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About This Book 

Introduction to Applied Statistics for Psychology Students, by Gordon 

E. Sarty (Professor, Department of Psychology, University of 

Saskatchewan) began as a textbook published in PDF format, in 

various editions between 2014-2017. The book was written to meet 

the needs of University of Saskatchewan psychology students at the 

undergraduate (PSY 233, PSY 234) and graduate (PSY 807) levels. 

In 2019-2020, funding was provided through the Gwenna Moss 

Centre for Teaching and Learning, along with technical assistance 

from the Distance Education Unit, to update and adapt this book, 

making it more widely available in an easy-to-use and more 

adaptable digital (Pressbooks) format. This update included an 

expansion to add chapters on using RStudio, as an alternative to 

SPSS. The update also made revisions so that the book could be 

published with a license appropriate for open educational 
resources (OER). 

OERs are defined as “teaching, learning, and research resources 

that reside in the public domain or have been released under an 

intellectual property license that permits their free use and re-

purposing by others” (Hewlett Foundation). This textbook and other 

OERs like it are openly licensed using a Creative Commons license, 

and are offered in various digital and e-book formats free of charge. 

Printed editions of this book can be obtained for a nominal fee 

through the University of Saskatchewan bookstore. 
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Licensing and Copyright 

Licensing 

Except where otherwise noted (see notes below on the copyright 

for SPSS and R screenshots), the content of this book is licensed 

under a Creative Commons Attribution-NonCommercial-ShareAlike 

4.0 International License. Under the terms of the CC BY-NC-SA 

license, you are free to copy, redistribute, modify or adapt this book 

as long as you provide attribution. You may not use the material 

for commercial purposes. If you remix, transform, or build upon the 

material, you must distribute your contributions under the same 

license as the original. Additionally, if you redistribute this textbook, 

in whole or in part, in either a print or digital format, then you must 

retain on every physical and/or electronic page an attribution to 

the original author(s). 

Copyright: SPSS Screenshots 

SPSS Inc. was acquired by IBM in October, 2009. Reprints of images 

(i.e., screenshots) from IBM® SPSS® Statistics software (“SPSS”) 

appear courtesy of International Business Machines Corporation, © 

International Business Machines Corporation. IBM, the IBM logo, 

ibm.com, and SPSS are trademarks or registered trademarks of 

International Business Machines Corporation, registered in many 

jurisdictions worldwide. Other product and service names might 

be trademarks of IBM or other companies. A current list of IBM 

trademarks is available on the Web at “IBM Copyright and 

trademark information” at www.ibm.com/legal/copytrade.shtml. 

This consolidated credit paragraph and corresponding copyright 

notices must be listed on a title page or other conveniently viewable 
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location where any reprints of this material appear. Any repurposing 

of the material in this book should also follow these same 

requirements. 

The University of Saskatchewan Open Press obtained specific 

permissions from IBM to reprint IBM SPSS Statistics screen images 

for the purposes of publishing this book, according to the 

conditions outlined here. Individuals who wish to use, duplicate, or 

redistribute any of these images are advised to do so in compliance 

with copyright law or to contact IBM directly for permissions: 

http://www.ibm.com/contact/submissions/extsub.nsf/copyright. 

If any derivative version of this book (i.e., remixed, transformed, 

modified, or built-upon version) is created, additional copyright 

permission from IBM should be acquired for including any of their 

images in the derivative version before it is released. 

Copyright: RStudio Screenshots 

Reprints of images (i.e., screenshots) from RStudio are © the R 

Foundation, from http://www.r-project.org, and may be 

reproduced for any purpose provided they are credited to the R 

statistical software using an attribution such as this. 

Cover Image 

Cover image by Ron Borowsky and Gordon Sarty, used for public 

talks and released with a CC BY-NC-SA license. The statistical 

methods that you will learn in this course were necessary to 

produce the functional MRI (fMRI) brain maps illustrated on the 

cover. In particular, a one-way ANOVA technique was used to detect 
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the brain activations shown in the images1. The study shown was 

designed to reveal ventral and dorsal stream processing for ‘what’, 

‘where’ and ‘how’ interpretations of words and pictures presented 

to the experimental subjects while they were in the Magnetic 

Resonance Imager (MRI)2. 

1. Sarty GE, Borowsky R. “Functional MRI Activation Maps 

from Empirically Defined Curve Fitting”, Concepts in 

Magnetic Resonance Part B (Magnetic Resonance 

Engineering), 24B, 46-55, 2005. 

2. Borowsky R, Loehr J, Friesen CK, Kraushaar G, Kingstone 

A, Sarty GE, “Modularity and Intersection of ‘What’, 

‘Where’, and ‘How’ Processing of Visual Stimuli: A New 

Method of fMRI Localization”, Brain Topography, 18, 

67-75, 2005. 
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Statistical Software Used in 
this Book 

Throughout this book you will find Lessons that will take you 

through procedures to manipulate and analyze given data using two 

statistical software applications: 

1. IBM® SPSS® Statistics software (referred to more simply as 

“SPSS”) 

2. RStudio, from The R Project for Statistical Computing. 

Accessing SPSS and RStudio Through Your 
School 

See the page University of Saskatchewan: Software Access for more 

details on how to do this. 

Downloading SPSS and RStudio 

SPSS Statistics 

SPSS Statistics is not a free program. 

A trial version of SPSS can be downloaded at: 

https://www.ibm.com/analytics/spss-trials 

If you really want to download the program (not in a trial version), 

see some information on student rates at: https://www.ibm.com/
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analytics/academic-statistical-software; however, consider 

carefully how necessary this is before you spend any of your own 

money, and look carefully at any terms of licensing (i.e., some 

licenses may only give you access for a set number of months). 

Unless you are in a position where you can get an employer or 

research supervisor to pay for it, you may want to stick with the 

cost-free options available to you. 

RStudio 

A free, open-source, non-commercial desktop version of RStudio 

can be downloaded at: https://rstudio.com/products/rstudio/

download/ 

Why does this book cover both SPSS and 
RStudio? 

While both SPSS and RStudio are powerful analytical tools, they 

operate differently and each have their pros and cons. 

The history of SPSS Statistics goes back to the 1960s, and for 

many years it has been a standard for students and researchers 

working in the social sciences (SPSS, in fact, originally stood 

for Statistical Package for the Social Sciences, but was later changed 

to Statistical Product and Service Solutions). It is still an extremely 

popular and commonly-used package, and one that you are likely 

to find is used in labs and workplaces when you start to search 

for research and employment positions. For this reason, it is still 

essential for psychology graduates to have a solid grasp of how to 

use this program. 

The more-recent R Project for Statistical Computing (which put 
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together RStudio) offers a free, open-source option. This means that 

anybody can access the software, and its community of users and 

developers can contribute to improving and updating the software. 

While it is increasing in popularity, it has yet to reach the 

ubiquitousness of SPSS. 

So which Lessons should you do? SPSS or 
RStudio? 

Well, first ask your instructor — if they want you to submit 

assignments that utilize a particular program, or if they are likely 

to ask you to interpret outputs from a particular program on your 

examinations, then you’d better complete the Lessons for that 

program! 

Second, consider what skills you want to develop. Employers 

and/or supervisors are still very likely to expect psychology 

graduates to have SPSS skills. Would it benefit you, or set you apart 

from other research/employment candidates, to have a good grasp 

of both SPSS and RStudio? Do both sets of Lessons and practice 

using each program. 

If you are a graduate student or somebody with a bit more 

freedom, who is just looking for some help analyzing data to support 

their research, then you could choose either program. Trying both 

for a little while might give you a good sense of which you prefer 

and why, or which might work better for your particular research 

situations. 
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University of Saskatchewan: 
Software Access 

On-Campus Lab Access 

If you are a University of Saskatchewan student working on-

campus, all computers in the Arts & Science computer labs should 

have both SPSS and RStudio installed. See 

https://artsandscience.usask.ca/it/labs/ for a list of lab locations 

for the Saskatoon campus. 

Remote / Off-Campus Access 

Virtual Lab 

If you are a University of Saskatchewan student working remotely 

(off-campus), you can access both SPSS and RStudio via the Virtual 
Lab at http://vlab.usask.ca/. 

• Log in with your NSID. 

• Click “All” to expand the menu, then click on “Common U of S”. 

• Select “SPSS 26” (for SPSS) or “RStudio” (for R) to launch either 

program within the Virtual Lab. 

More information on the Virtual Computer Lab (VLab) can be found 

here: https://wiki.usask.ca/x/lozDTg 

IMPORTANT NOTE: In order to open any of the given Data Sets 
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(.sav files) in the Virtual Lab, they first need to be added to your 

Cabinet drive. See the next sections for details on how to upload 

them. 

Accessing your Cabinet Drive 

The following links will guide you through gaining access your 

Cabinet drive so that you can then add files to it. Choose from the 

following options depending on if you are using Windows or Mac. 

Ensure you follow the steps for connecting to Cabinet, 

specifically. 

Try the steps without a VPN first. If you have issues, set up the 

VPN (Virtual Private Network) and try that way. The steps for 

setting up the VPN can be found here: https://wiki.usask.ca/x/

0YnDTg 

For Windows 

• How do I map a network drive like Cabinet, Jade or Datastore 

on Windows?: https://wiki.usask.ca/x/_4nDTg 

For Mac 

• How do I map a network drive like Cabinet, Jade or Datastore 

on Windows?: https://wiki.usask.ca/x/_4nDTg 
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Adding Files to your Cabinet Drive 

First, download all of the .sav files from the Data Sets page onto your 

computer. 

Once you have access to your Cabinet drive, choose a designated 

folder within this drive where you will add the .sav files you want 

to work with; you may wish to create a new folder for this purpose, 

with a title like, e.g., PSY 233 files. 

From there you can copy or move the .sav files from your 

computer into your designated Cabinet folder. 

Then, they will be available for you to access them within the 

Virtual Lab. 

USask ICT Help 

Still stuck? Visit https://www.usask.ca/ict/help-support/it-

support-services.php for more one-on-one assistance. 
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Data Sets 

The dataset files listed here, which are used in the SPSS Lessons 
and RStudio Lessons of this book, were created by Osama Bataineh. 

They are released with a CC BY-NC-SA 4.0 license. 

HyperactiveChildren.sav 

Caregiver.sav 

HeightLatency.sav 

AgeSmoker.sav 

HeadCircum.sav 

pHLevel.sav 

Methadone.sav 

.. 

ActivityValue.sav 
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1. BACKGROUND AND 
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1.1 Overview 

1.1.1 Textbook Layout, * and ** Symbols 
Explained 

This textbook has been designed for use in the statistics classes for 

psychology I teach at the University of Saskatchewan. It is designed 

to replace the expensive, and inadequate, texts that have 

traditionally been used for these classes. 

The courses covered by this text are: 

1. Univariate Statistics I: Chapters 1 to 10 (Psy 233, undergraduate 

course) 

2. Univariate Statistics II: Chapters 11 to 17 (Psy 234, 

undergraduate course) 

3. Multivariate Statistics: Future project (Psy 807, graduate 

course) 

Since these courses are applied statistics courses, students do not 

need to understand the derivations of the formulae and procedures. 

So these aspects, the “cookbook” approach, is what you need to 

learn to pass the applied statistics courses. 

Sections Marked with ** : But, in the sections marked with a ** 
there are detailed derivations for those who don’t want to believe in 

magic. Most psychology students will want to skip the ** sections. 

Sections Marked with * : Other sections are marked with a *; 

those sections contain applied statistics material that is not part of 

the course but is material that an experimental psychology student 

has a good chance of needing in experimental courses and research 

projects. (The graduate course Psy 805 is a review of Psy 233/234 
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with the additional * sections covered — so this text might also be 

used for Psy 805.) 

Psychology students at the University of Saskatchewan are 

required to learn how to use the statistics program SPSS. So 

“Lessons” for learning SPSS are included included throughout the 

text, with RStudio Lessons as an alternative using a different 

program. 

For Univariate Statistics I, the class material is organized in 3 

blocks: 

• Block 1 is an introduction to the basic tools of statistics and 

probability — Chapters 1 to 6. 

• Block 2 gets you into the ideas of hypothesis testing — Chapter 

9. 

• Block 3 is material on one- and two-sample -tests — Chapters 

9 and 10. 

1.1.2 Intro to Univariate Statistics 

So, to begin the course material proper, we may identify two “kinds” 

of statistics: 

1. Descriptive Statistics: The presentation, organization and 

description of data. (Graphs, means, standard deviations, etc.) 

Block 1 material is primarily about descriptive statistics. 

Descriptive statistics lead to ideas about probability – we will 

cover probabilities as given by functions known as the binomial 

distribution and the normal distribution. 

2. Inferential Statistics: The use of probability to infer things 

about a population from a sample through the use of hypothesis 

testing. Why do we need inferential statistics? Because it is 

usually impossible to measure (poll) an entire population. 
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The goal of Univariate Statistics I is to understand inferential 

statistics as embodied in the -tests. With blocks 2 and 3 we will 

build up the background for, and then learn 3 kinds of “ -tests” to 

infer means in populations. To foreshadow, let’s take a look at a 

simple example. Say we are interested in people’s heights. Let’s look 

at three situations, corresponding to the three types of -tests we 

will learn. 

i. One sample -test. The situation is as illustrated in Figure 1.1. 

Figure 1.1: One sample -test 

The -test will tell you when you may conclude that: 

    

Here the population could be the height of 10 year old 

children in Saskatchewan. The quantity  is the actual 

average height of 10 year old kids in Saskatchewan. You 

could, in principle, measure all the 10 year olds in 

1.1 Overview  |  17



Saskatchewan but, in practice you can’t. Even if you spent 

the time finding them all and measuring their heights with 

a tape measure, they will be growing while you measure 

them all. It’s generally impossible to measure a population in 

practice for some reason. Practically, we can only measure 

a small sample of children from the population. That sample 

will have a mean that we denote with . The -test is a 

hypothesis test in which we compare the sample mean 

to a hypothetical mean  and conclude with a probabilistic 

inference about . 

ii. Two sample -test. The situation is as illustrated in Figure 1.2. 

The t-test will tell you when you can believe that 
    

on the basis that . (The symbol  means 

“approximately equal to”.) 

Figure 1.2: Two sample -test 

Here the two populations could be 10 year olds (population 

1) and 11 year olds (population 2) in Saskatchewan. You might 

measure the two populations to get some idea about how 
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much 10 year old kids in Saskatchewan grow in one year. The 

two sample -test will give you information on the difference 

of the average heights in the population,  on the 

basis of the difference of the means of small samples that you 

take from each population, . 

iii. Paired -test. The situation is as illustrated in Figure 1.3. 

Say we want to know how fast a population grows in 1-year 

(e.g. pop = 10 year old kids). You can do the two-sample test 

with two separate populations but if you want to know how 

the environment affected the growth of the children (maybe 

you are concerned that they don’t get enough to eat) then 

the two-sample test is only an approximation. The genetic 

composition, the natural ability to grow, may be different 

in the two separate populations. To get at the effect of the 

environment, without the measurements being confounded 

by individual differences, we would take a sample of 10 year 

old kids from the population now and measure their heights. 

Then we wait a year and measure the height of the same 

sample of now 11 year old kids. Then we combine the two 

samples of data into one data sample of differences. The 

Paired -test will tell you if the average of differences (in 

heights) is zero or not. 
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Figure 1.3: Paired -test 
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1.2 Basic Definitions 

Data : The numbers we collect.  (Note the word data is plural. 

Datum is singular.)  Data may be grouped into sets, hence data set. 

Variable : A mathematical term used to denote something that 

can take on a range of values. There are important two types of 

variables : 

i. Independent variable (IV) : You set the value, a.k.a. explanatory 

variable. 

ii. Dependent variable (DV) : Value set (generally caused) by the 

independent variable, a.k.a. outcome variable. See Figure 1.4. 

Figure 1.4: In the equation of a line, y is the dependent variable, x is the 
independent variable. 

Random Variable : A dependent variable with random noise added. 

Value given by a stochastic process. We will only refer to random 

variables when discussing the theoretical relationship between 

probability distributions. Random variables, which we will denote 

with capital letters like , are defined by their probability 

distribution. A stochastic process produces values that form a 

probability distribution if you allow the process that generates their 

values run for long enough. 
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Note : Data are frequently called “variables” in anticipation of how 

they will be used. The software program SPSS uses that convention. 

1.2.1  Types of Data (important!) 

Qualitative variable : described by a word, e.g. gender with “values” 

male or female.  Qualitative variables are converted to discrete 

quantitative variables before analysis (e.g. male = 1, female = 2). In 

SPSS, you need to assign discrete numbers to qualitative variables in 

the “Values” column in the “Variable View” screen. 

Quantitative variable : two types : 

i.  Discrete variable : integer valued. In mathematical symbols 

 (read “the variable  belongs to [the set symbol 

means “belongs to”] the set of integers ”). e.g. -2, -1, 0, 1, 2, 3, 

etc. 

ii. Continuous variable : real valued (essentially any number). In 

mathematical symbols  (read “the variable  belongs to 

the set of real numbers ”). Geometrically,  is the number 

line. 

Note : Continuous variables can be converted to discrete variables 

by grouping : 

heights  5 ft = “short” (group value = 1) 

heights " title="Rendered by QuickLaTeX.com" 

height="11" width="12" style="vertical-align: 0px;"> 5 ft = “tall” 

(group value = 2) 

Groups are also known as classes. We will be spending time 

defining classes in Chapter 2. Identifying what type of variable you 

data is will be the best way for you to decide what statistical test you 

need after you have learned and understood a number of different 

tests. 
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1.2.2 Measurement Scales (avoid this!) 

Some texts, and the SPSS helper program (although I have never 

tried it), attempt to classify data into “scales” that try to go 

somewhat beyond the integers and real numbers. I don’t think such 

classification is particularly useful and recommend that you avoid 

such classification. Nevertheless, it exists, so we will take a very 

quick look at such scales. (There is no agreement about their 

definitions from source to source.) 

One textbook that I used for a Univariate Statistics class for many 

years1 lists 4 types of scales : 

i. nominal : discrete categories with no order (e.g. profession or 

gender) – qualitative. 

ii. ordinal : discrete categories with order (e.g. grades, A, B, C ) 

– qualitative. 

iii. interval : quantitative measure but no zero: ratios make no 

sense (e.g. temperature – makes no sense to say that one day 

was twice as hot as another day). 

iv. ratio : has zero, and hence ratios have meaning – quantitative. 

SPSS uses : 

i. nominal.    

ii. ordinal. 

iii. scale : this scale is equivalent to the ordinal and ration scales 

listed above combined — as best as I can make out. 

SPSS lets you specify a measurement scale under the “Measure” 

1. Bluman AG, Elementary Statistics: A Step-by-Step 

Approach, numerous editions, McGraw-Hill Ryerson, 

circa 2005. 
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column in the “Variable View” screen. My recommendation is to 

leave it at “Unknown” or set it to “Scale”, otherwise it will try to 

restrict the statistical tests you can do when you don’t want it to. 

Measurement scales were invented to guide you to an appropriate 

statistical test but it doesn’t work that well. Instead, consider if 

your variable is continuous or discrete and then think about your 

situation. 

1.2.3 Kinds of Sampling and Studies 

This material properly belongs to a course on research methods 

and experimental design, but we will take a very quick look here. 

Ultimately your data need to be selected from the population at 

random. All mathematical statistical tests assume random sampling. 

The probability distributions that are used are defined by random 

sampling (the randomness — probability distribution relationship is 

pretty much a tautology). The real world is nit ideal, however, and 

you may be forced to deal with bias introduced by the following 

sampling schemes : 

1. Random Sampling : Samples selected from the population at 

random. 

2. Systematic Sampling : The population is ordered somehow (e.g. 

by house address or by phone number) and there is a rule for 

selecting samples (e.g. every 4th house or every 10th phone 

number). 

3. Stratified Sampling : The population is, or can be, ordered into 

groups and sampling is done at random from the groups. 

4. Cluster Sampling : Restrict sampling to a few groups of the 

population (a few strata). 

And, depending on the control you have over your independent 

variable, studies may be classified as : 
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1. Observational Study : Just watch. You have no control over the 

independent variables. 

2. Experimental Study : Control some variables to isolate other 

variables. The object is to manipulate the independent variable. 

Astronomy is a passion of mine; observing stars and planets through 

a telescope is an example of an observational study. Experimental 

studies can be affected (knowingly or unknowingly) by confound 

variables.  These are causes (independent variables) that you are not 

interested in but which affect the outcome (dependent variables) 

and can lead to data bias that you need to account for. Such issues 

are beyond the scope of an introductory statistics course. 
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1.3 Summation Convention 

For those of you who were ripped off in your high school 

education, a brief review of an important symbolic convention is 

given here. This convention will be used in the formulae that you 

will need to use. 

The capital Greek Sigma, , means sum or add. For example, 

suppose that you have 5 data sample values, represented abstractly 

by  and , or more abstractly (using set notation) 

by: 

,  (or ) 

If you want to add the 5 values you would write: 

    
or 

    

Sometimes people get lazy and leave off the limits on the 

summation sign  and write 

    

where it is hopefully clear that  is the summation index . We can 

also leave off the summation index and write 

    

just to remind us that we need to add up a bunch of numbers 

generically represented by . This last convention is useful for us 

because whenever we need to deal with a sum in a formula, we 

will get that sum from adding up numbers in a table that we have 

constructed. 
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2. DESCRIPTIVE 
STATISTICS: FREQUENCY 
DATA (COUNTING) 

Statistical inference is based on probability and probability is based 

on counting (at least the “frequentist” definition of probability – 

more about that in Chapter 4). So let’s start counting! 
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2.1 Frequency Tables 

Most material in this text is introduced first at an abstract level, 

then generally a step-by-step recipe is given and finally example 

problems are solved. This general to specific approach to learning 

statistics is the opposite of how many introductory statistics tests 

for the social sciences teach. For our first topic of frequency tables, 

the abstract concept is counting so let’s dive into the recipe with 

the expectation that you won’t get the complete picture until an 

example or two is worked. 

The construction of a frequency table proceeds in two steps : 

Step 1 : Determine the classes. There are two possibilities here, 

either the classes are given to you (pre-defined) or you have to 

define the classes based on the number of groups you want. So 

either 

i. Classes are given – nothing to do. 

ii. Define classes based on the number of groups you want. There 

are a number of different ways to group data into classes. We 

will cover a method here, different from Bluman’s, that works 

for whole number data only. Here are the steps for that 

method : 

(a) determine high data limit,  and the low data limit, . 

(b) compute the range 

(c) compute the class width : 

    

where  is the number of groups (or classes) you want. 

(d) Begin the frequency table’s first two columns : 
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Class Class Boundaries 

 to 
 to 

 to  to 

to 

Note : If the classes are given,  you won’t have, or need, the second 

column. 

In the class column above a specific way of labelling classes is 

given. (We will see how this works exactly in the upcoming 

example.) This is to make the class names useful for seeing that the 

classes are uniquely defined — there will be no data points on the 

boundaries of the classes. The numbers in the labels will be whole 

numbers, since we are assuming that the data are whole numbers1. 

In general we can label the classes any way we like. 

Also we need to note that this procedure of defining classes using 

the formula given in step (2)(c) will only work for whole number 

data. In general the process of defining classes is a lot looser; there 

are few rules beyond thinking about what kind of information you 

hope to capture by defining the classes. Since I want to keep you 

focused on learning the basic ideas and not worry about stuff that is 

not really statistics all assignment and exam questions that ask for 

the construction of classes from quantitative data will be for whole 

number data only. The procedure given here does work in general 

but some data points may end up on class boundaries and will have 

1. Whole numbers are 0 and the positive integers. 
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to make up an arbitrary rule about which class the data point should 

go in. 

