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Preface 

It has become almost cliché to state that contemporary life scientists work with a staggering amount and variety of 
data. This fact makes it no less true: the advent of high-throughput sequencing alone has forced biologists to routinely 
aggregate multi-gigabyte data sets and compare the results against multi-terabyte databases. The good news is that work 
of this kind is within the reach of anyone possessing the right computational skills. 

The purpose of this book is perhaps best illustrated by a fictional, but not unreasonable, scenario. Suppose I am 
a life scientist (undergraduate or graduate research assistant, postdoc, or faculty) with limited but basic computational 
skills. I’ve identified a recently developed data collection method—perhaps a new sequencing technology—that promises 
to provide unique insight into my system of study. After considerable field and lab work, the data are returned as a dozen 
files a few gigabytes in total size. 

Knowing this data set is too large for any web-based tool like those hosted by the National Center for Biotechnology 
Information (NCBI), I head to my local sequencing center, which conveniently hosts a copy of the latest graphical suite 
for bioinformatics analysis. After clicking through the menus and panes, searching the toolbox window, and looking at 
the help manual, I come to realize this software suite cannot process this newly generated data. Because the software is 
governed by an expensive license agreement, I send an email to the company and receive a prompt reply. It seems the 
development team is working on a feature for the type of analysis I want, but they don’t expect it to be ready until next 
year’s release. 

After a quick online search, I find that no other commercial software supports my data, either. But I stumble upon 
a recent paper in a major bioinformatics journal describing not only a novel statistical methodology appropriate for the 
data, but also software available for download! Sadly, the software is designed for use on the Linux command line, with 
which I’m not familiar. 

Realizing my quandary, I head to the local computing guru in the next lab over and explain the situation. 
Enthusiastically, she invites me to sit with her and take a look at the data. After uploading the data to the remote machine 
she regularly works on, she opens a hacker’s-style terminal interface, a black background with light gray text occasionally 
dotted with color. Without even installing the bioinformatics software, she begins giving me an overview of the data in 
seconds. “Very nice! Looks like you’ve got about 600 million sequences here . . . pretty good-quality scores, too.” After a 
few more keystrokes, she says, “And it looks like the library prep worked well; about 94% of these begin with the expected 
sequence bases. The others are probably error, but that’s normal.” 

Still working in the terminal, she proceeds to download and install the software mentioned in the bioinformatics 
paper. Typing commands and reading outputs that look to be some sort of hybrid language of English and whatever the 
computer’s native language is, she appears to be communicating directly with the machine, having a conversation even. 
Things like ./configure --prefix=$HOME/local and make install flash upon the screen. Within a few more minutes, 
the software is ready to use, and she sets it to work on the data files after a quick check of its documentation. 

“I’m guessing this will take at least a half hour or so to run. Want to go get some coffee? I could use a break anyway.” 
As we walk to the cafe, I tell her about the commercial software that couldn’t process the data. “Oh yeah, those packages 
are usually behind the times because they have so many features to cover and the technology advances so quickly. I do 
use them for routine things, but even then they don’t always publish their methods, so it’s difficult to understand exactly 
what’s going on.” 

“But aren’t the graphical packages easier to use?” I ask. “Sure,” she replies, “sometimes. They’re not as flexible as 



they look. I’ve written graphical versions of my own software before, but it’s time consuming and more difficult to 
update later. Besides, it’s easier for me to write down what commands I ran to get an answer in my lab notebook, which 
is digital anyway these days, rather than grabbing endless screenshots of a graphical interface.” 

When we get back to her office, she opens the results file, which shows up in the same gray-on-black typewriter 
font in nicely formatted rows and columns of numbers and identifiers. I could easily imagine importing the results into 
a spreadsheet, though she mentions there are about 6.1 million rows of output data. 

“Well, here it is! The p values in this last column will tell you which results are the most important,” she says as 
she sorts the file on that column (in mere seconds) to reveal the top few records with the lowest p values. Recalling that 
the significant results should theoretically correlate to the GC content of the sequences in certain positions, I ask if it’s 
possible to test for that. “Yes, it’s definitely possible,” she answers. “Well, extracting just the most significant sequences 
will be easy given this table. But then I’ll have to write a short program, probably in Python, which I just started learning, 
to compute the aggregate GC content of those sequences on a position-by-position basis. From there it won’t be hard to 
feed the results into an R script to test for differences in each group compared to all the others. It should only take a few 
hours, but I’m a bit busy this week. I’ll see what I can do by next Friday, but you’ll owe me more than just coffee!” 

A Few Goals A Few Goals 

Bioinformatics and computational biology sit at the intersection of a variety of disciplines, including biology, computer 
science, mathematics, and statistics. Whereas bioinformatics is usually viewed as the development of novel analysis 
methods and software, computational biology focuses on applying those methods to data of scientific interest. 
Proficiency in both requires an understanding of the language of computing. This language is more like a collection of 
languages or dialects—of basic commands, analysis tools, Python, R, and so on. 

It may seem odd that so much of modern computational research is carried out on the comparatively ancient 
platform of a text-based interface. Graphical utilities have their place, particularly for data visualization, though even 
graphics are often best described in code. If we are to most efficiently communicate with computational machinery, we 
need to share with the machinery a language, or languages. We can share powerful dialects, complete with grammar, 
syntax, and even analogs for things like nouns (data) and verbs (commands and functions). 

This book aims to teach these basics of scientific computing: skills that even in fields such as computer science are 
often gained informally over a long period of time. This book is intended for readers who have passing familiarity with 
computing (for example, I assume the reader is familiar with concepts such as files and folders). While these concepts will 
likely be useful to researchers in many fields, I frame most of the discussion and examples in the analysis of biological data, 
and thus assume some basic biological knowledge, including concepts such as genes, genomes, and proteins. This book 
covers topics such as the usage of the command-line interface, installing and running bioinformatics software (without 
access to administrator privileges on the machine), basic analysis of data using built-in system tools, visualization of 
results, and introductory programming techniques in languages commonly used for bioinformatics. 

There are two related topics that are not covered in this book. First, I avoid topics related to “system 
administration,” which involves installing and managing operating systems and computer hardware, except where 
necessary. Second, I focus on computing for bioinformatics or computational biology, rather than bioinformatics itself. 
Thus this book largely avoids discussing the detailed mathematical models and algorithms underlying the software we 
will install and use. This is not to say that a good scientist can avoid mathematics, statistics, and algorithms—these are 
simply not the primary focus here. 



Bioinformatics and computational biology are quickly growing and highly interdisciplinary fields, bringing 
computational experts and biologists into close and frequent contact. To be successful, these collaborations require 
a shared vocabulary and understanding of diverse skill sets; some of this understanding and vocabulary are discussed 
here. Although most of this book focuses on the nuts and bolts of data analysis, some chapters focus more on topics 
specifically related to computer science and programming, giving newcomers a chance to understand and communicate 
with their computational colleagues as well as forming a basis for more advanced study in bioinformatics. 

Organization Organization 

This book is divided into three parts, the first covering the Unix/Linux command-line environment, the second 
introducing programming with Python, and the third introducing programming in R. Though there are some 
dependencies between parts (for example, chapter 21, “Bioinformatics Knick-knacks and Regular Expressions,” forgoes 
duplication of topics from chapter 11, “Patterns (Regular Expressions)”), readers sufficiently interested in only Python 
or only R should be able to start at those points. Nevertheless, the parts are given their order for a reason: command-
line efficiency introduces “computational” thinking and problem solving, Python is a general-purpose language that 
emphasizes good coding practice, and R specializes in certain types of analyses but is trickier to work with. 
Understanding these three general topics constitutes a solid basis for computational biologists in the coming decade or 
more. 

The text within each part follows, more or less, a Shakespearean plot, with the apex occurring somewhere in the 
middle (thus it is best to follow chapters within parts in order). For Part I, this apex occurs in chapter 6, “Installing 
(Bioinformatics) Software,” wherein we learn to both install and use some bioinformatics software, as well as collect the 
procedure into a reusable pipeline. In Part II, chapter 23, “Objects and Classes,” describes an involved custom analysis of 
a file in variant call format (VCF) using some principles in object-oriented design. Finally, the apex in Part III occurs in 
chapter 33, “Split, Apply, Combine,” which describes some powerful data processing techniques applied to a multifactor 
gene expression analysis. Following each apex are additional, more advanced topics that shouldn’t be overlooked. The 
second half of Part I covers the powerful paradigm of data pipelines and a variety of important command-line analysis 
tools such as awk and sed. Part II covers some topics related to software packages and concludes with an introduction 
to algorithms and data structures. Finally, Part III follows its apex with handy functions for manipulating and plotting 
complex data sets. 

Finally, the text includes an extensive number of examples. To get a proper feel for the concepts, it is highly 
recommended that you execute the commands and write the code for yourself, experimenting and trying variations as 
you feel necessary. It is difficult for even the sharpest of minds to absorb material of this nature by reading alone. 

Availability Availability 

This book is available both as an open-access online resource as well as in print. The open-access license used for 
the online version is the Creative Commons CC BY-NC-SA, or “Attribution-NonCommercial-ShareAlike” license. 
According to https://creativecommons.org/licenses/, “This license lets others remix, tweak, and build upon [the] work 
non-commercially, as long as they credit [the author] and license their new creations under the identical terms.” 

 

https://creativecommons.org/licenses/


 
The data files and many of the completed scripts mentioned within the text are available for direct download here: 

https://open.oregonstate.education/computationalbiology/back-matter/files/. 
For comments or to report errors, please feel free to contact oneilsh@gmail.com. Should any errata be needed post-

publication, they will appear in this preface of the online version. 

FAQ FAQ 

Your example for [topic] isn’t the standard way to do it. Why not? 

Many of the technologies covered in this book (and the communities that use them) are highly “opinionated.” Examples 
for the command-line and R include the “useless use of cat award” on the command-line, folk wisdom surrounding 
loops in R, and conventions for ggplot2 syntax. This is particularly true of Python, where certain syntax is said to be 
more “Pythonic” than other syntax, and some syntax is simply not shared between different versions of the language. 

There are a few reasons for breaks with convention. The first is that I’m always learning myself, and I’m not aware 
of all aspects of these technologies. More deliberately, I’ve attempted to create a resource that is consistent and provides 
a base for future learning. Ideally a student familiar with the strongly object-oriented nature of Python could map 
concepts to similar languages like Java or C++, and a student familiar with R’s functional aspects could explore other 
functional languages such as JavaScript. Given the complex histories of the command-line, R, and Python, as well as their 
predilections for language-specific syntactic sugar, this goal is sometimes at odds with standard practice. 

The code blocks appear to be rasterized images. Why? 

At the outset of writing this book, I knew we would be targeting multiple formats: print on demand, web, ebook, and so 
on. Additionally, during the editing process it spent some time as a Microsoft Word document. As code is very sensitive 
to formatting changes, this ensured that every version would be identical and correct, and it allowed me to easily overlay 
some blocks with visual annotations. Although I have scripts that automate the production of these images, it does have 
the downside of making adjustments more cumbersome. 

An additional feature–which some readers might consider a bug–is that it is not possible to copy-and-paste these 
code blocks from electronic versions of the book. In my experience copying and pasting code actively hinders the learning 
process, as it encourages skipping details of concepts and prevents learning from mistakes. 

mailto:oneilsh%40gmail.com
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1. Context 

Command Lines and Operating Systems Command Lines and Operating Systems 

Many operating systems, including Microsoft Windows and Mac OS X, include a command line interface (CLI) as 
well as the standard graphical user interface (GUI). In this book, we are interested mostly in command line interfaces 
included as part of an operating system derived from the historically natural environment for scientific computing, Unix, 
including the various Linux distributions (e.g., Ubuntu Linux and Red Hat Linux), BSD Unix, and Mac OS X. 

Even so, an understanding of modern computer operating systems and how they interact with the hardware and 
other software is useful. An operating system is loosely taken to be the set of software that manages and allocates the 
underlying hardware—divvying up the amount of time each user or program may use on the central processing unit 
(CPU), for example, or saving one user’s secret files on the hard drive and protecting them from access by other users. 
When a user starts a program, that program is “owned” by the user in question. If a program wishes to interact with 
the hardware in any way (e.g., to read a file or display an image to the screen), it must funnel that request through the 
operating system, which will usually handle those requests such that no one program may monopolize the operating 
system’s attention or the hardware. 

3
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The figure above illustrates the four main “consumable” resources available to modern computers: 

1. The CPU. Some computers have multiple CPUs, and some CPUs have multiple processing “cores.” Generally, if 
there are n total cores and k programs running, then each program may access up to n/k processing power per unit 
time. The exception is when there are many processes (say, a few thousand); in this case, the operating system must 
spend a considerable amount of time just switching between the various programs, effectively reducing the 
amount of processing power available to all processes. 

2. Hard drives or other “persistent storage.” Such drives can store ample amounts of data, but access is quite slow 
compared to the speed at which the CPU runs. Persistent storage is commonly made available through remote 
drives “mapped in” over the network, making access even slower (but perhaps providing much more space). 

3. RAM, or random access memory. Because hard drives are so slow, all data must be copied into the “working 
memory” RAM to be accessed by the CPU. RAM is much faster but also much more expensive (and hence 
usually provides less total storage). When RAM is filled up, many operating systems will resort to trying to use the 
hard drive as though it were RAM (known as “swapping” because data are constantly being swapped into and out 
of RAM). Because of the difference in speed, it may appear to the user as though the computer has crashed, when 
in reality it is merely working at a glacial pace. 

4. The network connection, which provides access to the outside world. If multiple programs wish to access the 

4 Part I: Introduction to Unix/Linux

4  |  Shawn T. O’Neil



network, they must share time on the connection, much like for the CPU. 

Because the software interfaces we use every day—those that show us our desktop icons and allow us to start other 
programs—are so omnipresent, we often think of them as part of the operating system. Technically, however, these are 
programs that are run by the user (usually automatically at login or startup) and must make requests of the operating 
system, just like any other program. Operating systems such as Microsoft Windows and Mac OS X are in reality 
operating systems bundled with extensive suites of user software. 

A Brief History A Brief History 

The complete history of the operating systems used by computational researchers is long and complex, but a brief 
summary and explanation of several commonly used terms and acronyms such as BSD, “open source,” and GNU may 
be of interest. (Impatient readers may at this point skip ahead, though some concepts in this subsection may aid in 
understanding the relationship between computer hardware and software.) 

Foundational research into how the physical components that make up computing machinery should interact with 
users through software was performed as early as the 1950s and 1960s. In these decades, computers were rare, room-
sized machines and were shared by large numbers of people. In the mid-1960s, researchers at Bell Labs (then owned 
by AT&T), the Massachusetts Institute of Technology, and General Electric developed a novel operating system known 
as Multics, short for Multiplexed Information and Computing Service. Multics introduced a number of important 
concepts, including advances in how files are organized and how resources are allocated to multiple users. 

In the early 1970s, several engineers at Bell Labs were unhappy with the size and complexity of Multics, and they 
decided to reproduce most of the functionality in a slimmed-down version they called UNICS—this time short for 
Uniplexed Information and Computing Service—a play on the Multics name but not denoting a major difference in 
structure. As work progressed, the operating system was renamed Unix. Further developments allowed the software to 
be easily translated (or ported) for use on computer hardware of different types. These early versions of Multics and 
Unix also pioneered the automatic and simultaneous sharing of hardware resources (such as CPU time) between users, as 
well as protected files belonging to one user from others—important features when many researchers must share a single 
machine. (These same features allow us to multitask on modern desktop computers.) 

During this time, AT&T and its subsidiary Bell Labs were prohibited by antitrust legislation from commercializing 
any projects not directly related to telephony. As such, the researchers licensed, free of cost, copies of the Unix software to 
any interested parties. The combination of a robust technology, easy portability, and free cost ensured that there were a 
large number of interested users, particularly in academia. Before long, many applications were written to operate on top 
of the Unix framework (many of which we’ll use in this book), representing a powerful computing environment even 
before the 1980s. 

In the early 1980s, the antitrust lawsuit against AT&T was settled, and AT&T was free to commercialize Unix, 
which they did with what we can only presume was enthusiasm. Unsurprisingly, the new terms and costs were not 
favorable for the largely academic and research-focused user base of Unix, causing great concern for many so heavily 
invested in the technology. 

Fortunately, a group of researchers at the University of California (UC), Berkeley, had been working on their own 
research with Unix for some time, slowly reengineering it from the inside out. By the end of AT&T’s antitrust suit, they 
had produced a project that looked and worked like AT&T’s Unix: BSD (for Berkeley Systems Distribution) Unix. BSD 
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Unix was released under a new software license known as the BSD license: anyone was free to copy the software free 
of charge, use it, modify it, and redistribute it, so long as anything redistributed was also released under the same BSD 
license and credit was given to UC Berkeley (this last clause was later dropped). Modern versions of BSD Unix, while 
not used heavily in academia, are regarded as robust and secure operating systems, though they consequently often lack 
cutting-edge or experimental features. 

In the same year that AT&T sought to commercialize Unix, computer scientist Richard Stallmann responded 
by founding the nonprofit Free Software Foundation (FSF), which was dedicated to the idea that software should be 
free of ownership, and that users should be free to use, copy, modify, and redistribute it. He also initiated the GNU 
operating system project, with the goal of re-creating the Unix environment under a license similar to that of BSD Unix. 
(GNU stands for GNU’s Not Unix: a recursive, self-referencing acronym exemplifying the peculiar humor of computer 
scientists.) 

The GNU project implemented a licensing scheme that differed somewhat from the BSD license. GNU software 
was to be licensed under terms created specifically for the project, called the GPL, or GNU Public License. The GPL 
allows anyone to use the software in any way they see fit (including distributing for free or selling any program built 
using it), provided they also make available the human-readable code that they’ve created and license it under the GPL 
as well (the essence of “open source”

1
). It’s as if the Ford Motor Company gave away the blueprints for a new car, with 

the requirement that any car designed using those blueprints also come with its own blueprints and similar rules. For this 
reason, software written under the GPL has a natural tendency to spread and grow. Ironically and ingeniously, Richard 
Stallmann and the BSD group used the licensing system, generally intended to protect the spread of intellectual property 
and causing the Unix crisis of the 1980s, to ensure the perpetual freedom of their work (and with it, the Unix legacy). 

While Stallmann and the FSF managed to re-create most of the software that made up the standard Unix 
environment (the bundled software), they did not immediately re-create the core of the operating system (also called the 
kernel). In 1991, computer science student Linus Torvalds began work on this core GPL-licensed component, which he 
named Linux (pronounced “lin-ucks,” as prescribed by the author himself). Many other developers quickly contributed 
to the project, and now Linux is available in a variety of “distributions,” such as Ubuntu Linux and Red Hat Linux, 
including both the Linux kernel and a collection of Unix-compatible GPL (and occasionally non-GPL) software. Linux 
distributions differ primarily in what software packages come bundled with the kernel and how these packages are 
installed and managed. 

Today, a significant number of software projects are issued under the GPL, BSD, or similar “open” licenses. These 
include both the Python and R projects, as well as most of the other pieces of software covered in this book. In fact, 
the idea has caught on for noncode projects as well, with many documents (including this one) published under open 
licenses like Creative Commons, which allow others to use materials free of charge, provided certain provisions are 
followed. 

1. Modern software is initially written using human-readable “source code,” then compiled into machine-readable software. Given 
source code, it is easy to produce software, but the reverse is not necessarily true. The distinctions between the BSD and GPL 
licenses are thus significant. 
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2. Logging In 

This book assumes that you have access to an account on a Unix-like operating system (such as Linux) that you can 
use directly or log in to remotely via the SSH (Secure-SHell) login protocol. Accounts of this type are frequently 
available at universities and research institutions, though you may also consider using or installing Linux on your own 
hardware. Additionally, the CyVerse Collaborative provides free command-line access to biological researchers through 
their Atmosphere system; see the end of this chapter for information on how to access this system using your web 
browser. 

Before explaining anything in detail, let’s cover the actual process of logging in to a remote computer via SSH. To 
do this, you will need four things: 

1. Client software on your own computer. 

2. The address of the remote computer, called its “host name,” or, alternatively, its IP (Internet protocol) address. 

3. A username on the remote computer with which to log in. 

4. A corresponding password on the remote machine with which to log in. 

If you are using a computer running Mac OS X, the client software will be command line oriented and is accessible from 
the Terminal utility. The Terminal is located in the Utilities folder, inside of the Applications folder.

1 

In the window that opens up, you will see a prompt for entering commands. On my computer it looks like this: 

1. The style of your terminal session likely won’t look like what we show in this book, but you can customize the look of your 
terminal using preferences. We’ll be spending a lot of time in this environment! 

7
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At this prompt, enter the following: ssh <username>@<hostname or ip>. Note that you don’t actually type the angle 
brackets; angle brackets are just some commonly used nomenclature to indicate a field you need to specify. To log 
in to my account with username oneils at the Oregon State University’s main Linux computer 
(shell.onid.oregonstate.edu), for example, I would type: 

To log in to a CyVerse instance with IP address 128.196.64.193 (and username oneils), however, I would use: 

After pressing Enter to run the command, you may be asked to “verify the key fingerprint” of the remote computer. 
Each computer running the SSH login system uses a unique pair of “keys” for cryptographic purposes: the public key is 
accessible to the world, and only the remote computer knows the private key. Messages encrypted with the public key can 
only be decrypted with the private key—if you cared to verify with the owner of the remote computer that the public key 
“fingerprint” was correct, then you could be assured that no one between you and the correct remote computer could 
see your login session. Unless you have a reason to suspect espionage of some sort, it’s usually safe to enter yes at this 
prompt. Normally, you will be prompted once for each fingerprint, unless your local computer forgets the fingerprint or 
the system administrator changes it (or there is indeed an espionage attempt!). 

