
Programming Fundamentals

Programming Fundamentals

A Modular Structured Approach, 2nd Edition

KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Programming Fundamentals by Authors and Contributors is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License, except where otherwise noted.

Creative Commons Attribution CC-BY License

You are free to:

• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material for any purpose, even commercially.

Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

See https://creativecommons.org/licenses/by/4.0/ for more information.

Contents

Contents xv

About this Book
Kenneth Leroy Busbee and Dave Braunschweig

1

Author Acknowledgements
Kenneth Leroy Busbee and Dave Braunschweig

3

Part I. Introduction to Programming

Systems Development Life Cycle

Kenneth Leroy Busbee

7

Program Design

Kenneth Leroy Busbee

10

Program Quality

Dave Braunschweig

12

Pseudocode

Kenneth Leroy Busbee

14

Flowcharts

Kenneth Leroy Busbee

16

Software Testing

Kenneth Leroy Busbee

26

Integrated Development Environment

Kenneth Leroy Busbee

29

Version Control

Dave Braunschweig

34

Input and Output

Kenneth Leroy Busbee

37

Hello World

Dave Braunschweig

39

C++ Examples

Dave Braunschweig

42

C# Examples

Dave Braunschweig

45

Java Examples

Dave Braunschweig

48

JavaScript Examples

Dave Braunschweig

51

Python Examples

Dave Braunschweig

54

Swift Examples

Dave Braunschweig

56

Practice: Introduction to Programming

Kenneth Leroy Busbee and Dave Braunschweig

58

Part II. Data and Operators

Constants and Variables

Kenneth Leroy Busbee and Dave Braunschweig

63

Identifier Names

Kenneth Leroy Busbee and Dave Braunschweig

66

Data Types

Kenneth Leroy Busbee and Dave Braunschweig

68

Integer Data Type

Kenneth Leroy Busbee and Dave Braunschweig

73

Floating-Point Data Type

Kenneth Leroy Busbee and Dave Braunschweig

76

String Data Type

Kenneth Leroy Busbee and Dave Braunschweig

78

Boolean Data Type

Kenneth Leroy Busbee and Dave Braunschweig

80

Nothing Data Type

Dave Braunschweig

82

Order of Operations

Kenneth Leroy Busbee and Dave Braunschweig

83

Assignment

Kenneth Leroy Busbee

85

Arithmetic Operators

Kenneth Leroy Busbee and Dave Braunschweig

87

Integer Division and Modulus

Kenneth Leroy Busbee

92

Unary Operations

Kenneth Leroy Busbee

94

Lvalue and Rvalue

Kenneth Leroy Busbee

96

Data Type Conversions

Kenneth Leroy Busbee and Dave Braunschweig

98

Input-Process-Output Model

Dave Braunschweig

101

C++ Examples

Dave Braunschweig

105

C# Examples

Dave Braunschweig

109

Java Examples

Dave Braunschweig

113

JavaScript Examples

Dave Braunschweig

117

Python Examples

Dave Braunschweig

122

Swift Examples

Dave Braunschweig

125

Practice: Data and Operators

Kenneth Leroy Busbee and Dave Braunschweig

128

Part III. Functions

Modular Programming

Kenneth Leroy Busbee and Dave Braunschweig

133

Hierarchy or Structure Chart

Kenneth Leroy Busbee

137

Function Examples

Dave Braunschweig

139

Parameters and Arguments

Dave Braunschweig

143

Call by Value vs. Call by Reference

Dave Braunschweig

145

Return Statement

Dave Braunschweig and Kenneth Leroy Busbee

148

Void Data Type

Kenneth Leroy Busbee and Dave Braunschweig

150

Scope

Kenneth Leroy Busbee

151

Programming Style

Kenneth Leroy Busbee and Dave Braunschweig

153

Standard Libraries

Kenneth Leroy Busbee and Dave Braunschweig

156

C++ Examples

Dave Braunschweig

158

C# Examples

Dave Braunschweig

160

Java Examples

Dave Braunschweig

162

JavaScript Examples

Dave Braunschweig

164

Python Examples

Dave Braunschweig

166

Swift Examples

Dave Braunschweig

168

Practice: Functions

Kenneth Leroy Busbee and Dave Braunschweig

170

Part IV. Conditions

Structured Programming

Kenneth Leroy Busbee and Dave Braunschweig

175

Selection Control Structures

Kenneth Leroy Busbee and Dave Braunschweig

177

If Then Else

Kenneth Leroy Busbee

179

Code Blocks

Kenneth Leroy Busbee and Dave Braunschweig

182

Relational Operators

Kenneth Leroy Busbee

185

Assignment vs Equality

Kenneth Leroy Busbee

187

Logical Operators

Kenneth Leroy Busbee and Dave Braunschweig

189

Nested If Then Else

Kenneth Leroy Busbee

193

Case Control Structure

Kenneth Leroy Busbee

195

Condition Examples

Dave Braunschweig

200

C++ Examples

Dave Braunschweig

205

C# Examples

Dave Braunschweig

209

Java Examples

Dave Braunschweig

213

JavaScript Examples

Dave Braunschweig

217

Python Examples

Dave Braunschweig

221

Swift Examples

Dave Braunschweig

224

Practice: Conditions

Kenneth Leroy Busbee

228

Part V. Loops

Iteration Control Structures

Kenneth Leroy Busbee and Dave Braunschweig

233

While Loop

Kenneth Leroy Busbee

235

Do While Loop

Kenneth Leroy Busbee and Dave Braunschweig

240

Flag Concept

Kenneth Leroy Busbee

245

For Loop

Kenneth Leroy Busbee

248

Branching Statements

Kenneth Leroy Busbee

251

Increment and Decrement Operators

Kenneth Leroy Busbee

254

Integer Overflow

Kenneth Leroy Busbee

257

Nested For Loops

Kenneth Leroy Busbee

260

Loop Examples

Dave Braunschweig

262

C++ Examples

Dave Braunschweig

266

C# Examples

Dave Braunschweig

269

Java Examples

Dave Braunschweig

272

JavaScript Examples

Dave Braunschweig

275

Python Examples

Dave Braunschweig

278

Swift Examples

Dave Braunschweig

280

Practice: Loops

Kenneth Leroy Busbee

283

Part VI. Arrays

Arrays and Lists

Kenneth Leroy Busbee and Dave Braunschweig

289

Index Notation

Kenneth Leroy Busbee and Dave Braunschweig

292

Displaying Array Members

Kenneth Leroy Busbee and Dave Braunschweig

294

Arrays and Functions

Kenneth Leroy Busbee and Dave Braunschweig

296

Math Statistics with Arrays

Kenneth Leroy Busbee and Dave Braunschweig

298

Searching Arrays

Kenneth Leroy Busbee and Dave Braunschweig

300

Sorting Arrays

Kenneth Leroy Busbee and Dave Braunschweig

303

Parallel Arrays

Dave Braunschweig

304

Multidimensional Arrays

Kenneth Leroy Busbee

306

Dynamic Arrays

Dave Braunschweig

308

C++ Examples

Dave Braunschweig

309

C# Examples

Dave Braunschweig

313

Java Examples

Dave Braunschweig

317

JavaScript Examples

Dave Braunschweig

321

Python Examples

Dave Braunschweig

325

Swift Examples

Dave Braunschweig

329

Practice: Arrays

Kenneth Leroy Busbee

332

Part VII. Strings and Files

Strings

Kenneth Leroy Busbee and Dave Braunschweig

337

String Functions

Dave Braunschweig

339

String Formatting

Kenneth Leroy Busbee and Dave Braunschweig

341

File Input and Output

Kenneth Leroy Busbee

343

Loading an Array from a Text File

Kenneth Leroy Busbee and Dave Braunschweig

347

C++ Examples

Dave Braunschweig

350

C# Examples

Dave Braunschweig

355

Java Examples

Dave Braunschweig

360

JavaScript Examples

Dave Braunschweig

365

Python Examples

Dave Braunschweig

369

Swift Examples

Dave Braunschweig

373

Practice: Strings and Files

Kenneth Leroy Busbee

378

Part VIII. Object-Oriented Programming

Objects and Classes

Dave Braunschweig

383

Encapsulation

Dave Braunschweig

386

Inheritance and Polymorphism

Dave Braunschweig

388

C++ Examples

Dave Braunschweig

390

C# Examples

Dave Braunschweig

393

Java Examples

Dave Braunschweig

396

JavaScript Examples

Dave Braunschweig

398

Python Examples

Dave Braunschweig

401

Swift Examples

Dave Braunschweig

404

Practice

Kenneth Leroy Busbee

407

Contents

Chapters

• Preface
• Introduction to Programming
• Data and Operators
• Functions
• Conditions
• Loops
• Arrays
• Strings and Files
• Object-Oriented Programming

Contents | xv

About this Book
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

A Note to Readers

Welcome to Programming Fundamentals – A Modular Structured Approach, 2nd Edition!

The original content for this book was created by Kenneth Leroy Busbee and written specifically for
his course based on C++. The goal for this second edition is to make it programming-language
neutral, so that it may serve as an introductory programming textbook for students using any of a
variety of programming languages, including C++, C#, Java, JavaScript, Python, and Swift. Other
languages will be considered upon request.

Programming concepts are introduced generically, with logic demonstrated in pseudocode and
flowchart form, followed by examples for different programming languages. Emphasis is placed on a
modular, structured approach that supports reuse, maintenance, and self-documenting code.

As you begin to review this edition, please keep the audience in mind. If something is missing, think
about whether that concept applies to programming in general or only to certain programming
languages, and whether it is a fundamental, first-semester programming concept or something
better addressed in a more advanced textbook.

You are encouraged to make use of the Comments page at the end of the book whenever you have
suggestions or concerns regarding content or approach. All suggestions will be reviewed and
considered.

Dave Braunschweig

About this Textbook

Programming Fundamentals – A Modular Structured Approach, 2nd Edition is an adaptation of
“Programming Fundamentals – A Modular Structured Approach using C++“, written by Kenneth
Leroy Busbee, a faculty member at Houston Community College in Houston, Texas. The materials
used in the first edition were originally developed by Busbee and others as independent modules
for publication within the Connexions environment. The original source is available
at https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17/.

This second edition, adapted by Dave Braunschweig, expands on the original vision by supporting
multiple programming languages with pseudocode and flowcharts, and includes example code in
C++, C#, Java, JavaScript, Python, and Swift.

Programming fundamentals are often divided into three college courses: Modular/Structured,
Object Oriented and Data Structures. This textbook/collection covers the first of those three
courses.

About this Book | 1

Learning Modules

The learning modules of this textbook were written as standalone modules. Students using a
collection of modules as a textbook will usually view its contents by reading the modules
sequentially as presented by the author of the collection.

However, many readers of these modules may find them as a result of an Internet search. The
textbook design allows the author of a module to create web links to other modules and Internet
locations and designate any necessary prerequisites.

Conceptual Approach

The learning modules of this textbook were, for the most part, written without consideration
of a specific programming language. Concepts are presented generically, with program logic
demonstrated first in pseudocode and flowchart format. Language-specific examples follow the
general overview.

Re-use and Customization

The Creative Commons (CC) Attribution-ShareAlike license applies to all modules in this textbook.
Under this license, any module may be used or modified for any purpose as long as proper
attribution to the original author(s) is maintained and you distribute your contributions under the
same license.

PDF Conversion Problems

There are several known PDF printing problems. A description of the known problems are:

1. When it converts an “Example” the PDF displays the first line of an example properly but
indents the remaining lines of the example. This problem occurs for the printing of a book
(because it prints a PDF) and downloading either a module or a textbook/collection as a PDF.

2. Within C++ there are three operators that do not convert properly into PDF format.

decrement — which is two minus signs

insertion << which is two less than signs

extraction >> which is two greater than signs

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

2 | About this Book

Author Acknowledgements
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

1st Edition Acknowledgements

I wish to acknowledge the many people who have helped me and have encouraged me in this
project.

1. Mr. Abass Alamnehe, who is a fellow faculty member at Houston Community College. He has
encouraged the use of Connexions as an “open source” publishing concept. His comments on
several modules have led directly to the improvement of the materials in this textbook/
collection.

2. The hundreds (most likely a thousand plus) students that I have taken programming courses
that I have taught since 1984. The languages include: COBOL, mainframe IBM assembly, Intel
assembly, Pascal, “C” and “C++”. They have often suggested that I write my own book because
they thought that I was explaining the subject matter better than the author of the textbook
that we were using. Little did my students understand that directly or indirectly they aided in
the improvement of the materials from which I taught as well as improving me as a teacher.

3. To my future students and all those that will use this textbook/collection. They will provide
suggestions for improvement as well as being the thousand eyes identifying the hard to find
typos, etc.

4. My wife, Carol, who supports me in all that I do. She has tolerated the many hours that I have
spent in concentration on developing the modules that comprise this work. Without her
support, this work would not have happened.

Kenneth Leroy Busbee

2nd Edition Acknowledgements

I wish to acknowledge the many people who have helped make this edition possible, including:

• Kenneth Leroy Busbee for his initial vision and willingness to share Programming
Fundamentals – A Modular Structured Approach using C++ as CC-BY, making it possible to
build on his success.

• University of Cape Town for likewise sharing Object-Oriented Programming in Python as CC-
BY-SA and making it possible to build on their efforts.

• Jay Singelmann and Jean Longhurst, who first taught me structured programming.
• Joyce Farrell, whose Programming Logic and Design book I have used for several years and

has no doubt influenced my approach.
• Devin Cook for developing Flowgorithm, releasing it as free software, and graciously allowing

its use to generate most of the pseudocode and flowcharts used in this edition of the book.
• Zoe Wake Hyde and the staff and volunteers at Rebus Community for providing a community

and platform to create and collaborate on open content.
• April Browne, Carol Potaczek, and Maisie Sparks for providing subject matter expertise and

recommendations for content improvement.
• My wife and family for accepting my dedication to open educational resources and loving me

Author Acknowledgements | 3

anyway.

Dave Braunschweig

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Cover Art: Puzzle pieces – CC0 by MsReadIt, downloaded from https://openclipart.org/detail/

231093/puzzle-pieces

4 | Author Acknowledgements

PART I

INTRODUCTION TO PROGRAMMING

Overview

This chapter introduces programming, the software development process, tools and methods used
to develop and test programs. These include integrated development environments (IDEs), version
control, input and output, and a Hello World program in pseudocode and flowchart format. The
programming languages C++, C#, Java, JavaScript, Python, and Swift are introduced with example
code.

Chapter Outline

• Systems Development Life Cycle
• Program Design
• Program Quality
• Pseudocode
• Flowcharts
• Software Testing
• Integrated Development Environment
• Version Control
• Input and Output
• Hello World
• Code Examples

◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.
2. Create pseudocode for a programming problem.
3. Create a flowchart for a programming problem.
4. Perform software testing for a programming problem.
5. List the four categories and give examples of errors that may be encountered when using an

Integrated Development Environment (IDE).
6. Test an Integrated Development Environment using a Hello World program.
7. Modify an existing program to meet given requirements.

Introduction to Programming | 5

Systems Development Life Cycle
KENNETH LEROY BUSBEE

Overview

The Systems Development Life Cycle describes a process for planning, creating, testing, and
deploying an information system.1

Discussion

The Systems Development Life Cycle is the big picture of creating an information system that
handles a major task (referred to as an application). The applications usually consist of many
programs. An example would be the Department of Defense supply system, the customer system
used at your local bank, the repair parts inventory system used by car dealerships. There are
thousands of applications that use an information system created just to help solve a business
problem.

Another example of an information system would be the “101 Computer Games” software you
might buy at any of several retail stores. This is an entertainment application, that is we are applying
the computer to do a task (entertain you). The software actually consists of many different programs
(checkers, chess, tic tac toe, etc.) that were most likely written by several different programmers.

Computer professionals that are in charge of creating applications often have the job title
of System Analyst. The major steps in creating an application include the following and start
at Planning step.

1. Wikipedia: Systems development life cycle

Systems Development Life Cycle | 7

Systems Development Life Cycle

During the Design phase, the System Analyst will document the inputs, processing, and outputs of
each program within the application. During the Implementation phase, programmers would be
assigned to write the specific programs using a programming language decided by the System
Analyst. Once the system of programs is tested the new application is installed for people to
use. As time goes by, things change and a specific part or program might need repair. During
the Maintenance phase, it goes through a mini planning, analysis, design, and implementation.
The programs that need modification are identified and programmers change or repair those
programs. After several years of use, the system usually becomes obsolete. At this point, a major
revision of the application is done. Thus the cycle repeats itself.

Key Terms

applications
An information system or collection of programs that handles a major task.

implementation
The phase of a Systems Development Life Cycle where the programmers would be assigned to
write specific programs.

life cycle
Systems Development Life Cycle: Planning – Analysis – Design – Implementation –
Maintenance

8 | Systems Development Life Cycle

system analyst
Computer professional in charge of creating applications.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Systems Development Life Cycle | 9

Program Design
KENNETH LEROY BUSBEE

Overview

Program design consists of the steps a programmer should do before they start coding the
program in a specific language. These steps when properly documented will make the completed
program easier for other programmers to maintain in the future. There are three broad areas of
activity:

• Understanding the Program
• Using Design Tools to Create a Model
• Develop Test Data

Understanding the Program

If you are working on a project as one of many programmers, the system analyst may have created
a variety of documentation items that will help you understand what the program is to do. These
could include screen layouts, narrative descriptions, documentation showing the processing steps,
etc. If you are not on a project and you are creating a simple program you might be given only a
simple description of the purpose of the program. Understanding the purpose of a program usually
involves understanding its:

• Inputs
• Processing
• Outputs

This IPO approach works very well for beginning programmers. Sometimes, it might help to
visualize the program running on the computer. You can imagine what the monitor will look like,
what the user must enter on the keyboard and what processing or manipulations will be done.

Using Design Tools to Create a Model

At first, you will not need a hierarchy chart because your first programs will not be complex. But
as they grow and become more complex, you will divide your program into several modules (or
functions).

The first modeling tool you will usually learn is pseudocode. You will document the logic or
algorithm of each function in your program. At first, you will have only one function, and thus your
pseudocode will follow closely the IPO approach above.

There are several methods or tools for planning the logic of a program. They include: flowcharting,
hierarchy or structure charts, pseudocode, HIPO, Nassi-Schneiderman charts, Warnier-Orr
diagrams, etc. Programmers are expected to be able to understand and do flowcharting and
pseudocode. These methods of developing the model of a program are usually taught in most
computer courses. Several standards exist for flowcharting and pseudocode and most are very
similar to each other. However, most companies have their own documentation standards and
styles. Programmers are expected to be able to quickly adapt to any flowcharting or pseudocode

10 | Program Design

standards for the company at which they work. The other methods that are less universal require
some training which is generally provided by the employer that chooses to use them.

Later in your programming career, you will learn about using application software that helps
create an information system and/or programs. This type of software is called Computer-Aided
Software Engineering (CASE).

Understanding the logic and planning the algorithm on paper before you start to code is a very
important concept. Many students develop poor habits and skipping this step is one of them.

Develop Test Data

Test data consists of the programmer providing some input values and predicting the outputs. This
can be quite easy for a simple program and the test data can be used to check the model to see if
it produces the correct results.

Key Terms

IPO
Inputs – Processing – Outputs

pseudocode
English-like statements used to convey the steps of an algorithm or function.

test data
Providing input values and predicting the outputs.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Program Design | 11

Program Quality
DAVE BRAUNSCHWEIG

Overview

Program quality describes fundamental properties of the program’s source code and executable
code, including reliability, robustness, usability, portability, maintainability, efficiency, and
readability.

Discussion

Whatever the approach to development may be, the final program must satisfy some fundamental
properties. The following properties are among the most important:

• Reliability: how often the results of a program are correct. This depends on the conceptual
correctness of algorithms, and minimization of programming mistakes, such as mistakes in
resource management (e.g., buffer overflows and race conditions) and logic errors (such as
division by zero or off-by-one errors).

• Robustness: how well a program anticipates problems due to errors (not bugs). This includes
situations such as incorrect, inappropriate or corrupt data, unavailability of needed resources
such as memory, operating system services and network connections, user error, and
unexpected power outages.

• Usability: the ergonomics of a program: the ease with which a person can use the program for
its intended purpose or in some cases even unanticipated purposes. Such issues can make or
break its success even regardless of other issues. This involves a wide range of textual,
graphical and sometimes hardware elements that improve the clarity, intuitiveness,
cohesiveness, and completeness of a program’s user interface.

• Portability: the range of computer hardware and operating system platforms on which the
source code of a program can be compiled/interpreted and run. This depends on differences
in the programming facilities provided by the different platforms, including hardware and
operating system resources, expected behavior of the hardware and operating system, and
availability of platform specific compilers (and sometimes libraries) for the language of the
source code.

• Maintainability: the ease with which a program can be modified by its present or future
developers in order to make improvements or customizations, fix bugs and security holes, or
adapt it to new environments. Good practices during initial development make the difference
in this regard. This quality may not be directly apparent to the end user but it can significantly
affect the fate of a program over the long term.

• Efficiency/performance: the measure of system resources a program consumes (processor
time, memory space, slow devices such as disks, network bandwidth and to some extent even
user interaction): the less, the better. This also includes careful management of resources, for
example cleaning up temporary files and eliminating memory leaks.

• Readability: the ease with which a human reader can comprehend the purpose, control flow,
and operation of source code. It affects the aspects of quality above, including portability,
usability and most importantly maintainability. Readability is important because programmers
spend the majority of their time reading, trying to understand and modifying existing source

12 | Program Quality

code, rather than writing new source code. Unreadable code often leads to bugs, inefficiencies,
and duplicated code.

Key Terms

efficiency
The measure of system resources a program consumes.

maintainability
The ease with which a program can be modified by its present or future developers.

portability
The range of computer hardware and operating system platforms on which the source code of
a program can be compiled/interpreted and run.

readability
The ease with which a human reader can comprehend the purpose, control flow, and
operation of source code.

reliability
How often the results of a program are correct.

robustness
How well a program anticipates problems due to errors.

usability
The ease with which a person can use the program.

References

• Wikipedia: Computer programming

Program Quality | 13

Pseudocode
KENNETH LEROY BUSBEE

Overview

Pseudocode is an informal high-level description of the operating principle of a computer program
or other algorithm.1

Discussion

Pseudocode is one method of designing or planning a program. Pseudo means false, thus
pseudocode means false code. A better translation would be the word fake or imitation.
Pseudocode is fake (not the real thing). It looks like (imitates) real code but it is NOT real code.
It uses English statements to describe what a program is to accomplish. It is fake because no
compiler exists that will translate the pseudocode to any machine language. Pseudocode is used
for documenting the program or module design (also known as the algorithm).

The following outline of a simple program illustrates pseudocode. We want to be able to enter the
ages of two people and have the computer calculate their average age and display the answer.

Outline using Pseudocode

Input
display a message asking the user to enter the first age
get the first age from the keyboard
display a message asking the user to enter the second age
get the second age from the keyboard

Processing
calculate the answer by adding the two ages together and dividing by two

Output
display the answer on the screen
pause so the user can see the answer

After developing the program design, we use the pseudocode to write code in a language (like C++,
Java, Python, etc.) where you must follow the rules of the language (syntax) in order to code the
logic or algorithm presented in the pseudocode. Pseudocode usually does not include other items
produced during programming design such as identifier lists for variables or test data.

There are other methods for planning and documenting the logic for a program. One method
is HIPO. It stands for Hierarchy plus Input Process Output and was developed by IBM in the 1960s.
It involved using a hierarchy (or structure) chart to show the relationship of the sub-routines (or

1. Wikipedia: Pseudocode

14 | Pseudocode

functions) in a program. Each sub-routine had an IPO piece. Since the above problem/task was
simple, we did not need to use multiple sub-routines, thus we did not produce a hierarchy chart.
We did incorporate the IPO part of the concept for the pseudocode outline.

Key Terms

pseudo
Means false and includes the concepts of fake or imitation.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Pseudocode | 15

Flowcharts
KENNETH LEROY BUSBEE

Overview

A flowchart is a type of diagram that represents an algorithm, workflow or process. The flowchart
shows the steps as boxes of various kinds, and their order by connecting the boxes with arrows. This
diagrammatic representation illustrates a solution model to a given problem. Flowcharts are used
in analyzing, designing, documenting or managing a process or program in various fields.1

Discussion

Common flowcharting symbols and examples follow. When first reading this section, focus on the
simple symbols and examples. Return to this section in later chapters to review the advanced
symbols and examples.

Simple Flowcharting Symbols

Terminal

The rounded rectangles, or terminal points, indicate the flowchart’s starting and ending points.

Flow Lines

Note: The default flow is left to right and top to bottom (the same way you read English). To save
time arrowheads are often only drawn when the flow lines go contrary the normal.

1. Wikipedia: Flowchart

16 | Flowcharts

Input/Output

The parallelograms designate input or output operations.

Process

The rectangle depicts a process such as a mathematical computation, or a variable assignment.

Decision

The diamond is used to represent the true/false statement being tested in a decision symbol.

Flowcharts | 17

Advanced Flowcharting Symbols

Module Call

A program module is represented in a flowchart by rectangle with some lines to distinguish it from
process symbol. Often programmers will make a distinction between program control and specific
task modules as shown below.

Local module: usually a program control function.

Library module: usually a specific task function.

Connectors

Sometimes a flowchart is broken into two or more smaller flowcharts. This is usually done when a
flowchart does not fit on a single page, or must be divided into sections. A connector symbol, which
is a small circle with a letter or number inside it, allows you to connect two flowcharts on the same
page. A connector symbol that looks like a pocket on a shirt, allows you to connect to a flowchart on
a different page.

18 | Flowcharts

On-Page Connector

Off-Page Connector

Simple Examples

We will demonstrate various flowcharting items by showing the flowchart for some pseudocode.

Functions

pseudocode: Function with no parameter passing

Function clear monitor
Pass In: nothing
Direct the operating system to clear the monitor
Pass Out: nothing

End function

Flowcharts | 19

Function clear monitor

pseudocode: Function main calling the clear monitor function

Function main
Pass In: nothing
Doing some lines of code
Call: clear monitor
Doing some lines of code
Pass Out: value zero to the operating system

End function

Function main

Sequence Control Structures

The next item is pseudocode for a simple temperature conversion program. This demonstrates the
use of both the on-page and off-page connectors. It also illustrates the sequence control structure
where nothing unusual happens. Just do one instruction after another in the sequence listed.

pseudocode: Sequence control structure

20 | Flowcharts

Filename: Solution_Lab_04_Pseudocode.txt
Purpose: Convert Temperature from Fahrenheit to Celsius
Author: Ken Busbee; © 2008 Kenneth Leroy Busbee
Date: Dec 24, 2008

Pseudocode = IPO Outline

input
display a message asking user for the temperature in Fahrenheit
get the temperature from the keyboard

processing
calculate the Celsius by subtracting 32 from the Fahrenheit
temperature then multiply the result by 5 then
divide the result by 9. Round up or down to the whole number.
HINT: Use 32.0 when subtracting to ensure floating-point accuracy.

output
display the celsius with an appropriate message
pause so the user can see the answer

Sequence control structure

Flowcharts | 21

Sequence control structured continued

Advanced Examples

Selection Control Structures

pseudocode: If then Else

If age > 17
Display a message indicating you can vote.

Else
Display a message indicating you can't vote.

Endif

If then Else control structure

pseudocode: Case

Case of age

22 | Flowcharts

0 to 17 Display "You can't vote."
18 to 64 Display "You are in your working years."
65 + Display "You should be retired."

End case

Case control structure

Iteration (Repetition) Control Structures

pseudocode: While

count assigned zero
While count < 5

Display "I love computers!"
Increment count

End while

While control structure

Flowcharts | 23

pseudocode: For

For x starts at 0, x < 5, increment x
Display "Are we having fun?"

End for

The for loop does not have a standard flowcharting method and you will find it done in different
ways. The for loop as a counting loop can be flowcharted similar to the while loop as a counting
loop.

For control structure

pseudocode: Do While

count assigned five
Do

Display "Blast off is soon!"
Decrement count

While count > zero

Do While control structure

24 | Flowcharts

pseudocode: Repeat Until

count assigned five
Repeat

Display "Blast off is soon!"
Decrement count

Until count < one

Repeat Until control structure

Key Terms

decision symbol
A diamond used in flowcharting for asking a question and making a decision.

flow lines
Lines (sometimes with arrows) that connect the various flowcharting symbols.

flowcharting
A programming design tool that uses graphical elements to visually depict the flow of logic
within a function.

input/output symbol
A parallelogram used in flowcharting for input/output interactions.

process symbol
A rectangle used in flowcharting for normal processes such as assignment.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Flowcharts | 25

Software Testing
KENNETH LEROY BUSBEE

Overview

Software testing involves the execution of a software component or system component to evaluate
one or more properties of interest. In general, these properties indicate the extent to which the
component or system under test:1

• meets the requirements that guided its design and development
• responds correctly to all kinds of inputs
• performs its functions within an acceptable time
• is sufficiently usable
• can be installed and run in its intended environments
• achieves the general result its stakeholders desire

Discussion

Test data consists of the user providing some input values and predicting the outputs. This can be
quite easy for a simple program and the test data can be used twice.

1. to check the model to see if it produces the correct results (model checking)
2. to check the coded program to see if it produces the correct results (code checking)

Test data is developed by using the algorithm of the program. This algorithm is usually documented
during the program design with either flowcharting or pseudocode. Here is the pseudocode in
outline form describing the inputs, processing, and outputs for a program used to calculate gross
pay for hourly work.

Pseudocode using an IPO Outline for Calculating Gross Pay

Input
display a message asking user for their hours worked
get the hours from the keyboard
display a message asking user for their pay rate
get the rate from the keyboard

Processing
calculate the gross pay by:

multiplying the hours worked by the hourly rate

1. Wikipedia: Software testing

26 | Software Testing

Output
display the gross pay on the monitor
pause so the user can see the answer

Creating Test Data and Model Checking

Test data is used to verify that the inputs, processing, and outputs are working correctly. As test data
is initially developed it can verify that the documented algorithm (pseudocode in the example we
are doing) is correct. It helps us understand and even visualize the inputs, processing, and outputs
of the program.

Inputs: I worked 37.5 hours this week and my hourly rate is $15.50 per hour. We should verify that
the pseudocode is prompting the user for this data.

Processing: Using my solar powered handheld calculator, I can calculate the gross pay would be:
37.5 * 15.50 or $581.25. We should verify that the pseudocode is performing the correct calculations.

Output: Only the significant information (total gross pay) is displayed for the user to see. We
should verify that the appropriate information is being displayed.

Testing the Coded Program – Code Checking

The test data can be developed and used to test the algorithm that is documented (in our case
our pseudocode) during the program design phase. Once the program is code with compiler and
linker errors resolved, the programmer gets to play user and should test the program using the test
data developed. When you run your program, how will you know that it is working properly? Did
you properly plan your logic to accomplish your purpose? Even if your plan was correct, did it get
converted correctly (coded) into the chosen programming language? The answer (or solution) to all
of these questions is our test data.

By developing test data we are predicting what the results should be, thus we can verify that our
program is working properly. When we run the program we would enter the input values used in
our test data. Hopefully, the program will output the predicted values. If not then our problem could
be any of the following:

1. The plan (IPO outline or another item) could be wrong
2. The conversion of the plan to code might be wrong
3. The test data results were calculated wrong

Resolving problems of this nature can be the most difficult problems a programmer encounters.
You must review each of the above to determine where the error is lies. Fix the error and re-test your
program.

Key Terms

code checking
Using test data to check the coded program in a specific language (like C++).

model checking
Using test data to check the design model (usually done in pseudocode).

Software Testing | 27

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

28 | Software Testing

Integrated Development
Environment
KENNETH LEROY BUSBEE

Overview

An integrated development environment (IDE) is a software application that provides
comprehensive facilities to computer programmers for software development. An IDE normally
consists of a source code editor, build automation tools, and a debugger. Most modern IDEs have
intelligent code completion. Some IDEs contain a compiler, interpreter, or both. The boundary
between an integrated development environment and other parts of the broader software
development environment is not well-defined. Sometimes a version control system, or various tools
to simplify the construction of a graphical user interface (GUI), are integrated. Many modern IDEs
also have a class browser, an object browser, and a class hierarchy diagram, for use in object-
oriented software development.1

Discussion

High-level language programs are usually written (coded) as ASCII text into a source code file. A
unique file extension (Examples: .asm .c .cpp .java .js .py) is used to identify it as a source code file. As
you might guess for our examples – Assembly, “C”, “C++”, Java, JavaScript, and Python, however, they
are just ASCII text files (other text files usually use the extension of .txt). The source code produced
by the programmer must be converted to an executable machine code file specifically for the
computer’s CPU (usually an Intel or Intel-compatible CPU within today’s world of computers). There
are several steps in getting a program from its source code stage to running the program on your
computer. Historically, we had to use several software programs (a text editor, a compiler, a linker,
and operating system commands) to make the conversion and run our program. However, today
all those software programs with their associated tasks have been integrated into one program.
However, this one program is really many software items that create an environment used by
programmers to develop software. Thus the name: Integrated Development Environment or IDE.

Programs written in a high-level language are either directly executed by some kind of interpreter
or converted into machine code by a compiler (and assembler and linker) for the CPU to execute.
JavaScript, Perl, Python, and Ruby are examples of interpreted programming languages. C, C++, C#,
Java, and Swift are examples of compiled programming languages.2 The following figure shows the
progression of activity in an IDE as a programmer enters the source code and then directs the IDE
to compile and run the program.

1. Wikipedia: Integrated development environment
2. Wikipedia: Interpreter (computing)

Integrated Development Environment | 29

Integrated Development Environment or IDE

Upon starting the IDE software the programmer usually indicates the file he or she wants to open
for editing as source code. As they make changes they might either do a “save as” or “save”. When
they have finished entering the source code, they usually direct the IDE to “compile & run” the
program. The IDE does the following steps:

1. If there are any unsaved changes to the source code file it has the test editor save the
changes.

2. The compiler opens the source code file and does its first step which is executing the pre-
processor compiler directives and other steps needed to get the file ready for the second step.
The #include will insert header files into the code at this point. If it encounters an error, it stops
the process and returns the user to the source code file within the text editor with an error
message. If no problems encountered it saves the source code to a temporary file called a
translation unit.

3. The compiler opens the translation unit file and does its second step which is converting the
programming language code to machine instructions for the CPU, a data area, and a list of
items to be resolved by the linker. Any problems encountered (usually a syntax or violation of
the programming language rules) stops the process and returns the user to the source code
file within the text editor with an error message. If no problems encountered it saves the
machine instructions, data area, and linker resolution list as an object file.

4. The linker opens the program object file and links it with the library object files as needed.
Unless all linker items are resolved, the process stops and returns the user to the source code
file within the text editor with an error message. If no problems encountered it saves the
linked objects as an executable file.

30 | Integrated Development Environment

5. The IDE directs the operating system’s program called the loader to load the executable file
into the computer’s memory and have the Central Processing Unit (CPU) start processing the
instructions. As the user interacts with the program, entering test data, he or she might
discover that the outputs are not correct. These types of errors are called logic errors and
would require the user to return to the source code to change the algorithm.

Resolving Errors

Despite our best efforts at becoming perfect programmers, we will create errors. Solving these
errors is known as debugging your program. The three types of errors in the order that they occur
are:

1. Compiler
2. Linker
3. Logic

There are two types of compiler errors; pre-processor (1st step) and conversion (2nd step). A review
of Figure 1 above shows the four arrows returning to the source code so that the programmer can
correct the mistake.

During the conversion (2nd step) the compiler might give a warning message which in some
cases may not be a problem to worry about. For example: Data type demotion may be exactly what
you want your program to do, but most compilers give a warning message. Warnings don’t stop the
compiling process but as their name implies, they should be reviewed.

The next three figures show IDE monitor interaction for the Bloodshed Dev-C++ 5 compiler/IDE.

Compiler Error (the red line is where the compiler stopped)

Integrated Development Environment | 31

Linker Error (no red line with an error message describing a linking problem)

Logic Error (from the output within the “Black Box” area)

32 | Integrated Development Environment

Key Terms

compiler
Converts source code to object code.

debugging
The process of removing errors from a program. 1) compiler 2) linker 3) logic

linker
Connects or links object files into an executable file.

loader
Part of the operating system that loads executable files into memory and directs the CPU to
start running the program.

pre-processor
The first step the compiler does in converting source code to object code.

text editor
A software program for creating and editing ASCII text files.

warning
A compiler alert that there might be a problem.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Integrated Development Environment | 33

Version Control
DAVE BRAUNSCHWEIG

Overview

Version control, also known as revision control or source control, is the management of changes to
documents, computer programs, large websites, and other collections of information. Each revision
is associated with a timestamp and the person making the change. Revisions can be compared,
restored, and with some types of files, merged.1

Version control systems (VCS) most commonly run as stand-alone applications, but may also be
embedded in various types of software, including integrated development environments (IDEs).

Discussion

Version control implements a systematic approach to recording and managing changes in files. At
its simplest, version control involves taking ‘snapshots’ of your file at different stages. This snapshot
records information about when the snapshot was made, and also about what changes occurred
between different snapshots. This allows you to ‘rewind’ your file to an older version. From this basic
aim of version control, a range of other possibilities is made available.2

Version control allows you to:3

• Track developments and changes in your files
• Record the changes you made to your file in a way that you will be able to understand later
• Experiment with different versions of a file while maintaining the original version
• ‘Merge’ two versions of a file and manage conflicts between versions
• Revert changes, moving ‘backward’ through your history to previous versions of your file

Version control is particularly useful for facilitating collaboration. One of the original motivations
behind version control systems was to allow different people to work on large projects together.
Using version control to collaborate allows for a greater deal of flexibility and control than many
other solutions. As an example, it would be possible for two people to work on a file at the same
time and then merge these together. If there were ‘conflicts’ between the two versions, the version
control system would allow you to see these conflicts and make an active decision about how to
‘merge’ these different versions into a new ‘third’ document. With this approach you would also
retain a ‘history’ of the previous version should you wish to revert back to one of these later on.4

Popular version control systems include:5

• Git

1. Wikipedia: Version control
2. Programming Historian: An Introduction to Version Control Using GitHub Desktop
3. Programming Historian: An Introduction to Version Control Using GitHub Desktop
4. Programming Historian: An Introduction to Version Control Using GitHub Desktop
5. G2Crowd: Best Version Control Systems

34 | Version Control

• Helix VCS
• Microsoft Team Foundation Server
• Subversion

The remainder of this lesson focuses on using the Git version control system.

Git

Git is a version control system for tracking changes in computer files and coordinating work on
those files among multiple people. It is primarily used for source code management in software
development, but it can be used to keep track of changes in any set of files. Git was created by Linus
Torvalds in 2005 for development of the Linux kernel and is free and open source software.6

Free public git repositories are available from:

• Bitbucket
• GitHub

Cloning an existing repository requires only a URL to the repository and the following git command:

• git clone <url>

Once cloned, repositories are synchronized by pushing and pulling changes. If the original source
repository has been modified, the following git command is used to pull those changes to the local
repository:

• git pull

Local changes must be added and committed, and then pushed to the remote repository. Note the
period (dot) at the end of the first command.

• git add .
• git commit -m "reason for commit"
• git push

If there are conflicts between the local and remote repositories, the changes should be merged and
then pushed. If necessary, local changes may be forced upon the remote server using:

• git push --force

Key Terms

branch
A separate working copy of files under version control which may be developed independently

6. Wikipedia: Git

Version Control | 35

from the origin.
clone

Create a new repository containing the revisions from another repository.
commit

To write or merge the changes made in the working copy back to the repository.
merge

An operation in which two sets of changes are applied to a file or set of files.
push

Copy revisions from the current repository to a remote repository.
pull

Copy revisions from a remote repository to the current repository.
version control

The management of changes to documents, computer programs, large websites, and other
collections of information.

References

• Programming Historian: An Introduction to Version Control Using GitHub Desktop

36 | Version Control

Input and Output
KENNETH LEROY BUSBEE

Overview

Input and output, or I/O is the communication between an information processing system, such
as a computer, and the outside world, possibly a human or another information processing system.
Inputs are the signals or data received by the system and outputs are the signals or data sent from
it.1

Discussion

Every task we have the computer do happens inside the central processing unit (CPU) and the
associated memory. Once our program is loaded into memory and the operating system directs
the CPU to start executing our programming statements the computer looks like this:

1. Wikipedia: Input/output

Input and Output | 37

CPU – Memory – Input/Output Devices

Our program now loaded into memory has basically two areas:

• Machine instructions – our instructions for what we want done
• Data storage – our variables that we using in our program

Often our program contains instructions to interact with the input/output devices. We need to
move data into (read) and/or out of (write) the memory data area. A device is a piece of equipment
that is electronically connected to the memory so that data can be transferred between the
memory and the device. Historically this was done with punched cards and printouts. Tape drives
were used for electronic storage. With time we migrated to using disk drives for storage with
keyboards and monitors (with monitor output called soft copy) replacing punch cards and printouts
(called hard copy).

Most computer operating systems and by extension programming languages have identified the
keyboard as the standard input device and the monitor as the standard output device. Often the
keyboard and monitor are treated as the default device when no other specific device is indicated.

Key Terms

device
A piece of equipment that is electronically connected to the memory so that data can be
transferred between the memory and the device.

escape code
A code directing an output device to do something.

extraction
Aka reading or getting data from an input device.

insertion
Aka writing or sending data to an output device.

standard input
The keyboard.

standard output
The monitor.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

38 | Input and Output

Hello World
DAVE BRAUNSCHWEIG

Overview

A “Hello, world!” program is a computer program that outputs or displays “Hello, world!” to a user.
Being a very simple program in most programming languages, it is often used to illustrate the
basic syntax of a programming language for a working program, and as such is often the very first
program people write.1

Discussion

A “Hello, world!” program is traditionally used to introduce novice programmers to a programming
language. “Hello, world!” is also traditionally used in a sanity test to make sure that a computer
language is correctly installed, and that the operator understands how to use it.2

The tradition of using the phrase “Hello, world!” as a test message was influenced by an example
program in the seminal book The C Programming Language. The example program from that
book prints “hello, world” (without capital letters or exclamation mark), and was inherited from a
1974 Bell Laboratories internal memorandum by Brian Kernighan.3

In addition to displaying “Hello, world!”, a “Hello, world!” program might include comments.
A comment is a programmer-readable explanation or annotation in the source code of a computer
program. They are added with the purpose of making the source code easier for humans to
understand, and are generally ignored by compilers and interpreters. The syntax of comments in
various programming languages varies considerably.4

Pseudocode

Function Main
... This program displays "Hello world!"
Output "Hello world!"

