  has an inverse if and 

only if , and in this case 
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Solution: 

For convenience, write  and 

. Then  as 

the reader can verify. So if , scalar multiplication by  gives 

    

Hence  is invertible and . Thus it remains only to 

show that if  exists, then . 

We prove this by showing that assuming  leads to a 

contradiction. In fact, if , then , so left 

multiplication by  gives ; that is, 

, so . But this implies that , , , and  are 

all zero, so , contrary to the assumption that  exists. 

As an illustration, if 

then . Hence  is 

invertible and , as the 

reader is invited to verify. 

The determinant and adjugate will be defined in Chapter 3 for any 

square matrix, and the conclusions in Example 2.4.4 will be proved 

in full generality. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

Inverse and Linear systems 

Matrix inverses can be used to solve certain systems of linear 

equations. Recall that a  of linear equations can be written 

as a  matrix equation 

    

where  and  are known and  is to be determined. If  is 

invertible, we multiply each side of the equation on the left by 

to get 

    

This gives the solution to the system of equations (the reader 

should verify that  really does satisfy ). 

Furthermore, the argument shows that if  is solution, then 

necessarily , so the solution is unique. Of course the 

technique works only when the coefficient matrix  has an inverse. 

This proves Theorem 2.4.2. 
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Theorem 2.4.2 

Suppose a system of  equations in  variables is written 

in matrix form as 

    

If the  coefficient matrix  is invertible, the 

system has the unique solution 

    

 

Example 2.4.5 

Use Example 2.4.4 to solve the system 

. 

Solution: 

In matrix form this is  where , 

, and . Then 

, so  is invertible and 
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by Example 2.4.4. Thus Theorem 2.4.2 gives 

   

so the solution is  and . 

An interactive or media element has 
been excluded from this version of the 
text. You can view it online here: 

https://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

An inversion method 

If a matrix  is  and invertible, it is desirable to have an 
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efficient technique for finding the inverse. The following procedure 

will be justified in Section 2.5. 

Matrix Inversion Algorithm 

If  is an invertible (square) matrix, there exists a 

sequence of elementary row operations that carry  to the 

identity matrix  of the same size, written . This 

same series of row operations carries  to ; that is, 

. The algorithm can be summarized as follows: 

    

where the row operations on  and  are carried out 

simultaneously. 

 

Example 2.4.6 

Use the inversion algorithm to find the inverse of the 

matrix 
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Solution: 

Apply elementary row operations to the double matrix 

    

so as to carry  to . First interchange rows 1 and 2. 

    

Next subtract  times row 1 from row 2, and subtract row 1 from 

row 3. 

    

Continue to reduced row-echelon form. 
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Hence , as is readily verified. 

Given any  matrix , Theorem 1.2.1 shows that  can be 

carried by elementary row operations to a matrix  in reduced 

row-echelon form. If , the matrix  is invertible (this will 

be proved in the next section), so the algorithm produces . If 

, then  has a row of zeros (it is square), so no system of 

linear equations  can have a unique solution. But then  is 

not invertible by Theorem 2.4.2. Hence, the algorithm is effective in 

the sense conveyed in Theorem 2.4.3. 

 

Theorem 2.4.3 

If  is an  matrix, either  can be reduced to 

by elementary row operations or it cannot. In the 

first case, the algorithm produces ; in the second case, 

 does not exist. 
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An interactive or media element has 
been excluded from this version of the 
text. You can view it online here: 

https://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

Properties of inverses 

The following properties of an invertible matrix are used 

everywhere. 

Example 2.4.7: Cancellation Laws 

Let  be an invertible matrix. Show that: 

1. If , then . 
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2. If , then . 

Solution: 

Given the equation , left multiply both sides by 

 to obtain . Thus , that is 

. This proves (1) and the proof of (2) is left to the reader. 

Properties (1) and (2) in Example 2.4.7 are described by saying that 

an invertible matrix can be “left cancelled” and “right cancelled”, 

respectively. Note however that “mixed” cancellation does not hold 

in general: If  is invertible and , then  and  may 

 be equal, even if both are . Here is a specific example: 

    

Sometimes the inverse of a matrix is given by a formula. Example 

2.4.4 is one illustration; Example 2.4.8 and Example 2.4.9 provide two 

more. The idea is the : If a matrix  can 

be found such that , then  is invertible and 

. 

Example 2.4.8 

If  is an invertible matrix, show that the transpose 

is also invertible. Show further that the inverse of  is 

just the transpose of ; in symbols, 

. 

Solution: 
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 exists (by assumption). Its transpose  is the 

candidate proposed for the inverse of . Using the inverse 

criterion, we test it as follows: 

    

Hence  is indeed the inverse of ; that is, 

. 

 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

 

Example 2.4.9 

If  and  are invertible  matrices, show that 

their product  is also invertible and 

. 

Solution: 

We are given a candidate for the inverse of , namely 

. We test it as follows: 
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Hence  is the inverse of ; in symbols, 

. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

We now collect several basic properties of matrix inverses for 

reference. 

Theorem 2.4.4 

All the following matrices are square matrices of the 

same size. 

1.  is invertible and . 

2. If  is invertible, so is , and . 

3. If  and  are invertible, so is , and 

. 
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4. If  are all invertible, so is their 

product , and 

    

5. If  is invertible, so is  for any , and 

. 

6. If  is invertible and  is a number, then  is 

invertible and . 

7. If  is invertible, so is its transpose , and 

. 

 

Proof: 

1. This is an immediate consequence of the fact that . 

2. The equations  show that  is the 

inverse of ; in symbols, . 

3. This is Example 2.4.9. 

4. Use induction on . If , there is nothing to prove, and 

if , the result is property 3. If  2" title="Rendered by 

QuickLaTeX.com" height="13" width="41" style="vertical-align: 

0px;">, assume inductively that 

. We apply this 

fact together with property 3 as follows: 
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So the proof by induction is complete. 