In any case, you will next be asked to enter your password. Note that as you type the password, you won’t see any 
characters being shown on the screen. This is another security feature, so that no passersby can see the contents or even 
the length of your password. It does make password entry more difficult, however, so take care when entering it. After 
logging in to a remote computer, the command prompt will usually change to reflect the login: 

If you are running Microsoft Windows, you will need to download the client SSH software from the web, install 
it, and run it. One option is PuTTy.exe, which is available at http://www.chiark.greenend.org.uk/~sgtatham/putty/
download.html. 

Once downloaded, it will need to be installed and run. In the Host Name (or IP address) field, enter the host 
name or IP address, as discussed above. Leave the port number to the default of 22, and click Open. 
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If you have successfully entered the host name or IP, you will be prompted for your username and password (and 
potentially to verify the key fingerprint). 

Finally, if you are already running a Linux or other Unix-like operating system, the steps for logging in remotely via 
SSH will be similar to those for Mac OS X, though you’ll need to find the Terminal utility on your own. If you are using 
CyVerse Atmosphere, then you can utilize a terminal window right in the web browser by clicking on the Access By Shell 
tab or Open Web Shell link. In all cases, the text-based interface will be identical, because the remote computer, rather 
than your local desktop, determines the display. 
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Logging in Further, Changing Your Password Logging in Further, Changing Your Password 

Depending on where you are logging in to, you may not be done with the login process. At many universities and 

research centers, the administrator would prefer that you not do any work on the computer you initially logged in to, 

because that computer may be reserved just for initial logins by dozens or even hundreds of researchers. As a result, 

you may need to “check out” a secondary, internal computer for your actual computational needs. Sometimes this can 

be done by SSHing on the command line to the secondary computer, but at some institutions, you will be asked to run 

other commands for this checkout process. Check with your local system administrator. 

In addition, you may want to change your password after your initial login. Running the passwd command usually 

suffices, and you will be prompted to enter both your old and new passwords. As usual, for security reasons, no 

characters will appear when entered. Further, good system administrators never ask for your password, and they are 

unable to recover it if it gets lost. The best administrators can do is reset it to a temporary one. 

SSH: Secure Shell SSH: Secure Shell 

One might rightfully ask: what did we just accomplish with all of this logging in? On our desktop computer, we used a 
program called a client to connect to another program, called a server. A server is a program that waits in the background 
for another program (a client) to connect to it.

2
 This connection often happens over a network, but connections can 

occur between programs on the same computer as well. A client is a program that is generally run by a user on an as-
needed basis, and it connects to a server. While it’s more correct to define a server as a program that waits for a connection 
from a client, colloquially, computers that primarily run server programs are also referred to as servers. 

The SSH server and the SSH client communicate using what is known as the SSH “protocol,” simply an agreed-upon 
format for data transfer. The SSH protocol is quite lightweight: because all of the actual computation happens on the 
remote machine, the only information that needs to be transferred to the server are the keystrokes typed by the user, and 
the only information that needs to be transferred to the client are the characters to be displayed to the user. As its name 
implies, the SSH protocol is very secure owing to its reliance on advanced public-key cryptography.

3 

The SSH server may not be the only server program running on the remote computer. For example, web servers 
allow remote computers to serve web pages to clients (like Mozilla Firefox and OS X’s Safari) using HTTP (hypertext 

2. Sometimes server programs are called “daemons,” terminology that evokes Maxwell’s infamous “demon,” an impossible theoretical 
entity working in the background to sort gaseous molecules. 

3. The public-key infrastructure currently in use by SSH is only secure as far as anyone in the academic sphere suspects: the 
mathematics underlying the key exchange protocol haven’t yet been proven unbreakable. Most mathematicians, however, suspect 
that they are unbreakable. On the other hand, bugs have been known to occur in the software itself, though they are usually fixed 
promptly when found. 
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transfer protocol). But because there is only one host name or IP address associated with the remote computer, an extra 
bit (byte, actually) of information is required, known as the “port number.” By way of analogy, if the remote computer 
were an apartment building, port numbers would be apartment numbers. By convention, SSH connects on port 22 
and HTTP connects on port 80, although these ports can be changed by administrators who wish to run their services 
in nonstandard ways. This explains why port 22 is specified when connecting via Putty (and is the default when using 
command-line ssh, but it can be adjusted with a parameter). 

Other protocols of note include FTP (file transfer protocol) and its secure version, SFTP (secure file transfer protocol), 
designed specifically for transferring files. 

Command-Line Access with CyVerse Atmosphere Command-Line Access with CyVerse Atmosphere 

Readers of this book will ideally have access to a Unix-based operating system (e.g., Linux) with command-line access. 
This is often the case for individuals at universities and other research or educational institutions. Many users have access 
to such systems but don’t even realize it, as the service is not often widely advertised. 

For those without institutional access, there are a few alternatives. First, Mac OS X machines are themselves Unix-
based and come with a command-line interface (via the Terminal application), though the command-line tools differ 
vary slightly from the GNU-based tools found on most Linux distributions. A web search for “OS-X GNU core utils” 
will turn up some instructions for remedying this discrepancy. Second, it is possible to install a Linux distribution (like 
Ubuntu Linux) on most desktops and laptops by configuring the computer to “dual boot” Linux and the primary 
operating system. Alternatively, Linux distributions can be installed within “virtual machine” software, like VirtualBox 
(http://virtualbox.org). 

A rather exciting, relatively recent addition to these options is the Atmosphere system, run by the CyVerse 
(previously iPlant) collaborative, a cyber-infrastructure project founded in 2008 to support the computational needs 
of researchers in the life sciences. CyVerse as a whole hosts a variety of projects, from educational resources to guided 
bioinformatics analyses. The Atmosphere system is the most relevant for us here, as it provides cloud-based access to 
systems running Linux. To get started using one of these systems, navigate to http://cyverse.org/atmosphere and click 
on the link for “Create an Account” or “Launch Atmosphere.” If you need to create a new account, do so—CyVerse 
requests a variety of information for account creation to help gauge user interest and garner funding support. You may 
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also need to request special access to the Atmosphere system through your account on the Atmosphere homepage, as 
Atmosphere is more resource intensive than other tools provided by CyVerse. 

After clicking on the “Launch” link, you will have the opportunity to enter your username and password (if you have 
been granted one). 

The Atmosphere system works by divvying up clusters of physical computers (located at one of various providers 
around the country) into user-accessible virtual machines of various sizes. When performing a computation that requires 
many CPU cores, for example, one might wish to access a new “instance” with 16 CPUs, 64 gigabytes (GB) of RAM, 
and 800 GB of hard disk space. On the other hand, for learning purposes, you will likely only need a small instance with 
1 CPU and 4 GB of RAM. This is an important consideration, as CyVerse limits users to a certain quota of resources. 
Users are limited by the number of “atmosphere units” (AUs) they can use per month, defined roughly as using a 
single CPU for an hour. Users are also limited in the total number of CPUs and total amount of RAM they can use 
simultaneously. 

After determining the instance size needed, one needs to determine which operating system “image” should be 
loaded onto the virtual machine. All users can create such images—some users create images with software preinstalled 
to analyze RNA sequencing data, perform de novo genome assembly, and so on. We’ve created an image specifically to 
accompany this book: it is fairly simple and includes NCBI Blast+ (the most modern version of BLAST produced by the 
National Center for Biotechnology Information), R, Python, git, and a few other tools. It is called “APCB Image.” 

To activate a new instance with this image, click on the “New -> Instance” button in the Atmosphere interface. 
You may first need to create a “Project” for the instance to live in. You can search for “APCB Image” in the search box of 
instance types. Here’s the view of my APCB project after creating and starting the instance: 
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After creating the instance, it may be in one of several states; usually it will be either “running” (i.e., available for login 
and consuming resources) or “suspended” (effectively paused and not consuming resources). The interface for a given 
instance has buttons for suspending or resuming a suspended instance, as well as buttons for “Stop” (shutting an instance 
down), “Reboot” (rebooting the instance), and “Delete” (removing the instance and all data stored in it). 
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Once an instance is up and running, there are several ways to access it. First, it is accessible via SSH at the IP address 
provided. Note that this IP address is likely to change each time the instance is resumed. Above, the IP address is shown 
as 128.196.64.36, so we could access it from the OS X Terminal application: 

[soneil@mbp ~]$ ssh oneils@128.196.64.36 

The Atmosphere Web interface also provides an “Open Web Shell” button, providing command-line access right 
in your browser. When you are done working with your Atmosphere instance, it’s important to suspend the instance, 
otherwise you’ll be wasting computational resources that others could be using (as well as your own quota). 

Logging Out Logging Out 

Once finished working with the remote computer, we should log out of the SSH session. Logging out is accomplished by 
running the command exit on the command line until returned to the local desktop or the SSH client program closes 
the connection. Alternatively, it suffices to close the SSH client program or window—SSH will close the connection, and 
no harm will be done. Note, however, than any currently executing program will be killed on logout. 

If you are working on an Atmosphere instance or similar remotely hosted virtual machine, it’s a good idea to also 
suspend the instance so that time spent not working isn’t counted against your usage limit. 
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Exercises Exercises 

1. Practice logging in to and back out of the remote machine to which you have access. 

2. Change your password to something secure but also easy to remember. Most Linux/Unix systems do not 

limit the length of a password, and longer passwords made up of collections of simple words are more secure 

than short strings of random letters. For example, a password like correcthorsebatterystaple is much more secure 

than Tr0ub4dor&3.
4 

3. A program called telnet allows us to connect to any server on any port and attempt to communicate with it 

(which requires that we know the correct messages to send to the server for the protocol). Try connecting with 

telnet to port 80 of google.com by using the “Telnet” radio button in PuTTY if on Windows, or by running telnet 

google.com 80 in the Terminal on OS X. Issue the command GET http://www.google.com/ to see the raw data returned 

by the server. 

4. These example passwords were drawn from a webcomic on the topic, located at http://xkcd.com/936/. 
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3. The Command Line and Filesystem 

Computer users are used to interacting with a “user interface.” On many computers, this interface displays the desktop 
or task bar, icons, file previews, and so on. It takes input from the user in the form of keystrokes, mouse movements, and 
in some cases voice commands, and presents the results of the user’s actions. Perhaps most importantly, the user interface 
is itself a program (it is software running on a computer, after all) we interact with to execute other programs. 

The same thing happens when we use SSH to log in to a remote machine, or open up the Terminal application on 
a Linux or OS X desktop. In this case, however, instead of interacting with a GUI (Graphical User Interface), we interact 
with a CLI (Command-Line Interface), or shell, which does the job of displaying the command prompt. The shell is 
the software we interact with on the command line. In some sense it is the command line, as it displays the command 
prompt, accepts input via typed text, runs other programs on our behalf, and displays the results textually. A command 
prompt is a line of status information provided in a text-based interface, indicating that commands are to be entered and 
run by pressing Enter. Command prompts often include information about what computer or network one is logged in 
to, the username one is logged in with, and an indication of the “present working directory” (discussed below). 

The first command that we’ll learn for the Linux command line is echo, which prints the parameters we give it. 

oneils@atmosphere ~$ echo hello there 

hello there 

Let’s break down the command prompt and the program that we ran, which consisted of a program name and several 
parameters, separated by spaces. In the figure below, the command prompt consists of oneils@atmosphere ~$. 

 
The echo program might seem absurdly simple, as it just prints its parameters. But it is quite useful in practice and 

as a learning tool. For example, we can use echo to print not only simple strings, but also the contents of an environment 
variable, which is a variable bit of information (usually holding strings of text) that is accessible by the shell and other 
programs the user runs. Accessing the contents of an environment variable requires prefixing it with a $. 

The shell (and other programs) commonly uses environment variables to store information about your login 
session, much like how, in a GUI interface, a “variable” remembers the wallpaper picture for the desktop. Environment 
variables control many aspects of the command-line environment, and so they are quite important. Many of these are set 
automatically when we log in. For example, $USER. 

oneils@atmosphere ~$ echo $USER 

oneils 
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Setting Environment Variables, Dealing with Spaces Setting Environment Variables, Dealing with Spaces 

Setting environment variables is something we’ll have to know how to do eventually, but learning now will give us an 
opportunity to discuss some of the finer points of how the shell interprets our commands. In bash, the most commonly 
used shell, setting environment variables is done with the export command, taking as the first parameter what the 
variable name should be (without the $) and what it should be set to. 

Because export expects as its first parameter the variable description, we’ll get an odd result if we include a space in our 
greeting, as the shell uses spaces to separate parameters. 

In the above, GREETING=hello was taken to be first parameter, and the second, everyone, was ignored by the export 
command. There are at least two ways to get around this problem. The first is to prefix any character that the shell deems 
special (like spaces) with a backslash, or \, thereby “escaping” it so that it is ignored by the shell as a special character. 
Alternatively, we can wrap a string in quotation marks to have it treated literally by the shell. 

oneils@atmosphere ~$ export GREETING=hello\ everyone 

oneils@atmosphere ~$ echo $GREETING 

hello everyone 

oneils@atmosphere ~$ export GREETING='hello everyone' 

oneils@atmosphere ~$ echo $GREETING 

hello everyone 

The primary difference between using single and double quotation marks is whether variables inside the string are 
expanded to their contents or not. 

Note that when setting an environment variable, we do not use the $. By convention, environment variable names 
contain only capital letters.

1
 Further, this expansion (from environment variables to their contents) is done by the shell; 

the command itself is changed from export GREETING="hello $USER" to export GREETING="hello oneils". 

1. There is another type of variable known as a “shell variable,” which operates similar to environment variables. There are some 
differences: (1) by convention, these have lowercase names; (2) they are set differently, in bash by using declare instead of export; 
and (3) they are available only to the shell, not other programs that you might run. The distinction between these two types can 
cause headaches on occasion, but it isn’t crucial enough to worry about now. 
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Alternative Shells Alternative Shells 

There is a special environment variable, $0, that generally holds the name of the currently running program. In the case 
of our interaction with the command line, this would be the name of the interface program itself, or shell. 

The above command illustrates that we are running bash, the most commonly used shell.
2 

Depending on the system you are logged in to, running echo $0 may not report bash. The reason is (although 
it may seem odd) that there are a variety of shells available, owing to the long history of Unix and Linux. In the 
beginning, the interfaces were quite simple, but over time better interfaces/shells were developed that included new 
features (consider how the “Start” menu has changed over the years on Microsoft Windows versions). We can run a 
different shell, if it is installed, by simply running it like any other program. The tcsh shell, itself an outgrowth of the csh 
shell, is sometimes the default instead of bash. (Both csh and tcsh are older than bash.) 

When running tcsh, the setenv command takes the place of export, and the syntax is slightly different. 

Although bash and similar shells like dash and zsh are most commonly found (and recommended), you might find 
yourself needing to use a shell like csh or its successor, tcsh. In this book, the assumption is that you are using bash, 
but when different commands would be needed to accomplish the same thing in the older tcsh or csh, a footnote will 
explain. 

To get back to bash from tcsh, a simple exit will suffice. 

In general, it can be difficult to determine which shell is running on the basis of the look of the command prompt; using 
echo $0 right on the command line is the most reliable way. 

Files, Directories, and Paths Files, Directories, and Paths 

With some of the more difficult concepts of the shell out of the way, let’s turn to something a bit more practical: 
understanding how directories (also known as folders) and files are organized. 

Most filesystems are hierarchical, with files and directories stored inside other directories. In Unix-like operating 

2. Because $0 holds the name of the currently running program, one might expect echo $0 to result in echo being reported, but this 
isn’t the case. As mentioned previously, the shell replaces the environment variables with their contents before the command is 
executed. 
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systems, the “top level” directory in which everything can be found is known as / (a forward slash). This top-level 
directory is sometimes called the root of the filesystem, as in the root of the filesystem tree. Within the root directory, 
there are commonly directories with names like bin, etc, media, and home; the last of these is often where users will store 
their own individual data.

3 

Each file and directory in the filesystem can be uniquely identified by its absolute path, a unique locator for a file or 
directory in the filesystem, starting with the root folder / and listing each directory on the way to the file. In the figure 
above, the absolute path to the todo_list.txt file is /home/oneils/documents/todo_list.txt. 

Note that an absolute path must start with the leading forward slash, indicating that the path starts at the root folder 
/, and contain a valid path of folder names from there. (If you prefer to consider / as a folder name itself, an absolute 
path can also be specified like //home/oneils/documents/todo_list.txt, though using two forward slashes is considered 
redundant.) 

Every user normally has a home directory, serving as a personal storage locker for files and directories. (Often the 
amount of space available this location is not as much as users would like.) The shell and other programs can find out 
the absolute path to your home directory via the environment variable $HOME; try running echo $HOME to see the absolute 
path to your own home directory. 

3. Computer scientists and mathematicians usually draw trees upside down. One theory is that trees are easier to draw upside down 
when working on a blackboard, the traditional (and still considered by many the best) medium of exposition for those fields. Our 
language reflects this thinking: when we move a file, we move it “down” into a subdirectory, or “up” into a directory “above” the 
current one. 
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What about special devices like CD-ROM drives and network drives? On a Windows operating system, these 
would get their own “root” directory with names like D: and E: (with the main hard drive usually having the name C:). 
On Unix-based operating systems, there is only ever one filesystem hierarchy, and the top level is always /. Special devices 
like CD-ROM drives and network drives are mounted somewhere in the filesystem. It may be that the directory /media 
remains empty, for example, but when a CD-ROM is inserted, a new directory may appear inside that directory, perhaps 
with the absolute path /media/cdrom0, and the files on the CD-ROM will appear in that location. 

Determining how and where such devices are mounted is the job of the system administrator. On OS X machines, 
inserted devices appear in /Volumes. If you are logged in to a large computational infrastructure, your home directory 
likely isn’t located on the internal hard drive of the remote computer, but rather mounted from a network drive present 
on yet another remote computer. This configuration allows users to “see” the same filesystem hierarchy and files no 
matter which remote computer they happen to log in to, if more than one is available. (For example, even /home might 
be a network mount, and so all users’ home directories might be available on a number of machines.) 

Getting around the Filesystem Getting around the Filesystem 

It is vitally important to understand that, as we are working in the command-line environment, we always have a “place,” 
a directory (or folder) in which we are working called the present working directory, or PWD. The shell keeps track of 
the present working directory in an environment variable, $PWD. 

When you first log in, your present working directory is set to your home directory; echo $PWD and echo $HOME will 
likely display the same result. There is also a dedicated program for displaying the present working directory, called pwd. 

We can list the files and directories that are stored in the present working directory by using the ls command. 

This command reveals that I have a number of directories in my home directory (/home/oneils) with names like Music 
and Pictures (helpfully colored blue) and a file called todo_list.txt. 

We can change the present working directory—that is, move to another directory—by using the cd command, 
giving it the path that we’d like to move to. 

Notice that the command prompt has changed to illustrate the present working directory: now it shows 
oneils@atmosphere /home$, indicating that I am in /home. This is a helpful reminder of where I am in the filesystem as 
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I work. Previously, it showed only ~, which is actually a shortcut for $HOME, itself a shortcut for the absolute path to my 
home directory. Consequently, there are a number of ways to go back to my home directory: cd /home/oneils, or cd 
$HOME, or cd ~, or even just cd with no arguments, which defaults to moving to $HOME. 

Relative Paths, Hidden Files, and Directories Relative Paths, Hidden Files, and Directories 

It isn’t always necessary to specify the full, absolute path to locate a file or directory; rather, we can use a relative path. A 
relative path locates a file or directory relative to the present working directory. If the present working directory is /home/
oneils, for example, a file located at the absolute path /home/oneils/Pictures/profile.jpg would have relative path 
Pictures/profile.jpg. For the file /home/oneils/todo_list.txt, the relative path is just todo_list.txt. If the present 
working directory was /home, on the other hand, the relative paths would be oneils/Pictures/profile.jpg and oneils/
todo_list.txt. 

Because relative paths are always relative to the present working directory (rather than the root directory /), they 
cannot start with a forward slash, whereas absolute paths must start with a leading forward slash. This distinction 
occasionally confuses new users. 

We can use the cd command with relative paths as well, and this is most commonly done for directories present in 
the current working directory, as reported by ls. In fact, both relative and absolute paths are allowed wherever a file or 
directory needs to be specified. 

A few notes about moving around directories: (1) Unix-like operating systems are nearly always case sensitive, for 
commands, parameters, and file and directory names. (2) Because of the way spaces are treated on the command line, it is 
uncommon to see spaces in file or directory names. The command cd mydocuments is much easier to type than cd my\ 

documents or cd 'my documents'. (3) If you forget to specify cd before specifying a path, a cryptic permission denied 

error will occur, rather than an error specific to the lack of cd command. 
By default, when running the ls program to list the contents of the present working directory, all files and 

directories that start with a . are hidden. To see everything including the hidden files, we can add the -a flag to ls. 
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It turns out there are quite a few hidden files here! Many of those starting with a ., like .bash_login, are actually 
configuration files used by various programs. We’ll spend some time with those in later chapters. 

On the topic of ls, there are many additional parameters we can give to ls: include -l to show “long” file 
information including file sizes, and -h to make those file sizes “human readable” (e.g., 4K versus 4,196 bytes). For ls, 
we can specify this combination of options as ls -l -a -h (where the parameters may be given in any order), or with a 
single parameter as ls -lah, though not all utilities provide this flexibility. 

Some of these columns of information are describing the permissions associated with the various files and directories; 
we’ll look at the permissions scheme in detail in later chapters. 
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When using ls -a, we see two “special” directories: . and .. are their names. These directories don’t really exist per se 
but are instead shortcuts that refer to special locations relative to the directory they are contained in. The . directory is 
a shortcut for the same directory it is contained in. Colloquially, it means “here.” The .. directory is a shortcut for the 
directory above the directory containing it. Colloquially, it means “up.” 