End

1. Wikipedia: "Hello, World!" program
2. Wikipedia: "Hello, World!" program
3. Wikipedia: "Hello, World!" program
4. Wikipedia: Comment (computer programming)

Hello World | 39

Output

Hello world!

Each code element represents:5

• Function Main begins the main function
• ... begins a comment
• Output indicates the following value(s) will be displayed or printed
• "Hello world!" is the literal string to be displayed
• End ends a block of code

Flowchart

Examples

The following pages provide examples of “Hello, world!” programs in different programming
languages. Each page includes an explanation of the code elements that comprise the program
and links to IDEs you may use to test the program.

Key Terms

comment
A programmer-readable explanation or annotation in the source code of a computer program.

5. Wikibooks: Programming Fundamentals/Hello World

40 | Hello World

References

• Wikiversity: Computer Programming
• Flowgorithm – Flowchart Programming Language

Hello World | 41

C++ Examples
DAVE BRAUNSCHWEIG

Overview

C++ is a general-purpose programming language. It has imperative, object-oriented and generic
programming features, while also providing facilities for low-level memory manipulation. C++ was
developed by Bjarne Stroustrup at Bell Labs starting in 1979 as an extension of the C language. The
C++ programming language was initially standardized in 1998.1

C++ is one of the most popular current programming languages2 and is often used in computer
science courses.

Example

Hello World

// This program displays "Hello world!"
//
// References:
// http://www.cplusplus.com/doc/tutorial/program_structure/

#include <iostream>

int main()
{

std::cout << "Hello world!";
}

1. Wikipedia: C++
2. TIOBE: Index

42 | C++ Examples

Output

Hello world!

Discussion

Each code element represents:3

• // begins a comment
• #include <iostream> includes standard input and output streams
• int main() begins the main function, which returns an integer value
• { begins a block of code
• std::cout is standard output
• << directs the next element to standard output
• "Hello world!" is the literal string to be displayed
• ; ends each line of C++ code
• } ends a block of code

C++ IDEs

There are many free cloud-based and local IDEs available to begin coding in C++. Check with your
instructor or do your own research for recommendations.

Cloud-Based IDEs

• CodeChef
• GDB Online
• Ideone
• paiza.IO
• PythonTutor
• repl.it
• TutorialsPoint

Local IDEs

• Code::Blocks
• Dev-C++
• Microsoft Visual Studio

3. Wikibooks: Programming Fundamentals/Hello World

C++ Examples | 43

References

• Wikiversity: Computer Programming

44 | C++ Examples

C# Examples
DAVE BRAUNSCHWEIG

Overview

C# is a general-purpose, object-oriented programming language encompassing strong typing,
imperative, declarative, functional, generic, object-oriented (class-based), and component-oriented
programming disciplines. It was developed around 2000 by Microsoft within its .NET initiative and
later approved as a standard by Ecma (ECMA-334) and ISO (ISO/IEC 23270:2006). C# is one of the
programming languages designed for the Common Language Infrastructure.1

C# is one of the most popular current programming languages2, is the primary language for
Windows application development and is often used in computer science and gaming courses.

Example

Hello World

// This program displays "Hello world!"
//
// References:
// https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/hello-world-your-first-program

public class Hello
{

public static void Main()
{

System.Console.WriteLine("Hello world!");
}

}

1. Wikipedia: C Sharp (programming language)
2. TIOBE: Index

C# Examples | 45

Output

Hello world!

Discussion

Each code element represents:3

• // begins a comment
• public class Hello begins the Hello World program
• { begins a block of code
• public static void Main() begins the main function
• System.Console.WriteLine() calls the standard output write line function
• "Hello world!" is the literal string to be displayed
• ; ends each line of C# code
• } ends a block of code

C# IDEs

There are many free cloud-based and local IDEs available to begin coding in C#. Check with your
instructor or do your own research for recommendations.

Cloud-Based IDEs

• CodeChef
• C# Pad
• .NET Fiddle
• Ideone
• paiza.IO
• Rextester
• repl.it
• TutorialsPoint

Local IDEs

• Microsoft Visual Studio
• Visual Studio Code

3. Wikibooks: Programming Fundamentals/Hello World

46 | C# Examples

References

• Wikiversity: Computer Programming

C# Examples | 47

Java Examples
DAVE BRAUNSCHWEIG

Overview

Java is a general-purpose computer-programming language that is concurrent, class-based,
object-oriented, and specifically designed to have as few implementation dependencies as
possible. It is intended to let application developers “write once, run anywhere” (WORA), meaning
that compiled Java code can run on all platforms that support Java without the need for
recompilation. Java was originally developed by James Gosling at Sun Microsystems and released
in 1995.1

Java is one of the most popular current programming languages2 and is often used in computer
science courses.

Example

Hello World

// This program displays "Hello world!"
//
// References:
// https://introcs.cs.princeton.edu/java/11hello/HelloWorld.java.html

class Main {
public static void main(String[] args) {

System.out.println("Hello world!");
}

}

1. Wikipedia: Java (programming language)
2. TIOBE: Index

48 | Java Examples

Output

Hello world!

Discussion

Each code element represents:3

• // begins a comment
• class hello begins the Hello World program
• { begins a block of code
• public static void main(String[] args) begins the main function
• System.out.println() calls the standard output print line function
• "Hello world!" is the literal string to be displayed
• ; ends each line of Java code
• } ends a block of code

Java IDEs

There are many free cloud-based and local IDEs available to begin coding in Java. Check with your
instructor or do your own research for recommendations.

Cloud-Based IDEs

• CodeChef
• GDB Online
• Ideone
• paiza.IO
• PythonTutor
• repl.it
• TutorialsPoint

Local IDEs

• BlueJ
• jEdit
• jGRASP

3. Wikibooks: Programming Fundamentals/Hello World

Java Examples | 49

References

• Wikiversity: Computer Programming

50 | Java Examples

JavaScript Examples
DAVE BRAUNSCHWEIG

Overview

JavaScript, often abbreviated as JS, is a high-level, interpreted programming language. Alongside
HTML and CSS, JavaScript is one of the three core technologies of the World Wide Web. JavaScript
enables interactive web pages and therefore is an essential part of web applications. The vast
majority of websites use it, and all major web browsers have a dedicated JavaScript engine to
execute it.1

JavaScript is one of the most popular current programming languages2, and is the primary
programming language for front-end web development. JavaScript has been implemented in
multiple platforms with different I/O commands. Several examples follow.

Example

Hello World – Console Log

// This script displays "Hello world!".
//
// References:
// https://www.digitalocean.com/community/tutorials/how-to-write-your-first-javascript-program

console.log("Hello world!")

Output

Hello world!

1. Wikipedia: JavaScript
2. TIOBE: Index

JavaScript Examples | 51

Discussion

Each code element represents:

• // begins a comment
• console.log() writes to the JavaScript console output log
• "Hello world!" is the literal string to be displayed

Hello World – Window Alert

// This script displays "Hello world!".
//
// References:
// https://www.digitalocean.com/community/tutorials/how-to-write-your-first-javascript-program

alert("Hello world!")

Output

Hello world!

Discussion

Each code element represents:

• // begins a comment
• alert() calls the window alert function to display a message
• "Hello world!" is the literal string to be displayed

Hello World – Document Write

// This script displays "Hello world!".
//
// References:
// https://www.w3schools.com/jsref/met_doc_write.asp
document.write("Hello world!")

52 | JavaScript Examples

Output

Hello world!

Discussion

Each code element represents:

• // begins a comment
• document.write() writes output to the current document
• "Hello world!" is the literal string to be displayed

JavaScript IDEs

There are many free cloud-based and local IDEs available to begin coding in JavaScript. Check with
your instructor or do your own research for recommendations.

Cloud-Based IDEs

• Chapman.edu: Online JavaScript Interpreter
• CodeChef
• GDB Online
• Ideone
• paiza.IO
• PythonTutor
• repl.it

Local IDEs

• Brackets
• Visual Studio Code

References

• Wikiversity: Computer Programming

JavaScript Examples | 53

Python Examples
DAVE BRAUNSCHWEIG

Overview

Python is an interpreted high-level programming language for general-purpose programming.
Created by Guido van Rossum and first released in 1991, Python has a design philosophy that
emphasizes code readability, notably using significant whitespace. It provides constructs that
enable clear programming on both small and large scales.1

Python is one of the most popular current programming languages2, is frequently recommended
as a first programming language, and often used in information systems and data science courses.

Example

Hello World

This program displays "Hello world!"
#
References:
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3/Hello,_World

print("Hello world!")

Output

Hello world!

Discussion

Each code element represents:3

1. Wikipedia: Python (programming language)
2. TIOBE: Index
3. Wikibooks: Programming Fundamentals/Hello World

54 | Python Examples

• # begins a comment
• print() calls the print function
• "Hello world!" is the literal string to be displayed

Python IDEs

There are many free cloud-based and local IDEs available to begin coding in Python. Check with
your instructor or do your own research for recommendations.

Cloud-Based IDEs

• CodeChef
• GDB Online
• Ideone
• paiza.IO
• Python Fiddle
• PythonTutor
• repl.it
• TutorialsPoint

Local IDEs

• IDLE
• Thonny

References

• Wikiversity: Computer Programming

Python Examples | 55

Swift Examples
DAVE BRAUNSCHWEIG

Overview

Swift is a general-purpose, multi-paradigm, compiled programming language developed by Apple
Inc. for iOS, macOS, watchOS, tvOS, and Linux. Apple intended Swift to support many core concepts
associated with Objective-C, but in a “safer” way, making it easier to catch software bugs. Swift was
introduced in 2014.1

Swift is a popular programming language for the Apple platforms it supports, but it lacks support
for Microsoft Windows environments.2

Example

Hello World

// This program displays "Hello world!"
//
// References:
// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/GuidedTour.html

print("Hello world!")

Output

Hello world!

Discussion

Each code element represents:3

1. Swift (programming language)
2. TIOBE: Index
3. Wikibooks: Programming Fundamentals/Hello World

56 | Swift Examples

• // begins a comment
• print() calls the print function
• "Hello world!" is the literal string to be displayed

Swift IDEs

There are several free cloud-based and local IDEs available to begin coding in Swift. Check with your
instructor or do your own research for recommendations.

Cloud-Based IDEs

• GDB Online
• IBM Swift Sandbox
• Ideone
• iSwift
• paiza.IO
• repl.it

Local IDEs

• AppCode
• Atom
• Xcode

References

• Wikiversity: Computer Programming

Swift Examples | 57

Practice: Introduction to
Programming
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Review Questions

True / False:

1. Beginning programmers participate in all phases of the Systems Development Life Cycle.
2. Coding the program in a language like C++ is the first task of planning. You plan as you code.
3. Pseudocode is the only commonly used planning tool.
4. Pseudocode has a strict set of rules and is the same everywhere in the computer

programming industry.
5. Test data is developed for testing the program once it is code into a language like C++.
6. The word pseudo means false and includes the concepts of fake or imitation.
7. Many programmers pick up the bad habit of not completing the planning step before starting

to code the program.
8. IDE means Integer Division Expression.
9. Most modern compilers are really an IDE type of software, not just a compiler.

10. Programming errors are extremely easy to understand and fix.

Answers:

1. false
2. false
3. false
4. false
5. false
6. true
7. true
8. false
9. true

10. false

Short Answer:

1. List the steps of the Systems Development Life Cycle and indicate which step you are likely to
work in as a new computer professional.

2. List and describe what might cause the four (4) types of errors encountered in a program
using a compiler and an Integrated Development Environment software product.

58 | Practice: Introduction to Programming

Activities

Pseudocode and Flowcharts

The following activities focus on software planning and testing using pseudocode and / or
flowcharts.

1. Search the Internet for pseudocode for making a peanut butter and jelly sandwich. Based on
the examples you find, create pseudocode to make your own favorite sandwich or other
prepared meal. Test your pseudocode by reading the instructions out loud as someone else
follows your directions.

2. Search the Internet for a flowchart for making a peanut butter and jelly sandwich. Use a free
online or downloadable flowchart tool to create a flowchart that describes how to make your
favorite sandwich or other prepared meal. Test your flowchart by reading the instructions out
loud while someone else follows your directions.

3. Create pseudocode or a flowchart for a program that would interact with bank customers and
help them determine the value of a bag or jar of coins brought in for deposit. Include counts
for pennies, nickels, dimes and quarters and calculate the total value of all of the coins
deposited. Test your program by having someone else follow the instructions and guide them
as they use your program.

4. Create pseudocode or a flowchart for a program that allows the user to enter gallons of gas
and converts it to liters (metric system). NOTE: One US gallon equals 3.7854 liters. Test your
program by having someone else follow the instructions and guide them as they use your
program.

5. A major restaurant sends a chef to purchase fruits and vegetables every day. Upon returning
to the store the chef must enter two pieces of data for each item purchased: the quantity
(Example: 2 cases) and the price paid (Example: $4.67). The program has a list of 20 items and
after the chef enters the information, the program provides a total for the purchases for that
day. Prepare test data for five (5) items: apples, oranges, bananas, lettuce, and tomatoes.

Programming Languages and Integrated Development Environments

The following activities focus on selecting a programming language and testing integrated
development environments.

1. Research different programming languages and select a programming language to use with
this textbook. Copy the Hello World example code for your selected programming language
and use one of the free cloud-based IDEs to try running the Hello World program.

2. Modify the example Hello World program to instead display Hello <name>! , where
<name> is your name. Include comments at the top of the program and test the program

to verify that it works correctly.
3. Research free downloadable tools for your selected programming language (interpreter/

compiler, IDE, etc.). Consider downloading and installing a development environment on your
system. If you set up your own development environment, test the environment using your
Hello Name program written above.

Practice: Introduction to Programming | 59

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

60 | Practice: Introduction to Programming

PART II

DATA AND OPERATORS

Overview

This chapter introduces constants and variables, data types, and operators.

Chapter Outline

• Constants and Variables
• Identifier Names
• Data Types

◦ Integer Data Type
◦ Floating-Point Data Type
◦ String Data Type
◦ Boolean Data Type
◦ Nothing Data Type

• Order of Operations
• Assignment
• Arithmetic Operators
• Integer Division and Modulus
• Unary Operations
• Lvalue and Rvalue
• Data Type Conversions
• Input-Process-Output Model
• Code Examples

◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.
2. Understand basic data types and how operators manipulate data.
3. Given example pseudocode, flowcharts, and source code, create a program that uses

appropriate data types and operators to solve a given problem.

Data and Operators | 61

Constants and Variables
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

A constant is a value that cannot be altered by the program during normal execution, i.e., the value
is constant. When associated with an identifier, a constant is said to be “named,” although the
terms “constant” and “named constant” are often used interchangeably. This is contrasted with a
variable, which is an identifier with a value that can be changed during normal execution, i.e., the
value is variable.1

Discussion

Understanding Constants

A constant is a data item whose value cannot change during the program’s execution. Thus, as its
name implies – the value is constant.

A variable is a data item whose value can change during the program’s execution. Thus, as its
name implies – the value can vary.

Constants are used in two ways. They are:

1. literal constant
2. defined constant

A literal constant is a value you type into your program wherever it is needed. Examples include the
constants used for initializing a variable and constants used in lines of code:

21
12.34
'A'
"Hello world!"
false
null

In addition to literal constants, most textbooks refer to symbolic constants or named constants as
a constant represented by a name. Many programming languages use ALL CAPS to define named
constants.

1. Wikipedia: Constant (computer programming)

Constants and Variables | 63

Language Example

C++
#define PI 3.14159

or
const double PI = 3.14159;

C# const double PI = 3.14159;
Java const double PI = 3.14159;
JavaScript const PI = 3.14159;
Python PI = 3.14159
Swift let pi = 3.14159

Technically, Python does not support named constants, meaning that it is possible (but never good
practice) to change the value of a constant later. There are workarounds for creating constants in
Python, but they are beyond the scope of a first-semester textbook.

Defining Constants and Variables

Named constants must be assigned a value when they are defined. Variables do not have to be
assigned initial values. Variables once defined may be assigned a value within the instructions of
the program.

Language Example

C++ double value = 3;
C# double value = 3;
Java double value = 3;

JavaScript
var value = 3;
let value = 3;

Python value = 3
Swift var value:Int = 3

Key Terms

constant
A data item whose value cannot change during the program’s execution.

variable
A data item whose value can change during the program’s execution.

64 | Constants and Variables

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Constants and Variables | 65

Identifier Names
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

Within programming a variety of items are given descriptive names to make the code more
meaningful to us as humans. These names are called “Identifier Names”. Constants, variables, type
definitions, functions, etc. when declared or defined are identified by a name. These names follow
a set of rules that are imposed by:

1. the language’s technical limitations
2. good programming practices
3. common industry standards for the language

Discussion

Technical to Language

• Use only allowable characters (in many languages the first character must be alphabetic or
underscore, can continue with alphanumeric or underscore)

• Can’t use reserved words
• Length limit

These attributes vary from one programming language to another. The allowable characters and
reserved words will be different. The length limit refers to how many characters are allowed in an
identifier name and often is compiler dependent and may vary from compiler to compiler for the
same language. However, all programming languages have some form of the technical rules listed
here.

Good Programming Techniques

• Meaningful
• Be case consistent

Meaningful identifier names make your code easier for another to understand. After all what does
“p” mean? Is it pi, price, pennies, etc. Thus do not use cryptic (look it up in the dictionary) identifier
names.

Some programming languages treat upper and lower case letters used in identifier names as the
same. Thus: pig and Pig are treated as the same identifier name. Unknown to you the programmer,
the compiler usually forces all identifier names to upper case. Thus: pig and Pig both get changed
to PIG. However, not all programming languages act this way. Some will treat upper and lower case
letters as being different things. Thus: pig and Pig are two different identifier names. If you declare
it as pig and then reference it in your code later as Pig – you get a different variable or perhaps a
compiler error. To avoid the problem altogether, we teach students to be case consistent. Use an

66 | Identifier Names

identifier name only one way and spell it (upper and lower case) the same way every time within
your program.

Industry Rules

Almost all programming languages and most coding shops have a standard code formatting style
guide programmers are expected to follow. Among these are three common identifier casing
standards:

• camelCase – each word is capitalized except the first word, with no intervening spaces
• PascalCase – each word is capitalized including the first word, with no intervening spaces
• snake_case – each word is lowercase with underscores separating words

C++, Java, and JavaScript typically use camelCase, with PascalCase reserved for libraries and classes.
C# uses primarily PascalCase with camelCase parameters. Python uses snake_case for most
identifiers. In addition, the following rules apply:

• Do not start with an underscore (used for technical programming)
• CONSTANTS IN ALL UPPER CASE (often UPPER_SNAKE_CASE).

These rules are decided by the industry (those who are using the programming language).

Key Terms

camel case
The practice of writing compound words or phrases such that each word or abbreviation in the
middle of the phrase begins with a capital letter, with no intervening spaces or punctuation.

Pascal case
The practice of writing compound words or phrases such that each word or abbreviation in the
phrase begins with a capital letter, including the first letter, with no intervening spaces or
punctuation.

reserved word
Words that cannot be used by the programmer as identifier names because they already have
a specific meaning within the programming language.

snake case
The practice of writing compound words or phrases in which the elements are separated with
one underscore character (_) and no spaces, with each element’s initial letter usually
lowercased within the compound and the first letter either upper or lower case.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Identifier Names | 67

Data Types
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

A data type is a classification of data which tells the compiler or interpreter how the programmer
intends to use the data. Most programming languages support various types of data, including
integer, real, character or string, and Boolean.1

Discussion

Our interactions (inputs and outputs) with a program are treated in many languages as a stream
of bytes. These bytes represent data that can be interpreted as representing values that we
understand. Additionally, within a program, we process this data in various ways such as adding
them up or sorting them. This data comes in different forms. Examples include:

• your name – a string of characters
• your age – usually an integer
• the amount of money in your pocket – usually a value measured in dollars and cents

(something with a fractional part)

A major part of understanding how to design and code programs is centered in understanding the
types of data that we want to manipulate and how to manipulate that data.

Common data types include:

Data Type Represents Examples

integer whole numbers -5 , 0 , 123
floating point (real) fractional numbers -87.5 , 0.0 , 3.14159
string A sequence of characters "Hello world!"
Boolean logical true or false true , false
nothing no data null

The common data types usually exist in most programming languages and act or behave similarly
from language to language. Additional complex and/or composite data types may exist and vary
from language to language.

1. Wikipedia: Data type

68 | Data Types

Pseudocode

Function Main
... This program demonstrates variables, literal constants, and data types.

Declare Integer i
Declare Real r
Declare String s
Declare Boolean b

Assign i = 1234567890
Assign r = 1.23456789012345
Assign s = "string"
Assign b = true

Output "Integer i = " & i
Output "Real r = " & r
Output "String s = " & s
Output "Boolean b = " & b

End

Output

Integer i = 1234567890
Real r = 1.23456789012345
String s = string
Boolean b = true

Data Types | 69

Flowchart

70 | Data Types

Data Types | 71

Key Terms

Boolean
A data type representing logical true or false.

data type
Defines a set of values and a set of operations that can be applied on those values.

floating point
A data type representing numbers with fractional parts.

integer
A data type representing whole numbers.

string
A data type representing a sequence of characters.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Flowgorithm – Flowchart Programming Language

72 | Data Types

Integer Data Type
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

An integer data type represents some range of mathematical integers. Integral data types may be
of different sizes and may or may not be allowed to contain negative values. Integers are commonly
represented in a computer as a group of binary digits (bits). The size of the grouping varies so the set
of integer sizes available varies between different types of computers and different programming
languages.1

Discussion

The integer data type basically represents whole numbers (no fractional parts). The integer values
jump from one value to another. There is nothing between 6 and 7. It could be asked why not make
all your numbers floating point which allow for fractional parts. The reason is threefold. First, some
things in the real world are not fractional. A dog, even with only 3 legs, is still one (1) dog not ¾ of a
dog. Second, the integer data type is often used to control program flow by counting, thus the need
for a data type that jumps from one value to another. Third, integer processing is significantly faster
within the CPU than is floating point processing.

The integer data type has similar attributes and acts or behaves similarly in all programming
languages that support it.

1. Wikipedia: Integer (computer science)

Integer Data Type | 73

Language Reserved Word Size Range

C++ short 16 bits / 2 bytes -32,768 to32,767

C++ int varies depends on compiler

C++ long 32 bits / 4 bytes -2,147,483,648 to 2, 147,483,647

C++ long long 64 bits / 8 bytes −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

C# short 16 bits / 2 bytes -32,768 to32,767

C# int 32 bits / 4 bytes -2,147,483,648 to 2, 147,483,647

C# long 64 bits / 8 bytes −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Java short 16 bits / 2 bytes -32,768 to32,767

Java int 32 bits / 4 bytes -2,147,483,648 to 2, 147,483,647

Java long 64 bits / 8 bytes −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

JavaScript N/A

Python int() no limit

Swift Int varies depends on platform

Swift Int32 32 bits / 4 bytes -2,147,483,648 to 2, 147,483,647

Swift Int64 64 bits / 8 bytes −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

For C++ and Swift the size of a default integer varies with the compiler being used and the
computer. This effect is known as being machine dependent. These variations of the integer data
type are an annoyance for a beginning programmer. For a beginning programmer, it is more
important to understand the general attributes of the integer data type that apply to most
programming languages.

JavaScript does not support an integer data type, but the Math.round() function may be
used to return the value of a number rounded to the nearest integer.2

Python 3 integers are not limited in size, however, sys.maxsize may be used to determine
the maximum practical size of a list or string index.3

Key Terms

machine dependent
An attribute of a programming language that changes depending on the computer’s CPU.

2. Mozilla: Math.round()
3. Python.org: Integers

74 | Integer Data Type

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Integer Data Type | 75

Floating-Point Data Type
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

A floating-point data type uses a formulaic representation of real numbers as an approximation so
as to support a trade-off between range and precision. For this reason, floating-point computation
is often found in systems which include very small and very large real numbers, which require
fast processing times. A number is, in general, represented approximately to a fixed number of
significant digits and scaled using an exponent in some fixed base.1

Discussion

The floating-point data type is a family of data types that act alike and differ only in the size of their
domains (the allowable values). The floating-point family of data types represents number values
with fractional parts. They are technically stored as two integer values: a mantissa and an exponent.
The floating-point family has the same attributes and acts or behaves similarly in all programming
languages. They can always store negative or positive values thus they always are signed; unlike the
integer data type that could be unsigned. The domain for floating-point data types varies because
they could represent very large numbers or very small numbers. Rather than talk about the actual
values, we mention the precision. The more bytes of storage the larger the mantissa and exponent,
thus more precision.

Language Reserved Word Size Precision Range

C++ float 32 bits / 4 bytes 7 decimal digits ±3.40282347E+38

C++ double 64 bits / 8 bytes 15 decimal digits ±1.79769313486231570E+308

C# float 32 bits / 4 bytes 7 decimal digits ±3.40282347E+38

C# double 32 bits / 4 bytes 15 decimal digits ±1.79769313486231570E+308

Java float 32 bits / 4 bytes 7 decimal digits ±3.40282347E+38

Java double 32 bits / 4 bytes 15 decimal digits ±1.79769313486231570E+308

JavaScript Number 64 bits / 8 bytes 15 decimal digits ±1.79769313486231570E+308

Python float() 64 bits / 8 bytes 15 decimal digits ±1.79769313486231570E+308

Swift Float 32 bits / 4 bytes 7 decimal digits ±3.40282347E+38

Swift Double 64 bits / 8 bytes 15 decimal digits ±1.79769313486231570E+308

1. Wikipedia: Floating-point arithmetic

76 | Floating-Point Data Type

Key Terms

double
The most often used floating-point family data type used.

mantissa exponent
The two integer parts of a floating-point value.

precision
The effect on the domain of floating-point values given a larger or smaller storage area in
bytes.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Floating-Point Data Type | 77

String Data Type
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

A string data type is traditionally a sequence of characters, either as a literal constant or as some
kind of variable. The latter may allow its elements to be mutated and the length changed, or it may
be fixed (after creation). A string is generally considered a data type and is often implemented as
an array data structure of bytes (or words) that stores a sequence of elements, typically characters,
using some character encoding.1

Discussion

Depending on programming language and precise data type used, a variable declared to be a
string may either cause storage in memory to be statically allocated for a predetermined maximum
length or employ dynamic allocation to allow it to hold a variable number of elements. When a
string appears literally in source code, it is known as a string literal or an anonymous string.2

The character data type represents individual or single characters. Characters comprise a variety
of symbols such as the alphabet (both upper and lower case) the numeral digits (0 to 9),
punctuation, etc. All computers store character data in a one-byte field as an integer value. Because
a byte consists of 8 bits, this one-byte field has 28 or 256 possibilities using the positive values of 0
to 255.

C++, C#, and Java differentiate between single characters and strings using single quotes and
double quotes, respectively. JavaScript, Python, and Swift do not differentiate between characters
and strings and use either single quotes or double quotes to define string literals.

1. Wikipedia: String (computer science)
2. Wikipedia: String (computer science)

78 | String Data Type

Language Reserved Word Example

C++ char 'A'
C++ string "Hello world!"
C# char 'A'
C# String "Hello world!"
Java char 'A'
Java String "Hello world!"
JavaScript String 'Hello world!' , "Hello world!"
Python str() 'Hello world!' , "Hello world!"
Swift Character "A"
Swift String "Hello world!"

Most computing devices use the ASCII (stands for American Standard Code for Information
Interchange and is pronounced “ask-key”) Character Set which has established values for 0 to 127.
For the values of 128 to 255 they usually use the Extended ASCII Character Set. When we hit the
capital A on the keyboard, the keyboard sends a byte with the bit pattern equal to an integer 65.
When the byte is sent from the memory to the monitor, the monitor converts the integer value of
65 to into the symbol of the capital A to display on the monitor.

For now, we will address only the use of strings and characters as constants. Most modern
compilers that are part of an Integrated Development Environment (IDE) will color the source code
to help the programmer see different features more readily. Beginning programmers will use string
constants to send messages to standard output.

Key Terms

ASCII
American Standard Code for Information Interchange

character
A data type representing single text characters like the alphabet, numeral digits, punctuation,
etc.

double quote marks
Used to create string type data within most programming languages.

single quote marks
Used to create character type data within languages that differentiate between string and
character data types.

string
A series or array of characters as a single piece of data.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

String Data Type | 79

Boolean Data Type
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

A Boolean data type has one of two possible values (usually denoted true and false), intended
to represent the two truth values of logic and Boolean algebra. It is named after George Boole,
who first defined an algebraic system of logic in the mid 19th century. The Boolean data type is
primarily associated with conditional statements, which allow different actions by changing control
flow depending on whether a programmer-specified Boolean condition evaluates to true or false.1

Discussion

The Boolean data type is also known as the logical data type and represents the concepts of
true and false. The name “Boolean” comes from the mathematician George Boole; who in 1854
published: An Investigation of the Laws of Thought. Boolean algebra is the area of mathematics
that deals with the logical representation of true and false using the numbers 0 and 1. The
importance of the Boolean data type within programming is that it is used to control programming
structures (if then else, while loops, etc.) that allow us to implement “choice” into our algorithms.

The Boolean data type has the same attributes and acts or behaves similarly in all programming
languages. However, while all languages recognize false as 0, some languages define true as -1
rather than 1. This is the result of storing the Boolean values as an integer and using a one’s
complement representation that negates all bits rather than only the rightmost bit. To simplify
processing, most programming languages recognize any non-zero value as being true.

Language Reserved Word True False

C++ bool true false
C# bool or Boolean true false
Java bool true false
JavaScript Boolean() true false
Python bool() True False
Swift Bool true false

1. Wikipedia: Boolean data type

80 | Boolean Data Type

Key Terms

Boolean
A data type representing the concepts of true or false.

one’s complement
The value obtained by inverting all the bits in the binary representation of a number
(swapping 0s for 1s and vice versa).

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Boolean Data Type | 81

Nothing Data Type
DAVE BRAUNSCHWEIG

Overview

A nothing data type is a feature of some programming languages which allow the setting of a
special value to indicate a missing or uninitialized value rather than using the value 0 (zero).1

Discussion

Most programming languages support the use of a reserved word or words to represent missing,
uninitialized, or invalid values.

Language Reserved Word Meaning

C++ null no value

C# null no value

Java null no value

JavaScript null no value

JavaScript NaN Not a Number

Python None no value

Swift nil no value

Key Terms

NaN
Reserved word used to indicate a non-numeric value in a numeric variable.

null
Reserved word used to represent a missing value or invalid value.

1. Wikipedia: Nullable type

82 | Nothing Data Type

Order of Operations
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

The order of operations (or operator precedence) is a collection of rules that reflect conventions
about which procedures to perform first in order to evaluate a given mathematical expression.1

Discussion

Single values by themselves are important; however, we need a method of manipulating values
(processing data). Scientists wanted an accurate machine for manipulating values. They wanted
a machine to process numbers or calculate answers (that is, compute the answer). Prior to 1950,
dictionaries listed the definition of computers as ” humans that do computations”. Thus, all of the
terminology for describing data manipulation is math oriented. Additionally, the two fundamental
data type families (the integer family and floating-point family) consist entirely of number values.

An Expression Example with Evaluation

Let’s look at an example: 2 + 3 * 4 + 5 is our expression but what does it equal?

1. the symbols of + meaning addition and * meaning multiplication are our operators
2. the values 2, 3, 4 and 5 are our operands
3. precedence says that multiplication is higher than addition
4. thus, we evaluate the 3 * 4 to get 12
5. now we have: 2 + 12 + 5
6. the associativity rules say that addition goes left to right, thus we evaluate the 2 +12 to get 14
7. now we have: 14 + 5
8. finally, we evaluate the 14 + 5 to get 19; which is the value of the expression

Parentheses would change the outcome. (2 + 3) * (4 + 5) evaluates to 45.
Parentheses would change the outcome. (2 + 3) * 4 + 5 evaluates to 25.

Operator Precedence Chart

Each computer language has some rules that define precedence and associativity. They often
follow rules we may have already learned. Multiplication and division come before addition and
subtraction is a rule we learned in grade school. This rule still works.

Order of Operations2

1. Wikipedia: Order of operations
2. Wikipedia: Order of operations

Order of Operations | 83

• Parentheses
• Exponents
• Multiplication / Division
• Addition / Subtraction

A common mnemonic to remember this rule is PEMDAS, or Please Excuse My Dear Aunt Sally.
Precedence rules may vary from one programming language to another. You should refer to the
reference sheet that summarizes the rules for the language that you are using. It is often called
an Operator Precedence, Precedence of Operators, or Order of Operations chart. You should review
this chart as needed when evaluating expressions.

A valid expression consists of operand(s) and operator(s) that are put together properly. Why the
(s)? Some operators are:

1. Unary – only have one operand
2. Binary – have two operands, one on each side of the operator
3. Trinary – have two operator symbols that separate three operands

Most operators are binary, that is they require two operands. Some precedence charts indicate of
which operators are unary and trinary and thus all others are binary.

Key Terms

associativity
Determines the order in which the operators of the same precedence are allowed to
manipulate the operands.

evaluation
The process of applying the operators to the operands and resulting in a single value.

expression
A valid sequence of operand(s) and operator(s) that reduces (or evaluates) to a single value.

operand
A value that receives the operator’s action.

operator
A language-specific syntactical token (usually a symbol) that causes an action to be taken on
one or more operands.

parentheses
Change the order of evaluation in an expression. You do what’s in the parentheses first.

precedence
Determines the order in which the operators are allowed to manipulate the operands.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

84 | Order of Operations

Assignment
KENNETH LEROY BUSBEE

Overview

An assignment statement sets and/or re-sets the value stored in the storage location(s) denoted by
a variable name; in other words, it copies a value into the variable.1

Discussion

The assignment operator allows us to change the value of a modifiable data object (for beginning
programmers this typically means a variable). It is associated with the concept of moving a value
into the storage location (again usually a variable). Within most programming languages the
symbol used for assignment is the equal symbol. But bite your tongue, when you see the = symbol
you need to start thinking: assignment. The assignment operator has two operands. The one to the
left of the operator is usually an identifier name for a variable. The one to the right of the operator is
a value.

Simple Assignment

age = 21

The value 21 is moved to the memory location for the variable named: age. Another way to say it:
age is assigned the value 21.

Assignment with an Expression

total_cousins = 4 + 3 + 5 + 2

The item to the right of the assignment operator is an expression. The expression will be evaluated
and the answer is 14. The value 14 would be assigned to the variable named: total_cousins.

Assignment with Identifier Names in the Expression

students_period_1 = 25
students_period_2 = 19
total_students = students_period_1 + students_period_2

The expression to the right of the assignment operator contains some identifier names. The
program would fetch the values stored in those variables; add them together and get a value of 44;
then assign the 44 to the total_students variable.

1. Wikipedia: Assignment (computer science)

Assignment | 85

Key Terms

assignment
An operator that changes the value of a modifiable data object.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

86 | Assignment

Arithmetic Operators
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

The basic arithmetic operations are addition, subtraction, multiplication, and division. Arithmetic is
performed according to an order of operations.1

Discussion

An operator performs an action on one or more operands. The common arithmetic operators are:

Action Common Symbol

Addition +
Subtraction -
Multiplication *
Division /
Modulus (associated with integers) %

These arithmetic operators are binary that is they have two operands. The operands may be either
constants or variables.

age + 1
This expression consists of one operator (addition) which has two operands. The first is

represented by a variable named age and the second is a literal constant. If age had a value of 14
then the expression would evaluate (or be equal to) 15.

These operators work as you have learned them throughout your life with the exception of
division and modulus. We normally think of division as resulting in an answer that might have a
fractional part (a floating-point data type). However, division, when both operands are of the integer
data type, may act differently. Please refer to the next section on “Integer Division and Modulus”.

Arithmetic Assignment Operators

Many programming languages support a combination of the assignment (=) and arithmetic
operators (+ , - , * , / , %). Various textbooks call them “compound assignment operators”
or “combined assignment operators”. Their usage can be explained in terms of the assignment
operator and the arithmetic operators. In the table, we will use the variable age and you can assume
that it is of integer data type.

1. Wikipedia: Arithmetic operators

Arithmetic Operators | 87

Arithmetic assignment examples: Equivalent code:

age += 14; age = age + 14;
age -= 14; age = age - 14;
age *= 14; age = age * 14;
age /= 14; age = age / 14;
age %= 14; age = age % 14;

Pseudocode

Function Main
... This program demonstrates arithmetic operations.
Declare Integer a
Declare Integer b

Assign a = 3
Assign b = 2
Output "a = " & a
Output "b = " & b
Output "a + b = " & a + b
Output "a - b = " & a - b
Output "a * b = " & a * b
Output "a / b = " & a / b
Output "a % b = " & a % b

End

Output

a = 3
b = 2
a + b = 5
a - b = 1
a * b = 6
a / b = 1.5
a % b = 1

88 | Arithmetic Operators

Flowchart

Arithmetic Operators | 89

90 | Arithmetic Operators

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Flowgorithm – Flowchart Programming Language

Arithmetic Operators | 91

Integer Division and Modulus
KENNETH LEROY BUSBEE

Overview

In integer division and modulus, the dividend is divided by the divisor into an integer quotient
and a remainder. The integer quotient operation is referred to as integer division, and the integer
remainder operation is the modulus.12

Discussion

By the time we reach adulthood, we normally think of division as resulting in an answer that might
have a fractional part (a floating-point data type). This type of division is known as floating-point
division. However, division, when both operands are of the integer data type, may act differently,
depending on the programming language, and is called: integer division. Consider:

11 / 4
Because both operands are of the integer data type the evaluation of the expression (or answer)

would be 2 with no fractional part (it gets thrown away). Again, this type of division is called integer
division and it is what you learned in grade school the first time you learned about division.

Integer division as learned in grade school.

In the real world of data manipulation there are some things that are always handled in whole units
or numbers (integer data type). Fractions just don’t exist. To illustrate our example: I have 11 dollar
coins to distribute equally to my 4 children. How many do they each get? The answer is 2, with me
still having 3 left over (or with 3 still remaining in my hand). The answer is not 2 ¾ each or 2.75 for
each child. The dollar coins are not divisible into fractional pieces. Don’t try thinking out of the box
and pretend you’re a pirate. Using an axe and chopping the 3 remaining coins into pieces of eight.
Then, giving each child 2 coins and 6 pieces of eight or 2 6/8 or 2 ¾ or 2.75. If you do think this way,
I will change my example to cans of tomato soup. I dare you to try and chop up three cans of soup

1. Wikipedia: Division (mathematics)
2. Wikipedia: Modulo operation

92 | Integer Division and Modulus

and give each kid ¾ of a can. Better yet, living things like puppy dogs. After you divide them up with
an axe, most children will not want the ¾ of a dog.

What is modulus? It’s the other part of the answer for integer division. It’s the remainder.
Remember in grade school you would say, “Eleven divided by four is two remainder three.” In many
programming languages, the symbol for the modulus operator is the percent sign (%).

11 % 4
Thus, the answer or value of this expression is 3 or the remainder part of integer division.
Many compilers require that you have integer operands on both sides of the modulus operator or

you will get a compiler error. In other words, it does not make sense to use the modulus operator
with floating-point operands.

Don’t let the following items confuse you.
6 / 24 which is different from 6 % 24

How many times can you divide 24 into 6? Six divided by 24 is zero. This is different from: What is
the remainder of 6 divided by 24? Six, the remainder part is given by modulus.

Evaluate the following division expressions:

1. 14 / 4
2. 5 / 13
3. 7 / 2.0

Evaluate the following modulus expressions:

1. 14 % 4
2. 5 % 13
3. 7 % 2.0

Key Terms

integer division
Division with no fractional parts.

modulus
The remainder part of integer division.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Integer Division and Modulus | 93

Unary Operations
KENNETH LEROY BUSBEE

Overview

A unary operation is an operation with only one operand. As unary operations have only one
operand, they are evaluated before other operations containing them.1 Common unary operators
include Positive (+) and Negative (-).

Discussion

Unary positive also known as plus and unary negative also known as minus are unique operators.
The plus and minus when used with a constant value represent the concept that the values are
either positive or negative. Let’s consider:

+5 + -2
We have three operators in this order: unary positive, addition, and unary negative. The answer to

this expression is a positive 3. As you can see, one must differentiate between when the plus sign
means unary positive and when it means addition. Unary negative and subtraction have the same
problem. Let’s consider:

-2 - +5
The expression evaluates to negative 7. Let’s consider:
7 - -2

First constants that do not have a unary minus in front of them are assumed (the default) to be
positive. When you subtract a negative number it is like adding, thus the expression evaluates to
positive 9.

Negation – Unary Negative

The concept of negation is to take a value and change its sign, that is: flip it. If it is positive make it
negative and if it is negative make it positive. Mathematically, it is the following C++ code example,
given that money is an integer variable with a value of 6:

-money
money * -1

The above two expressions evaluate to the same value. In the first line, the value in the variable
money is fetched and then it’s negated to a negative 6. In the second line, the value in the variable
money is fetched and then it’s multiplied by negative 1 making the answer a negative 6.

Unary Positive – Worthless

Simply to satisfy symmetry, the unary positive was added to the C++ programming language as on

1. Wikipedia: Unary operation

94 | Unary Operations

operator. However, it is a totally worthless or useless operator and is rarely used. However, don’t be
confused the following expression is completely valid:

6 + +5
The second + sign is interpreted as unary positive. The first + sign is interpreted as addition.
money
+money
money * +1

For all three lines, if the value stored in money is 6 the value of the expression is 6. Even if the
value in money was negative 77 the value of the expression would be negative 77. The operator does
nothing because multiplying anything by 1 does not change its value.

Possible Confusion

Do not confuse the unary negative operator with decrement. Decrement changes the value in the
variable and thus is an Lvalue concept. Unary negative does not change the value of the variable
but uses it in an Rvalue context. It fetches the value and then negates that value. The original value
in the variable does not change.

Because there is no changing of the value associated with the identifier name, the identifier
name could represent a variable or named constant.

Exercises

Evaluate the following items involving unary positive and unary negative:

1. +10 – -2
2. -18 + 24
3. 4 – +3
4. +8 + – +5
5. +8 + / +5

Key Terms

minus
Aka unary negative.

plus
Aka unary positive.

unary negative
An operator that causes negation.

unary positive
A worthless operator almost never used.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Unary Operations | 95

Lvalue and Rvalue
KENNETH LEROY BUSBEE

Overview

Some programming languages use the idea of l-values and r-values, deriving from the typical
mode of evaluation on the left and right hand side of an assignment statement. An lvalue refers
to an object that persists beyond a single expression. An rvalue is a temporary value that does not
persist beyond the expression that uses it.1

Discussion

Lvalue and Rvalue refer to the left and right side of the assignment operator.
The Lvalue (pronounced: L value) concept refers to the requirement that the operand on the left
side of the assignment operator is modifiable, usually a variable. Rvalue concept pulls or fetches the
value of the expression or operand on the right side of the assignment operator. Some examples:

age = 39

The value 39 is pulled or fetched (Rvalue) and stored into the variable named age (Lvalue);
destroying the value previously stored in that variable.

voting_age = 18
age = voting_age

If the expression has a variable or named constant on the right side of the assignment operator,
it would pull or fetch the value stored in the variable or constant. The value 18 is pulled or fetched
from the variable named voting_age and stored into the variable named age.

age < 17

If the expression is a test expression or Boolean expression, the concept is still an Rvalue one. The
value in the identifier named age is pulled or fetched and used in the relational comparison of less
than.