5. This is property 4 with . 

6. The readers are invited to verify it. 

7. This is Example 2.4.8. 

The reversal of the order of the inverses in properties 3 and 

4 of Theorem 2.4.4 is a consequence of the fact that matrix 

multiplication is not 

commutative. Another manifestation of this comes when matrix 

equations are dealt with. If a matrix equation  is given, 

it can be  by a matrix  to yield . 

Similarly,  gives . However, 

we cannot mix the two: If , it need be the case that 

 even if  is invertible, for example, 

, . 

Part 7 of Theorem 2.4.4 together with the fact that 

gives 

Corollary 2.4.1 
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A square matrix  is invertible if and only if  is 

invertible. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

 

 

Example 2.4.10 

Find  if . 

Solution: 

By Theorem 2.4.2 (2) and Example 2.4.4, we have 
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Hence , so 

by Theorem 2.4.4(7). 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 

The following important theorem collects a number of conditions all 

equivalent to invertibility. It will be referred to frequently below. 

Theorem 2.4.5 Inverse Theorem 

The following conditions are equivalent for an 

matrix : 

1.  is invertible. 

2. The homogeneous system  has only the 

trivial solution . 

3.  can be carried to the identity matrix  by 

elementary row operations. 
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4. The system  has at least one solution  for 

every choice of column . 

5. There exists an  matrix  such that 

. 

 

 

Proof: 

We show that each of these conditions implies the next, and that 

(5) implies (1). 

(1)  (2). If  exists, then  gives 

. 

(2)  (3). Assume that (2) is true. Certainly  by row 

operations where  is a reduced, row-echelon matrix. It suffices 

to show that . Suppose that this is not the case. Then 

has a row of zeros (being square). Now consider the augmented 

matrix  of the system . Then 

 is the reduced form, and 

also has a row of zeros. Since  is square there must be at least one 

nonleading variable, and hence at least one parameter. Hence the 

system  has infinitely many solutions, contrary to (2). So 

 after all. 

(3)  (4). Consider the augmented matrix  of the 

system . Using (3), let  by a sequence of row 

operations. Then these same operations carry 

 for some column . Hence the system 

 has a solution (in fact unique) by gaussian elimination. 

This proves (4). 

(4)  (5). Write  where 
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 are the columns of . For each \newline 

, the system  has a solution  by 

(4), so . Now let  be the 

 matrix with these matrices  as its columns. Then 

Definition 2.9 gives (5): 

   

(5)  (1). Assume that (5) is true so that  for some 

matrix . Then  implies  (because 

). Thus condition (2) holds for 

the matrix  rather than . Hence the argument above that (2) 

(3)  (4)  (5) (with  replaced by ) shows that a matrix 

exists such that . But then 

    

Thus  which, together with , 

shows that  is the inverse of . This proves (1). 

The proof of (5)  (1) in Theorem 2.4.5 shows that if 

for square matrices, then necessarily , and hence that 

and  are inverses of each other. We record this important fact for 

reference. 

Corollary 2.4.1 

If  and  are square matrices such that , 

then also . In particular, both  and  are 

invertible, , and . 

 

Here is a quick way to remember Corollary 2.4.1. If  is a square 

matrix, then 
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1. If  then . 

2. If  then . 

Observe that Corollary 2.4.1 is false if  and  are not square 

matrices. For example, we have 

   

In fact, it can be verified that if  and , 

where  is  and  is , then  and  and 

 are (square) inverses of each other. 

 

An  matrix  has  if and only if (3) of Theorem 

2.4.5 holds. Hence 

Corollary 2.4.2 

An  matrix  is invertible if and only if 

. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66 
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3. Determinants and 
Diagonalization 

Introduction 

With each square matrix we can calculate a number, called the 

determinant of the matrix, which tells us whether or not the matrix 

is invertible. In fact, determinants can be used to give a formula 

for the inverse of a matrix. They also arise in calculating certain 

numbers (called eigenvalues) associated with the matrix. These 

eigenvalues are essential to a technique called diagonalization that 

is used in many applications where it is desired to predict the future 

behaviour of a system. For example, we use it to predict whether a 

species will become extinct. 

Determinants were first studied by Leibnitz in 1696, and the term 

“determinant” was first used in 1801 by Gauss is his Disquisitiones 

Arithmeticae. Determinants are much older than matrices (which 

were introduced by Cayley in 1878) and were used extensively in 

the eighteenth and nineteenth centuries, primarily because of their 

significance in geometry. Although they are somewhat less 

important today, determinants still play a role in the theory and 

application of matrix algebra. 

3.1 The Cofactor Expansion 

In Section 2.4, we defined the determinant of a  matrix 
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as follows: 

    

and showed (in Example 2.4.4) that  has an inverse if and only 

if det . One objective of this chapter is to do this for any 

square matrix A. There is no difficulty for  matrices: If 

, we define  and note that  is 

invertible if and only if . 

If  is  and invertible, we look for a suitable definition 

of  by trying to carry  to the identity matrix by row 

operations. The first column is not zero (  is invertible); suppose 

the (1, 1)-entry  is not zero. Then row operations give 

   

where  and . Since  is 

invertible, one of  and  is nonzero (by Example 2.4.11); suppose 

that . Then the reduction proceeds 

   

where 
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. We define 

(3.1)   
and observe that  because  (is 

invertible). 

 

To motivate the definition below, collect the terms in Equation 3.1 

involving the entries , , and  in row 1 of : 

   

This last expression can be described as follows: To compute the 

determinant of a  matrix , multiply each entry in row 1 

by a sign times the determinant of the  matrix obtained by 

deleting the row and column of that entry, and add the results. The 

signs alternate down row 1, starting with . It is this observation 

that we generalize below. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70 

Example 3.1.1 

   

 

This suggests an inductive method of defining the determinant of 

any square matrix in terms of determinants 
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of matrices one size smaller. The idea is to define determinants of 

 matrices in terms of determinants of  matrices, 

then we do  matrices in terms of  matrices, and so 

on. 

To describe this, we need some terminology. 

Definition 3.1 Cofactors of a matrix 

Assume that determinants of 

matrices have been defined. Given the  matrix , 

let 

  denote the  matrix obtained 

from  A  by deleting row   and column 

Then the –cofactor  is the scalar defined by 

    

Here  is called the sign of the -position. 