Every directory has these “virtual” links, and they can be used as relative paths themselves or in relative or absolute 
paths. Here, for example, we can cd . to stay where we are, or cd .. to go up one directory: 
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If we like, we can go up two directories with cd ../..: 

We can even use . and .. in longer relative or absolute paths (number 2 in the figure below illustrates the relatively odd 
path of /media/./cdrom0, which is identical to /media/cdrom0). 

Exercises Exercises 

1. Practice moving about the filesystem with cd and listing directory contents with ls, including navigating by 

relative path, absolute path, . and ... Use echo $PWD and pwd frequently to list your present working directory. 

Practice navigating home with cd ~, cd $HOME, and just cd with no arguments. You might find it useful to draw a 

“map” of the filesystem, or at least the portions relevant to you, on a piece of paper. 

2. Without explicitly typing your username, create another environment variable called $CHECKCASH, such that 

when echo $CHECKCASH is run, a string like oneils has $20 is printed (except that oneils would be your username and 

should be set by reading from $USER). 
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3. The directory /etc is where many configuration files are stored. Try navigating there (using cd) using an 

absolute path. Next, go back home with cd $HOME and try navigating there using a relative path. 

4. What happens if you are in the top-level directory / and you run cd ..? 

5. Users’ home directories are normally located in /home. Is this the case for you? Are there any other home 

directories belonging to other users that you can find, and if so, can you cd to them and run ls? 
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4. Working with Files and Directories 

Now that we know how to locate files and directories in the filesystem, let’s learn a handful of important tools for 
working with them and the system in general. 

Viewing the Contents of a (Text) File Viewing the Contents of a (Text) File 

Although there are many tools to view and edit text files, one of the most efficient for viewing them is called less, which 
takes as a parameter a path to the file to view, which of course may just be a file name in the present working directory 
(which is a type of relative path).

1 

The invocation of less on the file p450s.fasta opens an “interactive window” within the terminal window, wherein we 
can scroll up and down (and left and right) in the file with the arrow keys. (As usual, the mouse is not very useful on the 
command line.) We can also search for a pattern by typing / and then typing the pattern before pressing Enter. 

When finished with less, pressing q will exit and return control to the shell or command line. Many of the text formats 
used in computational biology include long lines; by default, less will wrap these lines around the terminal so they 
can be viewed in their entirety. Using less -S will turn off this line wrapping, allowing us to view the file without any 
reformatting. Here’s what the file above looks like when viewed with less -S p450s.fasta: 

Notice that the first long line has not been wrapped, though we can still use the arrow keys to scroll left or right to see the 
remainder of this line. 

1. There is a similar program called more, originally designed to show “more” of a file. The less program was developed as a more full-
featured alternative to more, and was so named because “less is more.” 

27
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Creating New Directories Creating New Directories 

The mkdir command creates a new directory (unless a file or directory of the same name already exists), and takes as a 
parameter the path to the directory to create. This is usually a simple file name as a relative path inside the present working 
directory. 

Move or Rename a File or Directory Move or Rename a File or Directory 

The mv utility serves to both move and rename files and directories. The simplest usage works like mv <source_path> 

<destination_path>, where <source_path> is the path (absolute or relative) of the file/directory to rename, and 
<destination_path> is the new name or location to give it. 

In this example, we’ll rename p450s.fasta to p450s.fa, move it into the projects folder, and then rename the 
projects folder to projects_dir. 

Because mv serves a dual role, the semantics are important to remember: 

• If <destination_path> doesn’t exist, it is created (so long as all of the containing folders exist). 

• If <destination_path> does exist: 

◦ If <destination_path> is a directory, the source is moved inside of that location. 

◦ If <destination_path> is a file, that file is overwritten with the source. 

Said another way, mv attempts to guess what it should do, on the basis of whether the destination already exists. Let’s 
quickly undo the moves above: 

A few other notes: First, when specifying a path that is a directory, the trailing / is optional: mv projects_dir/ 

projects is the same as mv projects_dir projects if projects_dir is a directory (similarly, projects could have been 
specified as projects/). Second, it is possible to move multiple files into the same directory, for example, with mv 
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p450s.fasta todo_list.txt projects. Third, it is quite common to see . referring to the present working directory as 
the destination, as in mv ../file.txt . for example, which would move file.txt from the directory above the present 
working directory (..) into the present working directory (., or “here”). 

Copy a File or Directory Copy a File or Directory 

Copying files and directories is similar to moving them, except that the original is not removed as part of the operation. 
The command for copying is cp, and the syntax is cp <source_path> <destination_path>. There is one caveat, however: 
cp will not copy an entire directory and all of its contents unless you add the -r flag to the command to indicate the 
operation should be recursive. 

Forgetting the -r when attempting to copy a directory results in an omitting directory warning. 
It is possible to simultaneously copy and move (and remove, etc.) many files by specifying multiple sources. For 

example, instead of cp ../todo_list.txt ., we could have copied both the to-do list and the p450s.fasta file with the 
same command: 

Remove (Delete) a File or Directory Remove (Delete) a File or Directory 

Files may be deleted with the rm command, as in rm <target_file>. If you wish to remove an entire directory and 
everything inside, you need to specify the -r flag for recursive, as in rm -r <target_dir>. Depending on the 
configuration of your system, you may be asked “are you sure?” for each file, to which you can reply with a y. To avoid 
this checking, you can also specify the -f (force) flag, as in rm -r -f <target_dir> or rm -rf <target_dir>. Let’s create 
a temporary directory alongside the file copies from above, inside the projects folder, and then remove the p450s.fasta 
file and the todo_list.txt file as well as the temporary folder. 

Beware! Deleted files are gone forever. There is no undo, and there is no recycle bin. Whenever you use the rm 
command, double-check your syntax. There’s a world of difference between rm -rf project_copy (which deletes the 
folder project_copy) and rm -rf project _copy (which removes the folders project and _copy, if they exist). 
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Checking the Size of a File or Directory Checking the Size of a File or Directory 

Although ls -lh can show the sizes of files, this command will not summarize how much disk space a directory and 
all of its contents take up. To find out this information, there is the du (disk usage) command, which is almost always 
combined with the -s (summarize) and -h (show sizes in human-readable format) options. 

As always, . is a handy target, here helping to determine the file space used by the present working directory. 

Editing a (Text) File Editing a (Text) File 

There is no shortage of command-line text editors, and while some of them—like vi and emacs—are powerful and can 
enhance productivity in the long run, they also take a reasonable amount of time to become familiar with. (Entire books 
have been written about each of these editors.) 

In the meantime, a simple text editor available on most systems is nano; to run it, we simply specify a file name to 
edit: 

If the file doesn’t exist already, it will be created when it is first saved, or “written out.” The nano editor opens up an 
interactive window much like less, but the file contents can be changed. When done, the key sequence Control-o will 
save the current edits to the file specified (you’ll have to press Enter to confirm), and then Control-x will exit and return 
control to the command prompt. This information is even presented in a small help menu at the bottom. 

Although nano is not as sophisticated as vi or emacs, it does support a number of features, including editing multiple 
files, cut/copy/paste, find and replace by pattern, and syntax highlighting of code files. 

Code files are the types of files that we will usually want to edit with nano, rather than essays or short stories. By 
default, on most systems, nano automatically “wraps” long lines (i.e., automatically presses Enter) if they would be longer 
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than the screen width. Unfortunately, this feature would cause an error for most lines of code! To disable it, nano can be 
started with the -w flag, as in nano -w todo_list.txt. 

Command-Line Efficiency Command-Line Efficiency 

While the shell provides a powerful interface for computing, it is certainly true that the heavy reliance on typing can be 
tedious and prone to errors. Fortunately, most shells provide a number of features that dramatically reduce the amount 
of typing needed. 

First, wildcard characters like * (which matches any number of arbitrary characters) and ? (which matches any 
single arbitrary character) allow us to refer to a group of files. Suppose we want to move three files ending in .temp into a 
temp directory. We could run mv listing the files individually: 

Alternatively, we could use mv file*.temp temp; the shell will expand file*.temp into the list of files specified above 
before passing the expanded list to mv.

2 

Similarly, we could move only fileA.temp and fileB.temp (but not fileAA.temp) using mv file?.tmp temp, because the 
? wildcard will only match one of any character. These wildcards may be used anywhere in an absolute or relative path, 
and more than one may be used in a single path. For example, ls /home/*/*.txt will inspect all files ending in .txt in all 
users’ home directories (if they are accessible for reading). 

Second, if you want to rerun a command, or run a command similar to a previously run command, you can access 
the command history by pressing the up arrow. Once you’ve identified which command you want to run or modify, you 
can modify it using the left and right arrows, backspace or delete, and then typing and pressing Enter again when you 
are ready to execute the modified command. (You don’t even need to have the cursor at the end of the line to press Enter 
and execute the command.) For a given login session, you can see part of your command history by running the history 
command. 

Finally, one of the best ways to navigate the shell and the filesystem is by using tab completion. When typing a 
path (either absolute or relative), file or directory name, or even a program name, you can press Tab, and the shell will 
autocomplete the portion of the path or command, up until the autocompletion becomes ambiguous. When the options 
are ambiguous, the shell will present you with the various matching options so that you can inspect them and keep 
typing. (If you want to see all options even if you haven’t started typing the next part of a path, you can quickly hit Tab 
twice.) You can hit Tab as many times as you like while entering a command. Expert command-line users use the Tab key 
many times a minute! 

2. This is important to consider when combining rm with wildcards; the commands rm -rf *.temp and rm -rf * .temp are very different! 
The latter will remove all files in the present directory, while the former will only remove those ending in .temp. 
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Getting Help on a Command or Program Getting Help on a Command or Program 

Although we’ve discussed a few of the options(also known as arguments, or flags) for programs like ls, cp, nano, and 
others, there are many more you might wish to learn about. Most of these basic commands come with “man pages,” short 
for “manual pages,” that can be accessed with the man command. 

This command opens up a help page for the command in question (usually in less or a program similar to it), showing 
the various parameters and flags and what they do, as well as a variety of other information such as related commands and 
examples. For some commands, there are also “info” pages; try running info ls to read a more complete overview of ls. 
Either way, as in less, pressing q will exit the help page and return you to the command prompt. 

Viewing the Top Running Programs Viewing the Top Running Programs 

The top utility is invaluable for checking what programs are consuming resources on a machine; it shows in an interactive 
window the various processes (running programs) sorted by the percentage of CPU time they are consuming, as well as 
which user is running them and how much RAM they are consuming. Running top produces a window like this: 

From a users’ perspective, the list of processes below the dark line is most useful. In this example, no processes are 
currently using a significant amount of CPU or memory (and those processes that are running are owned by the 
administrator root). But if any user were running processes that required more than a tiny bit of CPU, they would likely 
be shown. To instead sort by RAM usage, use the key sequence Control-M. When finished, q will quit top and return you 
to the command prompt. 

Of particular importance are the %CPU and %MEM columns. The first may vary from 0 up to 100 (percent) times the 
number of CPU cores on the system; thus a value of 3200 would indicate a program using 100% of 32 CPU cores (or 
perhaps 50% of 64 cores). The %MEM column ranges from 0 to 100 (percent). It is generally a bad thing for the system when 
the total memory used by all process is near or over 100%—this indicates that the system doesn’t have enough “working 
memory” and it may be attempting to use the much slower hard drive as working memory. This situation is known as 
swapping, and the computer may run so slowly as to have effectively crashed. 
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Killing Rogue Programs Killing Rogue Programs 

It sometimes happens that programs that should run quickly, don’t. Perhaps they are in an internal error state, looping 
forever, or perhaps the data analysis task you had estimated to take a minute or two is taking much longer. Until the 
program ends, the command prompt will be inaccessible. 

There are two ways to stop such running programs: the “soft” way and the “hard” way. The soft way consists of 
attempting to run the key combination Control-c, which sends a stop signal to the running process so that it should 
end. 

But if the rogue program is in a particularly bad error state, it won’t stop even with a Control-c, and a “hard” kill is 
necessary. To do this requires logging in to the same machine with another terminal window to regain some command-
line access. Run top, and note the PID (process ID) of the offending process. If you don’t see it in the top window, you can 
also try running ps augx, which prints a table of all running processes. Suppose the PID for the process to kill is 24516; 
killing this process can be done by running kill -9 24156. The -9 option specifies that the operating system should stop 
the process in its tracks and immediately clean up any resources used by it. Processes that don’t stop via a kill -9 are rare 
(though you can’t kill a process being run by another user), and likely require either a machine reboot or administrator 
intervention. 

Exercises Exercises 

1. Create the following directories inside your home directory, if you don’t already have them: downloads, local, 

and projects. Inside of local, create a directory called bin. These folders are a common and useful set to have in 

your home directory—we’ll be using them in future chapters to work in, download files to, and install software 

to. 

2. Open not one but two login windows, and log in to a remote machine in each. This gives you two present 

working directories, one in each window. You can use one to work, and another to make notes, edit files, or 

watch the output of top. 

Create a hidden directory inside of your home directory called .hidden. Inside of this directory, create a file 

called notes. Edit the file to contain tricks and information you fear you might forget.
3 

3. Spend a few minutes just practicing tab completion while moving around the filesystem using absolute and 

relative paths. Getting around efficiently via tab-completion is a surprisingly necessary skill. 

4. Skim the man page for ls, and try out a few of the options listed there. Read a bit of the info page for nano. 

3. You might also consider keeping a paper notebook, or something in a Wiki or other text document. If you prefer to keep digital notes, try to use a simple text 
editor like nano, TextEdit on OS X, or Notepad on Windows. Rich-text editors like Microsoft Word will often automatically replace things like simple quote 
characters with serif quotes, which don’t work on the command line, leading to headaches. 
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5. Permissions and Executables 

As mentioned previously, the administrator root configures most things on the system, like where network drives are 
mounted and how access to the system is granted.

1
 Most of the files that are important for these configurations are 

“owned” by root, and for security purposes, other users can’t tamper with them. In fact, all users of the system usually 
own the files in their own home directory, and these files can’t be tampered with by other users (except for root, who has 
access to everything). These security settings are controlled via permissions associated with every file and directory. 

Root can also put users together into groups, allowing users in the same group to share files with each other but not 
outsiders, if they so choose. Groups may have more than one user, and a single user may be part of more than one group, 
as in the following example illustrating three groups and eight users. 

The groups command shows the groups to which a user belongs; in the above example, groups oneilst would report 
emrichlab and hellmannlab. To see your own groups, you can always use something like groups $USER (relying on the 
shell to replace $USER with your username). 

Unfortunately, there’s no surefire or easy way to list all the members of a particular group—at least not without 
some deep knowledge of how the system is configured or some programming expertise. On some systems, a command 
like getent group <groupname> will provide the answer; getent group faculty would report emrichs, schmidtj, and 
hellmannj for the example above. 

If you are unsure of a person’s username, the finger command may come to the rescue. You can supply finger 
with either a first name or last name to search for (or even the username, if known), and it will return information—if 
entered by the system administrator—about that user. 

1. The administrator, or root user, is sometimes also called the “superuser.” This has been known to go to some administrators’ 
heads. 
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Each file and directory is associated with one user (the owner) and one group; unfortunately, in normal Unix-like 
permissions, one and only one group may be associated with a file or directory. Each file and directory also has associated 
with it permissions describing: 

1. what the owner can do, 

2. what members of the group can do, and 

3. what everyone else (others) can do. 

This information is displayed when running ls -l, and is represented by a combination of r (read), w (write), and x 
(execute). Where one of these three is absent, it is replaced by a -. Here’s an example, showing two entries owned by 
oneils and in the iplant-everyone group; one has permissions rwxrwxrwx (an insecure permission set, allowing anyone 
to do anything with the file), and the other has rwxr-xr-x (a much more reasonable permission set). 

There is an extra entry in the first column; the first character describes the type of the entry, - for a regular file and d for 
directory. Let’s break down these first few columns for one of the entries: 

Each file or directory may have some combination of r, w, and x permissions, applied to either the user, the group, or 
others on the system. For files, the meanings of these permissions are fairly straightforward. 

Code Code Meaning for Files Meaning for Files 

r Can read file contents 

w Can write to (edit) the file 

x Can (potentially) “execute” the file 
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We’ll cover what it means for a file to be executable in a bit. For directories, these permissions take on different meanings. 

Code Code Meaning for Directories Meaning for Directories 

r Can see contents of the directory (e.g., run ls) 

w Can modify contents of the directory (create or remove files/directories) 

x Can cd to the directory, and potentially access subdirectories 

The temp directory above gives the user all permissions (rwx), but members of the group and others can only cd to the 
directory and view the files there (r-x); they can’t add or remove files or directories. (They may be able to edit files in 
temp, however, depending on those files’ permissions.) 

The chmod (change mode) utility allows us to add or remove permissions. There are two types of syntax, the simpler 
“character” syntax and the numeric “octal” syntax. We’ll describe the simpler syntax and leave discussion of the octal 
syntax for those brave enough to read the manual page (man chmod). 

To clarify, here are some examples of modifying permissions for the p450s.fasta file. 

Command Command Effect Effect 

chmod go-w p450s.fasta Remove write for group and others 

chmod ugo+r p450s.fasta Add read for user, group, and others 

chmod go-rwx p450s.fasta Remove read, write, and execute for group and others 

chmod ugo+x p450s.fasta Add execute for user, group, and others 

chmod +x p450s.fasta Same as chmod ugo+x p450s.fasta 

If you wish to modify a directory and everything inside, you can add the -R flag (capital R this time for recursive) to 
chmod. To share a projects directory and everything inside for read access with group members, for example, you can use 
chmod -R g+r projects. 

There are a few small things to note about file and directory permissions. The first is that while it is possible to 
change the group of a file or directory, you can only do so with the chgrp command if you are a member of that group. 

Second, you own the files that you create, but generally only the root user has access to the chown utility that changes the 
owner of an existing file (it wouldn’t be very nice to “gift” another user a nefarious program). 
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Third, while it is convenient to be able to open up a directory for reading by group members, doing so is only 
useful if all of the directories above it are also minimally accessible. In particular, all the directories in the path to a shared 
directory need to have at least x for the group if they are to be accessed in any way by group members. 

Executables and $PATH Executables and $PATH 

What is a “program?” On a Unix-like system, it’s a file that has executable permissions for some user or users. (It also helps 
if that file contains some instructions that make sense to execute!) Often these are encoded in a “binary” format—simply 
long strings of 0’s and 1’s representing machine code that the CPU can interpret—but they may in some contexts also 
be human-readable text files. Many of the programs we’ve been using, like echo and ls, are executable files that live in the 
/bin directory along with many others, including bash, our shell program. 

If we like, we can even attempt to take a look at one of these with less. For example, we can try to examine the contents 
of the bash program with less /bin/bash; even though less reports a warning that the file is binary encoded, it won’t 
hurt to try. 

A binary-encoded file doesn’t look like much when we attempt to convert it to text and view it with less. In any case, 
here’s an “execution rule” we’re going to break almost immediately: to get the shell to run a program (executable file), we 
specify the absolute or relative path to it. 

In this case, our execution rule would indicate that to run the echo program, we would specify the absolute path 
/bin/echo hello, as the echo program lives in /bin, or ../../../../bin/echo hello for the relative path (because /bin 
is four folders above our present working directory). 

Now for the rule-breaking part: we already know that we can just run echo without specifying a path to the program. 
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This means that when we attempt to run a program, the shell must be able to find the executable file somehow. How is 
this done? 

The answer, as with so many questions involving the shell, is an environment variable called $PATH. Let’s check the 
contents of this variable:

2 

The $PATH environment variable contains a simple string, describing a list of absolute paths separated by : characters. 
When we specify what looks to the shell like the name of a program, it searches this list of paths, in order, for an 
executable file of that name. When we type echo, it tries /usr/local/sbin/echo, then /usr/local/bin/echo, and so on, 
until it finds it in /bin/echo. 

The first matching executable file the shell finds in the directories listed in $PATH is the one that is executed. This 
could lead to some mischief: if a coworker with a penchant for practical jokes could modify your $PATH variable, he 
could add his own home directory as the first entry. From there, he could create an executable file called, say, ls that did 
whatever he wanted, and you would unknowingly be running that! It is possible for anyone with access to your account 
to modify your $PATH, so it’s a good idea not to leave your terminal window open around anyone with a dastardly sense 
of humor. 

If there are multiple executable files with the same name in this list of paths, can we discover which one the shell will 
execute? Yes: in bash we can make this determination using the which command.

3 

What about a command like cd? We can try to use which to locate a program called cd, but we’ll find that nothing is 
reported. 

This is because cd is not a program (executable file), but rather a “command,” meaning the shell notices that it’s a 
special keyword it should handle, rather than searching for an executable file of that name. Said another way, bash 
is performing the action, rather than calling an external executable program. Knowing about the difference between 
commands handled by the shell and programs that are executable files is a minor point, but one that could be confusing 
in cases like this. 

Making Files Executable Making Files Executable 

Let’s do something decidedly weird, and then come back and explain it. First, we’ll use nano to create a new file called 
myprog.sh, using the -w flag for nano to ensure that long lines are not automatically wrapped (nano -w myprog.sh). In 
this file, we’ll make the first two characters #!, followed immediately by the absolute path to the bash executable file. On 
later lines, we’ll put some commands that we might run in bash, like two echo calls. 

2. The tcsh and csh shells do not use the $PATH environment variable. Instead, they look in a shell variable called $path. 

3. In tcsh and csh, the closest approximation to which is where, though which may also work. 
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Although it looks like the #! (pronounced “shebang,” rhyming with “the bang”) line starts on the second line, it is 
actually the first line in the file. This is important. Notice that nano has realized we are writing a file that is a bit odd, and 
has turned on some coloring. Your nano may not be configured for this syntax highlighting. If not, don’t worry: we are 
creating a simple text file. 

After we save the file (Control-o, then Enter confirm the file name to write) and exit nano (Control-x), we can add 
execute permissions to the file (for everyone, perhaps) with chmod +x myprog.sh. 