JACK_BENNYS_AGE = 39
JACK_BENNYS_AGE = 65;

1. Wikipedia: Value (computer science)

96 | Lvalue and Rvalue

This is illegal because the identifier JACK_BENNYS_AGE does not have Lvalue properties. It is not a
modifiable data object, because it is a constant.

Some uses of the Lvalue and Rvalue can be confusing in languages that support increment and
decrement operators. Consider:

oldest = 55
age = oldest++

Postfix increment says to use my existing value then when you are done with the other operators;
increment me. Thus, the first use of the oldest variable is an Rvalue context where the existing value
of 55 is pulled or fetched and then assigned to the variable age; an Lvalue context. The second use
of the oldest variable is an Lvalue context wherein the value of the oldest is incremented from 55 to
56.

Key Terms

Lvalue
The requirement that the operand on the left side of the assignment operator is modifiable,
usually a variable.

Rvalue
Pulls or fetches the value stored in a variable or constant.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Lvalue and Rvalue | 97

Data Type Conversions
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

Changing a data type of a value is referred to as “type conversion”. There are two ways to do this:

1. Implicit – the change is implied
2. Explicit – the change is explicitly done with an operator or function

The value being changed may be:

1. Promotion – going from a smaller domain to a larger domain
2. Demotion – going from a larger domain to a smaller domain

Discussion

Implicit Type Conversion

Automatic conversion of a value from one data type to another by a programming language,
without the programmer specifically doing so, is called implicit type conversion. It happens
whenever a binary operator has two operands of different data types. Depending on the operator,
one of the operands is going to be converted to the data type of the other. It could be promoted or
demoted depending on the operator.

Implicit Promotion

55 + 1.75

In this example, the integer value 55 is converted to a floating-point value (most likely double) of
55.0. It was promoted.

Implicit Demotion
In programming languages that have explicit integer data types (C++, C#, Java), care must be

taken to avoid implicit demotion. For example:
int money;

money = 23.16;
In this example, the variable money is an integer. We are trying to move a floating-point value

23.16 into an integer storage location. This is demotion and the floating-point value usually gets
truncated to 23.

Promotion

Promotion is never a problem because the lower data type (smaller range of allowable values) is
a subset of the higher data type (larger range of allowable values). Promotion often occurs with

98 | Data Type Conversions

three of the standard data types: character, integer, and floating-point. The allowable values (or
domains) progress from one type to another. That is, the character data type values are a subset of
integer values and integer values are a subset of floating-point values; and within the floating-point
values, float values are a subset of double. Even though character data represent the alphabetic
letters, numeral digits (0 to 9) and other symbols (a period, $, comma, etc.) their bit pattern also
represent integer values from 0 to 255. This progression allows us to promote them up the chain
from character to integer to float to double.

Demotion

Demotion represents a potential problem with truncation or unpredictable results often occurring.
How do you fit an integer value of 456 into a character value? How do you fit the floating-point
value of 45656.453 into an integer value? Most compilers give a warning if it detects demotion
happening. A compiler warning does not stop the compilation process. It does warn the
programmer to check to see if the demotion is reasonable.

If I calculate the number of cans of soup to buy based on the number of people I am serving (say
8) and the servings per can (say 2.3), I would need 18.4 cans. I might want to demote the 18.4 into
an integer. It would truncate the 18.4 into 18 and because the value 18 is within the domain of an
integer data type, it should demote with the truncation side effect.

If I tried demoting a double that contained the number of stars in the Milky Way galaxy into an
integer, I might have a get an unpredictable result (assuming the number of stars is larger than
allowable values within the integer domain).

Explicit Type Conversion

Most languages have a method for the programmer to change or cast a value from one data
type to another; called explicit type conversion. Some languages support a cast operator. The
cast operator is a unary operator; it only has one operand and the operand is to the right of the
operator. The operator is a set of parentheses surrounding the new data type. Other languages have
functions that perform explicit type conversion. In each of the following examples, the expression
value would be 3.

Language Floating-Point to Integer Type Conversion Example

C++ (int) 3.14
C# Convert.ToInt32(3.14)
Java Math.floor(3.14)
JavaScript Math.floor(3.14)
Python int(3.14)
Swift Int(3.14)

In each of the following examples, the expression value would be 3.14.

Data Type Conversions | 99

Language String to Floating-Point Type Conversion Example

C++
#include <string.h>
std::stod("3.14")

C# Convert.ToDouble("3.14")
Java Double.parseDouble("3.14")
JavaScript parseFloat("3.14")
Python float("3.14")
Swift Double("3.14")

Key Terms

demotion
Going from a larger domain to a smaller domain.

explicit
Changing a value’s data type with the cast operator.

implicit
A value that has its data type changed automatically.

promotion
Going from a smaller domain to a larger domain.

truncation
The fractional part of a floating-point data type that is dropped when converted to an integer.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

100 | Data Type Conversions

Input-Process-Output Model
DAVE BRAUNSCHWEIG

Overview

The input–process–output (IPO) model is a widely used approach in systems analysis and software
engineering for describing the structure of an information processing program or another process.
Many introductory programming and systems analysis texts introduce this as the most basic
structure for describing a process.1

Discussion

A computer program or any other sort of process using the input-process-output model receives
inputs from a user or other source, does some computations on the inputs, and returns the results
of the computations. The system divides the work into three categories:2

• A requirement from the environment (input)
• A computation based on the requirement (process)
• A provision for the environment (output)

For example, a program might be written to convert Fahrenheit temperatures into Celsius
temperatures. Following the IPO model, the program must:

• Ask the user for the Fahrenheit temperature (input)
• Perform a calculation to convert the Fahrenheit temperature into the corresponding Celsius

temperature (process)
• Display the Celsius temperature (output)

Pseudocode

Function Main
... This program converts an input Fahrenheit temperature to Celsius.

Declare Real fahrenheit
Declare Real celsius

Output "Enter Fahrenheit temperature:"
Input fahrenheit

1. Wikipedia: IPO model
2. Wikipedia: IPO model

Input-Process-Output Model | 101

Assign celsius = (fahrenheit - 32) * 5 / 9

Output fahrenheit & "° Fahrenheit is " & celsius & "° Celsius"
End

Output

Enter Fahrenheit temperature:
100
100° Fahrenheit is 37.7777777777778° Celsius

102 | Input-Process-Output Model

Flowchart

Input-Process-Output Model | 103

References

• Wikiversity: Computer Programming
• Flowgorithm – Flowchart Programming Language

104 | Input-Process-Output Model

C++ Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic operations, and input in C++.

Data Types

// This program demonstrates variables, literal constants, and data types.

#include <iostream>
#include <sstream>

using namespace std;

int main() {
int i;
double d;
string s;
bool b;

i = 1234567890;
d = 1.23456789012345;
s = "string";
b = true;
cout << "Integer i = " << i << endl;
cout << "Double d = " << d << endl;
cout << "String s = " << s << endl;
cout << "Boolean b = " << b << endl;
return 0;

}

Output

Integer i = 1234567890
Real r = 1.23457
String s = string

C++ Examples | 105

Boolean b = 1

Discussion

Each code element represents:

• // begins a comment
• #include <iostream> includes standard input and output streams
• #include <sstream> includes standard string streams
• using namespace std allows reference to string , cout , and endl without

writing std::string , std::cout , and std::endl .
• int main() begins the main function, which returns an integer value
• { begins a block of code
• int i defines an integer variable named i
• ; ends each line of C++ code
• double d defines a double floating-point variable named d
• string s defines a string variable named s
• bool b defines a Boolean variable named b
• i = , d = , s =, b = assign literal values to the corresponding variables
• cout is standard output
• << directs the next element to standard output
• endl ends the current line
• return 0 returns the value 0 from main, indicating the main function completed

successfully
• } ends a block of code

Arithmetic

// This program demonstrates arithmetic operations.

#include <iostream>
#include <sstream>

using namespace std;

int main() {
int a;
int b;

a = 3;
b = 2;

106 | C++ Examples

cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "a + b = " << a + b << endl;
cout << "a - b = " << a - b << endl;
cout << "a * b = " << a * b << endl;
cout << "a / b = " << a / b << endl;
cout << "a % b = " << a + b << endl;
return 0;

}

Output

a = 3
b = 2
a + b = 5
a - b = 1
a * b = 6
a / b = 1
a % b = 5

Discussion

Each new code element represents:

• +, -, *, /, and % represent addition, subtraction, multiplication, division, and
modulus, respectively.

Temperature

// This program converts an input Fahrenheit temperature to Celsius.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/C%2B%2B_Programming
#include <iostream>

using namespace std;

C++ Examples | 107

int main() {
double fahrenheit;
double celsius;

cout << "Enter Fahrenheit temperature:" << endl;
cin >> fahrenheit;

celsius = (fahrenheit - 32) * 5 / 9;

cout << fahrenheit << "° Fahrenheit is " << celsius << "° Celsius" << endl;

return 0;
}

Output

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7778° Celsius

Discussion

Each new code element represents:

• cin >> fahrenheit reads the next integer from standard input and assigns the value
to the fahrenheit variable

References

• Wikiversity: Computer Programming

108 | C++ Examples

C# Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic operations, and input in C#.

Data Types

// This program demonstrates variables, literal constants, and data types.

using System;

public class DataTypes
{

public static void Main(string[] args)
{

int i;
double d;
string s;
Boolean b;

i = 1234567890;
d = 1.23456789012345;
s = "string";
b = true;

Console.WriteLine("Integer i = " + i);
Console.WriteLine("Double d = " + d);
Console.WriteLine("String s = " + s);
Console.WriteLine("Boolean b = " + b);

}
}

Output

Integer i = 1234567890
Double d = 1.23456789012345

C# Examples | 109

String s = string
Boolean b = True

Discussion

Each code element represents:

• // begins a comment
• using System allows references to Boolean and Console without writing

System.Boolean and System.Console
• public class DataTypes begins the Data Types program
• { begins a block of code
• public static void Main() begins the main function
• int i defines an integer variable named i
• ; ends each line of C# code
• double d defines a double floating-point variable named d
• string s defines a string variable named s
• Boolean b defines a Boolean variable named b
• i = , d = , s =, b = assign literal values to the corresponding variables
• Console.WriteLine() calls the standard output write line function
• } ends a block of code

Arithmetic

// This program demonstrates arithmetic operations.

using System;

public class Arithmetic
{

public static void Main(string[] args)
{

int a;
int b;

a = 3;
b = 2;

Console.WriteLine("a = " + a);
Console.WriteLine("b = " + b);
Console.WriteLine("a + b = " + (a + b));

110 | C# Examples

Console.WriteLine("a - b = " + (a - b));
Console.WriteLine("a * b = " + a * b);
Console.WriteLine("a / b = " + a / b);
Console.WriteLine("a % b = " + (a + b));

}
}

Output

a = 3
b = 2
a + b = 5
a - b = 1
a * b = 6
a / b = 1
a % b = 5

Discussion

Each new code element represents:

• +, -, *, /, and % represent addition, subtraction, multiplication, division, and
modulus, respectively.

Temperature

// This program converts an input Fahrenheit temperature to Celsius.

using System;

public class Temperature
{

public static void Main(string[] args)
{

double fahrenheit;
double celsius;

Console.WriteLine("Enter Fahrenheit temperature:");
fahrenheit = Convert.ToDouble(Console.ReadLine());

C# Examples | 111

celsius = (fahrenheit - 32) * 5 / 9;

Console.WriteLine(
fahrenheit.ToString() + "° Fahrenheit is " +
celsius.ToString() + "° Celsius" + "\n");

}
}

Output

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7777777777778° Celsius

Discussion

Each new code element represents:

• Console.ReadLine() reads the next line from standard input
• Convert.ToDouble converts the input to a double floating-point value

References

• Wikiversity: Computer Programming

112 | C# Examples

Java Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic operations, and input in Java.

Data Types

// This program demonstrates variables, literal constants, and data types.

public class Main {
public static void main(String[] args) {

int i;
double d;
String s;
boolean b;

i = 1234567890;
d = 1.23456789012345;
s = "string";
b = true;

System.out.println("Integer i = " + i);
System.out.println("Double d = " + d);
System.out.println("String s = " + s);
System.out.println("Boolean b = " + b);

}
}

Output

Integer i = 1234567890
Double d = 1.23456789012345
String s = string
Boolean b = true

Java Examples | 113

Discussion

Each code element represents:

• // begins a comment
• public class DataTypes begins the Data Types program
• { begins a block of code
• public static void main(String[] args) begins the main function
• int i defines an integer variable named i
• ; ends each line of Java code
• double d defines a double floating-point variable named d
• string s defines a string variable named s
• boolean b defines a Boolean variable named b
• i = , d = , s =, b = assign literal values to the corresponding variables
• System.out.println calls the standard output print line function
• } ends a block of code

Arithmetic

// This program demonstrates arithmetic operations.

public class Main {
public static void main(String[] args) {

int a;
int b;

a = 3;
b = 2;

System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("a + b = " + (a + b));
System.out.println("a - b = " + (a - b));
System.out.println("a * b = " + a * b);
System.out.println("a / b = " + a / b);
System.out.println("a % b = " + (a % b));

}
}

114 | Java Examples

Output

a = 3
b = 2
a + b = 5
a - b = 1
a * b = 6
a / b = 1
a % b = 1

Discussion

Each new code element represents:

• +, -, *, /, and % represent addition, subtraction, multiplication, division, and
modulus, respectively.

Temperature

// This program converts an input Fahrenheit temperature to Celsius.

import java.util.*;

public class Main {
private static Scanner input = new Scanner(System.in);

public static void main(String[] args) {
double fahrenheit;
double celsius;

System.out.println("Enter Fahrenheit temperature:");
fahrenheit = input.nextDouble();

celsius = (fahrenheit - 32) * 5 / 9;

System.out.println(Double.toString(fahrenheit) + "° Fahrenheit is " + celsius + "° Celsius");
}

}

Java Examples | 115

Output

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7777777777778° Celsius

Discussion

Each new code element represents:

• private static Scanner input ... defines an object to read from standard
input

• input.nextDouble() reads input as a double floating-point value

References

• Wikiversity: Computer Programming

116 | Java Examples

JavaScript Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic operations, and input in JavaScript.

Data Types

// This program demonstrates variables, literal constants, and data types.

var n;
var s;
var b;

n = 1.23456789012345;
s = "string";
b = true;

output("Number n = " + n);
output("String s = " + s);
output("Boolean b = " + b);

// Display output to the current environment
function output(text) {

if (typeof document === 'object') {
document.write(text);

}
else if (typeof console === 'object') {

console.log(text);
}
else {

print(text);
}

}

JavaScript Examples | 117

Output

Number n = 1.23456789012345
String s = string
Boolean b = true

Discussion

Each code element represents:

◦ // begins a comment
◦ var n, s, and b define variables
◦ ; ends each line of JavaScript code
◦ i = , d = , s =, b = assign literal values to the corresponding variables
◦ output() calls the output function
◦ function output(text) defines a output function that checks the JavaScript

environment and writes to the current document, the console, or standard output as
appropriate.

Arithmetic

// This program demonstrates arithmetic operations.

var a;
var b;

a = 3;
b = 2;
output("a = " + a);
output("b = " + b);
output("a + b = " + (a + b));
output("a - b = " + (a - b));
output("a * b = " + a * b);
output("a / b = " + a / b);
output("a % b = " + (a % b));

// Display output to the current environment
function output(text) {

if (typeof document === 'object') {
document.write(text);

}

118 | JavaScript Examples

else if (typeof console === 'object') {
console.log(text);

}
else {

print(text);
}

}

Output

a = 3
b = 2
a + b = 5
a - b = 1
a * b = 6
a / b = 1.5
a % b = 1

Discussion

Each new code element represents:

• +, -, *, /, and % represent addition, subtraction, multiplication, division, and
modulus, respectively.

Temperature

// This program converts an input Fahrenheit temperature to Celsius.

var fahrenheit;
var celsius;

output("Enter Fahrenheit temperature:");
fahrenheit = input();

celsius = (fahrenheit - 32) * 5 / 9;

output(fahrenheit.toString() + "° Fahrenheit is " + celsius + "° Celsius");

JavaScript Examples | 119

// Get input from the current environment
function input(text) {

if (typeof window === 'object') {
return prompt(text)

}
else if (typeof console === 'object') {

const rls = require('readline-sync');
var value = rls.question(text);
return value;

}
else {

output(text);
var isr = new java.io.InputStreamReader(java.lang.System.in);
var br = new java.io.BufferedReader(isr);
var line = br.readLine();
return line.trim();

}
}

// Display output to the current environment
function output(text) {

if (typeof document === 'object') {
document.write(text);

}
else if (typeof console === 'object') {

console.log(text);
}
else {

print(text);
}

}

Output

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7777777777778° Celsius

120 | JavaScript Examples

Discussion

Each new code element represents:

• function input(text) defines a function that checks the JavaScript environment and
reads from the window, the console, or standard input as appropriate.

References

• Wikiversity: Computer Programming

JavaScript Examples | 121

Python Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic operations, and input in Python.

Data Types

This program demonstrates variables, literal constants, and data types.

i = 1234567890
f = 1.23456789012345
s = "string"
b = True

print("Integer i =", i)
print("Float f =", f)
print("String s =", s)
print("Boolean b =", b)

Output

Integer i = 1234567890
Float f = 1.23456789012345
String s = string
Boolean b = true

Discussion

Each code element represents:

• # begins a comment
• i = , d = , s =, b = assign literal values to the corresponding variables
• print() calls the print function

122 | Python Examples

Arithmetic

This program demonstrates arithmetic operations.

a = 3
b = 2

print("a =", a)
print("b =", b)
print("a + b =", (a + b))
print("a - b =", (a - b))
print("a * b =", a * b)
print("a / b =", a / b)
print("a % b =", (a % b))

Output

a = 3
b = 2
a + b = 5
a - b = 1
a * b = 6
a / b = 1.5
a % b = 1

Discussion

Each new code element represents:

• +, -, *, /, and % represent addition, subtraction, multiplication, division, and
modulus, respectively.

Temperature

This program converts an input Fahrenheit temperature to Celsius.

print("Enter Fahrenheit temperature:")
fahrenheit = float(input())

Python Examples | 123

celsius = (fahrenheit - 32) * 5 / 9

print(str(fahrenheit) + "° Fahrenheit is " + str(celsius) + "° Celsius")

Output

Enter Fahrenheit temperature:
100

100.0° Fahrenheit is 37.77777777777778° Celsius

Discussion

Each new code element represents:

• input() reads the next line from standard input
• float() converts the input to a floating-point value

References

• Wikiversity: Computer Programming

124 | Python Examples

Swift Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic operations, and input in Swift.

Data Types

// This program demonstrates variables, literal constants, and data types.

var i: Int
var d: Double
var s: String
var b: Bool

i = 1234567890
d = 1.23456789012345
s = "string"
b = true

print("Integer i =", i)
print("Double d =", d)
print("String s =", s)
print("Boolean b =", b)

Output

Integer i = 1234567890
Double d = 1.23456789012345
String s = string
Boolean b = true

Discussion

Each code element represents:

Swift Examples | 125

• // begins a comment
• var i: Int defines an integer variable named i
• var d: Double defines a double floating-point variable named d
• var s: String defines a string variable named s
• var b: Bool defines a Boolean variable named b
• i = , d = , s =, b = assign literal values to the corresponding variables
• print() calls the print function

Arithmetic

// This program demonstrates arithmetic operations.

var a: Int
var b: Int

a = 3
b = 2

print("a =", a)
print("b =", b)
print("a + b =", (a + b))
print("a - b =", (a - b))
print("a * b =", a * b)
print("a / b =", a / b)
print("a % b =", (a % b))

Output

a = 3
b = 2
a + b = 5
a - b = 1
a * b = 6
a / b = 1
a % b = 1

Discussion

Each new code element represents:

126 | Swift Examples

• +, -, *, /, and % represent addition, subtraction, multiplication, division, and
modulus, respectively.

Temperature

// This program converts a Fahrenheit temperature to Celsius.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

var fahrenheit: Double
var celsius: Double

print("Enter Fahrenheit temperature:")
fahrenheit = Double(readLine()!)!

celsius = (fahrenheit - 32) * 5 / 9

print(String(fahrenheit) + "° Fahrenheit is " + String(celsius) + "° Celsius")

Output

Enter Fahrenheit temperature:
100

100.0° Fahrenheit is 37.7777777777778° Celsius

Discussion

Each new code element represents:

• readline()! reads the next line from standard input
• Double()! converts the input to a double floating-point value
• String() converts the output numeric value to a string

References

• Wikiversity: Computer Programming

Swift Examples | 127

Practice: Data and Operators
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Review Questions

True or false:

1. A data type defines a set of values and the set of operations that can be applied to those
values.

2. Reserved or key words can be used as identifier names.
3. The concept of precedence says that some operators (like multiplication and division) are to be

executed before other operators (like addition and subtraction).
4. An operator that needs two operands, will promote one of the operands as needed to make

both operands be of the same data type.
5. Parentheses change the precedence of operators.
6. Integer data types are stored with a mantissa and an exponent.
7. Strings are identified by single quote marks in most programming languages.
8. An operand is a value that receives the operator’s action.
9. Arithmetic assignment is a shorter way to write some expressions.

10. Integer division is rarely used in computer programming.

Answers:

1. true
2. false
3. true
4. true
5. false – Parentheses change the order of evaluation in an expression.
6. false
7. false
8. true
9. true

10. false

Short Answer:

1. A men’s clothing store that caters to the very rich wants to create a database for its customers
that records clothing measurements. They need to record information for shoes, socks, pants,
dress shirts and casual shirts. HINT: You may need more than 5 data items.

2. The sequence operator can be used when declaring multiple identifier names for variables or
constants of the same data type. Is this a good or bad programming habit and why?

Activities

Complete the following activities using pseudocode, a flowcharting tool, or your selected
programming language. Use appropriate data types for each variable, and include separate

128 | Practice: Data and Operators

statements for input, processing, and output. Create test data to validate the accuracy of each
program. Add comments at the top of the program and include references to any resources used.

1. Create a program to prompt the user for hours and rate per hour and then calculate and
display their weekly, monthly, and annual gross pay (hours * rate). Base monthly and
annual calculations on 12 months per year and 52 weeks per year.1

2. Create a program that asks the user how old they are in years, and then calculate and
display their approximate age in months, days, hours, and seconds. For example, a person 1
year old is 12 months old, 365 days old, etc.

3. Review MathsIsFun: US Standard Lengths. Create a program that asks the user for a
distance in miles, and then calculate and display the distance in yards, feet, and inches, or
ask the user for a distance in miles, and then calculate and display the distance in
kilometers, meters, and centimeters.

4. Review MathsIsFun: Area of Plane Shapes. Create a program that asks the user for the
dimensions of different shapes and then calculate and display the area of the shapes. Do
not include shape choices. That will come later. For now, just include multiple shape
calculations in sequence.

5. Create a program that calculates the area of a room to determine the amount of floor
covering required. The room is rectangular with the dimensions measured in feet with
decimal fractions. The output needs to be in square yards. There are 3 linear feet (9 square
feet) to a yard.

6. Create a program that helps the user determine how much paint is required to paint a
room and how much it will cost. Ask the user for the length, width, and height of a room,
the price of a gallon of paint, and the number of square feet that a gallon of paint will
cover. Calculate the total area of the four walls as 2 * length * height + 2 *
width * height Calculate the number of gallons as: total area / square
feet per gallon Note: You must round up to the next full gallon. To round up, add
0.9999 and then convert the resulting value to an integer. Calculate the total cost of

the paint as: gallons * price per gallon .
7. Review MathsIsFun: Order of Operations. Create a program that demonstrates order of

operations to the user. Include parentheses, exponents, multiplication, division, addition,
and subtraction in your program. Use variables for the calculations and label the output.
For example, part of the program might display:
1 + 2 * 3 = 7
(1 + 2) * 3 = 9
...

8. Review Wikipedia: Data type. Create a program that demonstrates integer, floating point,
and character or string data, and demonstrate converting between data types. For
example, user input is always a string, but adding string values of “1” + “1” is typically “11”,
whereas, adding numeric values of 1 + 1 is 2. Use variables for the calculations and label the
output.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

1. PythonLearn: Variables, expressions, and statements

Practice: Data and Operators | 129

PART III

FUNCTIONS

Overview

This chapter introduces modular programming, functions, parameters, return values, and scope.

Chapter Outline

• Modular Programming
• Hierarchy or Structure Chart
• Function Examples
• Parameters and Arguments
• Call by Value vs. Call by Reference
• Return Statement
• Void Data Type
• Scope
• Programming Style
• Standard Libraries
• Code Examples

◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.
2. Given example pseudocode, flowcharts, and source code, create a program that uses

functions, parameters, and return values to solve a given problem.

Functions | 131

Modular Programming
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

Modular programming is a software design technique that emphasizes separating the
functionality of a program into independent, interchangeable modules, such that each contains
everything necessary to execute only one aspect of the desired functionality.1

Concept of Modularization

One of the most important concepts of programming is the ability to group some lines of code
into a unit that can be included in our program. The original wording for this was a sub-program.
Other names include: macro, sub-routine, procedure, module and function. We are going to use the
term function for that is what they are called in most of the predominant programming languages
of today. Functions are important because they allow us to take large complicated programs and to
divide them into smaller manageable pieces. Because the function is a smaller piece of the overall
program, we can concentrate on what we want it to do and test it to make sure it works properly.
Generally, functions fall into two categories:

1. Program Control – Functions used to simply sub-divide and control the program. These
functions are unique to the program being written. Other programs may use similar functions,
maybe even functions with the same name, but the content of the functions are almost
always very different.

2. Specific Task – Functions designed to be used with several programs. These functions perform
a specific task and thus are usable in many different programs because the other programs
also need to do the specific task. Specific task functions are sometimes referred to as building
blocks. Because they are already coded and tested, we can use them with confidence to more
efficiently write a large program.

The main program must establish the existence of functions used in that program. Depending on
the programming language, there is a formal way to:

1. define a function (its definition or the code it will execute)
2. call a function
3. declare a function (a prototype is a declaration to a compiler)

Note: Defining and calling functions are common activities across programming languages.

1. Wikipedia: Modular programming

Modular Programming | 133

Declaring functions with prototypes is specific to certain programming languages, including C and
C++.

Program Control functions normally do not communicate information to each other but use a
common area for variable storage. Specific Task functions are constructed so that data can be
communicated between the calling program piece (which is usually another function) and the
function being called. This ability to communicate data is what allows us to build a specific task
function that may be used in many programs. The rules for how the data is communicated in and
out of a function vary greatly by programming language, but the concept is the same. The data
items passed (or communicated) are called parameters. Thus the wording: parameter passing. The
four data communication options include:

1. no communication in with no communication out
2. no communication in with some communication out
3. some communication in with some communication out
4. some communication in with no communication out

Program Control Function

The main program piece in many programming languages is a special function with the identifier
name of main. The special or uniqueness of main as a function is that this is where the program
starts executing code and this is where it usually stops executing code. It is often the first function
defined in a program and appears after the area used for includes, other technical items,
declaration of prototypes, the listing of global constants and variables and any other items generally
needed by the program. The code to define the function main is provided; however, it is not
prototyped or usually called like other functions within a program.

Specific Task Function

We often have the need to perform a specific task that might be used in many programs.
General layout of a function in a statically-typed language such as C++, C#, and Java:

<return value data type> function identifier name(<data type> <identifier name for input value>) {
//lines of code;
return <value>;

}

General layout of a function in a dynamically typed language such as JavaScript and Python:

function identifier name(<identifier name for input value>) {
//lines of code;
return <value>;

}

134 | Modular Programming

def function identifier name(<identifier name for input value>):
//lines of code
return <value>

In some programming languages, functions have a set of braces {} used for identifying a group or
block of statements or lines of code. Other languages use indenting or some type of begin and end
statements to identify a code block. There are normally several lines of code within a function.

Programming languages will either have specific task functions defined before or after the main
function, depending on coding conventions for the given language.

When you call a function you use its identifier name and a set of parentheses. You place any
data items you are passing inside the parentheses. After our program is compiled and running, the
lines of code in the main function are executed, and when it gets to the calling of a specific task
function, the control of the program moves to the function and starts executing the lines of code
in the function. When it’s done with the lines of code, it will return to the place in the program that
called it (in our example the function main) and continue with the code in that function.

Program Layout

Most programs have several items before the functions, including:

1. Documentation – Most programs have a comment area at the start of the program with a
variety of comments pertinent to the program.

2. Include or import statements used to access standard library functions.
3. Language-specific code such as namespace references or function prototypes.
4. Global or module-level constants and variables, when required.

Key Terms

braces
Used to identify a block of code in languages such as C++, C#, Java, and JavaScript.

function
What modules are called in many predominant programming languages of today.

function call
A function’s using or invoking of another function.

function definition
The code that defines what a function does.

function prototype
A function’s communications declaration to a compiler.

identifier name
The name given by the programmer to identify a function or other program items such as
variables.

modularization
The ability to group some lines of code into a unit that can be included in our program.

parameter passing
How the data is communicated in to and out of a function.

Modular Programming | 135

program control
Functions used to simply subdivide and control the program.

specific task
Functions designed to be used with several programs.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

136 | Modular Programming

Hierarchy or Structure Chart
KENNETH LEROY BUSBEE

Overview

The hierarchy chart (also known as a structure chart) shows the relationship between various
modules. Its name comes from its general use in showing the organization (or structure) of a
business. The President at the top, then vice presidents on the next level, etc. Within the context
of a computer program, it shows the relationship between modules (or functions). Detail logic of
the program is not presented. It does represent the organization of the functions used within the
program showing which functions are calling on a subordinate function. Those above are calling
those on the next level down.

Hierarchy charts are created by the programmer to help document a program. They convey the
big picture of the modules (or functions) used in a program.

Hierarchy or Structure chart for a program that has five functions.

Hierarchy or Structure Chart | 137

Key Terms

hierarchy chart
Convey the relationship or big picture of the various functions in a program.

structure chart
Another name for a hierarchy chart.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

138 | Hierarchy or Structure Chart

Function Examples
DAVE BRAUNSCHWEIG

Overview

The following pseudocode and flowchart examples take the Temperature program from the
previous chapter and separate the functionality into independent functions for input, processing,
and output, as GetFahrenheit, CalculateCelsius, and DisplayResult, respectively.

Discussion

As independent functions, each function acts as a miniature program, with its own input,
processing, and output. As you review the following code, note which functions have parameters
(input) and which functions have return values (output). Parameters and return values will be
discussed in the next few pages.

Function Purpose Parameters (input) Return Value (output)

Main main program none none

GetFahrenheit input none fahrenheit

CalculateCelsius processing fahrenheit celsius

DisplayResult output fahrenheit, celsius none

Pseudocode

Function Main
... This program asks the user for a Fahrenheit temperature,
... converts the given temperature to Celsius,
... and displays the results.

Declare Real fahrenheit
Declare Real celsius

Assign fahrenheit = GetFahrenheit()
Assign celsius = CalculateCelsius(fahrenheit)
Call DisplayResult(fahrenheit, celsius)

End

Function GetFahrenheit
Declare Real fahrenheit

Function Examples | 139

Output "Enter Fahrenheit temperature:"
Input fahrenheit

Return Real fahrenheit

Function CalculateCelsius (Real fahrenheit)
Declare Real celsius

Assign celsius = (fahrenheit - 32) * 5 / 9
Return Real celsius

Function DisplayResult (Real fahrenheit, Real celsius)
Output fahrenheit & "° Fahrenheit is " & celsius & "° Celsius"

End

Output

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7777777777778° Celsius

140 | Function Examples

Flowchart

Function Examples | 141

References

• Wikiversity: Computer Programming
• Flowgorithm – Flowchart Programming Language

142 | Function Examples

Parameters and Arguments
DAVE BRAUNSCHWEIG

Overview

A parameter is a special kind of variable used in a function to refer to one of the pieces of data
provided as input to the function. These pieces of data are the values of the arguments with which
the function is going to be called/invoked. An ordered list of parameters is usually included in the
definition of a function, so that, each time the function is called, its arguments for that call are
evaluated, and the resulting values can be assigned to the corresponding parameters.1

Discussion

Recall that the modular programming approach separates the functionality of a program into
independent modules. To separate the functionality of one function from another, each function is
given its own unique input variables, called parameters. The parameter values, called arguments,
are passed to the function when the function is called. Consider the following function pseudocode:

Function CalculateCelsius (Real fahrenheit)
Declare Real celsius

Assign celsius = (fahrenheit - 32) * 5 / 9
Return Real celsius

If the CalculateCelsius function is called passing in the value 100, as in
CalculateCelsius(100) , the parameter is fahrenheit and the argument is
100 . The terms parameter and argument are often used interchangeably. However, parameter

refers to the variable identifier (fahrenheit) while argument refers to the variable value (100).
Functions may have no parameters or multiple parameters. Consider the following function

pseudocode:

Function DisplayResult (Real fahrenheit, Real celsius)
Output fahrenheit & "° Fahrenheit is " & celsius & "° Celsius"

End

If the DisplayResult function is called passing in the values 98.6 and 37.0, as in
DisplayResults(98.6, 37.0) , the argument or value for the fahrenheit parameter is 98.6

and the argument or value for the celsius parameter is 37.0. Note that the arguments are passed

1. Wikipedia: Parameter (computer programming)

Parameters and Arguments | 143

positionally. Calling DisplayResults(37.0, 98.6) would result in incorrect output, as the
value of fahrenheit would be 37.0 and the value of celsius would be 98.6.

Some programming languages, such as Python, support named parameters. When calling
functions using named parameters, parameter names and values are used, and positions are
ignored. When names are not used, arguments are identified by position. For example, any of the
following function calls would be valid:

CalculateCelsius(98.6, 37.0)
CalculateCelsius(fahrenheit=98.6, celsius=37.0)
CalculateCelsius(celsius=37.0, fahrenheit=98.6)

Key Terms

argument
A value provided as input to a function.

parameter
A variable identifier provided as input to a function.

References

• Wikiversity: Computer Programming

144 | Parameters and Arguments

Call by Value vs. Call by Reference
DAVE BRAUNSCHWEIG

Overview

In call by value, a parameter acts within the function as a new local variable initialized to the value of
the argument (a local (isolated) copy of the argument). In call by reference, the argument variable
supplied by the caller can be affected by actions within the called function.1

Discussion

Call by Value

Within most current programming languages, parameters are passed by value by default, with
the argument as a copy of the calling value. Arguments are isolated, and functions are free to
make changes to parameter values without any risk of impact to the calling function. Consider the
following pseudocode:

Function Main
Declare Real fahrenheit

Assign fahrenheit = 100
Output "Main fahrenheit = " & fahrenheit
Call ChangeFahrenheit(fahrenheit)
Output "Main fahrenheit = " & fahrenheit

End

Function ChangeFahrenheit (Real fahrenheit)
Output "ChangeFahrenheit fahrenheit = " & fahrenheit
Assign fahrenheit = 0
Output "ChangeFahrenheit fahrenheit = " & fahrenheit

End

1. Wikipedia: Parameter (computer programming)

Call by Value vs. Call by Reference | 145

Output

Main fahrenheit = 100
ChangeFahrenheit fahrenheit = 100
ChangeFahrenheit fahrenheit = 0
Main fahrenheit = 100

In English, the Main function assigns the value 100 to the variable fahrenheit, displays that value,
and then calls ChangeFahrenheit passing a copy of that value. The called function displays the
argument, changes it, and displays it again. Execution returns to the calling function, and Main
displays the value of the original variable. With call by value, the variable fahrenheit in the calling
function and the parameter fahrenheit in the called function refer to different memory addresses,
and the called function cannot change the value of the variable in the calling function.

Call by Reference

If a programming language uses or supports call by reference, the variable in the calling function
and the parameter in the called function refer to the same memory address, and the called function
may change the value of the variable in the calling function. Using the same code example as
above, call by reference output would change to:

Main fahrenheit = 100
ChangeFahrenheit fahrenheit = 100
ChangeFahrenheit fahrenheit = 0
Main fahrenheit = 0

Programming languages that support both call by value and call by reference use some type of key
word or symbol to indicate which parameter passing method is being used.

Language Call By Value Call by Reference

C++ default use ¶meter in called function

C# default use ref parameter in calling and called functions

Java default applies to arrays and objects

JavaScript default applies to arrays and objects

Python default applies to arrays (lists) and mutable objects

Arrays and objects are covered in later chapters.

Key Terms

call by reference
Parameters passed by calling functions may be modified by called functions.

146 | Call by Value vs. Call by Reference

call by value
Parameters passed by calling functions cannot be modified by called functions.

References

• Wikiversity: Computer Programming

Call by Value vs. Call by Reference | 147

Return Statement
DAVE BRAUNSCHWEIG AND KENNETH LEROY BUSBEE

Overview

A return statement causes execution to leave the current function and resume at the point in the
code immediately after where the function was called. Return statements in many languages allow
a function to specify a return value to be passed back to the code that called the function.1

Discussion

The return statement exits a function and returns to the statement where the function was called.
Most programming languages support optionally returning a single value to the calling function.
Consider the following pseudocode:

Function Main
...
Assign fahrenheit = GetFahrenheit()
...

End

Function GetFahrenheit
Declare Real fahrenheit

Output "Enter Fahrenheit temperature:"
Input fahrenheit

Return Real fahrenheit

In English, the Main function calls the GetFahrenheit function, passing in no parameters. The
GetFahrenheit function retrieves input from the user and returns that input back to the main
function, where it is assigned to the variable fahrenheit. In this example, the Main function has no
return value.

Note that functions are independent, and each function must declare its own variables. While
both functions have a variable named fahrenheit, they are not the same variable. Each variable
refers to a different location in memory. Just as parameters by default are passed by position rather
than by name, return values are also passed by position rather than by name. The following code
would generate the same results.

1. Wikipedia: Return statement

148 | Return Statement

Function Main
...
Assign fahrenheit = GetTemperature()
...

End

Function GetTemperature
Declare Real temperature

Output "Enter Fahrenheit temperature:"
Input temperature

Return Real temperature

Most programming languages support either zero or one return value from a function. There are
some older programming languages where return values are not supported. In those languages,
the modules are often referred to as subroutines rather than functions. There are also programming
languages that support multiple return values in a single return statement, however, only single
return values or no return value will be used in this book.

Key Terms

return
A branching control structure that causes a function to jump back to the function that called
it.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

Return Statement | 149

Void Data Type
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

The void data type, similar to the Nothing data type described earlier, is the data type for the result
of a function that returns normally, but does not provide a result value to its caller.1

Discussion

The void data type has no values and no operations. It’s a data type that represents the lack of a
data type.

Language Reserved Word

C++ void
C# void
Java void
JavaScript void
Python N/A

Swift Void

Many programming languages need a data type to define the lack of return value to indicate
that nothing is being returned. The void data type is typically used in the definition and prototyping
of functions to indicate that either nothing is being passed in and/or nothing is being returned.

Key Terms

void data type
A data type that has no values or operators and is used to represent nothing.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

1. Wikipedia: Void type

150 | Void Data Type

Scope
KENNETH LEROY BUSBEE

Overview

The scope of an identifier name binding – an association of a name to an entity, such as a variable
– is the region of a computer program where the binding is valid: where the name can be used to
refer to the entity. Such a region is referred to as a scope block. In other parts of the program, the
name may refer to a different entity (it may have a different binding), or to nothing at all (it may be
unbound).1

Discussion

Scope is the area of the program where an item (be it variable, constant, function, etc.) that has
an identifier name is recognized. In our discussion, we will use a variable and the place within a
program where the variable is defined determines its scope.

Global scope (and by extension global data storage) occurs when a variable is defined “outside
of a function”. When compiling the program it creates the storage area for the variable within the
program’s data area as part of the object code. The object code has a machine code piece, a data
area, and linker resolution instructions. Because the variable has global scope it is available to all of
the functions within your source code. It can even be made available to functions in other object
modules that will be linked to your code; however, we will forgo that explanation now. A key wording
change should be learned at this point. Although the variable has global scope, technically it is
available only from the point of definition to the end of the program source code. That is why
most variables with global scope are placed near the top of the source code before any functions.
This way they are available to all of the functions.

Local scope (and by extension local data storage) occurs when a variable is defined “inside of a
function”. When compiling, the compiler creates machine instructions that will direct the creation
of storage locations on an area known as the stack which is part of the computer’s memory. These
memory locations exist until the function completes its task and returns to its calling function. In
assembly language, we talk about items being pushed onto the stack and popped off the stack
when the function terminates. Thus, the stack is a reusable area of memory being used by all
functions and released as functions terminate. Although the variable has local scope, technically it
is available only from the point of definition to the end of the function. The parameter passing of
data items into a function establishes them as local variables. Additionally, any other variables or
constants needed by the function usually occur near the top of the function definition so that they
are available during the entire execution of the function’s code.

Scope is an important concept for modularization. Program control functions may use global
scope for variables and constants placing them near the top of the program before any
functions. Specific task functions use only local scope variables by passing data as needed into
the function with parameter passing and creating local variables and constants as needed. Any
information that needs to be communicated back to the calling function is again done via
parameter passing. This closed communications model that passes all data into and out of a

1. Wikipedia: Scope (computer science)

Scope | 151

function creates an important predecessor concept for encapsulation which is used in object-
oriented programming.

Key Terms

data area
A part of an object code file used for storage of data.

global scope
Data storage defined outside of a function.

local scope
Data storage defined inside of a function.

scope
The area of a source code file where an identifier name is recognized.

stack
A part of the computer’s memory used for storage of data.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

152 | Scope

Programming Style
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

Programming style is a set of rules or guidelines used when writing the source code for a computer
program. Following a particular programming style will help programmers read and understand
source code conforming to the style, and help to avoid introducing errors.1

Discussion

Within the programming industry there is a desire to make software programs easy to maintain.
The desire centers on money. Simply put, it costs less money to maintain a well written program.
One important aspect of program maintenance is making source code listings clear and as easy to
read as possible. To that end we will consider the following:

1. Documentation
2. Vertical Alignment
3. Comments
4. Indentation
5. Meaningful Identifier Names Consistently Typed
6. Appropriate use of Typedef

The above items are not needed in order for the source code to compile. Technically the compiler
does not read the source code the way humans read the source code. But that is exactly the point;
the desire is to make the source code easier for humans to read. You should not be confused
between what is possible (technically will run) and what is okay (acceptable good programming
practice that leads to readable code).