 

The sign of a position is clearly  or , and the following 

diagram is useful for remembering it: 
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Note that the signs alternate along each row and column with 

in the upper left corner. 

 

Example 3.1.2 

Find the cofactors of positions , and 

 in the following matrix. 

    

Solution: 

Here  is the matrix 

that remains when row  and column  are deleted. The sign of 

position  is  (this is also the -entry 

in the sign diagram), so the -cofactor is 

   

Turning to position , we find 
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Finally, the -cofactor is 

   

Clearly other cofactors can be found—there are nine in all, one for 

each position in the matrix. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70 

We can now define  for any square matrix 

Definition 3.2 Cofactor expansion of a Matrix 

Assume that determinants of 

matrices have been defined. If  is  define 

   

This is called the cofactor expansion of  along row 

. 

 

It asserts that  can be computed by multiplying the entries 
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of row  by the corresponding 

cofactors, and adding the results. The astonishing thing is that 

 can be computed by taking the cofactor expansion along 

: Simply multiply each entry of that row 

or column by the corresponding cofactor and add. 

 

Theorem 3.1.1 Cofactor Expansion Theorem 

The determinant of an  matrix  can be 

computed by using the cofactor expansion along any row or 

column 

of . That is  can be computed by multiplying each 

entry of the  row or column by the corresponding cofactor 

and adding the results. 

Example 3.1.3 

Compute the determinant of 

. 

 

Solution: 

The cofactor expansion along the first row is as follows: 
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Note that the signs alternate along the row (indeed along 

row or column). Now we compute  by expanding along the 

first column. 

    

The reader is invited to verify that  can be computed by 

expanding along any other row or column. 

The fact that the cofactor expansion along 

 of a matrix  always gives the same 

result (the determinant of ) is remarkable, to say the least. The 

choice of a particular row or column can simplify the calculation. 

Example 3.1.4 

Compute  where 
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. 

Solution: 

The first choice we must make is which row or column to use in 

the 

cofactor expansion. The expansion involves multiplying entries by 

cofactors, so the work is minimized when the row or column 

contains as 

many zero entries as possible. Row  is a best choice in this matrix 

(column  would do as well), and the expansion is 

   

This is the first stage of the calculation, and we have succeeded in 

expressing the determinant of the  matrix 

in terms of the determinant of a  matrix. The next stage 

involves 

this  matrix. Again, we can use any row or column for the 

cofactor 

expansion. The third column is preferred (with two zeros), so 
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This completes the calculation. 

This example shows us that calculating a determinant is simplified 

a great deal when a row or column consists mostly of zeros. (In fact, 

when a row or column consists  of zeros, the determinant 

is zero—simply expand along that row or column.)  We did learn that 

one method of  zeros in a matrix is to apply elementary 

row operations to it. Hence, a natural question to ask is what effect 

such a row operation has on the determinant of the matrix. It turns 

out that the effect is easy to  determine and that elementary 

 operations can be used in the same way. These 

observations lead to a technique for evaluating determinants that 

greatly reduces the labour involved. The necessary information is 

given in Theorem 3.1.2. 

Theorem 3.1.2 

Let  denote an  matrix. 
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1.  If A has a row or column of zeros, . 

2. If two distinct rows (or columns) of  are 

interchanged, the determinant of the resulting matrix 

is . 

3. If a row (or column) of  is multiplied by a constant 

, the determinant of the resulting matrix is 

. 

4. If two distinct rows (or columns) of  are identical, 

. 

5. If a multiple of one row of  is added to a different 

row (or if a multiple of a column is added to a 

different column), the determinant of 

the resulting matrix is . 

The following four examples illustrate how Theorem 3.1.2 is used to 

evaluate determinants. 

Example 3.1.5 

Evaluate  when 

. 

Solution: 

The matrix does have zero entries, so expansion along (say) the 

second row would involve somewhat less work. However, a column 

operation can be 

140  |  Determinants and Diagonalization



used to get a zero in position )—namely, add column 1 to 

column 3. Because this does not change the value of the 

determinant, we obtain 

   

where we expanded the second  matrix along row 2. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70 

Example 3.1.6 

If , 

evaluate  where 

. 
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Solution: 

First take common factors out of rows 2 and 3. 

    

Now subtract the second row from the first and interchange the 

last two rows. 

   

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70 

The determinant of a matrix is a sum of products of its entries. 

In particular, if these entries are polynomials in , then the 

determinant itself is a polynomial in . It is often of interest to 

determine which values of  make the determinant zero, so it is 

very useful if the determinant is given in factored form. Theorem 

3.1.2 can help. 
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Example 3.1.7 

Find the values of  for which , where 

. 

Solution: 

To evaluate , first subtract  times row 1 from rows 2 and 

3. 

   

At this stage we could simply evaluate the determinant (the result 

is ). But then we would have to factor this 

polynomial to find the values of  that make it zero. However, this 

factorization can be obtained directly by first factoring each entry 

in the determinant and taking a common 

factor of  from each row. 
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Hence,  means , that is 

 or . 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70 

 

Example 3.1.8 

If , , and  are given show that 
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Solution: 

Begin by subtracting row 1 from rows 2 and 3, and then expand 

along column 1: 

   

Now  and  are common factors in rows 1 

and 2, respectively, so 
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The matrix in Example 3.1.8 is called a Vandermonde matrix, and 

the formula for its determinant can be generalized to the 

case. 

If  is an  matrix, forming  means multiplying 

row of  by . Applying property 3 of Theorem 3.1.2, we can take 

the common factor  out of each row and so obtain the following 

useful result. 

Theoerem 3.1.3 

If A is an  matrix, then 

for any number . 

The next example displays a type of matrix whose determinant is 

easy to compute. 

Example 3.1.9 

Evaluate  if 

. 

Solution: 
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Expand along row 1 to get . Now 

expand this along the top row to get 

, the product of the main 

diagonal entries. 

A square matrix is called a 

if all entries above the main diagonal are zero (as in Example 3.1.9). 