It would appear that we might have created a program—we do have an executable file, and you might have guessed that 
the special syntax we’ve used makes the file executable in a meaningful way. Let’s try it out: according to our execution 
rule, we can specify the absolute path to it to run it. 

It ran! What we’ve created is known as a script to be run by an interpreter; in this case, the interpreter is bash. A script 
is a text file with execute permissions set, containing commands that may be run by an interpreter, usually specified 
through the absolute path at the top of the script with a #! line. An interpreter is a program that can execute commands, 
sometimes specified in a script file. 

What is happening here is that the shell has noticed that the user is attempting to run an executable file, and passes 
the execution off to the operating system. The operating system, in turn, notices the first two bytes of the file (the #! 
characters), and rather than having the CPU run the file as binary machine code, executes the program specified on the 
#! line, passing to that program the contents of the file as “code” to be run by that program. Because in this case the 
interpreting program is bash, we can specify any commands that we can send to our shell, bash. Later, we’ll see that we 
can create scripts that use much more sophisticated interpreters, like python, to run more sophisticated code. 

According to our execution rule, we can also run our program by specifying a relative path to it, like ./myprog.sh 
(which specifies to run the myprog.sh file found in the present working directory). 
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This is the most common way to run files and programs that exist in the present working directory. 
If we change to another present working directory, like our home directory, then in order to run the program 

according to the execution rule, we have to again specify either the absolute or relative path. 

This process is tedious; we’d like to be able to specify the name of the program, but because the location of our program 
isn’t specified in a directory listed in $PATH, we’ll get an error. 

Installing a Program Installing a Program 

To add our own programs to the system so that we can run them at will from any location, we need to: 

1. Obtain or write an executable program or script. 

2. Place it in a directory. 

3. Ensure the absolute path to that directory can be found in $PATH. 

Traditionally, the location to store one’s own personal executables is in one’s home directory, inside a directory called 
local, inside a directory called bin. Let’s create these directories (creating them was also part of a previous exercise, so 
you may not need to), and move our myprog.sh file there. 

This accomplishes steps 1 and 2. For step 3, we need to make sure that our local/bin directory can be found in $PATH. 
Because $PATH is an environment variable, we can set it with export, making use of the fact that environment variables 
inside of double quotes (but not single quotes) are expanded to their contents. 
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Because the right-hand side of the = is evaluated before the assignment happens, the $PATH variable now contains the 
full path to the local/bin directory, followed by the previous contents of $PATH.

4
 If we type a program name without 

specifying a path to it, the shell will search our own install location first! 

There’s only one problem: every time we log out and log back in, modifications of environment variables that we’ve 
made are forgotten. Fortunately, bash looks for two important files when it starts:

5
 (1) commands in the .bash_login 

file (in your home directory) are executed whenever bash starts as a consequence of a login session (e.g., when entering 
a password causes bash to start), and (2) commands in the .bashrc file (in your home directory) are executed whenever 
bash starts (e.g., on login and when bash is executed via a #! script). 

If you want to see a friendly greeting every time you log in, for example, you might add the line echo "Hello 

$USER, nice to see you again!" to your .bash_login file. Because we want our $PATH to be modified even if bash 
somehow starts without our logging in, we’ll add the export command to the .bashrc file. 

The .bashrc file may have information in it already, representing a default shell configuration placed there when 
the administrator created the account. While we can add our own commands to this file, we should do so at the end, 
and we should be careful to not disturb the other configuration commands that are likely there for a good reason. Also, 
the commands in this file should be free of errors and typos—some errors are bad enough to prevent you from logging 
in! Using the -w when editing the file with nano will help ensure that the editor does not attempt to autowrap long 
commands that shouldn’t be broken over multiple lines. 

At the bottom of this file, we’ll add the export line: 

4. The corresponding command to set the tcsh or csh $path variable is: set path = ("$HOME/local/bin" $path). 

5. The corresponding files for tcsh and csh shells are .login and .cshrc, respectively. 

42 Part I: Introduction to Unix/Linux

42  |  Shawn T. O’Neil



Because lines starting with # are “comments” (unexecuted, aside from the #! line, of course), we can use this feature to 
remind our future selves how that line got in the file. Because commands in these files are only executed when the shell 
starts, in order to activate the changes, it suffices to log out and log back in. 

Exercises Exercises 

1. Suppose a file has the following permissions listed by ls -l: -rwxrw-r--. What does this permission string 

indicate the about the file? 

2. What is the difference between export PATH="$HOME/local/bin:$PATH" and export PATH="$PATH:$HOME/local/bin"? In 

what situations might the former be preferred over the latter? 

3. Carefully add the line export PATH="$HOME/local/bin:$PATH" to your .bashrc (assuming you have a local/bin 

directory in your home directory, and your default shell is bash). Be sure not to alter any lines already present, or 

to create any typos that might prevent you from logging in. 

4. Create an executable script in your local/bin directory called myinfo.sh, which runs echo on the $HOME, $PWD, and 

$USER environment variables, and also runs the date utility. Try running it by just running myinfo.sh from your 

home directory (you may need to log out and back in first, to get the shell to recognize the change in the 

contents of paths listed in $PATH if you modified your .bashrc). 

5. Executable bash scripts that start with #!/bin/bash will work fine, provided that the bash program lives in the 

/bin directory. On any system where this isn’t the case (probably a rare occurrence), it won’t. 

Try creating a bash script where the first line is #!/usr/bin/env bash. The env program uses the $PATH variable to 

locate the bash executable, and passes off interpretation of the script to the located bash interpreter. This poses 

the same problem: what if env is not located in /usr/bin? Fortunately, this has been an agreed-upon location for 

the env program for decades, so scripts written in this manner are portable across more machines. 
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6. Installing (Bioinformatics) Software 

Ideally, the computational infrastructure to which you have access already includes a host of specialized software 
packages needed for your work, and the software installations are kept up to date as developers make improvements. 
If this isn’t the case, you might consider bribing your local system administrator with sweets and caffeine. Failing that, 
you’re likely to have to install the software you need yourself. 

Installing more sophisticated software than the simple scripts described in chapter 5, “Permissions and 
Executables,” will follow the same basic pattern: (1) obtain executable files, (2) get them into $HOME/local/bin, and (3) 
ensure that $HOME/local/bin is present in the $PATH environment variable. Chapter 5 covered step 3, which needs to 
be done only once for our account. Steps 2 and 3, however, are often quite different depending on how the software is 
distributed. 

In this chapter, we’re going to run through an example of installing and running a bioinformatics suite known 
as HMMER. This software searches for protein sequence matches (from a set of sequences) based on a probabilistic 
hidden Markov model (HMM) of a set of similar protein sequences, as in orthologous proteins from different species. 
The motivation for choosing this example is not so we can learn about HMM modeling or this software suite specifically, 
but rather that it is a representative task requiring users to download files, install software in different ways, and obtain 
data from public repositories. 

The first step to installing HMMER is to find it online. A simple web search takes us to the homepage: 

45

Computational Biology  |  45



Conveniently, we see a nice large “Download” button, but the button indicates that the download is made for 
MacOS X/Intel, the operating system running on my personal laptop. Because we are remotely logged in to a Linux 
computer, this download won’t work for us. Clicking the “Alternative Download Options” link reveals options that 
might work for the Linux system we’re using. 
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In this screenshot, we see a number of interesting download options, including one for “Source,” two for “Linux 
binaries,” and below a suggestion of some documentation, to which we’ll return later. 

Source or Binary? Source or Binary? 

Some bioinformatics software is created as a simple script of the kind discussed in chapter 5: a text file with a #! line 
referencing an interpreting program (that is hopefully installed on the system) and made executable with chmod. 

But it turns out that such interpreted programs are slow owing to the extra layer of execution, and for some 
applications, the convenience and relative ease aren’t worth the loss in speed. In these cases, software may be written 
in a compiled language, meaning that the program code starts as human-readable “source code” but is then processed 
into machine-readable binary code. The trick is that the process of compilation needs to be independently performed 
for each type of CPU. Although there are fewer CPU types in common use than in days past, both 32- and 64-bit x86 
CPU architectures are still common, and software compiled for one won’t work on the other. If the developer has made 
available compiled binaries compatible with our system, then so much the better: we can download them, ensure they 
are executable, and place them in $HOME/local/bin. Alternatively, we may need to download the source code files and 
perform the compilation ourselves. In some cases, developers distribute binaries, but certain features of the program can 
be customized in the compilation process. 
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For the sake of completeness, we’ll do a source install of HMMER; later, we’ll get some other software as binaries.
1 

Downloading and Unpacking Downloading and Unpacking 

We’re going to download the source files for HMMER; first, we are going to create a new directory to store downloads, 
called downloads, in our home directory (you may already have such a directory). 

If we were to click on the link in the HMMER download page, the web browser would attempt to download the 
file located at the corresponding URL (http://eddylab.org/software/hmmer3/3.1b2/hmmer-3.1b2.tar.gz) to the local 
desktop. Because we want the file downloaded to the remote system, clicking on the download button won’t work. What 
we need is a tool called wget, which can download files from the Internet on the command line.

2
 The wget utility takes 

at least one important parameter, the URL, to download. It’s usually a good idea to put URLs in quotes, because they 
often have characters that confuse the shell and would need to be escaped or quoted. Additionally, we can specify -O 
<filename>, where <filename> is the name to use when saving the file. Although not required in this instance, it can be 
useful for URLs whose ending file names aren’t reasonable (like index.php?query=fasta&search=drosophila). 

1. If you have administrator privileges on the machine, software repositories curated with many packages are also available. 
Depending on the system, if you log in as root, installing HMMER may be as simple as running apt-get install hmmer or yum install 
hmmer. 

2. A similar tool called curl can be used for the same purpose. The feature sets are slightly different, so in some cases curl is 
preferred over wget and vice versa. For the simple downloading tasks in this book, either will suffice. 
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At this point, we have a file ending in .tar.gz, known as a “gzipped tarball,” representing a collection of files that 
have first been combined into a single file (a tarball), and then compressed (with the gzip utility). 

To get the contents out, we have to reverse this process. First, we’ll un-gzip the file with gzip -d hmmer-3.1b1.tar.gz, 
which will replace the file with the un-gzipped hmmer-3.1b1.tar.

3
 From there, we can un-tar the tarball with tar -xf 

hmmer-3.1b1.tar (the -x indicates extract, and the f indicates that the data will be extracted from the specified file name). 

It looks like the gzipped tarball contained a directory, called hmmer-3.1b1. 

Other Download and Compression Methods Other Download and Compression Methods 

Before continuing to work with the downloaded source code, there are a couple of things to note regarding compressed 
files and downloading. First, although gzipped tarballs are the most commonly used compression format for Unix-like 
systems, other compression types may also be found. They can usually be identified by the file extension. Different tools 
are available for each type, though there is also a generic uncompress utility that can handle most common types. 

Extension Extension Decompress Command Decompress Command 

file.bz2 bunzip2 file.bz2 

file.zip unzip file.zip 

file.tgz Same as for .tar.gz 

3. The gzip utility is one of the few programs that care about file extensions. While most programs will work with a file of any 
extension, gzip requires a file that ends in .gz. If you are unsure of a file’s type, the file utility can help; for example, file 
hmmer-3.1b1.tar.gz reports that the file is gzip-compressed data, and would do so even if the file did not end in .gz. 
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The most common syntax for creating a gzipped tarball uses the tar utility, which can do both jobs of tarring and 
gzipping the inputs. As an example, the command tar -cvzf hmmer_compress_copy.tar.gz hmmer-3.1b1 would create 
(c), with verbose output (v), a gzipped (z) tarball in a file (f) called hmmer_compress_copy.tar.gz from the input 
directory hmmer-3.1b1. 

Traditionally, zipped files of source code were the most common way to distribute software. More recently, version 
control systems (used by developers to track changes to their software over time) have become web-enabled as a way to 
distribute software to end-users. One such system is git, which allows users to download entire directories of files using 
a “clone URL” over the web. GitHub is a similarly popular page for hosting these projects. Here’s a screenshot of the 
GitHub page for Sickle, a fast-quality trimmer for high-throughput sequence data. 

The GitHub “HTTPS clone URL” is shown after clicking on the green “Clone or download” link; to download 
the Sickle source on the command line, one need only run a command like git clone https://github.com/najoshi/

sickle.git, provided the git program is installed. (The git program can also be used on the command line for tracking 
“snapshots” of files in a directory over time, providing a log of the work done. Such logged directories can then be synced 
to GitHub, making it relatively easy to share projects with others.) 

Compiling the Source Compiling the Source 

Having downloaded and unpacked the HMMER source code, the first step is to check the contents of the directory and 
look for any README or INSTALL files. Such files are often included and contain important information from the software 
developer. 
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Taking a look at the contents of the hmmer-3.1b1 directory, there is an INSTALL file, which we should read with less. 
Here’s the top part of the file: 

The installation documentation describes a number of commands, including many we’ve already run (for extracting the 
data from the gzipped tarball). There are also four more commands listed: ./configure, make, make check, and make 
install. Three of these comprise the “canonical install process”—make check is an optional step to check the success of 
the process midway through. The three important steps are: (1) ./configure, (2) make, and (3) make install. 

1. The contents of the directory (above) include configure as an executable script, and the command ./configure 
executes the script from the present working directory. This script usually verifies that all of the prerequisite 
libraries and programs are installed on the system. More importantly, this step may set some environment variables 
or create a file called Makefile, within which will be instructions detailing how the compilation and installation 
process should proceed, customized for the system. 

2. Actually, make is an interpreting program much like bash (which make is likely to return /usr/bin/make—it’s a 
binary program). When running make, its default behavior is to look for a file called Makefile in the current 
directory, and run a default set of commands specified in the Makefile in the order specified. In this case, these 
default commands run the compilation programs that turn the source code into executable binaries. 

3. The make install command again executes make, which looks for the Makefile, but this time we are specifying 
that the “install” set of commands in the Makefile should run. This step copies the binary executable files (and 
other supporting files, if necessary) to the install location. 

This final step, make install, may lead us to ask: what is the install location? By default, it will be something like 
/usr/bin—a system-wide location writable to by only the administrator. So, unless we are logged in as root (the 
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administrator), the final step in the process will fail. We must specify the install location, and although the install itself 
happens in the third step, the entire process is configured in the first step. There may be many options that we can specify 
in the ./configure step, though the install location (known as the PREFIX) is by far the most commonly used. Running 
./configure --help prints a lot of information; here’s the relevant section: 

The --prefix option is the one we’ll use to determine where the binaries should be located. Although our executable 
binaries will eventually go in $HOME/local/bin, for this option we’re going to specify $HOME/local, because the bin 
portion of the path is implied (and other directories like lib and share might also be created alongside the bin directory). 
Finally, our modified canonical install process will consist of three steps: ./configure --prefix=$HOME/local, make, and 
make install. 

At this point, if we navigate to our $HOME/local directory, we will see the added directories and binary files. 

Because these executable files exist in a directory listed in the $PATH variable, we can, as always, type their names on the 
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command prompt when working in any directory to run them. (Though, again, we may need to log out and back in to 
get the shell to see these new programs.

4
) 

Installation from Binaries Installation from Binaries 

Our objective is to run HMMER to search for a sequence-set profile in a larger database of sequences. For details, the 
HMMER documentation (available on the website) is highly recommended, particularly the “Tutorial” section, which 
describes turning a multiple alignment of sequences into a profile (with hmmbuild) and searching that profile against 
the larger set (with hmmsearch). It is also useful to read the peer-reviewed publication that describes the algorithms 
implemented by HMMER or any other bioinformatics software. Even if the material is outside your area of expertise, it 
will reveal the strengths and weaknesses of software. 

We’ll soon get to downloading query and target sequence sets, but we’ll quickly come to realize that although the 
programs in the HMMER suite can produce the profile and search it against the target set, they cannot produce a 
multiple alignment from a set of sequences that are similar but not all the same length. Although there are many 
multiple-alignment tools with different features, we’ll download the relatively popular muscle. This time, we’ll install it 
from binaries. 

It’s worth discussing how one goes about discovering these sequences of steps, and which tools to use. The 
following strategies generally work well, though creativity is almost always rewarded. 

1. Read the methods sections of papers with similar goals. 

4. It's not strictly necessary to log back out and back in; when working in bash, running hash -r will cause the shell to update its list 
of software found in $PATH. 
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2. Ask your colleagues. 

3. Search the Internet. 

4. Read the documentation and published papers for tools you are already familiar with, as well as those publications 
that cite them. 

5. Don’t let the apparent complexity of an analysis prevent you from taking the first steps. Most types of analyses 
employ a number of steps and many tools, and you may not have a clear picture of what the final procedure will 
be. Experiment with alternative tools, and look for help when you get stuck. Be sure to document your work, as 
you will inevitably want to retrace your steps. 

If we visit the muscle homepage, we’ll see a variety of download options, including binaries for our system, Linux. 

Unfortunately, there appear to be two options for Linux binaries: 32-bit and 64-bit. How do we know which of these 
we want? We can get a hint by running the uname program, along with the -a parameter to give as much information as 
possible. 

The uname program gives information about the operating system, which in this case appears to be GNU/Linux for a 
64-bit, x86 CPU. If any of the binaries are likely to work, it will be the “i86linux64” set. We’ll wget that gzipped tarball 
in the downloads directory. 
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Note that in this case we haven’t used the -O option for wget, because the file name described by the URL 
(muscle3.8.31_i86linux64.tar.gz) is what we would like to call the file when it is downloaded anyway. Continuing on 
to unpack it, we find it contains only an executable that we can attempt to run. 

Because it didn’t report an execution error, we can install it by copying it to our $HOME/local/bin directory. While doing 
so, we’ll give it a simpler name, muscle. 

Now our multiple aligner, muscle, is installed! 

Exercises Exercises 

1. Follow the steps above to install the HMMER suite (from source) as well as muscle (from binaries) in your $HOME/

local/bin directory. Ensure that you can run them from anywhere (including from your home directory) by 

running muscle --help and hmmsearch --help. Both commands should display help text instead of an error. Further, 

check that the versions being found by the shell are from your home directory by running which hmmsearch and 

which muscle. 

2. Determine whether you have the “NCBI Blast+” tools installed by searching for the blastn program. If they are 

installed, where are they located? If they are not installed, find them and install them from binaries. 

3. Install sickle from the git repo at https://github.com/najoshi/sickle. To install it, you will need to follow the 

custom instructions inside of the README.md file. If you don’t have the git program, it is available for binary and 

source install at http://git-scm.com. 

Getting Data Getting Data 

Now that we’ve got the software installed for our example analysis, we’ll need to get some data. Supposing we don’t have 
any novel data to work with, we’ll ask the following question: can we identify, using HMMER and muscle, homologues 
of P450-1A1 genes in the Drosophila melanogaster protein data set? (This is a useless example, as the D. melanogaster 
genome is already well annotated.) 

The first step will be to download the D. melanogaster data set, which we can find on http://flybase.org, the 
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genome repository for Drosophila genomes. Generally, genome repositories like FlyBase provide full data sets for 
download, but they can be difficult to find. To start, we’ll navigate to “Files,” then “Releases (FTP).” 

From there, we’ll navigate to a recent release, like FB2014_05. Because genomic information is often being updated as 
better information becomes available, newer versions are indicated by newer releases. 

Next we’ll see links for specific species; we’ll work with dmel_r6.02. It is often a good idea to note specific release numbers 
or release dates for data sets you download, for eventual description in the methods sections of any papers you write that 
are based on those data. 

The most common format for sequence information is known as FASTA and is the format we want, so the next step is 
to navigate to the fasta directory. Other potentially interesting options include the gff and gtf directories, which hold 
text-based annotation files describing the location and function of genes in the genome. (These formats are often useful 
for RNA-seq analysis.) 

Finally, we see a variety of gzipped files we can wget on the command line. Because we are interested in the full protein 
data set for this species, we will use the URL for dmel-all-translation-r6.02.fasta.gz. 

Before running wget on the file, we’ll create a projects directory in our home directory, and a p450s directory inside 
there to work in. 
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Because the file is gzipped, we can use gzip -d to decompress it, and then use less -S to view the results without the 
long lines wrapped in the terminal window. 

The result illustrates the standard format for a FASTA file. Each sequence record begins with line starting with a > 
character, and the first non-whitespace-containing word following that is considered the sequence ID. 

This line might then contain whitespace characters and metadata. Whitespace comprises a sequence of one or more 
spaces, tabs (represented in Unix/Linux as a special character sometimes written as \t), or newlines (represented in Unix/
Linux as a special character sometimes written as \n) in a row. 

Lines following the header line contain the sequence information, and there is no specific format for the number of 
lines over which the sequence may be broken, or how long those lines should be. After the last sequence line for a record, 
a new sequence record may start. 

Depending on the source of the FASTA file, the IDs or metadata may represent multiple pieces of data; in this 
example, the metadata are separated by spaces and have a <label>=<value>; format that is specific to protein sequences 
from FlyBase. 

For our next trick, we’ll download some P450-1A1 protein sequences from Uniprot.org. Uniprot.org is a well-
known protein database, and it is composed of the “TrEMBL” database and the subset of TrEMBL, known as “Swiss-
Prot.” While the former contains many sequences with annotations, many of those annotations have been assigned 
by automated homology searches and have not been reviewed. The latter, Swiss-Prot, contains only sequences whose 
annotations have been manually reviewed. 

For the download, we’ll enter “p450 1A1” into the search field, and we’ll filter the results to only those in Swiss-Prot 
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by clicking on the “Reviewed” link, resulting in 28 matches. Next, we can click on the “Download” button to download 
a “FASTA (canonical)” (rather than with all isoforms included) file. 