For each of these items, check style guides for your selected programming language to
determine standards and best practices. The following are general guidelines to consider.

Documentation

Documentation is usually placed at the top of the program using several comment lines. The
amount of information would vary based on the requirements or standards of the company who is
paying its employees or independent contractors to write the code.

Vertical Alignment

You see this within the documentation area. All of the items are aligned up within the same

1. Wikipedia: Programming style

Programming Style | 153

column. This vertical alignment occurs again when variables are defined. When declaring variables
or constants many textbooks put several items on one line; like this:

float length, width, height;

However common this is in textbooks, it would generally not be acceptable to standards used in
most companies. You should declare each item on its own line; like this:

float length;
float width;
float height;

This method of using one item per line is more readable by humans. It is quicker to find an
identifier name because you can read the list vertically faster than searching horizontally. Some
programmers list them in alphabetic order.

The lines of code inside functions are also aligned vertically and typically indented two or four
spaces from the left. The indentation helps set the block off visually.

Comments

Experts have varying viewpoints on whether, and when, comments are appropriate in source code.
Some assert that source code should be written with few comments, on the basis that the source
code should be self-explanatory or self-documenting. Others suggest code should be extensively
commented, with over 50% of the non-whitespace characters in source code being contained
within comments).2

In between these views is the assertion that comments are neither beneficial nor harmful by
themselves, and what matters is that they are correct and kept in sync with the source code, and
omitted if they are superfluous, excessive, difficult to maintain or otherwise unhelpful.3

Indentation

For languages that use curly braces, there are two common indentation styles:

function(parameters) {
// code

}

function(parameters)
{

// code

2. Wikipedia: Comment (computer programming)
3. Wikipedia: Comment (computer programming)

154 | Programming Style

}

In either case, it is important to maintain vertical alignment between the start of the code block
and the closing curly brace.

The number of spaces used for indenting blocks of code is typically two or four spaces. Care
should be taken to ensure that the IDE or code editor inserts spaces rather than tab characters for
indents.

Meaningful Identifier Names Consistently Typed

As the name implies “identifier names” should clearly identify who (or what) you are talking about.
Calling your spouse “Snooky” may be meaningful to only you. Others might need to see her full
name (Jane Mary Smith) to appropriately identify who you are talking about. The same concept in
programming is true. Variables, constants, functions, and other identifiers should use meaningful
names. Additionally, those names should be typed consistently in terms of upper and lower case
as they are used in the program. Don’t define a variable as: Pig and then type it later on in your
program as: pig.

A good rule of thumb for identifiers in procedural programs (as opposed to object-oriented
programs) is to use verb-noun combinations for function identifiers and use noun or adjective-
noun combinations for constant and variable identifiers. If a function name requires two verbs or
two nouns to fully describe the function, it should probably be split into separate functions.

Key Terms

braces
Used to identify a block of code in languages such as C++, C#, Java, and JavaScript.

consistent
A rule that says to type identifier names in upper and lower case consistently throughout your
source code.

comments
Information inserted into a source code file for documentation of the program.

documentation
A method of preserving information useful to others in understanding an information system
or part thereof.

indention
A method used to make sections of source code more visible.

meaningful
A rule that says identifier names must be easily understood by another reading the source
code.

vertical alignment
A method of listing items vertically so that they are easier to read quickly.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Programming Style | 155

Standard Libraries
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

Many common or standard functions, whose definitions have already been written, are ready to be
used in any program. They are organized into a group of functions (think of them as several books)
and are collectively called a standard library. There are many functions organized into several
libraries For example, within most programming languages many math functions exist and have
been coded (and placed into libraries). These functions were written by programmers and tested
to ensure that they work properly. In most cases, the functions were reviewed by several people
to double and triple check to ensure that they did what was expected. We have the advantage of
using these functions with confidence that they will work properly in our programs, thus saving us
time and money.

Discussion

The main program must establish the existence of functions used in that program. Depending on
the programming language, there is a formal way to:

1. define a function
2. declare a function (a prototype is a declaration to a compiler)
3. call a function

When we create functions in our program, we usually see them in the following order in our source
code listing:

1. declare the function (prototype)
2. call the function
3. define the function

When we use functions created by others that have been organized into a library, we include a
header file in our program which contains the prototypes for the functions. Just like functions that
we create, we see them in the following order in our source code listing:

1. declaring the function (prototype provided in the include file)
2. call the function (with parameter passing of values)
3. define the function (it is either defined in the header file or the linker program provides the

actual object code from a Standard Library object area)

In most cases, the user can look at the prototype and understand exactly how the communications
(parameter passing) into and out of the function will occur when the function is called. Let’s look at
the math example of absolute value.

156 | Standard Libraries

Language Example

C++
#include <cmath>
std::abs(number);

C# Math.Abs(number);
Java Java.lang.Math.abs(number)
JavaScript Math.abs(number);
Python abs(number)
Swift abs(number)

Not wanting to have a long function name the designers named it: abs instead of “absolute”. This
might seem to violate the identifier naming rule of using meaningful names, however, when
identifier names are established for standard libraries they are often shortened to a name that is
easily understood by all who would be using them. If I had two integer variables named apple and
banana; and I wanted to store the absolute value of banana into apple; then a line of code to call
this function would be:

apple = abs(banana);
Let’s say it in English, pass the function absolute the value stored in variable banana and assign

the returning value from the function to the variable apple. Thus, if you know the prototype you
can usually properly call the function and use its returning value (if it has one) without ever seeing
the definition of the code (i.e. the source code that tells the function how to get the answer; that
is written by someone else; and either included in the header file or compiled and placed into an
object library; and linked during the linking step of the Integrated Development Environment (IDE).

Key Terms

abs
A function within a standard library which stands for absolute value.

confidence
The reliance that Standard Library functions work properly.

standard library
A set of specific task functions that have been added to the programming language for
universal use.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Standard Libraries | 157

C++ Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user for a Fahrenheit temperature,
// converts the given temperature to Celsius,
// and displays the results.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/C%2B%2B_Programming

#include <iostream>

using namespace std;

double getFahrenheit();
double calculateCelsius(double);
void displayResult(double, double);

int main() {
double fahrenheit;
double celsius;

fahrenheit = getFahrenheit();
celsius = calculateCelsius(fahrenheit);
displayResult(fahrenheit, celsius);

return 0;
}

double getFahrenheit() {
double fahrenheit;

cout << "Enter Fahrenheit temperature:" << endl;
cin >> fahrenheit;

return fahrenheit;
}

158 | C++ Examples

double calculateCelsius(double fahrenheit) {
double celsius;

celsius = (fahrenheit - 32) * 5 / 9;

return celsius;
}

void displayResult(double fahrenheit, double celsius) {
cout << fahrenheit << "° Fahrenheit is "

<< celsius << "° Celsius" << endl;
}

Output

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7778° Celsius

References

• Wikiversity: Computer Programming

C++ Examples | 159

C# Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user for a Fahrenheit temperature,
// converts the given temperature to Celsius,
// and displays the results.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/C_Sharp_Programming

using System;

class Temperature
{

public static void Main (string[] args)
{

double fahrenheit;
double celsius;

fahrenheit = GetFahrenheit();
celsius = CalculateCelsius(fahrenheit);
DisplayResult(fahrenheit, celsius);

}

private static double GetFahrenheit()
{

string input;
double fahrenheit;

Console.WriteLine("Enter Fahrenheit temperature:");
input = Console.ReadLine();
fahrenheit = Convert.ToDouble(input);

return fahrenheit;
}

private static double CalculateCelsius(double fahrenheit)

160 | C# Examples

{
double celsius;

celsius = (fahrenheit - 32) * 5 / 9;

return celsius;
}

private static void DisplayResult(double fahrenheit, double celsius)
{

Console.WriteLine(fahrenheit.ToString() + "° Fahrenheit is " +
celsius.ToString() + "° Celsius");

}
}

Output

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7777777777778° Celsius

References

• Wikiversity: Computer Programming

C# Examples | 161

Java Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user for a Fahrenheit temperature,
// converts the given temperature to Celsius,
// and displays the results.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/Java_Programming

import java.util.*;

class Main {
private static Scanner input = new Scanner(System.in);

public static void main(String[] args) {
double fahrenheit;
double celsius;

fahrenheit = getFahrenheit();
celsius = calculateCelsius(fahrenheit);
displayResult(fahrenheit, celsius);

}

private static double getFahrenheit() {
double fahrenheit;

System.out.println("Enter Fahrenheit temperature:");
fahrenheit = input.nextDouble();

return fahrenheit;
}

private static double calculateCelsius(double fahrenheit) {
double celsius;

celsius = (fahrenheit - 32) * 5 / 9;

162 | Java Examples

return celsius;
}

private static void displayResult(double fahrenheit, double celsius) {
System.out.println(fahrenheit + "° Fahrenheit is " +

celsius + "° Celsius");
}

}

Output

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7777777777778° Celsius

References

• Wikiversity: Computer Programming

Java Examples | 163

JavaScript Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user for a Fahrenheit temperature,
// converts the given temperature to Celsius,
// and displays the results.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/JavaScript

main();

function main() {
var fahrenheit = getFahrenheit();
var celisus = calculateCelsius(fahrenheit);
displayResult(fahrenheit, celisus);

}

function getFahrenheit() {
var fahrenheit = input("Enter Fahrenheit temperature:");
return fahrenheit;

}

function calculateCelsius(fahrenheit) {
var celisus = (fahrenheit - 32) * 5 / 9;
return celisus;

}

function displayResult(fahrenheit, celisus) {
output(fahrenheit + "° Fahrenheit is " +

celisus + "° Celsius");
}

function input(text) {
if (typeof window === 'object') {

return prompt(text)
}

164 | JavaScript Examples

else if (typeof console === 'object') {
const rls = require('readline-sync');
var value = rls.question(text);
return value;

}
else {

output(text);
var isr = new java.io.InputStreamReader(java.lang.System.in);
var br = new java.io.BufferedReader(isr);
var line = br.readLine();
return line.trim();

}
}

function output(text) {
if (typeof document === 'object') {

document.write(text);
}
else if (typeof console === 'object') {

console.log(text);
}
else {

print(text);
}

}

Output

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7777777777778° Celsius

References

• Wikiversity: Computer Programming

JavaScript Examples | 165

Python Examples
DAVE BRAUNSCHWEIG

Temperature

This program asks the user for a Fahrenheit temperature,
converts the given temperature to Celsius,
and displays the results.
#
References:
https://www.mathsisfun.com/temperature-conversion.html
https://en.wikibooks.org/wiki/Python_Programming

def get_fahrenheit():
print("Enter Fahrenheit temperature:")
fahrenheit = float(input())
return fahrenheit

def calculate_celsius(fahrenheit):
celsius = (fahrenheit - 32) * 5 / 9
return celsius

def display_result(fahrenheit, celsius):
print(str(fahrenheit) + "° Fahrenheit is " +

str(celsius) + "° Celsius")

def main():
fahrenheit = get_fahrenheit()
celsius = calculate_celsius(fahrenheit)
display_result(fahrenheit, celsius)

main()

166 | Python Examples

Output

Enter Fahrenheit temperature:
100

100.0° Fahrenheit is 37.77777777777778° Celsius

References

• Wikiversity: Computer Programming

Python Examples | 167

Swift Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user for a Fahrenheit temperature,
// converts the given temperature to Celsius,
// and displays the results.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

func getFahrenheit() -> Double {
var fahrenheit: Double

print("Enter Fahrenheit temperature:")
fahrenheit = Double(readLine(strippingNewline: true)!)!

return fahrenheit
}

func calculateCelsius(fahrenheit: Double) -> Double {
var celsius: Double

celsius = (fahrenheit - 32) * 5 / 9

return celsius
}

func displayResult(fahrenheit: Double, celsius: Double) {
print(String(fahrenheit) + "° Fahrenheit is " + String(celsius) + "° Celsius")

}

func main() {
var fahrenheit: Double
var celsius: Double

fahrenheit = getFahrenheit()
celsius = calculateCelsius(fahrenheit:fahrenheit)

168 | Swift Examples

displayResult(fahrenheit:fahrenheit, celsius:celsius)
}

main()

Output

Enter Fahrenheit temperature:
100

100.0° Fahrenheit is 37.7777777777778° Celsius

References

• Wikiversity: Computer Programming

Swift Examples | 169

Practice: Functions
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Review Questions

True / False

1. In addition to the term function as the name of a subprogram, the computer industry also
uses macro, procedure and module.

2. Generally, functions fall into two categories: Program Control and Specific Task.
3. Hierarchy Charts and Structure Charts are basically the same thing.
4. Program Control functions are used to simply subdivide and control the program.
5. The void data type is rarely used in C++.
6. Making source code readable is only used by beginning programmers.
7. Scope refers to a brand of mouthwash.
8. User-defined specific task functions are usually placed into a user-defined library.
9. Local and global data storage is associated with the concept of scope.

10. Creating a header file for user-defined specific task functions is a difficult task.
11. The stack is part of the computer’s memory used for storage of data.
12. The standard library is a set of specific task functions that have been added to the

programming language for universal use.
13. Programmers should not have confidence that standard library functions work properly.
14. It would be easier to write programs without using specific task functions.

Answers:

1. true
2. true
3. true
4. true
5. false
6. false
7. false – Although Scope is a brand of mouthwash; we are looking for the computer-related

definition.
8. true
9. true

10. false – It may seem difficult at first, but with a little practice it is really quite easy.
11. true
12. true
13. false
14. false

Short Answer

1. Create a hierarchy chart for the function example program found in this chapter.
2. Review the programs you have already created for this course. Based on coding standards for

170 | Practice: Functions

your selected programming language, identify some problems that make your code
“undocumented”, “unreadable” or wrong in some other way.

Activities

Complete the following activities using pseudocode, a flowcharting tool, or your selected
programming language. Use separate functions for input, each type of processing, and output.
Avoid global variables by passing parameters and returning results. Create test data to validate the
accuracy of each program. Add comments at the top of the program and include references to any
resources used.

1. Create a program to prompt the user for hours and rate per hour and then calculate and
display their weekly, monthly, and annual gross pay (hours * rate). Base monthly and annual
calculations on 12 months per year and 52 weeks per year.1

2. Create a program that asks the user how old they are in years, and then calculate and display
their approximate age in months, days, hours, and seconds. For example, a person 1 year old is
12 months old, 365 days old, etc.

3. Review MathsIsFun: US Standard Lengths. Create a program that asks the user for a distance
in miles, and then calculate and display the distance in yards, feet, and inches, or ask the user
for a distance in miles, and then calculate and display the distance in kilometers, meters, and
centimeters.

4. Review MathsIsFun: Area of Plane Shapes. Create a program that asks the user for the
dimensions of different shapes and then calculate and display the area of the shapes. Do not
include shape choices. That will come later. For now, just include multiple shape calculations
in sequence.

5. Create a program that calculates the area of a room to determine the amount of floor covering
required. The room is rectangular with the dimensions measured in feet with decimal
fractions. The output needs to be in square yards. There are 3 linear feet (9 square feet) to a
yard.

6. Create a program that helps the user determine how much paint is required to paint a room
and how much it will cost. Ask the user for the length, width, and height of a room, the price of
a gallon of paint, and the number of square feet that a gallon of paint will cover. Calculate the
total area of the four walls as 2 * length * height + 2 * width * height
Calculate the number of gallons as: total area / square feet per gallon Note:
You must round up to the next full gallon. To round up, add 0.9999 and then convert the
resulting value to an integer. Calculate the total cost of the paint as: gallons * price
per gallon .

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

1. PythonLearn: Variables, expressions, and statements

Practice: Functions | 171

PART IV

CONDITIONS

Overview

This chapter introduces conditions and selection control structures.

Chapter Outline

• Structured Programming
• Selection Control Structures
• If Then Else
• Code Blocks
• Relational Operators
• Assignment vs. Equality
• Logical Operators
• Nested If Then Else
• Case Control Structure
• Condition Examples
• Code Examples

◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.
2. Given example pseudocode, flowcharts, and source code, create a program that uses

conditions and selection control structures to solve a given problem.

Conditions | 173

Structured Programming
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

Structured programming is a programming paradigm aimed at improving the clarity, quality, and
development time of a computer program by making extensive use of the structured control flow
constructs of selection (if/then/else) and repetition (while and for), block structures, and subroutines
in contrast to using simple tests and jumps such as the go to statement, which can lead to
“spaghetti code” that is potentially difficult to follow and maintain.1

Discussion

One of the most important concepts of programming is the ability to control a program so that
different lines of code are executed or that some lines of code are executed many times. The
mechanisms that allow us to control the flow of execution are called control structures.
Flowcharting is a method of documenting (charting) the flow (or paths) that a program would
execute. There are three main categories of control structures:

• Sequence – Very boring. Simply do one instruction then the next and the next. Just do them in
a given sequence or in the order listed. Most lines of code are this.

• Selection – This is where you select or choose between two or more flows. The choice is
decided by asking some sort of question. The answer determines the path (or which lines of
code) will be executed.

• Iteration – Also known as repetition, it allows some code (one to many lines) to be executed (or
repeated) several times. The code might not be executed at all (repeat it zero times), executed
a fixed number of times or executed indefinitely until some condition has been met. Also
known as looping because the flowcharting shows the flow looping back to repeat the task.

A fourth category describes unstructured code.

• Branching – An uncontrolled structure that allows the flow of execution to jump to a different
part of the program. This category is rarely used in modular structured programming.

All high-level programming languages have control structures. All languages have the first three
categories of control structures (sequence, selection, and iteration). Most have the if then
else structure (which belongs to the selection category) and the while structure (which belongs to
the iteration category). After these two basic structures, there are usually language variations.

The concept of structured programming started in the late 1960’s with an article by Edsger
Dijkstra. He proposed a “go to less” method of planning programming logic that eliminated the

1. Wikipedia: Structured programming

Structured Programming | 175

need for the branching category of control structures. The topic was debated for about 20 years.
But ultimately – “By the end of the 20th century nearly all computer scientists were convinced that
it is useful to learn and apply the concepts of structured programming.”2

Key Terms

branching
An uncontrolled structure that allows the flow of execution to jump to a different part of the
program.

control structures
Mechanisms that allow us to control the flow of execution within a program.

iteration
A control structure that allows some lines of code to be executed many times.

selection
A control structure where the program chooses between two or more options.

sequence
A control structure where the program executes the items in the order listed.

spaghetti code
A pejorative phrase for unstructured and difficult to maintain source code.3

structured programming
A method of planning programs that avoids the branching category of control structures.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

2. Wikipedia: Structured programming
3. Wikipedia: Spaghetti code

176 | Structured Programming

Selection Control Structures
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

In selection control structures, conditional statements are features of a programming language
which perform different computations or actions depending on whether a programmer-specified
Boolean condition evaluates to true or false.1

Discussion

The basic attribute of a selection control structure is to be able to select between two or more
alternate paths. This is described as either two-way selection or multi-way selection. A question
using Boolean concepts usually controls which path is selected. All of the paths from a selection
control structure join back up at the end of the control structure, before moving on to the next lines
of code in a program.

If Then Else Control Structure

The if then else control structure is a two-way selection.

If age > 17
Output "You can vote."

False:
Output "You can't vote."

End

Language Reserved Words

C++ if , else
C# if , else
Java if , else
JavaScript if , else
Python if , elif , else
Swift if , else

1. Wikipedia: Conditional (computer programming)

Selection Control Structures | 177

Case Control Structure

The case control structure is a multi-way selection. Case control structures compare a given value
with specified constants and take action according to the first expression to match.2

Case of age
0 to 17 Display "You can't vote."
18 to 64 Display "You're in your working years."
65 + Display "You should be retired."

End

Language Reserved Words

C++ switch , case , break , default
C# switch , case , break , default
Java switch , case , break , default
JavaScript switch , case , break , default
Python N/A

Swift switch , case , break (optional), default

Python does not support a case control structure. There are workarounds, but they are beyond the
scope of this book.

Key Terms

if then else
A two-way selection control structure.

case
A multi-way selection control structure.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

2. Wikipedia: Conditional (computer programming)

178 | Selection Control Structures

If Then Else
KENNETH LEROY BUSBEE

Overview

The if–then–else construct, sometimes called if-then, is a two-way selection structure common
across many programming languages. Although the syntax varies from language to language, the
basic structure looks like:1

If (boolean condition) Then
(consequent)

Else
(alternative)

End If

Discussion

We are going to introduce the control structure from the selection category that is available in every
high level language. It is called the if then else structure. Asking a question that has a true or false
answer controls the if then else structure. It looks like this:

if the answer to the question is true
then do this

else because it is false
do this

In most languages, the question (called a test expression) is a Boolean expression. The Boolean data
type has two values – true and false. Let’s rewrite the structure to consider this:

if expression is true
then do this

else because it is false
do this

Some languages use reserved words of: “if”, “then” and “else”. Many eliminate the “then”.
Additionally the “do this” can be tied to true and false. You might see it as:

1. Wikipedia: Conditional (computer programming)

If Then Else | 179

if expression is true
action true

else
action false

And most languages infer the “is true” you might see it as:

if expression
action true

else
action false

The above four forms of the control structure are saying the same thing. The else word is often
not used in our English speaking today. However, consider the following conversation between a
mother and her child.

Child asks, “Mommy, may I go out side and play?”
Mother answers, “If your room is clean then you may go outside and play or else you may go sit on

a chair for five minutes as punishment for asking me the question when you knew your room was
dirty.”

Let’s note that all of the elements are present to determine the action (or flow) that the child will
be doing. Because the question (your room is clean) has only two possible answers (true or false)
the actions are mutually exclusive. Either the child 1) goes outside and plays or 2) sits on a chair for
five minutes. One of the actions is executed; never both of the actions.

One Choice – Implied Two-Way Selection

Often the programmer will want to do something only if the expression is true, that is with no false
action. The lack of a false action is also referred to as a “null else” and would be written as:

if expression
action true

else
do nothing

Because the “else do nothing” is implied, it is usually written in short form like:

if expression
action true

Key Terms

if then else
A two-way selection control structure.

180 | If Then Else

mutually exclusive
Items that do not overlap. Example: true or false.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

If Then Else | 181

Code Blocks
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

A code block, sometimes referred to as a compound statement, is a lexical structure of source
code which is grouped together. Blocks consist of one or more declarations and statements. A
programming language that permits the creation of blocks, including blocks nested within other
blocks, is called a block-structured programming language. Blocks are fundamental to structured
programming, where control structures are formed from blocks.1

Discussion

The Need for a Compound Statement

Within many programming languages, there can be only one statement listed as the action part
of a control structure:

if (expression)
statement

else
statement

Often, we will want to do more than one statement. This problem is overcome by creating a code
block or compound statement. For programming languages that use curly braces {} to designate
code blocks, a compound if-then-else statement would be similar to:

if(expression)
{

statement;
statement;

}
else
{

statement;
statement;

}

1. Wikipedia: Block (programming)

182 | Code Blocks

Because programmers often forget that they can have only one statement listed as the action
part of a control structure; the programming industry encourages the use of indentation (to see
the action parts clearly) and the use of compound statements (braces) always, even when there is
only one statement. Thus:

if(expression)
{

statement;
}
else
{

statement;
}

By writing code in this manner, if the programmer modifies the code by adding more statements
to either the action true or the action false; they will not introduce either compiler or logic errors.
Using indentation and braces should become standard practice in any language that requires the
use of compound statements with control structures.

Indentation and End Block

Other programming languages require explicit designation of code blocks through either
indentation or some type of end block statement. For example, Python uses indentation to indicate
the statements in a code block:

if expression:
statement
statement

else:
statement
statement

Lua uses an end block reserved word:

if expression then
statement
statement

else
statement
statement

end

The general if-then-else structure in each of these programming languages is similar, as is the
required or expected indentation. The difference is in the syntax used to designate the code blocks.

Code Blocks | 183

Key Terms

block
Another name for a compound statement.

compound statement
A unit of code consisting of zero or more statements.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

184 | Code Blocks

Relational Operators
KENNETH LEROY BUSBEE

Overview

A relational operator is a programming language construct or operator that tests or defines some
kind of relation between two entities. These include numerical equality (e.g., 5 = 5) and inequalities
(e.g., 4 ≥ 3).1

Discussion

The relational operators are often used to create a test expression that controls program flow. This
type of expression is also known as a Boolean expression because they create a Boolean answer
or value when evaluated. There are six common relational operators that give a Boolean value by
comparing (showing the relationship) between two operands. If the operands are of different data
types, implicit promotion occurs to convert the operands to the same data type.

Operator symbols and/or names can vary with different programming languages. Most
programming languages use relational operators similar to the following:

Operator Meaning

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equality (equal to)

!= or <> inequality (not equal to)

Examples:

• 9 < 25
• 9 < 3
• 9 > 14
• 9 <= 17
• 9 >= 25
• 9 == 13
• 9 != 13
• 9 !< 25

1. Wikipedia: Relational operator

Relational Operators | 185

• 9 <> 25

Note: Be careful. In math you are familiar with using the symbol = to mean equal and ≠ to mean not
equal. In many programming languages the ≠ is not used and the = symbol means assignment.

Key Terms

relational operator
An operator that gives a Boolean value by evaluating the relationship between two operands.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

186 | Relational Operators

Assignment vs Equality
KENNETH LEROY BUSBEE

Overview

Assignment sets and/or re-sets the value stored in the storage location denoted by a variable
name.1 Equality is a relational operator that tests or defines the relationship between two entities.2

Discussion

Most control structures use a test expression that executes either selection (as in the: if then else)
or iteration (as in the while; do while; or for loops) based on the truthfulness or falseness of the
expression. Thus, we often talk about the Boolean expression that is controlling the structure.
Within many programming languages, this expression must be a Boolean expression and is
governed by a tight set of rules. However, in many programming languages, each data type can
be used as a Boolean expression because each data type can be demoted into a Boolean value by
using the rule/concept that zero and nothing represent false and all non-zero values represent true.

Within various languages, we have the potential added confusion of the equals symbol = as an
operator that does not represent the normal math meaning of equality that we have used for most
of our life. The equals symbol typically means: assignment. To get the equality concept of math we
often use two equal symbols to represent the relational operator of equality. Let’s consider:

If (pig = 'y')
Output "Pigs are good"

Else
Output "Pigs are bad."

The test expression of the control structure will always be true because the expression is an
assignment (not the relational operator of ==). It assigns the ‘y’ to the variable pig, then looks at
the value in pig and determines that it is not zero; therefore the expression is true. And it will always
be true and the else part will never be executed. This is not what the programmer had intended.
The correct syntax for a Boolean expression is:

If (pig == 'y')
Output "Pigs are good"

Else
Output "Pigs are bad."

1. Wikipedia: Assignment (computer science)
2. Wikipedia: Relational operator

Assignment vs Equality | 187

This example reminds you that you must be careful in creating your test expressions so that they
are indeed a question, usually involving the relational operators. Some programming languages will
generate a warning or an error when an assignment is used in a Boolean expression, and some do
not.

Don’t get caught using assignment for equality.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

188 | Assignment vs Equality

Logical Operators
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

A logical operator is a symbol or word used to connect two or more expressions such that the value
of the compound expression produced depends only on that of the original expressions and on the
meaning of the operator.1 Common logical operators include AND, OR, and NOT.

Discussion

Within most languages, expressions that yield Boolean data type values are divided into two
groups. One group uses the relational operators within their expressions and the other group uses
logical operators within their expressions.

The logical operators are often used to help create a test expression that controls program flow.
This type of expression is also known as a Boolean expression because they create a Boolean answer
or value when evaluated. There are three common logical operators that give a Boolean value
by manipulating other Boolean operand(s). Operator symbols and/or names vary with different
programming languages:

Language AND OR NOT

C++ && || !
C# && || !
Java && || !
JavaScript && || !
Python and or not
Swift && || !

The vertical dashes or piping symbol is found on the same key as the backslash \ . You use the SHIFT
key to get it. It is just above the Enter key on most keyboards. It may be a solid vertical line on some
keyboards and show as a solid vertical line on some print fonts.

In most languages there are strict rules for forming proper logical expressions. An example is:
6 > 4 && 2 <= 14

6 > 4 and 2 <= 14
This expression has two relational operators and one logical operator. Using the precedence

of operator rules the two “relational comparison” operators will be done before the “logical and”
operator. Thus:

1. Wikipedia: Logical connective

Logical Operators | 189

true && true
True and True

The final evaluation of the expression is: true.
We can say this in English as: It is true that six is greater than four and that two is less than or

equal to fourteen.
When forming logical expressions programmers often use parentheses (even when not

technically needed) to make the logic of the expression very clear. Consider the above complex
Boolean expression rewritten:

(6 > 4) && (2 <= 14)
(6 > 4) and (2 <= 14)

Most programming languages recognize any non-zero value as true. This makes the following a
valid expression:

6 > 4 && 8
6 > 4 and 8

But remember the order of operations. In English, this is six is greater than four and eight is not
zero. Thus,

true && true
True and True

To compare 6 to both 4 and 8 would instead be written as:
6 > 4 && 6 > 8

6 > 4 and 6 > 8
This would evaluate to false as:
true && false

True and False

Truth Tables

A common way to show logical relationships is in truth tables.

Logical and (&&)

x y x and y

false false false

false true false

true false false

true true true

Logical or (||)

x y x or y

false false false

false true true

true false true

true true true

190 | Logical Operators

Logical not
(!)

x not x

false true

true false

Examples

I call this example of why I hate “and” and love “or”.
Every day as I came home from school on Monday through Thursday; I would ask my mother,

“May I go outside and play?” She would answer, “If your room is clean and your homework is done
then you may go outside and play.” I learned to hate the word “and”. I could manage to get one of
the tasks done and have some time to play before dinner, but both of them… well, I hated “and”.

On Friday my mother took a more relaxed viewpoint and when asked if I could go outside and
play she responded, “If your room is clean or your homework is done then you may go outside and
play.” I learned to clean my room quickly on Friday afternoon. Well, needless to say, I loved “or”.

For the next example, just imagine a teenager talking to their mother. During the conversation,
mom says, “After all, your Dad is reasonable!” The teenager says, “Reasonable. (short pause) Not.”

Maybe college professors will think that all their students studied for the exam. Ha ha! Not. Well, I
hope you get the point.

Examples:

• 25 < 7 || 15 > 36
• 15 > 36 || 3 < 7
• 14 > 7 && 5 <= 5
• 4 > 3 && 17 <= 7
• ! false
• ! (13 != 7)
• 9 != 7 && ! 0
• 5 > 1 && 7

More examples:

• 25 < 7 or 15 > 36
• 15 > 36 or 3 < 7
• 14 > 7 and 5 <= 5
• 4 > 3 and 17 <= 7
• not False
• not (13 != 7)
• 9 != 7 and not 0
• 5 > 1 and 7

Key Terms

logical operator
An operator used to create complex Boolean expressions.

Logical Operators | 191

truth tables
A common way to show logical relationships.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

192 | Logical Operators

Nested If Then Else
KENNETH LEROY BUSBEE

Overview

Two-way selection structures may be nested inside other two-way selection structures, resulting in
multi-way selection.

Discussion

We are going to first introduce the concept of nested control structures. Nesting is a concept that
places one item inside of another. Consider:

if expression
true action

else
false action

This is the basic form of the if then else control structure. Now consider:

if age is less than 18
you can't vote
if age is less than 16

you can't drive
else

you can drive
else

you can vote
if age is less than 21

you can't drink
else

you can drink

As you can see we simply included as part of the “true action” a statement and another if then
else control structure. We did the same (nested another if then else) for the “false action”. In our
example, we nested if then else control structures. Nesting could have an if then else within a while
loop. Thus, the concept of nesting allows the mixing of the different categories of control structures.

Nested If Then Else | 193

Multiway Selection

One of the drawbacks of two-way selection is that we can only consider two choices. But what do
you do if you have more than two choices? Consider the following which has four choices:

if age equal to 18
you can now vote

else
if age equal to 39

you are middle-aged
else

if age equal to 65
you can consider retirement

else
your age is unimportant

You get an appropriate message depending on the value of age. The last item is referred to as the
default. If the age is not equal to 18, 39 or 65 you get the default message. To simplify the code
structure, this is most often written as:

if age equal to 18
you can now vote

else if age equal to 39
you are middle-aged

else if age equal to 65
you can consider retirement

else
your age is unimportant

Key Terms

multiway selection
Using control structures to be able to select from more than two choices.

nested control structures
Placing one control structure inside of another.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

194 | Nested If Then Else

Case Control Structure
KENNETH LEROY BUSBEE

Overview

A case or switch statement is a type of selection control mechanism used to allow the value of a
variable or expression to change the control flow of program execution via a multiway branch.1

Discussion

One of the drawbacks of two-way selection is that we can only consider two choices. But what do
you do if you have more than two choices? Consider the following which has four choices:

if age equal to 18
you can vote

else if age equal to 39
you're middle-aged

else if age equal to 65
consider retirement

else
age is unimportant

You get an appropriate message depending on the value of age. The last item is referred to as the
default. If the age is not equal to 18, 39 or 65 you get the default message. In some situations there
is no default action. Consider this flowchart example:

1. Wikipedia: Switch statement

Case Control Structure | 195

This flowchart is of the case control structure and is used for multiway selection. The decision box
holds the variable age. The logic of the case is one of equality wherein the value in the variable age
is compared to the listed values in order from left to right. Thus, the value stored in age is compared
to 18 or is “age equal to 18”. If it is true, the logic flows down through the action and drops out at the
bottom of the case structure. If the value of the test expression is false, it moves to the next listed
value to the right and makes another comparison. It works exactly the same as our nested if then
else structure.

Code to Accomplish Multiway Selection

Python does not support a case control structure. But using the same example as above, here is
C++ / C# / Java / JavaScript / Swift code to accomplish the case control structure.

switch (age)
{

case 18:
message = "You can vote.";
break;

case 39:
message = "You're middle-aged.";

196 | Case Control Structure

break;
case 65:

message = "Consider retirement.";
break;

default:
message = "Age is unimportant.";
break;

}

The value in the variable age is compared to the first “case”, which is the value 18 (also called the
listed value) using an equality comparison or is “age equal to 18”. If it is true, the message is assigned
the value “You can vote.” and the next line of code (the break) is done (which jumps us to the end of
the control structure). If it is false, it moves on to the next case for comparison.

Many programming languages require the listed values for the case control structure be of the
integer family of data types. This basically means either an integer or character data type. Consider
this example that uses character data type (choice is a character variable):

switch (choice)
{

case 'A':
message = "You are an A student.";
break;

case 'B':
message = "You are a B student.";
break;

case 'C':
message = "You are a C student.";
break;

default:
message = "Maybe you should study harder.";
break;

}

Limitations of the Case Control Structure

Most programming languages do not allow ranges of values for case-like structures. Consider this
flowcharting example that used ranges:

Case Control Structure | 197

Consider also the following pseudocode for the same logic:

Case of age
0 to 17 Display "You can't vote."
18 to 64 Display "You’re in your working years."
65 + Display "You should be retired."

End

Using the case control structure when using non-integer family or ranges of values is allowed when
designing a program and documenting that design with pseudocode or flowcharting. However,
the implementation in most languages would follow a nested if then else approach with complex
Boolean expressions. The logic of the above examples would look like this:

if age > 0 and age <= to 17
display You can’t vote.

else if age is >= 18 and age <= 64
display You’re in your working years.

else
display You should be retired.

198 | Case Control Structure

Good Structured Programming Methods

Most textbook authors confirm that good structured programming techniques and habits are
more important than concentrating on the technical possibilities and capabilities of the language
that you are using to learn programming skills. Remember, this module is concentrating on
programming fundamentals and concepts to build our initial programming skills. It is not a created
with the intent to cover programming languages in detail, despite the fact that at times we have to
cover language mechanics.

Key Terms

case
A control structure that does multiway selection.

switch
A control structure that can be made to act like a case control structure.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Case Control Structure | 199

Condition Examples
DAVE BRAUNSCHWEIG

Temperature

Pseudocode

Function Main
Declare String choice

Assign choice = GetChoice()
If Choice = "C" Or Choice = "c"

Call ProcessCelsius()
False:

If Choice = "F" Or Choice = "f"
Call ProcessFahrenheit()

False:
Output "You must enter C to convert to Celsius or F to convert to Fahrenheit!"

End
End

End

Function CalculateCelsius (Real fahrenheit)
Declare Real celsius

Assign celsius = (fahrenheit - 32) * 5 / 9
Return Real celsius

Function CalculateFahrenheit (Real celsius)
Declare Real fahrenheit

Assign fahrenheit = celsius * 9 / 5 + 32
Return Real fahrenheit

Function DisplayResult (Real temperature, String fromScale, Real result, String toScale)
Output temperature & "° " & fromScale & " is " & result & "° " & toScale

End

Function GetChoice
Declare String choice

200 | Condition Examples

Output "Enter F to convert to Fahrenheit or C to convert to Celsius:"
Input Choice

Return String choice

Function GetTemperature (String scale)
Declare Real temperature

Output "Enter " & scale & " temperature:"
Input temperature

Return Real temperature

Function ProcessCelsius
Declare Real temperature
Declare Real result

Assign temperature = GetTemperature("Celsius")
Assign result = CalculateCelsius(temperature)
Call DisplayResult(temperature, "Fahrenheit", result, "Celsius")

End

Function ProcessFahrenheit
Declare Real temperature
Declare Real result

Assign temperature = GetTemperature("Fahrenheit")
Assign result = CalculateFahrenheit(temperature)
Call DisplayResult(temperature, "Celsius", result, "Fahrenheit")

End

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:
c

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7777777777778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:
f

Enter Celsius temperature:
100

Condition Examples | 201

100° Celsius is 212° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:
x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

Flowchart

Main

End

String choice

choice = GetChoice()

Choice = "C" Or Choice =
"c"

ProcessCelsius()

Choice = "F" Or Choice = "f"

ProcessFahrenheit()Output "You must enter C to
convert to Celsius or F to

convert to Fahrenheit!"

TrueFalse

TrueFalse

202 | Condition Examples

ProcessCelsius

End

Real temperature

Real result

temperature =
GetTemperature("Celsius")

result = CalculateCelsius
(temperature)

DisplayResult(temperature,
"Fahrenheit", result,

"Celsius")

ProcessFahrenheit

End

Real temperature

Real result

temperature =
GetTemperature

("Fahrenheit")

result = CalculateFahrenheit
(temperature)

DisplayResult(temperature,
"Celsius", result,

"Fahrenheit")

GetChoice

Return String choice

String choice

Output "Enter F to convert
to Fahrenheit or C to
convert to Celsius:"

Input Choice

GetTemperature
(String scale)

Return Real temperature

Real temperature

Output "Enter " & scale &
" temperature:"

Input temperature

Condition Examples | 203

CalculateCelsius
(Real fahrenheit)

Return Real celsius

Real celsius

celsius = (fahrenheit - 32) *
5 / 9

CalculateFahrenheit
(Real celsius)

Return Real fahrenheit

Real fahrenheit

fahrenheit = celsius * 9 / 5 +
32

DisplayResult
(Real temperature, String fromScale, Real result, String

toScale)

End

Output temperature & "° " &
fromScale & " is " & result & "° " &

toScale

References

• Wikiversity: Computer Programming

204 | Condition Examples

C++ Examples
DAVE BRAUNSCHWEIG

Temperature

The temperature program main function is listed twice, once using if-then-else and once using
switch, followed by the supporting functions.

If Then Else

// This program asks the user to select Fahrenheit or Celsius conversion
// and input a given temperature. Then the program converts the given
// temperature and displays the result.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/C%2B%2B_Programming

#include

using namespace std;

char getChoice();
void processCelsius();
void processFahrenheit();
double getTemperature(string scale);
double calculateCelsius(double fahrenheit);
double calculateFahrenheit(double celsius);
void displayResult(double temperature, string fromScale, double result, string toScale);

int main() {
char choice;

choice = getChoice();
if (choice == 'C' || choice == 'c') {

processCelsius();
}
else if (choice == 'F' || choice == 'f') {

processFahrenheit();
}

C++ Examples | 205

else {
cout << "You must enter C to convert to Celsius or F to convert to Fahrenheit." << endl;

}
return 0;

}

Switch

int main() {
char choice;

choice = getChoice();
switch(choice) {

case 'C':
case 'c':

processCelsius();
break;

case 'F':
case 'f':

processFahrenheit();
break;

default:
cout << "You must enter C to convert to Celsius or F to convert to Fahrenheit." << endl;

}
return 0;

}

Supporting Functions

char getChoice() {
char choice;

cout << "Enter C to convert to Celsius or F to convert to Fahrenheit:" << endl; cin >> choice;

return choice;
}

void processCelsius() {
double temperature;
double result;

206 | C++ Examples

temperature = getTemperature("Fahrenheit");
result = calculateCelsius(temperature);
displayResult(temperature, "Fahrenheit", result, "Celsius");

}

void processFahrenheit() {
double temperature;
double result;

temperature = getTemperature("Celsius");
result = calculateFahrenheit(temperature);
displayResult(temperature, "Celsius", result, "Fahrenheit");

}

double getTemperature(string scale) {
double temperature;

cout << "Enter " << scale << " temperature:" << endl; cin >> temperature;

return temperature;
}

double calculateCelsius(double fahrenheit) {
double celsius;

celsius = (fahrenheit - 32) * 5 / 9;

return celsius;
}

double calculateFahrenheit(double celsius) {
double fahrenheit;

fahrenheit = celsius * 9 / 5 + 32;

return fahrenheit;
}

void displayResult(double temperature, string fromScale, double result, string toScale) {
cout << temperature << "° " << fromScale << " is " << result << "° " << toScale << endl;

}

C++ Examples | 207

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:
c

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:
f

Enter Celsius temperature:
100

100° Celsius is 212° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:
x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

References

• Wikiversity: Computer Programming

208 | C++ Examples

C# Examples
DAVE BRAUNSCHWEIG

Temperature

The temperature program main function is listed twice, once using if-then-else and once using
switch, followed by the supporting functions.