Similarly, an  is one for which 

all entries below the main diagonal are zero. A 

 is one that is either upper or lower 

triangular. Theorem 3.1.4 gives an easy rule for calculating the 

determinant of any triangular matrix. 

Theorem 3.1.4 

If A is a square triangular matrix, then det A is the 

product of the entries on the main diagonal. 

Theorem 3.1.4 is useful in computer calculations because it is a 

routine matter to carry a matrix to triangular form using row 

operations. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 
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3.2 Determinants and Matrix Inverses 

In this section, several theorems about determinants are derived. 

One consequence of these theorems is that a square matrix  is 

invertible if and only if . Moreover, determinants are 

used to give a formula for  which, in turn, yields a formula 

(called Cramer’s rule) for the 

solution of any system of linear equations with an invertible 

coefficient matrix. 

We begin with a remarkable theorem (due to Cauchy in 1812) 

about the determinant of a product of matrices. 

Theorem 3.2.1 Product Theorem 

If  and  are  matrices, then 

. 

The complexity of matrix multiplication makes the product theorem 

quite unexpected. Here is an example where it reveals an important 

numerical identity. 
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Example 3.2.1 

If  and 

then . 

Hence  gives the identity 

   

 

Theorem 3.2.1 extends easily to 

. In fact, induction gives 

   

for any square matrices  of the same size. In 

particular, if each , we obtain 

    

We can now give the invertibility condition. 

Theorem 3.2.2 

An  matrix  is invertible if and only if 

. When this is the case, 
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Proof: 

If  is invertible, then ; so the product theorem gives 

    

Hence,  and also . 

Conversely, if , we show that  can be carried to 

by elementary row operations (and invoke Theorem 2.4.5). Certainly, 

 can be carried to its reduced row-echelon form , so 

 where the  are elementary matrices 

(Theorem 2.5.1). Hence the product theorem gives 

    
Since  for all elementary matrices , this shows 

. In particular,  has no row of zeros, so 

because  is square and reduced row-echelon. This is what we 

wanted. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70 

Example 3.2.2 
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For which values of  does 

have an inverse? 

Solution: 

Compute  by first adding  times column 1 to column 3 and 

then expanding along row 1. 

   

Hence,  if  or , and  has an inverse 

if  and . 

Example 3.2.3 

If a product  of square matrices is 

invertible, show that each  is invertible. 

Solution: 

We have 

by the product theorem, and  by 

Theorem 3.2.2 because  is invertible. Hence 
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so  for each . This shows that each  is invertible, 

again by Theorem 3.2.2. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70 

Theorem 3.2.3 

If  is any square matrix, . 

Proof: 

Consider first the case of an elementary matrix . If  is of type 

I or II, then ; so certainly . If  is of 

type III, then  is also of type III; so 

by Theorem 3.1.2. Hence,  for every elementary 

matrix . 

Now let  be any square matrix. If  is not invertible, then 

neither is ; so  by Theorem 3.1.2. On 

the other hand, if  is invertible, then , 

where the  are elementary matrices (Theorem 2.5.2). Hence, 

 so the product theorem gives 
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This completes the proof. 

Example 3.2.4 

If  and , calculate 

. 

Solution: 

We use several of the facts just derived. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70 

Example 3.2.5 

A square matrix is called  if 

. What are the possible values of  if 

is orthogonal? 
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Solution: 

If  is orthogonal, we have . Take determinants to 

obtain 

   

Since  is a number, this means . 

Adjugates 

In Section 2.4 we defined the adjugate of a 2  2 matrix 

to be . 

Then we verified that 

and hence that, if , . We are now 

able to define the adjugate of an arbitrary square matrix and to show 

that this formula for the inverse remains valid (when the 

inverse exists). 

Recall that the -cofactor  of a square matrix  is 

a number defined for each position  in the matrix. If  is a 

square matrix, the   is defined to be 

the matrix  whose -entry is the -cofactor of 

. 

Definition 3.3 Adjugate of a Matrix 

The  of , denoted , is the 
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transpose of this cofactor matrix; in symbols, 

    

 

Example 3.2.6 

Compute the adjugate of 

and calculate  and . 

Solution: 

We first find the cofactor matrix. 
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Then the adjugate of  is the transpose of this cofactor matrix. 
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The computation of  gives 

   

and the reader can verify that also . Hence, 

analogy with the  case would indicate that ; this 

is, in fact, the case. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70 

The relationship  holds for any square 

matrix . 
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Theorem 3.2.4 Adjugate formula 

If A is any square matrix, then 

    

In particular, if det A  0, the inverse of A is given by 

    

It is important to note that this theorem is an efficient way to 

find the inverse of the matrix . For example, if  were 

, the calculation of  would require computing 

determinants of  matrices! On the other hand, the matrix 

inversion algorithm would find  with about the same effort 

as finding . Clearly, Theorem 3.2.4 is not a result: 

its virtue is that it gives a formula for  that is useful for 

purposes. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70 
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Example 3.2.7 

Find the -entry of  if 

. 

Solution: 

First compute 

   

Since , 

the -entry of  is the -entry of the matrix 

; that is, it equals 

Example 3.2.8 

If  is , , show that 
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. 

Solution: 

Write ; we must show that 

. We have  by Theorem 3.2.4, so taking 

determinants gives . Hence we are done if 

. Assume ; we must show that 

, that is,  is not invertible. If , this follows from 

; if , it follows because then 

. 

Cramer’s Rule 

Theorem 3.2.4 has a nice application to linear equations. Suppose 

    

is a system of  equations in  variables . Here 

 is the  coefficient matrix and  and  are the columns 

    

of variables and constants, respectively. If , we left 

multiply by  to obtain the solution . When we use 

the adjugate formula, this becomes 
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Hence, the variables  are given by 
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Now the quantity 

 occurring in the 

formula for  looks like the cofactor expansion of the determinant 

of a matrix. The cofactors involved are 

, corresponding to the first 

column of . If  is obtained from  by replacing the first column 

of  by , then  for each  because column 

 is deleted when computing them. Hence, expanding  by 

the first column gives 
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Hence,  and similar results hold for the other 

variables. 