The Uniprot website recently underwent a redesign, such that the downloaded file is transferred directly to the web 
browser, rather than presented as a URL that could be accessed with wget. This isn’t a problem, as it gives us a chance to 
discuss how to transfer files between the remote system and local desktop via SFTP. 

Like SSH, SFTP is a common client/server protocol. Provided the server is running on the remote computer (in 
fact, it uses the same port as SSH, port 22, because SSH provides the secure connection), we just need to install and run 
an SFTP client on our desktop. There are many SFTP clients available for Microsoft Windows (e.g., Core-FTP), OS X 
(e.g., Cyberduck), and Linux systems (e.g., sftp on the command line or the graphical FileZilla). The client discussed 
here is called FireFTP, and it is available as an extension for the Mozilla Firefox web browser (itself available for Windows, 
OS X, and Linux). To get it requires installing and running Firefox, navigating to Tools → Addons, and searching for 
“FireFTP.” 

Once the plugin is installed (which requires a restart of Firefox), we can access it from the Tools → Developer submenu. 
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Connecting the client to a remote computer requires that we first configure the connection by selecting “Create an 
account.” The basic required information includes an account name, the host to connect to (e.g., an IP address like 
128.196.64.120 or a host name like files.institution.edu), as well as our login name and password. 

We also need to tell the client which protocol to connect with, which is done on the “Connection” tab; we want SFTP 
on port 22. 

With that accomplished, we can transfer any file back and forth using the green arrows in the interface, where the remote 
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filesystem is shown on the right and the local filesystem is shown on the left. Here’s the result after transferring our 
p450s.fasta file. 

DOS/Windows and Unix/Linux Newlines DOS/Windows and Unix/Linux Newlines 

For the most part, the way text is encoded on Microsoft operating systems (like DOS and Windows) and on Unix-like 

systems (like Linux and OS X) is similar. But there is one difference: how the ends of lines, or “newline characters” are 

represented. In Unix-like systems, a newline is represented by a single 8-bit byte (the “Line Feed” (NF) character): 

00001010. On Microsoft systems, they are represented by a pair of 8-bit bytes (“Carriage Return” (CR) followed by NF): 

0000110100001010. This means that text files created on Microsoft operating files may not be readable on Unix-like 

systems, and vice versa. 

Fortunately, there are utilities available for converting between these formats. On the command line, the utilities 

dos2unix and unix2dos convert to and from Unix-like format, respectively. This isn’t often an issue, as most file transfer 

programs (FireFTP included) automatically perform the appropriate conversion. The command-line utility file can also 

be used to determine the type of a file, including its newline type. 

Putting It All Together Putting It All Together 

At this point, we’ve obtained the data we wish to process, and we’ve successfully installed the software we intend to run 
on that data. 
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The first step is to run muscle on the p450s.fasta file to produce a multiple alignment. One quick way to identify how a 
program like muscle should be run (what parameters it takes) is to run it without any parameters. Alternatively, we could 
try the most common options for getting help: muscle -h, muscle --help, muscle --h, or muscle -help. 

The most important line of this help text is the usage information: muscle -in <inputfile> -out <outputfile>; 
parameters in angle brackets indicate that the parameter is required (nonrequired parameters often appear in straight 
brackets). Further help text indicates other parameters that we could opt to add. Presumably, they could be placed before 
or after the input or output specifiers. So, we’ll run muscle on our p450s.fasta file, and produce a file whose file name 
indicates its pedigree in some way: 

Once the command has finished executing, we can view the alignment file with less -S p450s.fasta.aln. 
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With further inspection, we’d see that the sequences have been made the same length by the insertion of gap characters. 
The next step is to run hmmbuild to produce the HMM profile. Again, we’ll run hmmbuild without any options to get 
information on what parameters it needs. 

The help output for hmmbuild is shorter, though the command also notes that we could run hmmbuild -h for more 
detailed information. The usage line, hmmbuild [-options] <hmmfile_out> <msafile>, indicates that the last two 
parameters are required, and are the name of the output file (for the profile HMM) and the multiple sequence alignment 
input file. The brackets indicate that, before these last two parameters, a number of optional parameters may be given, 
described later in the help output. In this case, <hmmfile_out> and <msafile> are positional: the second-to-last argument 
must specify the output, and the last must specify the input. 

After this operation finishes, it may be interesting to take a look at the resulting HMM file with less -S 

p450s.fasta.aln.hmm. Here’s a snippet: 

With some documentation reading, we may even be able to decode how the probabilistic profile is represented in this 
matrix of letters and numbers. As a reminder, our project directory now contains the original sequence file, a multiple-

62 Part I: Introduction to Unix/Linux

62  |  Shawn T. O’Neil



alignment file, and the HMM profile file, as well as the D. melanogaster protein file in which we wish to search for the 
profile. 

At this point, we are ready to search for the profile in the D. melanogaster protein set with hmmsearch. As usual, we’ll first 
inspect the usage for hmmsearch. 

This brief help text indicates that hmmsearch may take a number of optional parameters (and we’d have to run hmmsearch 
-h to see them), and the last two parameters are required. These last two parameters constitute the HMM profile file we 
are searching for, as well as the <seqdb> in which to search. It doesn’t say what format <seqdb> should be, so we’ll try it 
on our D. melanogaster FASTA file and hope for the best (if it fails, we’ll have to read more help text or documentation). 

Note that there was no required option for an output file. Running this command causes quite a lot of information to 
be printed to the terminal, including lines like: 

And, when we run ls, we find that no output file has been created. 

It seems that hmmsearch, by default, prints all of its meaningful output to the terminal. Actually, hmmsearch is printing its 
output to the standard output stream. Standard output is the primary output mechanism for command-line programs 
(other than writing files directly). By default, standard output, also known as “standard out” or “stdout,” is printed to 
the terminal. 

Fortunately, it is possible to redirect the standard output stream into a file by indicating this to our shell with a > 
redirect operator, and specifying a file name or path. In this case, we’ll redirect the output of standard out to a file called 
p450s_hmmsearch_dmel.txt. 
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When this command executes, nothing is printed, and instead our file is created. When using the > redirect, the file will 
be overwritten if it already exists. If, instead, we wished to append to an existing file (or create a new file if there is no file 
to append to), we could have used the >> redirect. 

Here are the contents of our final analysis, a simple text file with quite a bit of information, including some nicely 
formatted row and column data, as displayed by less -S p450s_hmmsearch_dmel.txt. 

Reproducibility with Scripts Reproducibility with Scripts 

It is highly unlikely that an analysis of this type is performed only once. More often than not, we’ll wish to adjust or 
replace the input files, compare to different protein sets, or adjust the parameters for the programs ran. Thus it make 
sense to capture the analysis we just performed as an executable script, perhaps called runhmmer.sh. 

Note in the above that we’ve broken the long hmmsearch line into two by ending it midway with a backslash and 
continuing it on the next line. The backslash lets bash know that more of the command is to be specified on later 
lines. (The backslash should be the last character on the line, with no spaces or tabs following.) After making this script 
executable with chmod, we could then rerun the analysis by navigating to this directory and running ./runhmmer.sh. 

What if we wanted to change the input file, say, to argonase-1s.fasta instead of p450s.fasta? We could create 
a new project directory to work in, copy this script there, and then change all instances of p450s.fasta in the script to 
argonase-1s.fasta. 

Alternatively, we could use the power of environment variables to architect our script in such a way that this process 
is easier. 
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Now the file names of interest are specified only once, near the top of the script, and from then on the script uses its own 
identifiers (as environment variables) to refer to them. Reusing this script would be as simple as changing the file names 
specified in three lines. 

We can go a step further. It turns out that shell scripts can take parameters from the command line. The first 
parameter given to a script on the command line will be automatically stored in a variable accessible to the script called 
$1, the second parameter will be stored in $2, and so on. We can thus further generalize our script: 

We could have replaced all instances of $query with $1, but this organization makes our script easier to read in the 
future, an important consideration when programming. Now we can run a full analysis by specifying the three relevant 
file names on the command line, as in: ./runhmmer.sh p450s.fasta dmel-all-translation-r6.02.fasta 

p450s_hmmsearch_dmel.txt. 
This runhmmer.sh is a good candidate for inclusion in our $HOME/local/bin so that we can run it from anywhere, 

though we may want to add lines immediately following the #! line, to provide some help text for anyone who attempts 
to run the script without providing the correct inputs: 

Chapter 6. Installing (Bioinformatics) Software 65

Computational Biology  |  65

https://raw.githubusercontent.com/osuoer/computational-biology/master/runhmmer.sh


The “if block” above will only execute if the number of parameters given ($#) is not equal to 3. Although languages 
like Python provide much nicer facilities for this sort of logic-based execution, the ability to conditionally provide usage 
information for scripts is important. As usual for bash, the interpreter ignores lines that start with #. 

Exercises Exercises 

1. Create a new folder in your projects folder called c_elegans. Locate the FASTA file for the reference genome of 

Caenorhabditis elegans from http://wormbase.org, and download it to this folder using wget. The file you are 

searching for will be named something like c_elegans.PRJNA13758.WS244.genomic.fa.gz. After it is downloaded, 

decompress it and view it with less -S. 

2. Install an SFTP client on your desktop, like FireFTP or CyberDuck, and attempt to connect to the same 

machine you log in to via SFTP. Download a FASTA file of some potentially homologous sequences from Uniprot 

to your local desktop, and transfer it to your remote c_elegans directory. 

3. Try running muscle and HMMER on the sequences you downloaded from uniprot.org against the C. elegans 

genome. 

4. If you have access to more than one Unix-based machine (such as an OS X desktop and a remote Linux 

computer, or two remote Linux computers), read the man page for scp with man scp, and also read about it online. 

Try to transfer a file and a directory between machines using scp on the command line. 

5. Write an executable bash script that automates a process of some kind, and install it in your $HOME/local/bin. 

Test it after logging out and back in. 
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7. Command Line BLAST 

While the previous chapters covered installing and using a few bioinformatics tools as examples of the process, there is 
one nearly ubiquitous tool: BLAST, or Basic Local Alignment Search Tool.

1 

Given one or more query sequences (usually in FASTA format), BLAST looks for matching sequence regions 
between them and a subject set. 

A sufficiently close match between subsequences (denoted by arrows in the figure above, though matches are usually 
longer than illustrated here) is called a high-scoring pair (HSP), while a query sequence is said to hit a target sequence 
if they share one or more HSPs. Sometimes, however, the term “hit” is used loosely, without differentiating between 
the two. Each HSP is associated with a “bitscore” that is based on the similarity of the subsequences as determined by a 
particular set of rules. Because in larger subject sets some good matches are likely to be found by chance, each HSP is also 
associated with an “E value,” representing the expected number of matches one might find by chance in a subject set of 
that size with that score or better. For example, an E value of 0.05 means that we can expect a match by chance in 1 in 20 
similar searches, whereas an E value of 2.0 means we can expect 2 matches by chance for each similar search. 

BLAST is not a single tool, but rather a suite of tools (and the suite grows over the years as more features and related 
tools are added). The most modern version of the software, called BLAST+, is maintained by the National Center for 
Biotechnology Information (NCBI) and may be downloaded in binary and source forms at ftp://ftp.ncbi.nlm.nih.gov/
blast/executables/blast+/LATEST/. 

This chapter only briefly covers running BLAST on the command line in simple ways. Reading the help 
information (e.g., with blastn --help) and the NCBI BLAST Command Line Applications User Manual at 
http://www.ncbi.nlm.nih.gov/books/NBK1763/ is highly recommended. The NCBI manual covers quite a few 
powerful and handy features of BLAST on the command line that this book does not. 

1. The original BLAST paper is by Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman, “Basic Local 
Alignment Search Tool,” Journal of Molecular Biology 215 (1990): 403–404. I’m convinced that naming bioinformatics tools exciting 
verbs like BLAST and HMMER results in greater usage. 
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BLAST Types BLAST Types 

The programs in the BLAST+ suite can search for and against sequences in protein format (as we did for the HMMER 
example) and in nucleotide format (A’s, C’s, T’s, and G’s). Depending on what type the query and subject sets are, 
different BLAST programs are used. 

While two nucleotide sequences (N comparisons in the figure above) may be compared directly (as may two protein 
sequences, represented by P), when we wish to compare a nucleotide sequence to a protein sequence, we need to consider 
which reading frame of the nucleotide sequence corresponds to a protein. The blastx and tblastn programs do this by 
converting nucleotide sequences into protein sequences in all six reading frames (three on the forward DNA strand and 
three on the reverse) and comparing against all of them. Generally such programs result in six times as much work to be 
done. The tblastx program compares nucleotide queries against nucleotide subjects, but it does so in protein space with 
all six conversions compared to all six on both sides. 

Other more exotic BLAST tools include psiblast, which produces an initial search and tweaks the scoring rules 
on the basis of the results; these tweaked scoring rules are used in a second search, generally finding even more matches. 
This process is repeated as many times as the user wishes, with more dissimilar matches being revealed in later iterations. 
The deltablast program considers a precomputed database of scoring rules for different types of commonly found 
(conserved) sequences. Finally, rpsblast searches for sequence matches against sets of profiles, each representing a 
collection of sequences (as in HMMER, though not based on hidden Markov models). 

All this talk of scoring rules indicates that the specific scoring rules are important, especially when comparing two 
protein sequences. When comparing protein sequences from two similar species, for example, we might wish to give a 
poor score to the relatively unlikely match of a nonpolar valine (V) to a polar tyrosine (Y). But for dissimilar species 
separated by vast evolutionary time, such a mismatch might not be as bad relative to other possibilities. Scoring matrices 
representing these rule sets with names like BLOSUM and PAM have been developed using a variety of methods to 
capture these considerations. A discussion of these details can be found in other publications. 

Each of the various programs in the BLAST suite accepts a large number of options; try running blastn -help to 
see them for the blastn program. Here is a summary of a few parameters that are most commonly used for blastn et al.: 
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-query <fasta file> 

The name (or path) of the FASTA-formatted file to search for as query sequences. 

-subject <fasta file> 

The name (or path) of the FASTA-formatted file to search in as subject sequences. 

-evalue <real number> 

Only HSPs with E values smaller than this should be reported. For example: -evalue 0.001 or -evalue 
1e-6. 

-outfmt <integer> 

How to format the output. The default, 0, provides a human-readable (but not programmatically parseable) 
text file. The values 6 and 7 produce tab-separated rows and columns in a text file, with 7 providing 
explanatory comment lines. Similarly, a value of 10 produces comma-separated output; 11 produces a format 
that can later be quickly turned into any other with another program called blast_formatter. Options 6, 7, 
and 10 can be highly configured in terms of what columns are shown. 

-max_target_seqs <integer> 

When the output format is 6, 7, or 10 for each query sequence, only report HSPs for the best <integer> 
different subject sequences. 

-max_hsps <integer> 

For each query/target pair, only report the best <integer> HSPs. 

-out <output file> 

Write the output to <output file> as opposed to the default of standard output. 

BLAST Databases BLAST Databases 

No doubt readers familiar with BLAST have been curious: aren’t there databases of some kind involved in BLAST 
searches? Not necessarily. As we’ve seen, simple FASTA files will suffice for both the query and subject set. It turns out, 
however, that from a computational perspective, simple FASTA files are not easily searched. Thus BLAST+ provides 
a tool called makeblastdb that converts a subject FASTA file into an indexed and quickly searchable (but not human-
readable) version of the same information, stored in a set of similarly named files (often at least three ending in .pin, 
.psq, and .phr for protein sequences, and .nin, .nsq, and .nhr for nucleotide sequences). This set of files represents the 
“database,” and the database name is the shared file name prefix of these files. 
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Running makeblastdb on a FASTA file is fairly simple: 
makeblastdb -in <fasta file> -out <database 

name> -dbtype <type> -title <title> 

-parse_seqids, where <type> is one of prot or nucl, and 
<title> is a human-readable title (enclosed in quotes if 
necessary). The -parse_seqids flag indicates that the 
sequence IDs from the FASTA file should be included in 
the database so that they can be used in outputs as well as 
by other tools like blastdbcmd (discussed below). 

Once a BLAST database has been created, other 
options can be used with blastn et al.: 

-db <database name> 

The name of the database to search against (as 
opposed to using -subject). 

-num_threads <integer> 

Use <integer> CPU cores on a multicore system, if they are available. 

When using the -db option, the BLAST tools will search for the database files in three locations: (1) the present working 
directory, (2) your home directory, and (3) the paths specified in the $BLASTDB environment variable. 

The tool blastdbcmd can be used to get information about BLAST databases—for example, with blastdbcmd -db 

<database name> -info—and can show the databases in a given path with blastdbcmd -list <path> (so, blastdbcmd 
-list $BLASTDB will show the databases found in the default search paths). This tool can also be used to extract sequences 
or information about them from databases based on information like the IDs reported in output files. As always, reading 
the help and documentation for software like BLAST is highly recommended. 

Running a Self-BLAST Running a Self-BLAST 

To put these various tools and options to use, let’s consider using blastp to look for proteins that are similar in sequence 
to other proteins in the yeast exome. First, we’ll need to use wget to download the protein data set (after locating it at 
http://yeastgenome.org), and then gzip -d to decompress it, calling it orf_trans.fasta. 

In order to find sequences that are similar to others, we’re going to want to blastp this file against itself. So, we’ll start by 
creating a database of these sequences. 
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Now we need to determine what options we will use for the blastp. In particular, do we want to limit the number 
of HSPs and target sequences reported for each query? Because we’re mostly interested in determining which proteins 
match others, we probably only need to keep one hit. But each protein’s best hit will likely be to itself! So we’d better 
keep the top two with -max_target_seqs 2 and only the best HSP per hit with -max_hsps 1. We’ll also use an -evalue 
1e-6, a commonly used cutoff.

2 

For the output, we’ll create a tab-separated output with comment lines (-outfmt 7), creating columns for the query 
sequence ID, subject sequence ID, HSP alignment length, percentage identity of the alignment, subject sequence length, 
query sequence length, start and end positions in the query and subject, and the E value. (The coded names—qseqid, 
sseqid, length, etc.—can be found by running blastp -help.) Finally, we’ll call the output file 
yeast_blastp_yeast_top2.txt and use four processors to speed the computation (which will only really help if the 
machine we are logged in to has at least that many). 

It’s a long command, to be sure! This operation takes several minutes to finish, even with -num_threads 4 specified. 
When it does finish, we can see with less that the output file contains the columns we specified interspersed with the 
comment lines provided by -outfmt 7. 

In the output snippet above, YAL0005C has an HSP with itself (naturally), but also one with YLL024C. We’ll consider 
basic analyses containing this sort of data—rows and columns stored in text files, interspersed with extraneous lines—in 
later chapters. 

2. Using an E-value cutoff of 1e-6 may not be the best choice; as with all analyses, some evaluations or literature guidance may be 
necessary, depending on the task at hand. 
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Exercises Exercises 

1. If you don’t already have the NCBI Blast+ tools installed, install them. Once you do, check the contents of the 

$BLASTDB environment variable. If it’s not empty, use blastdbcmd to determine whether you have the “nr” database 

available, and any information you can determine about it (when it was downloaded, how many sequences it has, 

etc.) 

2. Create a new folder in your projects folder called blast. In this directory, download the p450s.fasta file and the 

yeast exome orf_trans.fasta from the book website. Create a database called orf_trans using makeblastdb, and use 

blastp to search the p450s.fasta file against it. When doing the search, use an E-value cutoff of 1e-6, keep the top 

one target sequences, and produce an output file called p450s_blastp_yeast_top1.blast in output format 11. 

3. Use the blast_formatter tool to convert the output format 11 file above into an output format 6 called 

p450s_blastp_yeast_top1.txt, with columns for: (1) Query Seq-id, (2) Subject Seq-id, (3) Subject Sequence Length, 

(4) Percentage of Identical Matches, (5) E Value, (6) Query Coverage per Subject, and (7) Subject title. (You may 

find browsing the NCBI BLAST+ manual and the output of blast_formatter -help to be informative.) The output, 

when viewed with less -S, should look something like this: 

What do these various output columns represent? 

4. The file yeast_selected_ids.txt contains a column of 25 IDs identified as interesting in some way. Use blastdbcmd 

to extract just those sequence records from the orf_trans database as a FASTA file named 

yeast_selected_ids.fasta. (Again, browsing the BLAST+ manual and the output of blastdbcmd -helpwill be useful.) 

72 Part I: Introduction to Unix/Linux

72  |  Shawn T. O’Neil

https://raw.githubusercontent.com/osuoer/computational-biology/master/p450s.fasta
https://raw.githubusercontent.com/osuoer/computational-biology/master/p450s.fasta
https://raw.githubusercontent.com/osuoer/computational-biology/master/orf_trans.fasta
https://raw.githubusercontent.com/osuoer/computational-biology/master/orf_trans.fasta
https://raw.githubusercontent.com/osuoer/computational-biology/master/yeast_selected_ids.txt
https://raw.githubusercontent.com/osuoer/computational-biology/master/yeast_selected_ids.txt


8. The Standard Streams 

In previous chapters, we learned that programs may produce output not only by writing to files, but also by printing 
them on the standard output stream. To further illustrate this feature, we’ve created a simple program called fasta_stats 
that, given a FASTA file name as its first parameter, produces statistics on each sequence. We’ll also look at the file 
pz_cDNAs.fasta, which contains a set of 471 de novo assembled transcript sequences from Papilio zelicaon, and 
pz_cDNAs_sample.fasta, which contains only the first two. 

We can run the fasta_stats program (after making it executable) with ./fasta_stats pz_cDNAs_sample.fasta. 

Based on the information printed, it appears that sequence PZ7180000031590 has a GC content (percentage of the 
sequence composed of G or C characters) of 37.8%, is 486 base pairs long, the most common five-base-pair sequence 

73

Computational Biology  |  73

https://raw.githubusercontent.com/osuoer/computational-biology/master/fasta_stats
https://raw.githubusercontent.com/osuoer/computational-biology/master/pz_cDNAs.fasta
https://raw.githubusercontent.com/osuoer/computational-biology/master/pz_cDNAs_sample.fasta


is ACAAA (occurring 5 times), and the longest perfect repeat is 10 base pairs long, caused by the pentanucleotide ATTTA, 
occurring twice. 