Step 2 : Construct the frequency table and fill it in : 
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A B B AB O 

O O B AB B 

B B O A O 

A O O O AB 

AB A O B A 

The last number in the cumulative frequency column, , should 

equal number of data points as a check since it is the sum of the 

frequencies. And the sum of the relative frequencies will be 1 — we 

will see that this is an essential feature of probabilities. The tally 

column is optional. 

Example 2.1 : 25 army inductees were tested for blood type. The 

data are : 

 

 

 

 

 

Construct a frequency table. 

Solution : 

Step 1 : Classes are given : A    B   O   AB 

Step 2 : Construct frequency table : 

Class Tally Frequency Cumulative 
Freq. 

Relative 
Freq. 

A ||||| 5 5 5/25 = 0.20 

B ||||| || 7 12 7/25 = 0.28 

O ||||| |||| 9 21 9/25 = 0.36 

AB |||| 4 25 4/25 = 0.16 

The tally is actually silly in this case because you count2 all the 

instances of A for the class A, etc., and you’re done. The tally column 

will be more useful for the next example. 

Example 2.2 : Given the high temperature data for each of 50 

states for the month of July : 

2. The frequency of A is the number of times A is in the 

dataset, etc. ← the take-home concept here. 
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112 100 127 120 134 118 105 110 109 112 

110 118 117 116 118 122 114 114 105 109 

107 112 114 115 118 117 118 122 106 110 

116 108 110 121 113 120 119 111 104 111 

120 113 120 117 105 110 118 112 114 114 

Construct a frequency table using 7 classes. 

Solution : 

Step 1 : 

(a) High limit, H = 134 

Low limit, L = 100 

(b) Range: R = H – L = 134 – 100 =34 

(c) Class width: W = 

(d) (and continue to Step 2) : 

Step 2 : 

Class Class 
Boundaries Tally Frequency Cumulative 

Freq. 
Relative 

Freq. 

100 — 104 99.5 to 
104.5 || 2 2 0.04 

105 — 109 104.5 to 
109.5 ||||| ||| 8 10 0.16 

110 — 114 109.5 to 
114.5 etc. 18 28 0.36 

115 — 119 114.5 to 
119.5 13 41 0.26 

120 — 124 119.5 to 
124.5 7 48 0.14 

125 — 129 124.5 to 
129.5 1 49 0.02 

130 — 134 129.5 to 
134.5 1 50 0.02 

= 1 

Note how we can now use the tally column to keep track of our 
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counting. For example, for the class 100 — 104, we first count all 

the instances of 100 (there is 1), then 101 (none), 102 (none), 103 

(none) and 104 (one). The sum of the frequencies is  and 

the sum of the relative frequencies is 1. Imagine that this data set 

represented the whole population and not just a sample. Then if 

you picked a random state there would be a 0.16 probability that 

the temperature would be between 105 and 109 inclusive. On other 

words relative frequency = probability for a population. Hence the 

term frequentist definition of probability. 

You can also compute cumulative relative frequency in a 

frequency table. When you use SPSS to make a frequency table 

you will run up against the limitations of using black box canned 

software. SPSS produces only one style of frequency table and it 

doesn’t match what we’ve been doing. In fact SPSS won’t compute 

relative frequency; instead it computes “percentage”. You need to 

convert percentage to relative frequency in your brain by dividing 

by 100. 
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2.2 Plotting Frequency Data 

In general you may present your data, say in a report or paper, 

in tabular form or graphical form. Personally, I prefer graphical 

form — “a picture is worth a thousand words”. For frequency data, 

the frequency table is the tabular form. There are several ways of 

presenting the same data graphically, the primary way being the 

histogram: 

1. Histogram – plot of frequency data using steps 

(mathematically: “step functions”). 

2. Frequency polygon – plot of frequency data using straight lines 

(mathematically: “piece-wise linear functions”). 

3. Cumulative frequency graph. 

4. Pie charts, Pareto charts, Stem & Leaf plots – alternate ways of 

plotting frequency data 

As a first step to plotting frequency data, you will need to construct 

a frequency table. 

Example 2.3 : Continuing with the frequency table produced from 

the data given in Example 2.1 : 

Class Frequency Cumulative 
Freq. 

Relative 
Freq 

A 5 5 0.20 

B 7 12 0.28 

O 9 21 0.36 

AB 4 25 0.16 

We will demonstrate most of the graph types using these data. 

1. Histograms. First, the straight forward histogram is as shown in 
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Figure 2.1. This is a plot of the data in the frequency column of the 

frequency table. 

Figure 2.1 : Straight Forward histogram. A box or “step function” is used 
to show the frequency of each class. In this image, generated with SPSS, 
the classes are labelled with 1, 2, 3, and 4 which correspond to the classes 
A, B, O and AB. If we take these discrete quantitative class values 
literally, the class width is one. Keep that in mind when you look at 
Figure 2.2. 

Next, still under the category histograms, is the relative frequency 

histogram. The relative frequency histogram for the blood type data 

is shown in Figure 2.2. It is a plot of the data in the relative frequency 

column of the frequency table. 
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Figure 2.2 : Relative frequency histogram for the blood type data. 

Very Important Concept : Look at Figure 2.2 and define the width 

of each class to be 1. Then the area under the histogram “curve” is 

. So, if we image that our data sample of the 25 army inductees 

is a whole population, then the relative frequency histogram may 

be interpreted as giving the following probabilities for getting a 

particular blood type for someone selected randomly from the 

population: 

The probability of having type A blood is 0.20 (or 20 ). 

The probability of having type B blood is 0.28 (or 28 ). 

The probability of having type 0 blood is 0.36 (or 36 ). 

The probability of having type AB blood is 0.16 (or 16 ). 

2. Frequency Polygons. Frequency polygons are just another form 

of histogram. We have been talking about “area under the curve” to 

represent probability. The curve of a frequency polygon is a little 

bit smoother than the curve of a traditional histogram. Frequency 
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polygons can, of course be made for either straight frequency or 

relative frequency data. A frequency polygon for the relative 

frequency blood type data is shown in Figure 2.3. 

Figure 2.3 : Relative frequency polygon for the blood type data. Plot a dot at 
the center of each class at the -value of the relative frequency then connect 
the dots as shown. 

3. Cumulative Frequency Graph. Plotting the cumulative 

frequencies from the frequency table results in a cumulative 

frequency graph as shown in Figure 2.4. Cumulative relative 

frequencies can also be computed (add up relative frequencies as 

you move down the column) and plotted. 

The cumulative frequency graph shows the “area under the curve” 

(of the traditional histogram) from the beginning of the first class 
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up to the given point. Cumulative frequencies or cumulative relative 

frequencies with therefore show up later as areas under probability 

distribution curves up to a given point (it represents the probability 

of having a value equal to or less than the given value if that quantity 

is pulled at random from the population.) 

Figure 2.4 : Cumulative frequency graph for the blood sample data. Plot a dot 
at the end of the relevant class at a -value equal to the cumulative 
frequency. Then connect the dots as shown. 

4. Pie Chart. A pie chart is a round histogram. Everyone has seen a 

pie chart, it is intuitive. The angles in the pie chart are computed 

using: 

Angle = Relative Frequency . 

For the blood type data, the explicit angle calculations are : 
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Class Angle 

A 0.20  = 

B 0.28  = 

O 0.36  = 

AB 0.16  =  

Check Sum = 

The pie chart for the blood type data is shown in Figure 2.5. 

Figure 2.5 : Pie chart for the blood type data. It is a very good 
representation of the probability aspect of relative frequency. 
If you made the pie chart into a dart board and threw darts at 
it in a random fashion, then the probability of the dart 
landing in each class is equal to that class’s relative frequency. 

5. Pareto Chart. The Pareto chart is just an ordered histogram with 
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classes ordered from highest to lowest frequency. The classes need 

to be qualitative for this reordering to make sense of course. To 

construct a Pareto chart, writing an ordered frequency table down 

first will help : 

Class Frequency 

A 5 

B 7 

O 9 

AB 4 

Figure 2.6: Pareto chart for the blood type data. 

The Parato chart is plotted in Figure 2.6. The frequencies as ordered 

in a Parato chart can be given statistical meaning but that is a 
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subject beyond the scope of this course. Here you just have to be 

aware that such a chart exists and know how it is made. 

2.2.1 Stem and Leaf Plots 

A stem and leaf plot is a fancy kind of histogram that lets you see all 

your data instead of just class frequency information. 

The steps for making a stem and leaf plot are : 

1. Order the data (this is a frequently used, tedious, step for many 

procedures as we’ll see). 

2. Divide into classes of 10’s or 5’s (low decade and high decade). 

3. Use “leading” and “trailing” digits of the data values to make 

the plot. 

For step 3 you need to know what “leading” and “trailing” digits are. 

Let’s illustrate that with an example. 

Example 2.4 : Given classes: 50-54, 55-59, 60-64, 65-69, 70-74, 

75-79 or equivalently, divide the classes into 5’s and the data in order 

(i.e. with the tedious ordering step 1 already done) : 

|50,51,51,52,53,53,|55,55,56,57,57,58,59,|62,63,|65,65,66,66,6

7,68,69,69|72,73,|75,75,77,78,79| 

where the bars illustrate the division of the data into low and high 

decades, step 2. The first number of each data point is the leading 

digit (stem), the last, the trailing digit (leaf). So with this, step 3 leads 

to : 
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Stem Leaf 

5 0 1 1 2 3 
3 

5 5 5 6 7 7 
8 9 

6 2 3 

6 5 5 6 6 7 
8 9 9 

7 2 3 

7 5 5 7 8 9 

Notice how, since the numbers are all nicely lined up, that the 

stem and leaf plot is a histogram on its side. So you can visualize 

frequency information and see the values of the individual data 

points as well. One could use that information to compute accurate 

means from stem and leaf plots whereas, as we’ll see, “class centers” 

need to be used with histogram (frequency table) data to estimate 

means with grouped data formulae. 
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2.3 SPSS Lesson 1: Getting 
Started with SPSS 

The following lesson will take you through an introduction to IBM® 

SPSS® Statistics software (referred to hereafter as “SPSS”). 

First, you need to open SPSS. Ways to do that are detailed in the 

Front Matter of this book, in the section “Statistical Software Used 

in this Book“. Also in the Front Matter you will find the collection 

of provided Data Sets; download the file “HyperactiveChildren.sav” 

and open it in SPSS. 

You should see: 

This is the “Data View” window. It is one of the three windows 

you will see when you use SPSS. The other two windows are the 

“Variable View”  window and the “Output” window. You can get to 

the Variable View window either by clicking on the Variable View 

tab at the bottom of the window, or by double clicking one of the 

column headings (the “variable name”). But let’s talk about what’s on 

the Data View window before we look at the other two windows. 

The Data View window is arranged in the form of a “data matrix”, 

which is an essential structure for multivariate statistics. This is the 
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first trap that people who try to use SPSS fall into — they collect 

data, put the data into SPSS and then go looking for an appropriate 

statistical test using help or the built-in “statistics coach”. 

Multivariate statistics is advanced. We need to learn a whole lot of 

basics before we can competently use multivariate statistics. This 

textbook covers univariate statistics. We are only going to learn 

how to deal with one dependent variable at a time. So many of the 

first SPSS lessons will be about how to combine multiple variables 

into one variable for analysis. 

Back to the Data View window and the data matrix. The rows 

represent individual subjects in the study. In Psychology, the subjects 

(“participants”) are generally people but they could also be rats or 

schools or cities or whatever. To fix ideas, suppose the subjects 

are people. One line for each person in the study. The columns 

represent variables. SPSS doesn’t care what kind of variables you 

define (e.g. independent or dependent) so you need to keep track of 

their meaning yourself. As we said, we only need one independent 

variable for univariate tests. 

The variables need to be defined. This is done by either double 

clicking on the variable name at the top of a column or by clicking 

the “Variable View” button at the bottom. Either way, you’ll end up 

in the Variable View window that looks like : 

Each line in the Variable View window lists the attributes of the 
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variables listed in the Data View window. You can usually leave most 

of the attributes as they come by default. The big exception is the 

Values attribute — it’s important and we’ll come back to that after a 

quick look at the other attributes. 

The Name attribute gives the name of the variable as it appears 

at the top of the columns in the Data View window. Type should 

be Numeric if you want to use the variable in any kind of statistical 

calculation. Having this set to String will cause errors if you are 

trying to use the variable as a qualitative variable (selection is via a 

pull down menu that appears when you click on a cell). Qualitative 

variables need to be Numeric and they are handled with the Values 

attribute — as we’ll see shortly! The Width and Decimals attributes 

are just to format the appearance of the numbers in the Data View 

sheet; totally not critical. The Label is left over from early FORTRAN 

days. SPSS’s heart is written in FORTRAN and variable names in 

FORTRAN used to be limited to eight characters which frequently 

makes it awkward to have good name for the variable. With Label 

you can give the variable a good name. If the is a value for Label 

then that value will be used on table and graph outputs that SPSS 

makes. If Label is blank then SPSS will use Name on table and graph 

outputs. We will largely ignore missing value issues in this course 

so leave the Missing attribute at None. Columns and Align are again 

used to make the Data View presentation look a little better; totally 

not critical. Leave Measure at Unknown or Scale, otherwise SPSS 

will try to interpret your data for you. SPSS is not very good at that 

and will tend to give strange errors that will make no sense to you, 

so leave Measure at Unknown or Scale. Leave Role at Input; this is a 

relatively new feature of SPSS and I don’t know what it does, so don’t 

muck with it. 

Finally — the Values attribute! Here is where you make the link 

between a qualitative variable and the discrete values it needs to 

work in a computer setting. Let’s take a look at the gender variable. 

Clicking in the cell brings up a thing with three dots : 
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Clicking on the thing with three dots brings up a menu where you 

can define the connection between the qualitative description and 

your discrete number assignments : 

Here I have clicked on the 1.00 = “Male” line to show that the Value is 

1 (arbitrary discrete quantitative) and the Label is Male (qualitative). 

To enter new values, type them in the Value and Label box and then 

click Add to add them to the list. 

Let’s go back to the Variable View window to see how quantitative 

variables with discrete number assignments are handled. Look at 

the values in the sex variable column in the first image. The numbers 

1 and 2 are shown which represent Male and Female. To see that 
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representation explicitly, click on the 1-A icon at the top of the 

window. You will then see: 

There’s more. If you click on a cell in the gender variable, you will 

get a thing on the side of the cell and if you click on that thing, you 

will see: 

This pop-up allows you to change the value by clicking on the 

appropriate value. In one of your assignments you will get practice 

with entering qualitative data this way. In general, to enter data into 

SPSS from scratch, you can start by typing data into the Data View 

window and then fix up the attributes later in the Variable View 

window. For qualitative variables the best approach is to define the 
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variable first in Variable View, getting the proper values into the 

Values attribute. Then you can go back to the Data View window and 

enter the qualitative data either by pulling down the menu when the 

mode of the 1-A icon is to show the labels or by remembering the 

number assignment and entering the numbers when the 1-A icon is 

set to show values. 

Let’s move on to do some descriptive statistics and see what 

results will look like in the Output window. For this load in the 

“Caregiver.sav” file from the Data Sets: 

There are 50 subjects in this file and 10 variables. One of the things 

we’ll be learning, in later SPSS Lessons, is how to combine more 

than one variable into one variable. This is because we are studying 

univariate statistics which means we only want to deal with one 

dependent variable at a time. For now, lets pick on the variable 

CGDUR and see how we can generate descriptive statistics output. 

There are three ways to do this and they all begin in the Analyze 

 Descriptive Frequencies menu which looks like this (on a PC; 

very similar on a Mac): 
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Pick Frequencies… which brings up: 

Move the CGagecat variable over by clicking on the variable then the 

arrow button or just drag the variable over to get: 

2.3 SPSS Lesson 1: Getting Started with SPSS  |  51

https://openpress.usask.ca/app/uploads/sites/76/2020/01/CareG2.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/CareG2.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/CareG3.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/CareG3.png


SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

Let’s take a look at the submenus and set them up before we hit 

OK. First the Statistics… submenu. In that menu check off Mean ( ), 

Median (MD), Mode, Skewness, Kurtosis, Std. deviation ( ), Variance 

( ), Range ( ), Minimum ( ) and, Maximum ( ). We we look at 

all of those descriptive statistics in Chapter 3. 

Hit Continue, look at the Charts… menu and check off pie charts, 

just for fun: 
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Hit Continue. You can look at the Format… and Style… menus if 

you want, they are not particularly interesting. Make sure “Display 

frequency tables” is checked (this will be important when you do the 

assignments), then hit OK. The Output window will pop up and in 

that window you will see: 

The first table, Statistics, shows the descriptive statistics you asked 

for. Note, especially, for future reference (when we hit skewness 

in Chapter 3), the value of the skewness. It is . More to the 

point it is  0" title="Rendered by QuickLaTeX.com" height="12" 

width="27" style="vertical-align: 0px;">, or positive, meaning that 

the data set (CGagecatn) is right skewed or positively skewed. The 
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second table, labeled “highestQualification” is the frequency table 

(note how the variable Name and not the Label was used because 

the Label attribute for the highestQualification variable was blank). 

The structure of the frequency table is slightly different from how 

we will learn to construct one by hand. There is nothing you can 

do to make SPSS produce a frequency table that matches exactly 

like what you might want. There are limitations to using canned 

statistics software. 

Scrolling down the Output window you will see the pie chart: 

Lets look at the Descriptives… menu next: 
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Move the CGagecat variable over as before and make sure to check 

off the “Save standardized values as variables”. We’ll learn about 

standardized values ( -values) in Chapter 3. Take note, this is the 

only way to get SPSS to compute -values : 

Click the options menu and check off descriptive statistics to 

compute, as before (S.E. mean is Standard Error of the mean which 

we’ll get to eventually also, we’ll just leave it off for now): 

Hit Continue then OK and look at the results in the Output window. 

The output is straightforward: 
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In Chapter 3 we will learn that the mean of a -transformed variable 

is zero and the standard deviation is one. That is confirmed here. 

If you left the “Save standardized values as variables” box checked 

when you ran this, you’ll get another variable added in the Data 

View window — the -transform of the -transform. It’s the same, 

the -transform of a -transform give back the same numbers. 

But note that the skewness ( ) of the -transformed variable 

is the same as the skewness of the original variable. This means 

that -transforming a variable doesn’t change anything about the 

variable except its mean and standard deviation. This is important 

when it comes to using and interpreting any analyses based on the 

-transformed variable. 

Finally, let’s look at the Explore… menu: 
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Move CGagecat into the “Dependent List”. Don’t worry about 

“Factor List”, you should leave it blank (for future reference, “factor” 

is synonymous with “independent variable”): 

Take a look at the Statistics… menu. You can leave it as it is (we’ll be 

learning about Confidence Intervals later): 

Hit Continue and open the Plots… menu and check off the items as 

shown: 
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We will talk about these different plots soon. For now, hit Continue, 

the OK and look at the output. First the tables: 

The first table is a “missing data report” that many SPSS procedures 

will output as a matter of course. You can ignore the missing data 

reports. Pay attention to the “Descriptive” table (it is something 

you could be asked about on exams!). You can ignore the “Tests of 

Normality” table. Next the plots. The first one is a histogram: 
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After we cover skewedness in Chapter 3, come back to this picture 

and note how the histogram is right skewed. 

Next is the stem and leaf plot. Remember that the way to a stem 

and leaf plot in SPSS is through the Explore menu: 

You can ignore the Q-Q plots but note that a boxplot is produced: 
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This is not a very good boxplot. Again, we’ll be learning about 

boxplots later. 

Looking at stuff here in SPSS before covering the concepts in class 

is a very real situation that people face in real life. They will go to 

a program like SPSS in the hopes that it is all they need for data 

analysis. But it will likely produce output that you don’t understand 

if you don’t have a basic education in statistics. If provided with 

output from SPSS (e.g., on an exam) you should able to explain 

what the output means. For example, if given one of the tables 

shown above you should be able to determine what the standard 

deviation of a data set is and be able to use that number in a further 

calculation. It is also a good idea to do some calculations by hand 

when you first use SPSS for a procedure. If you can produce the 

same numbers as SPSS then you are sure you know what it is doing. 
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2.4 RStudio Lesson 1: Getting 
Started with RStudio 
OSAMA BATAINEH 

R is a free open source programing language widely used in 

statistical data analysis. It is very user friendly and it can be used 

in a variety of platforms such as MAC, Windows, LINUX, etc. R can 

be downloaded from https://www.r-project.org/. In most of the 

cases, R is being used with RStudio. RStudio is basically an additional 

interface which makes R more user friendly with a lot of additional 

features. A desktop version of RStudio can be downloaded (for free) 

at https://rstudio.com/products/rstudio/download/. More details 

are in the Front Matter of this book, in the section “Statistical 

Software Used in this Book”. 

When you open RStudio, you will see this : 

RStudio screenshot © the R Foundation. 

Here you can see four windows. In the upper left window, you will 

write your R commands. The output is shown in the console in the 
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lower left. There are also ways to write commands in the console 

and subsequently get output in the following lines. The upper right 

window shows description of the dataset that you are working on 

such as number of variables, number of observations etc. Finally, 

the lower right window is showing different packages of R at the 

moment. We will talk more about the packages little later. The lower 

right window also has other purposes. For example, if you write 

commands to produce graphs, it will show here. It also shows the 

results of help command when you seek help regarding anything in 

R. 

Now let’s discuss a bit about how R functions. As the name 

suggests, R is a programming language. In other statistical packages 

such Stata, SPSS, EViews, Tableau etc., you have to choose the 

right options based on what results you want. However in R, rather 

than picking the right options and clicking on them, you have to 

write commands to get the desired output. To aid this process, 

there are different packages in R. These R packages were built for 

various purposes based on what analysis you want to do. Some of 

these packages are already built-in and installed. However, to use 

an existing installed package, you have to load it in every work 

secession before starting to use it. There are other packages of 

R which are not installed but available online. If you think these 

packages serve your purpose, then you have to install and load 

it before using it. Next time when you use these newly installed 

packages, you only have to load it in each work secession before 

starting to use it. 

Now let’s get started working with our dataset. First, download 

the dataset “HyperactiveChildren.sav” from the textbook Data Sets. 

Then open RStudio and go to File " title="Rendered by 

QuickLaTeX.com" height="11" width="12" style="vertical-align: 0px;"> 

Import Dataset " title="Rendered by QuickLaTeX.com" height="11" 

width="12" style="vertical-align: 0px;"> From SPSS. 
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After that, click the browse button in the pop-up window that will 

appear and select the dataset from the directory in which you have 

saved the data in your computer. Then click Import to insert the 

dataset in R. You can also do the same thing by manually executing 

the commands written in the Code Preview section by yourself. 

After inserting the data, you will see this in RStudio. 
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Now we will write our commands in a new window in the upper left 

interface and save it in our desired folder in the computer to avoid 

rewriting the commands. This is known as R Script. To open a new 

R Script, click the arrow located just below and in between File and 

Edit and then select the first option R Script. 

After selecting the R script, a new R Script will open in a separate 

window named Untitled1. Save this script with a suitable name in 

your desired directory on your computer by clicking the old 

fashioned floppy disk icon. I have saved the script with the name 

Lesson 1\_RScript in my computer. 
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Before starting to work, let’s get to know couple of things. Among 

these things, some are obligatory to know if anybody wants to work 

in R while others can make our life a lot easier and efficient. You can 

run the commands a lot quickly through the keyboard by clicking 

Ctrl and Enter. Other than the commands, you can also write notes 

in the R Script for your future references. To write anything other 

than the commands, just give a Hash (\#) sign in the beginning. 