Theorem 3.2.5 Cramer’s Rule 

If  is an invertible  matrix, the solution to the 

system 

    

of  equations in the variables  is given 

by 

   

where, for each ,  is the matrix obtained from  by 

replacing column  by . 
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Example 3.2.9 

Find , given the following system of equations. 

    

Solution: 

Compute the determinants of the coefficient matrix  and the 

matrix  obtained from it by replacing the first column by the 

column of constants. 

    

Hence,  by Cramer’s rule. 

Cramer’s rule is  an efficient way to solve linear systems or 

invert matrices. True, it enabled us to calculate  here without 

computing  or . Although this might seem an advantage, the 

truth of the matter is that, for large systems of equations, the 

number of computations needed to find  the variables by the 

gaussian algorithm is comparable to the number required to find 
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 of the determinants involved in Cramer’s rule. Furthermore, 

the algorithm works when the matrix of the system is not invertible 

and even when the coefficient matrix is not square. Like the 

adjugate formula, then, Cramer’s rule is  a practical numerical 

technique; its virtue is theoretical. 

An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70 

3.3 Diagonalization and Eigenvalues 

The world is filled with examples of systems that evolve in time—the 

weather in a region, the economy of a nation, the diversity of an 

ecosystem, etc. Describing such systems is difficult in general and 

various methods have been developed in special cases. In this 

section we describe one such method, called 

which is one of the most important techniques in linear algebra. A 

very fertile example of this procedure is in modelling the growth 

of the population of an animal species. This has attracted more 

attention in recent years with the ever increasing awareness that 

many species are endangered. To motivate the technique, we begin 

by setting up a simple model of a bird population in which we make 

assumptions about survival and reproduction rates. 
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Example 3.3.1 

Consider the evolution of the population of a species of 

birds. Because the number of males and females are nearly 

equal, we count only females. We assume that each female 

remains a juvenile for one year and then becomes an adult, 

and that only adults have offspring. We make three 

assumptions about reproduction and survival rates: 

1. The number of juvenile females hatched in any year 

is twice the number of adult females alive the year 

before (we say the is 2). 

2. Half of the adult females in any year survive to the 

next year (the  is ). 

3. One-quarter of the juvenile females in any year 

survive into adulthood (the 

 is ). 

If there were 100 adult females and 40 juvenile females 

alive initially, compute the population of females  years 

later. 

Solution: 

Let  and  denote, respectively, the number of adult and 

juvenile females after  years, so that the total female population is 

the sum . Assumption 1 shows that , while 

assumptions 2 and 3 show that . Hence the 

numbers  and  in successive years are related by the following 

equations: 
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If we write 

and 

these equations take the matrix form 

    

Taking  gives , then taking  gives 

, and taking  gives 

. Continuing in this way, we get 

    

Since 

is known, finding the population profile  amounts to computing 

 for all . We will complete this calculation in Example 

3.3.12  after some new techniques have been developed. 

Let  be a fixed  matrix. A sequence 

of column vectors in  is called a 

. Many models regard  as 

a continuous function of the time , and replace our condition 

between  and  with a differential relationship viewed as 

functions of time if  is known and the other  are determined 

(as in Example 3.3.1) by the conditions 

    

These conditions are called a  for the 

vectors . As in Example 3.3.1, they imply that 

    

so finding the columns  amounts to calculating  for 

. 
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Direct computation of the powers  of a square matrix  can 

be time-consuming, so we adopt an indirect method that is 

commonly used. The idea is to first  the matrix , 

that is, to find an invertible matrix  such that 

(3.8)   

This works because the powers  of the diagonal matrix  are 

easy to compute, and Equation (3.8) enables us to compute powers 

 of the matrix  in terms of powers  of . Indeed, we can 

solve Equation (3.8) for  to get . Squaring this 

gives 

    

Using this we can compute  as follows: 

    

Continuing in this way we obtain Theorem 3.3.1 (even if  is not 

diagonal). 

 

Theorem 3.3.1 

If  then  for each 

. 

Hence computing  comes down to finding an invertible matrix 

 as in equation Equation (3.8). To do this it is necessary to first 

compute certain numbers (called eigenvalues) associated with the 

matrix . 
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Eigenvalue and Eigenvectors 

Definition 3.4 Eigenvalues and Eigenvectors of a Matrix 

If  is an  matrix, a number  is called an 

 of  if 

    

In this case,  is called an  of 

corresponding to the eigenvalue , or a –

for short. 

 

Example 3.3.2 

If  and  then 

 so  is an eigenvalue of  with 

corresponding eigenvector . 

 

The matrix  in Example 3.3.2 has another eigenvalue in addition 

to . To find it, we develop a general procedure for 

 matrix . 
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By definition a number  is an eigenvalue of the  matrix 

 if and only if  for some column . This is 

equivalent to asking that the homogeneous system 

    

of linear equations has a nontrivial solution .  By Theorem 

2.4.5 this happens if and only if the matrix  is not invertible 

and this, in turn, holds if and only if the determinant of the 

coefficient matrix is zero: 

    

This last condition prompts the following definition: 

Definition 3.5 Characteristic Polynomial of a Matrix 

If  is an  matrix, the 

  of  is 

defined by 

    

Note that  is indeed a polynomial in the variable , and it 

has degree  when  is an  matrix (this is illustrated in the 

examples below). The above discussion shows that a number  is an 

eigenvalue of  if and only if , that is if and only if  is 

a  of the characteristic polynomial . We record these 

observations in 

Theorem 3.3.2 
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Let  be an  matrix. 

1. The eigenvalues  of  are the roots of the 

characteristic polynomial  of . 

2. The -eigenvectors  are the nonzero solutions to 

the homogeneous system 

    

of linear equations with  as coefficient matrix. 

In practice, solving the equations in part 2 of Theorem 3.3.2 is 

a routine application of gaussian elimination, but finding the 

eigenvalues can be difficult, often requiring computers. For now, the 

examples and exercises will be constructed so that the roots of the 

characteristic polynomials are relatively easy to find 

(usually integers). However, the reader should not be misled by this 

into thinking that eigenvalues are so easily obtained for the matrices 

that occur in practical applications! 