Much like hmmsearch, this program writes its output to standard output. If we would like to save the results, we 
know that we can redirect the output of standard out with the > redirect. 

When we run this command, however, we see that even though the output file has been created, text is still printed to the 
terminal! If we use less -S to view the pz_sample_stats.txt file, we see that some of the output has gone to the file. 

So what is going on? It turns out that programs can produce output (other than writing to files) on two streams. We are 
already familiar with the first, standard output, which is by default printed to the terminal but can be redirected to a file 
with >. The second, called standard error, is also by default printed to the terminal but is not redirected with >. 

By default, like standard output, standard error (also known as “standard err” or “stderr”) is printed to the terminal. 
Because standard error usually contains diagnostic information, we may not be interested in capturing it into its 

own file. Still, if we wish, bash can redirect the standard error to a file by using the 2> redirect.
1 

We might pictorially represent programs and their output as alternative information flows: 

1. The tcsh and csh shells unfortunately cannot natively separately redirect stdout and stderr to files. A potential workaround looks 
like: ( ./fasta_stats pz_cDNAs_sample.fasta > pz_sample_stats.txt ) > & pz_sample_stats.err.txt. This command runs two independent 
redirects; using parentheses causes the redirect of stdout to happen first, then the further redirect of stderr can occur next. How 
bash-compatible shells handle standard output and standard error is one of the primary reasons they are preferred over the older 
csh-compatible shells. 
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Filtering Lines, Standard Input Filtering Lines, Standard Input 

It can often be useful to extract lines from a file based on a pattern. For example, the pz_sample_stats.txt file contains 
information on what each column describes, as well as the data itself. If we want to extract all the lines that match a 
particular pattern, say, unit:, we can use the tool grep (for Global search for Regular Expression and Print), which 
prints to standard output lines that match a given pattern (or don’t match a given pattern, if using the -v flag): grep 
'<pattern>' <file>. To illustrate, we’ll first run fasta_stats on the full input file, redirecting the standard output to a 
file called pz_stats.txt. 

Looking at the file with less -S pz_stats.txt, we can see that informational lines as well as data-containing lines are 
stored in the file: 

To get rid of the informational lines, we can use grep to extract the other lines by searching for some pattern they have 
in common; in this case, the pattern unit: will do. Because grep prints its results to standard output, we will need to 
redirect the modified output to a file called, perhaps, pz_stats.table to indicate its tabular nature. 
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This time, less -S pz_stats.table reveals only the desired lines. 

Rather than viewing the file with less, we can also count the number of lines present in the file with the wc tool, which 
counts the number of lines, words, and characters of input: wc <file>. 

Working with the cleaned data table reveals that our program produced 21,131 characters broken into 3,297 words 
among 471 lines of data output. 

This sort of command-line-driven analysis can be quite powerful, particularly because many of these programs—like 
less, grep, and wc—can both print their results on standard output and read input from standard input rather than 
from a file. Standard input is the secondary input mechanism for command-line programs (other than reading from files 
directly). By default, standard input, or “stdin,” is unused. 

How can we get input to a program on its standard input? It turns out that the easiest way to do so is to redirect the 
standard output of another program to it using the |, also known as the “pipe,” redirect (found above the Enter key on 
most keyboards). In this case, the data come in “on the left”: 

To drive this home, we’ll first remove our pz_stats.table file, and then rerun our grep for unit: on the pz_stats.txt 
file, but rather than send the result of grep to a file with the > redirect, we’ll direct it straight to the standard input of wc 
with a | redirect. 

In this example, we’ve neither created a new file nor specified a file for wc to read from; the data are stored in a 
temporary buffer that is handled automatically by the shell and operating system. The less program can also read from 
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standard input, so if we wanted to see the contents of the grep without creating a new file, we could run grep 'unit:' 

pz_stats.txt | less -S. 
Recall that the fasta_stats program wrote its output to standard out, and because grep can read from standard 

input as well, we can process the entire FASTA file without needing to create any new files by using multiple such buffers: 

When this command runs, the results printed by fasta_stats on standard error will still be printed to the terminal (as 
that is the default and we didn’t redirect standard error), but the standard output results will be filtered through grep 
and then filtered through wc, producing the eventual output of 471 lines. 

At this point, the longish nature of the commands and the fact that our terminal window is only so wide are 
making it difficult to read the commands we are producing. So, we’ll start breaking the commands over multiple lines 
by ending partial commands with backslashes. Just as in the shell scripts we wrote at the end of chapter 6, “Installing 
(Bioinformatics) Software,” using backslashes will let the shell know that we aren’t finished entering the command. 
However, the bash shell indicates that a command spans multiple lines by showing us a >, which shouldn’t be confused 
with the redirect character that we might type ourselves. The following example shows the exact same command in a 
more readable form broken over multiple lines, but the highlighted characters have not been typed. 

A chain of commands like the above, separated by pipe characters, is often called a “pipeline.” More generally, 
though, a pipeline can describe any series of steps from input data to output data (as in the Muscle/HMMER series 
covered in chapter 6). 

Counting Simple AT Repeats Counting Simple AT Repeats 

Let’s expand on the small pipeline above to inspect just the “simple” AT repeats, that is, those that are the string “AT” 
repeated one or more times. We can start with what we have, but rather than just searching for unit:, we’ll modify the 
pattern to find unit:AT, and see what we get: 

The resulting output is close to what we hoped for, but not quite complete, as this pattern also matches things like 
unit:ATT and unit:ATG. 
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We probably want to further filter the output, but based on what pattern? In this case, those lines that match not only 
unit:AT, but also the term dinucleotide. Rather than attempt to produce a single complicated pattern that does this job 
in a single grep, we can add another grep call into the pipeline. 

This command results in the output we want: 

Rather than run the results through less -S, we could instead use wc to count the simple (dinucleotide) AT repeats. 
There is an important concept at play here, that of iterative development, the idea that as we get closer to a solution, we 
inspect the results and repeat as necessary. Iterative development is a good strategy for many areas in life, but it is essential 
and pervasive in computing. 

Once we’ve decided that we like the small computational process we have created, we might decide to encapsulate 
it and make it repeatable as a shell script, perhaps called count_ATs.sh. 

The above script will need to be made executable and placed in a location referenced by $PATH, as will the fasta_stats 
program. 
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Exercises Exercises 

1. Use grep and wc to determine how many sequences are in the file orf_trans.fasta without creating any 

temporary files. 

2. How many sequence headers in the file orf_trans.fasta have the term “polymerase”? 

3. Some of the sequence headers in orf_trans.fasta have the phrase “Verified ORF” to indicate that the open 

reading frame has been verified experimentally. Some also have the term “reverse complement” to indicate that 

the ORF (open reading frame) is present on the reverse complement sequence of the canonical genome 

description. How many sequences are verified ORFs and are not on the reverse complement? 

4. The sequence headers in orf_trans.fasta have information on the chromosome from which they originate, 

such as Chr I or Chr II. How many sequences are present on chromosome I? 
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9. Sorting, First and Last Lines 

Continuing with the fasta_stats examples from chapter 8, “The Standard Streams,” the seventh column of the output 
contains the length of the longest perfect repeat, in characters. 

Which sequence contains the longest perfect repeat? To answer this question, we could consider sorting the lines 
according to this seventh column. (First, we’ll have to remove the header lines themselves, which we can accomplish by 
filtering out lines matching # using the -v flag of grep, or by grepping for unit:, as in chapter 8.) Enter sort, which sorts 
lines from a text file (or from standard input) by specified columns: sort <file> or ... | sort. 

By default, sort sorts by all columns, by comparing the entire lines in “dictionary,” or lexicographic order. To sort 
by specific columns, we need to use a rather sophisticated syntax. We’ll illustrate with a figure. 

The sort utility takes many potential parameters, though the most important are the -k parameters that specify the 
columns by which to sort and how that sorting should be done, and occasionally the -u flag. The -k (key) parameters 
are considered in order; the above specifies that the sorting should be done on columns 2 through 4 (conglomerated into 
a single “column”), considering them in dictionary order, and sorting them in reverse. In the case of ties, only the first 
column is considered in normal dictionary order, and in the case of further ties, the fifth column is considered in numeric 
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order.
1
 (The difference between n and g ordering is that g can handle entries in scientific notation like 1e-6, but generally 

n is preferred because it is faster and not subject to small rounding errors.) 
The optional -u flag (which may be specified before or after the keys, or even mixed in) specifies that after all the 

keys are considered, if there are still any ties between rows, then only the first row should be output. It outputs only 
“unique” lines according to the overall sorting order. 

By default, sort uses whitespace as the column separator, though it can be changed (run man sort for more 
information). To view information about the longest perfect repeat, we will use sort -k7,7nr, indicating that we wish 
sort on the seventh column only, in reverse numeric order. 

The first few lines of output indicate that the longest perfect repeat is 94 bases long and occurs in sequence PZ805359 
(this sequence’s GC content is 0, because it’s composed entirely of a long AT repeat). 

The results also indicate that there are a number of ties; several sequences contain perfect repeats of length 18 base 
pairs. If we only wanted one sequence reported per different repeat length, we could try sort -k7,7nr -u. We could 
alternatively modify our sort to secondarily sort by GC content (second column), sort -k7,7nr -k2,2g. 

A useful trick is to perform two sorts: one that initially sorts the data on whatever criteria are wanted, and a second 
that gets only the first line of a group based on secondary criteria. We may wish report only the highest GC content 
sequence per different repeat length, for example. We can initially use a sort -k7,7nr -k2,2gr to sort by repeat length 
and break ties by GC content, leaving the highest-GC-content sequences on top. From there, we can use a sort -k7,7nr 

-u to re-sort the data (even though they are already sorted!) by the seventh column, keeping only the top line per repeat 
length. 

1. A word of caution: if a column contains an entry that cannot be interpreted as an integer or general number, it will be treated as 0 
in the sorting order. 
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Output: 

There is one small concern, however: how can we be sure that our careful ordering by GC content wasn’t undone in the 
second sort? After all, the second sort would technically be free to reorder ties according to the seventh column, resulting 
in incorrect output. There is an additional flag for sort, the -s flag, indicating that stable sorting should be used. Stable 
sorting means that, in the case of ties, elements are left in their original order. So, to be safe, we could use a secondary sort 
of sort -k7,7nr -u -s, though a careful reading of the documentation for sort indicates that on most systems the -u 
flag implies the -s flag. 

First and Last Lines First and Last Lines 

Often we wish to extract from a file (or from standard input) the first or last few lines. The tools head and tail are 
designed to do exactly this, and in combination with other tools are surprisingly handy. The head tool extracts the first 
lines of a file or standard input: head -n <number> <file> or ... | head -n <number>. The tail tool extracts the last 
lines of a file or standard input: tail -n <number> <file> or ... | tail -n <number>. 

The head and tail utilities, like the others covered previously, write their output to standard output, and so they 
can be used within pipelines. They are often employed to inspect the beginning or end of a file (to check results or 
formatting). They also commonly extract test data sets. For example, head -n 40000 input.fastq > test.fastq would 
extract the first 10,000 sequence records from input.fastq and produce test.fastq (because every four lines of a 
FASTQ sequence file represents information for a single sequence). 

The above shows the first 12 lines of a FASTQ file generated on an Illumina HiSeq 2000. The first line in each set of four 
represents an identifier for the sequence read, the second line contains the sequence itself, the third line is often unused 
(containing only a +, though it may be followed by the identifier and other optional data), and the fourth line contains 
the “quality” of each base in the sequence encoded as a character. (The encoding has varied in the past, but in recent 
years, sequencing companies have standardized the encoding used by Sanger sequencing machines.) 

Chapter 9. Sorting, First and Last Lines 83

Computational Biology  |  83



With a bit of modified syntax, tail can also be used to extract all lines of a file starting at a given line. As an 
example, tail -n +5 input.fastq > test.fastq would result in test.fastq having all but the first sequence record of 
input.fastq (i.e., starting at the fifth line). This feature is especially useful for stripping off header lines of output or files 
before further processing, as in ./fasta_stats pz_cDNAs.fasta | tail -n +9, rather than using grep -v '#' above. 

Exercises Exercises 

1. Running fasta_stats on pz_cDNAs.fasta, the seventh column represents the length of the longest perfect repeat 

found in each sequence. Use only grep, sort, wc, head, and tail to determine the median value in this column. (You 

may need to run multiple commands or pipelines.) 

2. Running fasta_stats on pz_cDNAs.fasta, how many different perfect repeat units (column six) are found? 

3. The file pz_blastx_yeast_top10.txt is the result of running blastx -query ../fasta_stats/pz_cDNAs.fasta -db 

orf_trans -evalue 1e-6 -max_target_seqs 10 -max_hsps 1 -outfmt 7 -out pz_blastx_yeast_top1.txt. Aside from the 

“comment” lines that start with #, the first column is the query ID, the second the target (yeast) ID, the third the 

percentage identity of the HSP, the eleventh the E value, and the twelfth the “bitscore.” Which query ID had the 

largest bitscore? How many different query sequences (entries in the first column) had one or more HSPs 

against the database? 

4. Extract from pz_blastx_yeast_top10.txt a file called pz_blastx_yeast_top1.txt containing only the smallest 

E-valued HSP line per query ID. (You may remove comment lines starting with # altogether.) 
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10. Rows and Columns 

Let’s return to the output of the yeast proteins versus yeast proteins self-BLAST we performed previously, from the file 
yeast_blastp_yeast_top2.txt. 

Let’s ask the following: how many sequences in this data set had a match to some other sequence? To start with, we would 
probably use a grep -v '#' to remove all of the comment lines, but then what? We could try using wc to count the lines, 
but only after also removing the self-hits, where the ID in the first column is equal to the ID in the second column. None 
of the utilities we’ve seen so far—grep, sort, head, or tail—can perform this task. We need a new tool, awk, which is a 
line-by-line and column-by-column processing tool for text files: awk '<program>' <file> or ... | awk '<program>'. 

Written in the late 1970s and named after its authors (Alfred Aho, Peter Weinberger, and Brian Kernigan), awk 
provides a sophisticated programming language that makes it easy to parse tabular data like the BLAST results above. 
The syntax for awk can be fairly complex, but much of the complexity can be ignored in regular use. 

First, let’s answer our specific question, of how many sequences had matches to other sequences, and then we’ll 
look at some awk syntax more generally. The awk command that we want, printing only those lines where the first two 
columns are not equal, is awk '{if($1 != $2) {print $0}}'. 

Breaking down the awk command, the “program” that is executed is delimited by the single quotes (which collate their 
contents into a single command line parameter that is sent to the awk program). The code inside the outer pair of curly 
brackets is executed for each line. For each line, if the contents of the first column (represented by $1) are not equal to 
(!=) the second column ($2), then the code in the following pair of curly brackets is executed, and the line ($0) is printed 
(to standard output). 
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In theory, at this point we should be able to replace the less -S with a wc to count the lines, and thus counting the 
number of sequences that had matches to other sequences. Unfortunately, in this case, theory doesn’t align with reality: 
inspecting the output above reveals that ID YDR545W is still represented by two lines, so this sequence would be counted 
twice. 

Why? In the BLAST command, we requested the top two HSPs per query with -max_target_seqs 2 and 
-max_hsps 1, so we expected that the best HSP would be to the sequence itself, with the second best (if it existed) to be to 
a non-self-hit. But in this case, blastx decided to report two non-self-hits. In fact, if we were to inspect YDR545W, YOR396W, 
and YLR467W, we’d find that their sequences are identical, and so BLAST needed to pick two HSPs out of the three-way 
tie. 

In order to get the correct number of sequences that had matches to others, we need to remove any duplicates that 
might still be found in the first column. We can do this by adding a sort -k1,1d -u, for a final answer of 2,884. 

For any sufficiently complex data set, it is a good idea to check as many assumptions about it as possible when performing 
an analysis. In the above, using wc on the lines to count the number of sequences that had hits to others implied that in 
the first column no ID was listed twice. In this case, comparing the counts with and without the sort -k1,1d -u would 
serve to verify or reject this assumption. In later chapters, we’ll learn more techniques for this kind of “sanity checking.” 

Basic Syntax for awk Basic Syntax for awk 

Although awk can be used as a full-featured programming language (complete with loops, arrays, and so on), for 
sophisticated programming needs, other languages like Python and R are usually better suited. Let’s take a look at a 
practical subset of its syntax. 
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Statements in the BEGIN block are executed before any line of the input is processed, statements in the unadorned middle 
block are executed for every line, and statements in the END block are executed after the last line is processed. Each of these 
blocks is optional, though the middle “for each line” block is rarely omitted in practice. 

When processing a line, a number of variables are available for use. Although many of them start with a $, they are 
not environment variables (because we’ve placed the “program” inside single quotes, they are sent to awk as unaltered 
strings, $ signs intact). 

$0 

Holds the contents of the entire line that is being processed. 

$1, $2, etc. 
$1 holds the contents of the first column of the current line, $2 holds the contents of the second column of 
the current line, and so on. Like sort, awk by default assumes that columns are separated by whitespace. 

NF 

The special variable NF holds the number of columns (also known as fields) in the current line (awk does not 
require that all lines contain the same number of columns). 

NR 

NR holds the number of lines that have been processed so far, including the current line. Thus in the BEGIN 
line, NR holds 0; during the processing of the first line, NR holds 1; and in the END block, NR holds the total 
number of lines in the input. 

Note that both the NF and NR lack a $ prefix. The text placed in the three blocks can consist of a wide variety of things, 
including conditionals, print statements, logic and mathematical manipulations, and so on. Perhaps a collection of 
examples will help illustrate the utility of awk. All of these examples are based on the BLAST output above, after filtering 
out comment lines with grep -v '#'. 

This command prints only the first two columns of the table, separated by a space (the default when a comma is 
included in a print statement): 
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Instead of separating the two output columns by a space, we can instead separate them by a string like :::, producing 
only a single conglomerated column of output. 

If we’d like to add a new first column that simply contains the line number, we can use the NR variable in conjunction 
with the $0 variable: 

If-statements allow awk to execute other statements conditionally; the syntax is if( <logical expression> ) { 

<statements to execute> }. Additionally, if a column contains numeric values, awk can work with them as such, and 
awk even understands scientific notation. Here’s an example where only lines with HSP E values (the tenth column in 
our example) of less than 1e-10 are printed. 

Notice that the organization of the curly brackets produces a nested block structure; although for this simple case 
the inside set of brackets could be omitted, it’s usually best practice to include them, as they illustrate exactly which 
statement is controlled by the preceding if.

1 

If-statements can control multiple conditions, and sometimes it helps to break awk programs over multiple lines to 
help with their readability, especially when they are included in executable scripts. This sophisticated statement adds a 
new first column that categorizes each HSP as either “great,” “good,” or “ok,” depending on the E value, printing only 
the two IDs and the E value (columns 1, 2, and 10): 

1. This nested construct, a controlled block inside of another block that is executed for each element of a set (in this case, for each 
line), is one of our first examples of programming! One hint for reducing confusion when producing such structures is to fill in 
their structure from the outside in, adding pairs of symbols and then “backing up” into them as needed. In this example, we might 
have started with awk '', and then added the curly brackets to produce awk '{}', next awk '{if() {}}', and finally filled in the logic 
with awk '{if($10 < 1e-10) {print $0}}'. 
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It is easy enough to determine whether a particular column is equal to a given string, for example, to pull out all lines 
where the first column is YAL054C: 

Mathematical computations are a nice feature of awk. For example, columns 4 and 5 contain the total length of the query 
sequence and subject sequence, respectively, so we might wish to print the ratio of these two as an additional column at 
the end. 

We could then pipe the result to a sort -k3,3g | tail -n 5 to see the five HSPs with the largest ratios. Beware, 
however, that when performing mathematical operations or comparisons with columns, any contents that can’t be 
parsed as a number (1.5 can be, as can 2 and 4e-4, but not i5 or NA) may be truncated (e.g., 10x1 is treated as just 10) or 
treated as 0. Using sort on columns with -g can reveal such potential problems, as the same underlying method is used 
for parsing. 

There are a variety of mathematical functions built into awk. Here’s a sample: 
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log() 

Returns the natural logarithm of its argument, as in print $10 * log($3 * $4) for printing the log of the 
multiplication of the third and fourth columns times the tenth column.

2 

length() 

The length() function returns the number of characters in its argument, as in length($1) for the character 
length of the first column, and length($0) for the character length of the whole line (spaces and tab 
characters included). 

** 

This operator returns the left-hand side raised to the power of the right-hand side, as in $1**2 for the square 
of the first column. 

% 

The modulus operator, returning the remainder after dividing the left-hand side by the right-hand side. For 
example, NR%4 will be 1 on the first line, 2 on the second, 3 on the third, 0 on the fourth, 1 on the fifth, and so 
on. 

exp() 

This function returns its argument raised to the natural power e. For example, log(exp($1)) returns the first 
column’s value. 

int() 

Returns the integer portion of its argument. For example, int(6.8) returns 6, and int(-3.6) returns -3. 

rand() 

When given no arguments, returns a random number between 0 (inclusive) and 1 (exclusive). By default, 
every time awk is run, the series of random numbers produced by multiple calls to rand() is the same. To get a 
“random” random series, run srand() (which “seeds” the random number generator) in the BEGIN block, as 
in BEGIN{srand()}{print rand(),$0}. 

Logical expressions may be combined with Boolean operators, including && for “and” and || for “or” (which produces 
true if either or both sides are true), and grouping can be accomplished with parentheses. For instance, we might wish to 
print only those lines where the first column is not equal to the second, and either the tenth column is less than 1e-30 or 
the second column is YAL044C. 