Another thing you must know is that to work with any dataset 

in R after inserting it in the beginning, you have to attach it in 

the current work secession to work with it further. To attach the 

Smoking dataset for the current work secession, run the following 

command. 

> attach(Hyperactive_Children) 

Now let’s start working with our dataset. Similar to other software 

packages, a variable has to be numeric to use it for statistical 

analysis. Thus any qualitative string variable needs to be 

transformed into numeric quantitative variable if we want to 

conduct analysis with it. In our dataset, the variable sex  is a 

qualitative string variable with two categories male and female. Let’s 

create a new variable sex\_new which will take the value 1 for male 

and 2 for female. We can do it with the help of the function ifelse. 

> Hyperactive_Children$Sex_new <- 

ifelse(Hyperactive_Children$Sex==1,1,ifelse(Hyperactive_Children$
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Sex 

==2,2,NA)) 

A new variable Hyperactive_Children\_new is being created. If 

we view the data by running the following command, we will see 

that at the end an additional column is being created named 

Hyperactive_Children which has numeric values of 1 and 2 only. 

> View(Hyperactive_Children) 

Here a thing to be noted is the use of dollar sign ($). The dollar 

sign basically calls the variable mentioned after it from the dataset 

mentioned prior to it or generates the new one mentioned after the 

sign to the dataset mentioned prior to it. 

To get the frequency distribution of any variable in R similar in 

the way it’s shown in many statistics textbook, you have to write 

codes for each of the columns separately. For example- to get the 

frequencies, cumulative frequencies, relative frequencies etc. – you 

have to write separate commands unless you are a program wizard 

and able to create an R package which will produce such table. First 

to get the frequency of a variable for its different categories, we can 

use the function table. 

> Age.freq <- table(Hyperactive_Children$Age) 

> Age.freq 

6 7 8 9 10 11 12 

2 1 2 3  3  2  2 
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> cbind(Age.freq) 

Age.freq 

6      2 

7       1 

8      2 

9      3 

10    3 

11     2 

12    2 

Here for a better presentation purpose, we have used another 

function cbind which basically shows the values of the variable and 

the number of observation it contains in a column. Then to get the 

cumulative frequencies, we can utilize the function cumsum. 

> Age.cumfreq <- cumsum(table(Hyperactive_Children$Age)) 

> cbind(Age.freq, Age.cumfreq) 

Age.freq     Age.cumfreq 

6        2                   2 

7        1                    3 

8       2                    5 

9       3                    8 

10     3                    11 

11      2                    13 

12     2                    15 

To produce pie chart, there is a specific function pie in R. 

However, since we need the pie chart of the frequency, we have to 

input table(Hyperactive_Children$Age) inside pie. The output will 

be shown in the lower right window. 

> pie(table(Hyperactive_Children$Age)) 
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Now let’s have a look at the descriptive statistics of this variable 

Educ. To calculate descriptive statistics, we need to install a specific 

package named psych. After installing and loading this package, we 

have to use the function describe which is a part of this new package. 

If any warning signs come, please ignore it. 

> library(psych) 

> describe(Hyperactive_Children$Age) 

vars n mean sd median trimmed mad min max range skew 

kurtosis se 

X1 1    15   9.2 1.93      9         9.23       1.48    6     12      6        -0.21 -1.18   

  0.5 

Similarly to get the confidence interval, you need another new 

package named Rmisc. While installing this package you have to 

keep the dependencies to true. After installing and loading this 

package, we have to use one of it’s function CI to get the confidence 

interval. Also remember that in addition to inserting 

Hyperactive_Children$Age in the domain of the function, you have 

to also specify the level of confidence interval. Ignore the warning 

signs here too. 

> install.packages(‘Rmisc’, dependencies = TRUE) 

> library(Rmisc) 

> CI(Hyperactive_Children$Age, ci = 0.95) 
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upper        mean        lower 

10.271372 9.200000 8.128628 

Finally, to produce the histogram, stem and leaf display and 

boxplot, there are specific functions in R with their names. These 

functions are hist, stem and boxplot respectively. 

> hist(Hyperactive_Children$Age) 

> stem(Hyperactive_Children$Age) 

The decimal point is at the | 

6 | 000 

8 | 00000 

10 | 00000 

12 | 00 

> boxplot(Hyperactive_Children$Age) 
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3. DESCRIPTIVE 
STATISTICS: CENTRAL 
TENDENCY AND 
DISPERSION 

3. Descriptive Statistics: Central
Tendency and Dispersion  |  71





3.1 Central Tendency: Mean, 
Median, Mode 

Mean, median and mode are measures of the central tendency of 

the data. That is, as data are collected while sampling from a 

population, there values will tend to cluster around these measures. 

Let’s define them one by one. 

3.1.1 Mean 

The mean is the average of the data. We distinguish between a 

sample mean and a population mean with the following symbols : 

    

    
The formula for a sample mean is : 

    

where  is the number of data points in the sample, the sample 

size. For a population, the formula is 

    

where  is the size of the population. 

Example 3.1 : Find the mean of the following data set : 

84 12 27 15 40 18 33 33 14 4 
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To illustrate how the indexed symbols that represent the data in the 

formula work, they have been written below the data values. To get 

in the habit, let’s organize our data as a table. We will need to do 

that for more complicated formulae and also that’s how you need to 

enter data into SPSS, as a column of numbers : 

label 

84 

12 

27 

15 

40 

18 

33 

33 

14 

4 

Total 
= 

280 

Since  we have . 

☐ 

Mean for grouped data : If you have a frequency table for a 

dataset but not the actual data, you can still compute the 

(approximate) mean of the dataset. This somewhat artificial 

situation for datasets will be a fundamental situation when we 

consider probability distributions. The formula for the mean of 

grouped data is 

(3.1)   
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where  is the frequency of group ,  is the class center of 

group  and  is the number of data points in the original dataset. 

Recall that  so we can write this formula as 

    

which is a form that more closely matches with a generic 

weighted mean formula; the formula for the mean of grouped data 

is a special case of a more general weighted mean that we will look 

at next. The class center is literally the center of the class — the next 

example shows how to find it. 

Example 3.2 : Find the mean of the dataset summarized in the 

following frequency table. 

Class Class 
Boundaries 

Frequency, Midpoint, 
x_{m_{i}} 

1 5.5 – 10.5 1 8 8 

2 10.5 – 15.5 2 13 26 

3 15.5 – 20.5 3 18 54 

4 20.5 – 25.5 5 23 115 

5 25.5 – 30.5 4 28 112 

6 30.5 – 35.5 3 33 99 

7 35.5 – 40.5 2 38 76 

sums n=  = 
20 = 490 

Solution : The first step is to write down the formula to cue you to 

what quantities you need to compute : 

    

We need the sum in the numerator and the value for  in the 
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denominator. Get the numbers from the sums of the columns as 

shown in the frequency table : 

    

☐ 

Note that the grouped data formula gives an approximation of the 

mean of the original dataset in the following way. The exact mean is 

given by 

    

So the approximation is that 

    

which would be exact only if all  in group  were equal to the 

class center . 

Generic Weighted Mean : The general formula for weighted mean 

is 

(3.2)   

where  is the weight for data point . Weights can be assigned 

to data points for a variety of reasons. In the formula for grouped 

data, as a weighted mean, treats the class centers as data points and 

the group frequencies as weights. The next example weights grades. 

Example 3.3 : In this example grades are weighted by credit units. 

The weights are as given in the table : 
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Course Credit Units, Grade, 

English 3 80 240 

Psych 3 75 225 

Biology 4 60 240 

PhysEd 2 82 164 

 = 12  = 297  = 
869 

The formula for weighted mean is 

    

so we need two sums. The double bars in the table above separate 

given data from columns added for calculation purposes. We will be 

using this convention with the double bars in other procedures to 

come. Using the sums for the table we get 

    

Note, that the unweighted mean for these data is 

    

which is, of course, different from the weighted sum. 

☐ 

3.1.2 Median 

The symbol we use for median is MD and it is the midpoint of the 

data set with the data put in order. We illustrate this with a couple 

of examples : 
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•  If there are an odd number of data points, MD is the middle 

number. 

Given data in order:  180  186  191  201  209  219  220 

                                                                                                         

                                     

• If there are an even number of data points, MD is the average 

of the two middle points : 

 Given data in order:  656  684  702  764  856  1132  1133  1303 

                                                                                                           

                                             

In these examples, the tedious work of putting the data in order 

from smallest to largest was done for us. With a random bunch of 

numbers, the work of finding the median is mostly putting the data 

in order. 

3.1.3 Mode 

In a given dataset the mode is the data value that occurs the most. 

Note that : 

• it may be there is no mode. 

• there may be more than one mode. 

Example 3.4 :  In the dataset 

, 9, 9, 14, , , 10, 7, 6, 9, 7, , 10, 14, 11, , 14, 11 

8 occurs 5 times, more than any other number. So the mode is 8. 

☐ 

Example 3.5 :  The dataset 

110, 731, 1031, 84, 20, 118, 1162, 1977, 103, 72 
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Class Class 
Boundaries Freq 

1 5.5 – 10.5 1 

2 10.5 – 15.5 2 

3 15.5 – 20.5 3 

4 20.5 – 25.5 5 (Modal Class) 

5 25.5 – 30.5 4 

6 30.5 – 35.5 3 

7 35.5 – 40.5 2 

has no mode. Do not say that the mode is zero. Zero is not in the 

dataset. 

☐ 

Example 3.6 : The dataset 

15,  20, 22,  26, 26 

has two modes: 18 and 24. This data set is bimodal. 

The concept of mode really makes more sense for frequency 

table/histogram data. 

☐ 

Example 3.7 : The mode of the following frequency table data is 

the class with the highest frequency. 

 

 

 

 

 

 

☐ 

3.1.4 

Midrange 

The midrange, which we’ll denote symbolically by MR, is defined 

simply by 

    

where  and  are the high and low data values. 

Example 3.8 : Given the following data : 2,  3,  6,  8,  4,  1. We have 
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☐ 

3.1.5 Mean, Median and Mode in 
Histograms: Skewness 

If the shape of the histogram of a dataset is not too bizarre1 (e.g. 

unimodal) then we may determine the skewness of the dataset’s 

histogram (which would be a probability distribution of the data 

represented a population and not a sample) by comparing the mean 

or median to the mode. (Always compare something to the mode, no 

reliable information comes from comparing the median and mean.) 

If you have SPSS output with the skewness number calculated (we 

will see the formula for skewness later) then a left skewed 

distribution will have a negative skewness value, a symmetric 

distribution will have a skewness of 0 and, a right skewed 

distribution will have a positive skewness value. 

1. For the purposes of deciding the skewness of a dataset 

in assignments and exams, you can assume that the 

histogram shape is not too bizarre. 
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Figure 3.1: A right skewed histogram (or distribution) generally has the mean 
and median to the right, or positive side of the mode. The tail of the histogram 
stretches to the right or positive side. 

Symmetric distribution 

Figure 3.2: A symmetric distribution (histogram) has the mean, median and 
mode all in the same place. Its shape is symmetric. 
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Negatively skewed or left skewed histograms 

Figure 3.3: A left skewed histogram (or distribution) generally has the mean 
and median to the left, or negative side of the mode. The tail of the histogram 
stretches to the left or negative side. 

3.1.6 Mean, Median and Mode in 
Distributions: Geometric Aspects 

To understand the geometrical aspects of histograms we make the 

abstraction of letting the class widths shrink to zero so that the 

histogram curve becomes smooth. So let’s consider the mode, 

median and mean in turn. 

Mode 
The mode is the  value where the frequency  is maximum, 

see Figure 3.4. More accurately the mode is a “local maximum” of 
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the histogram2 (so if there are multiple modes, they don’t all have to 

have the same maximum value). 

Figure 3.4: The mode is the maximum of the histogram (distribution). 

Median 
The area under the curve is equal on either side of the median. In 

Figure 3.5 each area  is the same. For relative frequencies (and so 

for probabilities) the total area under the curve is one. So the area 

on each side of the median is half. The median represents the 50/50 

probability point; it is equally probable that  is below the median 

as above it. 

2. **In calculus terms, local maximums and minimums (and 

inflexion points) are where the derivative equals zero, 

. 
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Figure 3.5: The median divides the area under the histogram into two equal 
areas . 

Mean 
The mean is the balance point of the histogram/distribution as 

shown in Figure 3.6. 

Figure 3.6: The mean is the balance point of the histogram. It is where the 
“first moments” of the area of the histogram balance. Here the moments are 

 and  balance. . 

**A proof that the mean is the center of gravity of a histogram: 
In physics, a moment is weight  moment arm : 
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where  is moment,  is weight and  is the moment arm (a 

distance). 

Say we have two kids, kid1 and kid2 on a teeter-totter (Figure 3.7). 

Figure 3.7 

Kid1 with weight  is heavy, kid2 with weight  is light. 

To balance the teeter-totter we must have 

    
The moment arm, , of the heavier kid must be smaller than the 

moment arm, , of the lighter kid if they are to balance. 

So now let’s define the center of gravity. If you have a bunch of 

weights  with corresponding moment arms  then the center 

of gravity (c of g) is the moment arm  (distance) that satisfies : 

    

where  is the total weight. 

With histograms, instead of weight  we have area . You can 

think of area as having a weight. (Think of cutting out a piece of the 
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blackboard with a jigsaw after you draw a histogram on it.) So for a 

histogram (see Figure 3.8): 

Figure 3.8 

(We assume, for simplicity but “without loss of generality”, that 

 are integers and also the classes. This is the case for discrete 

probability distributions as we’ll see.) So, for the c of g, 

    

translates to 

where we have used  because the class widths are one, 

so 

    

Because our “weight” is area,  is technically called the “1st 
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moment of area”. (Variance, covered next, is the “2nd moment of 

area about the mean”.) 

◻ 
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3.2 Dispersion: Variance and 
Standard Deviation 

Variance, and its square root standard deviation, measure how 

“wide” or “spread out” a data distribution is. We begin by using the 

formula definitions; they are slightly different for populations and 

samples. 

1. Population Formulae : 

Variance : 

(3.3)   

where  is the size of the population,  is the mean of the 

population and  is an individual value from the population. 

Standard Deviation : 

    

The standard deviation, , is a population parameter, we will 

learn about how to make inferences about population parameters 

using statistics from samples. 

2. Sample Formulae : 

Variance : 

(3.4)   

where  = sample size (number of data points),  = degrees 

of freedom for the given sample,  and  is a data value. 

Standard Deviation : 

    

Equations (3.3) and (3.4) are the definitions of variance as the 

second moment about the mean; you need to determine the means (

 or ) before you can compute variance with those formulae. They 
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are algebraically equivalent to a “short cut” formula that allow you 

to compute the variance directly from sums and sums of squares of 

the data without computing the mean first. For the sample standard 

deviation (the useful one) the short cut formula is 

(3.5)   

At this point you should figure out how to compute ,  and  on 

your calculator for a given set of data. 

Fact (not proved here) : The sample standard deviation  is the 

“optimal unbiased estimate” of the population standard deviation . 

 is a statistic”, the best statistic it turns out, that is used to estimate 

the population parameter . It is the  in the denominator 

that makes  the optimal unbiased estimator of . We won’t prove 

that here but we will try and build up a little intuition about what 

that should be so — why dividing by  should be better than 

dividing by . (  is known as the degrees of freedom of the 

estimator ). First notice that you can’t guess or estimate a value for 

 (i.e. compute ) with only one data point. There is no spread of 

values in a data set of one point! This is part of the reason why the 

degrees of freedom is  and not . A more direct reason is 

that you need to remove one piece of information (the mean) from 

your sample before you can guess  (compute ). 

Coefficient of Variation 
The coefficient of variation, CVar, is a “normalized” measure of 

data spread. It will not be useful for any inferential statistics that 

we will be doing. It is a pure descriptive statistic. As such it can be 

useful as a dependent variable but we treat it here as a descriptive 

statistic that combines the mean and standard deviation. The 

definition is : 
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Example 3.9 : In this example we take the data given in the 

following table as representing the whole population of size 

. So we use the formula of Equation (3.3) which requires us 

to sum . 

10 

60 

50 

30 

40 

20 

Using the sum in the first column we compute the mean : 

    

Then with that mean we compute the quantities in the second 

(calculation) column above and sum them. And then we may 

compute the variance : 

    

and standard deviation 

    

Finally, because we can, we compute the coefficient of variation: 
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◻ 

Example 3.10 : In this example, we have a sample. This is the usual 

circumstance under which we would compute variance and sample 

standard deviation. We can use either Equation (3.4) or (3.5). Using 

Equation (3.4) follows the sample procedure that is given in Example 

3.9 and we’ll leave that as an exercise. Below we’ll apply the short-

cut formula and see how  may be computed without knowing . 

The dataset is given in the table below in the column to the left of 

the double line. The columns to the right of the double line are, as 

usual, our calculation columns. The size of the sample is . 

11.2  = 
125.44 

11.9  = 
141.161 

12.0 exercise  = 144 

12.8  = 
163.84 

13.4  = 
179.56 

14.3  = 
204.49 

To find  compute 

   

So 
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Note that  is never negative! If it were then you couldn’t take 

the square root to find . Also not that we have not yet determined 

the mean. We can do that now: 

    

And with the mean we can then compute 

    

◻ 

Grouped Sample Formula for Variance 
As with the mean, we can compute an approximation of the data 

variance from frequency table, histogram, data. And again this 

computation is precise for probability distributions with class 

widths of one. The grouped sample formula for variance is 

(3.6)   

where  is the number of groups or classes,  is the class 

center of group ,  is the frequency of group  and 

    

is the sample size. Equation (3.6) the short-cut version of the 

formula. We can also write 

    

or if we are dealing with a population, and the class width is one 

so that the class center , 
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which will be useful when we talk about probability distributions. 

In fact, let’s look ahead a bit and make the frequentist definition for 

the probability for  as  (which is the relative 

frequency of class ) so that 

(3.7)   

If we make the same substitution  in the 

grouped mean formula, Equation (3.1) with population items  and 

 in place of the sample items  and , then it becomes 

(3.8)   

More on probability distributions later, for now let’s see how we 

use Equation (3.6) for frequency table data. 

Example 3.11 : Given the frequency table data to the left of the 

double dividing line in the table below, compute the variance and 

standard deviation of the data using the grouped data formula. 
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Class Class 
Boundaries Freq, 

Class 
Centre 

1 5.5 – 10.5 1 8 

2 10.5 – 15.5 2 13 

3 15.5 – 20.5 3 18 

4 20.5 – 25.5 5 23 

5 25.5 – 30.5 4 28 

6 30.5 – 35.5 3 33 

7 35.5 – 40.5 2 38 

The formula 

    

tells us that we need the sums of  and  after we 

compute the class centres  and their squares  — these 

calculations we do in the columns added to the right of the double 

bar in the table above. With the sums we compute 

   

So 

    

The mean, from one of the sums already finished is 

    

and the coefficient of variation is 
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◻ 

Now is a good time to figure out how to compute  and  (and 

) on your calculators. 
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3.3 z-score / z-transformation 

The -score is the result of transformation of data that converts 

a dataset of  values, , that has a mean of  and standard 

deviation  to a set of  values  that has a mean of  and 

a standard deviation of . It will be very useful when we need 

to compute probabilities associated with normal distributions. The 

-transformation is defined by 

    

    

Example 3.12 : Find the -scores of the data given in the left 

column of the table below. 

Data -score, 

18 324 (18-9.9)/6.2 = 1.3 

15 225 (15-9.9)/6.2 = 0.8 

12 144 (12-9.9)/6.2 = 0.3 

6 36 (6-9.9)/6.2 = -0.6 

8 64 (8-9.9)/6.2 = -0.3 

2 4 (2-9.9)/6.2 = -1.3 

3 9 (3-9.9)/6.2 = -1.1 

5 25 (5-9.5)/6.2 = -0.8 

20 400 (20-9.5)/6.2 = -1.7 

10 100 (10-9.5)/6.2 = 0.1 

The dataset size is . You need to compute the -score for 
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each data value separately. To do the calculation, both  and  are 

needed. So in addition to the sum of the data, , we also need 

the sum of the  values. The work of getting those sums is shown 

in the table above. With the  and  sums we get 

    

and 

   

and 

Using these values for  and  in the third column of the table 

above, compute the -scores as shown. If we had computed the 

-scores more accurately, they would add up to zero, 

(the mean of the -scores is zero.) 

◻ 

3.3 z-score / z-transformation  |  97



3.4 SPSS Lesson 2: Combining 
variables and recoding 

Frequently data collection results in a collection of many variables. 

This happens, for example, with tests or surveys where people 

answer questions on a 5 or 7 point Lickert scale where questions 

range from, say, “strongly agree” to “somewhat agree” to  to 

“strongly disagree”. A bunch of those questions may refer to, say, 

happiness and adding up the scores, perhaps averaging them, will 

lead to a single variable, one dependent variable, that becomes 

our measurement of happiness. This gives us not only a univariate 

variable that we can subject to a statistical test but likely gives us 

a stronger and more reliable measurement of happiness. A problem 

with combining variables in this way arises if the response “1” for 

“strongly agree” means happiness for one question (e.g. “I wake up 

happy”) and sadness in another question (e.g. “I go to bed sad”). In 

such a situation some of the variables will need to be reverse-scaled 

or recoded before they can be added. Let’s see how to combine and 

recode variables in SPSS. 

Open the file “Caregiver.sav” from the textbook Data Sets. This 

dataset is about the different attributes of diamonds such as its 

color, price, carat, cutting quality etc. Here one of the variables 

is cut\_new which basically represents the cutting quality of 

diamond and takes values from 1 to 5 depending on the cutting 

quality with 5 being the best quality. Now let’s assume that we need 

to reverse scale this variable to use it in other calculations in a 

meaningful manner. To recode cut\_new first open the Transform 

 Recode in Same Variables… menu : 
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You can choose the Recode into Different Variables… if you want 

to, instead. That choice will lead to the creation of a new variable 

that you would use in place of cut\_new for your analysis. With 

our choice of Recode in Same Variables… we will overwrite the old 

values of cut\_new with new ones. (This is a danger if you make a 

mistake.) Our job is now to map 1 to 5, 2 to 4, 3 to 3, 4 to 2 and 5 to 1, 

recoding the variable. First move the cut\_new variable over in the 

pop up menu : 

then hit the Old and New Values.. button that will bring up a new 

pop up menu. Next enter 1 under Old Value and 5 in New Value : 
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then hit Add : 

Continue this way to complete the recoding list : 
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Hit Continue, then OK. The variable cut\_new will now have the 

new values in the Data View window. 

Now suppose we want to add multiple variables to create a new 

variable. Let’s open the dataset Caregiver from the course website. 