If Then Else

// This program asks the user to select Fahrenheit or Celsius conversion
// and input a given temperature. Then the program converts the given
// temperature and displays the result.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/C_Sharp_Programming

using System;

public class Temperature
{

public static void Main(string[] args)
{

string choice;

choice = GetChoice();
if (choice == "C" || choice == "c")
{

ProcessCelsius();
}
else if (choice == "F" || choice == "f")
{

ProcessFahrenheit();
}
else
{

Console.WriteLine("You must enter C to convert to Celsius or F to convert to Fahrenheit.");
}

}

C# Examples | 209

Switch

public static void Main(string[] args)
{

string choice;

choice = GetChoice();
switch (choice)
{

case "C":
case "c":

ProcessCelsius();
break;

case "F":
case "f":

ProcessFahrenheit();
break;

default:
Console.WriteLine("You must enter C to convert to Celsius or F to convert to Fahrenheit.");
break;

}
}

Supporting Functions

public static string GetChoice()
{

string choice;

Console.WriteLine("Enter C to convert to Celsius or F to convert to Fahrenheit:");
choice = Console.ReadLine();

return choice;
}

public static void ProcessCelsius()
{

double temperature;
double result;

temperature = GetTemperature("Fahrenheit");
result = CalculateCelsius(temperature);

210 | C# Examples

DisplayResult(temperature, "Fahrenheit", result, "Celsius");
}

public static void ProcessFahrenheit()
{

double temperature;
double result;

temperature = GetTemperature("Celsius");
result = CalculateFahrenheit(temperature);
DisplayResult(temperature, "Celsius", result, "Fahrenheit");

}

public static double GetTemperature(string scale)
{

double temperature;

Console.WriteLine("Enter " + scale + " temperature:");
temperature = Convert.ToDouble(Console.ReadLine());

return temperature;
}

public static double CalculateCelsius(double fahrenheit)
{

double celsius;

celsius = (fahrenheit - 32) * 5 / 9;

return celsius;
}

public static double CalculateFahrenheit(double celsius)
{

double fahrenheit;

fahrenheit = celsius * 9 / 5 + 32;

return fahrenheit;
}

public static void DisplayResult(double temperature, string fromScale, double result, string toScale)
{

C# Examples | 211

Console.WriteLine(temperature + "° " + fromScale + " is " + result + "° " + toScale);
}

}

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:
c

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.7777777777778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:
f

Enter Celsius temperature:
100

100° Celsius is 212° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:
x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

References

• Wikiversity: Computer Programming

212 | C# Examples

Java Examples
DAVE BRAUNSCHWEIG

Temperature

The temperature program main function is listed twice, once using if-then-else and once using
switch, followed by the supporting functions.

If Then Else

// This program asks the user to select Fahrenheit or Celsius conversion
// and input a given temperature. Then the program converts the given
// temperature and displays the result.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/Java_Programming

import java.util.*;

public class Main {
private static Scanner input = new Scanner(System.in);

public static void main(String[] args) {
String choice;

choice = getChoice();
if (choice.equals("C") || choice.equals("c")) {

processCelsius();
}
else if (choice.equals("F") || choice.equals("f")) {

processFahrenheit();
}
else {

System.out.println("You must enter C to convert to Celsius or F to convert to Fahrenheit.");
}

}

Java Examples | 213

Switch

public static void main(String[] args) {
String choice;

choice = getChoice();
switch (choice) {

case "C":
case "c":

processCelsius();
break;

case "F":
case "f":

processFahrenheit();
break;

default:
System.out.println("You must enter C to convert to Celsius or F to convert to Fahrenheit.");

}
}

Supporting Functions

public static String getChoice() {
String choice;

System.out.println("Enter C to convert to Celsius or F to convert to Fahrenheit:");
choice = input.nextLine();

return choice;
}

public static void processCelsius() {
double temperature;
double result;

temperature = getTemperature("Fahrenheit");
result = calculateCelsius(temperature);
displayResult(temperature, "Fahrenheit", result, "Celsius");

}

public static void processFahrenheit() {
double temperature;

214 | Java Examples

double result;

temperature = getTemperature("Celsius");
result = calculateFahrenheit(temperature);
displayResult(temperature, "Celsius", result, "Fahrenheit");

}

public static double getTemperature(String scale) {
double temperature;

System.out.println("Enter " + scale + " temperature:");
temperature = input.nextDouble();

return temperature;
}

public static double calculateCelsius(double fahrenheit) {
double celsius;

celsius = (fahrenheit - 32) * 5 / 9;

return celsius;
}

public static double calculateFahrenheit(double celsius) {
double fahrenheit;

fahrenheit = celsius * 9 / 5 + 32;

return fahrenheit;
}

public static void displayResult(double temperature, String fromScale, double result, String toScale) {
System.out.println(Double.toString(temperature) + "° " + fromScale + " is " + result + "° " + toScale);

}
}

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:
c

Enter Fahrenheit temperature:

Java Examples | 215

100
100.0° Fahrenheit is 37.77777777777778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:
f

Enter Celsius temperature:
100

100.0° Celsius is 212.0° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:
x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

References

• Wikiversity: Computer Programming

216 | Java Examples

JavaScript Examples
DAVE BRAUNSCHWEIG

Temperature

The temperature program main function is listed twice, once using if-then-else and once using
switch, followed by the supporting functions.

If Then Else

// This program asks the user to select Fahrenheit or Celsius conversion
// and input a given temperature. Then the program converts the given
// temperature and displays the result.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/JavaScript

main();

function main() {
var choice;

choice = getChoice();
if (choice == "C" || choice == "c") {

processCelsius();
}
else if (choice == "F" || choice == "f") {

processFahrenheit();
}
else {

output("You must enter C to convert to Celsius or F to convert to Fahrenheit.");
}

}

Switch

function main() {
var choice;

JavaScript Examples | 217

choice = getChoice();
switch(choice)
{

case 'C':
case 'c':

processCelsius();
break;

case 'F':
case 'f':

processFahrenheit();
break;

default:
output("You must enter C to convert to Celsius or F to convert to Fahrenheit.");

}
}

Supporting Functions

function getChoice() {
var choice;

output("Enter C to convert to Celsius or F to convert to Fahrenheit:");
choice = input();

return choice;
}

function processCelsius() {
var temperature;
var result;

temperature = getTemperature("Fahrenheit");
result = calculateCelsius(temperature);
displayResult(temperature, "Fahrenheit", result, "Celsius");

}

function processFahrenheit() {
var temperature;
var result;

temperature = getTemperature("Celsius");

218 | JavaScript Examples

result = calculateFahrenheit(temperature);
displayResult(temperature, "Celsius", result, "Fahrenheit");

}

function getTemperature(scale) {
var temperature;

output("Enter " + scale + " temperature:");
temperature = input();

return temperature;
}

function calculateCelsius(fahrenheit) {
var celsius;

celsius = (fahrenheit - 32) * 5 / 9;

return celsius;
}

function calculateFahrenheit(celsius) {
var fahrenheit;

fahrenheit = celsius * 9 / 5 + 32;

return fahrenheit;
}

function displayResult(temperature, fromScale, result, toScale) {
output(temperature.toString() + "° " + fromScale + " is " + result + "° " + toScale);

}

function input(text) {
if (typeof window === 'object') {

return prompt(text)
}
else if (typeof console === 'object') {

const rls = require('readline-sync');
var value = rls.question(text);
return value;

}
else {

JavaScript Examples | 219

output(text);
var isr = new java.io.InputStreamReader(java.lang.System.in);
var br = new java.io.BufferedReader(isr);
var line = br.readLine();
return line.trim();

}
}

function output(text) {
if (typeof document === 'object') {

document.write(text);
}
else if (typeof console === 'object') {

console.log(text);
}
else {

print(text);
}

}

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:
c

Enter Fahrenheit temperature:
100

100° Fahrenheit is 37.77777777777778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:
f

Enter Celsius temperature:
100

100° Celsius is 212° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:
x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

References

• Wikiversity: Computer Programming

220 | JavaScript Examples

Python Examples
DAVE BRAUNSCHWEIG

Temperature

This program asks the user to select Fahrenheit or Celsius conversion
and input a given temperature. Then the program converts the given
temperature and displays the result.
#
References:
https://www.mathsisfun.com/temperature-conversion.html
https://en.wikibooks.org/wiki/Python_Programming

def get_choice():
print("Enter C to convert to Celsius or F to convert to Fahrenheit:")
choice = input()
return choice

def process_celsius():
temperature = get_temperature("Fahrenheit")
result = calculate_celsius(temperature)
display_result (temperature, "Fahrenheit", result, "Celsius")

def process_fahrenheit():
temperature = get_temperature("Celsius")
result = calculate_fahrenheit(temperature)
display_result (temperature, "Celsius", result, "Fahrenheit")

def get_temperature(scale):
print("Enter " + scale + " temperature:")
temperature = float(input())
return temperature

def calculate_celsius(fahrenheit):
celsius = (fahrenheit - 32) * 5 / 9

Python Examples | 221

return celsius

def calculate_fahrenheit(celsius):
fahrenheit = celsius * 9 / 5 + 32
return fahrenheit

def display_result(temperature, fromScale, result, toScale):
print(str(temperature) + str("° ") + fromScale + " is " + str(result) + "° " + toScale)

def main():
choice = get_choice()
if choice == "C" or choice == "c":

process_celsius ()
elif choice == "F" or choice == "f":

process_fahrenheit ()
else:

print("You must enter C to convert to Celsius or F to convert to Fahrenheit.")

main()

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:
c

Enter Fahrenheit temperature:
100

100.0° Fahrenheit is 37.77777777777778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:
f

Enter Celsius temperature:
100

100.0° Celsius is 212.0° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:
x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

222 | Python Examples

References

• Wikiversity: Computer Programming

Python Examples | 223

Swift Examples
DAVE BRAUNSCHWEIG

Temperature

The temperature program main function is listed twice, once using if-then-else and once using
switch, followed by the supporting functions.

If Then Else

// This program asks the user for a Fahrenheit temperature,
// converts the given temperature to Celsius,
// and displays the results.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

func main() {
var choice: String

choice = getChoice()
if choice == "C" || choice == "c" {

processCelsius()
}
else if choice == "F" || choice == "f" {

processFahrenheit()
}
else {

print("You must enter C to convert to Celsius or F to convert to Fahrenheit.")
}

}

main()

Switch

func main() {
var choice: String

224 | Swift Examples

choice = getChoice()
switch choice {

case "C", "c":
processCelsius()

case "F", "f":
processFahrenheit()

default:
print("You must enter C to convert to Celsius or F to convert to Fahrenheit.")

}
}

Supporting Functions

func getChoice() -> String {
var choice: String

print("Enter C to convert to Celsius or F to convert to Fahrenheit:")
choice = readLine(strippingNewline: true)!

return choice
}

func processCelsius() {
var temperature: Double
var result: Double

temperature = getTemperature(scale:"Fahrenheit")
result = calculateCelsius(fahrenheit:temperature)
displayResult(temperature:temperature, fromScale:"Fahrenheit", result:result, toScale:"Celsius")

}

func processFahrenheit() {
var temperature: Double
var result: Double

temperature = getTemperature(scale:"Celsius")
result = calculateFahrenheit(celsius:temperature)
displayResult(temperature:temperature, fromScale:"Celsius", result:result, toScale:"Fahrenheit")

}

func getTemperature(scale: String) -> Double {

Swift Examples | 225

var temperature: Double

print("Enter " + scale + " temperature:")
temperature = Double(readLine(strippingNewline: true)!)!

return temperature
}

func calculateCelsius(fahrenheit: Double) -> Double {
var celsius: Double

celsius = (fahrenheit - 32) * 5 / 9

return celsius
}

func calculateFahrenheit(celsius: Double) -> Double {
var fahrenheit: Double

fahrenheit = celsius * 9 / 5 + 32

return fahrenheit
}

func displayResult(temperature: Double, fromScale: String, result: Double, toScale: String) {
print(String(temperature) + "° " + fromScale + " is " + String(result) + "° " + toScale)

}

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:
c

Enter Fahrenheit temperature:
100

100.0° Fahrenheit is 37.77777777777778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:
f

Enter Celsius temperature:
100

100.0° Celsius is 212.0° Fahrenheit

226 | Swift Examples

Enter C to convert to Celsius or F to convert to Fahrenheit:
x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

References

• Wikiversity: Computer Programming

Swift Examples | 227

Practice: Conditions
KENNETH LEROY BUSBEE

Review Questions

True / False

1. There are only two categories of control structures.
2. Branching control structures are rarely used in good structured programming.
3. If then else is a multiway selection control structure.
4. The while control structure is part of the branching category.
5. Pseudocode is better than flowcharting.

Answers:

1. false
2. true
3. false
4. false
5. false

Expressions

Evaluate the following Boolean expressions:

1. 25 < 7
2. 3 < 7
3. 14 > 7
4. 17 <= 7
5. 25 >= 7
6. 13 == 7
7. 9 != 7
8. 5 !> 7
9. 25 > 39 || 15 > 36

10. 19 > 26 || 13 < 17
11. 14 < 7 && 6 <= 6
12. 4 > 3 && 17 >= 7
13. ! true
14. ! (13 == 7)
15. 9 != 7 && ! 1
16. 6 < && 8

Answers:

1. 0
2. 1

228 | Practice: Conditions

3. 1
4. 0
5. 1
6. 0
7. 1
8. Error, the “not greater than” is not a valid operator.
9. 0

10. 1
11. 0
12. 1
13. 0
14. 1
15. 0
16. Error, there needs to be an operand between the operators < and &&.

Short Answer

1. List the four categories of control structures and provide a brief description of each category.
2. Create a table with the six relational operators and their meanings.

Activities

Complete the following activities using pseudocode, a flowcharting tool, or your selected
programming language. Use separate functions for input, each type of processing, and output.
Avoid global variables by passing parameters and returning results. Create test data to validate the
accuracy of each program. Add comments at the top of the program and include references to any
resources used.

1. Create a program to prompt the user for hours and rate per hour and then compute gross pay
(hours * rate). Include a calculation to give 1.5 times the hourly rate for any overtime (hours
worked above 40 hours).1

2. Create a program that asks the user how old they are in years. Then ask the user if they would
like to know how old they are in (M)onths, (D)ays, (H)ours, or (S)econds. Use if/else conditional
statements to calculate and display their approximate age in the selected timeframe. Do not
perform any unnecessary calculations.

3. Review MathsIsFun: US Standard Lengths. Create a program that asks the user for a distance
in miles, and then ask the user if they want the distance in US measurements (yards, feet, and
inches) or in metric measurements (kilometers, meters, and centimeters). Use if/else
conditional statements to determine their selection and then calculate and display the results.

4. Review MathsIsFun: Area of Plane Shapes. Create a program that asks the user what shape
they would like to calculate the area for. Use if/else conditional statements to determine their
selection and then gather the appropriate input and calculate and display the area of the
shape.

5. Create a program that helps the user determine what sock size to order based on their shoe
size:
< 4 = extra small

1. PythonLearn: Variables, expressions, and statements

Practice: Conditions | 229

4 to 6 = small
7 to 9 = medium
10 to 12 = large
13+ = extra large
Use if/else conditional statements to determine their selection and then display the results.
Round half-sizes up to the next whole size. One option for rounding is to add 0.5 and then
convert to an integer.

6. If your programming language supports it, update one or more of the programs above to
replace the if/else conditional statements with case/select conditional statements.

7. Review Wikipedia: Is functions. If your programming language supports it, update one or more
of the programs above to include input validation for all numeric input.

8. If your programming language supports it, extend one or more of the programs above by
adding structured exception handling statements (try-catch, try-except, etc.) to handle any
runtime errors caused by the user entering invalid values for the input.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

230 | Practice: Conditions

PART V

LOOPS

Overview

This chapter introduces loops and iteration control structures.

Chapter Outline

• Iteration Control Structures
• While Loop
• Do While Loop
• Flag Concept
• For Loop
• Branching Statements
• Increment and Decrement Operators
• Integer Overflow
• Nested For Loops
• Loop Examples
• Code Examples

◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.
2. Identify control structures based on test before iteration, test after iteration, and counting, and

when to use each type.
3. Given example pseudocode, flowcharts, and source code, create a program that uses loops

and iteration control structures to solve a given problem.

Loops | 231

Iteration Control Structures
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

In iteration control structures, a statement or block is executed until the program reaches a certain
state, or operations have been applied to every element of a collection. This is usually expressed
with keywords such as while , repeat , for , or do..until .1

Discussion

The basic attribute of an iteration control structure is to be able to repeat some lines of code. The
visual display of iteration creates a circular loop pattern when flowcharted, thus the word “loop” is
associated with iteration control structures. Iteration can be accomplished with test before loops,
test after loops, and counting loops. A question using Boolean concepts usually controls how often
the loop will execute.

Iteration (Repetition) Control Structures

pseudocode: While

count assigned zero
While count < 5

Display "I love computers!"
Increment count

End

pseudocode: Do While

count assigned five
Do

Display "Blast off is soon!"
Decrement count

While count > zero

pseudocode: Repeat Until

1. Wikipedia: Structured programming

Iteration Control Structures | 233

count assigned five
Repeat

Display "Blast off is soon!"
Decrement count

Until count < one

pseudocode: For

For x starts at 0, x < 5, increment x
Display "Are we having fun?"

End

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

234 | Iteration Control Structures

While Loop
KENNETH LEROY BUSBEE

Overview

A while loop is a control flow statement that allows code to be executed repeatedly based on a
given Boolean condition. The while loop can be thought of as a repeating if statement.1

Discussion

Introduction to Test Before Loops

There are two commonly used test before loops in the iteration (or repetition) category of control
structures. They are: while and for. This module covers the: while.

Understanding Iteration in General – while

The concept of iteration is connected to possibly wanting to repeat an action. Like all control
structures we ask a question to control the execution of the loop. The term loop comes from the
circular looping motion that occurs when using flowcharting. The basic form of the while loop is as
follows:

initialization of the flag
while the answer to the question is true then do

some statements or action
some statements or action
some statements or action
update the flag

In most programming languages the question (called a test expression) is a Boolean expression.
The Boolean data type has two values – true and false. Let’s rewrite the structure to consider this:

initialization of the flag
while the expression is true then do

some statements or action
some statements or action

1. Wikipedia: While loop

While Loop | 235

some statements or action
update the flag

Within the while control structure there are four attributes to a properly working loop. They are:

• Initializing the flag
• Test expression
• Action or actions
• Update of the flag

The initialization of the flag is not technically part of the control structure, but a necessary item
to occur before the loop is started. The English phrasing is, “While the expression is true, do the
following actions”. This is looping on the true. When the test expression is false, you stop the
loop and go on with the next item in the program. Notice, because this is a test before loop the
action might not happen. It is called a test before loop because the test comes before the action. It
is also sometimes called a pre-test loop, meaning the test is pre (or Latin for before) the action and
update.

Human Example of the while Loop

Consider the following one-way conversation from a mother to her child.
Child: The child says nothing, but mother knows the child had Cheerios for breakfast and history

tells us that the child most likely spilled some Cheerios on the floor.
Mother says: “While it is true that you see (As long as you can see) a Cheerio on the floor, pick it up

and put it in the garbage.”
Note: All of the elements are present to determine the action (or flow) that the child will be

doing (in this case repeating). Because the question (can you see a Cheerios) has only two possible
answers (true or false) the action will continue while there are Cheerios on the floor. Either the child
1) never picks up a Cheerio because they never spilled any or 2) picks up a Cheerio and keeps picking
up Cheerios one at a time while he can see a Cheerio on the floor (that is until they are all picked
up).

Infinite Loops

At this point, it is worth mentioning that good programming always provides for a method to
ensure that the loop question will eventually be false so that the loop will stop executing and the
program continues with the next line of code. However, if this does not happen, then the program
is in an infinite loop. Infinite loops are a bad thing. Consider the following code:

Pseudocode infinite loop

loop_response = 'y'
While loop_response == 'y'

Output "What is your age? "
Input user_age
Output "What is your friend's age? "

236 | While Loop

Input friend_age
Output "Together your ages add up to: "
Output user_age + friend_age

The programmer assigned a value to the flag before the loop which is correct. However, they forgot
to update the flag. Every time the test expression is asked it will always be true. Thus, an infinite
loop because the programmer did not provide a way to exit the loop (he forgot to update the flag).
Consider the following code:

loop_response = 'y';
While loop_response = 'y'

Output "What is your age? "
Input user_age
Output "What is your friend's age? "
Input friend_age
Output "Together your ages add up to: "
Output user_age + friend_age
Output "Do you want to try again? y or n "
Input loop_response

No matter what the user replies during the flag update, the test expression does not do a relational
comparison but does an assignment. It assigns ‘y’ to the variable and asks if ‘y’ is true? Since all non-
zero values are treated as representing true, the answer to the test expression is true. Viola, you have
an infinite loop.

Counting Loops

The examples above are for an event controlled loop. The flag updating is an event where someone
decides if they want the loop to execute again. Often the initialization sets the flag so that the loop
will execute at least once.

Another common usage of the while loop is as a counting loop. Consider:

counter = 0
While counter < 5

Output "I love ice cream!"
counter += 1

The variable counter is said to be controlling the loop. It is set to zero (called initialization) before
entering the while loop structure and as long as it is less than 5 (five); the loop action will be
executed. But part of the loop action uses the increment operator to increase counter’s value by
one. After executing the loop five times (once for counter’s values of: 0, 1, 2, 3 and 4) the expression
will be false and the next line of code in the program will execute. A counting loop is designed to
execute the action (which could be more than one statement) a set of given number of times. In
our example, the message is displayed five times on the monitor. It is accomplished by making sure
all four attributes of the while control structure are present and working properly. The attributes are:

While Loop | 237

• Initializing the flag
• Test expression
• Action or actions
• Update of the flag

Missing an attribute might cause an infinite loop or give undesired results (does not work properly).

Infinite Loops

Consider:

counter = 0;
while counter < 5

Output "I love ice cream!"

Missing the flag update usually causes an infinite loop.

Variations on Counting

In the following example, the integer variable age is said to be controlling the loop (that is the flag).
We can assume that age has a value provided earlier in the program. Because the while structure
is a test before loop; it is possible that the person’s age is 0 (zero) and the first time we test the
expression it will be false and the action part of the loop would never be executed.

While 0 < age
Output "I love candy!"
age -= 1

Consider the following variation assuming that age and counter are both integer data type and that
age has a value:

counter = 0;
While counter < age

Output "I love corn chips!"
counter += 1

This loop is a counting loop similar to our first counting loop example. The only difference is instead
of using a literal constant (in other words 5) in our expression, we used the variable age (and thus
the value stored in age) to determine how many times to execute the loop. However, unlike our first
counting loop example which will always execute exactly 5 times; it is possible that the person’s age
is 0 (zero) and the first time we test the expression it will be false and the action part of the loop
would never be executed.

238 | While Loop

Key Terms

counting controlled
Using a variable to count up or down to control a loop.

event controlled
Using user input to control a loop.

infinite loop
A sequence of instructions which loops endlessly, either due to the loop having no terminating
condition, having one that can never be met, or one that causes the loop to start over.2

initialize item
An attribute of iteration control structures.

loop attributes
Items associated with iteration or looping control structures.

might not happen
Indicating that test before loops might not execute the action.

while
A test before iteration control structure.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

2. Wikipedia: Infinite loop

While Loop | 239

Do While Loop
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

A do while loop is a control flow statement that executes a block of code at least once, and then
repeatedly executes the block, or not, depending on a given boolean condition at the end of the
block.1

Some languages may use a different naming convention for this type of loop. For example, the
Pascal language has a repeat until loop, which continues to run until the control expression is
true (and then terminates) — whereas a “while” loop runs while the control expression is true (and
terminates once the expression becomes false).2

Discussion

Introduction to Test After Loops

There are two commonly used test after loops in the iteration (or repetition) category of control
structures. They are: do while and repeat until. This module covers both.

Understanding Iteration in General – do while

The concept of iteration is connected to possibly wanting to repeat an action. Like all control
structures, we ask a question to control the execution of the loop. The term loop comes from the
circular looping motion that occurs when using flowcharting. The basic form of the do while loop is
as follows:

do
some statements or action
some statements or action
some statements or action
update the flag

while the answer to the question is true

In most programming languages the question (called a test expression) is a Boolean expression.
The Boolean data type has two values – true and false. Let’s rewrite the structure to consider this:

1. Wikipedia: Do while loop
2. Wikipedia: Do while loop

240 | Do While Loop

do
some statements or action
some statements or action
some statements or action
update the flag

while expression is true

Within the do while control structure there are three attributes of a properly working loop. They are:

• Action or actions
• Update of the flag
• Test expression

The English phrasing is, “You do the action while the expression is true”. This is looping on the true.
When the test expression is false, you stop the loop and go on with the next item in the program.
Notice, because this is a test after loop the action will always happen at least once. It is called
a test after loop because the test comes after the action. It is also sometimes called a post-test loop,
meaning the test is post (or Latin for after) the action and update.

Understanding Iteration in General – repeat until

The concept of iteration is connected to possibly wanting to repeat an action. Like all control
structures, we ask a question to control the execution of the loop. The term loop comes from the
circular looping motion that occurs when using flowcharting. The basic form of the repeat until loop
is as follows:

repeat
some statements or action
some statements or action
some statements or action
update the flag

until the answer to the question becomes true

In most programming languages the question (called a test expression) is a Boolean expression.
The Boolean data type has two values – true and false. Let’s rewrite the structure to consider this:

repeat
some statements or action
some statements or action
some statements or action
update the flag

until expression becomes true

Do While Loop | 241

Within the repeat until control structure, there are three attributes of a properly working loop. They
are:

• Action or actions
• Update of the flag
• Test expression

The English phrasing is, “You repeat the action until the expression becomes true”. This is looping on
the false. When the test expression becomes true, you stop the loop and go on with the next item
in the program. Notice, because this is a test after loop the action will always happen at least once.
It is called a “test after loop” because the test comes after the action. It is also sometimes called a
post-test loop, meaning the test is post (or Latin for after) the action and update.

An Example

Do
Output "What is your age? "
Input user_age
Output "What is your friend's age? "
Input friend_age
Output "Together your ages add up to: "
Output age_user + friend_age
Output "Do you want to try it again? y or n "
Input loop_response

While loop_response == 'y'

The three attributes of a test after loop are present. The action part consists of the 6 lines that
prompt for data and then displays the total of the two ages. The update of the flag is the displaying
the question and getting the answer for the variable loop_response. The test is the equality
relational comparison of the value in the flag variable to the lower case character of y.

This type of loop control is called an event controlled loop. The flag updating is an event where
someone decides if they want the loop to execute again.

Using indentation with the alignment of the loop actions and flag update is the normal industry
practice.

Infinite Loops

At this point, it is worth mentioning that good programming always provides for a method to
ensure that the loop question will eventually be false so that the loop will stop executing and the
program continues with the next line of code. However, if this does not happen, then the program
is in an infinite loop. Infinite loops are a bad thing. Consider the following code:

loop_response = 'y'
Do

242 | Do While Loop

Output "What is your age? "
Input user_age
Output "What is your friend's age? "
Input friend_age
Output "Together your ages add up to: "
Output user_age + friend_age

While loop_response == 'y'

The programmer assigned a value to the flag before the loop and forgot to update the flag.
Every time the test expression is asked it will always be true. Thus, an infinite loop because the
programmer did not provide a way to exit the loop (he forgot to update the flag).

Consider the following code:

do
Output "What is your age? "
Input user_age
Output "What is your friend's age? "
Input friend_age
Output "Together your ages add up to: "
Output age_user + friend_age
Output "Do you want to try it again? y or n "
Input loop_response

While loop_response = 'y'

No matter what the user replies during the flag update, the test expression does not do a relational
comparison but does an assignment. It assigns ‘y’ to the variable and asks if ‘y’ is true? Since all non-
zero values are treated as representing true, the answer to the text question is true. Viola, you have
an infinite loop.

Key Terms

action item
An attribute of iteration control structures.

at least once
Indicating that test after loops execute the action at least once.

do while
A test after iteration control structure.

infinite loop
A sequence of instructions which loops endlessly, either due to the loop having no terminating
condition, having one that can never be met, or one that causes the loop to start over.3

repeat until
A test after iteration control structure alternative available in some programming languages.

3. Wikipedia: Infinite loop

Do While Loop | 243

test item
An attribute of iteration control structures.

update item
An attribute of iteration control structures.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

244 | Do While Loop

Flag Concept
KENNETH LEROY BUSBEE

Overview

Flags are commonly used to control or to indicate the intermediate state or outcome of particular
operations.1

Discussion

For centuries flags have been used as a signal to let others know something about the group or
individual that is displaying, flying or waving the flag. There are country flags and state flags. Ships
at sea flew the flag of their country. Pirates flew the skull and crossbones. A yellow flag was used for
quarantine, usually the plague. Even pirates stayed away. Today, some people might recognize the
flag used by scuba divers. The Presidents of most countries have a flag. At a race car event, they use
the checkered flag to indicate the race is over.

1. Wikipedia: Bit field

Flag Concept | 245

Computer programming uses the concept of a flag in the same way that physical flags are used. A
flag is anything that signals some information to the person looking at it.

Computer Implementation

Any variable or constant that holds data can be used as a flag. You can think of the storage location
as a flagpole. The value stored within the variable conveys some meaning and you can think of it as
being the flag. An example might be a variable named: gender which is of the character data type.
The two values commonly stored in the variable are: ‘F’ and ‘M’, meaning female and male. Then,
somewhere within a program we might look at the variable to make a decision:

flag controlling an if then control structure

if gender equals 'F'
display "Are you pregnant?"
get answer from user store in pregnant variable

Looking at the flag implies comparing the value in the variable to another value (a constant or the
value in another variable) using a relational operator (in our above example: equality).

Control structures are “controlled” by using a test expression which is usually a Boolean
expression. Thus, the flag concept of “looking” at the value in the variable and comparing it to
another value is fundamental to understanding how all control structures work.

246 | Flag Concept

Two Flags with the Same Meaning

Sometimes we will use an iteration control structure of do while to allow us to decide if we want to
do the loop action again. A variable might be named “loop_response” with the user prompted for
their answer of ‘y’ for yes or ‘n’ for no. Once the answer is retrieved from the keyboard and stored in
our flag variable of “loop_response” the test expression to control the loop might be:

simple flag comparison

loop_response equals 'y'

This is fine but what if the user accidentally has on the caps lock. Then the response of ‘Y’ would not
have the control structure loop and perform the action again. The solution lies in looking at the flag
twice. Consider:

complex flag comparison

loop_response equals 'y' or loop_response equals 'Y'

We look to see if the flag is either a lower case y or an upper case Y by using a more complex
Boolean expression with both relational and logical operators.

Multiple Flags in One Byte

Within assembly language programming and in many technical programs that control special
devices; the use of a single byte to represent several flags is common. This is accomplished by
having each one of the 8 bits that make up the byte represent a flag. Each bit has a value of either 1
or 0 and can represent true and false, on or off, yes or no, etc.

Key Terms

flag
A variable used to store information that will normally be used to control the program.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Flag Concept | 247

For Loop
KENNETH LEROY BUSBEE

Overview

A for loop is a control flow statement for specifying iteration, which allows code to be executed
repeatedly. A for loop has two parts: a header specifying the iteration, and a body which is executed
once per iteration. The header often declares an explicit loop counter or loop variable, which allows
the body to know which iteration is being executed. For loops are typically used when the number
of iterations is known before entering the loop. For loops can be thought of as shorthands for while
loops which increment and test a loop variable.1

Discussion

Introduction to Test Before Loops

There are two commonly used test before loops in the iteration (or repetition) category of control
structures. They are: while and for. This module covers the: for.

Understanding Iteration in General – for

In many programming languages, the for loop is used exclusively for counting; that is to repeat a
loop action as it either counts up or counts down. There is a starting value and a stopping value.
The question that controls the loop is a test expression that compares the starting value to the
stopping value. This expression is a Boolean expression and is usually using the relational operators
of either less than (for counting up) or greater than (for counting down). The term loop comes from
the circular looping motion that occurs when using flowcharting. The basic form of the for loop
(counting up) is as follows:

for
initialization of the starting value
starting value is less than the stopping value
some statements or action
some statements or action
some statements or action
increment the starting value

1. Wikipedia: For loop

248 | For Loop

It might be best to understand the for loop by understanding a while loop acting like a counting
loop. Let’s consider;

initialization of the starting value
while the starting value is less than the stopping value

some statements or action
some statements or action
some statements or action
increment the starting value

Within the for control structure, there are four attributes to a properly working loop. They are:

• Initializing the flag – done once
• Test expression
• Action or actions
• Update of the flag

The initialization of the flag is not technically part of the while control structure, but it is usually part
of the for control structure. The English phrasing is, “For x is 1; x less than 3; do the following actions;
increment x; loop back to the test expression”. This is doing the action on the true. When the test
expression is false, you stop the loop and go on with the next item in the program. Notice, because
this is a test before loop the action might not happen. It is called a test before loop because the test
comes before the action. It is also sometimes called a pre-test loop, meaning the test is pre (or Latin
for before) the action and update.

An Example

For counter = 0, counter < 5, counter += 1
Output "I love ice cream!"

The four attributes of a test before loop (remember the for loop is one example of a test before loop)
are present.

• The initialization of the flag to a value of 0.
• The test is the less than relational comparison of the value in the flag variable to the constant

value of 5.
• The action part consists of the 1 line of output.
• The update of the flag is done with the increment operator.

Using indentation with the alignment of the loop actions is the normal industry practice.

Infinite Loops

At this point, it is worth mentioning that good programming always provides for a method to

For Loop | 249

ensure that the loop question will eventually be false so that the loop will stop executing and the
program continues with the next line of code. However, if this does not happen, then the program
is in an infinite loop. Infinite loops are a bad thing. Consider the following code:

For counter = 0, counter < 5
Output "I love ice cream!"

The programmer assigned a value to the flag during the initialization step which is correct.
However, they forgot to update the flag (the update step is missing). Every time the test expression
is asked it will always be true. Thus, an infinite loop because the programmer did not provide a way
to exit the loop (he forgot to update the flag).

Key Terms

for
A test before iteration control structure typically used for counting.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

250 | For Loop

Branching Statements
KENNETH LEROY BUSBEE

Overview

A branch is an instruction in a computer program that can cause a computer to begin executing a
different instruction sequence and thus deviate from its default behavior of executing instructions
in order.1 Common branching statements include break , continue , return , and
goto .

Discussion

Branching statements allow the flow of execution to jump to a different part of the program.
The common branching statements used within other control structures include: break ,
continue , return , and goto . The goto is rarely used in modular structured

programming. Additionally, we will add to our list of branching items a pre-defined function
commonly used in programming languages of: exit .

Examples

break

The break is used in one of two ways; with a switch to make it act like a case structure or as part
of a looping process to break out of the loop. The following gives the appearance that the loop will
execute 8 times, but the break statement causes it to stop during the fifth iteration.

counter = 0;
While counter < 8

Output counter
If counter == 4

break
counter += 1

1. Wikipedia: Branch (computer science)

Branching Statements | 251

continue

The following gives the appearance that the loop will print to the monitor 8 times, but the continue
statement causes it not to print number 4.

For counter = 0, counter < 8, counter += 1
If counter == 4

continue
Output counter

return

The return statement exits a function and returns to the statement where the function was called.

Function DoSometing
statements

Return <optional return value>

goto

The goto structure is typically not accepted in good structured programming. However, some
programming languages allow you to create a label with an identifier name followed by a colon.
You use the command word goto followed by the label.

some lines of code;
goto label; // jumps to the label
some lines of code;
some lines of code;
some lines of code;
label: some statement; // Declared label
some lines of code;

exit

Although exit is technically a pre-defined function, it is covered here because of its common usage
in programming. A good example is the opening a file and then testing to see if the file was
actually opened. If not, we have an error that usually indicates that we want to prematurely stop
the execution of the program. The exit function terminates the running of the program and in the

252 | Branching Statements

process returns an integer value back to the operating system. It fits the definition of branching
which is to jump to some other place in the program.

Key Terms

branching statements
Allow the flow of execution to jump to a different part of the program.

break
A branching statement that terminates the existing structure.

continue
A branching statement that causes a loop to stop its current iteration and begin the next one.

exit
A predefined function used to prematurely stop a program and return to the operating
system.

goto
An unstructured branching statement that causes the logic to jump to a different place in the
program.

return
A branching statement that causes a function to jump back to the function that called it.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Branching Statements | 253

Increment and Decrement
Operators
KENNETH LEROY BUSBEE

Overview

Increment and decrement operators are unary operators that add or subtract one from their
operand, respectively. They are commonly implemented in imperative programming languages.1

Discussion

The idea of increment or decrement is to either add or subtract 1 from a variable that is usually
acting as a flag. Using a variable named counter; in generic terms, for example:

increment the counter
The concept is:
counter is assigned counter + 1

That is you fetch the existing value of the counter and add one then store the answer back
into the variable counter. Many programming languages allow their increment and decrement
operators to only be used with the integer data type. Programmers will sometimes use inc and dec
as abbreviations for increment and decrement respectively.

Operator symbols and/or names vary with different programming languages. Several
programming languages support increment and decrement operators:

Operator Meaning

++ increment, two plus signs

-- decrement, two minus signs

Code Examples

Basic Concept

Within C++, C#, Java, and JavaScript programming languages, the increment and decrement
operators are often used in this simple generic way. The increment operator is represented by two
plus signs in a row. Examples:

counter = counter + 1;

1. Wikipedia: Increment and decrement operators

254 | Increment and Decrement Operators

counter += 1;
counter++;
++counter;

As statements, the four examples all do the same thing. They add 1 to the value of whatever is
stored in counter. The decrement operator is represented by two minus signs in a row. They would
subtract 1 from the value of whatever was in the variable being decremented. The precedence
of increment and decrement depends on if the operator is attached to the right of the operand
(postfix) or to the left of the operand (prefix). Note that postfix and prefix do not have the same
precedence.

Postfix Increment

Postfix increment says to use my existing value then when you are done with the other operators;
increment me. An example:

int oldest = 44;
age = oldest++;

The first use of the oldest variable is an Rvalue context where the existing value of 44 is pulled or
fetched and then assigned to the variable age; then the variable oldest is incremented with its value
changing from 44 to 45. This seems to be a violation of precedence because increment is higher
precedence than assignment. But that is how postfix increment works.

Prefix Increment

Prefix increment says to increment me now and use my new value in any calculation. An example:

int oldest = 44;
age = ++oldest;

The variable oldest is incremented with the new value changing it from 44 to 45; then the new
value is assigned to age.

In postfix age is assigned 44 in prefix age is assigned 45. One way to help remember the
difference is to think of postfix as being polite (use my existing value and return to increment me
after the other operators are done) whereas prefix has an ego (I am important so increment me first
and use my new value for the rest of the evaluations).

Allowable Data Types

Within some programming languages, increment and decrement can be used only on the integer
data type. Other languages expand this not only to all of the integer family but also to the floating-
point family (float and double). Incrementing 3.87 will change the value to 4.87. Decrementing ‘C’

Increment and Decrement Operators | 255

will change the value to ‘B’. Remember the ASCII character values are really one-byte unsigned
integers (domain from 0 to 255).

Exercises

Evaluate the following items using increment or decrement:

1. True or false: x = x +1 and x+=1 and x++ all accomplish increment?
2. Given: int y = 19; and int z; what values will y and z have after: z = y–;
3. Given: double x = 7.77; and int y; what values will x and y have after: y = ++x;
4. Is this ok? Why or why not? 6 * ++(age -3)

Key Terms

decrement
Subtracting one from the value of a variable.

increment
Adding one to the value of a variable.

postfix
Placing the increment or decrement operator to the right of the operand.

prefix
Placing the increment or decrement operator to the left of the operand.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

256 | Increment and Decrement Operators

Integer Overflow
KENNETH LEROY BUSBEE

Overview

Integer overflow occurs when an arithmetic operation attempts to create a numeric value that is
outside of the range that can be represented with a given number of bits – either larger than the
maximum or lower than the minimum representable value.1

The most common result of an overflow is that the least significant representable bits of the result
are stored; the result is said to wrap around the maximum (i.e. modulo power of two). An overflow
condition may give results leading to unintended behavior. In particular, if the possibility has not
been anticipated, overflow can compromise a program’s reliability and security.2

Discussion

There are times when character and integer data types are lumped together because they both
act the same (often called the integer family). Maybe we should say they act differently than
the floating-point data types. The integer family values jump from one value to another. There
is nothing between 6 and 7 nor between ‘A’ and ‘B’. It could be asked why not make all your
numbers floating-point data types. The reason is twofold. First, some things in the real world are
not fractional. A dog, even with only 3 legs, is still one dog not three-fourths of a dog. Second, the
integer data type is often used to control program flow by counting (counting loops). The integer
family has a circular wrap-around feature. Using a two-byte integer, the next number bigger than
32767 is negative 32768 (character acts the same way going from 255 to 0. We could also reverse
that to be the next smaller number than negative 32768 is positive 32767. This can be shown by
using a normal math line, limiting the domain and then connecting the two ends to form a circle.

1. Wikipedia: Integer overflow
2. Wikipedia: Integer overflow

Integer Overflow | 257

This circular nature of the integer family works for both integer and character data types. In theory,
it should work for the Boolean data type as well; but in most programming languages it does not
for various technical reasons.

“In mathematics, modular arithmetic (sometimes called clock arithmetic) is a system of
arithmetic for integers where numbers “wrap around” after they reach a certain value — the
modulus. …

A familiar use of modular arithmetic is its use in the 12-hour clock the arithmetic of time-keeping
in which the day is divided into two 12 hour periods. If the time is 7:00 now, then 8 hours later it will
be 3:00. Regular addition would suggest that the later time should be 7 + 8 = 15, but this is not the
answer because clock time “wraps around” every 12 hours; there is no “15 o’clock”. Likewise, if the
clock starts at 12:00 (noon) and 21 hours elapse, then the time will be 9:00 the next day, rather than
33:00. Since the hour number starts over when it reaches 12, this is arithmetic modulo 12.

Time-keeping on a clock gives an example of modular arithmetic.” (Modular arithmetic from
Wikipedia)

The use of the modulus operator in integer division is tied to the concepts used in modular
arithmetic.

258 | Integer Overflow

Implications When Executing Loops

If a programmer sets up a counting loop incorrectly, usually one of three things happen:

• Infinite loop – usually caused by missing update attribute.
• Loop never executes – usually, the text expression is wrong with the direction of the less than

or greater than relationship needing to be switched.
• Loop executes more times than desired – update not properly handled. Usually, the direction

of counting (increment or decrement) need to be switched.

Let’s give an example of the loop executing for what appears to be for infinity (the third item on our
list).

for int x = 0, x < 10, x--
Output x

The above code accidentally decrements and the value of x goes in a negative way towards
-2147483648 (the largest negative value in a normal four-byte signed integer data type). It might
take a while (thus it might appear to be in an infinite loop) for it to reach the negative 2 billion-plus
value, before finally decrementing to positive 2147483647 which would, incidentally, stop the loop
execution.