2. If you are concerned about where spaces are allowed in awk statements, try not to be: for the most part, they are allowed 
anywhere, and you may feel free to use them to enhance the readability of your statements. They are not allowed in keywords and 
variables: i f($ 1 > $2) {print N R} would be an invalid expression because i f, $ 1, and N R have erroneous spaces. 
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Thus far, we haven’t made much use of the BEGIN or END blocks, which are especially handy when we define and update 
our own variables. We can accomplish this task with an = assignment (not to be confused with the == comparison). This 
command prints the average E values in our example BLAST result file. 

This command works because the right-hand side of an assignment to a variable with = is evaluated before the assignment 
happens. Thus, in the BEGIN block, the sumeval variable is initialized to 0, then for each line the value of sumeval is added 
to the contents of the tenth column (the E value of that line), and the result is stored in sumeval. Finally, in the END block, 
sumeval contains the total sum of E values, and we can divide this result by the number of lines processed, NR. 

We can execute multiple statements within a single block if we separate them with semicolons. In the above 
example, the average E value computed includes self-hits. We can filter them out with an if-statement before modifying 
sumeval, but then we won’t want to divide the result by NR, because that will include the self-hit counts as well. To solve 
this problem, we’ll need to keep two variables. 

As before, some IDs are still present more than one time in the first column with this solution, so it may make better 
sense to first filter the desired lines by using the awk and sort -k1,1d -u solution from above, and then use another awk 
for the average computation. 

Exercises Exercises 

1. In the file pz_blastx_yeast_top10.txt, how many HSPs (lines) have an E value that is less than 1e-30 or have an 

identity value of greater than 50%? Use awk, wc, and grep if needed to compute the answer. 

2. The file contig_stats.txt describes statistics for contigs from a de novo genome assembly (a contig is an 

assembled “piece” of the genome). The fourth column describes the GC content of the various contigs. Other 

analyses indicate that the majority of correctly assembled genes have an average coverage (second column) of 

between 80.0 and 150.0. Use awk to determine the average GC content for contigs with coverage between 80.0 

and 150.0. Then use another invocation of awk to determine the average GC content for all other contigs. (Do not 
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count the header line in the file in your computations.) 

3. The file PZ.annot.txt is the result of a gene ontology (GO) analysis for the full set of assembled Papilio zelicaon 

cDNA sequences. Owing to the incomplete nature of the annotation process, not all sequences were assigned 

GO terms. How many different sequence IDs are represented in this file? 

4. Some versions of the sort program can sort lines in “random” order by using the -R flag. Rather than using this 

flag, however, use grep, awk (with the rand() feature) sort (without the -R flag) and head to select five random IDs 

from pz_cDNAs.fasta. An example output might look like: 

The same command should produce a different list of five IDs each time it is run. 
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11. Patterns (Regular Expressions) 

In previous chapters, we used a simple fasta_stats program to perform basic analyses on a FASTA file called 
pz_cDNAs.fasta, mostly as an excuse to learn about the standard streams and tools like grep and sort. It turns out that 
the information in the pz_cDNAs.fasta file provides us with many potential questions to ponder. 

The sequences in this file are actually a subset of putative transcripts, produced from a de novo transcriptome 
assembly for the butterfly Papilio zelicaon. Each sequence header line encodes a variety of information: the second and 
third columns of the header lines reveal the number of reads contributing to each assembled sequence and the average 
coverage of the sequence (defined as the total number of bases contributed by reads, divided by the assembled sequence 
length). Even the sequence IDs encode some information: they all start with a pseudorandom identifier, but some have a 
suffix like _TY. 

Groups of sequences that share the same _ suffix were previously identified as having shared matches using a self-BLAST. 
Sequence IDs without such a suffix had no matches. We might ask: how many sequences are in such a group? This could 
be easily answered by first using grep to extract lines that match > (the header lines), and then using another grep to 
extract those with the pattern _ (those in a group) before sending the result to wc. 

A more complex question would be to ask how many different groups are represented in the file. If the group 
information was stored in a separate column (say, the second column), this question could be answered with the same 
process as above, followed by a sort -k2,2d -u to remove duplicate group identifiers. But how can we coerce the group 
information into its own column? We could do this by substituting instances of _ with spaces. The sed (Stream EDitor) 
tool can help us. Here’s the overall pipeline we’ll use: 
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And here is some of the output, where only sequences in groups are represented and each group is represented only once 
(replacing the less -S with wc would thus count the number of groups): 

The sed tool is a sophisticated program for modifying input (either from a file or standard input) and printing the results 
to standard output: sed '<program>' <file> or ... | sed '<program>'. 

Like awk, sed hails from the 1970s and provides a huge variety of powerful features and syntax, only a tiny fraction 
of which we’ll cover here. In particular, we’ll focus on the s, or substitution, operation. 

The -r option that we’ve used lets sed know that we want our pattern to be specified by “POSIX extended regular 
expression” syntax.

1
 The general pattern of the program for substitution is s/<pattern>/<replacement>/g, where the 

g specifies that, for each line, each instance of the pattern should be replaced. We can alternatively use 1 in this spot 
to indicate that only the first instance should be replaced, 2 to indicate only the second, and so on. Often, 
s/<pattern>/<replacement>/ is used, as it has the same meaning as s/<pattern>/<replacement>/1.

2 

1. POSIX, short for Portable Operating System Interface, defines a base set of standards for programs and operating systems so that 
different Unix-like operating systems may interoperate. 

2. We should also note that the / delimiters are the most commonly used, but most characters can be used instead; for example, 
s|<pattern>|<replacement>|g may make it easier to replace / characters. 
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Regular Expressions Regular Expressions 

The true power of sed comes not from its ability to replace text, but from its utility in replacing text based on “patterns” 
or, more formally, regular expressions. A regular expression is a syntax for describing pattern matching in strings. Regular 
expressions are described by the individual characters that make up the pattern to search for, and “meta-operators” that 
modify parts of the pattern for flexibility. In [ch]at, for example, the brackets function as a meta-operator meaning “one 
of these characters,” and this pattern matches both cat and hat, but not chat. Regular expressions are often built by 
chaining smaller expressions, as in [ch]at on the [mh]at, matching cat on the hat, cat on the mat, hat on the hat, 
and hat on the mat. 

In the example above, the entire pattern was specified by _, which is not a meta-operator of any kind, and so each 
instance of _ was replaced by the replacement (a space character). The meta-operators that are supported by regular 
expressions are many and varied, but here’s a basic list along with some biologically inspired examples: 

non-meta-operator characters or strings 
Most characters that don’t operate in a meta-fashion are simply matched. For example, _ matches _, A 
matches A, and ATG matches a start codon. (In fact, ATG is three individual patterns specified in a row.) When 
in doubt, it is usually safe to escape a character (by prefixing it with a backslash) to ensure it is interpreted 
literally. For example, \[_\] matches the literal string [_], rather than making use of the brackets as meta-
operators. 

. 

A period matches any single character. For example, CC. matches any P codon (CCA, CCT, CCG, CCC), but also 
strings like CCX and CC%. 

[<charset>] 

Matches any single character specified in <charset>. For example, TA[CT] matches a Y codon (TAC or TAT). 

[^<charset>] 

Placing a ^ as the first character inside charset brackets negates the meaning, such that any single character 
not named in the brackets is matched. TA[^CT] matches TAT, TAG, TA%, and so on, but not TAC or TAT. 

^ (outside of []) 
Placing a ^ outside of charset brackets matches the start of the input string or line. Using sed -r 's/^ATG/
XXX/g', for example, replaces all instances of start codons with XXX, but only if they exist at the start of the 
line. 

$ 

Similar to ^, but $ matches the end of the string or line. So, sed -r 's/ATG$/XXX/g' replaces all start codons 
that exist at the end of their respective lines. 

So far our patterns aren’t really all that flexible, because most of the pieces covered to this point match a single character. 
The next five meta-operators resolve that limitation. 
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{x,y} 

Modifies the preceding pattern so that it matches if it occurs between x and y times in a row, inclusive. For 
example, [GC]{4,8} matches any string of C’s and/or G’s that is four to eight characters long (shooting for 
eight characters, if possible). So, sed -r 's/[GC]{4,8}/_X_/g' would result in the following substitutions: 

ATCCGTCT to ATCCGTCT (no replacement) 
ATCCGCGGCTC to AT_X_TC 
ATCGCGCGGCCCGTTCGGGCCT to AT_X_CCGTT_X_T 

Using {0,1} has the effect of making what it follows optional in the pattern, and {x,} has the effect of 
allowing the pattern to match x or more times with no upper limit. 

* 

An asterisk modifies the preceding pattern so that it matches if it occurs zero or more times; thus it is 
equivalent to {0,}. 

The usage of * deserves a detailed example. Consider the pattern ATG[ATGC]*TGA, where ATG is the pattern for a 
start codon, [ATGC]* indicates zero or more DNA bases in a row, and TGA is one of the canonical stop codons. 
This pattern matches ATGTACCTTGA, and also matches ATGTGA (where the middle part has been matched zero 
times). 

+ 

The most prominent repetition modifier, a plus sign modifies the preceding pattern so that it is matched one 
or more times; it is equivalent to {1,}. In contrast with the example above, ATG[ATGC]+TGA matches 
ATGTACCTTGA and ATGCTGA, but not ATGTGA. 

(<pattern>) 

Parentheses may be used to group an expression or series of expressions into a single unit so that they may be 
operated on together. Because AT is the pattern A followed by T, for example, AT+ matches AT, ATT, ATTT, and 
so on. If we wanted to instead match AT repeats, we might wish to specify a pattern like (AT)+, which 
matches AT, ATAT, ATATAT, and so on. Parentheses also “save” the string that was matched within them for 
later use. This is known as back-referencing, discussed below. 

<pattern x>|<pattern y> 

Match either the pattern <pattern x> or the pattern <pattern y>. Multiple such patterns or operations can 
be chained; for example, TAA|TAG|TGA matches any one of the three canonical stop codons. This example is a 
bit ambiguous, though: does this pattern read “TA (A or T) A (G or T) GA,” or “TAA or TAG or TGA”? 
To make it concrete, we’d probably want to specify it as ((TAA)|(TAG)|(TGA)). 

Using these pieces, we can put together a regular expression that serves as a simple (and not actually useful in practice) 
open reading frame finder. For prokaryotic sequences (where introns are not a consideration), we’ll define these as a start 
codon ATG, followed by one or more codons, followed by one of the three canonical stop codons TAA, TAG, or TGA. The 
pattern for the start is ATG, and we’ve seen how we can encode a stop above, with ((TAA)|(TAG)|(TGA)). How about 
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“one or more codons?” Well, “one or more” is embodied in the + operator, and a codon is any three A’s, T’s, C’s, or G’s. 
So, “one or more codons” is encoded as ([ACTG]{3,3})+. Thus the regular expression for our simple open reading frame 
finder is: 

In reality, regular expressions are not often used in searching for coding regions (though they are sometimes used for 
identifying smaller motifs). Part of the reason is that regular expressions are, by default, greedy: they match the first 
occurring pattern they can, and they seek to match as much of the string as they can. (The cellular machinery that 
processes open reading frames is not greedy in this way.) Consider the following sequence, which has three open reading 
frames according to our simple definition and regular expression above. 

Notice that the string TAG is both a type of codon in general ([ACTG]{3,3}) and a stop, so technically both of the first two 
options are valid according to the regular expression. By the rules of greediness, the first will be matched, which we can 
verify with a simple echo and sed. 

The regular expression syntax used by sed is similar to the syntax used in languages such as Perl, Python, and R. In fact, all 
of the examples we’ve seen so far would work the same in those languages (though they are applied by their own specific 
functions rather than a call to sed). One helpful feature provided by more modern regular expression engines like these is 
that operators like * and + can be made nongreedy (though I prefer the clearer term “reluctant”) by following them with 
a question mark. In Python, the regular expression ATG([ACTG]{3,3})+?((TAA)|(TAG)|(TGA)) would match the second 
option. (When not following a *, or +, it makes the previous optional; thus TG(T)?CC is equivalent to TG(T){0,1}CC.) 
More sophisticated features allow the user to access all the matches of a pattern, even if they overlap, so that the most 
satisfying one can be pulled out by some secondary criteria. Unfortunately, sed does not support nongreedy matching 
and several other advanced regular expression features. 

Chapter 11. Patterns (Regular Expressions) 97

Computational Biology  |  97



Character Classes and Regular Expressions in Other Tools Character Classes and Regular Expressions in Other Tools 

We often wish to use charset brackets to match any one of a “class” of characters; for example, [0123456789] matches 
any single digit. Most regular expression syntaxes (including that used by sed) allow a shorthand version [0-9] (if we 
wanted to match only a 0, 9, or -, we could use [09-]). Similarly, [a-z] matches any single lowercase letter, and [A-Z] any 
uppercase letter. These can even be combined: [A-Za-z0-9] matches any digit or letter. In the POSIX extended syntax 
used by sed, 0-9 can also be specified as [:digit:]. Notice the lack of brackets in the former—to actually match any 
single digit, the regular expression is [[:digit:]] (which, yes, is annoying). To match any nondigit, we can negate the 
bracketed set as [^[:digit:]]. 

These POSIX character classes are especially useful when we want to match character types that are difficult to 
type or enumerate. In particular, [[:space:]] matches one of any whitespace character (spaces, tabs, newlines), and 
[[:punct:]] matches any “punctuation” character, of which there are quite a few. The [[:space:]] character class is 
particularly helpful when you are reformatting data stored in rows and columns but are not sure whether the column 
separators are spaces, tabs, or some combination. 

In many regular expression syntaxes (including those used by Perl, Python, R, and some versions of sed), even 
shorter shortcuts for character classes are available. In these, \d is equivalent to [[:digit:]], \D is equivalent to 
[^[:digit:]], \s for [[:space:]], \S for [^[:space:]], among others. 

As it turns out, regular expressions can be utilized by grep as well as awk. When using grep, we can specify that the 
pattern should be treated as an extended regular expression by adding the flag -E (as opposed to the -r used for sed.) 
Thus grep -E '[[:digit:]]+' extracts lines that contain an integer. 

In awk, we can use the ~ comparator instead of the == comparator in an if-statement, as in awk '{if($1 ~ 

/PZ718[[:digit:]]+/) {print $3}}', which prints the third column of each line where the first column matches the 
pattern PZ718[[:digit:]]+. 

Back-Referencing Back-Referencing 

According to the definition above for the header lines in the pz_cDNAs.fasta file, the IDs should be characterizable as a 
pseudorandom identifier followed by, optionally, an underscore and a set of capital letters specifying the group. Using 
grep '>' to extract just the header lines, we can inspect this visually: 

If we send these results through wc, we see that this file contains 471 header lines. How can we verify that each of them 
follows this pattern? By using a regular expression with grep for the pattern, and comparing the count to 471. Because 
IDs must begin immediately after the > symbol in a FASTA file, that will be part of our pattern. For the pseudorandom 
section, which may or may not start with PZ but should at least not include an underscore or a space, we can use 
the pattern [^_[:space:]]+ to specify one or more nonunderscore, nonwhitespace characters. For the optional group 
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identifier, the pattern would be (_[A-Z]+){0,1} (because {0,1} makes the preceding optional). Putting these together 
with grep -E and counting the matches should produce 471. 

All of the headers matched the pattern we expected. What if they hadn’t? We could inspect which ones didn’t by using a 
grep -v -E to print the lines that didn’t match the pattern. 

Now, hypothetically, suppose a (stubborn, and more senior) colleague has identified a list of important gene IDs, 
and has sent them along in a simple text file. 

Unfortunately, it looks like our colleague has decided to use a slightly altered naming scheme, appending -gene to the 
end of each pseudorandom identifier, before the _, if it is present. In order to continue with peaceful collaborations, it 
might behoove us to modify our sequence file so that it corresponds to this scheme. We can do this with sed, but it will be 
a challenge, primarily because we want to perform an insertion, rather than a substitution. Actually, we’ll be performing 
a substitution, but we’ll be substituting matches with contents from themselves! 

Regarding back-references, in a regular expression, matches or submatches that are grouped and enclosed in 
parentheses have their matching strings saved in variables \1, \2, and so on. The contents of the first pair of parentheses 
is saved in \1, the second in \2 (some experimentation may be needed to identify where nested parentheses matches are 
saved). The entire expression match is saved in \0. 

To complete the example, we’ll modify the pattern used in the grep to capture both relevant parts of the pattern, 
replacing them with \1-gene\2. 
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The contents of pz_cDNAs.fasta, after running it through the sed above, are as follows: 

Back-references may be used within the pattern itself as well. For example, a sed -r 's/([A-Za-z]+) \1/\1/g' would 
replace “doubled” words ([A-Za-z]+) \1 with a single copy of the word \1, as in I like sed very very much, resulting 
in I like sed very much. But beware if you are thinking of using substitution of this kind as a grammar checker, 
because this syntax does not search across line boundaries (although more complex sed programs can). This example 
would not modify the following pair of lines (where the word the appears twice): 

The quick sed regex modifies the 
the lazy awk output. 

A few final notes about sed and regular expressions in general will help conclude this chapter. 

1. Regular expressions, while powerful, lend themselves to mistakes. Work incrementally, and regularly check the 
results. 
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2. It is often easier to use multiple invocations of regular expressions (e.g., with multiple sed commands) rather than 
attempt to create a single complex expression. 

3. Use regular expressions where appropriate, but know that they are not always appropriate. Many problems that 
might seem a natural fit for regular expressions are also naturally fit by other strategies, which should be taken into 
consideration given the complexity that regular expressions can add to a given command or piece of code. 

Some people, when confronted with a problem, think, “I know, I’ll use regular 

expressions.” Now they have two problems. 

~Jamie Zawinski 

Exercises Exercises 

1. In the de novo assembly statistics file contig_stats.txt, the contig IDs are named as NODE_1, NODE_2, and so on. 

We’d prefer them to be named contig1, contig2, and the like. Produce a contig_stats_renamed.txt with these changes 

performed. 

2. How many sequences in the file pz_cDNAs.fasta are composed of only one read? You will likely need to use both 

awk and sed here, and be sure to carefully check the results of your pipeline with less. 

3. A particularly obnoxious colleague insists that in the file pz_cDNAs.fasta, sequences that are not part of any 

group (i.e., those that have no _ suffix) should have the suffix _nogroup. Appease this colleague by producing a file 

to this specification called pz_cDNAs_fixed.fasta. 

4. The headers lines in the yeast protein set orf_trans.fasta look like so when viewed with less -S after grepping 

for >: 

Notably, header lines contain information on the locations of individual exons; sequence YAL001C has two exons 

on chromosome I from locations 151006 to 147594 and 151166 to 151097 (the numbers go from large to small 

because the locations are specified on the forward strand, but the gene is on the reverse complement strand). 

By contrast, sequence YAL002W has only one exon on the forward strand. 

How many sequences are composed of only a single exon? Next, produce a list of sequence IDs in a file called 

multi_exon_ids.txt containing all those sequence IDs with more than one exon as a single column. 

5. As a continuation of question 4, which sequence has the most exons? Which single-exon sequence is the 

longest, in terms of the distance from the first position to the last position noted in the exon list? 
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12. Miscellanea 

Tools like sort, head and tail, grep, awk, and sed represent a powerful toolbox, particularly when used with the standard 
input and standard output streams. There are many other useful command line utilities, and we’ll cover a few more, but 
we needn’t spend quite as much time with them as we have for awk and sed. 

Manipulating Line Breaks Manipulating Line Breaks 

All of the features of the tools we’ve covered so far assume the line as the basic unit of processing; awk processes columns 
within each line, sed matches and replaces patterns in each line (but not easily across lines), and so on. Unfortunately, 
sometimes the way data break over lines isn’t convenient for these tools. The tool tr translates sets of characters in its 
input to another set of characters as specified: ... | tr '<set1>' '<set2>'

1 

As a brief example, tr 'TA' 'AT' pz_cDNAs.fasta would translate all T characters into A characters, and vice versa 
(this goes for every T and A in the file, including those in header lines, so this tool wouldn’t be too useful for manipulating 
FASTA files). In a way, tr is like a simple sed. The major benefit is that, unlike sed, tr does not break its input into a 
sequence of lines that are operated on individually, but the entire input is treated as a single stream. Thus tr can replace 
the special “newline” characters that encode the end of each line with some other character. 

On the command line, such newline characters may be represented as \n, so a file with the following three lines 

could alternatively be represented as line 1\nline 2\nline 3\n (most files end with a final newline character). 
Supposing this file was called lines.txt, we could replace all of the \n newlines with # characters. 

Notice in the above that even the final newline has been replaced, and our command prompt printed on the same line as 
the output. Similarly, tr (and sed) can replace characters with newlines, so tr '#' '\n' would undo the above. 

Using tr in combination with other utilities can be helpful, particularly for formats like FASTA, where a single 
“record” is split across multiple lines. Suppose we want to extract all sequences from pz_cDNAs.fasta with nReads greater 
than 5. The strategy would be something like: 

1. Identify a character not present in the file, perhaps an @ or tab character \t (and check with grep to ensure it is not 
present before proceeding). 

2. Use tr to replace all newlines with that character, for example, tr '\n' '@'. 

1. Unlike other tools, tr can only read its input from stdin. 
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3. Because > characters are used to indicate the start of each record in FASTA files, use sed to replace record start > 
characters with newlines followed by those characters: sed -r 's/>/\n>/g'. 

At this point, the stream would look like so, where each line represents a single sequence record (with extraneous @ 
characters inserted): 

4. Use grep, sed, awk, and so on to select or modify just those lines of interest. (If needed, we could also use sed to 
remove the inserted @ characters so that we can process on the sequence itself.) For our example, use sed -r 
's/=/ /1' | awk '{if($3 > 5) {print $0}}' to print only lines where the nReads is greater than 5. 