This dataset is regarding the test scores of students from diverse 

background in UK. Here we will add the test scores of read, write, 

math and science to create a new variable totalscore. Pick the 

Transform  Compute Variable… menu : 

This will bring up a menu which is essentially the calculator feature 

of SPSS : 
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Fill in the menu as shown above. You can move variable names 

into the Numeric Expression box by double clicking on the variable 

name, by clicking on the variable name and the arrow or by simply 

typing it. There are fancier ways to get a sum of variables experesion 

in Numeric Expression, but we will keep it simple for now. The 

target variable name is totalscore which, after you hit OK, shows up 

as a new variable, ready for statistical analysis, in the last column in 

the Data View window : 

Let’s do a couple of (descriptive) analysis with this new variable. Let’s 

take Caregiver as our dataset. Suppose we want to find the median 

of the totalscore values. To do this task by hand, we need to put the 
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data in order from smallest to largest. This is tedious but SPSS can 

do it with a couple of mouse clicks (yes, yes SPSS can compute the 

median directly but whatever). There are a couple of approaches in 

SPSS to ordering, or ranking, data. One is to compute the rank, that 

is, give rank 1 to the lowest value, 2 to the next lowest up to  for the 

highest value. Pick Transform  Rank Cases and move totalscore 

into the Variable(s) box : 

This is a new menu for us, so let’s take a look at the submenus. First, 

the Rank Types menu : 

Pretty fancy. Much to advanced for our use, so let’s leave that one 

be, hit Continue. Next look at Ties… 
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We will assign the average (mean) rank to ties in out classes. To 

understand the ties options, think of two people in a race who cross 

the finish line at exactly the same time, a tie. With the mean rank, 

they both come in 1.5 place. With lowest, they both come in 1st 

place, with highest, they both come in 2nd place. Hit Continue, the 

OK and a new variable Rtotalscore with be formed in the Data View 

menu : 

Here the variable RCG ranks the total score of the students. But it’s 

very difficult from this data view to identify which students’ rank 

the highest or lowest, let alone who falls in the middle to find the 

median. This is not quite what we are after to easily get the median. 
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Ranking will become useful on Psy 234 (in Chapter 16), but it’s not 

that useful for us now. What we need, is to shuffle the numbers 

around from lowest to highest (of course we can do that directly). 

To shuffle pick Data  Sort Cases : 

which brings up, after moving over the RCG total score variable : 

Keep the ascending button selected (sort from lowest to highest), 

then hit OK to sort the file : 
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Everything is sorted now. (Note how useful the id variable is now. If 

that wasn’t there, we’d lose track of who’s data was what.) Now if we 

scroll down, we will find that the middle two total test scores are 

both 210. Thus the median of total score is 210. 

As a final analysis of the Caregiver data, suppose we wanted some 

descriptive statistics for the male students separate from the female 

students. To do this we use the “split file” feature of SPSS. Select 

Data  Split File to get 

where the gender variable has been moved into the “Groups Based 

on” box — you will need to click on the “Organize output by groups” 

button also. We’ll also leave the “Sort the file by grouping variables” 
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(gender in this case), this will shuffle the file yet again, putting all 

the males and females together. So, when you hit OK the result is 

Now the file is sorted into Male and Female (the 1-A button at the 

top has been pressed). Also note that “Split by gender” appears on 

the lower right corner of the Data View window. Now let’s do a 

simple descriptive statistics analysis of the total score variable. The 

output looks like : 

To unsplit the file, go back to Data  Split File and hit the “Analyze 

all cases, do not create groups” button. This will remove the “Split” 

message from the lower right corner and when the descriptive 

statistics is run again, you will get : 
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From here, with the file unsplit, we can use gender as a factor to get 

separate descriptive statistics for males and female. Select Analyze 

 Explore and use gender as the factor, which results in : 

From here, with the file unsplit, we can use gender as a factor to get 

separate descriptive statistics for males and female. Select Analyze 

 Explore and use gender as the factor : 
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The result is : 
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3.5 RStudio Lesson 2: 
Combining variables and 
recoding 

[Coming soon] 
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4. PROBABILITY AND THE 
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4. Probability and the Binomial
Distributions  |  111





4.1 Probability 

The basic definition of probability is a ratio of things you can count 

(a ratio of their frequencies) : 

(4.1)   

where 

 is the probability that event  happens, 

 is the number of ways  can happen and 

 is the total number of outcomes (all possibilities). 

Example 4.1 : What is the probability of drawing a queen from a 

deck of cards : 

   

▢ 

To use  mathematically we set 

    

Where, probability-wise: 

0 means  definitely will not occur, and 

1 means  definitely will occur. 

This is a method we can use instead of using percent. To compute 

probabilities, we first need to know how to count. 

Fundamental Counting Rule 
Say you have n events in order, and for event  there are  ways 

for it to happen. Then the number of ways for the  events to play 

out is : 
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(The giant pi symbolizes a multiplication convention in the same 

way that a giant sigma symbolizes a summation convention as 

described in Section 1.3.) 

Example 4.2 How many combinations are there on a lock with 3 

numbers? 

Lay out the events as : , , and 

. Note that each number can be anything from 0 to 9 giving 10 

possibilities ( ) for each event. So the number of possible 

lock combinations is 

    

Note that you could have guessed this because the combination 

range from 000 to 999 — counting in base 10. 

▢ 

Example 4.3 Suppose that a hardware store can produce paints 

with the following qualities : 

Colour : red, blue, white, black, green, brown, yellow (7 

colours) 

Type : latex, oil (2 types) 

Texture : flat, semigloss, high-gloss (3 textures) 

Use : indoor, outdoor (2 uses) 

How many ways are there to combine these qualities to produce 

a can of paint? 

Answer : From the above list 

 and the number of possible 

paint kinds is: 
    

▢ 

Applications of the Fundamental Counting Rule 
We are interested in applying the fundamental counting rule to 

two special, important cases : 

1. Permutations. 

2. Combinations. 

Let’s define each one. 
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1. Permutations. 

The number of ways, or permutations, of selecting  objects from a 

collection or  objects, while keeping track of the order of selection is 
1 

    

This formula follows from the fundamental counting rule. With 

 objects there are  ways to select the first object. After 

selecting the first object there are  ways to choose the 

second object so , etc. up to  : 

    

    

Example 4.4 : How many ways are there to choose 5 numbered 

balls from a bucket of 25 to make a lottery number? 

Answer :  possibilities. 

▢ 

      2. Combinations. 

The number of ways of selecting  objects from a collection of 

objects without caring about the order is : 

    

That last symbol  is colloquially called “  choose ”. 

The second last expression demonstrates the application of the 

fundamental counting principal, it says 

1. Recall that the definition of factorial follows 

 etc. 
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where  is just the number of ways of arranging  objects while 

caring about the order, . 

As a practical matter, never try to compute  It will usually 

be unimaginably big. Use the formula that directly shows the 

fundamental counting rule as shown in the following example. 

Example 4.5 : How many ways are there to select 10 balls from a 

bucket of 100? 

Answer : 

   

▢ 

The symbol  is also known as the binomial 

coefficient because it shows up in algebra when you expand 

expressions of the form . For example2 

    

   

2. You don't need this algebra for this statistics course. It's 

just interesting. 
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The binomial coefficients can be quickly computed using Pascal’s 

triangle : 

   

Referring to Pascal’s triangle we can quickly write 

   

for example. 
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4.2 Binomial Distribution 

Given a success/failure situation (or yes/no, black/white, any 2 

outcome, dichotomous situation) and a probability of success 

 (and so a probability of failure 

), what is the probability of achieving 

successes in  trials? In symbols1 what is (  successes |  trials)? 

Or with simpler notation, what is ? The answer is : 

(4.2)   

**Proof of the  formula 
Use the boxes we used in defining the fundamental counting rule 

to represent each trial. 

Consider . 

The probability that a success occurs is the definition of . So 

    

Consider . What is ? This is all failures : 

The probability of each failure is  so the probability of getting FF 

is . So 

    

(Note that  by definition. There is exactly one way 

to draw no things from a collection of 2.) 

1. Here the | is read as "given". 
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What is ? Each probability of  (  for the first 

one,  for the second one). So 

    

For  we have 

    

We can continue this way for  but this is clearly 

tedious. The way of “mathematical induction” is the formal way to 

proceed but let’s try a more intuitive approach. 

For  successes in  trials, consider our  boxes, then any given 

sequence with  successes will have  failures and so that 

given sequence will have a probability of . But how many 

specific sequences with  successes are there? Think of it this way. 

Of the  boxes, how many ways are there to write  S’s in the 

boxes? There are  possibilities (  boxes are available) to write the 

first S,  ways after that to write the second S, etc. But we 

don’t care which order we wrote the S’s into the boxes so divide by 

. In other words there are  specific sequences with 

successes. Putting it all together : 

    

▢ 

Example 4.6 : In bucket of 100 toys with 20 dinosaurs and 80 bugs, 

consider drawing a dinosaur a success. So  and 

. Let us make an approximation 

and assume that  does not change with each draw2 

2. **By assuming that  does not change, we will be lead to 
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the binomial distribution. If we more accurately assume 

that  changes with each draw we will be lead to the 

hypergeometic distribution. For fun, let's consider the 

case where  changes with each draw. It's just 

another application of the fundamental counting rule. To 

begin, there are  ways of 

drawing 10 toys from the bucket without caring if it is a 

dinosaur or a bug. This is the size of the sample space; it 

is how many ways there are to make a sample of size 10 

from the bucket of 100 choices; it is  in Equation 

(4.1). There are  samples of 10 in the bucket. 

If we want 3 dinosaurs in our sample, as in the example 

in text then of the 20 dinosaurs in the bucket, there are 

 ways to get 3 dinosaurs and 

 ways to get 7 bugs from the 80 

in the bucket. So there are 

 ways to draw 3 

dinosaurs and 7 bugs from the bucket. This number is 

 in Equation (4.1). And so 

120  |  4.2 Binomial Distribution



   

Note how close this is to the answer from the binomial 

distribution of 0.201. 

Say we want to know (3 successes 10 trials). In other words, 

what is the probability that if I take 10 toys out of the bucket that 

exactly 3 of them are dinosaurs? Using Equation (4.2) we find 

    

The actual process of doing this calculation is somewhat tedious 

and therefore error prone. So in a test, for example, you will want 

to use the Binomial Distribution Table included in this text in the 

Appendix. In the Binomial Distribution Table, you simply find the 

appropriate  and then  in the column on the left and then look 

under the appropriate  column to find  for the given . 

▢ 

The complete binomial distribution specifies the probabilities of 

all  successes from 0 to , and can be plotted as a histogram. 

Note that there is a binomial distribution for each  and . Let’s 

plot the binomial distribution for getting  successes (dinosaurs) in 

forming a sample of  toys with . The Binomial 
Distribution Table contains the relative frequency table for the 

histogram that represents the binomial distribution shown in Figure 

4.1. 
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Figure 4.1 : The binomial distribution for the example of forming samples of 
 toys with  representing the number of dinosaurs in the sample 

and  being the probability of selecting a dinosaur in forming the 
sample. Note that the probability of  = 8, 9 or 10 is not zero, just less than 
0.001. 

The binomial distribution is an example of a discrete probability 

distribution. It is a histogram of relative frequencies obtained by 

counting possibilities in sample space.3 

The mean and variance of any discrete distribution are given by 

    

   

3. Sample space is the set of all possible samples. 
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These two formulae come from the grouped data expressions 

 and , by 

substituting . If we substitute Equation 4.2 for 

 in these general equations we get 
    

    

which are the mean and variance for a binomial distribution with 

parameters  and . The mean is the expected value. 

Example 4.7 : For the bucket of toys example: 

    
So given any random sample of 10 toys we expect that 2 of them 

will be red. 

▢ 

4.2.1 Practical Binomial Distribution 
Examples 

The examples given here illustrate the sampling theory for forming 

samples from a dichotomous (with success/fail items; items of 

interest and no interest) population. In this situation we know 

exactly what is in the population and ask questions about what 

kind of samples can be formed and what is their probability. The 

sampling theory is completely described by the binomial 

distribution. Later, we will have a sampling theory based on the 

Central Limit Theorem which will lead us to the normal distribution. 

In practically solving these kinds of problems keep in mind that 

you need to identify: ,  and . 

Example 4.8 : It was reported that 5  of Americans are afraid of 

being alone in a house at night. In a random sample of 20 Americans, 

what are the probabilities that the sample contains 

1. exactly 5 afraid people? 
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2. at most 3 afraid people? 

3. at least 3 afraid people? 

Solution : First identify: ,  and the  as specific 

to each question : 

1. For this case, , so from the Binomial Distribution Table 
get . 

2. For this case , 1, 2 and 3 and we have to add up the 

probabilities 

From the Binomial Distribution Table: 

So 

3. , 4, 5, 6, 7, , 20 

From the Binomial Distribution Table: 

Since the probabilities of high  are too small to appear in the 

Binomial Distribution Table (and there would be many terms to 

consider if they weren’t) we should use the following trick : 
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▢ 
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4.3 SPSS Lesson 3: Combining 
variables - advanced 

In SPSS Lesson 2 we saw how we can take variables defined on a 

Lickert scale and add them together, reverse scaling if necessary, to 

produce a single, better, variable for analysis. This works because 

the Lickert scale variables all have the same “units” (number of 

answer choices). You can combine any variables that have the same 

units, like feet or years or whatever. But if the units are different, but 

the variables still measure the same thing, like, for example, number 

of diet days per week and calories eaten per meal both measure 

levels of healthy eating habits but it makes no sense to simply add 

two such variables. It is literally like adding apples and oranges. The 

solution is to -transform the variables you want to add first. The 

-transform converts whatever units the original variable has to the 

-transformed variable’s units of standard deviation distance from 

the mean. So when you add two -transformed variables you end up 

with another variable whose units are standard deviation distance 

from the mean. 

Let’s start by opening the file “HeightLatency.sav” from the Data 

Sets. There are two variables in this file that we will combine into 

fewer variables. We begin by combining the variables Height and 

Latency into a new variable. 
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SPSS screenshot © International Business Machines Corporation. 

Since Height and Latency have different units, we need to 

-transform them first by running a descriptive analysis, making sure 

you have the “Save standardized values as variables” box checked : 

SPSS screenshot © International Business Machines Corporation. 

Hit Ok. This will produce two new variables, visible in the Data 

4.3 SPSS Lesson 3: Combining variables - advanced  |  127

https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp4Height1.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp4Height1.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp4Height2.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp4Height2.png


View window, called ZHeight and ZLatency. We don’t care about the 

actual descriptive statistics output here. Now you can simply add 

the -transforms to produce the required new variable : 

SPSS screenshot © International Business Machines Corporation. 

Now let’s combine a couple of sets of variables that have compatible 

units. First add ZHeight to ZLatency (note the fancy new way to add) 

to produce a new variable Sub : 

SPSS screenshot © International Business Machines Corporation. 
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The new variable shows clearly on SPSS sheet : 

SPSS screenshot © International Business Machines Corporation. 

Next we will make a conversion from a quantitative variable to a 

qualitative variable essentially by dividing the data into classes. First 

a simple case. Create the new variable Life from the variable Latency 

as the following : 
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SPSS screenshot © International Business Machines Corporation. 

We’ll need to do this in two steps. First pull up Transform 

Compute Variable and set it up so that 1 is in the Numeric 

Expression box. Then hit the If… button at the bottom left hand of 

the menu window to bring up : 

SPSS screenshot © International Business Machines Corporation. 
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Then click Continue, then hit OK. That will create the new 

LatencyCat variable, with missing values. Those values will be filled 

in the next step. 

SPSS screenshot © International Business Machines Corporation. 

Pull up Transform → Compute Variable again and, leaving 

LatencyCat where it is, put 2 in the Numeric Expression box, then 

hit the “If” button again and change the expression in the condition 

box, then hit Continue, then OK. Now LatencyCat is either 1 or 2 

with no missing values : 
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SPSS screenshot © International Business Machines Corporation. 
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4.4 RStudio Lesson 3: 
Combining variables - 
advanced 

[Coming soon] 
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5. THE NORMAL 
DISTRIBUTIONS 
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5.1 Discrete versus 
Continuous Distributions 

We can describe populations in terms of discrete variables (

) or continuous variables ( ). In the last chapter we saw how 

to describe discrete probability distributions with the example of 

the binomial distributions. Discrete probabilities need to be added 

in inferential statistics and this can lead to complicated formulae. 

Calculus turns sums into integrals1 which generally lead to simpler 

formulae. In the following table we compare, and show the 

relationship between, discrete and continuous variables and their 

associated probability distributions. 

1. If you have no calculus background, an integral is a way 

of calculating areas under curves. 

5.1 Discrete versus Continuous
Distributions  |  137



Discrete Continuous 

• We have a finite number of 
values between the high and 
low values 

• A histogram plot of the 
random variables  may be 
interpreted as a probability 
distribution. 

• We have an infinite number of 
values between the high and 
low values. 

• With continuous random 
variables we have a probability 
density. 

By increasing the number of values in an appropriate limiting way you 
make 

 the discrete probability distribution 
approach a probability density. 

• The units of  are 
probability. 

• The units of  are 
probability density. 
Probabilities are given by areas 
under the curve only. 

We will be slurring our language and call a probability density, a 

probability distribution. So we’ll say normal distribution instead of 

normal density. Continuing the comparison, probability 

distributions and densities have means, moments, skewness, etc. : 

• Means and variances of a discrete probability distribution, 

, are given by the application of the grouped data 

formulae we saw in Chapter 4 : 

   

• Means and variances of a continuous probability density, 

 are given by the integrals : 
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Recall that the variance is the second moment of  about the 

mean . 

We don’t have to stop at the second moment about the mean. The 

third and fourth moments about the mean are called skewness and 

kurtosis respectively : 

Discrete Continuous 

Skewness 

Kurtosis 

SPSS will easily compute skewness and kurtosis.  is positive for 

a positively skewed distribution, negative for a negative skewed 

distribution. The  and  are “normalization” factors; they make 

the moments of the normal distribution simple. 

The moments of a probability distribution are important. In fact, 

if you specify all the moments of a distribution then you have 

completely specified the distribution. Let’s say that in another way. 

The specify a probability distribution you can either give its 

formula (as generally derived from counting) or you can give all its 

moments. The normal distribution with a mean of  and a variance 

of  is specified by the formula 

(5.1)   

or by its moments. The normal distribution with a mean of  and 

a variance of  is the only continuous probability distribution with 

moments (from first to second an on up) of: , , 0, 1, 0, 1, 0, 
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. The normal distribution is special that way among probability 

distributions. 
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5.2 **The Normal 
Distribution as a Limit of 
Binomial Distributions 

The results of the derivation given here may be used to understand 

the origin of the Normal Distribution as a limit of Binomial 

Distributions1. A mathematical “trick” using logarithmic 

differentiation will be used. 

First, recall the definition of the Binomial Distribution2 as 

(5.2)   

where  is the probability of success,  is probability 

of failure and 

1. The formula for the Binomial Distribution was 

apparently derived by Newton according to: Lindsay RB, 

Margenau. Foundations of Physics. Dover, New York, 

1957 (originally published 1936). For that claim, Lindsay & 

Margenau quote: von Mises R. Probability, Statistics, and 

Truth. Macmillan, New York, 1939 (originally published 

1928). The derivation of the Normal Distribution 

presented here largely follows that given in Lindsay & 

Margenau's book. 

2. In class we denoted the Binomial distribution as 

. Here we use  to avoid 

using too many P's and p's. 
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(5.3)   

is the binomial coefficient that counts the number of ways to 

select  items from  items without caring about the order of 

selection. Here  is a discrete variable, , with . 

The trick is to find a way to deal with the fact that  (

is a discrete variable) for the Binomial Distribution and  (

 is a continuous variable) for the Normal Distribution3 In other 

words as we let  we need to come up with a way to let 

shrink4 so that a probability density limit (the Normal Distribution) 

is reached from a sequence of probability distributions (modified 

Binomial Distributions). So let  represent the Normal 

Distribution with mean  and variance . We 

will show how  where each Binomial 

Distribution  also has mean  and variance 

. 

The heart of the trick is to notice5 that 

(5.4)   

This is perfectly true for the density . The trick is to 

3. Remember that the Normal Distribution is technically a 

probability density but we slur the use of the word 

distribution between probability distribution (discrete ) 

and probability density (continuous ) like everyone else. 

4.  for the Binomial Distribution. 

5. Remember that  and use the chain rule to 

notice this. 
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substitute the distribution  for the density  in the RHS 

of Equation (5.4) to get : 

(5.5)   

because . The trick is to now pretend that  is a 

continuous function defined at all ; we just don’t know what 

its values should be for non-integer . With such a “continuation” 

of  we can write6 

6. You can probably imagine many ways to continue the 

Binomial Distribution from  to . It doesn't 

matter which one you pick as long as the behaviour of 

your new function is not too crazy between the integers; 

that is,  should exist at all . 
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(..)  

Equation (5.8) has no limit; it blows up as . We need 

to transform  in such a way to gain control on  (getting it 

to shrink as ) and to get something that converges. To 

do that we introduce  and a new variable 

. With this transformation of 

variables, the chain rule gives 

(5.9)   

and the RHS of Equation (5.8) becomes, using 
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(..)  
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Using Equation (5.9), for the LHS, and Equation (5.14), for the RHS, 

Equation (5.8) becomes 
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(..)  

where  means terms that will go to zero as , and 

we have used the relation  to 

get Equation (5.16}) and  to go from Equation (5.17) to 

Equation (5.18). Dividing both sides of Equation (5.19) by  leaves 
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(5.20)   

Our transformation, with its , has given us the exact control 

we need to keep the limit from disappearing or blowing up. 

Integrating Equation (5.20) gives 

(5.21)   

where  is the a constant of integration. Switching back to the 

variable 

(..)  

To evaluate the constant of integration, , we impose 

 because we want  to be a probability 

distribution. So 

(5.25)   

so 

(5.26)   

and 
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(5.27)   

which is the Normal Distribution that approximates Binomial 

Distributions with the same mean and variance as  gets large. 

Figure 5.1 : The transformation  effectively shrinks the 

of the Binomial Distribution with mean  and variance 

 by pulling a continuous version  back to the constant 

Normal Distribution . Another way of thinking about it is that the 

transformation  takes the fixed Normal Distribution 

 to the Normal Distribution  that provides a better and better 

approximation of  as . 

You may be wondering why that transformation 

 worked because it seems to have been pulled 

from the air. According to Lindsay & Margenau, it was Laplace who 

first used this transformation and derivation in 1812. What this 

transformation does is pull the Binomial Distribution  back 

to have a mean of zero (by subtracting ) which keeps 

from running off to infinity and, more importantly, allows us to 

define a function  with  that has a constant variance 

of  that we can match to  when we transform back to 

 at each , see Figure 5.1. Looking at it the other way around, 
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the Normal Distribution7  with  is an 

approximation for Binomial Distribution  that 

“asymptotically” approaches  as . 

This is not the only way to form a probability density limit from 

a sequence of Binomial distributions. It is one that gives a good 

approximation of the Binomial Distribution when  is fairly small 

if the term  in Equation (5.18) becomes small quickly. If  is 

very small, this does not happen and another limit of Binomial 

Distributions that leads to the Poisson Distribution is more 

appropriate. When  and  are close to 0.5 or more generally when 

 and  then the Normal approximation is a good 

one. Either way, the density limit is a mathematical idealization, 

a convenience really, that is based on a discrete probability 

distribution that just summarizes the result of counting outcomes. 

Counting gives the foundation for probability theory. 

7. Our symbols here are not mathematically clean; we 

should write something like  instead of  or 

 composed with  at , , instead of . 

But to emphasize the intuition we use . In clean 

symbols, the function  asymptotically 

approaches  where . 
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5.3 Normal Distribution 

Let us now take a detailed look at the normal distribution and learn 

how to apply it to probability problems (in sampling theory) and 

statistical problems. Its formula (which you will never have to use 

because we have tables and SPSS) is again: 

(5.28)   

The factor  is a normalization factor that ensures that the 

area under the whole curve is one: 

    

Without that factor we just have a bell-shaped curve 1 with the 

area under the curve equal to one we have a probability function 

since the total probability is one. For those with a bad math 

background, the letters in Equation (5.28) are:  2, 

 3,  = mean and  = standard deviation of the 

normal distribution. The normal distribution’s shape is as shown in 

Figure 5.2. 