 

 

Example 3.3.3 

Find the characteristic polynomial of the matrix 

discussed in Example 3.3.2, and then find all the 

eigenvalues and their eigenvectors. 
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Solution: 

Since 

we get 

   

Hence, the roots of  are  and , so 

these are the eigenvalues of . Note that  was the 

eigenvalue mentioned in Example 3.3.2, but we have found a new 

one: . 

To find the eigenvectors corresponding to , observe 

that in this case 

   

so the general solution to  is 

where  is an arbitrary real number. Hence, the eigenvectors 

corresponding to  are  where  is 

arbitrary. Similarly,  gives rise to the eigenvectors 

 which includes the observation in Example 

3.3.2. 

Note that a square matrix  has  eigenvectors associated 

with any given eigenvalue . In fact  nonzero solution  of 
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 is an eigenvector. Recall that these solutions 

are all linear combinations of certain basic solutions determined 

by the gaussian algorithm (see Theorem 1.3.2). Observe that any 

nonzero multiple of an eigenvector is again an eigenvector, and such 

multiples are often more convenient. Any set of nonzero multiples 

of the basic solutions of  will be called a set of 

 corresponding to . 

 

Example 3.3.4 

Find the characteristic polynomial, eigenvalues, and basic 

eigenvectors for 

   

so the eigenvalues are , , and . To 

find all eigenvectors for , compute 

   

We want the (nonzero) solutions to . The 

augmented matrix becomes 

    

174  |  Determinants and Diagonalization



using row operations. Hence, the general solution  to 

 is 

where  is arbitrary, so we can use 

as the basic eigenvector corresponding to . As the reader 

can verify, the gaussian algorithm gives basic eigenvectors 

and 

corresponding to  and , respectively. Note that 

to eliminate fractions, we could instead use 

as the basic -eigenvector. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=70 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=70 
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Example 3.3.5 

If  is a square matrix, show that  and  have the 

same characteristic polynomial, and hence the same 

eigenvalues. 

 

Solution: 

We use the fact that . Then 

   

by Theorem 3.2.3. Hence  and  have the same 

roots, and so  and  have the same eigenvalues (by Theorem 

3.3.2). 

The eigenvalues of a matrix need not be distinct. For example, if 

the characteristic polynomial is  so the eigenvalue 1 

occurs twice. Furthermore, eigenvalues are usually not computed 

as the roots of the characteristic polynomial. There are iterative, 

numerical methods that are much more efficient for large matrices. 
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4. Vector Geometry 

4.1 Vectors and Lines 

In this chapter we study the geometry of 3-dimensional space. We 

view a point in 3-space as an arrow from the origin to that point. 

Doing so provides a “picture” of the point that is truly worth a 

thousand words. 

Vectors in 

Introduce a coordinate system in 3-dimensional space in the usual 

way. First, choose a point  called the , then choose three 

mutually perpendicular lines through , called the , , and 

, and establish a number scale on each axis with zero at the 

origin. Given a point  in -space we associate three numbers , 

, and  with , as described in Figure 4.1.1. 
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These numbers are called the  of , and we denote 

the point as , or  to emphasize the label 

. The result is called a  coordinate system for 3-space, 

and the resulting description of 3-space is called 

. 

As in the plane, we introduce vectors by identifying each point 

 with the vector 

 in , represented by the from the origin 

to  as in Figure 4.1.1. Informally, we say that the point  has 

vector , and that vector  has point . In this way 3-space is 

identified with , and this identification will be made throughout 

this chapter, often without comment. In particular, the terms 

“vector” and “point” are interchangeable. The resulting description 
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of 3-space is called . Note that the origin 

is . 

 

Length and direction 

We are going to discuss two fundamental geometric properties of 

vectors in : length and direction. First, if  is a vector with point 

, the  of vector  is defined to be the distance from 

the origin to , that is the length of the arrow representing . The 

following properties of length will be used frequently. 

Theorem 4.1.1 

Let  be a vector. 

1. . 

2.  if and only if 

3.  for all scalars . 

Proof: 
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Let  have point . 

1. In Figure 4.1.2,  is the hypotenuse of the right triangle 

, and so  by Pythagoras’ theorem. 

But  is the hypotenuse of the right triangle , so 

. Now (1) follows by eliminating  and taking 

positive square roots. 

2. If  = 0, then  by (1). Because squares 

of real numbers are nonnegative, it follows that 

, and hence that . The converse is 

because . 

3. We have  so (1) gives 
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Hence , and we are done because 

 for any real number . 

Example 4.1.1 

If 

then . Similarly if 

in 2-space then . 

When we view two nonzero vectors as arrows emanating from the 

origin, it is clear geometrically what we mean by saying that they 

have the same or opposite . This leads to a 

fundamental new description of vectors. 

Theorem 4.1.2 

Let  and  be vectors in . Then 

as matrices if and only if  and  have the same direction 

and the same length. 
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Proof: 

If , they clearly have the same direction and length. 

Conversely, let  and  be vectors with points  and 

 respectively. If  and  have the same length and 

direction then, geometrically,  and  must be the same point. 

Hence , , 

and , that is 

. 

Note that a vector’s length and direction do  depend on the 

choice of coordinate system in . Such descriptions are important 

in applications because physical laws are often stated in terms of 

vectors, and these laws cannot depend on the particular coordinate 

system used to describe the situation. 

Geometric Vectors 

If  and  are distinct points in space, the arrow from  to  has 

length and direction. 
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Hence, 

Definition 4.1 Geometric vectors 

Suppose that  and  are any two points in . In 

Figure 4.1.4 the line segment from  to  is denoted 

and is called the  from  to . 

Point  is called the  of ,  is called the  

and the is denoted . 

Note that if  is any vector in  with point  then  is 

Vector Geometry  |  183



itself a geometric vector where  is the origin. Referring to  as 

a “vector” seems justified by Theorem 4.1.2 because it has a direction 

(from  to ) and a length . However there appears to be 

a problem because two geometric vectors can have the same length 

and direction even if the tips and tails are different. 