Key Terms

circular nature
Connecting the negative and positive ends of the domain of an integer family data type.

loop control
Making sure the attributes of a loop are properly handled.

modular arithmetic
A system of arithmetic for integers where numbers “wrap around”.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Integer Overflow | 259

Nested For Loops
KENNETH LEROY BUSBEE

Overview

Nested for loops places one for loop inside another for loop. The inner loop is repeated for each
iteration of the outer loop.

Discussion

Nested Control Structures

We are going to first introduce the concept of nested control structures. Nesting is a concept that
places one item inside of another. Consider:

if expression
true action

else
false action

This is the basic form of the if then else control structure. Now consider:

if age is less than 18
you can't vote
if age is less than 16

you can't drive
else

you can drive
else

you can vote
if age is less than 21

you can't drink
else

you can drink

As you can see we simply included as part of the “true action” a statement and another if then
else control structure. We did the same (nested another if then else) for the “false action”. In our
example, we nested if then else control structures. Nesting could have an if then else within a while
loop. Thus, the concept of nesting allows the mixing of the different categories of control structures.

260 | Nested For Loops

Many complex logic problems require using nested control structures. By nesting control
structures (or placing one inside another) we can accomplish almost any complex logic problem.

An Example – Nested for loops

Here is an example of a 10 by 10 multiplication table:

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

1 ! 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 ! 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
3 ! 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 |
4 ! 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
5 ! 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
6 ! 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |
7 ! 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 |
8 ! 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
9 ! 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |

10 ! 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |

We might also see that the answers could be designed as a collection of cells (each cell being
exactly six spaces wide). The pseudocode to produce part of the table is:

For row = 1, row <= 3, row += 1
For column = 1, column <= 3, column += 1

Output row * column
Output "\t"

Output "\n"

Key Terms

complex logic
Often solved with nested control structures.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Nested For Loops | 261

Loop Examples
DAVE BRAUNSCHWEIG

Counting

Pseudocode

... This program demonstrates While, Do, and For loop counting using user-designated start, stop, and increment values.

Function Main
Declare Integer start
Declare Integer stop
Declare Integer increment

Assign start = GetValue("starting")
Assign stop = GetValue("ending")
Assign increment = GetValue("increment")
Call WhileLoop(start, stop, increment)
Call DoLoop(start, stop, increment)
Call ForLoop(start, stop, increment)

End

Function GetValue (String name)
Declare Integer value

Output "Enter " & name & " value:"
Input value

Return Integer value

Function WhileLoop (Integer start, Integer stop, Integer increment)
Output "While loop counting from " & start & " to " & stop & " by " & increment & ":"
Declare Integer count

Assign count = start
While count <= stop

Output count
Assign count = count + increment

End
End

262 | Loop Examples

Function DoLoop (Integer start, Integer stop, Integer increment)
Output "Do loop counting from " & start & " to " & stop & " by " & increment & ":"
Declare Integer count

Assign count = start
Loop

Output count
Assign count = count + increment

Do count <= stop
End

Function ForLoop (Integer start, Integer stop, Integer increment)
Output "For loop counting from " & start & " to " & stop & " by " & increment & ":"
Declare Integer count

For count = start to stop step increment
Output count

End
End

Output

Enter starting value:
1
Enter ending value:
3
Enter increment value:
1
While loop counting from 1 to 3 by 1:
1
2
3
Do loop counting from 1 to 3 by 1:
1
2
3
For loop counting from 1 to 3 by 1:
1
2
3

Loop Examples | 263

Flowchart

Main

End

This program demonstrates While,
Do, and For loop counting using user-
designated start, stop, and increment

values.

Integer start

Integer stop

Integer increment

start = GetValue("starting")

stop = GetValue("ending")

increment = GetValue
("increment")

WhileLoop(start, stop,
increment)

DoLoop(start, stop,
increment)

ForLoop(start, stop,
increment)

GetValue
(String name)

Return Integer value

Integer value

Output "Enter " & name &
" value:"

Input value

264 | Loop Examples

WhileLoop
(Integer start, Integer stop, Integer increment)

End

Output "While loop counting
from " & start & " to " & stop &

" by " & increment & ":"

Integer count

count = start

Output count

count = count + increment

count <= stop
True

False

DoLoop
(Integer start, Integer stop, Integer increment)

End

Output "Do loop counting
from " & start & " to " & stop &

" by " & increment & ":"

Integer count

count = start

True

False

Output count

count = count + increment

count <= stop

ForLoop
(Integer start, Integer stop, Integer increment)

End

Output "For loop counting
from " & start & " to " & stop &

" by " & increment & ":"

Integer count

Output count

count = start to stop step
increment

Next

Done

References

• Wikiversity: Computer Programming

Loop Examples | 265

C++ Examples
DAVE BRAUNSCHWEIG

Counting

// This program demonstrates While, Do, and For loop counting using
// user-designated start, stop, and increment values.
//
// References:
// https://en.wikibooks.org/wiki/C%2B%2B_Programming

#include

using namespace std;

int getValue(string name);
void whileLoop(int start, int stop, int increment);
void doLoop(int start, int stop, int increment);
void forLoop(int start, int stop, int increment);

int main() {
int start = getValue("starting");
int stop = getValue("ending");
int increment = getValue("increment");

whileLoop(start, stop, increment);
doLoop(start, stop, increment);
forLoop(start, stop, increment);

return 0;
}

int getValue(string name) {
int value;

cout << "Enter " << name << " value:" <> value;

return value;
}

266 | C++ Examples

void whileLoop(int start, int stop, int increment) {
cout << "While loop counting from " << start << " to " <<

stop << " by " << increment << ":" << endl;

int count = start;
while (count <= stop) {

cout << count << endl;
count = count + increment;

}
}

void doLoop(int start, int stop, int increment) {
cout << "Do loop counting from " << start << " to " <<

stop << " by " << increment << ":" << endl;

int count = start;
do {

cout << count << endl;
count = count + increment;

} while (count <= stop);
}

void forLoop(int start, int stop, int increment) {
cout << "For loop counting from " << start << " to " <<

stop << " by " << increment << ":" << endl;

for (int count = start; count <= stop; count += increment) {
cout << count << endl;

}
}

Output

Enter starting value:
1
Enter ending value:
3
Enter increment value:
1
While loop counting from 1 to 3 by 1:
1
2

C++ Examples | 267

3
Do loop counting from 1 to 3 by 1:
1
2
3
For loop counting from 1 to 3 by 1:
1
2
3

References

• Wikiversity: Computer Programming

268 | C++ Examples

C# Examples
DAVE BRAUNSCHWEIG

Counting

// This program demonstrates While, Do, and For loop counting using
// user-designated start, stop, and increment values.
//
// References:
// https://en.wikibooks.org/wiki/C_Sharp_Programming

using System;

public class Loops
{

public static void Main(string[] args)
{

int start = GetValue("starting");
int stop = GetValue("ending");
int increment = GetValue("increment");

WhileLoop(start, stop, increment);
DoLoop(start, stop, increment);
ForLoop(start, stop, increment);

}

public static int GetValue(string name)
{

Console.WriteLine("Enter " + name + " value:");
string input = Console.ReadLine();
int value = Convert.ToInt32(input);

return value;
}

public static void WhileLoop(int start, int stop, int increment)
{

Console.WriteLine("While loop counting from " + start + " to " +
stop + " by " + increment + ":");

C# Examples | 269

int count = start;
while (count <= stop)
{

Console.WriteLine(count);
count = count + increment;

}
}

public static void DoLoop(int start, int stop, int increment)
{

Console.WriteLine("Do loop counting from " + start + " to " +
stop + " by " + increment + ":");

int count = start;
do
{

Console.WriteLine(count);
count = count + increment;

}
while (count <= stop);

}

public static void ForLoop(int start, int stop, int increment)
{

Console.WriteLine("For loop counting from " + start + " to " +
stop + " by " + increment + ":");

for (int count = start; count <= stop; count += increment)
{

Console.WriteLine(count);
}

}
}

Output

Enter starting value:
1
Enter ending value:
3
Enter increment value:
1

270 | C# Examples

While loop counting from 1 to 3 by 1:
1
2
3
Do loop counting from 1 to 3 by 1:
1
2
3
For loop counting from 1 to 3 by 1:
1
2
3

References

• Wikiversity: Computer Programming

C# Examples | 271

Java Examples
DAVE BRAUNSCHWEIG

Counting

// This program demonstrates While, Do, and For loop counting using
// user-designated start, stop, and increment values.
//
// References:
// https://en.wikibooks.org/wiki/Java_Programming

import java.util.*;

public class Main {
private static Scanner input = new Scanner(System.in);

public static void main(String[] args) {
int start = getValue("starting");
int stop = getValue("ending");
int increment = getValue("increment");

whileLoop(start, stop, increment);
doLoop(start, stop, increment);
forLoop(start, stop, increment);

}

public static int getValue(String name) {
System.out.println("Enter " + name + " value:");
int value = input.nextInt();

return value;
}

public static void whileLoop(int start, int stop, int increment) {
System.out.println("While loop counting from " + start + " to " +

stop + " by " + increment + ":");

int count = start;
while (count <= stop) {

System.out.println(count);

272 | Java Examples

count = count + increment;
}

}

public static void doLoop(int start, int stop, int increment) {
System.out.println("Do loop counting from " + start + " to " +

stop + " by " + increment + ":");

int count = start;
do {

System.out.println(count);
count = count + increment;

} while (count <= stop);
}

public static void forLoop(int start, int stop, int increment) {
System.out.println("For loop counting from " + start + " to " +

stop + " by " + increment + ":");

for (int count = start; count <= stop; count += increment) {
System.out.println(count);

}
}

}

Output

Enter starting value:
1
Enter ending value:
3
Enter increment value:
1
While loop counting from 1 to 3 by 1:
1
2
3
Do loop counting from 1 to 3 by 1:
1
2
3
For loop counting from 1 to 3 by 1:

Java Examples | 273

1
2
3

References

• Wikiversity: Computer Programming

274 | Java Examples

JavaScript Examples
DAVE BRAUNSCHWEIG

Counting

// This program demonstrates While, Do, and For loop counting using
// user-designated start, stop, and increment values.
//
// References:
// https://en.wikibooks.org/wiki/JavaScript

main()

function main() {
var start = getValue("starting");
var stop = getValue("ending");
var increment = getValue("increment");

whileLoop(start, stop, increment);
doLoop(start, stop, increment);
forLoop(start, stop, increment);

}

function getValue(name) {
output("Enter " + name + " value:");
var value = Number(input());
return value;

}

function whileLoop(start, stop, increment) {
output("While loop counting from " + start + " to " + stop +

" by " + increment + ":");

var count = start;
while (count <= stop) {

output(count);
count = count + increment;

}
}

JavaScript Examples | 275

function doLoop(start, stop, increment) {
output("Do loop counting from " + start + " to " + stop +

" by " + increment + ":");

var count = start;
do {

output(count);
count = count + increment;

} while (count <= stop);
}

function forLoop(start, stop, increment) {
output("For loop counting from " + start + " to " + stop +

" by " + increment + ":");

for (var count = start; count <= stop; count += increment) {
output(count);

}
}

function input(text) {
if (typeof window === 'object') {

return prompt(text)
}
else if (typeof console === 'object') {

const rls = require('readline-sync');
var value = rls.question(text);
return value;

}
else {

output(text);
var isr = new java.io.InputStreamReader(java.lang.System.in);
var br = new java.io.BufferedReader(isr);
var line = br.readLine();
return line.trim();

}
}

function output(text) {
if (typeof document === 'object') {

document.write(text);
}
else if (typeof console === 'object') {

276 | JavaScript Examples

console.log(text);
}
else {

print(text);
}

}

Output

Enter starting value:
1
Enter ending value:
3
Enter increment value:
1
While loop counting from 1 to 3 by 1:
1
2
3
Do loop counting from 1 to 3 by 1:
1
2
3
For loop counting from 1 to 3 by 1:
1
2
3

References

• Wikiversity: Computer Programming

JavaScript Examples | 277

Python Examples
DAVE BRAUNSCHWEIG

Counting

This program demonstrates While, Do, and For loop counting using
user-designated start, stop, and increment values.
#
References:
https://en.wikibooks.org/wiki/Python_Programming

def get_value(name):
print("Enter " + name + " value:")
value = int(input())
return value

def while_loop(start, stop, increment):
print("While loop counting from " + str(start) + " to " +

str(stop) + " by " + str(increment) + ":")
count = start
while count <= stop:

print(count)
count = count + increment

def do_loop(start, stop, increment):
print("Do loop counting from " + str(start) + " to " +

str(stop) + " by " + str(increment) + ":")
count = start
while True: #This simulates a Do Loop

print(count)
count = count + increment
if not(count <= stop): break #Exit loop

def for_loop(start, stop, increment):
print("For loop counting from " + str(start) + " to " +

str(stop) + " by " + str(increment) + ":")

278 | Python Examples

for count in range(start, stop + increment, increment):
print(count)

def main():
start = get_value("starting")
stop = get_value("ending")
increment = get_value("increment")
while_loop(start, stop, increment)
do_loop(start, stop, increment)
for_loop(start, stop, increment)

main()

Output

Enter starting value:
1
Enter ending value:
3
Enter increment value:
1
While loop counting from 1 to 3 by 1:
1
2
3
Do loop counting from 1 to 3 by 1:
1
2
3
For loop counting from 1 to 3 by 1:
1
2
3

References

• Wikiversity: Computer Programming

Python Examples | 279

Swift Examples
DAVE BRAUNSCHWEIG

Counting

// This program demonstrates While, Do, and For loop counting using
// user-designated start, stop, and increment values.
//
// References:
// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

import Foundation

func getValue(name: String) -> Int {
var value : Int

print("Enter " + name + " value:")
value = Int(readLine()!)!
return value

}

func whileLoop(start: Int, stop: Int, increment: Int) {
print("While loop counting from " + String(start) + " to " +

String(stop) + " by " + String(increment) + ":")

var count : Int

count = start
while count <= stop {

print(count)
count = count + increment

}
}

func doLoop(start: Int, stop: Int, increment: Int) {
print("Do loop counting from " + String(start) + " to " +

String(stop) + " by " + String(increment) + ":")

var count : Int

280 | Swift Examples

count = start
repeat {

print(count)
count = count + increment

} while count <= stop
}

func forLoop(start: Int, stop: Int, increment: Int) {
print("For loop counting from " + String(start) + " to " +

String(stop) + " by " + String(increment) + ":")

for count in stride(from: start, through: stop, by: increment) {
print(count)

}
}

func main() {
var start : Int
var stop : Int
var increment : Int

start = getValue(name: "starting")
stop = getValue(name: "ending")
increment = getValue(name: "increment")

whileLoop(start: start, stop: stop, increment: increment)
doLoop(start: start, stop: stop, increment: increment)
forLoop(start: start, stop: stop, increment: increment)

}

main()

Output

Enter starting value:
1
Enter ending value:
3
Enter increment value:
1
While loop counting from 1 to 3 by 1:
1

Swift Examples | 281

2
3
Do loop counting from 1 to 3 by 1:
1
2
3
For loop counting from 1 to 3 by 1:
1
2
3

References

• Wikiversity: Computer Programming

282 | Swift Examples

Practice: Loops
KENNETH LEROY BUSBEE

Review Questions

True / False

1. The do while and repeat until structure act exactly the same.
2. Students sometimes confuse assignment and equality.
3. The repeat until looping control structure is available in all programming languages.
4. Because flags are often used, they are usually a special data type.
5. The do while is a test before loop.
6. Only for loops can be counting loops.
7. The integer data type has modular arithmetic attributes.
8. The escape code of \n is part of formatting output.
9. Nested for loops is not allowed in the C++ programming language.

10. Counting loops use all four of the loop attributes.

Answers:

1. false
2. true
3. false
4. false
5. false
6. false
7. true
8. true
9. false

10. true

Activities

Complete the following activities using pseudocode, a flowcharting tool, or your selected
programming language. Use separate functions for input, each type of processing, and output.
Avoid global variables by passing parameters and returning results. Create test data to validate the
accuracy of each program. Add comments at the top of the program and include references to any
resources used.

While Loops

Complete the following using a while loop structure.

1. Create a program that uses a loop to generate a list of multiplication expressions for a given

Practice: Loops | 283

value. Ask the user to enter the value and the number of expressions to be displayed. For
example, a list of three expressions for the value 1 would be:
1 * 1 = 1
1 * 2 = 2
1 * 3 = 3

A list of five expressions for the value 3 would be:
3 * 1 = 3
3 * 2 = 6
3 * 3 = 9
3 * 4 = 12
3 * 5 = 15

2. Review MathsIsFun: Definition of Average. Create a program that asks the user to enter grade
scores. Start by asking the user how many scores they would like to enter. Then use a loop to
request each score and add it to a total. Finally, calculate and display the average for the
entered scores.

3. Review MathsIsFun: Pi. Write a program that uses the Nilakantha series to calculate Pi based
on a given number of iterations entered by the user.

Do While / Repeat Until Loops

Complete the following using a do while / repeat until loop structure.

1. Review MathsIsFun: Definition of Average. Create a program that asks the user to enter grade
scores. Use a loop to request each score and add it to a total. Continue accepting scores until
the user enters no value (empty input). Finally, calculate and display the average for the
entered scores.

2. Review Khan Academy: A guessing game. Write a program that allows the user to think of a
number between 0 and 100, inclusive. Then have the program try to guess the user’s number.
Start at the midpoint (50) and ask the user if their number is (h)igher, (l)ower, or (e)qual to the
guess. If they indicate lower, guess the new midpoint (25). If they indicate higher, guess the
new midpoint (75). Continue efficiently guessing higher or lower until they indicate equal,
then print the number of guesses required to guess their number and end the program.

3. Add a do while / repeat until loop to any activity from a previous chapter. Continue running
the program while the user wants to continue or until the user wants to stop.

4. Add an input validation loop to any activity from a previous chapter. Verify that the input is
valid before returning the value. Ask the user to input the value again while the input is invalid.

For Loops

Complete the following using a for loop structure.

1. Create a program that uses a loop to generate a list of multiplication expressions for a given
value. Ask the user to enter the value and the number of expressions to be displayed. For
example, a list of three expressions for the value 1 would be:
1 * 1 = 1
1 * 2 = 2
1 * 3 = 3

A list of five expressions for the value 3 would be:

284 | Practice: Loops

3 * 1 = 3
3 * 2 = 6
3 * 3 = 9
3 * 4 = 12
3 * 5 = 15

2. Review MathsIsFun: Definition of Average. Create a program that asks the user to enter grade
scores. Start by asking the user how many scores they would like to enter. Then use a loop to
request each score and add it to a total. Finally, calculate and display the average for the
entered scores.

3. Review MathsIsFun: Pi. Write a program that uses the Nilakantha series to calculate Pi based
on a given number of iterations entered by the user.

Nested Loops

Complete the following using a nested loop structure.

1. Review MathsIsFun: 10x Printable Multiplication Table. Create a program that uses nested
loops to generate a multiplication table. Rather than simply creating a 10 by 10 table, ask the
user to enter the starting and ending values. Include row and column labels. For example, the
output from 1 to 3 might look like:

1 2 3
1 1 2 3
2 2 4 6
3 3 6 9

The output from 3 to 5 might look like:
3 4 5

3 9 12 15
4 12 16 20
5 15 20 25

2. Add a do while / repeat until loop to any activity from this chapter. Continue running the
program while the user wants to continue or until the user wants to stop.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

Practice: Loops | 285

PART VI

ARRAYS

Overview

This chapter introduces arrays, which may be referred to as lists in some programming languages.

Chapter Outline

• Arrays and Lists
• Index Notation
• Displaying Array Members
• Arrays and Functions
• Math Statistics with Arrays
• Searching Arrays
• Sorting Arrays
• Parallel Arrays
• Multidimensional Arrays
• Dynamic Arrays
• Code Examples

◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.
2. Identify static and dynamic arrays and the code structures necessary to process each type.
3. Identify single-dimension arrays and multi-dimensional arrays and the code structures

necessary to process each type.
4. Given example pseudocode, flowcharts, and source code, create a program that uses arrays or

lists to solve a given problem.

Arrays | 287

Arrays and Lists
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

An array is a data structure consisting of a collection of elements (values or variables), each
identified by at least one array index or key.1

Depending on the language, array types may overlap (or be identified with) other data types that
describe aggregates of values, such as lists and strings. Array types are often implemented by array
data structures, but sometimes by other means, such as hash tables, linked lists, or search trees.2 In
Python, the built-in array data structure is a list.

Discussion

An array is a sequenced collection of elements of the same data type with a single identifier name.
Python lists are similar to arrays in other languages but are not restricted to a single data type. The
term ‘array’ as used in this chapter will generally also apply to Python lists unless otherwise noted.

Arrays can have multiple axes (more than one axis). Each axis is a dimension. Thus a single-
dimension array is also known as a list. A two-dimension array is commonly known as a table (a
spreadsheet like Excel is a two dimension array). In real life, there are occasions to have data
organized into multiple-dimension arrays. Consider a theater ticket with section, row, and seat
(three dimensions). Most single-dimension arrays are visualized vertically.

Most programmers are familiar with a special type of array called a string. Strings are basically
a single dimension array of characters. Unlike other single dimension arrays, we usually envision a
string as a horizontal stream of characters and not vertically as a list.

We refer to the individual values as members (or elements) of the array. Programming languages
implement the details of arrays differently. Because there is only one identifier name assigned to
the array, we have operators that allow us to reference or access the individual members of an
array. The operator commonly associated with referencing array members is the index operator. It
is important to learn how to define an array and initialize its members.

1. Wikipedia: Array data structure
2. Wikipedia: Array data type

Arrays and Lists | 289

Defining an Array

Language Example

C++ int ages[] = {49, 48, 26, 19, 16};
C# int[] ages = {49, 48, 26, 19, 16};
Java int[] ages = {49, 48, 26, 19, 16};
JavaScript var ages = [49, 48, 26, 19, 16];
Python ages = [49, 48, 26, 19, 16]
Swift var ages:[Int] = [49, 48, 26, 19, 16]

This is the defining of storage space. The square brackets [] are used here to create the array
with five integer members and the identifier name of ages. The assignment with braces (that is
a block) establishes the initial values assigned to the members of the array. Note the use of the
sequence or comma operator. We could have also done something similar to:

Language Example Initial Values

C++ int ages[5]; undefined

C# int[] ages = new int[5]; 0

Java int[] ages = new int[5]; 0

JavaScript var ages = Array(5); undefined

Python ages = [None] * 5 None

This would have declared the storage space of five integers with the identifier name of ages but
their initial values would have been unknown values or initialized as indicated, depending on
the programming language. We could assign values later in our program by doing the following
(leaving off the semicolons in Python):

ages[0] = 49;
ages[1] = 48;
ages[2] = 26;
ages[3] = 19;
ages[4] = 16;

Note: The members of the array go from 0 to 4; NOT 1 to 5. This is explained in more detail on the
next page.

290 | Arrays and Lists

Key Terms

dimension
An axis of an array.

list
A single dimension array.

table
A two-dimension array.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Arrays and Lists | 291

Index Notation
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

Index notation is used to specify the elements of an array.1 Most current programming languages
use square brackets [] as the array index operator. Older programming languages, such as
FORTRAN, COBOL, and BASIC, often use parentheses () as the array index operator.

Discussion

Example:

Language Example

C++
int ages[] = {49, 48, 26, 19, 16};
int myAge = ages[2];

C#
int[] ages = {49, 48, 26, 19, 16};
int myAge = ages[2];

Java
int[] ages = {49, 48, 26, 19, 16};
int myAge = ages[2];

JavaScript
var ages = [49, 48, 26, 19, 16];
int myAge = ages[2];

Python
ages = [49, 48, 26, 19, 16]
my_age = ages[2]

Swift
var ages:[Int] = [49, 48, 26, 19, 16]
var my_age = ages[2]

As an operator, square brackets either provide the value held by the member of the array (Rvalue)
or change the value of member (Lvalue). In the above example, the member that is two offsets
from the front of the array (the value 26) is assigned to the variable named myAge. The dereference
operator of [2] means to go the 2nd offset from the front of the ages array and get the value
stored there. In this case, the value would be 26. In most current programming languages, the
array members (or elements) are referenced starting at zero. The more common way for people to
reference a list is by starting with position one. Consider:

1. Wikipedia: Index notation

292 | Index Notation

Position Index Miss America Other Contests

zero offsets from the front ages[0] Winner 1st Place

one offset from the front ages[1] 1st Runner Up 2nd Place

two offsets from the front ages[2] 2nd Runner Up 3rd Place

three offsets from the front ages[3] 3rd Runner Up 4th Place

four offsets from the front ages[4] 4th Runner Up 5th Place

Saying that my cousin is the 2nd Runner-Up in the Miss America contest sounds so much better
than saying that she was in 3rd Place. We would be talking about the same position in the array of
the five finalists.

ages[3] = 20;
This is an example of changing an array’s value by assigning 20 to the 4th member of the array

and replacing the value 19 with 20. This is an Lvalue context because the array is on the left side of
the assignment operator.

Key Terms

array member
An element or value in an array.

index
An operator that allows us to reference a member of an array.

offset
The method of referencing array members by starting at zero.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Index Notation | 293

Displaying Array Members
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

To display all array members, visit each element using a for loop and output the element using
index notation and the loop control variable.

Discussion

Accessing Array Members

Assume an integer array named ages with five values of 49, 48, 26, 19, and 16, respectively. In
pseudocode, this might be written as:

Declare Integer Array ages[5]
Assign ages = [49, 48, 26, 19, 16]
To display all elements of the array in order, we might write:
Output ages[0]

Output ages[1]
Output ages[2]
Output ages[3]
Output ages[4]
While this works for short arrays, it is not very efficient, and quickly becomes overwhelming

for longer arrays. One of the principles of software development is don’t repeat yourself
(DRY). Violations of the DRY principle are typically referred to as WET solutions, which is commonly
taken to stand for either “write everything twice”, “we enjoy typing” or “waste everyone’s time”.1

Rather than repeating ourselves, we can use a for loop to visit each element of the array and use
the loop control variable as the array index. Consider the following pseudocode:

Declare Integer Array ages[5]
Declare Integer index

Assign ages = [49, 48, 26, 19, 16]

For index = 0 to 4
Output ages[index]

End

1. Wikipedia: Don't repeat yourself

294 | Displaying Array Members

This approach is much more efficient from a programming perspective, and also results in a smaller
program. But there is still one more opportunity for improvement. Most programming languages
support a built-in method for determining the size of an array. To reduce potential errors and
required maintenance, the loop control should be based on the size of the array rather than a hard-
coded value. Consider:

Declare Integer Array ages[5]
Declare Integer index

Assign ages = [49, 48, 26, 19, 16]

For index = 0 to Size(ages) - 1
Output ages[index]

End

This method allows for flexible coding. By writing the for loop in this fashion, we can change the
declaration of the array by adding or subtracting members and we don’t need to change our for
loop code.

Key Terms

don’t repeat yourself
A principle of software development aimed at reducing repetition of software patterns,
replacing it with abstractions, or repetition of the same data, using data normalization to avoid
redundancy.2

flexible coding
Using the size of an array to determine the number of loop iterations required.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

2. Wikipedia: Don't repeat yourself

Displaying Array Members | 295

Arrays and Functions
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

In modular programming, specific task functions are often created and used or reused for array
processing. Array processing functions are usually passed the array and any data necessary to
process the array for the given task.

It should be noted that arrays are passed by reference in most current programming languages.
Array processing functions must take care not to alter the array unless intended.

Discussion

Arrays are an important complex data type used in almost all programming. We continue to
concentrate on simple one dimension arrays also called a list. Most programmers develop a series
of user-defined specific task functions that can be used with an array for normal processing. These
functions are usually passed the array along with the number of elements within the array. Some
functions also pass another piece of data needed for that particular function’s task.

This module covers the displaying the array members on the monitor via calling an array
function dedicated to that task.

Pseudocode

Function Main
Declare Integer Array ages[5]

Assign ages = [49, 48, 26, 19, 16]
Call DisplayArray(ages)

End

Function DisplayArray (Integer Array array)
Declare Integer index

For index = 0 to Size(array) - 1
Output array[index]

End
End

296 | Arrays and Functions

Output

49
48
26
19
16

Key Terms

array function
A user-defined specific task function designed to process an array.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

Arrays and Functions | 297

Math Statistics with Arrays
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

Statistics is a branch of mathematics dealing with the collection, organization, analysis,
interpretation, and presentation of data. Common statistical methods include mean (or average)
and standard deviation.1

Discussion

Arrays are an important complex data type used in almost all programming. We continue to
concentrate on simple one dimension arrays also called a list. Most programmers develop a series
of user-defined specific task functions that can be used with an array for normal processing. These
functions are usually passed the array along with the number of elements within the array. Some
functions also pass another piece of data needed for that particular functions task.

This module covers the totaling of the members of an integer array member. The Latin name for
totaling is summa, sometimes shortened to the word sum. In the example below, the sum function
totals the array passed to it. Other mathematical functions often associated with statistics such as:
average, count, minimum, maximum, standard deviation, etc. are often developed for processing
arrays.

Pseudocode

Function Main
Declare Integer Array ages[5]
Declare Integer total

Assign ages = [49, 48, 26, 19, 16]

Assign total = sum(ages)

Output "Total age is: " & total
End

Function sum (Integer Array array)
Declare Integer total
Declare Integer index

1. Wikipedia: Statistics

298 | Math Statistics with Arrays

Assign total = 0
For index = 0 to Size(array) - 1

Assign total = total + array[index]
End

Return Integer total

Output

Total age is: 158

Key Terms

sum
Latin for summa or a total.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Math Statistics with Arrays | 299

Searching Arrays
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

Linear search or sequential search is a method for finding a target value within a list. It sequentially
checks each element of the list for the target value until a match is found or until all the elements
have been searched.1

Discussion

Finding a specific member of an array means searching the array until the member is found. It’s
possible that the member does not exist and the programmer must handle that possibility within
the logic of his or her algorithm.

“The linear search is a very simple algorithm. Sometimes called a sequential search, it uses a loop
to sequentially step through an array, starting with the first element. It compares each element
with the value being searched for, and stops when either the value is found or the end of the array
is encountered. If the value being searched for is not in the array, the algorithm will search to the
end of the array.”2

Two specific linear searches can be made for the maximum (largest) value in the array or the
minimum (smallest) value in the array. Maximum and minimum are also known as max and min.
Note that the following max and min functions assume an array size >= 1.

Pseudocode

Function Main
Declare Integer Array ages[5]
Declare Integer maximum
Declare Integer minimum

Assign ages = [49, 48, 26, 19, 16]

Assign maximum = max(ages)
Assign minimum = min(ages)

Output "Maximum age is: " & maximum

1. Wikipedia: Linear search
2. Tony Gaddis, Judy Walters, and Godfrey Muganda, Starting Out with C++ Early Objects Sixth Edition (United

States of America: Pearson – Addison Wesley, 2008) 559.

300 | Searching Arrays

Output "Minimum age is: " & minimum
End

Function max (Integer Array array)
Declare Integer maximum
Declare Integer index

Assign maximum = array[0]
For index = 1 to Size(array) - 1

If maximum < array[index]
Assign maximum = array[index]

End
End

Return Integer maximum

Function min (Integer Array array)
Declare Integer minimum
Declare Integer index

Assign minimum = array[0]
For index = 1 to Size(array) - 1

If minimum > array[index]
Assign minimum = array[index]

End
End

Return Integer minimum

Output

Maximum age is: 49
Minimum age is: 16

Key Terms

linear search
Using a loop to sequentially step through an array.

maximum
Aka max or the largest member of an array.

minimum
Aka min or the smallest member of an array.

Searching Arrays | 301

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

302 | Searching Arrays

Sorting Arrays
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

A sorting algorithm is an algorithm that puts elements of a list in a certain order. The most
frequently used orders are numerical order and lexicographical order.1 Most current programming
languages include built-in or standard library functions for sorting arrays.

Discussion

Sorting is the process through which data are arranged according to their values. The following
examples show standard library and/or built-in array sorting methods for different programming
languages.

Language Sort Example

C++
#include <algorithm>
sort(array, array + sizeof(array) / sizeof(int));

C# System.Array.Sort(array)

Java
import java.util.Arrays;
Arrays.sort(array);

JavaScript array.sort();
Python array.sort()
Swift array.sort()

Key Terms

sorting
Arranging data according to their values.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

1. Wikipedia: Sorting algorithm

Sorting Arrays | 303

Parallel Arrays
DAVE BRAUNSCHWEIG

Overview

A group of parallel arrays is a form of implicit data structure that uses multiple arrays to represent
a singular array of records. It keeps a separate, homogeneous data array for each field of the record,
each having the same number of elements. Then, objects located at the same index in each array
are implicitly the fields of a single record.1

Discussion

A data structure is a data organization and storage format that enables efficient access and
modification. More precisely, a data structure is a collection of data values, the relationships among
them, and the functions or operations that can be applied to the data. Data structure options
include arrays, linked lists, records, and classes.2

Parallel arrays use two or more arrays to represent a collection of data where each corresponding
array index is a matching field for a given record. For example, if there are two arrays, one for names
and one for ages, the array elements at names[2] and ages[2] would describe the name and age of
the third person.

Pseudocode

Function Main
Declare String Array names[5]
Declare Integer Array ages[5]

Assign names = ["Lisa", "Michael", "Ashley", "Jacob", "Emily"]
Assign ages = [49, 48, 26, 19, 16]

DisplayArrays(names, ages)
End

Function DisplayArrays (String Array names, Integer Array ages)
Declare Integer index

For index = 0 to Size(array) - 1

1. Wikipedia: Parallel array
2. Wikipedia: Data structure

304 | Parallel Arrays

Output names[index] & " is " & ages[index] & " years old"
End

End

Output

Lisa is 49 years old
Michael is 48 years old
Ashley is 26 years old
Jacob is 19 years old
Emily is 16 years old

Key Terms

parallel array
An implicit data structure that uses multiple arrays to represent a singular array of records.

References

Parallel Arrays | 305

Multidimensional Arrays
KENNETH LEROY BUSBEE

Overview

The number of indices needed to specify an element is called the dimension or dimensionality
of the array. A two-dimensional array, or table, may be stored as a one-dimensional array of one-
dimensional arrays (rows of columns) and accessed with double indexing
(array[row][column] in typical notation).1

Discussion

An array is a sequenced collection of elements of the same data type with a single identifier name.
As such, the array data type belongs to the “Complex” category or family of data types. Arrays can
have multiple axes (more than one axis). Each axis is a dimension. Thus a single dimension array
is also known as a list. A two-dimension array is commonly known as a table (a spreadsheet like
Excel is a two dimension array). In real life, there are occasions to have data organized into multiple
dimensioned arrays. Consider a theater ticket with section, row, and seat (three dimensions).

We refer to the individual values as members (or elements) of the array. Multidimensional arrays
use one set of square brackets per dimension or axis of the array. For example, a table which
has two dimensions would use two sets of square brackets to define the array variable and two
sets of square brackets for the index operators to access the members of the array. Programming
languages implement the details of arrays differently. The total number of dimensions allowed in
an array is language-specific and also limited by available memory.

Pseudocode

Function Main
Declare String Array game[3][3]

Assign game = [["X", "O", "X"], ["O", "O", "O"], ["X", "O", "X"]]

DisplayGame(game)
End

Function DisplayGame (String Array game)
Declare Integer row
Declare Integer column

1. Wikipedia: Array data type

306 | Multidimensional Arrays

Output "Tic-Tac-Toe"
For row = 0 to 2

For column = 0 to 2
Output game[row][column]
If column < 2 Then

Output " | "
End

End
End

End

Output

Tic-Tac-Toe
X | O | X
O | O | O
X | O | X

Key Terms

array member
An element or value in an array.

dimension
An axis of an array.

index
An operator that allows us to reference a member of an array.

list
A single dimension array.

offset
The method of referencing array members by starting at zero.

table
A two-dimension array.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Multidimensional Arrays | 307

Dynamic Arrays
DAVE BRAUNSCHWEIG

Overview

A dynamic array is a random access, variable-size list data structure that allows elements to be
added or removed. It is supplied with standard libraries in many modern programming languages.
Dynamic arrays overcome a limit of static arrays, which have a fixed capacity that needs to be
specified at allocation.1

Discussion

A limitation of the static arrays discussed so far is that the array size is determined when the array
is created and/or allocated. Dynamic arrays allow elements to be added and removed at runtime.
Most current programming languages include built-in or standard library functions for creating
and managing dynamic arrays.

Language Class Add Remove

C++
#include <list>
std::list insert erase

C# System.Collections.Generic.List Add Remove
Java java.util.ArrayList add remove
JavaScript Array push , splice pop , splice
Python List append remove
Swift Array append remove

Key Terms

dynamic array
A data structure consisting of a collection of elements that allows individual elements to be
added or removed.

References

1. Wikipedia: Dynamic array

308 | Dynamic Arrays

C++ Examples
DAVE BRAUNSCHWEIG

Arrays

// This program demonstrates array processing, including:
// display, total, max, min, parallel arrays, sort
// multidimensional arrays, and dynamic arrays.