1. **Whose shape is determined essentially by the shape of 

. Plot  and think about the square 

preventing any negative values for the argument. 

2. ** The number  is the natural base implied by functions 

whose values match how fast it changes, i.e. the 

derivative of the function is the same as the function. 

3. ** Of course,  comes from circles: = circumference/

diameter. 
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Figure 5.2: The normal distribution. It is a bell-shaped curve with its 

mode (= mean and median because it’s symmetric, ) centred 

on its mean . On the left is a distribution with a large  and on 

the right one with a smaller . 

To work with normal distribution, in particular so we can use the 

Standard Normal Distribution Table and the t Distribution Table 
in the Appendix, we need to transform it to the standard normal 

distribution using the -transform. We need to transform , 

which has a mean  and standard deviation  to  which has 

a mean of 0 and a standard deviation of 1. Recall the definition of the 

-transform: 

    

applying this to  gives 

(5.29)   

If we substitute Equation (5.28) into Equation (5.29) and do the 

algebra we get : 
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(5.30)   

Equation (5.30) defines the standard normal distribution, or as 

we’ll call it, the -distribution. 

Areas under  are given in the Standard Normal Distribution 
Table in the Appendix. 

5.3.1 Computing Areas (Probabilities) under 
the standard normal curve 

Here we learn how to use the Standard Normal Distribution Table 
to get probabilities associated with any old area under the normal 

curve that we can dream up. The general layout of areas under the 

-distribution is shown in Figures 5.3 and 5.4. 

Figure 5.3 : The -distribution is a probability distribution (total area = 1) and 
symmetric, so the area on either side of the mean (which is 0) is a half. You 
will need to remember this information as you calculate areas using the 
Standard Normal Distribution Table. 
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Figure 5.4 : The units of  in  are standard deviations. No matter what 
the measurement units of  were before the -transformation, the units of 
are “standardized” to be standard deviation units. With SPSS you will learn 
how to standardize ( -transform) variables so that you can sensibly combine 
multiple dependent variables into one dependent variable for univariate 
statistical analysis. The areas, probabilities, associated with each increment 
in  are shown here. 

Let’s divide the types of areas we want to compute into cases, 

following Bluman4. For all these cases we’ll use the notation 

to represent the area we look up in the Standard Normal 
Distribution Table associated with . 

Case 1 : Areas on one side of the mean. This is the case of finding 

an area between 0 (which corresponds to the mean before any 

-transformations) and a given . For this case we simply use the 

4. Bluman AG, Elementary Statistics: A Step-by-Step 

Approach, numerous editions, McGraw-Hill Ryerson, 

circa 2005. 
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tabulated values, , see Figure 5.5. This 

case also covers when  is a negative number: 

. 

Figure 5.5 : Case 1: Areas on one side of the mean. 

Example 5.1 : Find the probability that  is between 0 and 2.34. 

Solution : Look up  in the Standard Normal 
Distribution Table, see Figure 5.6. 

. (Note 

that it makes no difference whether we use  or  because the 

probability of a single value is 0. That’s why we need to use areas.) 

Figure 5.6 : The situation for Example 5.1. 
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▢ 

Example 5.2 : Find the probability that  is between -1.75 and 0. 

Solution : , 

see Figure 5.7. 

Figure 5.7 : The situation for Example 5.2. 

▢ 

Case 2 : Tail areas. A tail area is the opposite of the area given in 

the Standard Normal Distribution Table on one half of the normal 

distribution, see Figure 5.8. The tail area after a given positive 

is  z) = 0.5 - A(z)" title="Rendered 

by QuickLaTeX.com" height="18" width="211" style="vertical-align: 

-4px;"> or before a given negative value  is 

. 
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Figure 5.8 : Case 2 : Tail areas. 

Example 5.3 : What is the probability that  1.11" 

title="Rendered by QuickLaTeX.com" height="13" width="64" 

style="vertical-align: -1px;">? 

Solution : 

 1.11) = 

0.5 - A(1.11) = 0.5 - 0.3665 = 0.1335" title="Rendered by 

QuickLaTeX.com" height="18" width="408" style="vertical-align: 

-4px;">, see Figure 5.9. 

Figure 5.9 : The situation for Example 5.3. 
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▢ 

Example 5.4 : What is the probability that ? 

Solution : 

, see Figure 5.10. 

Figure 5.10 : The situation for Example 5.2. 

▢ 

Case 3 : An interval on one side of the mean. Recall that 

for the -distribution. So we are looking for the probabilities 

 for an interval to the right of the mean 

or  for an interval to the left of the 

mean. In either case , see Figure 5.11. 

Figure 5.11: Case 3: An interval on one side of the mean. 
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Example 5.5 : What is the probability that  is between 2.00 and 

2.97? 

Solution : 

, see Figure 5.12. 

Figure 5.12: The situation for Example 5.5. 

▢ 

Example 5.6 : What is the probability that  is between -2.48 and 

-0.83? 

Solution : 

, see Figure 5.13. 
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Figure 5.13: The situation of Example 5.6. 

▢ 

Case 4 : An interval containing the mean. The situation is as 

shown in Figure 5.14 with the interval being between a negative 

and a positive number. In that case 

. 

Figure 5.14: Case 4: An interval containing the mean. 
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Example 5.7 : What is the probability that  is between -1.37 and 

1.68? 

Solution : 

, see Figure 5.15. 

Figure 5.15: The situation for Example 5.7. 

▢ 

Cases 5 & 6 : Excluding tails. Case 5 is excluding the right tail, 

. Case 6 is excluding the left tail,  -z)" 

title="Rendered by QuickLaTeX.com" height="18" width="83" 

style="vertical-align: -4px;">. See Figure 5.16. Case 5 is the situation 

which gives the percentile position of  if you multiply the are 

by 100. More about percentiles in Chapter 6. In either case, 

. 

5.3 Normal Distribution  |  161



Figure 5.16: Left: Case 5. Right: Case 6. 

Case 7 : Two unequal tails. In this case we add the areas of the 

left and right tails, see FIgure 5.17. The special case where the tails 

have equal areas (i.e. when  in the notation we have been 

using) is the case we will encounter for two-tail hypothesis testing. 

. 

Figure 5.17: Case 7: Two unequal tails. 

Example 5.8 : Find the areas of the tails shown in Figure 5.18. 
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Solution : 

 2.43)" title="Rendered by 

QuickLaTeX.com" height="18" width="197" style="vertical-align: 

-4px;"> 

. 

Figure 5.18: The situation for Example 5.8. 

▢ 

Using the Standard Normal Distribution Table backwards 
Up until now we’ve used the Standard Normal Distribution Table 

directly. For a given , we look up the area . Now we look 

at how to use it backwards: We have a number that represents the 

area between 0 and , what is ? Let’s illustrate this process with 

an example. 

Example 5.9 : We are given an area  as shown in 

Figure 5.19. What is {z}? 

Solution : Look in the Standard Normal Distribution Table for the 
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closest value to the given . In this case 0.2123 corresponds exactly 

to . 

Figure 5.19: The situation for Example 5.9. 

▢ 

Example 5.9 was artificial in that the given area appeared exactly 

in the Standard Normal Distribution Table. Usually it doesn’t. In 

that case pick the nearest area in the table to the given number and 

use the  associated with the nearest area. This, of course, is an 

approximation. For those who know how, linear interpolation can be 

used to get a better approximation for . 

The -transformation preserves areas 
In a given situation of sampling a normal population, the mean 

and standard deviation of the population are not necessarily 0 and 

1. We have just learned how to compute areas under a standard 

normal curve. How do we compute areas under an arbitrary normal 

curve? We use the -transformation. If we denote the original 

normal distribution by  and the -transformed distribution 

by  then areas under  will be transformed to areas 

under  that are the same. The -transformation preserves 

areas. So we can compute areas, or probabilities under  using 
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the Standard Normal Distribution Table and instantly have the 

probabilities we need for the original . Let’s follow an 

example. 

Example 5.10 : Suppose we know that the amount of garbage 

produced by households follows a normal distribution with a mean 

of  pounds/month and a standard deviation of 

pounds/month. What is the probability of selecting a household 

that produces between 27 and 31 pounds of trash/month? 

Solution : First convert  and  to their -scores: 

    

    

Then, referring to Figure 5.20, we see that the probability is 

. 
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→ z-

transform →

Figure 5.20 : The situation of Example 5.10. Left is the given 

population, . On the right is the -transformed version of the 

population . The value 27 is -transformed to -0.5 and 31 is 

-transformed to 1.5. 

▢ 

In Example 5.10 we used the Standard Normal Distribution Table 
directly. You will also need to know how to solve problems in which 

you use this table backwards. The next example shows how that is 

done. For this kind of problem you will find the  first and then you 

will need to find  using the inverse -transformation : 
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which is derived by solving the -transformation,  for 

. 

Example 5.11 : In this example we work from given . To be 

a police person you need to be in the top 10\% on a test that 

has results that follow a normal distribution with an average of 

 and . 

What score do you need to pass? 

Solution : First, find the  such that  z) = 

0.10" title="Rendered by QuickLaTeX.com" height="18" width="163" 

style="vertical-align: -4px;">. That  is a right tail area (Case 2), 

so we need , look at Figure 5.21 to see that. Then, 

going to the Standard Normal Distribution Table, look for 0.4 in 

the middle of the table then read off  backwards. The closest area 

is 0.3997 which corresponds to . Using the inverse 

-transformation, convert that  to an : 

to get 

    
or, rounding, use . There are frequently consequences 

to our calculations and in this case we want to make sure that we 

have a score that guarantees a pass. So we round the raw calculation 

up to ensure that. 
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 ← inverse z-

transform ←

Figure 5.21 : The situation of Example 5.11 

▢ 
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6. PERCENTILES AND 
QUARTILES 

The concept of percentile1 applies to either a data set (sample, 

as represented by a histogram — a discrete distribution) or to a 

continuous distribution (which represents a population) as shown in 

Figure 6.1. 

Figure 6.1: The concept of percentile applies to either a data set or to a 
continuous distribution. 

The percentile position of the data point , denoted here by 

, is the percentage of the area under the curve up to the 

1. This percentile stuff is all about cumulative frequency or 

(thinking about probabilities) cumulative relative 

frequencies. The corresponding probability functions 

are called Cumulative Distribution Functions or CDFs. 

You will encounter CDFs in SPSS; they are mentioned 

later in this chapter. 
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point . Notation warning : Do not confuse percentile and 

probability, we use  to denote both!! (They are related though.) 

To determine the percentile position for  from a normal 

distribution of values, convert  to  via the -transformation, 

determine the area under the standard normal curve up to  and 

multiply by 100. We have, therefore, already seen how to compute 

 given  or how to compute  for a given percentile . 

See Case 5 in Section 5.3 and remember how to use the Standard 
Normal Distribution Table forward and backwards. 
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6.1 Discrete Data Percentiles 
and Quartiles 

Before we get into how to calculate percentile in a data set, note 

that we can see percentiles directly on a cumulative frequency plot, 

see Figure 6.2. 

Figure 6.2 : With a cumulative frequency plot, we can read percentiles off the 
 axis. If you have a newborn baby and take it to the doctor for their first 

check up, they will measure the baby’s head circumference and tell you the 
baby’s head size percentile by looking at such a chart. The doctor’s chart will 
be based on an accumulation of a very large number of essentially population 
data. Cumulative frequency graphs, or more exactly cumulative probability 
graphs, can be made for continuous distributions like the normal distribution. 
The resulting function is the Cumulative Distribution Function, or CDF, and 
is, for example, P(z) represents the z-distribution then CDF 

. We will see this CDF in SPSS. 

Computing percentile positions of discrete data. Let  be the 

ordered position of a data set of  data points, then we define the 

percentile position of  to be 
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(6.1)   

This formula has the property that  and 

. It is what we will use as a percentile 

formula but it is not the only one. Look at Figure 6.1. The way 

the histogram there is shaded the formula would be 

 which would have the property that 

 and . There are other, not 

necessarily wrong, ways to define the percentile position of discrete 

data but we will use Equation 6.1. 

If you want to find the position, , of the data point corresponding 

to a given percentile  then compute 

(6.2)   

Equation (6.2) is derived by solving Equation (6.1) for . Note that 

Equation (6.2) gives the position of the data point , not its value. 

To clarify that, let’s look at an example. 

Example 6.1 : Consider the dataset given below. Data would 

originally be given as the numbers in the first line. So the first step 

in answering any question about percentiles is to order the data, the 

same as what you need to to to determine the median of a dataset. 

Once the data are ordered, then you may assign a position number 

to each data point as shown in the third line. 

original 
data 18 15 12 6 8 2 3 5 20 10 

ordered 
data 2 3 5 6 8 10 12 15 18 20 

1 2 3 4 5 6 7 8 9 10 
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Q : What is the percentile rank of ? 

A :  so 

percentile. 

Q : What is the value corresponding to the  percentile, ? 

A : 

The closest  is 3 and . We can write . 

▢ 

Decile : 
 The decile of data value  in the ordered position 

is defined as 

    

We will not make much use of decile except to see that quartile is 

defined in the same way. 

Quartile : 
 The quartile of data value  in the ordered position 1. 

(6.3)  

Notation : (This notation also applies to  and .) We write : 

 &=&  quartile 

 & = &  quartile 

 & = &  quartile 

 & = &  quartile 

 & = &  quartile 

Quartiles are useful because we do not have to compute 

percentile first and then divide by 25 as given by Equation (6.3). 

Instead, we can use the following handy tricks after ordering our 

data: 
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Example 6.2 : Example with an even number of data points. With 

the data in order, first find the median, then the medians of the two 

halves of the dataset : 
    

▢ 

Example 6.3 : Example with an even number of data points. With 

the data in order, first find the median, then the medians of the two 

halves of the dataset : 
    

▢ 
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6.2 Finding Outliers Using 
Quartiles 

We can use quartiles to identify outliers or data points that are 

wildly discrepant with the rest of the data. For this application, we 

need another definition of data dispersion : 

    
With the IQR any data value that satisfies: 

(a) less than 

or 
(b) greater than 

…is considered an outlier. This is one of many ways one can define 

an outlier. As we will discuss below, it is a robust way of identifying 

outliers. 

Example 6.4 : Consider the data of Example 6.2. We found 

    
so, 

    
Following our rules for finding outliers, we compute: 

(a) lower acceptable value limit 

(b) upper acceptable value limit 

and 50 > 36.5 so 50 is considered an outlier. 

▢ 
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6.3 Box Plots 

A box plot is a plot that shows ,  and MD (= ) along 

with H and L (=  and ) as shown in Figure 6.3. It especially 

emphasizes the IQR. 

 

Figure 6.3: The features of a box plot, also known as a box-and-whiskers plot. 
When one of the whiskers is more than 1.5 times the length of the box (the IQR) 
then there are outliers by our definition in Section 6.2. The data line shown 
below the box plot is a construction line and not part of the box plot. 

Example 6.5 : Construct a box plot for the data shown in Figure 6.4. 

Again, someone has done the first, tedious, step of ordering the data 

for us. 

 

Figure 6.4: Construction of a box plot from the given data. 
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▢ 

Box plots can also be drawn vertically. SPSS draws box plots 

vertically; this is especially useful for comparing datasets. 
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6.4 Robust Statistics 

A robust statistic or resistant statistic is one that is less affected by 

outliers than a non-robust or non-resistant statistic. If you look at 

the numbers in Example 6.2 you can see that the value of the MD 

(and IQR) is completely unaffected by the value of the outlier data 

point 50. The mean and the standard deviation will, however, be 

greatly affected by the value of the outlier. So while some people 

may identify outliers as those being (say) 3  from the mean, we see 

that that is a non-robust way of identifying outliers. In summary: 

Measures of central tendency and 
dispersion 

Robust Non-robust 

MD 
IQR 

It would seem that inferential statistics based on robust statistics 

would be better than statistics based on non-robust values. Maybe. 

But, traditionally, statistical analysis like the -tests, ANOVA and 

regression, are based on the non-robust statistics of means and 

standard deviations (or variance). People tend to use robust 

statistics in “Exploratory Data Analysis” (EDA). With EDA one is not 

concerned so much with testing hypothesis as in trying to get an 

understanding of general trends in the data. The techniques, and 

statistics, the fall under the two categories are: 
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Traditional Exploratory Data 
Analysis (EDA) 

Frequency Tables 
Histogram 
Mean, 

Standard Deviation, 

Stem and Leaf Plot 
Box Plot 

Median, MD 
Interquartile Range, 

IQR 

You will find an EDA menu under Analyze → Descriptives in SPSS. 
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SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

6.5 SPSS Lesson 4: Percentiles 

To follow along, load in the file “AgeSmoker.sav” from the Data Sets. 

We will pick on the variable Age. We will compute the percentile 

rank of each value in the Age dataset two ways. One way, we will 

treat the data as a discrete data set and will compute the percentile 

position following Equation 6.1. The other way, we will treat the data 

as if they came from a normal population. 

First, treat the data as a stand alone discrete data set. First we need 

to rank the data; the ranks are the values  in Equation 6.1. Use 

Transform  Rank Cases : 

180  |  6.5 SPSS Lesson 4: Percentiles

https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp6AgeSmoker1.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp6AgeSmoker1.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp6AgeSmoker2.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp6AgeSmoker2.png


SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

This produces the ranking variable RAge, visible in the Data View 

window. 

Now use that ranking variable in Equation 6.1 by pulling up 

Transform  Compute Variable : 

SPSS screenshot © International Business Machines Corporation. 

The result, in the Data View window, looks like : 
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SPSS screenshot © International Business Machines Corporation. 

We can sort the data on RAge using Data  Sort Cases : 

SPSS screenshot © International Business Machines Corporation. 

Note how the smallest value has percentile rank 0. If you scroll to 

the end of the list you will see that the largest value has percentile 

rank 100. 
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SPSS screenshot © International Business Machines Corporation. 

CDF stands for Cumulative Distribution Function. It is literally the 

cumulative area under a probability distribution function, in this 

case the normal distribution. So multiplying it by 100 give the 

percentile rank. The output, in the Data View window looks like : 
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SPSS screenshot © International Business Machines Corporation. 

Note how the percentile ranks of gparank are different from, but 

close to, the percentile ranks of perrank computed using the data’s 

own distribution. This indicates that the data themselves follow an 

approximately normal distribution. 
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6.6 RStudio Lesson 4: 
Percentiles 

[Coming soon] 
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7. THE CENTRAL LIMIT 
THEOREM 

Before we can learn about confidence intervals in Chapter 8 and 

hypothesis testing in the Chapter 9, we need a couple of results that 

form the foundation of the usefulness of the normal distribution. 

We have mentioned that the normal distribution can be derived as 

a limit of binomial distributions. This fact can be used in reverse 

and we can use the normal distribution to approximate the binomial 

distribution. This approximation will be useful for inferences 

(confidence intervals and hypothesis testing) on proportions. The 

second result is the very important central limit theorem where the 

normal distribution pops out as the answer to the characterization 

of random sample means. The central limit theorem gives us the 

sampling theory for all statistical inference procedures involving 

means. 
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7.1 Using the Normal 
Distribution to Approximate 
the Binomial Distribution 

Recall the definitions:  = probability of success,  = 

probability of failure and  = sample size. When  and 

 then the normal distribution is very close, numerically, to 

the binomial distribution. 

Using the histogram way of drawing the binomial distribution, a 

good fit looks like that shown in Figure 7.1. 

Figure 7.1: A normal distribution with mean  and standard 
deviation  is a good fit to the binomial distribution with the 

same mean and standard deviation as long as  and . 

A couple of things to note about this approximation: 

1.  Although the values of the normal and the binomial 

7.1 Using the Normal Distribution to
Approximate the Binomial
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distributions match well at  equal to integer values when 

 and , the areas match not as well. A 

“correction for continuity” can be used to better make the 

areas match but we won’t be worrying about such fine details 

in our studies. 

2.  We will use the normal approximation to the binomial make 

inferences on proportions.  In that case , the probability of 

success will represent a proportion in a population. 
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7.2 The Central Limit 
Theorem 

Now we come to the very important central limit theorem. First, let’s 

introduce it intuitively as a process : 

1. Suppose you have a large population (in theory infinite) with 

mean  and standard deviation  (and any old shape). 

2. Suppose you have a large sample, size , of values from that 

population. (In practise we will see that  is large.) 

Take the mean, , of that sample. Put the sample back into 

the population1 

3. Randomly pick another sample of size . Compute the mean 
of the new sample, . Return the sample to the population.. 

4. Repeat step 3 an infinite number of times and build up your 
collection of sample means . 

5. Then2 the distribution of the sample means will be normal will 

have a mean equal to the population mean, , and will have a 

standard deviation of 

1. This is redundant since the population is infinite, but for 

conceptual purposes imagine that you return the items 

to the population. 

2. More precisely, the distribution of sample means 

asymptotically approaches a normal distribution as 

. But 30 is close enough to infinity for most 

practical purposes and the statistical inferential tests 

that we will study will assume that the distribution of 

sample means will be normal. 
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where  is the population’s standard deviation. 

 is known as the standard error of the mean. 

Now let’s visualize this same process using pictures : 

• Take a sample of size  from the population and compute the 

mean  (see Figure 7.2a). 

 

Figure 7.2a 

• Put them back and take  more data points. 

• Do this over and over to get a bunch of values for . Those 

values for  will be distributed as shown in Figure 7.2b. 
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Figure 7.2b 

The central limit theorem is our fundamental sampling theory. It 

tells us the if we know what the mean and standard deviation of 

a population3 are then we can assign the probabilities of getting a 

certain mean  in a randomly selected sample from that population 

via a normal distribution of sample means that has the same mean as 

the population and a standard deviation equal to the standard error 

of the mean. 

To apply this central limit theorem sampling theory we will need 

to compute areas  under the normal distribution of means. In 

order to do that, so we can use the Standard Normal Distribution 
Table, we need to convert the values  to a standard normal 

3. In hypothesis testing we know what the mean of the 

population in the null hypothesis is. 
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 using the -tranformation as usual: . So, for the 

distribution of sample means the appropriate -transformation is : 

    

Example 7.1 : Assume that we know, say from SGI’s database, that 

the mean age of registered cars is  months and that the 

population standard deviation of the cars is  months. We 

make no assumption about the shape of the population distribution. 

Then, what is the answer to the following sampling theory question: 

What is the probability that the mean age is between 90 and 100 

months in a sample of 36 cars? 

Solution : The central limit theorem tells us that sample means will 

be distributed as shown in Figure 7.3. 

Figure 7.3 : Distribution of mean age from samples of 36 cars. 

Convert 90 and 100 to -scores as usual: 
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Then, the required probability using the Standard Normal 
Distribution Table is 

    

▢ 
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8. CONFIDENCE INTERVALS 
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8.1 Confidence Intervals 
Using the z-Distribution 

With confidence intervals we will make our first statistical 

inference. Confidence intervals give us a direct inference about the 

population from a sample. The probability statement is one about 

hypotheses about the mean  of the population based on the mean 

 and standard deviation  of the sample. This is a fine point. 