For example  and 

in Figure 4.1.5 have the same 

length  and the same 

direction (1 unit left and 2 units 

up) so, by Theorem 4.1.2, they 

are the same vector! The best 

way to understand this 

apparent paradox is to see 

and  as different 

 of the 

same underlying vector 

. Once it is clarified, 

this phenomenon is a great benefit because, thanks to Theorem 

4.1.2, it means that the same geometric vector can be positioned 

anywhere in space; what is important is the length and direction, 

not the location of the tip and tail. This ability to move geometric 

vectors about is very useful. 
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The Parallelogram Law 

We now give an intrinsic 

description of the sum of two 

vectors  and  in , that is 

a description that depends only 

on the lengths and directions of 

 and  and not on the choice 

of coordinate system. Using 

Theorem 4.1.2 we can think of 

these vectors as having a 

common tail . If their tips are  and  respectively, then they 

both lie in a plane  containing , , and , as shown in Figure 

4.1.6. The vectors  and  create a parallelogram in , shaded in 

Figure 4.1.6, called the parallelogram  by  and 

. 

 

If we now choose a coordinate system in the plane  with  as 

origin, then the parallelogram law in the plane shows that their sum 

 is the diagonal of the parallelogram they determine with 

tail . This is an intrinsic description of the sum  because it 

makes no reference to coordinates. This discussion proves: 

The Parallelogram Law 

In the parallelogram determined by two vectors  and 

, the vector  is the diagonal with the same tail as 

and . 
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Because a vector can be positioned with 

its tail at any point, the parallelogram law 

leads to another way to view vector 

addition. In Figure 4.1.7 (a) the sum 

of two vectors  and  is shown as given 

by the parallelogram law. If  is moved so 

its tail coincides with the tip of  (shown in 

(b)) then the sum  is seen as “first 

and then . Similarly, moving the tail of 

to the tip of  shows in (c) that  is 

“first  and then .” This will be referred 

to as the , and it 

gives a graphic illustration of why 

. 

Since  denotes the vector from a 

point  to a point , the tip-to-tail rule 

takes the easily remembered form 

    

for any points , , and . 

 

 

 

One reason for the importance of the 

tip-to-tail rule is that it means two or more 

vectors can be added by placing them tip-

to-tail in sequence. This gives a useful 

“picture” of the sum of several vectors, and 

is illustrated for three vectors in Figure 

4.1.8 where  is viewed as first 

, then , then . 
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There is a simple geometrical way to 

visualize the (matrix) 

of two vectors. If  and  are positioned so 

that they have a common tail  , and if 

and  are their respective tips, then the tip-

to-tail rule gives . Hence 

 is the vector from the tip of 

 to the tip of . Thus both  and 

 appear as diagonals in the 

parallelogram determined by  and  (see 

Figure 4.1.9. 

 

Theorem 4.1.3 

If  and  have a common tail, then  is the 

vector from the tip of  to the tip of . 

One of the most useful applications of vector subtraction is that it 

gives a simple formula for the vector from one point to another, and 

for the distance between the points. 

Theorem 4.1.4 

Vector Geometry  |  187



Let  and  be two 

points. Then: 

1. . 

2. The distance between  and  is 

Can you prove these results? 

Example 4.1.3 

The distance between  and 

is , and the vector 

from  to  is 

. 

The next theorem tells us what happens to the length and direction 

of a scalar multiple of a given vector. 

Scalar Multiple Law 
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If a is a real number and  is a vector then: 

• The length of  is . 

• If , the direction of  is the same as  if 

0" title="Rendered by QuickLaTeX.com" 

height="12" width="42" style="vertical-align: 0px;">; 

opposite to  if 

Proof: 

The first statement is true due to Theorem 4.1.1. 

To prove the second statement, let  denote the origin in 

Let  have point , and choose any plane containing  and . If 

we set up a coordinate system in this plane with  as origin, then 

 so the result follows from the scalar multiple law in the 

plane. 

A vector  is called a  if . Then 

,  , and 

are unit vectors, called the  vectors. 

Example 4.1.4 

If  show that  is the unique unit vector in 

the same direction as 
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Solution: 

The vectors in the same direction as  are the scalar multiples 

where  0" title="Rendered by QuickLaTeX.com" height="12" 

width="42" style="vertical-align: 0px;">. But 

 when  0" title="Rendered by 

QuickLaTeX.com" height="12" width="42" style="vertical-align: 

0px;">, so  is a unit vector if and only if . 

 

Definition 4.2 Parallel vectors in 

Two nonzero vectors are called  if they have 

the same or opposite direction. 

Theorem 4.1.5 

Two nonzero vectors  and  are parallel if and only if 

one is a scalar multiple of the other. 

Example 4.1.5 
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Given points , , 

, and , determine if  and  are parallel. 

Solution: 

By Theorem 4.1.3,  and 

. If 

then , so  and , which is 

impossible. Hence  is  a scalar multiple of , so these 

vectors are not parallel by Theorem 4.1.5. 

 

Lines in Space 

These vector techniques can be used to give a very simple way of 

describing  straight lines in space. In order to do this, we first need 

a way to 

specify the orientation of such a line. 

Definition 4.3 Direction Vector of a Line 

We call a nonzero vector  a direction vector for 

the line if it is parallel to  for some pair of distinct 

points  and  on the line. 
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Figure 4.1.10 

Note that any nonzero scalar multiple of  would also serve as a 

direction vector of the line. 

We use the fact that there is exactly one line that passes through 

a particular point  and has a given direction vector 

. We want to describe this line by giving a condition 

on , , and  that the point  lies on this line. Let 

and   denote the vectors of  and , respectively. 

Then 

    

Hence  lies on the line if 

and only if  is parallel to 

—that is, if and only if 

 for some scalar 

by Theorem 4.1.5. Thus  is the 

vector of a point on the line if 

and only if  for 

some scalar . 