#include
#include
#include
#include
#include

using namespace std;

void displayArray(int [], int);
int sum(int [], int);
int max(int [], int);
int min(int [], int);
void displayParallel(string [], int [], int);
void displayMultidimensional();
void dynamicArray();

int main() {
string names[] = {"Lisa", "Michael", "Ashley", "Jacob", "Emily"};
int ages[] = {49, 48, 26, 19, 16};

displayArray(ages, sizeof(ages) / sizeof(int));

int total = sum(ages, sizeof(ages) / sizeof(int));
int maximum = max(ages, sizeof(ages) / sizeof(int));
int minimum = min(ages, sizeof(ages) / sizeof(int));

cout << "total: " << total << endl;
cout << "maximum: " << maximum << endl;
cout << "minimum: " << minimum << endl;

displayParallel(names, ages, sizeof(ages) / sizeof(int));

C++ Examples | 309

sort(ages, ages + sizeof(ages) / sizeof(int));
displayArray(ages, sizeof(ages) / sizeof(int));

displayMultidimensional();
dynamicArray();

return 0;
}

void displayArray(int arry[], int size) {
for (int index = 0; index < size; index++) {

cout << "array[" << index << "] = " << arry[index] << endl;
}

}

int sum(int arry[], int size) {
int total = 0;
for (int index = 0; index < size; index++) {

total += arry[index];
}
return total;

}

int max(int arry[], int size) {
int maximum = arry[0];
for (int index = 1; index < size; index++) {

if (maximum < arry[index]) {
maximum = arry[index];

}
}
return maximum;

}

int min(int arry[], int size) {
int minimum = arry[0];
for (int index = 1; index < size; index++) { if (minimum > arry[index]) {

minimum = arry[index];
}

}
return minimum;

}

310 | C++ Examples

void displayParallel(string names[], int ages[], int size) {
for (int index = 0; index < size; index++) {

cout << names[index] << " is " << ages[index] << " years old" << endl;
}

}

void displayMultidimensional() {
string game[3][3] = {

{"X", "O", "X"},
{"O", "O", "O"},
{"X", "O", "X"} };

for (int row = 0; row < 3; row++) {
for (int column = 0; column < 3; column++) {

cout << (game[row][column]);
if (column < 2) {

cout << " | ";
}

}
cout << endl;

}
}

void dynamicArray() {
list<int> arry;
srand (time(NULL));
for (int index = 0; index < 5; index++) {

int number = rand() % 100;
arry.push_back(number);

}

for (list<int>::iterator it = arry.begin(); it != arry.end(); it++) {
cout << *it << endl;

}
}

Output

array[0] = 49
array[1] = 48
array[2] = 26
array[3] = 19

C++ Examples | 311

array[4] = 16
total: 158
maximum: 49
minimum: 16
Lisa is 49 years old
Michael is 48 years old
Ashley is 26 years old
Jacob is 19 years old
Emily is 16 years old
array[0] = 16
array[1] = 19
array[2] = 26
array[3] = 48
array[4] = 49
X | O | X
O | O | O
X | O | X
38
65
20
8
30

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

312 | C++ Examples

C# Examples
DAVE BRAUNSCHWEIG

Arrays

// This program demonstrates array processing, including:
// display, total, max, min, parallel arrays, sort
// multidimensional arrays, and dynamic arrays.

using System;
using System.Collections.Generic;

class Arrays {
public static void Main (string[] args)
{

String[] names = {"Lisa", "Michael", "Ashley", "Jacob", "Emily"};
int[] ages = {49, 48, 26, 19, 16};

DisplayArray(ages);

int total = sum(ages);
int maximum = max(ages);
int minimum = min(ages);

Console.WriteLine("total: " + total);
Console.WriteLine("maximum: " + maximum);
Console.WriteLine("minimum: " + minimum);

DisplayParallel(names, ages);

System.Array.Sort(ages);
DisplayArray(ages);

DisplayMultidimensional();
DynamicArray();

}

public static void DisplayArray(int[] array)
{

for (int index = 0; index < array.Length; index++)

C# Examples | 313

{
Console.WriteLine("array[" + index + "] = " + array[index]);

}
}

public static int sum(int[] array)
{

int total = 0;
for (int index = 0; index < array.Length; index++)
{

total += array[index];
}
return total;

}

public static int max(int[] array)
{

int maximum = array[0];
for (int index = 1; index < array.Length; index++)
{

if (maximum < array[index])
{

maximum = array[index];
}

}
return maximum;

}

public static int min(int[] array)
{

int minimum = array[0];
for (int index = 1; index < array.Length; index++) { if (minimum > array[index])

{
minimum = array[index];

}
}
return minimum;

}

public static void DisplayParallel(String[] names, int[] ages)
{

for (int index = 0; index < names.Length; index++)
{

314 | C# Examples

Console.WriteLine(names[index] + " is " +
ages[index] + " years old");

}
}

public static void DisplayMultidimensional()
{

String[,] game = new String[,]
{

{"X", "O", "X"},
{"O", "O", "O"},
{"X", "O", "X"}

};

for (int row = 0; row < 3; row++)
{

for (int column = 0; column < 3; column++)
{

Console.Write(game[row, column]);
if (column < 2)
{

Console.Write(" | ");
}

}
Console.WriteLine();

}
}

public static void DynamicArray()
{

List<int> array = new List<int>();

Random random = new Random();
for (int index = 0; index < 5; index++)
{

int number = random.Next(0, 100);
array.Add(number);

}
for (int index = 0; index < array.Count; index++)
{

Console.WriteLine("array[" + index + "] = " + array[index]);
}

}

C# Examples | 315

}

Output

array[0] = 49
array[1] = 48
array[2] = 26
array[3] = 19
array[4] = 16
total: 158
maximum: 49
minimum: 16
Lisa is 49 years old
Michael is 48 years old
Ashley is 26 years old
Jacob is 19 years old
Emily is 16 years old
array[0] = 16
array[1] = 19
array[2] = 26
array[3] = 48
array[4] = 49
X | O | X
O | O | O
X | O | X
array[0] = 85
array[1] = 75
array[2] = 54
array[3] = 66
array[4] = 36

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

316 | C# Examples

Java Examples
DAVE BRAUNSCHWEIG

Arrays

// This program demonstrates array processing, including:
// display, total, max, min, parallel arrays, sort
// multidimensional arrays, and dynamic arrays.

import java.util.*;

class Main {
public static void main(String[] args) {

String[] names = {"Lisa", "Michael", "Ashley", "Jacob", "Emily"};
int[] ages = {49, 48, 26, 19, 16};

displayArray(ages);

int total = sum(ages);
int maximum = max(ages);
int minimum = min(ages);

System.out.println("total: " + total);
System.out.println("maximum: " + maximum);
System.out.println("minimum: " + minimum);

displayParallel(names, ages);

Arrays.sort(ages);
displayArray(ages);

displayMultidimensional();
dynamicArray();

}

public static void displayArray(int[] array) {
for (int index = 0; index < array.length; index++) {

System.out.println("array[" + index + "] = " + array[index]);
}

}

Java Examples | 317

public static int sum(int[] array) {
int total = 0;
for (int index = 0; index < array.length; index++) {

total += array[index];
}
return total;

}

public static int max(int[] array) {
int maximum = array[0];
for (int index = 1; index < array.length; index++) {

if (maximum < array[index]) {
maximum = array[index];

}
}
return maximum;

}

public static int min(int[] array) {
int minimum = array[0];
for (int index = 1; index < array.length; index++) { if (minimum > array[index]) {

minimum = array[index];
}

}
return minimum;

}

public static void displayParallel(String[] names, int[] ages) {
for (int index = 0; index < names.length; index++) {

System.out.println(names[index] + " is " +
ages[index] + " years old");

}
}

public static void displayMultidimensional() {
String[][] game = {

{"X", "O", "X"},
{"O", "O", "O"},
{"X", "O", "X"} };

for (int row = 0; row < 3; row++) {
for (int column = 0; column < 3; column++) {

318 | Java Examples

System.out.print(game[row][column]);
if (column < 2) {

System.out.print(" | ");
}

}
System.out.println();

}
}

public static void dynamicArray() {
ArrayList<Integer> array = new ArrayList<Integer>();

for (int index = 0; index < 5; index++) {
int number = (int) Math.floor(Math.random() * 100);
array.add(number);

}
System.out.println(array);

}
}

Output

array[0] = 49
array[1] = 48
array[2] = 26
array[3] = 19
array[4] = 16
total: 158
maximum: 49
minimum: 16
Lisa is 49 years old
Michael is 48 years old
Ashley is 26 years old
Jacob is 19 years old
Emily is 16 years old
array[0] = 16
array[1] = 19
array[2] = 26
array[3] = 48
array[4] = 49
X | O | X
O | O | O

Java Examples | 319

X | O | X
[49, 83, 75, 13, 17]

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

320 | Java Examples

JavaScript Examples
DAVE BRAUNSCHWEIG

Arrays

// This program demonstrates array processing, including:
// display, total, max, min, parallel arrays, sort
// multidimensional arrays, and dynamic arrays.

main()

function main() {
var names = ['Lisa', 'Michael', 'Ashley', 'Jacob', 'Emily'];
var ages = [49, 48, 26, 19, 16];

displayArray(names);
displayArray(ages);

var total = sum(ages);
var maximum = max(ages);
var minimum = min(ages);

output('total: ' + total);
output('maximum: ' + maximum);
output('minimum: ' + minimum);

displayParallel(names, ages);

ages.sort();
displayArray(ages);

displayMultidimensional();
dynamicArray();

}

function displayArray(array) {
for (var index = 0; index < array.length; index++) {

output('array[' + index + '] = ' + array[index]);
}

}

JavaScript Examples | 321

function sum(array) {
var total = 0;
for (var index = 0; index < array.length; index++) {

total += array[index];
}
return total;

}

function max(array) {
var maximum = array[0];
for (var index = 1; index < array.length; index++) {

if (maximum < array[index]) {
maximum = array[index];

}
}
return maximum;

}

function min(array) {
var minimum = array[0];
for (var index = 1; index < array.length; index++) { if (minimum > array[index]) {

minimum = array[index];
}

}
return minimum;

}

function displayParallel(names, ages) {
for (var index = 0; index < names.length; index++) {

output(names[index] + ' is ' + ages[index] + ' years old');
}

}

function displayMultidimensional() {
var game = [

['X', 'O', 'X'],
['O', 'O', 'O'],
['X', 'O', 'X']];

for (var row = 0; row < 3; row++) {
var line = '';
for (var column = 0; column < 3; column++) {

322 | JavaScript Examples

line += game[row][column];
if (column < 2) {

line += ' | ';
}

}
output(line);

}
}

function dynamicArray() {
var array = []

for (var index = 0; index < 5; index++) {
var number = Math.floor(Math.random() * 100);
array.push(number);

}
displayArray(array);

}

function output(text) {
if (typeof document === 'object') {

document.write(text);
}
else if (typeof console === 'object') {

console.log(text);
}
else {

print(text);
}

}

Output

array[0] = Lisa
array[1] = Michael
array[2] = Ashley
array[3] = Jacob
array[4] = Emily
array[0] = 49
array[1] = 48
array[2] = 26
array[3] = 19

JavaScript Examples | 323

array[4] = 16
total: 158
maximum: 49
minimum: 16
Lisa is 49 years old
Michael is 48 years old
Ashley is 26 years old
Jacob is 19 years old
Emily is 16 years old
array[0] = 16
array[1] = 19
array[2] = 26
array[3] = 48
array[4] = 49
X | O | X
O | O | O
X | O | X
array[0] = 30
array[1] = 97
array[2] = 87
array[3] = 42
array[4] = 40

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

324 | JavaScript Examples

Python Examples
DAVE BRAUNSCHWEIG

Arrays

This program demonstrates array processing, including:
display, total, max, min, parallel arrays, sort
multidimensional arrays, and dynamic arrays.

def display_array(array):
for index in range(len(array)):

print('array[' + str(index) + '] = ' +
str(array[index]))

def sum(array):
total = 0
for index in range(len(array)):

total += array[index]
return total

def max(array):
maximum = array[0]
for index in range(1, len(array)):

if maximum < array[index]:
maximum = array[index]

return maximum

def min(array):
minimum = array[0]
for index in range(1, len(array)):

if minimum > array[index]:
minimum = array[index]

return minimum

def display_parallel(names, ages):

Python Examples | 325

for index in range(len(names)):
print(names[index] + ' is ' +

str(ages[index]) + ' years old')

def display_multidimensional():
game = [

['X', 'O', 'X'],
['O', 'O', 'O'],
['X', 'O', 'X']]

for row in range (0, 3):
for column in range(0, 3):

print(game[row][column], end='')
if column < 2:

print(' | ', end='')
print()

def dynamic_array():
import random

array = []
for index in range(5):

array.append(random.randint(0, 100))
display_array(array)

def main():
names = ['Lisa', 'Michael', 'Ashley', 'Jacob', 'Emily']
ages = [49, 48, 26, 19, 16]

display_array(names)
display_array(ages)

total = sum(ages)
maximum = max(ages)
minimum = min(ages)

print('total: ' + str(total))
print('maximum: ' + str(maximum))
print('minimum: ' + str(minimum))

326 | Python Examples

display_parallel(names, ages)

ages.sort()
display_array(ages)

display_multidimensional()
dynamic_array()

main()

Output

array[0] = Lisa
array[1] = Michael
array[2] = Ashley
array[3] = Jacob
array[4] = Emily
array[0] = 49
array[1] = 48
array[2] = 26
array[3] = 19
array[4] = 16
total: 158
nmaximum: 49
minimum: 16
Lisa is 49 years old
Michael is 48 years old
Ashley is 26 years old
Jacob is 19 years old
Emily is 16 years old
array[0] = 16
array[1] = 19
array[2] = 26
array[3] = 48
array[4] = 49
X | O | X
O | O | O
X | O | X
array[0] = 71
array[1] = 39
array[2] = 80

Python Examples | 327

array[3] = 35
array[4] = 40

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

328 | Python Examples

Swift Examples
DAVE BRAUNSCHWEIG

Arrays

// This program demonstrates array processing, including:
// display, total, max, min, parallel arrays, sort
// multidimensional arrays, and dynamic arrays.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

import Foundation

func displayArray(array: [Int]) {
for index in 0...array.count - 1 {

print("array[" + String(index) + "] = " + String(array[index]))
}

}

func displayParallel(names:[String], ages:[Int]) {
for index in 0...names.count - 1 {

print(names[index] + " is " + String(ages[index]))
}

}

func displayMultidimensional() {
var game: [[String]]

game = [
["X", "O", "X"],
["O", "X", "O"],
["X", "O", "X"]

]

for row in 0...2 {
for column in 0...2 {

print(game[row][column], terminator:"")
if column < 2 {

Swift Examples | 329

print(" | ", terminator:"")
}

}
print()

}
}

func dynamicArray() {
var array: [Int] = []

srand(UInt32(time(nil)))
for _ in 0...4 {

array.append(random() % 100)
}
print(array)

}

func main() {
var names: [String]
var ages: [Int]
var total: Int
var maximum: Int
var minimum: Int

names = ["Lisa", "Michael", "Ashley", "Jacob", "Emily"]
ages = [49, 48, 26, 19, 16]

displayArray(array:ages)
total = ages.reduce(0, +)
maximum = ages.max()!
minimum = ages.min()!

print("total:", total)
print("maximum:", maximum)
print("minimum:", minimum)

displayParallel(names:names, ages:ages)

ages.sort()
displayArray(array:ages)

displayMultidimensional()
dynamicArray()

330 | Swift Examples

}

main()

Output

array[0] = 49
array[1] = 48
array[2] = 26
array[3] = 19
array[4] = 16
total: 158
maximum: 49
minimum: 16
Lisa is 49
Michael is 48
Ashley is 26
Jacob is 19
Emily is 16
array[0] = 16
array[1] = 19
array[2] = 26
array[3] = 48
array[4] = 49
X | O | X
O | X | O
X | O | X
[93, 3, 7, 35, 59]

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

Swift Examples | 331

Practice: Arrays
KENNETH LEROY BUSBEE

Review Questions

True / False

1. The array data type is one of the standard data types in C++.
2. Arrays can have more than one dimension.
3. For loops are often used to display the members of an array.
4. When defining an array, it is preferable to specify how many members are in the array.
5. Arrays are rarely used to represent data.
6. Linear searches require complex algorithms.
7. Functions are often created for searching for the max and min values in an array.
8. The bubble sort is an easy way to arrange data an array.
9. There is only one method of bubble sorting.

10. Sorting an array is frequently done.

Answers:

1. false
2. true
3. true
4. false
5. false
6. false
7. true
8. true
9. false

10. true

Short Answer

1. Briefly explain what an array is and list the two common operators used with arrays.
2. Give a short explanation of bubble sorting.

Activities

Complete the following activities using pseudocode, a flowcharting tool, or your selected
programming language. Use separate functions for input, each type of processing, and output.
Avoid global variables by passing parameters and returning results. Create test data to validate the
accuracy of each program. Add comments at the top of the program and include references to any
resources used.

332 | Practice: Arrays

1. Review MathsIsFun: Definition of Average. Create a program that asks the user to enter grade
scores. Start by asking the user how many scores they would like to enter. Then use a loop to
request each score and add it to a static (fixed-size) array. After the scores are entered,
calculate and display the high, low, and average for the entered scores.

2. Review MathsIsFun: Leap Years. Create a program that asks the user for a year, and then
calculate whether or not the given year is a leap year. Build an array where each entry is the
number of days in the corresponding month (January = 31, February = 28 or 29 depending on
year, March = 31, etc.). Build a parallel string array with the names of each month. Then ask the
user to enter a month number, and look up the corresponding month name and number of
days and display the information. Continue accepting input and displaying results until the
user enters a number less than 1 or greater than 12.

3. Review Wikipedia: Zeller’s congruence. Create a program that asks the user for their birthday
(year, month, and day) and then calculates and displays the day of the week on which they
were born. Use an array lookup to convert the numeric day of the week to the correct string
representation (Monday, Tuesday, Wednesday, etc.).

4. Review Khan Academy: A guessing game. Write a program that allows the user to think of a
number between 0 and 100, inclusive. Then have the program try to guess their number. Start
at the midpoint (50) and ask the user if their number is (h)igher, (l)ower, or (e)qual to the guess.
If they indicate lower, guess the new midpoint (25). If they indicate higher, guess the new
midpoint (75). Record each guess in an an array and continue efficiently guessing higher or
lower until they indicate equal, then display the list of guesses required to guess their number
and end the program.

5. Review Wikipedia: Monty Hall problem. Create a program that uses an array to simulate the
three doors. Use 0 (zero) to indicate goats and 1 (one) to indicate the car. Clear each “door” and
then use a random number function to put the number 1 in one of the array elements. Then
use the random number function to randomly select one of the three elements. Run the
simulation in a loop 100 times to confirm a 1/3 chance of winning. Then run the simulation
again, this time switching the selection after a 0 (goat) is removed from the remaining choices.
Run the simulation in a loop 100 times to confirm a 2/3 chance of winning by switching.

6. If your programming language supports it, use a built-in sort function to sort the grade scores
from the activity above and display the array in order from highest score to lowest score.

7. If your programming language supports it, update one or more of the programs above to
replace the static array with a dynamic array, and extend the array as each item is added to the
array. Continue accepting scores until the user enters no value (empty input).

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

Practice: Arrays | 333

PART VII

STRINGS AND FILES

Overview

This chapter introduces string and file processing.

Chapter Outline

• Strings
• String Functions
• String Formatting
• File Input and Output
• Loading an Array from a File
• Code Examples

◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.
2. Given example pseudocode, flowcharts, and source code, create a program that processes

strings to solve a given problem.
3. Given example pseudocode, flowcharts, and source code, create a program that processes a

text file to solve a given problem.

Strings and Files | 335

Strings
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

A string is traditionally a sequence of characters, either as a literal constant or as some kind of
variable. The latter may allow its elements to be mutated and the length changed, or it may be fixed
(after creation). A string is generally considered a data type and is often implemented as an array
data structure of bytes (or words) that stores a sequence of elements, typically characters, using
some character encoding.1

Discussion

Recall from String Data Type earlier in the book that, depending on programming language and
precise data type used, a variable declared to be a string may either cause storage in memory to be
statically allocated for a predetermined maximum length or employ dynamic allocation to allow it
to hold a variable number of elements. When a string appears literally in source code, it is known as
a string literal or an anonymous string.2

Most data is more complex than just one character, integer, etc. Programming languages
develop other methods to represent and store data that are more complex. A complex data type
of array is the first most students encounter. An array is a sequenced collection of elements of the
same data type with a single identifier name. This definition perfectly describes our string data type
concept. The simplest array is called a one-dimensional array; also know as a list because we usually
list the members or elements vertically. However, strings are viewed as a one-dimensional array that
visualize as listed horizontally. Strings are an array of character data.

In the “C” programming language all strings were handled as an array of characters that end
in an ASCII null character (the value 0 or the first character in the ASCII character code set). This
approach required programmers to manually process string length and manage string storage.
Buffer overflows were common. A buffer overflow, or buffer overrun, is an anomaly where a
program, while writing data to a buffer, overruns the buffer’s boundary and overwrites adjacent
memory locations.3

Most current programming languages implement strings as a data type or class where strings
are stored as a length controlled array. String length and storage are handled by the compiler or
interpreter, reducing program errors.

1. Wikipedia: String (computer science)
2. Wikipedia: String (computer science)
3. Wikipedia: Buffer overflow

Strings | 337

Language Reserved Word

C++ string
C# String
Java String
JavaScript String
Python str()
Swift String

Key Terms

array
A sequenced collection of elements of the same data type with a single identifier name.

buffer overflow
An anomaly where a program overruns a memory storage location and overwrites adjacent
memory locations.

concatenation
Combining two strings into one string.

string class
A complex data item that uses object oriented programming.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

338 | Strings

String Functions
DAVE BRAUNSCHWEIG

Overview

String functions are used in computer programming languages to manipulate a string or query
information about a string.1

Discussion

Most current programming languages include built-in or library functions to process strings.
Common examples include case conversion, comparison, concatenation, find, join, length, reverse,
split, substring, and trim.

Function C++ C# Java

case
tolower() ,
toupper() , etc.

ToLower() ,
ToUpper() , etc.

toLowerCase() ,
toUpperCase() , etc.

comparison < , > , == , etc. < , > , == , etc. < , > , == , etc.

concatenation + , += + , += + , +=
find find() IndexOf() indexOf()
join N/A Join() join()
length length() Length length()
replace replace() Replace() replace()
reverse reverse() Reverse() N/A

split strtok() Split() split()
substring substr() Substring() substring()
trim N/A Trim() trim()

1. Wikipedia: Comparison of programming languages (string functions)

String Functions | 339

Function JavaScript Python Swift

case
toLowerCase() ,
toUpperCase() , etc.

lower() , upper() ,
etc.

lowercased() ,
uppercased()

comparison < , > , == , etc. < , > , == , etc. < , > , == , etc.

concatenation + , += + , += + , +=
find indexOf() find() firstIndex()
join join() join() joined()
length length len() count
replace replace() replace() replacingOccurrences()
reverse N/A string[::-1] reversed()
split split() split() split()
substring substring() string[start:end] string[start...end]
trim trim() strip() trimmingCharacters()

Key Terms

concatenate
Join character strings end-to-end.2

trim
Remove leading and trailing spaces from a string.3

References

2. Wikipedia: Concatenation
3. Wikipedia: Trimming (computer programming)

340 | String Functions

String Formatting
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

String formatting uses a process of string interpolation (variable substitution) to evaluate a string
literal containing one or more placeholders, yielding a result in which the placeholders are replaced
with their corresponding values.1

Discussion

Most current programming languages provide one or more string formatting functions that use
a template string with placeholders and optional alignment, width, and precision indicators to
generate formatted output.

Language Function Examples

C++ snprintf() snprintf(str, sizeof(str), "Hello %s!", name);
snprintf(str, sizeof(str), "$%.2f", value);

C# Format() String.Format("Hello {0}!", name);
String.Format("{0:$0.00}", value);

Java format() String.format("Hello %s!", name);
String.format("$%.2f", value);

JavaScript template literal
`Hello ${name}`;
`$${value.toFixed(2)}`;

Python format() "Hello {}!".format(name)
"${:.2f}".format(value)

Swift
interpolation
String()

"Hello \(name)!"
String(format:"%.2f", value)

String interpolation, like string concatenation, may lead to security problems. If user input data is
improperly escaped or filtered, the system may be exposed to code injection.2

1. Wikipedia: String interpolation
2. Wikipedia: String interpolation

String Formatting | 341

Key Terms

code injection
The exploitation of a computer bug that is caused by processing invalid data.3

formatting
Modifying the way the output is displayed.

string interpolation
Evaluating a string literal containing one or more placeholders, yielding a result in which the
placeholders are replaced with their corresponding values.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

3. Wikipedia: Code injection

342 | String Formatting

File Input and Output
KENNETH LEROY BUSBEE

Overview

A computer file is a computer resource for recording data discretely in a computer storage device.
Just as words can be written to paper, so can information be written to a computer file.

There are different types of computer files, designed for different purposes. A file may be
designed to store a picture, a written message, a video, a computer program, or a wide variety of
other kinds of data. Some types of files can store several types of information at once.

By using computer programs, a person can open, read, change, and close a computer file.
Computer files may be reopened, modified, and copied an arbitrary number of times.1

Discussion

In computer programming, standard streams are pre-connected input and output communication
channels between a computer program and its environment when it begins execution. The three
input/output (I/O) connections are called standard input (stdin – keyboard), standard output
(stdout – originally a printer) and standard error (stderr – monitor). Streams may be redirected to
other devices and/or files. In current environments, stdout is usually redirected to the monitor.2

Computer files are stored on secondary storage devices and used to maintain program data over
time. Most programming languages have built-in functions or libraries to support processing files
as text streams. We need to understand how to open, read, write and close text files. The following
File Input/Output terms are explained:

Text File – A file consisting of characters from the ASCII character code set. Text files (also known
as ASCII text files) contain character data. When we create a text file we usually think of it consisting
of a series of lines. On each line are several characters (including spaces, punctuation, etc.) and we
generally end the line with a return (a character within the ASCII character code set). The return is
also known as the new line character. You are most likely already familiar with the escape code of
\n which is used within many programming languages to indicate a return character when used
within a literal string.

A typical text file consisting of lines can be created by text editors (Notepad) or word processing
programs (Microsoft Word). When using a word processor you must usually specify the output file
as text (.txt) when saving it. Most source code files are ASCII text files with a unique file extension;
such as C++ using .cpp, C# using .cs, Python using .py, etc. Thus, most compiler/Integrated
Development Environment software packages can be used to create ASCII text files.

Filename – The name and its extension. Most operating systems have restrictions on which
characters can be used in filenames. Example Lab_05.txt

Because some operating systems do not allow spaces, we suggest that you use
the underscore where needed for spacing in a filename.

Path (Filespec) – The location of a file along with its filename. Filespec is short for file
specification. Most operating systems have a set of rules on how to specify the drive and directory

1. Wikipedia: Computer file
2. Wikipedia: Standard streams

File Input and Output | 343

(or path through several directory levels) along with the filename. Example: C:\myfiles\cosc_1436\
Lab_05.txt

Because some operating systems do not allow spaces, we suggest that you use
the underscore where needed when creating folders or sub-directories.

Open – Your program requesting the operating system to let it have access to an existing file or to
open a new file. In most current programming languages, a file data type exists and is used for file
processing. A file variable will be used to store the device token that the operating system assigns to
the file being opened. An open function or method is used to retrieve the device token, and typically
requires at least two parameters: the path and the mode (read, write, append, or a combination
thereof). Corresponding pseudocode would be:

Declare File datafile

datafile = open(filespec, mode)

The open function provides a return value of a device token from the operating system and it is
stored in the variable named data.

It is considered good programming practice to determine if the file was opened properly. The
reason the operating system usually can’t open a file is because the filespec is wrong (misspelled
or not typed case consistent in some operating systems) or the file is not stored in the location
specified. Accessing files stored on a network or the Internet may fail due to a network error.

Verifying that a file was opened properly is processed with a condition control structure. That
structure may be either be an if-then-else statement or a try-catch / try-except error handler,
depending on the programming language used.

Read – Moving data from a device that has been opened into a memory location defined in your
program. For example:
text = read(datafile)

or
text = datafile.read()
Write – Moving data from a memory location defined in your program to a device that has been

opened. For example:
write(datafile, text)

or
datafile.write(text)
Close – Your program requesting the operating system to release a file that was previously

opened. There are two reasons to close a file. First, it releases the file and frees up the associated
operation system resources. Second, if closing a file that was opened for output; it will clear the out
the operating system’s buffer and ensure that all of the data is physically stored in the output file.
For example:

close(datafile)
or
datafile.close()
Using / With – A wrapper around a processing block that will automatically close opened

resources, available in some programming languages. For example:

// C#
using (datafile = open(filespec, mode))
{

344 | File Input and Output

//...
}

or

Python3
with open(filespec, mode) as datafile:

...

Key Terms

close
Your program requesting the operating system to release a file that was previously opened.

device token
A key value provided by the operating system to associate a device to your program.

filename
The name and its extension.

filespec
The location of a file along with its filename.

open
Your program requesting the operating system to let it have access to an existing file or to
open a new file.

read
Moving data from a device that has been opened into a memory location defined in your
program.

stream
A sequence of data elements made available over time.3

stdin
Standard input stream, typically the keyboard. 4

stderr
Standard output error stream, typically the monitor.5

stdout
Standard output stream, originally a printer, but now typically the monitor.6

text file
A file consisting of characters from the ASCII character code set.

using / with
A wrapper around a processing block that will automatically close opened resources.

write
Moving data from a memory location defined in your program to a device that has been
opened.

3. Wikipedia: Stream (computing)
4. Wikipedia: Standard streams
5. Wikipedia: Standard streams
6. Wikipedia: Standard streams

File Input and Output | 345

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

346 | File Input and Output

Loading an Array from a Text File
KENNETH LEROY BUSBEE AND DAVE BRAUNSCHWEIG

Overview

Loading an array from a text file requires several steps, including: opening the file, reading the
records, parsing (splitting) the records into fields, adding the fields to an array, and closing the file.
The file may be read all at once and then parsed, or processed line by line. The array must either be
at least as large as the number of records in the file, or must be generated dynamically.

Discussion

Loading an array from a file presents an interesting dilemma. The problem resolves around how
many elements you should plan for in the array. Let’s say 100, but what if the file has fewer or more
than 100 values. How can the program handle it correctly?

Either:

1. Read the file and count the number of records.
2. Create a static array of that size.
3. Read the file again and add each record to the array.

Or:

1. Read the file and dynamically add the records to the array.

Processing Records

There are two options for file processing:

1. Read the entire file into memory, split the records and then process each record.
2. Read the file line by line and process one record at a time.

Which of these approaches is better will depend on the size of the file and the types of file and
string processing supported by your programming language. Reading the entire file at once may
be faster for small files. Very large files must be processed line by line.

Processing Fields

Processing fields requires splitting records based on the given file format. For example, a comma-
separated-values file might be formatted as:

Celsius,Fahrenheit

Loading an Array from a Text File | 347

0.0,32.0
1.0,33.8
2.0,35.6

The first line contains field names separated by commas. Following lines contain a value for each
of the fields, separated by commas. Note that all text file input is strings. Each line must be split on
the field separator (comma), and then numeric fields must be converted to integer or floating point
values for processing.

Pseudocode

Static Array Processing

Open file
Read header
While Not End-Of-File

Read line
Increment record count

Close file

Declare array with length based on record count
Read Header
While Not End-Of-File

Read line
Split line into field(s)
Convert numeric values to numeric data types
Add field(s) to array or parallel arrays

Close file

Dynamic Array Processing

Declare empty array
Open file
Read Header
While Not End-Of-File

Read line
Split line into field(s)
Convert numeric values to numeric data types
Add field(s) to array or parallel arrays

Close file

348 | Loading an Array from a Text File

Key Terms

dynamic memory
Aka stack created memory associated with local scope.

static memory
Aka data area memory associated with global scope.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++

Loading an Array from a Text File | 349

C++ Examples
DAVE BRAUNSCHWEIG

Strings

#include <algorithm>
#include <iostream>
#include <string>

using namespace std;

string toLower(string);
string toUpper(string);

int main() {
string str = "Hello";

cout << "string: " << str << endl;
cout << "tolower: " << toLower(str) << endl;
cout << "toupper: " << toUpper(str) << endl;
cout << "string.find('e'): " << str.find('e') << endl;
cout << "string.length(): " << str.length() << endl;
cout << "string.replace(0, 1, \"j\"): " << str.replace(0, 1, "j") << endl;
cout << "string.substr(2, 2): " << str.substr(2, 2) << endl;

string name = "Bob";
double value = 123.456;
cout << name << " earned $" << fixed << setprecision (2) << value << endl;

}

string toLower(string str) {
transform(str.begin(), str.end(), str.begin(), ::tolower);

return str;
}

string toUpper(string str) {
transform(str.begin(), str.end(), str.begin(), ::toupper);

350 | C++ Examples

return str;
}

Output

string: Hello
tolower: hello
toupper: HELLO
string.find('e'): 1
string.length(): 5
string.replace(0, 1, "j"): jello
string.substr(2, 2): ll
Bob earned $123.46

Files

// This program creates a file, adds data to the file, displays the file,
// appends more data to the file, displays the file, and then deletes the file.
// It will not run if the file already exists.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/C%2B%2B_Programming

#include <fstream>
#include <iomanip>
#include <iostream>
#include <string>

using namespace std;

double calculateFahrenheit(double celsius);
void createFile(string);
void readFile(string);
void appendFile(string);
void deleteFile(string);
int fileExists(string);

int main() {
string FILENAME = "~file.txt";

C++ Examples | 351

if(fileExists(FILENAME)) {
cout << "File already exists." << endl;

} else {
createFile(FILENAME);
readFile(FILENAME);
appendFile(FILENAME);
readFile(FILENAME);
deleteFile(FILENAME);

}
}

double calculateFahrenheit(double celsius) {
double fahrenheit;

fahrenheit = celsius * 9 / 5 + 32;
return fahrenheit;

}

void createFile(string filename) {
fstream file;
float celsius;
float fahrenheit;

file.open(filename, fstream::out);
if (file.is_open()) {

file << "Celsius,Fahrenheit\n";
for(celsius = 0; celsius <= 50; celsius++) {

fahrenheit = calculateFahrenheit(celsius);
file << fixed << setprecision (1) << celsius << "," << fahrenheit << endl;

}
file.close();

} else {
cout << "Error creating " << filename << endl;

}
}

void readFile(string filename)
{

fstream file;
string line;

file.open(filename, fstream::in);

352 | C++ Examples

if (file.is_open()) {
while (getline(file, line))
{

cout << line << endl;
}
file.close();
cout << endl;

} else {
cout << "Error reading " << filename << endl;

}
}

void appendFile(string filename)
{

fstream file;
float celsius;
float fahrenheit;

file.open(filename, fstream::out | fstream::app);
if (file.is_open()) {

for(celsius = 51; celsius <= 100; celsius++) {
fahrenheit = calculateFahrenheit(celsius);
file << fixed << setprecision (1) << celsius << "," << fahrenheit << endl;

}
file.close();

} else {
cout << "Error appending to " << filename << endl;

}
}

void deleteFile(string filename)
{

remove(filename.c_str());
}

int fileExists(string filename)
{

FILE *file;

file = fopen (filename.c_str(), "r");
if (file != NULL)
{

fclose (file);

C++ Examples | 353

}
return (file != NULL);

}

Output

Celsius,Fahrenheit
0.0,32.0
1.0,33.8
2.0,35.6
...
98.0,208.4
99.0,210.2
100.0,212.0

References

• Wikiversity: Computer Programming

354 | C++ Examples

C# Examples
DAVE BRAUNSCHWEIG

Strings

// This program demonstrates string functions.

using System;

class Strings
{

public static void Main (string[] args)
{

String str = "Hello";

Console.WriteLine("string: " + str);
Console.WriteLine("string.ToLower(): " + str.ToLower());
Console.WriteLine("string.ToUpper(): " + str.ToUpper());
Console.WriteLine("string.IndexOf('e'): " + str.IndexOf('e'));
Console.WriteLine("string.Length: " + str.Length);
Console.WriteLine("string.Replace('H', 'j'): " + str.Replace('H', 'j'));
Console.WriteLine("string(Substring(2, 2)): " + str.Substring(2, 2));
Console.WriteLine("string.Trim(): " + str.Trim());

String name = "Bob";
double value = 123.456;
Console.WriteLine(String.Format("{0} earned {1:$0.00}", name, value));

}
}

Output

string: Hello
string.ToLower(): hello
string.ToUpper(): HELLO
string.IndexOf('e'): 1
string.Length: 5
string.Replace('H', 'j'): jello
string(Substring(2, 2)): ll

C# Examples | 355

string.Trim(): Hello
Bob earned $123.46

Files

// This program creates a file, adds data to the file, displays the file,
// appends more data to the file, displays the file, and then deletes the file.
// It will not run if the file already exists.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/C_Sharp_Programming

using System;

public class Files
{

public static void Main(String[] args)
{

string FILENAME = "~file.txt";

if(System.IO.File.Exists(FILENAME))
{

System.Console.WriteLine("File already exists.\n");
}
else
{

CreateFile(FILENAME);
ReadFile(FILENAME);
AppendFile(FILENAME);
ReadFile(FILENAME);
DeleteFile(FILENAME);

}
}

private static double CalculateFahrenheit(double celsius)
{

double fahrenheit;

fahrenheit = celsius * 9 / 5 + 32;
return fahrenheit;

356 | C# Examples

}

private static void CreateFile(string filename)
{

System.IO.StreamWriter file;
double celsius;
double fahrenheit;

try
{

using(file = System.IO.File.CreateText(filename))
{

file.WriteLine("Celsius,Fahrenheit");
for(celsius = 0; celsius <= 50; celsius++)
{

fahrenheit = CalculateFahrenheit(celsius);
file.WriteLine(String.Format("{0:F1},{1:F1}", celsius, fahrenheit));

}
}

}
catch(Exception exception)
{

Console.WriteLine("Error creating " + filename);
Console.WriteLine(exception.Message);

}
}

private static void ReadFile(string filename)
{

System.IO.StreamReader file;
string line;

try
{

using (file = System.IO.File.OpenText(filename))
{

while (true)
{

line = file.ReadLine();
if (line == null)
{

break;
}

C# Examples | 357

Console.WriteLine(line);
}

}
Console.WriteLine("");

}
catch(Exception exception)
{

Console.WriteLine("Error reading " + filename);
Console.WriteLine(exception.Message);

}
}

private static void AppendFile(string filename)
{

System.IO.StreamWriter file;
double celsius;
double fahrenheit;

try
{

using (file = System.IO.File.AppendText(filename))
{

for(celsius = 51; celsius <= 100; celsius++)
{

fahrenheit = CalculateFahrenheit(celsius);
file.WriteLine(String.Format("{0:F1},{1:F1}", celsius, fahrenheit));

}
}

}
catch(Exception exception)
{

Console.WriteLine("Error appending to " + filename);
Console.WriteLine(exception.Message);

}
}

private static void DeleteFile(string filename)
{

try
{

System.IO.File.Delete(filename);
}
catch(Exception exception)

358 | C# Examples

{
Console.WriteLine("Error deleting " + filename);
Console.WriteLine(exception.Message);

}
}

}

Output

Celsius,Fahrenheit
0.0,32.0
1.0,33.8
2.0,35.6
...
98.0,208.4
99.0,210.2
100.0,212.0

References

• Wikiversity: Computer Programming

C# Examples | 359

Java Examples
DAVE BRAUNSCHWEIG

Strings

// This program demonstrates string functions.

class Main {
public static void main(String[] args) {

String str = "Hello";

System.out.println("string: " + str);
System.out.println("string.toLowerCase(): " + str.toLowerCase());
System.out.println("string.toUpperCase(): " + str.toUpperCase());
System.out.println("string.indexOf('e'): " + str.indexOf('e'));
System.out.println("string.length(): " + str.length());
System.out.println("string.replace('H', 'j'): " + str.replace('H', 'j'));
System.out.println("string(substring(2,4): " + str.substring(2, 4));
System.out.println("string.trim(): " + str.trim());

String name = "Bob";
double value = 123.456;
System.out.println(String.format("%s earned $%.2f", name, value));

}
}

Output

string: Hello
string..toLowerCase(): hello
string.toUpperCase(): HELLO
string.indexOf('e'): 1
string.length(): 5
string.replace('H', 'j'): jello
string(substring(2,4): ll
string.trim(): Hello
Bob earned $123.46

360 | Java Examples

Files

// This program creates a file, adds data to the file, displays the file,
// appends more data to the file, displays the file, and then deletes the file.
// It will not run if the file already exists.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/Java_Programming

import java.util.*;

class Main {
public static void main(String[] args) {

String FILENAME = "~file.txt";

if(fileExists(FILENAME)) {
System.out.println("File already exists.\n");

} else {
createFile(FILENAME);
readFile(FILENAME);
appendFile(FILENAME);
readFile(FILENAME);
deleteFile(FILENAME);

}
}

private static double calculateFahrenheit(double celsius) {
double fahrenheit;

fahrenheit = celsius * 9 / 5 + 32;
return fahrenheit;

}

private static void createFile(String filename) {
try {

java.io.File file = new java.io.File(filename);
java.io.BufferedWriter writer =

new java.io.BufferedWriter(new java.io.FileWriter(file));
double celsius;
double fahrenheit;

writer.write("Celsius,Fahrenheit\n");

Java Examples | 361

for(celsius = 0; celsius <= 50; celsius++) {
fahrenheit = calculateFahrenheit(celsius);
writer.write(celsius + "," + fahrenheit + "\n");

}
writer.close();

} catch(Exception exception) {
System.out.println("Error creating " + filename);
exception.printStackTrace();

}
}

private static void readFile(String filename) {
try {

java.io.File file = new java.io.File(filename);
java.io.BufferedReader reader =

new java.io.BufferedReader(new java.io.FileReader(file));
String line;

while(true) {
line = reader.readLine();
if (line == null) {

break;
}
System.out.println(line);

}
reader.close();
System.out.println("");

} catch(Exception exception) {
System.out.println("Error reading " + filename);
exception.printStackTrace();

}
}

private static void appendFile(String filename)
{

try {
java.io.File file = new java.io.File(filename);
java.io.BufferedWriter writer =

new java.io.BufferedWriter(new java.io.FileWriter(file, true));
double celsius;
double fahrenheit;

for(celsius = 51; celsius <= 100; celsius++) {

362 | Java Examples

fahrenheit = calculateFahrenheit(celsius);
writer.write(celsius + "," + fahrenheit + "\n");

}
writer.close();

} catch(Exception exception) {
System.out.println("Error appending to " + filename);
exception.printStackTrace();

}
}

private static void deleteFile(String filename) {
java.io.File file;

try {
file = new java.io.File(filename);
file.delete();

} catch(Exception exception) {
System.out.println("Error deleting " + filename);
exception.printStackTrace();

}

}

private static boolean fileExists(String filename) {
java.io.File file;

file = new java.io.File(filename);
return file.exists();

}
}

Output

Celsius,Fahrenheit
0.0,32.0
1.0,33.8
2.0,35.6
...
98.0,208.4
99.0,210.2
100.0,212.0

Java Examples | 363

References

• Wikiversity: Computer Programming

364 | Java Examples

JavaScript Examples
DAVE BRAUNSCHWEIG

Strings

// This program demonstrates string functions.

main();

function main()
{

var str = "Hello";

output("string: " + str);
output("string.toLowerCase(): " + str.toLowerCase());
output("string.toUpperCase(): " + str.toUpperCase());
output("string.indexOf('e'): " + str.indexOf('e'));
output("string.length: " + str.length);
output("string.replace('H', 'j'): " + str.replace('H', 'j'));
output("string(substring(2,4): " + str.substring(2, 4));
output("string.trim(): " + str.trim());

var name = "Bob";
var value = 123.456;
output(`string.format(): ${name} earned $${value.toFixed(2)}`);

}

function output(text) {
if (typeof document === 'object') {

document.write(text);
}
else if (typeof console === 'object') {

console.log(text);
}
else {

print(text);
}

}

JavaScript Examples | 365

Output

string: Hello
string..toLowerCase(): hello
string.toUpperCase(): HELLO
string.indexOf('e'): 1
string.length: 5
string.replace('H', 'j'): jello
string(substring(2,4): ll
string.trim(): Hello
string.format(): Bob earned $123.46

Files

Note: For security reasons, JavaScript in a browser requires the user to select the file to be
processed. This example is based on node.js rather than browser-based JavaScript.

// This program creates a file, adds data to the file, displays the file,
// appends more data to the file, displays the file, and then deletes the file.
// It will not run if the file already exists.

function calculateFahrenheit(celsius) {
fahrenheit = celsius * 9 / 5 + 32
return fahrenheit

}

function createFile(filename) {
var fs = require('fs')

fs.writeFile(filename, "Celsius,Fahrenheit\n", function(err) {
if (err) return console.error(err);

});

for(var celsius = 0; celsius <= 50; celsius++) {
var fahrenheit = calculateFahrenheit(celsius);
fs.appendFile(filename, celsius.toFixed(1) + "," +

fahrenheit.toFixed(1) + "\n", function (err) {
if (err) {

return console.error(err);
}

});
}

366 | JavaScript Examples

}

function readFile(filename) {
var file = require('readline').createInterface({

input: require('fs').createReadStream(filename)
});

file.on('line', function (line) {
console.log(line);

});
}

function appendFile(filename) {
var fs = require('fs')

for(var celsius = 51; celsius <= 100; celsius++) {
var fahrenheit = calculateFahrenheit(celsius);
fs.appendFile(filename, celsius.toFixed(1) + "," +

fahrenheit.toFixed(1) + "\n", function (err) {
if (err) {

return console.error(err);
}

});
}

}

function deleteFile(filename) {
var fs = require("fs");

fs.unlink(filename, function(err) {
if (err) {

return console.error(err);
}

});
}

function fileExists(filename) {
var fs = require('fs');
return fs.existsSync(filename);

}

function main() {
var filename = "~file.txt";

JavaScript Examples | 367

if(fileExists(filename)) {
console.log("File already exists.")