The frequentist definition of probability gives no way to assign a 

probability to a hypothesis. How do you count hypotheses? The 

central limit theorem makes a statement about the sample means 

 on the basis of a hypothesis about a population, about its mean 

 and standard deviation . If the population is fixed then the 

central limit theorem gives the results of counting sample means, 

frequentist probabilities. If we let  represent a hypothesis about a 

population (i.e. that it is described by  and ) and let  represent 

data (with mean ) then the central limit theorem gives the 

probability . The confidence 

intervals that we’ll look at first give 

. We’ll look at the recipe for computing confidence intervals for 

means first, then return to this discussion about probabilities for 

hypotheses. 

Our goal is to define a symmetric interval about the population 

mean  that will contain all potentially measured values of  with a 

probability1 of . 

1. Because of this issue about probabilities of hypotheses, 

many prefer to say "confidence" and not probability. But 

we will learn enough about Bayesian probability to say 

"probability". 

8.1 Confidence Intervals Using the
z-Distribution  |  199



Typically  will be 

    

    

    

The assumptions that we need in order to use the -distribution 

to compute confidence intervals for means are : 

1. The population standard deviation, , is known (a somewhat 

artificial assumption since it is usually not known in an 

experimental situation) or 

2. The sample size is greater than (or equal to) 30,  and 

we use , the sample standard deviation in our 

confidence interval formula. 

Definition : Let  where  be the -value, 

from the Standard Normal Distribution Table that corresponds to 

an area, between 0 and  of  as shown in Figure 8.1. 

Figure 8.1 : The -distribution areas of interest associated 
with . 

To get our confidence interval we simply inverse -transform the 

picture of Figure 8.1, taking the mean of 0 to the sample mean  and 

200  |  8.1 Confidence Intervals Using the z-Distribution

https://openpress.usask.ca/app/uploads/sites/76/2020/01/fig54apng.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/fig54apng.png


the standard deviation of 1 to the standard error  as shown 

in Figure 8.2. 

Figure 8.2 : The inverse -transformation of Figure 8.1 gives 
the confidence interval for . 

So here is our recipe from Figure 8.2. The -confidence interval for 

the mean, under one of the two assumptions given above, is : 

    

or using notation that we will use as a standard way of denoting 

symmetric confidence intervals 

(8.1)   
where 

    

The notation  is more convenient for us than  because we 

will use the t Distribution Table in the Appendix to find  very 

quickly. We could equally well write 

    
but we will use Equation (8.1) because it explicitly gives the 

bounds for the confidence interval. 
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Notice how the confidence interval is backwards from the picture 

that the central limit theorem gives, the picture shown in Figure 

8.3. We actually had no business using the inverse -transformation 

 to arrive at Figure 8.2. It reverses the 

roles of  and . We’ll return to this point after we work through 

the mechanics of an example. 

Figure 8.3 : The central limit theorem is about distributions of 
sample means. 

Example 8.2 : What is the 95  confidence interval for student age 

if the population  is 2 years, sample , ? 

Solution : So . First write down the formula 

prescription so you can see with numbers you need: 

   

 

First determine . With the tables in the Appendices, 

there are two ways to do this. The first way is to use the Standard 
Normal Distribution Table noting that we need the  associated 

with a table area of . Using the table backwards 

we find . The second way, the recommended way 
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especially during exams, is to use the t Distribution Table. Simply 

find the column for the 95  confidence level and read the  from 

the last line of the table. We quickly find . 

Either way we now find 

    

so 

    

with 95  confidence. 

▢ 
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8.2 **Bayesian Statistics 

Now that we’ve seen how easy it is to compute confidence intervals, 

let’s give it a proper probabilistic meaning. To extend probability 

from the frequentist definition to the Bayesian definition, we need 

Bayes’ rule. Bayes’ rule is, for events  and  : 

    

Study Figure 8.4 to convince yourself that Bayes’ rule is true. 

Notice that 

    

and 

    

So, equating  from each of those two perspectives, 

we get Bayes’ rule. 

If we let  (hypothesis) and  (data), Bayes’ rule 

gives us a way to define the probability of hypothesis through 

(8.2)   

The quantity  is known as the prior 

probability of the data relative to the hypothesis and is something 

that can be computed in theory if probabilities are assigned in 

a reasonable manner. The specification of prior probabilities is a 

contentious issue with the Bayesian approach. Really, it represents 

a prior belief. The quantity  is what sampling theory, 

like the central limit theorem, gives and is known as the likelihood. 

Finally the quantity  is known as the posterior 

probability. Equation (8.2) is an expression about probability 
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distributions as well as individual probabilities (just allow  and 

to vary). 

Figure 8.4 : Venn diagram illustration of Bayes 
rule.                         

If we assign  for the prior probability then 

. We can switch the roles of  and 

! Of course  is not a probability 

distribution because the area under a function whose value is 

always 1 is infinite. The area under a probability distribution must 

be 1. So  is an improper distribution (as a 

function of either  or ). But note that an improper distribution 

times a proper distribution here gives rise to a proper distribution. 

With this slight of hand, we can give confidence intervals a 

probabilistic interpretation. 
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8.3 The t-Distributions 

As a broad introduction, the -distributions are family of 

distributions that give different approximations to the 

-distribution as shown in Figure 8.5. 

Figure 8.5 : The -distributions are a family of distributions, 
labeled here by their degrees of freedom  as in . 

As the degrees of freedom, , increases,  become closer to , 

. In practice, as reflected in the t Distribution 
Table,  is very very close to . 

The -distributions arise as a corollary to the central limit 

theorem; they give the distribution of sample means when 

knowledge of the population  is replaced by using the sample 

mean . When we encounter the  distribution later, we will give 

a more exact mathematical specification of the -distributions. 

Similar, to the -distribution case, the  confidence interval for 

the mean  for small  samples is given by 

    
where, now 

    

With this new formula for  we have replaced  with  in 
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comparison with the formula we used in Section 8.1: Confidence 

Intervals using the z-distribution and, of course, replaced  with 

. Some books use  like the  of Section 8.1. We 

use  because we’ll look up its value in the t Distribution Table in 

the column for  confidence intervals (just like we did with ) and 

with the degrees of freedom  specifying the row. The formula for 

the degrees of freedom in this case is : 
    
The  specify a probability  as shown in Figure 8.6. As before, 

the inverse -transform, in the form  from the 

-distribution on the left of Figure 8.6 to the distribution on the 

right of Figure 8.6 leads to our confidence interval formula for small 

means. And as before we should justify using that transform from a 

Bayesian perspective. 

 → inverse 

-transform → 
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Figure 8.6 : Derivation of confidence intervals for means of small 

samples. 

Example 8.2 : Given the following data: 
   

find the 99% confidence interval for the mean. 

Solution : First count  and then, with your stats calculator 

compute 
    
Using the t Distribution Table with  in the 

99% confidence interval column, find 

    

With these numbers, compute 

   

so 

    

is the 99  confidence interval for . 

▢ 
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8.4 Proportions and 
Confidence Intervals for 
Proportions 

We will now make use of the approximation of the binomial 

distribution by the -distribution given in Section 7.1: Using the 

Normal Distribution to Approximate the Binomial Distribution. As 

usual, the confidence interval will switch the roles of population 

and sample quantities. The recipe will be laid out first, then we will 

connect it to what you know about the binomial distribution. 

First some definitions. Let  be the number of items in a 

population of size  that have a given quality. (e.g. the number 

of females in a population; or the number of people at the U of S 

wearing yellow sweaters). Then the proportion of the population 

having the given quality is 

    

Given a sample from the population of size , the best estimate 

for  is: 

    

where  is the number of items in the sample having the given 

quality. To go along with  we also have 

    
which is is the proportion of items in the sample without the given 

quality. 

To compute an  confidence interval for a proportion  we need 

to compute 
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and it must be true that both  and  (otherwise 

we need to use the binomial distribution directly). 

With , the  confidence interval for a proportion is given by 

    
To derive the proportions confidence interval formula we’ll begin 

with the sampling theory given by the binomial distribution and the 

corresponding -approximation. Then we’ll switch the roles of 

and . Let 

    

be the mean, the expected value, of  that you expect to find in 

a sample of size  randomly selected from the population with a 

proportion  of items of interest. This is true because  is also the 

probability of randomly selecting an item of interest (the probability 

of success) from the population as per what we did in Chapter 4. The 

binomial distribution tells you the probability of getting different 

numbers  of items of interest in your sample given . The binomial 

distribution that describes our situation is shown in Figure 8.7; it has 

a standard deviation of . 
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Figure 8.7 : The binomial distribution relevant to forming a 
sample of size  with  items of interest from a population 
with a proportion  of items of interest. The normal 
distribution with the same  and  is shown. 

Moving to the normal approximation, we have the picture of Figure 

8.8. 
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Figure 8.8 : The normal distribution relevant to forming a 
sample of size  with  items of interest from a population 
with a proportion  of items of interest. The boundaries of 
the area  follow from an inverse -transform of the 
-distribution to a normal distribution of mean  and 
standard deviation , . 

Figure 8.8 says : 

    

with a (frequentist) probability of . This is our sampling theory. 

Divide by : 

    

Swapping the roles of the population and sample, we arrive at the 

confidence interval formula : 

212  |  8.4 Proportions and Confidence Intervals for Proportions



    

Time for a worked example. 

Example 8.3 : A sample of 500 nursing applications included 60 

men. Find the 90% confidence interval of the true proportion of 

men who applied to the nursing program. 

Solution : From the t Distribution Table, look up 

    
and compute 

    

    

   

Then 

    

    

    
is the confidence interval with 90% confidence. 

▢ 

Sample size need for a poll 
Measuring proportions is what pollsters do. For example in an 

election you might want to know how many people will vote for 

liberals (items of interest) and how many will vote for conservatives 

(items not of interest)1 In a news paper you might see: “The poll 

1. We assume here that there are only two parties. For the 

real life situation of more than two parties we need the 

8.4 Proportions and Confidence Intervals for Proportions  |  213



says that 72  of the voters will vote liberal. The poll is considered 

accurate to 2 percentage points 19 time out of 20.” This means 

that the 95  confidence interval (19/20 = 0.95) of the proportion 

of liberal voters is  (note how proportions are 

presented as percentages in the newspaper). The error here is 

. Before the pollster starts telephoning people, she 

must know how many people to phone to arrive at that goal error 

of 2 . She needs to know what the sample size  needed is. In 

general, the minimum sample size needed to attain a goal error 

on a confidence interval of  is 

    

Here  and  could come from a previous survey if available. If 

there is no such survey or if you want to be sure of ending up with 

an error equal to or less than a goal E, then use , see 

Figure 8.9. 

multinomial distribution and to approximate it with a 

multivariate normal distribution. That is a topic for 

multivariate statistics but the principles are the same as 

what we cover here. 
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Figure 8.9 : The formula  is a quadratic formula. 

Substitute  to get  or 

. The maximum of  is at 

. 

Example 8.4 : We want to estimate, with 95  confidence, the 

proportion of people who own a home computer. A previous study 

gave an answer of 40 . For a new study we want an error of 2 . 

How many people should we poll? 

Solution : From the question we have : 

    

    

From the t Distribution Table (or the Standard Normal 
Distribution Table if you think about the areas correctly) we find 

    
Therefore 
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Which we round up to a sample size of 2305 to ensure that 

. 

▢ 
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8.5 Chi Squared Distribution 

The  (chi squared) distribution is a consequence of a random 

process based on the normal distribution. It is derived from the 

normal distribution as the result of the following stochastic process 

: 

1. Suppose you have a population that has variance  and is 

normally distributed. 

2. Take a sample of size  from the population and compute 

 using the sample standard deviation  from 

that sample. 

3. Put the sample back into the population. 

4. Take another sample of size  from the population and 

compute  using the sample standard deviation 

 from that sample. 

5. etc. 

6. The distribution of the values of  values will be 

a  distribution with  degrees of freedom. 

Like the -distributions, the  distributions are a family, see Figure 

8.10. 

Figure 8.10 : The  distributions are enumerated by degrees of freedom. 
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The  distribution underlies why  is the best estimate for . It 

mean, or expected value is  so the expected value of 

is . The expected value of  in a random sample of 

size  is not . 

Confidence Intervals on  and 

The  distribution is already normalized in its definition 

through including  in its definition. Therefore no -transforms 

are needed and we can work directly with a table that gives right 

tail areas under the  distribution. That table is the Chi-squared 

Distribution Table, in the Appendix, and it gives values of  for 

given values of area to the right of , see Figure 8.11. 

Figure 8.11 : The Chi-squared Distribution Table gives  associated with 
given right tail areas. 

We’ll need  and  such that the tail areas are equal and 

such that the area between them is , see Figure 8.12. 
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Figure 8.12 : The values  and  define the confidence region . 

Notation : Let’s call the  in the Chi-squared Distribution Table 

 and let  be the table value that corresponds to . In 

other words  is the  value that corresponds to a right 

tail area of . 

So given , the appropriate  and  are the following 

values from the Chi-squared Distribution Table: 

    

    

Note the symmetry of the Chi-squared Distribution Table. If 

 comes from the column 3 columns from the right edge of the 

table then  comes from a column 3 columns from the left edge 

of the table. Only small and large areas appear in the table, there are 

no intermediate values. 

Finally, the confidence interval for  is given by 
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and for  by: 

    

Where the  distribution with  degrees of freedom 

(giving the line to use in the Chi-squared Distribution Table) is 

used. 

Example 8.5 : Find the 90  confidence interval on  and  for 

the following data 

    
Solution : Compute, using your calculator : 

    
    
From the Chi-squared Distribution Table, in the  line, 

find : 

    

and 

    

So 
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Taking square roots: 
   

▢ 
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9. HYPOTHESIS TESTING 

The process of hypothesis testing can be simplified into : 

1. Transform (“reduce”) your given data into a test statistic that 

you can locate on probability distribution given by the 

sampling theory under a null hypothesis ( ) about the 

population. (e.g.   or  test statistic). 

2. See if your test statistic falls into a critical region of the 

distribution or not. The critical, or rejection region as we’ll call 

it, represents an area of low probability that the null 

hypothesis,  is true. If the test statistic falls in the rejection 

region, the we make the decision to reject  as the 

conclusion of the hypothesis test. 

Before we define the critical region under the null hypothesis, we 

need to define what a null hypothesis is.  We’ll define two 

hypotheses, actually, because the null hypothesis needs to 

contrasted to its logical opposite : 

: Null Hypothesis, the hypothesis that nothing is going 

on; no effect; no signal. 

: Alternative Hypothesis, the hypothesis that  is not 

true; there is an effect; there is a signal. 

A good experimental design will be set up so that the effects 

of interest define . (Your “claim” will be .) Why? It’s about 

signal to noise ratios. A test statistic is literally signal/noise, a signal 

to noise ratio. When you do not reject  you are saying that 

there is more noise than signal. When you reject  (essentially 

accepting ) you are saying that there is more signal than noise. 

Usually you are interested in the signal (also known as an “effect”) 

so your claim would be . You perform your experiment to find 

evidence for . If you are interested in noise (can happen, for 

example to test assumptions on which tests are based) then your 

claim would be . The examples that follow here don’t follow 
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these experimentally correct rules for which of  or  should 

be the claim to emphasize the logical nature of the decision making 

process. But test statistics are signal to noise ratios and in real life 

you will be interested in signals. 

To fix ideas about hypothesis testing, we’ll first look at hypotheses 

on the means of populations ( ).  Later we’ll consider hypotheses 

on  and on  (proportions). 

With means there are three combinations of  and  to 

consider : 

Two-Tailed 
Test Right-Tailed Test Left-Tailed 

Test 

 : 
 : 

 : 

 : 

 :  k" 
title="Rendered by 
QuickLaTeX.com" 

height="17" 
width="43" 

style="vertical-align: 
-4px;"> 

 : 

Here  is a given number. Not that the rightness or the leftness 

of the one-tailed test is reflected in .  is generally what 

people are interested in. Then the critical regions, which are on 

distributions as we’ll see, for each case look like : 

1. Two-tailed test: 
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2. Right-tailed test: 

3. Left-tailed test: 

9. Hypothesis Testing  |  225



The critical regions, or rejection regions, appear in the probability 

distributions , which is the probability distribution that 

the sample test statistic, , that would occur if  were true. These 

-distributions are -transforms of the distribution of sample 

means under  given by the central limit theorem. More about 

this when we introduce the formula for the  distribution. For now, 

let’s focus on the decision making process. 

When your statistic ends up in the critical region, you conclude 

that  is false. You reject . The critical region is the rejection 

region. 

In the two tailed test, the critical region, with total area  is the 

opposite to the region  that we have been using for 

confidence intervals. Compare the two-tail critical region sketch 

above to Figure 8.1. 

There are four possible outcomes to a statistical hypothesis test 

given by the so-called1 “confusion matrix” : 

1. So called not because it is confusing but because you are 

never 100  sure which decision is correct. 
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 true  true 

Reject 
(believe ) 

Type I error 
Correct decision 1-

Do not reject 
(believe ) 

Correct decision 1- Type II error 

The probabilities are relative to the realities. The probabilities in the 

columns add to 1. The probability of making a Type I error, , is the 

area in the critical region. The diagram with the critical region on 

it assumes that  is the reality. We will see how to compute 

in Chapter 13. The quantity  is defined as the power of the 

statistical test. 

We can view the confusion matrix from a medical test point of 

view. A medical test is a hypothesis test has the following 

hypotheses pairs : 

 : negative test result, healthy patient 

 : positive test result, sick patient 

Then : 

Healthy Sick 

Positive Result 
(believe sick) Type I error 

Correct decision 1-

Negative Result 
(believe healthy) 

Correct decision 1- Type II error 

In medical tests, the quantity  is known as the test’s 

specificity, the probability of finding true negatives. The quantity 

 is the test’s sensitivity, the probability of finding true 

positives. Generally  and  are functions of some other decision 

parameter. In the hypothesis tests that we consider here,  is the 

decision parameter. 

Back to understanding the meaning of hypothesis testing. As we 

said, a good experimental design will be set up so that  is your 

favourite theory that there is an effect. In that case  represents 

the case that there is no effect : the position of  away from , or 
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 away from 0 (in the case of hypothesis testing of ) is just due to 

noise. If your experiment is then successful in proving your theory, 

i.e. you reject , then  represents the probability that you are 

wrong. The number  actually defines a decision point for rejecting 

. Later we will see how to compute a value, , that is associated 

with the test statistic. This -value is then a more refined value for 

the probability that you are wrong if you reject . From another 

point of view,  would be the probability that your measurement is 

entirely due to noise. 

Let’s do some examples to build our mechanical skills at defining 

critical regions for  distributions. 

Example 9.1 : Critical Areas on -distributions with hypothesis 

testing on the mean, . 

(a) Left-tailed test with . Find the critical value 

. 

First step, draw a picture : 

With the tables we have in the Appendix, there are two ways 

to find  : 
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◦ Method (a) : Look up area in the Standard Normal 
Distribution Table equal to 0.40 : Closest  is 1.28 so 

. 

◦ Method (b) : Use the last line in the t Distribution Table 
for the one tailed test column. Find a  of 1.282 and add a 

minus sign because we have a left tail test. So 

. 

Use Method (b) on tests and exams. It is faster, requires 

less thinking about areas (and so less chance for making 

a mistake) and gives a slightly more accurate result. The 

critical area or critical region or the rejection region is where 

. The critical value that defines the region in 

this case is . 

(b) A two tailed test with . Find the critical value 

. 

Draw a picture : 

◦ Method (a) : Look up area in the Standard Normal 
Distribution Table equal to 0.49. The closest  is 2.33. So, 

because we have a two-tailed test, . 
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◦ Method (b): Use the last line in the t Distribution Table, 

for two tailed test, . Find , 

. 

Again, Method (b) is the recommended approach. 

So the critical areas are those where 

     2.326 \mbox{ and } z < 
-2.326\]" title="Rendered by QuickLaTeX.com"> 

and the critical values are  and 

. 

(c) A right tailed test with . Find the critical value 

. 

Draw a picture : 

◦ Method (a) Look up area in the Standard Normal 
Distribution Table equal to 0.495, the Closest  is 2.58. So 

◦ Method (b) Use the last line in the t Distribution Table for 

one tailed test,  and find 

. 

So the critical area is that where  2.576" 
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title="Rendered by QuickLaTeX.com" height="13" width="74" 

style="vertical-align: 0px;"> and the critical value is 

. 

▢ 

One final note on setting up the hypotheses. When setting up the 

hypotheses  and , one of the two alternatives will be the 

claim (what the problem says you really want to test). As mentioned 

before, a good experimental design will have  as the claim. But 

this may not always be possible to arrange (especially in tests of 

assumptions). So many of the exercises in the text and assignments 

will have  as the claim. 
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9.1 Hypothesis Testing 
Problem Solving Steps 

Now that we have some background on setting up hypotheses and 

finding critical regions, we introduce the steps needed for every 

hypothesis testing procedure. Hypothesis testing is based directly 

on sampling theory and the probabilities 

 that the sampling theory gives. Here 

are the steps we will follow : 

1. Hypotheses : Formulate  and . State which is the claim 

2. Critical statistic : Find the critical values and regions. (Use 

tables of , , , etc. values). 

3. Test statistic : Compute the {\em test statistic} from your 

data. It summarizes your data in one number. The -value 

follows from the test statistic. 

4. Decision : If the test statistic falls in the critical region 

(rejection region), reject . (This decision can also be made 

using the -value.) 

5. Interpretation : Summarize results in a sentence and/or 

present a graphic or table. 

The definition of a -value will be covered below. For now you 

should know that a computer program (SPSS) will give you a 

-value but not a critical statistic. So there is no Step 2 if you use 

SPSS. 

A generic test statistic may be defined by : 

   

The numerator represents a signal or an effect. The denominator 

9.1 Hypothesis Testing Problem
Solving Steps  |  233



represents noise. Not all test statistics will have this form (e.g. some 

 test statistics), but all test statistics represent a signal-to-noise 

ratio. Much of the tabular output of SPSS gives the numerator and 

denominator of this generic form with or without the 

corresponding test statistic. 
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9.2 z-Test for a Mean 

This is our first hypothesis test. Use it to test a sample’s mean when 

: 

1. The population  is known. 

2. Or When , in which case use  in the test 

statistic formula. 

The possible hypotheses are as given in the table you saw in the 

previous section (one- and two-tailed versions): 

Two-Tailed 
Test Right-Tailed Test Left-Tailed 

Test 

 : 
 : 

 : 

 : 

 :  k" 
title="Rendered by 
QuickLaTeX.com" 

height="17" 
width="43" 

style="vertical-align: 
-4px;"> 

 : 

In all cases the test statistic is 

(9.1)   

In real life, we will never know what the population  is, so we 

will be in the second situation of having to set  in the test 

statistic formula. When you do that, the test statistic is actually a 

test statistic as we’ll see. So taking it to be a  is an approximation. 

It’s a good approximation but SPSS never makes that approximation. 

SPSS will always do a -test, no matter how large  is. So keep that 

in mind when solving a problem by hand versus using a computer. 
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Let’s work through a hypothesis testing example to get the 

procedure down and then we’ll look at the derivation of the test 

statistic of Equation (9.1). 

Example 9.2 : A researcher claims that the average salary of 

assistant professors is more than $42,000. A sample of 30 assistant 

professors has a mean salary of $43,260. At , test the 

claim that assistant professors earn more than $42,000/year (on 

average). The standard deviation of the population is $5230. 

Solution : 

1. Hypothesis : 

 42,000" title="Rendered by 

QuickLaTeX.com" height="16" width="124" style="vertical-

align: -4px;">  (claim) 

(This is a right-tailed test.) 