 

 

 

Vector Equation of a line 
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The line parallel to  through the point with vector 

 is given by 

    

In other words, the point  with vector  is on this line 

if and only if a real number t exists such that 

. 

 

In component form the vector equation becomes 

    

Equating components gives a different description of the line. 

Parametric Equations of a line 

The line through  with direction vector 

 is given by 
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In other words, the point  is on this line if 

and only if a real number  exists such that , 

, and . 

Example 4.1.6 

Find the equations of the line through the points 

 and . 

Solution: 

Let 

denote the vector from  to . Then  is parallel to the line (

 and  are on the line), so  serves as a direction vector for 

the line. Using  as the point on the line leads to the parametric 

equations 
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Note that if  is used (rather than ), the equations are 

    

These are different from the preceding equations, but this is 

merely the result of a change of parameter. In fact, . 

Example 4.1.7 

Determine whether the following lines intersect and, if 

so, find the point of intersection. 

    

Solution: 

Suppose  with vector  lies on both lines. Then 

   

where the first (second) equation is because  lies on the first 
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(second) line. Hence the lines intersect if and only if the three 

equations 

    

have a solution. In this case,  and  satisfy all three 

equations, so the lines do intersect and the point of intersection is 

    

using . Of course, this point can also be found from 

 using . 

 

4.2 Projections and Planes 

Suppose a point  and a plane are given and it is desired to find the 

point  that lies in the plane and is closest to , as shown in Figure 

4.2.1. 
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Figure 4.2.1 

 

Clearly, what is required is to 

find the line through  that is 

perpendicular to the plane and 

then to obtain  as the point of 

intersection of this line with the 

plane. Finding the line 

perpendicular to the plane 

requires a way to determine 

when two vectors are 

perpendicular. This can be done 

using the idea of the dot product 

of two vectors. 

 

The Dot Product and Angles 

Definition 4.4 Dot Product in 

Given vectors 

 and 

, their dot product  is a number 

defined 
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Because  is a number, it is sometimes called the scalar 
product of  and 

Example 4.2.1 

If  

and , then 

. 

Theorem 4.2.1 

Let , , and  denote vectors in  (or ). 

1.  is a real number. 

2. . 

3. . 
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4. . 

5.  for all 

scalars . 

6. 

The readers are invited to prove these properties using the 

definition of dot products. 

Example 4.2.2 

Verify that  when , 

, and . 

Solution: 

We apply Theorem 4.2.1 several times: 
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There is an intrinsic description of the dot product of two 

nonzero vectors in . To understand it we require the following 

result from trigonometry. 

Laws of Cosine 

If a triangle has sides , , and , and if  is the interior 

angle opposite  then 
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Figure 4.2.2 

Proof: 

We prove it when is  acute, 

that is ; the 

obtuse case is similar. In Figure 

4.2.2 we have 

and . 

Hence Pythagoras’ theorem 

gives 

   

The law of cosines follows because  for 

any angle . 

 

Note that the law of cosines reduces to Pythagoras’ theorem if 

is a right angle (because ). 

Now let  and  be nonzero vectors positioned with a common 

tail. Then they determine a unique angle  in the range 

    
This angle  will be called the angle between  and . Clearly 

and  are parallel if  is either  or . Note that we do not define 

the angle between  and  if one of these vectors is . 

The next result gives an easy way to compute the angle between 

two nonzero vectors using the dot product. 

Theorem 4.2.2 
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Figure 4.2.4 

Let  and  be nonzero vectors. If  is the angle 

between  and , then 

    

Proof: 

We calculate  in 

two ways. First apply the law of 

cosines to the triangle in Figure 

4.2.4 to obtain: 

   

 

On the other hand, we use Theorem 4.2.1: 

    

Comparing these we see that 

, and the result follows. 

If  and  are nonzero vectors, Theorem 4.2.2 gives an intrinsic 

description of  because , , and the angle  between 

 and  do not depend on the choice of coordinate system. 

Moreover, since  and  are nonzero (  and  are nonzero 

vectors), it gives a formula for the cosine of the angle : 
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Since , this can be used to find . 

 

Example 4.2.3 

Compute the angle between 

  and 

. 

Solution: 

Compute . Now recall 

that  and  are defined so that ( , ) is the 

point on the unit circle determined by the angle  (drawn 

counterclockwise, starting from the positive  axis). In the present 

case, we know that  and that . Because 

, it follows that . 

If  and  are nonzero,  the previous example shows that 

has the same sign as , so 
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0 & \mbox{if and only if } & \theta \mbox{ is acute } (0 \leq 

\theta < \frac{\pi}{2}) \\ \vec{v} \cdot \vec{w} < 0 & \mbox{if 

and only if } & \theta \mbox{ is obtuse } (\frac{\pi}{2} < \theta 

\leq 0) \\ \vec{v} \cdot \vec{w} = 0 & \mbox{if and only if } & 

\theta = \frac{\pi}{2} \end{array} \end{equation*}" title="Rendered 

by QuickLaTeX.com"> 

In this last case, the (nonzero) vectors are perpendicular. The 

following terminology is used in linear algebra: 

Definition 4.5 Orthogonal Vectors in 
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Two vectors  and  are said to be 

\textbf{orthogonal}\index{orthogonal 

vectors}\index{vectors!orthogonal vectors} if  or 

 or the angle between them is . 

Since  if either  or , we have the 

following theorem: 

Theorem 4.2.3 

Two vectors  and  are orthogonal if and only if 

. 

Example 4.2.4 

Show that the points , , and 

 are the vertices of a right triangle. 

Solution: 

The vectors along the sides of the triangle are 
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Evidently , so  and 

are orthogonal vectors. This means sides  and  are 

perpendicular—that is, the angle at  is a right angle. 

Projections 

Planes 

The Cross Product 

 

4.3 More on the Cross Product 
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5. Vector Space [latex size 
="40"]\mathbb{R}^n[/latex] 

5.1 Subspaces and Spanning 

5.2 Independence and Dimension 

5.3 Orthogonality 

5.4 Rank of a Matrix 

5.5 Similarity and Diagonalization 
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