} else {
createFile(filename);
readFile(filename);
appendFile(filename);
readFile(filename);
deleteFile(filename);

}
}

main();

Output

Celsius,Fahrenheit
0.0,32.0
1.0,33.8
2.0,35.6
...
98.0,208.4
99.0,210.2
100.0,212.0

References

• Wikiversity: Computer Programming

368 | JavaScript Examples

Python Examples
DAVE BRAUNSCHWEIG

Strings

This program demonstrates string functions.

def main():
string = "Hello"

print("string: " + string)
print("string.lower(): " + string.lower())
print("string.upper(): " + string.upper())
print("string.find('e'): " + str(string.find('e')))
print("len(string): " + str(len(string)))
print("string.replace('H', 'j'): " + string.replace('H', 'j'))
print("string[::-1]: " + string[::-1])
print("string[2:4]: " + string[2:4])
print("string.strip('H'): " + string.strip('H'))

name = "Bob"
value = 123.456
print("string.format(): {0} earned ${1:.2f}".format(name, value))

main()

Output

string: Hello
string.lower(): hello
string.upper(): HELLO
string.find('e'): 1
len(string): 5
string.replace('H', 'j'): jello
string[::-1]: olleH
string[2:4]: ll
string.strip('H'): ello

Python Examples | 369

string.format(): Bob earned $123.46

Files

This program creates a file, adds data to the file, displays the file,
appends more data to the file, displays the file, and then deletes the file.
It will not run if the file already exists.
#
References:
https://www.mathsisfun.com/temperature-conversion.html
https://en.wikibooks.org/wiki/Python_Programming

import os
import sys

def calculate_fahrenheit(celsius):
fahrenheit = celsius * 9 / 5 + 32
return fahrenheit

def create_file(filename):
try:

with open(filename, "w") as file:
file.write("Celsius,Fahrenheit\n")
for celsius in range(0, 51):

fahrenheit = calculate_fahrenheit(celsius)
file.write("{:.1f},{:.1f}\n".format(celsius, fahrenheit))

except:
print("Error creating", filename)
print(sys.exc_info()[1])

def read_file(filename):
try:

with open(filename, "r") as file:
for line in file:

line = line.strip()
print(line)

print()

370 | Python Examples

except:
print("Error reading", filename)
print(sys.exc_info()[1])

def append_file(filename):
try:

with open(filename, "a") as file:
for celsius in range(51, 101):

fahrenheit = calculate_fahrenheit(celsius)
file.write("{:.1f},{:.1f}\n".format(celsius, fahrenheit))

except:
print("Error appending to", filename)
print(sys.exc_info()[1])

def delete_file(filename):
try:

os.remove(filename)
except:

print("Error deleting", filename)
print(sys.exc_info()[1])

def main():
filename = "~file.txt"

if os.path.isfile(filename):
print("File already exists.")

else:
create_file(filename)
read_file(filename)
append_file(filename)
read_file(filename)
delete_file(filename)

main()

Output

Celsius,Fahrenheit

Python Examples | 371

0.0,32.0
1.0,33.8
2.0,35.6
3.0,37.4
...
98.0,208.4
99.0,210.2
100.0,212.0

References

• Wikiversity: Computer Programming

372 | Python Examples

Swift Examples
DAVE BRAUNSCHWEIG

Strings

// This program demonstrates string functions.

import Foundation

func main() {
let string:String = "Hello"

print("string: " + string)
print("string.lowercased(): " + string.lowercased())
print("string.uppercased(): " + string.uppercased())
print("find(string, \"e\"): " + String(find(string:string, character:"e")))
print("string.count: " + String(string.count))
print("string.replacingOccurrences(of:\"H\", with:\"j\"): " + string.replacingOccurrences(of:"H", with:"j"))
print("string.reversed(): " + String(string.reversed()))
print("substring(2, 2): " + substring(string:string, start:2, length:2))
print("string.trimmingCharacters(\"H\"): " + string.trimmingCharacters(in:CharacterSet.init(charactersIn: "H")))

let name:String = "Bob"
let value:Double = 123.456
print("\(name) earned $" + String(format:"%.2f", value))

}

func find(string:String, character:Character) -> Int {
var result: Int

if let index = string.firstIndex(of:character) {
result = string.distance(from: string.startIndex, to: index)

} else {
result = -1

}
return result

}

func substring(string:String, start:Int, length:Int) -> String {
let startIndex = string.index(string.startIndex, offsetBy: start)

Swift Examples | 373

let endIndex = string.index(string.startIndex, offsetBy: start + length - 1)
return String(string[startIndex...endIndex])

}

main()

Output

string: Hello
string.lowercased(): hello
string.uppercased(): HELLO
find(string, "e"): 1
string.count: 5
string.replacingOccurrences(of:"H", with:"j"): jello
string.reversed(): olleH
substring(2, 2): ll
string.trimmingCharacters("H"): ello
Bob earned $123.46

Files

// This program creates a file, adds data to the file, displays the file,
// appends more data to the file, displays the file, and then deletes the file.
// It will not run if the file already exists.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

import Foundation

func fileExists(filename:String) -> Bool {
let fileManager = FileManager.default
return fileManager.fileExists(atPath:filename)

}

func calculateFahrenheit(celsius:Double) -> Double {
var fahrenheit: Double
fahrenheit = celsius * 9 / 5 + 32
return fahrenheit

374 | Swift Examples

}

func createFile(filename:String) {
var text: String
var fahrenheit: Double

text = "Celsius,Fahrenheit\n"
for celsius in stride(from: 0.0, through: 50.0, by: 1.0) {

fahrenheit = calculateFahrenheit(celsius:celsius)
text += String(celsius) + "," + String(fahrenheit) + "\n"

}

do {
try text.write(toFile: filename, atomically: true, encoding: .utf8)

} catch {
print("Error creating ", filename)
print(error.localizedDescription)

}
}

func readFile(filename:String) {
var text = ""

do {
text = try String(contentsOfFile: filename, encoding: .utf8)

let lines = text.components(separatedBy:"\n")
for line in lines {

print(line)
}

} catch {
print("Error reading " + filename)
print(error.localizedDescription)

}
}

func appendFile(filename:String) {
var text: String
var fahrenheit: Double

do {
text = try String(contentsOfFile: filename, encoding: .utf8)

Swift Examples | 375

for celsius in stride(from: 51.0, through: 100.0, by: 1.0) {
fahrenheit = calculateFahrenheit(celsius:celsius)
text += String(celsius) + "," + String(fahrenheit) + "\n"

}

try text.write(toFile: filename, atomically: true, encoding: .utf8)
} catch {

print("Error appending to ", filename)
print(error.localizedDescription)

}
}

func deleteFile(filename:String) {
do {

let fileManager = FileManager.default
try fileManager.removeItem(atPath:filename)

} catch {
print("Error deleting", filename)
print(error.localizedDescription)

}
}

func main() {
let filename:String = "~file.txt"

if (fileExists(filename:filename)) {
print("File already exists.")

}
else {

createFile(filename:filename)
readFile(filename:filename)
appendFile(filename:filename)
readFile(filename:filename)
deleteFile(filename:filename)

}
}

main()

Output

Celsius,Fahrenheit

376 | Swift Examples

0.0,32.0
1.0,33.8
2.0,35.6
3.0,37.4
...
98.0,208.4
99.0,210.2
100.0,212.0

References

• Wikiversity: Computer Programming

Swift Examples | 377

Practice: Strings and Files
KENNETH LEROY BUSBEE

Review Questions

True / False

1. The character data type in C++ uses the double quote marks, like: char grade = “A”;
2. Sizeof is an operator that tells you how many bytes a data type occupies in storage.
3. Typedef helps people who can’t hear and is one of the standard accommodation features of a

programming language for people with a learning disability.
4. The sequence operator should be used when defining variables in order to save space.
5. Programming can be both enjoyable and frustrating.
6. Text files are hard to create.
7. A filespec refers to a very small (like a spec dust) file.
8. A device token is a special non zero value the operating system gives your program and is

associated with the file that you requested to be opened.
9. Programmers should not worry about closing a file.

10. Where you define an item, that is global or local scope, is rarely important.

Answers:

1. false
2. true
3. false
4. false
5. true
6. false
7. false
8. true
9. false

10. false

Short Answer

1. Describe the normal operations allowed with the string data type.
2. Describe why unary positive is worthless.
3. Describe how unary negative works.

Activities

Complete the following activities using pseudocode, a flowcharting tool, or your selected
programming language. Use separate functions for input, each type of processing, and output.
Avoid global variables by passing parameters and returning results. Create test data to validate the

378 | Practice: Strings and Files

accuracy of each program. Add comments at the top of the program and include references to any
resources used.

String Activities

1. Create a program that asks the user for a single line of text containing a first name and last
name, such as Firstname Lastname . Use string functions/methods to parse the line
and print out the name in the form last name, first initial, such as Lastname, F. Include
a trailing period after the first initial. Handle invalid input errors, such as extra spaces or
missing name parts.

2. Create a program that asks the user for a line of text. Use string functions/methods to delete
leading and trailing spaces, and then print the line of text backwards. For example:

the cat in the hat
tah eht ni tac eht

3. Create a program that asks the user for a line of comma-separated-values. It could be a
sequence of test scores, names, or any other values. Use string functions/methods to parse the
line and print out each item on a separate line. Remove commas and any leading or trailing
spaces from each item when printed.

4. Create a program that asks the user for a line of text. Then ask the user for the number of
characters to print in each line, the number of lines to be printed, and a scroll direction, right or
left. Using the given line of text, duplicate the text as needed to fill the given number of
characters per line. Then print the requested number of lines, shifting the entire line’s content
by one character, left or right, each time the line is printed. The first or last character will be
shifted / appended to the other end of the string. For example:
Repeat this. Repeat this.
epeat this. Repeat this. R
peat this. Repeat this. Re

File Activities

1. Using a text editor or IDE, copy the following list of names and grade scores and save it as a
text file named scores.txt :
Name,Score
Joe Besser,70
Curly Joe DeRita,0
Larry Fine,80
Curly Howard,65
Moe Howard,100
Shemp Howard,85

Create a program that displays high, low, and average scores based on input from
scores.txt . Verify that the file exists and then use string functions/methods to parse the

file content and add each score to an array. Display the array contents and then calculate and
display the high, low, and average score. Format the average to two decimal places. Note that
the program must work for any given number of scores in the file. Do not assume there will
always be six scores.

2. Create a program that displays high, low, and average scores based on input from
scores.txt . Verify that the file exists and then use string functions/methods to parse the

Practice: Strings and Files | 379

file content and add each score to an array. Display the array contents and then calculate and
display the high, low, and average score. Format the average to two decimal places. Include
error handling in case the file is formatted incorrectly. Note that the program must work for
any given number of scores in the file. Do not assume there will always be six scores.

3. Create a program that asks the user for the name of a text/HTML file that contains HTML tags,
such as:
<p>This is a bold paragraph.</p>

Verify that the file exists and then use string methods to search for and remove all HTML tags
from the text, saving each removed tag in an array. Display the untagged text and then display
the array of removed tags. For example:
This is a bold paragraph.
<p>

</p>

4. Using a text editor or IDE, create a text file of names and addresses to use for testing based on
the following format:
Firstname Lastname
123 Any Street
City, State/Province/Region PostalCode

Include a blank line between addresses, and include at least three addresses in the file. Create
a program that verifies that the file exists, and then processes the file and displays each
address as a single line of comma-separated values in the form:
Lastname, Firstname, Address, City, State/Province/Region,
PostalCode

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

380 | Practice: Strings and Files

PART VIII

OBJECT-ORIENTED PROGRAMMING

Overview

This chapter introduces object-oriented programming, with a focus on understanding object-
oriented concepts and terminology. It includes short examples of objects and classes in different
programming languages.

Chapter Outline

• Objects and Classes
• Encapsulation
• Inheritance and Polymorphism
• Code Examples

◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.
2. Gain exposure to object-oriented programming.
3. Given example source code, create a program that uses object-oriented programming

concepts to solve a given problem.

Object-Oriented Programming | 381

Objects and Classes
DAVE BRAUNSCHWEIG

Overview

Object-oriented programming (OOP) is a programming paradigm based on the concept of
“objects”, which may contain data, in the form of fields, often known as attributes; and code, in the
form of procedures, often known as methods. A feature of objects is that an object’s procedures can
access and often modify the data fields of the object with which they are associated (objects have a
notion of “this” or “self”). There is significant diversity of OOP languages, but the most popular ones
are class-based, meaning that objects are instances of classes, which typically also determine their
type.1

Discussion

Thus far, we have focused on procedural programming. Based on structured programming,
procedures (routines, subroutines, or functions) contain a series of computational steps to be
carried out. Any given procedure might be called at any point during a program’s execution,
including by other procedures or itself. The focus of procedural programming is to break down a
programming task into a collection of variables, data structures, and subroutines.2 Small programs
and scripts tend to be easier to develop using a simple procedural approach.

Object-oriented programming instead breaks down a programming task into objects that expose
behavior (methods) and data (members or attributes) using interfaces. The most important
distinction is that while procedural programming uses procedures to operate on separate data
structures, object-oriented programming bundles the two together, so an “object”, which is an
instance of a class, operates on its “own” data structure.3 Larger programs benefit from better code
and data isolation and reuse provided by an object-oriented approach.

Objects and classes are often designed to represent real-world objects. Consider a door as an
example of a real-world object. Most doors have limited functionality. They may be opened and
closed, and locked and unlocked. In procedural programming, we might design functions to open,
close, lock, and unlock a door, such as:

Procedural Programming - Functions
OpenDoor(door)
CloseDoor(door)
LockDoor(door)
UnlockDoor(door)

Object-oriented programming combines code and data, so that, rather than having separate

1. Wikipedia: Object-oriented programming
2. Wikipedia: Object-oriented programming
3. Wikipedia: Object-oriented programming

Objects and Classes | 383

functions act on doors, we design doors that have methods that can act on themselves. Methods
represent something the object can do, and are typically defined using verbs. Object-oriented door
pseudocode might look like:

Object-Oriented Programming - Methods
door.Open()
door.Close()
door.Lock()
door.Unlock()

Objects may also have attributes, something the object is or has, and are typically defined using
nouns or adjectives. Door attributes might include:

Object-Oriented Programming - Attributes
door.Height
door.Width
door.Color
door.Closed
door.Locked

When we write code to define a generic door, we would create a door class. The door class would
contain all of the methods a door can perform and all of the attributes a door might have. We would
then create instances of the class (objects) to represent specific doors, such as a front door, back
door, or room door on a house, or a left door and right door on a car.

Key Terms

attribute
A specification that defines a property of an object.4

class
An extensible program-code-template for creating objects, providing initial values for state
(member variables) and implementations of behavior (member functions or methods).5

instance
:A concrete occurrence of an object.6

method
A specification that defines a procedure or behavior of an object.7

object
A particular instance of a class where the object can be a combination of variables, functions,
and data structures.8

4. Wikipedia: Attribute (computing)
5. Wikipedia: Class (computer programming)
6. Wikipedia: Instance (computer science)
7. Wikipedia: Method (computer programming)
8. Wikipedia: Object (computer science)

384 | Objects and Classes

this, self, or Me
Keywords used in some computer programming languages to refer to the object, class, or
other entity that the currently running code is part of.9

References

• Wikibooks: Object-Oriented Programming
• Wikipedia: Object-oriented programming
• Wikiversity: Computer Programming

9. Wikipedia: this (computer programming)

Objects and Classes | 385

Encapsulation
DAVE BRAUNSCHWEIG

Overview

Encapsulation is one of the fundamentals of OOP (object-oriented programming). It refers to the
bundling of data with the methods that operate on that data. Encapsulation is used to hide the
values or state of a structured data object inside a class, preventing unauthorized parties’ direct
access to them. Publicly accessible methods are generally provided in the class (so-called getters
and setters) to access the values, and other client classes call these methods to retrieve and modify
the values within the object.1

Discussion

The most important principle of object orientation is encapsulation: the idea that data inside the
object should only be accessed through a public interface – that is, the object’s methods.

If we want to use the data stored in an object to perform an action or calculate a derived value, we
define a method associated with the object which does this. Then whenever we want to perform
this action we call the method on the object. We consider it bad practice to retrieve the information
from inside the object and write separate code to perform the action outside of the object.

Encapsulation is a good idea for several reasons:

• the functionality is defined in one place and not in multiple places.
• it is defined in a logical place – the place where the data is kept.
• data inside our object is not modified unexpectedly by external code in a completely different

part of our program.
• when we use a method, we only need to know what result the method will produce – we don’t

need to know details about the object’s internals in order to use it. We could switch to using
another object which is completely different on the inside, and not have to change any code
because both objects have the same interface.

We can say that the object “knows how” to do things with its own data, and it’s a bad idea for us
to access its internals and do things with the data ourselves. If an object doesn’t have an interface
method which does what we want to do, we should add a new method or update an existing one.

Some languages have features which allow us to enforce encapsulation strictly. In Java or C++,
we can define access permissions on object attributes, and make it illegal for them to be accessed
from outside the object’s methods. In Java it is also considered good practice to write setters and
getters for all attributes, even if the getter simply retrieves the attribute and the setter just assigns
it the value of the parameter which you pass in.

In Python, encapsulation is not enforced by the language, but there is a convention that we
can use to indicate that a property is intended to be private and is not part of the object’s public
interface: we begin its name with an underscore. Python also supports the use of a property
decorator to replace a simple attribute with a method without changing the object’s interface.

1. Wikipedia: Encapsulation (computer programming)

386 | Encapsulation

Key Terms

abstraction
A technique for arranging complexity of computer systems so that functionality may be
separated from specific implementation details.23

accessor
A method used to return the value of a private member variable, also known as a getter
method.4

encapsulation
A language mechanism for restricting direct access to some of an object’s components.5

information hiding
The principle of segregation of the design decisions in a computer program from other parts
of the program. See encapsulation.6

mutator
A method used to control changes to a private member variable, also known as a setter
method.7

private
An access modifier that restricts visibility of a property or method to the class in which it is
defined.8

public
An access modifier that opens visibility of a property or method to all other classes.9

References

• Read the Docs: Object-Oriented Programming in Python
• Wikiversity: Computer Programming

2. Wikipedia: Object-oriented programming
3. Wikipedia: Abstraction (computer science)
4. Wikipedia: Mutator method
5. Wikipedia: Encapsulation (computer programming)
6. Wikipedia: Information hiding
7. Wikipedia: Mutator method
8. Wikipedia: Access modifiers
9. Wikipedia: Access modifiers

Encapsulation | 387

Inheritance and Polymorphism
DAVE BRAUNSCHWEIG

Overview

In object-oriented programming, inheritance is the mechanism of basing an object or class upon
another object (prototypical inheritance) or class (class-based inheritance), retaining similar
implementation. In most class-based object-oriented languages, an object created through
inheritance (a “child object”) acquires all the properties and behaviors of the parent object (except:
constructors, destructor, overloaded operators and friend functions of the base class). Inheritance
allows programmers to create classes that are built upon existing classes, to specify a new
implementation while maintaining the same behaviors (realizing an interface), to reuse code and
to independently extend original software via public classes and interfaces.1

Discussion

Inheritance is a way of arranging objects in a hierarchy from the most general to the most specific.
An object which inherits from another object is considered to be a subtype of that object. An
example might include Instructor and Student, each of which inherit from Person. When we
can describe the relationship between two objects using the phrase is-a, that relationship is
inheritance.

We also often say that a class is a subclass or child class of a class from which it inherits, or that
the other class is its superclass or parent class. We can refer to the most generic class at the base of
a hierarchy as a base class.

Inheritance can help us to represent objects which have some differences and some similarities
in the way they work. We can put all the functionality that the objects have in common in a base
class, and then define one or more subclasses with their own custom functionality.

Inheritance is also a way of reusing existing code easily. If we already have a class which
does almost what we want, we can create a subclass in which we partially override some of its
behavior, or perhaps add some new functionality.

In some statically typed languages inheritance is very popular because it allows the programmer
to work around some of the restrictions of static typing. If an instructor and a student are both
a kind of person, we can write a function which accepts a parameter of type Person and have it
work on both instructor and student objects because they both inherit from Person. This is known
as polymorphism.

Key Terms

inheritance
An object or class being based on another object or class, using the same implementation or
specifying a new implementation to maintain the same behavior.2

1. Wikipedia: Inheritance (object-oriented programming)

388 | Inheritance and Polymorphism

polymorphism
The provision of a single interface to entities of different types.3

References

• Read the Docs: Object-Oriented Programming in Python
• Wikiversity: Computer Programming

2. Wikipedia: Inheritance (object-oriented programming)
3. Wikipedia: Polymorphism (computer science)

Inheritance and Polymorphism | 389

C++ Examples
DAVE BRAUNSCHWEIG

Objects

// This class converts temperature between Celsius and Fahrenheit.
// It may be used by assigning a value to either Celsius or Fahrenheit
// and then retrieving the other value, or by calling the ToCelsius or
// ToFahrenheit methods directly.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/C%2B%2B_Programming

#include <iostream>

using namespace std;

class Temperature {
public:

double getCelsius(void);
void setCelsius(double value);
double getFahrenheit(void);
void setFahrenheit(double value);
double toCelsius(double fahrenheit);
double toFahrenheit(double celsius);

private:
double celsius;
double fahrenheit;

};

double Temperature::getCelsius(void) {
return celsius;

}

void Temperature::setCelsius(double value) {
celsius = value;
fahrenheit = toFahrenheit(celsius);

}

390 | C++ Examples

double Temperature::getFahrenheit(void) {
return fahrenheit;

}

void Temperature::setFahrenheit(double value) {
fahrenheit = value;
celsius = toCelsius(fahrenheit);

}

double Temperature::toCelsius(double fahrenheit) {
return (fahrenheit - 32) * 5 / 9;

}

double Temperature::toFahrenheit(double celsius) {
return celsius * 9 / 5 + 32;

}

// This program creates instances of the Temperature class to convert Celsius
// and Fahrenheit temperatures.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/C%2B%2B_Programming

int main() {
Temperature temp1;
temp1.setCelsius(100.0);
cout << "temp1.celsius = " << temp1.getCelsius() << endl;
cout << "temp1.fahrenheit = " << temp1.getFahrenheit() << endl;
cout << endl;

Temperature temp2;
temp2.setFahrenheit(100.0);
cout << "temp2.fahrenheit = " << temp2.getFahrenheit() << endl;
cout << "temp2.celsius = " << temp2.getCelsius() << endl;

}

Output

temp1.celsius = 100
temp1.fahrenheit = 212

C++ Examples | 391

temp2.fahrenheit = 100
temp2.celsius = 37.7778

References

• Wikiversity: Computer Programming

392 | C++ Examples

C# Examples
DAVE BRAUNSCHWEIG

Objects

// This program creates instances of the Temperature class to convert Celsius
// and Fahrenheit temperatures.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/C_Sharp_Programming

using System;

public class Objects
{

public static void Main(String[] args)
{

Temperature temp1 = new Temperature(celsius: 0);
Console.WriteLine("temp1.Celsius = " + temp1.Celsius.ToString());
Console.WriteLine("temp1.Fahrenheit = " + temp1.Fahrenheit.ToString());
Console.WriteLine("");

temp1.Celsius = 100;
Console.WriteLine("temp1.Celsius = " + temp1.Celsius.ToString());
Console.WriteLine("temp1.Fahrenheit = " + temp1.Fahrenheit.ToString());
Console.WriteLine("");

Temperature temp2 = new Temperature(fahrenheit: 0);
Console.WriteLine("temp2.Fahrenheit = " + temp2.Fahrenheit.ToString());
Console.WriteLine("temp2.Celsius = " + temp2.Celsius.ToString());
Console.WriteLine("");

temp2.Fahrenheit = 100;
Console.WriteLine("temp2.Fahrenheit = " + temp2.Fahrenheit.ToString());
Console.WriteLine("temp2.Celsius = " + temp2.Celsius.ToString());

}
}

// This class converts temperature between Celsius and Fahrenheit.

C# Examples | 393

// It may be used by assigning a value to either Celsius or Fahrenheit
// and then retrieving the other value, or by calling the ToCelsius or
// ToFahrenheit methods directly.

public class Temperature
{

double _celsius;
double _fahrenheit;

public double Celsius
{

get
{

return _celsius;
}

set
{

_celsius = value;
_fahrenheit = ToFahrenheit(value);

}
}

public double Fahrenheit
{

get
{

return _fahrenheit;
}

set
{

_fahrenheit = value;
_celsius = ToCelsius(value);

}
}

public Temperature(double? celsius = null, double? fahrenheit = null)
{

if (celsius.HasValue)
{

this.Celsius = Convert.ToDouble(celsius);
}

394 | C# Examples

if (fahrenheit.HasValue)
{

this.Fahrenheit = Convert.ToDouble(fahrenheit);
}

}

public double ToCelsius(double fahrenheit)
{

return (fahrenheit - 32) * 5 / 9;
}

public double ToFahrenheit(double celsius)
{

return celsius * 9 / 5 + 32;
}

}

Output

temp1.Celsius = 0
temp1.Fahrenheit = 32

temp1.Celsius = 100
temp1.Fahrenheit = 212

temp2.Fahrenheit = 0
temp2.Celsius = -17.7777777777778

temp2.Fahrenheit = 100
temp2.Celsius = 37.7777777777778

References

• Wikiversity: Computer Programming

C# Examples | 395

Java Examples
DAVE BRAUNSCHWEIG

Objects

// This program creates instances of the Temperature class to convert Celsius
// and Fahrenheit temperatures.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/Java_Programming

import java.util.*;

class Main {
public static void main(String[] args) {

Temperature temp1 = new Temperature();
temp1.setCelsius(100.0);
System.out.println("temp1.celsius = " + temp1.getCelsius().toString());
System.out.println("temp1.fahrenheit = " + temp1.getFahrenheit().toString());
System.out.println("");

Temperature temp2 = new Temperature();
temp2.setFahrenheit(100.0);
System.out.println("temp2.fahrenheit = " + temp2.getFahrenheit().toString());
System.out.println("temp2.celsius = " + temp2.getCelsius().toString());

}
}

// This class converts temperature between Celsius and Fahrenheit.
// It may be used by assigning a value to either Celsius or Fahrenheit
// and then retrieving the other value, or by calling the ToCelsius or
// ToFahrenheit methods directly.

class Temperature {
Double celsius;
Double fahrenheit;

public Double getCelsius() {
return celsius;

396 | Java Examples

}

public void setCelsius(Double value) {
celsius = value;
fahrenheit = toFahrenheit(celsius);

}

public Double getFahrenheit() {
return fahrenheit;

}

public void setFahrenheit(Double value) {
fahrenheit = value;
celsius = toCelsius(fahrenheit);

}

public Double toCelsius(Double fahrenheit) {
return (fahrenheit - 32) * 5 / 9;

}

public Double toFahrenheit(Double celsius) {
return celsius * 9 / 5 + 32;

}
}

Output

temp1.celsius = 100.0
temp1.fahrenheit = 212.0

temp2.fahrenheit = 100.0
temp2.celsius = 37.77777777777778

References

• Wikiversity: Computer Programming

Java Examples | 397

JavaScript Examples
DAVE BRAUNSCHWEIG

Objects

// This class converts temperature between Celsius and Fahrenheit.
// It may be used by assigning a value to either Celsius or Fahrenheit
// and then retrieving the other value, or by calling the ToCelsius or
// ToFahrenheit methods directly.

class Temperature {
constructor() {

this._celsius = 0;
this._fahrenheit = 32;

}

get celsius() {
return this._celsius;

}

set celsius(value) {
this._celsius = value;
this._fahrenheit = this.toFahrenheit(value);

}

get fahrenheit() {
return this._fahrenheit;

}

set fahrenheit(value) {
this._fahrenheit = value;
this._celsius = this.toCelsius(value);

}

toCelsius(fahrenheit) {
return (fahrenheit - 32) * 5 / 9

}

toFahrenheit(celsius) {
return celsius * 9 / 5 + 32

398 | JavaScript Examples

}
}

// This program creates instances of the Temperature class to convert Celsius
// and Fahrenheit temperatures.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://en.wikibooks.org/wiki/JavaScript

main()

function main() {
var temp1 = new Temperature();
temp1.celsius = 0
output("temp1.celsius = " + temp1.celsius);
output("temp1.fahrenheit = " + temp1.fahrenheit);
output("");

temp1.celsius = 100;
output("temp1.celsius = " + temp1.celsius);
output("temp1.fahrenheit = " + temp1.fahrenheit);
output("");

var temp2 = new Temperature();
temp2.fahrenheit = 0
output("temp2.fahrenheit = " + temp2.fahrenheit);
output("temp2.celsius = " + temp2.celsius);
output("");

temp2.fahrenheit = 100;
output("temp2.fahrenheit = " + temp2.fahrenheit);
output("temp2.celsius = " + temp2.celsius);

}

function output(text) {
if (typeof document === 'object') {

document.write(text);
}
else if (typeof console === 'object') {

console.log(text);
}
else {

JavaScript Examples | 399

print(text);
}

}

Output

temp1.celsius = 0
temp1.fahrenheit = 32

temp1.celsius = 100
temp1.fahrenheit = 212

temp2.fahrenheit = 0
temp2.celsius = -17.77777777777778

temp2.fahrenheit = 100
temp2.celsius = 37.77777777777778

References

• Wikiversity: Computer Programming

400 | JavaScript Examples

Python Examples
DAVE BRAUNSCHWEIG

Objects

This class converts temperature between Celsius and Fahrenheit.
It may be used by assigning a value to either Celsius or Fahrenheit
and then retrieving the other value, or by calling the to_celsius or
to_fahrenheit methods directly.
#
References:
https://www.mathsisfun.com/temperature-conversion.html
https://en.wikibooks.org/wiki/Python_Programming

class Temperature:
_celsius = None
_fahrenheit = None

@property
def celsius(self):

return self._celsius

@celsius.setter
def celsius(self, value):

self._celsius = float(value)
self._fahrenheit = self.to_fahrenheit(self._celsius)

@property
def fahrenheit(self):

return self._fahrenheit

@fahrenheit.setter
def fahrenheit(self, value):

self._fahrenheit = float(value)
self._celsius = self.to_celsius(self._fahrenheit)

def __init__(self, celsius=None, fahrenheit=None):
if celsius != None:

self._celsius = celsius
self._fahrenheit = self.to_fahrenheit(celsius)

Python Examples | 401

if fahrenheit != None:
self._fahrenheit = fahrenheit
self._celsius = self.to_celsius(fahrenheit)

def to_celsius(self, fahrenheit):
return (fahrenheit - 32) * 5 / 9

def to_fahrenheit(self, celsius):
return celsius * 9 / 5 + 32

This program creates instances of the Temperature class to convert Cesius
and Fahrenheit temperatures.

def main():
temp1 = Temperature(celsius=0)
print("temp1.celsius =", temp1.celsius)
print("temp1.fahrenheit =", temp1.fahrenheit)
print("")

temp1.celsius = 100
print("temp1.celsius =", temp1.celsius)
print("temp1.fahrenheit =", temp1.fahrenheit)
print("")

temp2 = Temperature(fahrenheit=0)
print("temp2.fahrenheit =", temp2.fahrenheit)
print("temp2.celsius =", temp2.celsius)
print("")

temp2.fahrenheit = 100
print("temp2.fahrenheit =", temp2.fahrenheit)
print("temp2.celsius =", temp2.celsius)

main()

Output

temp1.celsius = 0
temp1.fahrenheit = 32.0

temp1.celsius = 100.0

402 | Python Examples

temp1.fahrenheit = 212.0

temp2.fahrenheit = 0
temp2.celsius = -17.77777777777778

temp2.fahrenheit = 100.0
temp2.celsius = 37.77777777777778

References

• Wikiversity: Computer Programming

Python Examples | 403

Swift Examples
DAVE BRAUNSCHWEIG

Objects

// This class converts temperature between Celsius and Fahrenheit.
// It may be used by assigning a value to either Celsius or Fahrenheit
// and then retrieving the other value, or by calling the ToCelsius or
// ToFahrenheit methods directly.

class Temperature {
var _celsius:Double = 0
var _fahrenheit:Double = 32

init(celsius:Double?=nil, fahrenheit:Double?=nil) {
if celsius != nil {

self.celsius = celsius!
}

if fahrenheit != nil {
self.fahrenheit = fahrenheit!

}
}

var celsius: Double {
get {

return self._celsius
}
set {

self._celsius = newValue
self._fahrenheit = toFahrenheit(celsius:self._celsius)

}
}

var fahrenheit: Double {
get {

return self._fahrenheit
}
set {

self._fahrenheit = newValue

404 | Swift Examples

self._celsius = toCelsius(fahrenheit:self._fahrenheit)
}

}

func getCelsius() -> Double {
return self.celsius

}

func setCelsius(celsius:Double) {
self.celsius = celsius
self.fahrenheit = toFahrenheit(celsius:celsius)

}

func getFahrenheit() -> Double {
return self.fahrenheit

}

func setFahrenheit(fahrenheit:Double) {
self.fahrenheit = fahrenheit
self.celsius = toCelsius(fahrenheit:fahrenheit)

}

func toCelsius(fahrenheit:Double) -> Double {
return (fahrenheit - 32) * 5 / 9

}

func toFahrenheit(celsius:Double) -> Double {
return celsius * 9 / 5 + 32

}
}

// This program creates instances of the Temperature class to convert Celsius
// and Fahrenheit temperatures.
//
// References:
// https://www.mathsisfun.com/temperature-conversion.html
// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

func main() {
let temp1 = Temperature(celsius:0);
print("temp1.celsius = " + String(temp1.celsius));
print("temp1.fahrenheit = " + String(temp1.fahrenheit));
print("");

Swift Examples | 405

temp1.celsius = 100;
print("temp1.celsius = " + String(temp1.celsius));
print("temp1.fahrenheit = " + String(temp1.fahrenheit));
print("");

let temp2 = Temperature(fahrenheit:0);
print("temp2.fahrenheit = " + String(temp2.fahrenheit));
print("temp2.celsius = " + String(temp2.celsius));
print("");

temp2.fahrenheit = 100;
print("temp2.fahrenheit = " + String(temp2.fahrenheit));
print("temp2.celsius = " + String(temp2.celsius));

}

main()

Output

temp1.celsius = 0.0
temp1.fahrenheit = 32.0

temp1.celsius = 100.0
temp1.fahrenheit = 212.0

temp2.fahrenheit = 0.0
temp2.celsius = -17.7777777777778

temp2.fahrenheit = 100.0
temp2.celsius = 37.7777777777778

References

• Wikiversity: Computer Programming

406 | Swift Examples

Practice
KENNETH LEROY BUSBEE

Review Questions

Answer the following statements as either true or false:

1. Procedural programming and object-oriented programming cannot be done with the same
compiler/IDE.

2. Object-oriented programming encapsulates data and functions.

Answers:

1. false
2. true

Short Answer

1. Describe the fundamental differences between procedural (modular structured)
programming and object-oriented programming.

Activities

Complete the following activities using your selected programming language. Use separate
functions for input, each type of processing, and output. Avoid global variables by passing
parameters and returning results. Create test data to validate the accuracy of each program. Add
comments at the top of the program and include references to any resources used.

1. Review MathsIsFun: Area of Plane Shapes. Create a program that asks the user what shape
they would like to calculate the area for. Use if/else conditional statements to determine their
selection and then gather the appropriate input and calculate and display the area of the
shape. Perform all area calculations using a ShapeArea class that has separate methods to
calculate and return the area for different shapes. Include data validation in the class and error
handling in the main program.

2. Create a program that asks the user how old they are in years. Then ask the user if they would
like to know how old they are in months, days, hours, or seconds. Use if/else conditional
statements to display their approximate age in the selected timeframe. Perform all
calculations using an AgeConverter class that accepts the age in years during initialization and
has separate properties and methods to calculate and return the age in months, days, hours,
and seconds. Include data validation in the class and error handling in the main program.

3. Review Wikipedia: Zeller’s congruence. Create a program that asks the user for their birthday
(year, month, and day) and then calculate and display the day of the week on which they were
born. Use if/else conditional statements to convert the numeric day of the week to the correct
string representation (Monday, Tuesday, Wednesday, etc.). Perform all calculations using a

Practice | 407

DayOfWeek class that accepts the year, month, and day during initialization and has separate
properties and methods to calculate and return the day of week as a number, as an
abbreviated string (Mon, Tue, etc.), and as a full string (Monday, Tuesday, etc.). Include data
validation in the class and error handling in the main program.

References

• cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
• Wikiversity: Computer Programming

408 | Practice

	Programming Fundamentals
	Programming Fundamentals
	Contents
	Contents
	About this Book
	Kenneth Leroy Busbee and Dave Braunschweig

	Author Acknowledgements
	Kenneth Leroy Busbee and Dave Braunschweig

	Introduction to Programming
	Overview
	Chapter Outline
	Learning Objectives
	Systems Development Life Cycle
	Kenneth Leroy Busbee
	Program Design
	Kenneth Leroy Busbee
	Program Quality
	Dave Braunschweig
	Pseudocode
	Kenneth Leroy Busbee
	Flowcharts
	Kenneth Leroy Busbee
	Software Testing
	Kenneth Leroy Busbee
	Integrated Development Environment
	Kenneth Leroy Busbee
	Version Control
	Dave Braunschweig
	Input and Output
	Kenneth Leroy Busbee
	Hello World
	Dave Braunschweig
	C++ Examples
	Dave Braunschweig
	C# Examples
	Dave Braunschweig
	Java Examples
	Dave Braunschweig
	JavaScript Examples
	Dave Braunschweig
	Python Examples
	Dave Braunschweig
	Swift Examples
	Dave Braunschweig
	Practice: Introduction to Programming
	Kenneth Leroy Busbee and Dave Braunschweig

	Data and Operators
	Overview
	Chapter Outline
	Learning Objectives
	Constants and Variables
	Kenneth Leroy Busbee and Dave Braunschweig
	Identifier Names
	Kenneth Leroy Busbee and Dave Braunschweig
	Data Types
	Kenneth Leroy Busbee and Dave Braunschweig
	Integer Data Type
	Kenneth Leroy Busbee and Dave Braunschweig
	Floating-Point Data Type
	Kenneth Leroy Busbee and Dave Braunschweig
	String Data Type
	Kenneth Leroy Busbee and Dave Braunschweig
	Boolean Data Type
	Kenneth Leroy Busbee and Dave Braunschweig
	Nothing Data Type
	Dave Braunschweig
	Order of Operations
	Kenneth Leroy Busbee and Dave Braunschweig
	Assignment
	Kenneth Leroy Busbee
	Arithmetic Operators
	Kenneth Leroy Busbee and Dave Braunschweig
	Integer Division and Modulus
	Kenneth Leroy Busbee
	Unary Operations
	Kenneth Leroy Busbee
	Lvalue and Rvalue
	Kenneth Leroy Busbee
	Data Type Conversions
	Kenneth Leroy Busbee and Dave Braunschweig
	Input-Process-Output Model
	Dave Braunschweig
	C++ Examples
	Dave Braunschweig
	C# Examples
	Dave Braunschweig
	Java Examples
	Dave Braunschweig
	JavaScript Examples
	Dave Braunschweig
	Python Examples
	Dave Braunschweig
	Swift Examples
	Dave Braunschweig
	Practice: Data and Operators
	Kenneth Leroy Busbee and Dave Braunschweig

	Functions
	Overview
	Chapter Outline
	Learning Objectives
	Modular Programming
	Kenneth Leroy Busbee and Dave Braunschweig
	Hierarchy or Structure Chart
	Kenneth Leroy Busbee
	Function Examples
	Dave Braunschweig
	Parameters and Arguments
	Dave Braunschweig
	Call by Value vs. Call by Reference
	Dave Braunschweig
	Return Statement
	Dave Braunschweig and Kenneth Leroy Busbee
	Void Data Type
	Kenneth Leroy Busbee and Dave Braunschweig
	Scope
	Kenneth Leroy Busbee
	Programming Style
	Kenneth Leroy Busbee and Dave Braunschweig
	Standard Libraries
	Kenneth Leroy Busbee and Dave Braunschweig
	C++ Examples
	Dave Braunschweig
	C# Examples
	Dave Braunschweig
	Java Examples
	Dave Braunschweig
	JavaScript Examples
	Dave Braunschweig
	Python Examples
	Dave Braunschweig
	Swift Examples
	Dave Braunschweig
	Practice: Functions
	Kenneth Leroy Busbee and Dave Braunschweig

	Conditions
	Overview
	Chapter Outline
	Learning Objectives
	Structured Programming
	Kenneth Leroy Busbee and Dave Braunschweig
	Selection Control Structures
	Kenneth Leroy Busbee and Dave Braunschweig
	If Then Else
	Kenneth Leroy Busbee
	Code Blocks
	Kenneth Leroy Busbee and Dave Braunschweig
	Relational Operators
	Kenneth Leroy Busbee
	Assignment vs Equality
	Kenneth Leroy Busbee
	Logical Operators
	Kenneth Leroy Busbee and Dave Braunschweig
	Nested If Then Else
	Kenneth Leroy Busbee
	Case Control Structure
	Kenneth Leroy Busbee
	Condition Examples
	Dave Braunschweig
	C++ Examples
	Dave Braunschweig
	C# Examples
	Dave Braunschweig
	Java Examples
	Dave Braunschweig
	JavaScript Examples
	Dave Braunschweig
	Python Examples
	Dave Braunschweig
	Swift Examples
	Dave Braunschweig
	Practice: Conditions
	Kenneth Leroy Busbee

	Loops
	Overview
	Chapter Outline
	Learning Objectives
	Iteration Control Structures
	Kenneth Leroy Busbee and Dave Braunschweig
	While Loop
	Kenneth Leroy Busbee
	Do While Loop
	Kenneth Leroy Busbee and Dave Braunschweig
	Flag Concept
	Kenneth Leroy Busbee
	For Loop
	Kenneth Leroy Busbee
	Branching Statements
	Kenneth Leroy Busbee
	Increment and Decrement Operators
	Kenneth Leroy Busbee
	Integer Overflow
	Kenneth Leroy Busbee
	Nested For Loops
	Kenneth Leroy Busbee
	Loop Examples
	Dave Braunschweig
	C++ Examples
	Dave Braunschweig
	C# Examples
	Dave Braunschweig
	Java Examples
	Dave Braunschweig
	JavaScript Examples
	Dave Braunschweig
	Python Examples
	Dave Braunschweig
	Swift Examples
	Dave Braunschweig
	Practice: Loops
	Kenneth Leroy Busbee

	Arrays
	Overview
	Chapter Outline
	Learning Objectives
	Arrays and Lists
	Kenneth Leroy Busbee and Dave Braunschweig
	Index Notation
	Kenneth Leroy Busbee and Dave Braunschweig
	Displaying Array Members
	Kenneth Leroy Busbee and Dave Braunschweig
	Arrays and Functions
	Kenneth Leroy Busbee and Dave Braunschweig
	Math Statistics with Arrays
	Kenneth Leroy Busbee and Dave Braunschweig
	Searching Arrays
	Kenneth Leroy Busbee and Dave Braunschweig
	Sorting Arrays
	Kenneth Leroy Busbee and Dave Braunschweig
	Parallel Arrays
	Dave Braunschweig
	Multidimensional Arrays
	Kenneth Leroy Busbee
	Dynamic Arrays
	Dave Braunschweig
	C++ Examples
	Dave Braunschweig
	C# Examples
	Dave Braunschweig
	Java Examples
	Dave Braunschweig
	JavaScript Examples
	Dave Braunschweig
	Python Examples
	Dave Braunschweig
	Swift Examples
	Dave Braunschweig
	Practice: Arrays
	Kenneth Leroy Busbee

	Strings and Files
	Overview
	Chapter Outline
	Learning Objectives
	Strings
	Kenneth Leroy Busbee and Dave Braunschweig
	String Functions
	Dave Braunschweig
	String Formatting
	Kenneth Leroy Busbee and Dave Braunschweig
	File Input and Output
	Kenneth Leroy Busbee
	Loading an Array from a Text File
	Kenneth Leroy Busbee and Dave Braunschweig
	C++ Examples
	Dave Braunschweig
	C# Examples
	Dave Braunschweig
	Java Examples
	Dave Braunschweig
	JavaScript Examples
	Dave Braunschweig
	Python Examples
	Dave Braunschweig
	Swift Examples
	Dave Braunschweig
	Practice: Strings and Files
	Kenneth Leroy Busbee

	Object-Oriented Programming
	Overview
	Chapter Outline
	Learning Objectives
	Objects and Classes
	Dave Braunschweig
	Encapsulation
	Dave Braunschweig
	Inheritance and Polymorphism
	Dave Braunschweig
	C++ Examples
	Dave Braunschweig
	C# Examples
	Dave Braunschweig
	Java Examples
	Dave Braunschweig
	JavaScript Examples
	Dave Braunschweig
	Python Examples
	Dave Braunschweig
	Swift Examples
	Dave Braunschweig
	Practice
	Kenneth Leroy Busbee