2. Critical Statistic. 

• Method (a) : Find  such that  from the 

Standard Normal Distribution Table: ; or 

• Method (b) : Look up  in the t Distribution Table 
corresponding to one tail  (column), and read the 

last ( ) line: 

Method (b) is the recommended method not only because it 

is faster but also because the procedure for the upcoming 

-test will be the same for the -test. 

3. Test Statistic. 

    

4. Decision. 

Draw a picture so you can see the critical region : 
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So  is in the non-critical region: Do not reject . 

5. Interpretation. 

There is not enough evidence, from a -test at 

, to support the claim that professors earn more 

than $42,000/year on average. 

▢ 

So where does Equation (9.1) come from? It’s an application of 

the central limit theorem! In Example 9.2, , 

,  and  on the null hypothesis of a right-

tailed test. The central limit theorem says that if  is true then 

we can expect the sample means,  to be distributed as shown 

in the top part of Figure 9.1. Setting  means that if the 

actual sample mean,  ends up in the tail of the expected (under 

) distribution of sample means then we consider that either we 

picked an unlucky 5  sample or the null hypothesis, , is not 

true. In taking that second option, rejecting , we are willing to 

live with the 0.05 probability that we made a wrong choice — that 

we made a type I error. 
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Figure 9.1: Derivation of the  test statistic. 

Referring to Figure 9.1 again,  on the lower 

picture defines the critical region of area  (in this case). 

It corresponds to a value  on the upper picture which also 

defines a critical region of area . So comparing  to 

 on the original distribution of sample means, as given by 

the sampling theory of the central limit theorem, is equivalent, after 

-transformation, to comparing  with . That is, 

is the -transform of the data value , exactly as given by Equation 

(9.1). 
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One-tailed tests 
From a frequentist point of view, a one-tailed test is a a bit of 

a cheat. You use a one-tailed test when you know for sure that 

your test value or statistic is greater than (or less than) the null 

hypothesis value. That is, for the case of means here, you know for 

sure that the mean of the population, if it is different from the null 

hypothesis mean, if greater than (or less than) the null hypothesis 

mean. In other words, you need some a priori information (a 

Bayesian concept) before you do the formal hypothesis test. 

In the examples that we will work through in this course, we will 

consider one-tailed tests when they make logical sense and will not 

require formal a priori information to justify the selection of a one-

tailed test. For a one-tail test to make logical sense, the alternate 

hypothesis, , must be true on the face value of the data. That is, if 

we substitute the value of  for  into the statement of  (for the 

test of means) then it should be a true statement. Otherwise,  is 

blatantly false and there is no need to do any statistical testing. In 

any statistical test,  must be true at face value and we do the test 

to see if  is statistically true. Another way tho think about this 

is to think of  as a fuzzy number. As a sharp number a statement 

like “  k" title="Rendered by QuickLaTeX.com" height="13" 

width="43" style="vertical-align: 0px;">” may be true, but  is fuzzy 

because of  (think  to get the fuzzy number idea). 

So “  k" title="Rendered by QuickLaTeX.com" height="13" 

width="43" style="vertical-align: 0px;">” may not be true when  is 

considered to be a fuzzy number1 

When we make our decision (step 4) we consider the equality part 

of the  statement in one-tailed tests. This equality is the strict 

1. Fuzzy numbers can be treated rigorously in a 

mathematical sense. See, e.g. Kaufmann A, Gupta MM, 

Introduction to fuzzy arithmetic: theory and applications, 

Van Nostrand Reinhold Co., 1991. 
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 under all circumstances but we use  or  is  statements 

simply because they are the logical opposite of  or " 

title="Rendered by QuickLaTeX.com" height="11" width="12" 

style="vertical-align: 0px;"> in the  statements. So people may 

have an issue with this statement of  but we will keep it because 

of the logical completeness of the ,  pair and the fact that 

hypothesis testing is about choosing between two well-defined 

alternatives. 

p-Value 
The critical statistic defines an area, a probability,  that is the 

maximum probability that we are willing to live with for making 

a type I error of incorrectly rejecting . The test statistic also 

defines an analogous area, called  or the -value or (by SPSS 

especially) the significance. The -value represents the best guess 

from the data that you will make a type I error if you reject 

. Computer programs compute -values using CDFs. So when you 

use a computer (like SPSS) you don’t need (or usually have) the 

critical statistic and you will make your decision (step 4) using the 

-value associated with the test statistic according to the rule: 

    

     \alpha \mbox{ do not 
reject } H_{0}.\]" title="Rendered by QuickLaTeX.com"> 

The method of comparing test and critical statistics is the 

traditional approach, popular before computers because is is less 

work to compute the two statistics than it is to compute . When 

we work problem by hand we will use the traditional approach. 

When we use SPSS we will look at the -value to make our decision. 

To connect the two approaches pedagogically we will estimate the 

-value by hand for a while. 

Example 9.3 : Compute the -value for  of 

Example 9.2. 

Solution : This calculation can happen as soon as you have the test 

statistic in step 3. The first thing to do is to sketch a picture of the 

-value so that you know what you are doing, see Figure 9.2. 
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Figure 9.2 : The -value associated with  in a one-tail test. 

Using the Standard Normal Distribution Table to find the tail area 

associated with , we compute : 

    

That is . Since 

(\alpha = 0.05)" title="Rendered by QuickLaTeX.com" height="18" 

width="198" style="vertical-align: -4px;">, we do not reject  in 

our decision step (step 4). 

▢ 

When using the Standard Normal Distribution Table to find 

-values for a given  you compute). 

• For two-tailed tests: . See Figure 

9.3. 

• For one-tailed tests:  (as in Example 

9.3)2. 

2. Of course substitute  in the formula for a left tail test. 
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Don’t try to remember these formula, draw a picture to see what the 

situation is. 

Figure 9.3 : The -value associated with a two-tailed . Since  is 
defined by, ,  is defined by . 

9.2.1 What p-value is significant? 

By culture, psychologists use  to define the decision 

point for when to reject . In that case, if  then it 

means that the data (the test statistic) indicates there is less than a 

5% chance that the result is a statistical fluke; that there is less than 

a 5% chance that the decision is a Type I error. So, in this course, we 

assume that  unless  is otherwise given explicitly for 

pedagogical purposes. The choice of  is actually fairly lax 

and has led to the inability to reproduce psychological experiments 

in many cases (about 5% of course). The standards in other scientific 

disciplines can be different. In particle physics experiments, for 

example,  is referred to as “evidence” for a discovery 

and they must have  before an actual discovery, 

like the discovery of the Higgs boson, is announced. With z test 

statistics,  represents the area in the tails of the 

distribution 3 standard deviations, or , from the mean. The value 
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 represents tail area , from the mean. So you 

may hear physicists saying that they have “5 sigma” evidence when 

they announce a discovery. 
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9.3 t-Test for Means 

Hypothesis testing for means for sample set sizes in 

where  is used as an estimate for  is the same as for 

except that  and not  is the test statistic1. Specifically, the test 

statistic is 

    

for  from any of the hypotheses listed in the table you saw in the 

previous section (one- and two-tailed versions): 

Two-Tailed 
Test 

Right-Tailed 
Test 

Left-Tailed 
Test 

 :  :  : 

 :  :  : 

The critical statistic is found in thet Distribution Table with the 

degrees of freedom . 

Example 9.4 : A physician claims that joggers, maximal volume 

oxygen uptake is greater than the average of all adults. A sample 

of 15 joggers has a mean of 40.6 ml/kg and a standard deviation of 

6 ml/kg. If the average of all adults is 36.7 ml/kg, is there enough 

evidence to support the claim at ? 

1. Hypothesis. 

  (claim) 

1. Again, SPSS applies the -test, uses  directly, for any 

sample size. 
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2. Critical statistic. 

In thet Distribution Table, find the column for one-tailed 

test at  and the line for degrees of freedom 

. With that find 

    
3. Test statistic. 

 

    

To compute this we need : ,  and 

from the problem statement. From the hypothesis we have 

. So 

    

At this point we can estimate the -value using thet 
Distribution Table, which doesn’t have as much information 

about the -distribution as the Standard Normal 
Distribution Table has about the -distribution, so we can 

only estimate. The procedure is: In the  row, look 

for  values that bracket . They are 2.145 

(with  in the column heading for one-tailed 

tests) and 2.624 (associated with a one-tail ). 

So, 

    
is our estimate2 for . 

4. Decision. 

2. If you know how to interpolate then you can find a single 

value for . 

9.3 t-Test for Means  |  245



Reject . We can also base this decision on our -value 

estimate since : 

    

5. Interpretation. 

There is enough evidence to support the claim that the 

joggers’ maximal volume oxygen uptake is greater than 36.7 

ml/kg using a -test at . 

▢ 

Fine point. When we use  in a  (or  test) as an estimate 

for , we are actually assuming that distribution of sample means 

is normal. The central limit theorem tells us that the distribution 

of sample means is approximately normal so generally we don’t 

worry about this restriction. If the population is normal then the 

distribution of sample means will be exactly normal. Some stats 

texts state that we need to assume that the population is normal for 

a -test to be valid. However, the central limit theorem’s conclusion 

guarantees that the -test is robust to violations of that assumption. 

If the population has a very wild distribution then  may be bad 

estimate for  because the distribution of sample  values will not 

follow the  distribution. The chance if this happening becomes 

smaller the larger the , again by the central limit theorem. 

Origin of the -distribution 
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We can easily define the -distribution via random variables 

associated with the following stochastic processes. Let : 

   

Then the random variable 

    

is a random variable that follows a -distribution with  degrees 

of freedom. 
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9.4 z-Test for Proportions 

The possible hypothesis pairs are : 

Two-tailed Test Right-tailed Test Left-tailed Test 

The steps in hypothesis testing for proportions are the same as 

hypothesis testing for means. Even the generic test statistic formula 

is the similar : 

   

but now the observed and expected values are proportions,  and 

 respectively. The standard error in this case is 

    

Using this information with the generic form, which mimics a 

test statistic, the proportions test statistic is 

    

where  is the number  which appears in the  hypothesis 

statement (see table above). This test statistic is valid only if 

 and  (so that the normal distribution provides 

a good approximation for the relevant binomial distribution). But, 

even though the test statistic can be moulded into the generic form, 
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the proportions test statistic comes from the sampling theory given 

by the binomial distributions and not from any distribution that 

has a standard error {\em per se}. The normal distribution with 

 and  (remember those binomial distribution 

formulae?) -transformed to a -distribution with mean 0 and 

standard deviation 1 gives the test statistic formula. See the 

discussion in Section 8.4. 

Example 9.5 : An attorney claims that more than 25  of all 

lawyers advertise. A sample of 200 lawyers in a certain city showed 

that 63 had used some form of advertising. At , is there 

enough evidence to support the attorney’s claim? 

Solution : 

1. Hypotheses. 

   ,    (claim) 

2. Critical statistic. 

Using thet Distribution Table (last line) for a one tailed 

test at  we find 

3. Test statistic. 

    

So using 

    

    
find 

    

We can also find the  value along with the critical 

statistic. (See the picture for the next step.) Use the Standard 
Normal Distribution Table to find 
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4. Decision. 

Refer to the diagram in Figure 9.4. It shows  in the 

rejection region. So we reject . 

Figure 9.4 : The null hypothesis situation for Example 9.5 

We come, of course, to the same decision by considering the 

-value : 

    

5. Interpretation. 

There is enough evidence, using a -test at , 

to support the claim that more than  of the lawyers use 

some form of advertising. 

▢ 
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9.5 Chi Squared Test for 
Variance or Standard 
Deviation 

The possible hypothesis pairs are, for variance : 

Two-tailed Test Right-tailed Test Left-tailed Test 

For standard deviation we use the square roots of everything : 

Two-tailed Test Right-tailed Test Left-tailed Test 

Note that we did not square root . This is because we are using 

 to stand in for whatever number. That number from  will 

appear in our formulae as either  or  depending on the set 

up. Generally we will work with variance as we work through the 

problem and convert to standard deviation only in the last 

interpretation step if required by the wording of the question. 

The new test statistic is : 

    

where  comes from the sample and  comes from the number 

 in . The degrees of freedom associated with the test statistic 

(for finding the critical statistic) is . There is no 
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mystery where this test statistic came from — this is just how 

as a probability distribution is defined. So, for this test to be valid, 

the population must be normally distributed. The  test here is not 

very robust to violations of that assumption because there is no 

normalizing intermediate central limit theorem here. 

The critical regions on the  distribution will appear as shown 

in Figure 9.5. 

Figure 9.5 : Schematics of the critical regions for  tests of variance. In the 
two-tailed situation the tail areas are equal. 

Let’s work through an example of each hypotheses pair case. In all of 

the examples we assume that the population is normally distributed. 

Example 9.6 : An instructor wishes to see whether the variance 

in scores of the 23 students in her class is less than the variance 

of the population. The variance of the class is 198. is there enough 

evidence to support the claim that the variation of the students is 

less than the population variance  at ? 

Solution : 

1. Hypotheses. 

 

    

2. Critical statistic. 

Refer to Figure 9.6 as we get the critical statistic from the 

Chi-squared Distribution Table. As we see in that figure, 

we must look in the column that corresponds to a right 

tail area of 0.95. The row we need is for 

. With that information we 

find . 
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Figure 9.6 : Schematics of the critical regions for  tests of variance. In the 
two-tailed situation the tail areas are equal. 

3. Test statistic. 

The values we need for the test statistic are 

(from ),  and  from the 

information in the problem. So : 

    

At this point we can also estimate the  value from the 

Chi-squared Distribution Table. The  value is the area 

under the  distribution with  to the left of 

. In the  row of the Chi-squared Distribution Table 
(in general use the closest  if your particular value is not 

in the Chi-squared Distribution Table) hunt down the test 

statistic value of 19.38. You won’t find it but you can bracket 

it with values higher and lower than 19.38. Those numbers 

are 14.042 which has a right tail area of 0.90 (and so a left 

tail area of 0.10) and 30.813 which has a right tail area of 

0.10 (and so a left tail area of 0.90). Recall that the  in 
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the column headings of the Chi-squared Distribution Table 
refers to right tail areas. So, considering the left tail areas 

we know that  since 

 for the relevant  values. 

4. Decision. 

Since  doesn’t fall in the rejection region, do not reject 

. We come to the same conclusion with our -value 

estimate: 

    

5. Interpretation. 

There is not enough evidence, at  with a 

test, to support the claim that the variation in test scores of 

the class is less than 225. 

▢ 

Example 9.7 : A hospital administrator believes that the standard 

deviation of the number of people using out-patient surgery per day 

is greater than eight. A random sample of 15 days is selected. The 

data are shown below. At  is there enough evidence to 

support the administrator’s claim? 
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Solution : 

0. Data reduction. 

We’ll introduce a step 0 when it looks like we should do 

some preliminary calculations with or data. In this case we 

should enter the dataset into our calculations and determine 

. We find . 

1. Hypotheses. 

    

Note conversion to  right away. 

2. Critical statistic. 

In the  line and  column 

of the Chi-squared Distribution Table, look up 

3. Test statistic. 

    

To estimate the  value, find the bracketing values of 

 in the  line of the Chi-squared 
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Distribution Table. They are : 26.119 ( ) and 

29.141 ( ), so . 

4. Decision. 

Reject  since  is in the rejection region. Our 

estimate of  leads to the same conclusion : 

    

5. Interpretation. 

There is enough evidence, at  with a  test, 

to support the claim that the standard deviation is greater 

than 8. (Note how we convert to a statement about standard 

deviation after working through the problem using 

variances.) 

▢ 

Example 9.8 : A cigarette manufacturer wishes to test the claim 

that the variance of the nicotine content of its cigarettes is 0.644. 

Nicotine content is measured in milligrams, assume that it is 

normally distributed. A sample of 20 cigarettes has a standard 

deviation of 1.00 kg. At , is there enough evidence to 

reject the manufacturer’s claim? 

256  |  9.5 Chi Squared Test for Variance or Standard Deviation



Solution : 

1. Hypotheses. 

    

2. Critical statistic. 

Figure 9.7 : Critical regions for a two tailed test. 

Referring to Figure 9.7, we see that we need two  values, 

one with a tail area of 0.025 and the other with a tail area of 

1 – 0.025 = 0.975. From the Chi-squared Distribution Table 

in the  line find  from 

the  column and  from the 

 column. 

3. Test statistic. 

    

To estimate the  value find the bracketing value of 

 in the  row, They are 27.204 (
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) and 30.144 ( ). The  are right tail 

areas, which is ok, but we need to multiply them by 2 because 

those right tail areas represent  as shown in Figure 9.8. So 

. 

Figure 9.8 : Areas for  associated with the test statistic (29.50 here) in a 
two tail test. 

4. Decision. 
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Do not reject . The estimate  value leads to the same 

conclusion : 

    

5. Interpretation. 

There is not enough evidence, at  with a 

test, to reject the manufacturer’s claim that the variance of 

the nicotine content of the cigarettes is equal to 0.644. 

Notice, with the claim on , that failing to reject 

does not provide any evidence that  is true. We just have 

the weaker conclusion that we couldn’t disprove it. Such is 

the double negative nature of the logic behind hypothesis 

testing that arises where we don’t assign probabilities to 

hypothesis. 

▢ 

 

9.5 Chi Squared Test for Variance or Standard Deviation  |  259



SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

9.6 SPSS Lesson 5: Single 
Sample t-Test 

Open “HeadCircum.sav” from the textbook Data Sets: 

Look at how simple it is! One variable. This is our single sample. Let’s 

do a -test for the hypotheses: 

    

(9.2)   
where we have used  as the potentially inferred 

population value. Selecting the value for  is something that you 

will need to think about when doing single sample -tests. Some 

possibilities are: past values, data range midpoints or chance level 

values. To run the -test in SPSS, pick Analyze  Compare Means 

 One-Sample T Test: 
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The pop up menu is: 

where we have moved our variable into the Test Variable(s) box. If 

more than one variable is in this box then a separate -test will be 

run for each variable. The value  has been entered into 

the Test Value box. That’s how SPSS knows that the hypotheses to 

test is that of the statement (9.2) above. If you open the Options 

menus, you will have a chance to specify the associated confidence 

interval. Running the analysis gives the very simple output: 
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The output is simple but it requires your knowledge of the -test 

to interpret. As you get more experience with using SPSS, or any 

canned statistical software, you will get into the habit of looking for 

the -value. In SPSS it is in the Sig. (for Significance) column. Here 

, which is less than , so we reject the null 

hypothesis and conclude that there is evidence that the population 

mean is not 34.5. Note that this -value is for a two-tailed test. 

What if you wanted to do a one-tailed test? Well, then you have 

to think because SPSS won’t do that for you explicitly. For a one-

tailed test, , half that of the two-tailed test. Remember 

that the two-tailed  has two tails, each with an area of 0.016 as 

defined by , so getting rid of one of those areas gives the 

for the one- tailed test. Another way to remember to divide the two-

tailed  by 2 to get the one-tailed value is to remember that people 

try to go for a one-tailed test when they can because it has more 

power — it is easier to reject the null hypothesis with a one-tailed 

test meaning the -value will be smaller for a one-tailed test. 

Let’s look at the rest of the output. There is a lot of redundant 

information there. You can use that redundant information to check 

to make sure you know what SPSS is doing and I can use that 

redundant information to see if you understand what SPSS is doing 

by reducing the redundancy and asking you to calculate the missing 

pieces. In the first output table, “One-Sample Statistics” is the 
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information that you would get out of your calculator. The first 

three columns are ,  and . The last column is . 

In the second output table “One-Sample Test”, notice that the test 

value of 33.8 is printed to remind you what the hypotheses being 

tested is. Te columns give: , ,  and . Notice that the 

first column,  is the fourth column  divided by the last 

column of the first table, . The last two columns give the 

95% confidence interval 

(9.3)   
Note that zero is not in this confidence interval which is 

consistent with rejecting the null hypothesis. Simply add 

 to Equation (9.3) to get the form we go for when we do 

confidence intervals by hand: 

(9.4)   
You can use the output here to compute a further quantity, known 

as standardized effect size. You’ll get a little practice with doing 

that in the assignments. The standardized effect size, , is a purely 

descriptive statistic (although it can be used in power calculations) 

and is defined by 

(9.5)   

where, by  we mean . Being a descriptive statistic, people 

use the following rule of thumb to describe . If  is approximately 

0.2 then  is considered “small”; if  is approximately 0.5 then  is 

considered “medium”;  is approximately 0.8 then  is considered 

“large”. 

For the presentation of data graphically in reports and papers, an 

error bar plot is frequently used. To get such a plot for the data here, 

select Graphs  Legacy Dialogs  Error Bar: 
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Choose Simple and “Summaries of separate variables”: 

and hit Define. Then set up the menu as follows: 
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noting that we have chosen “Bars Represent” as “Standard error of 

the mean” so that the error bars will be : 

With an error bar plot like this, you can intuitively check the 

meaning of rejecting  from the formal -test. Here the error 

bars do not include the value of 33.80 which is consistent with 

the conclusion that we reject 33.80 as a possible value for the 

population mean. We can see this more directly, and exactly, if we 

choose the value 95 confidence interval in the Bars Represent pull 

down of the plot menu. 

This is a plot of Equation (9.4). The value  is not in 

the 95% confidence interval. 
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Finally, selecting Graphs  Legacy Dialogs  Boxplot gives a 

EDA type of data presentation: 
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9.7 RStudio Lesson 5: Single 
Sample t-Test 
OSAMA BATAINEH 

Let’s insert and attach the dataset “HeadCircum.sav” (from Data 

Sets). To get the descriptive statistics, first we need to install and 

load the package pastecs. I have already installed it before. So I just 

loaded this package using the library function. Then we utilize a 

function of this package round to get the descriptive statistics. Here 

we use our variable age as the argument and set digits equal to 2 to 

make it look nice. 

> library(pastecs) 

Warning message: 

package ‘pastecs’ was built under R version 3.4.4 

> descriptive_stat <- round(stat.desc(age), digits = 2) 

> descriptive_stat 

x 

nbr.val 5534.00 

nbr.null 0.00 

nbr.na 0.00 

min 10.00 

max 43.00 

range 33.00 

sum 129718.00 

median 23.00 

mean 23.44 

SE.mean 0.06 

CI.mean.0.95 0.12 

var 22.29 

std.dev 4.72 

coef.var 0.20 

Now we will be doing a T-test for mean equal to 33.80. To do it, 
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we will take the help of the function t.test. Here we can see that in 

the argument, we have to mention the value of our null hypotheses 

(33.80 in the case), the type of T-test we are doing (one sided or two 

sided) and the confidence interval. 

Now we will be doing a T-test for mean equal to 23.30. To do it, 

we will take the help of the function t.test. Here we can see that in 

the argument, we have to mention the value of our null hypotheses 

(23.30 in the case), the type of T-test we are doing (one sided or two 

sided) and the confidence interval. 

> t.test(age, mu=23.30, alternative=”two.sided”, conf.level=0.95) 

One Sample t-test 

data:  age 

t = 2.2088, df = 5533, p-value = 0.02723 

alternative hypothesis: true mean is not equal to 23.3 

95 percent confidence interval: 

23.31577 23.56461 

sample estimates: 

mean of x 

23.44019 

> t.test(age, mu=23.30, alternative=”greater”, conf.level=0.95) 

One Sample t-test 

data:  age 

t = 2.2088, df = 5533, p-value = 0.01361 

alternative hypothesis: true mean is greater than 23.3 

95 percent confidence interval: 

23.33578      Inf 

sample estimates: 

mean of x 

23.44019 
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10. COMPARING TWO 
POPULATION MEANS 

There are two types of two-sample t-tests. (The test we covered in 

Chapter 9 that compared the mean of one sample to a fixed number 

 is known as a one-sample -test.) These tests are: 

Unpaired or independent sample -test: 
The two populations are “independent”. There is no 

relation between the  and  variables (as we’ll call them). 

This is a “between subjects” test, the experimental subjects 

in each of the two populations are different. 

Paired or dependent sample -test: 
There is a natural pairing between the two variables 

and , usually they are measured from the same subject. 

A paired -test is an example of a “repeated measures” or 

“within subject” test. 

We will introduce the independent sample -test with a -test 

approximation first to build ideas. As before, note that SPSS doesn’t 

do these approximate -tests. It does -tests even for large 

samples. 
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10.1 Unpaired z-Test 

We have two populations and two sample sets, one from each 

population : 

Sample Mean Sample std. dev. 

From population 1 

From population 2 

The population means are  and  and just as with the single 

population test, there are 3 possible hypothesis tests : 

Two Tailed Right Tailed Left Tailed 

or or or 

 = 0 

In the second row the hypotheses are written in terms of a 

difference. Irrespective of which way you write the hypotheses, give 

population 1 priority. Write population 1 first. That way you won’t 

mess up your signs or your interpretation. 

The test statistic to use, in all cases1 is 

1. You could specify a non-zero null hypothesis, e.g. 

, in which case you would have 
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(10.1)   

where  = sample set size from population 1 and  = sample set 

size from population 2. This test statistic is based on a distribution 

of sample means as shown in Figure 10.1. 

Figure 10.1 : The distribution of the difference of sample means 
under the null hypothesis . A one-tail example is 
shown here. The test statistic of Equation 10.1 follows from a 
-transformation of this picture. 

Example 10.1 : A researcher hypothesizes that the average number 

of sports colleges offer for males is greater than the average number 

of sports offered for females. Samples of the number of sports 

offered to each sex by randomly selected colleges is given here : 

. We won't consider that case in this 

course. 
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Males (pop. 1) Females (pop. 2) 

At  is there enough evidence to support the claim? 

Solution : 

1. Hypotheses. 

    

Note that  ( ) so  is 

true on the face of it. If  is not true on the face of it then 

 is just plain false without the need for any statistical test. 

With the hypotheses direction set correctly, the question 

becomes: Is  significantly greater than ? The term 

“statistically significant” corresponds to “reject “. 

2. Critical statistic. 

From the t Distribution Table, one-tailed test at 

 we find 

    
Note that  is positive because this is a right-tailed 

test. For left tailed tests make  negative. For two-tailed 

tests you have . 

3. Test statistic. 
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Using the Standard Normal Distribution Table, we can 

find the -value. Since , 

. 

4. Decision. 

Do not reject  since  is not in the rejection region. 

The -value reflects this : 

    

5. Interpretation. 

There is not enough evidence, at  under a 

-test, to support the claim that colleges offer more sports for 

males than females. 

▢ 
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10.2 Confidence Interval for 
Difference of Means (Large 
Samples) 

Swapping the roles of sample and population in the sampling theory, 

we have the confidence interval corresponding to the hypothesis 

test of Section 10.1 

    

where 

    

Example 10.2 : Find the 95  confidence interval for the 

difference between the means for the data of Example 10.1. 

Solution : First, recall our data : 

,  ,  

.  ,  

From the t Distribution Table, look up the  for the 95

confidence interval: . Then compute: 

    
and 

    

10.2 Confidence Interval for
Difference of Means (Large



so 

    

or 

    

with 95  confidence. Notice that it is also correct to write 

 with 95  confidence. 

▢ 

This is a good point to make an important observation. A two-

tailed hypothesis test at a given  is complementary to a confidence 

interval of  in the sense that if 0 is in the confidence 

interval then the complementary hypothesis test will not reject 

. 

Let’s illustrate this principle with a one-sample -test under 

. (We need  for this principle to work.) Look at 

the two possible outcomes : 

Case 1 : 0 in the confidence interval, fail to reject . In the 

hypothesis test you would find : 
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In the confidence interval calculation you would find: 

Putting the two pictures together gives: 

See,  is in the confidence interval if ¯  is not in the rejection 

region. The red distribution that defines the confidence interval 
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is just the blue (identical) distribution slid over from  to . The 

distance  is the same because . 

Case 2 : 0 not in the confidence interval, reject . In this case 

the combined picture looks like: 

Before we can consider the independent sample -test, we need a 

tool for checking what the variances of the populations are. The 

formula for the  test statistic will depend on whether the two 

variances are the same or not. So let’s take a look at comparing 

population variances. 
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10.3 Difference between Two 
Variances - the F 
Distributions 

Here we have to assume that the two populations (as opposed to 

sample mean distributions) have a distribution that is almost normal 

as shown in Figure 10.2. 

Figure 10.2: Two normal populations lead to two  distributions 

that represent distributions of sample variances. The  distribution 

results when you build up a distribution of the ratio of the two 

sample values. 

The ratio  follows an -distribution if . That 
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distribution has two degrees of freedom: one for the numerator 

(d.f.N. or ) and one for the denominator (d.f.D. or ). So we 

denote the distribution more specifically as . For the case 

of Figure 10.2,  and . The  ratio, 

in general is the result of the following stochastic process. Let 

be random variable produced by a stochastic process with a 

distribution and let  be random variable produced by a 

stochastic process with a  distribution. Then the random 

variable  will, by definition, have a 

distribution. 

The exact shape of the  distribution depends on the choice 

of  and , But it roughly looks like a  distribution as shown in 

Figure 10.3. 

 

Figure 10.3: A generic  distribution. 

 and  are related : 

    

so the  statistic can be viewed as a special case of the  statistic. 

For comparing variances, we are interested in the follow 

hypotheses pairs : 
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Right-tailed Left-tailed Two-tailed 

\sigma^2_2" 
title="Rendered by 
QuickLaTeX.com" 

height="21" 
width="97" 

style="vertical-align: 
-6px;"> 

We’ll always compare variances ( ) and not standard deviations (

) to keep life simple. 

The test statistic is 

    

where (for finding the critical statistic),  and 

. 

Note that  when , a fact you can use to get 

a feel for the meaning of this test statistic. 

Values for the various  critical values are given in the F 
Distribution Table in the Appendix. We will denote a critical value 

of  with the notation : 

    
Where: 

 = Type I error rate 

 = d.f.N. 

 = d.f.D. 

The F Distribution Table gives critical values for small right tail 

areas only. This means that they are useless for a left-tailed test. But 

that does not mean we cannot do a left-tail test. A left-tail test is 

easily converted into a right tail test by switching the assignments 

of populations 1 and 2. To get the assignments correct in the first 

place then, always define populations 1 and 2 so that 
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\sigma^{2}_{2}" title="Rendered by QuickLaTeX.com" height="21" 

width="60" style="vertical-align: -6px;">. Assign population 1 so that 

it has the largest sample variance. Do this even for a two-tail test 

because we will have no idea what  on the left side of the 

distribution is. 

Example 10.3 : Given the following data for smokers and non-

smokers (maybe its about some sort of disease occurrence, who 

cares, let’s focus on dealing with the numbers), test if the population 

variances are equal or not at . 

Smokers Nonsmokers 

Note that  s_{2}^{2}" title="Rendered by QuickLaTeX.com" 

height="21" width="55" style="vertical-align: -6px;"> so we’re good 

to go. 

Solution : 

1. Hypothesis. 

    

2. Critical statistic. 

Use the F Distribution Table; it is a bunch of tables labeled by “

” that we will designate at , the table values that signify right tail 

areas. Since this is a two-tail test, we need . Next 

we need the degrees of freedom: 

    

    
So the critical statistic is 

   

3. Test statistic. 
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With this test statistic, we can estimate the -value using the F 
Distribution Table. To find , look up all the numbers with d.f.N = 

25 and d.f.N = 17 (24  17 are the closest in the tables so use those) in 

all the the F Distribution Table and form your own table. For each 

column in your table record  and the  value corresponding 

to the degrees of freedom of interest. Again,  corresponds to 

 for a two-tailed test. So make a row above the  row with 

. (For a one-tailed test, we would put .) 

0.20      0.10      0.05      0.02      0.01 
0.10       0.05     0.025    0.01      0.005 

1.84       2.19      2.56       3.08      3.51         3.6 is over here 
somewhere so 

Notice how we put an upper limit on  because  was larger 

than all the  values in our little table. 

Let’s take a graphical look at why we use  in the little 

table and  for finding  for two tailed tests : 
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But in a two-tailed test we want  split on both sides: 

 

4. Decision. 

Reject . The -value estimate supports this : 
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5. Interpretation. 

There is enough evidence to conclude, at  with an 

-test, that the variance of the smoker population is different from 

the non-smoker population. 

▢ 
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10.4 Unpaired or Independent 
Sample t-Test 

In comparing the variances of two populations we have one of two 

situations : 

1. Homoscedasticity : 

2. Heteroscedasticity : 

These terms also apply when there are more than 2 populations. 

They either all have the same variance, or not. This affects how we 

do an independent sample -test because we have two cases : 

1. Variances of the two populations assumed unequal. 

. 
Then the test statistic is : 

    

This is the same formula as we used for the -test. To find the 

critical statistic we will use, when solving problems by hand, 

degrees of freedom 

(10.2)   

This choice is a conservative approach (harder to reject ). 

SPSS uses a more accurate 
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(10.3)   

You will not need to use Equation (10.3), only Equation (10.2). 

Equation (10.3) gives fractional degrees of freedom. The  test 

statistic for this case and the degrees of freedom in Equation (10.3) 

is know as the Satterwaite approximation. The -distributions are 

strictly only applicable if . The Satterwaite approximation 

is an adjustment to make the -distributions fit this  case. 

2. Variances of the two populations assumed equal. 
. 

In this case the test statistic is: 

    

This test statistic formula can be made more intuitive by defining 

(10.4)   

as the pooled estimate of the variance.  is the data estimate for 

the common population .  is the weighted mean of the sample 

variances  and . Recall the generic weighted mean formula, 

Equation (3.2). The weights are  and 

; their sum is 

. In other 

words 
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and we can write the test statistic as 

(10.5)   

See that  is clearly a standard error of the mean. 

10.4.1 General form of the t test statistic 

All  statistics have the form : 

    

Remember that! Memorizing complicated formulae is useless, but 

you should remember the basic form of a  test statistic. 

10.4.2 Two step procedure for the 
independent samples t test 

We will use the  test to decide whether to use case 1 or 2. SPSS 

uses a test called “Levine’s test” instead of the  test we developed 

to test .  Levine’s test also produces an  test 

statistic. It is a different  than our  but you interpret it in the 

same way. If the -value of the  is high (larger than ) then 

assume , if the -value is low (smaller than ) then 

assume . 
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In real life, homoscedasticity is almost always assumed because the 

-test is robust to violations of homoscedasticity until one sample 

set contains twice as many, or more, data points as the other. 

Example 10.4: Case 1 example. 

Given the following data summary : 

(Note that  (s_{2}=12)" title="Rendered by 

QuickLaTeX.com" height="18" width="164" style="vertical-align: 

-4px;">. If that wasn’t true, we could reverse the definitions of 

populations 1 and 2 so that  1" title="Rendered by 

QuickLaTeX.com" height="15" width="66" style="vertical-align: 

-3px;">.) Is  significantly different from ? That is, is 

different from ? Test at . 

Solution : 

So the question is to decide between 

    
a two-tailed test. But before we can test the question, we have to 

decide which  test statistic to use: case 1 or 2. So we need to do 

two hypotheses tests in a row. The first one to decide which 

statistic to use, the second one to test the hypotheses of interest 

given above. 

Test 1 : See if variances can be assumed equal or not. 

1. Hypothesis. 

    

(Always use a two-tailed hypothesis when using the  test to 

decide between case 1 and 2 for the  test statistic.) 

2. Critical statistic. 

   

(from the F Distribution Table) 
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(Here we used  given for the -test question. But that is not 

necessary. You can use  in general; the consequence of 

a type I error here is small because the -test is robust to violations 

of the assumption of homoscedasticity.) 

3. Test statistic. 

    

4. Decision. 

 4.20" title="Rendered by QuickLaTeX.com" 

height="13" width="95" style="vertical-align: -1px;"> (

F_{\rm crit}" title="Rendered by QuickLaTeX.com" height="16" 

width="89" style="vertical-align: -4px;"> — drawing a picture would 

be a safe thing to do here as usual) so reject . 

5. Interpretation. 

Assume the variances are unequal, , and use the  test 

statistic of case 1. 

Test 2 : The question of interest. 

1. Hypothesis. 

    
2. Critical statistic. 

From the t Distribution Table, with 

, and a two-tailed test with  we find 

    
3. Test Statistic. 
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The -value may be estimated from the t Distribution Table 
using the procedure given in Chapter 9: from the t Distribution 
Table,  line, find the values that bracket 0.57. There are 

none, the smallest value is 0.711 corresponding to . So all 

we can say is  0.50" title="Rendered by QuickLaTeX.com" 

height="17" width="66" style="vertical-align: -4px;">. 

4. Decision. 

 is not in the rejection region so do not reject 

. The estimate for the -value confirms this decision. 

5. Interpretation. 
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There is not enough evidence, at  with the 

independent sample -test, to conclude that the means of the 

populations are different. 

▢ 

Example 10.5 (Case 2 example) : 

The following data seem to show that private nurses earn more 

than government nurses : 

Private Nurses Salary Government Nurses 
Salary 

Testing at , do private nurses earn more than 

government nurses? 

Solution : 

First confirm, or change, the population definitions so that 

 s_{2}^{2}" title="Rendered by QuickLaTeX.com" height="21" 

width="55" style="vertical-align: -6px;">. This is already true so we 

are good to go. 

Test 1 : See if variances can be assumed equal or not. This is a test 

of  vs. . After the test we find that 

we believe that  at . So we will use the case 2, 

equal variances, -test formula for test 2, the test of interest. 

Test 2 : The question of interest. 

1. Hypothesis. 

    

     \mu_{2}\]" title="Rendered by 
QuickLaTeX.com"> 

(Note how  reflects the face value of the data, that private 

nurses appear to earn more than government nurses in the 

population — it is true in the samples.) 

2. Critical statistic. 
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Use the t Distribution Table, one-tailed test, 

(column) and  to 

find 

    
3. Test statistic. 

    

To estimate the -value, look at the  line in the t 
Distribution Table to see if there are a pair of numbers that bracket 

. They are all smaller than 5.47 so  is less than the 

 associated with the largest number 2.921 whose  is 0.005 (one-

tailed, remember). So . 

4. Decision. 
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Reject  since  is in the rejection region and 

. 

     t_{crit} \hspace{.25in} 
(5.47 > 2.583)\]" title="Rendered by QuickLaTeX.com"> 

5. Interpretation. 

From a -test at , there is enough evidence to 

conclude that private nurses earn more than government nurses. 

▢ 
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10.5 Confidence Intervals for 
the Difference of Two Means 

The form of the confidence interval is 

    

but, as with hypothesis testing, we have two cases to choose from 

to get the formula for  : 

Case 1 : Variances of the 2 populations unequal} 

    

where the degrees of freedom to use when looking up  in the t 
Distribution Table is 

    

Case 2 : Variances of the 2 populations equal 

    

where we use 

    
when looking up . 

To select the appropriate formula for  we need to do a 

preliminary hypothesis test on . An odd 

combination of hypothesis test followed by confidence interval 

calculation. 

Insight! By now you should have noticed that the formulae for 

 are just  times standard error of the mean. This whole 

-transformation thing should be becoming somewhat transparent. 

Example 10.6 : Find the 95  confidence interval for 

for the data of Example 10.4 : 

10.5 Confidence Intervals for the
Difference of Two Means  |  295



Solution : 

First use -test to see which formula to use.  We did this already 

in Example 10.4 (the data come from that question) and found that 

we believed  with . 

Next, look up  in the t Distribution Table for 95  confidence 

interval for : 

    
Compute 

    

So 

   

be careful of the order! 

▢ 
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10.6 SPSS Lesson 6: 
Independent Sample t-Test 

To follow along, load in the Data Set titled “pHLevel.sav”: 

This is the first time we have an independent variable, Species in 

this case, and it has two values, setosa and versicolor, that label the 

two populations. Notice, especially, that we do not have separate 

columns for each sample. There is only one dependent variable, 

Sepal.Length in this case. As we cover the more advanced statistical 

tests in later chapters (part of PSY 234) the nature and complexity 

of the independent variable will evolve but we will always have just 

one independent variable. 

Running the -test is easy, pick Analyze  Compare Means 

Independent Samples T Test : 
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Select Sepal.Length as the Test Variable (dependent variable) and 

Species as the group variable (independent variable) : 

You need to do some work to let SPSS know that the two levels of 

the “grouping variable” are 1 and 2 (as can be seen in the Variable 

View window). So hit Define Groups… and enter: 
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Hit Continue, then OK (the Options menu will allow you to set the 

confidence level percent) to get: 

The first table shows descriptive statistics for the two groups 

independently. These numbers, excluding standard error numbers 

can be plugged into the  formulae for pencil and paper 

calculations. 

The important table is the second table. First, what hypothesis are 

we testing? It is important to write it out explicitly: 

    

(10.6)   
This, as you recall, is our test of interest. When we did this test 
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by hand, we had to do a preliminary  test the see if we could 

assume homoscedasticity or not : 

    

(10.7)   

That preliminary test is given to us as Levine’s test in the first 

two columns of the second table. Levine’s test is similar to but not 

exactly the same as the  test we used but it also uses  as a 

test statistic. Here we see  with , so 

we reject  and assume that population variances are unequal. 

That means we look at only the second line of the second table 

corresponding to “Equal variances not assumed”. SPSS computes 

and  using both  formulae but it does not decide for you which 

one is correct. You need to decide that yourself on the basis of the 

Levine’s test. 

Again the information is fairly redundant. Looking across the 

second row we have  (note that it is the same as 

the  in the first row – that’s because the sample is large, making 

 a good approximation for both),  (notice the fractional 

 here for the heteroscedastic case — recall Equation (10.3)), 

 (note that it is for a two-tailed hypothesis, if your 

hypothesis is one-tailed then divide  by 2), 

, and the standard error, the denominator 

of the  test statistic formula (  is mean over standard error). The 

value is small, so we reject , the difference of the sample means 

is significant. The last two columns give the 95% confidence interval 

as 

(10.8)   
Notice that zero is not in the confidence interval, consistent with 

rejecting . 

We can also make an error bar plot. Go through Graphs 

Legacy Dialogs  Errorbar and pick Simple and “Summaries for 

groups of cases” in the next menu and: 
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which results in: 

or you could generate a boxplot comparison: 

10.6 SPSS Lesson 6: Independent Sample t-Test  |  301

https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp10pH6.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp10pH6.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp10pH7.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp10pH7.png


SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

Finally, we throw in a couple of effect size (descriptive) measures. 

One is the standardized effect size defined as: 

(10.9)   

where  is the pooled variance as given by Equation (10.4). 

Another measure is the strength of association 

(10.10)   

which measures a kind of “correlation'” between  and . The 

larger , the closer  is to 1. 
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10.7 RStudio Lesson 6: 
Independent Sample t-Test 

[Coming soon] 
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10.8 Paired t-Test 

Here two measurements  and  are taken from every subject. 

We could say that we measure a vector  as the 

independent variable for every subject instead of just a number as 

the independent variable1. This is a within subject design. Within 

subject designs tend to be more statistically powerful than 

independent or between subjects designs that have two completely 

different bunches of people for each variable. The extra power 

comes because we take the difference  for every 

subject. So any overall differences, or variances, in  or  due to 

individuals has been removed from the data. 

The paired -test is a univariate test. The difference between 

univariate and multivariate statistics is the the independent 

variables are numbers for univariate statistics and vectors for 

multivariate statistics. For the paired -test, the vector is converted 

to a number by taking a difference. To convert vector data to 

difference data, make a table : 

1 2 -1 

2 3 -1 

3 5 -2 

1 -2 3 

Note here that the differences in individuals are gone after we take 

differences . 

The data from the  column are what you will work with. 

1. An introduction to vectors will be given in Chapter 17. 
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Compute  and  the mean and sample standard deviation of 

these data. With  the procedure becomes a single sample -test 

of  against zero. Specifically we can test : 

Two-tailed Left-tailed Right-tailed 

The test statistic is 

    

with  (for finding ). 

Example 10.7 : A Physical Education director claims that a vitamin 

will increase a weight lifter’s strength. Eight athletes are selected 

and tested on how much they can bench press. They are each tested 

once before taking the vitamin and again after taking the vitamin for 

two weeks. We want to test the director’s claim at 

The data are : 

Athlete 
Before(

) 
After(

) 

1 210 219 -9 

2 230 236 -6 

3 182 179 3 

4 205 204 1 

5 262 270 -8 

6 253 250 3 

7 219 222 -3 

8 216 216 0 
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Here we have listed the differences which is actually part of step 

0 of the solution. The  and  columns are what you enter into 

SPSS as your independent variables. With SPSS you never see the 

differences. 

Solution : 

0. Data reduction. 

Compute ,  by entering the 

difference data into your calculator. 

1. Hypothesis. 

    

    
Note that a negative difference, based on  (always 

consistently give population 1 priority if you want to stay out of 

trouble without thinking), indicates an increase in strength. It is 

important to interpret positive or negative differences correctly by 

thinking about what they mean. 

2. Critical statistic. 

Using the t Distribution Table with the column for one-tailed 

tests, , and row , find 

    
(We added the negative sign because this is a left-tailed test.) 

3. Test statistic. 

    

    
To estimate the -value, from the t Distribution Table, 

line, find . 

4. Decision. 
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Do not reject . . 

5. Interpretation. 

Under a paired -test, at , the is not enough evidence 

to conclude that the vitamin increases strength. 

▢ 
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10.9 Confidence Intervals for 
Paired t-Tests 

The usual form applies : 

    

where now 

    

and  can found from the t Distribution Table in the 

 line using the “confidence intervals” heading. 
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10.10 SPSS Lesson 7: Paired 
Sample t-Test 

To follow along, load in the Data Set “Methadone.sav”: 

As set up, the file has two dependent variables. This “within 

subjects” dataset is fundamentally multivariate. When we did the 

paired -test by hand we converted the multivariate data to 

univariate data by taking differences. SPSS will do the differences 

behind the scene and you won’t actually see them. Run the -test by 

picking Analyze  Compare Means  Paired -Samples T-Test: 
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Move the two variables into Pair 1 and hit OK (Options again allows 

you to specify a confidence intervals percentage): 

The output is: 

The first two tables are descriptive statistics. The last table gives the 

stuff we want: , , the confidence 

interval 

(10.11)   
,  and  for the two-tailed 

hypotheses pair 
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(10.12)   
The very low -value (0 in this case) and the absence of 0 in 

the confidence interval guide us to reject , the differences are 

significantly different from zero. 

The standardized effect size and strength of association for the 

paired -test are 

(10.13)   

and 

(10.14)   

respectively. 
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10.11 RStudio Lesson 7: Paired 
Sample t-Test 

[Coming soon] 
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11. COMPARING 
PROPORTIONS 

In this Chapter we will use a  test to compare proportions and 

extend what we do here with the -distribution. 
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14. CORRELATION AND 
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Appendix: Tables 

• Binomial Distribution Table (PDF) (Word) 

• Standard Normal Distribution Table (PDF) (Word) 

• t Distribution Table (PDF) (Word) 

• Chi Squared Distribution Table (PDF) (Word) 

• F Distribution Table (PDF) (Word) 
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