5. Reformat the file back to FASTA by replacing the @ characters for newlines, with tr or sed. 

6. The resulting stream will have extra blank lines as a result of the extra newlines inserted before each > character. 
These can be removed in a variety of ways, including awk '{if(NF > 0) print $0}'. 

Joining Files on a Common Column (and Related Row/Column Tasks) Joining Files on a Common Column (and Related Row/Column Tasks) 

Often, the information we want to work with is stored in separate files that share a common column. Consider the result 
of using blastx to identify top HSPs against the yeast open reading frame set, for example. 

The resulting file pz_blastx_yeast_top1.txt contains the standard BLAST information: 

Similarly, we can save a table of sequence information from the fasta_stats program with the comment lines removed 
as pz_stats.table. 

Viewing the file with less -S: 
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Given such data, we might wish to ask which sequences had a hit to a yeast open reading frame and a GC content of over 
50%. We could easily find out with awk, but first we need to invoke join, which merges two row/column text files based 
on lines with similar values in a specified “key” column. By default, join only outputs rows where data are present in 
both files. Both input files are required to be similarly sorted (either ascending or descending) on the key columns: join 
-1 <key column in file1> -2 <key column in file2> <file1> <file2>. 

Like most tools, join outputs its result to standard output, which can be redirected to a file or other tools like less 
and awk. Ideally, we’d like to say join -1 1 -2 1 pz_stats.txt pz_blastx_yeast_top1.txt to indicate that we wish to 
join these files by their common first column, but as of yet the files are not similarly sorted. So, we’ll first create sorted 
versions. 

Now we can run our join -1 1 -2 1 pz_stats.sorted.txt pz_blastx_yeast_top1.sorted.txt, piping the result into 
less. The output contains all of the columns for the first file, followed by all of the columns of the second file (without 
the key column), separated by single spaces. 

Instead of viewing the output with less, piping it into an awk '{if($1 > 0.5) print $1}' would quickly identify 
those sequences with BLAST matches and GC content over 50%. 

One difficulty with the above output is that it is quite hard to read, at least for us humans. The same complaint 
could be made for most files that are separated by tab characters; because of the way tabs are formatted in less and similar 
tools, different-length entries can cause columns to be misaligned (only visually, of course). The column utility helps in 
some cases. It reformats whitespace-separated row/column input so that the output is human readable, by replacing one 
or more spaces and tabs by an appropriate number of spaces so that columns are visually aligned: column -t <file> or 
... | column -t. 

By now, it should be no surprise that column writes its output to standard output. Here’s the result of join -1 

1 -2 1 pz_stats.sorted.txt pz_blastx_yeast_top1.sorted.txt | column -t | less -S, which contains the same 
data as above, but with spaces used to pad out the columns appropriately. 
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Because most tools like awk and sort use any number of whitespace characters as column delimiters, they can also be used 
on data post-column. 

There are several important caveats when using join. First, if any entries in the key columns are repeated, the output 
will contain a row for each matching pair of keys. 

Second, the files must be similarly sorted—if they are not, join will at best produce a difficult-to-see warning. A 
useful trick when using bash-compatible shells is to make use of the features for “process substitution.” Basically, any 
command that prints to standard output may be wrapped in <( and ) and used in place of a file name—the shell will 
automatically create a temporary file with the contents of the command’s standard output, and replace the construct 
with the temporary file name. This example joins the two files as above, without separate sorting steps: join -1 1 -2 

1 <(sort -k1,1d pz_stats.txt) <(sort -k1,1d pz_blastx_yeast_top1.txt). Because the pz_stats.txt file was the 
result of redirecting standard output from ./fasta_stats pz_cDNAs.txt through grep -v '#', we could equivalently 
say join -1 1 -2 1 <(./fasta_stats pz_cDNAs.fasta | grep -v '#' | sort -k1,1d) <(sort -k1,1d 

pz_blastx_yeast_top1.txt). 
Finally, unless we are willing to supply an inordinate number of arguments, the default for join is to produce 

only lines where the key information is found in both files. More often, we might wish for all keys to be included, with 
“missing” values (e.g., NA) assumed for data present in only one file. In database parlance, these operations are known as 
an “inner join” and “full outer join” (or simply “outer join”), respectively. 
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Where join does not easily produce outer joins, more 
sophisticated tools can do this and much more. For 
example, the Python and R programming languages 
(covered in later chapters) excel at manipulating and 
merging collections of tabular data. Other tools utilize a 
specialized language for database manipulation known as 
Structured Query Language, or SQL. Such databases are 
often stored in a binary format, and these are queried 
with software like MySQL and Postgres (both require 
administrator access to manage), or simpler engines like 
sqlite3 (which can be installed and managed by normal 
users).

2 

Counting Duplicate Lines Counting Duplicate Lines 

We saw that sort with the -u flag can be used to remove duplicates (defined by the key columns used). What about 
isolating duplicates, or otherwise counting or identifying them? Sadly, sort isn’t up to the task, but a tool called uniq 
can help. It collapses consecutive, identical lines. If the -c flag is used, it prepends each line with the number of lines 
collapsed: uniq <file> or ... | uniq. 

Because uniq considers entire lines in its comparisons, it is somewhat more rigid than sort -u; there is no way to 
specify that only certain columns should be used in the comparison.

3
 The uniq utility will also only collapse identical 

lines if they are consecutive, meaning the input should already be sorted (unless the goal really is to merge only already-
consecutive duplicate lines). Thus, to identify duplicates, the strategy is usually: 

1. Extract columns of interest using awk. 

2. Sort the result using sort. 

3. Use uniq -c to count duplicates in the resulting lines. 

Let’s again consider the output of ./fasta_stats pz_cDNAs.fasta, where column 4 lists the most common 5-mer for 
each sequence. Using this extract/sort/uniq pattern, we can quickly identify how many times each 5-mer was listed. 

2. While binary databases such as those used by sqlite3 and Postgres have their place (especially when large tables need to be joined 
or searched), storing data in simple text files makes for easy access and manipulation. A discussion of SQL syntax and relational 
databases is beyond the scope of this book; see Jay Kreibich’s Using SQLite (Sebastopol, CA: O’Reilly Media, Inc., 2010) for a 
friendly introduction to sqlite3 and its syntax. 

3. This isn’t quite true: the -f <n> flag for uniq removes the first <n> fields before performing the comparison. 
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The result lists the counts for each 5-mer. We could continue by sorting the output by the new first column to identify 
the 5-mers with the largest counts. 

It is often useful to run uniq -c on lists of counts produced by uniq -c. Running the result above through awk '{print 

$1}' | sort -k1,1n | uniq -c reveals that 90 5-mers are listed once, 18 are listed twice, and so on. 

Counting items with uniq -c is a powerful technique for “sanity checking” data. If we wish to check that a given 
column or combination of columns has no duplicated entries, for example, we could apply the extract/sort/uniq strategy 
followed by awk '{if($1 > 1) print $0}'. Similarly, if we want to ensure that all rows of a table have the same number 
of columns, we could run the data through awk '{print NF}' to print the number of columns in each row and then 
apply extract/sort/uniq, expecting all column counts to be collapsed into a single entry. 

Basic Plotting with gnuplot Basic Plotting with gnuplot 

Further illustrating the power of awk, sed, sort, and uniq, we can create a text-based “histogram” of coverages for 
the sequences in the pz_cDNAs.fasta file, which are stored in the third column of the header lines (e.g., 
>PZ7180000000004_TX nReads=26 cov=9.436). We’ll start by isolating the coverage numbers with grep (to select only 
header lines), sed (to replace = characters with spaces), and awk (to extract the new column of coverage numbers), while 
simultaneously printing only the integer portion of the coverage column. 

The output is a simple column of integers, representing rounded-down coverages. Next, a sort -k1,1n | uniq -c will 
produce the counts for each coverage bin, revealing that most sequences (281) are at 1X coverage, a handful are at 2X 
and 3X, and higher coverages are increasingly rare. 
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Although languages like Python and R provide user-friendly data-plotting packages, it can sometimes be helpful to 
quickly plot a data set on the command line. The gnuplot program can produce not only image formats like PNG and 
PDF, but also text-based output directly to standard output. Here’s the command to plot the above histogram (but with 
points, rather than the traditional boxes), along with the output. 

It’s a bit difficult to see, but the plotted points are represented by A characters. Breaking down the gnuplot command, 
set term dumb instructs gnuplot to produce text-based output, plot "-" indicates that we want to plot data from the 
standard input stream, using 2:1 indicates that X values should be drawn from the second column and Y values from 
the first, and with points specifies that points—as opposed to lines or boxes—should be drawn. Because the counts of 
coverages drop off so rapidly, we may want to produce a log/log plot, and we can add a title, too: gnuplot -e 'set term 

dumb; set logscale xy; plot "-" using 2:1 with points' title "Coverage Counts" 
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Although we’ve only shown the most basic usage of gnuplot, it is actually a sophisticated plotting package—the 
various commands are typically not specified on the command line but are rather placed in an executable script. For a 
demonstration of its capabilities, visit http://gnuplot.info. 

For-Loops in bash For-Loops in bash 

Sometimes we want to run the same command or similar commands as a set. For example, we may have a directory full 
of files ending in .tmp, but we wished they ended in .txt. 

Because of the way command line wildcards work, we can’t use a command like mv *.tmp *.txt; the *.tmp would 
expand into a list of all the files, and *.txt would expand into nothing (as it matches no existing file names). 

Fortunately, bash provides a looping construct, where elements reported by commands (like ls *.tmp) are 
associated with a variable (like $i), and other commands (like mv $i $i.txt) are executed for each element. 

It’s more common to see such loops in executable scripts, with the control structure broken over several lines. 
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This solution works, though often looping and similar programming techniques (like if-statements) in bash become 
cumbersome, and using a more robust language like Python may be the better choice. Nevertheless, bash does have one 
more interesting trick up its sleeve: the bash shell can read data on standard input, and when doing so attempts to execute 
each line. So, rather than using an explicit for-loop, we can use tools like awk and sed to “build” commands as lines. Let’s 
remove the .tmp from the middle of the files by building mv commands on the basis of a starting input of ls -1 *.tmp* 

(which lists all the files matching *.tmp* in a single column). First, we’ll build the structure of the commands. 

To this we will add a sed -r s/\.tmp//2 to replace the second instance of .tmp with nothing (remembering to escape the 
period in the regular expression), resulting in lines like 

After the sed, we’ll pipe this list of commands to bash, and our goal is accomplished. 

Version Control with git Version Control with git 

In chapter 6, “Installing (Bioinformatics) Software,” we worked on a rather sophisticated project, involving installing 
software (in our $HOME/local/bin directory) as well as downloading data files and writing executable scripts (which we 
did in our $HOME/projects/p450s directory). In particular, we initially created a script to automate running HMMER 
on some data files, called runhmmer.sh. Here are the contents of the project directory when last we saw it: 
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It may be that as we continue working on the project, we will make adjustments to the runhmmer.sh script or other text 
files in this directory. Ideally, we would be able to access previous versions of these files—in case we need to refer back 
for provenance reasons or we want to undo later edits. One way to accomplish this task would be to frequently create 
backup copies of important files, perhaps with file names including the date of the backup. This would quickly become 
unwieldy, however. 

An alternative is to use version control, which is a system for managing changes to files (especially programs and 
scripts) over time and across various contributors to a project. A version control system thus allows a user to log changes 
to files over time, and it even allows multiple users to log changes, providing the ability to examine differences between 
the various edits. There are a number of popular version control programs, like svn (subversion) and cvs (concurrent 
versioning system). Because the job of tracking changes in files across time and users is quite complex (especially when 
multiple users may be simultaneously making independent edits), using version control software can be a large skill set in 
itself. 

One of the more recently developed version control systems is git, which has gained popularity for a number 
of reasons, including its use in managing popular software projects like the Linux kernel.

4
The git system (which is 

managed by a program called git) uses a number of vocabulary words we should define first. 

Repository 
Also known as a “repo,” a git repository is usually just a folder/directory. 

Version 
A version is effectively a snapshot of a selected set of files or directories in a repository. Thus there may be 
multiple versions of a repository across time (or even independently created by different users). 

Commit 
Committing is the action of storing a set of files (in a repository) to a version. 

Diff 
Two different versions may be “diffed,” which means to reveal the changes between them. 

Stage 
Not all files need to be included in a version; staging a set of files marks them for inclusion in the version 
when the next commit happens. 

The git system, like all version control systems, is fairly complex and provides many features. The basics, though, are: 
(1) there is a folder containing the project of interest; (2) changes to some files are made over time; (3) edited files 
can periodically be “staged”; and (4) a “commit” includes a snapshot of all staged files and stores the information in a 
“version.” (For the record, all of this information is stored in a hidden directory created within the project directory called 
.git, which is managed by the git program itself.) 

To illustrate, let’s create a repository for the p450s project, edit the runhmmer.sh script file as well as create a 
README.txt file, and commit those changes. First, to turn a directory into a git repository, we need to run git init: 

4. Linus Torvalds, who also started the Linux kernel project, developed the git system. Quoting Linus: “I’m an egotistical bastard, and 
I name all my projects after myself. First ‘Linux,’ now ‘Git.’” (Here “git” refers to the British slang for a “pig-headed and 
argumentative” person.) 
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This step creates the hidden directory .git containing the required files for tracking by the system. We don’t usually 
need to work directly with this directory—the git software will do that for us. Next, we will create our first version by 
staging our first files, and running our first commit. We could keep tracked versions of all the files in this directory, but 
do we want to? The data files like dmel-all-translation-r6.02.fasta are large and unlikely to change, so logging them 
would be unnecessary. Similarly, because the output file p450s_hmmsearch_dmel.txt is generated programmatically and 
can always be regenerated (if we have a version of the program that created it), we won’t track that, either. To “stage” files 
for the next commit, we use git add; to stage all files in the project directory, we would use git add -A, but here we want 
to stage only runhmmer.sh, so we’ll run git add runhmmer.sh. 

No message has been printed, but at any time we can see the status of the git process by running git status. 

The status information shows that we have one new file to track, runhmmer.sh, and a number of untracked files (which 
we’ve left untracked for a reason). Now we can “commit” these staged files to a new version, which causes the updated 
staged files to be stored for later reference. When committing, we need to enter a commit message, which gives us a chance 
to summarize the changes that are being committed. 

At this point, a git status would merely inform us that we still have untracked files. Let’s suppose we make some edits 
to runhmmer.sh (adding a new comment line, perhaps), as well as create a new README.txt file describing the project. 
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Running git status at this point would report a new untracked file, README.txt, as well as a line reading modified: 
runhmmer.sh to indicate that this file has changed since the last commit. We could continue to edit files and work as 
needed; when we are ready to commit the changes, we just need to stage the appropriate files and run another commit. 

Every version that we commit is saved, and we can easily see a quick log of the history of a project with git log. 

Notice that each commit is given a long serial number, such as ec46950b36.... To see the differences between two 
commits, we can run git diff with just the few characters of each serial number, as in git diff 50c11fe ec4695. The 
output format isn’t remarkably readable by default. 
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Many other operations can be performed by git, such as viewing the contents of files from previous versions and 
“reverting” a project to a previous state (at least for those files that are tracked). 

There are two other features worth mentioning. First, it’s not uncommon to have many files that we’d like to leave 
untracked, but adding all of the rest one at a time with git add is tedious. Fortunately, git add -A looks at the contents 
of the file .gitignore (which may need to be created): any files or directories listed in .gitignore will not be staged by 
git add -A. (And the .gitignore file can be tracked.) 

Second, the git system makes it relatively easy to share projects online with others, by creating repositories on sites 
like GitHub. After setting up an account at http://github.com (or on a similar site, such as http://bitbucket.com), you 
can “push” the current state of your project from the command line to the web. (Future commits can also be pushed as 
you create them.) Other users can then “clone” the project from the website by using the git clone command discussed 
briefly in chapter 6. GitHub and similar websites feature excellent tutorials for interfacing their products with your own 
command line repositories, should you desire to use them. 

Exercises Exercises 

1. In the file pz_cDNAs.fasta, sequence IDs are grouped according to common suffixes like _TY, _ACT, and the like. 

Which group has the largest number of sequences, and how many are in that group? 

2. Using the various command line tools, extract all sequences composed of only one read (nReads=1) from 

pz_cDNAs.fasta to a FASTA formatted file called pz_cDNAs_singles.fasta. 

3. In the annotation file PZ.annot.txt, each sequence ID may be associated with multiple gene ontology (GO) 

“numbers” (column 2) and a number of different “terms” (column 3). Many IDs are associated with multiple GO 

numbers, and there is nothing to stop a particular number or term from being associated with multiple IDs. 
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Which GO number is associated with largest number of unique IDs? How many different IDs is it associated 

with? Next, answer the same questions using the GO term instead of GO number. For the latter, beware that the 

column separators in this file are tab characters, \t, but awk by default uses any whitespace, including the spaces 

found in the terms column. In this file, though, isocitrate is not a term, but isocitrate dehydrogenase (nad+) is. 
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13. Hello, World 

Before we begin with programming in Python, it is useful to consider how the language fits into the landscape and 
history of similar languages. Initially, computer programming was not far removed from the hardware on which it 
was being coded. This meant writing “bytecode”—or its human-readable equivalent, assembly code—that explicitly 
referenced memory (RAM) locations and copied data to and from the relatively small number of CPU registers (the 
storage units directly accessible by the CPU). Unfortunately, this meant that code had to be rewritten for each of the 
many types of CPUs. Later, more portable languages like C were developed. These languages still work close to the 
hardware in many ways; in particular, the programmer must tell the computer how it should allocate and de-allocate 
memory from RAM. On the other hand, some abstraction provides higher-level coding constructs that are not specific 
to CPU type. This code is then compiled into bytecode by a compiling program for each specific CPU (as discussed in 
previous chapters, we had to compile some software from source to install it). The result is a fast and often optimized 
program that frees the programmer from having to worry about the huge variety of CPU types. 

Later, some programmers decided that they didn’t want to have to worry about specifying how RAM space should 
be allocated and de-allocated. They also wanted more features built into their languages to help them quickly architect 
complicated programs. One of the languages meant to accomplish these goals is Python, a project started in 1988 by 
mathematician, computer scientist, and Monty Python fan Guido van Rossum.

1
 “High-level” languages like Python and 

R (covered in later chapters) provide many built-in features to the programmer, and they are even more abstract than 
languages like C. 

Unfortunately, because of the added abstractions, languages like Python can’t easily be compiled (like C can) to be 
run directly on the CPU.

2
 In fact, these languages are not run the same way compiled or assembly programs are: they 

are interpreted by another program that is written in a compiled language like C and runs on the CPU. So, a Python 
“program” is just a text file of commands that are interpreted by another program that is actually interacting with the 
CPU and RAM. 

1. The history of computing is full of twists, turns, and reinvention of wheels. LISP, for example, is a language that incorporates 
many of the same high-level features as Python, but it was first developed in 1958! 

2. On the other hand, ambitious programmers are currently working on projects like Cython to do exactly this. 
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The added ease and flexibility of interpreted languages generally comes at a cost: because of the extra execution layer, they 
tend to be 2 to 100 times slower and use 2 to 20 times more memory than carefully constructed C programs, depending 
on what is being computed. These languages are significantly easier to use, however, and we can get our ideas into code 
far more quickly. 

Work on the Python language and interpreters for it has progressed steadily since the 1990s, emphasizing a “one best 
way” approach. Rather than providing multiple versions of basic commands that do the same thing, Python provides as 
few commands as possible while attempting to not limit the programmer. Python also emphasizes code readability: most 
syntax is composed of English-like words, shortcuts and punctuation characters are kept to a minimum, and the visual 
structure of “blocks” of code are enforced with indentation. 

For these reasons, Python use has grown significantly in recent years, especially for bioinformatics and 
computational biology. The emphasis on readability and “one best way” facilitates learning, particularly for those who 
are brand-new to programming.

3
 Most importantly, Python allows us to focus on the concepts of programming without 

struggling through an abundance of choices and confusing syntax, and new programmers can frequently read and 
understand code written by others. Finally, Python incorporates a number of modern programming paradigms making 
it appropriate for both small tasks and larger software engineering projects—it’s an official language at Google (along 
with C++ and Java), and it’s taught in introductory courses at Johns Hopkins University, New York University, the 
Massachusetts Institute of Technology, and many others. 

All of this isn’t to say that any programming language is devoid of quirks and difficulties. We’ll only be covering 
some of what Python offers—the parts that are most basic and likely to be found in many languages. Topics that are 
highly “Pythonic” will be highlighted as we go along. 

Python Versions Python Versions 

In this book we will be working with Python version 2.7; that is, we’re going to assume that the Python executable 

found in your $PATH variable is version 2.7 (perhaps 2.7.10, which is the last of the 2.7 series as of 2015). You can check 

3. Many believe that the best way to learn programming is in a hardware-oriented fashion with assembly or a language like C. This is 
a legitimate philosophy, but for the intended audience of this book, we’ll stick with the higher-level languages Python and R. 
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this by running python --version on the command line. While newer versions are available (up to 3.4 and higher), they 

are not yet universally used. These newer versions change some syntax from 2.7. For many of the concepts introduced 

in this book, if you stick with the syntax as shown, your code should be compatible with these newer versions as well, 

but possibly not backward-compatible with older versions such as 2.5 or 2.6. This is an unfortunate artifact of Python’s 

“one best way” philosophy: on occasion, the Python designers change their minds about what the best way is! 

To give an example, the print function print("hello there") works in Python versions 2.6, 2.7, 3.0, 3.1, and so on, 

whereas the keyword version print "hello there" (notice the lack of parentheses) would only work in versions 2.6 and 

2.7. In some cases where differences in behavior would occur in later versions, we’ll note them in footnotes. 

Hello, World Hello, World 

Because we’re working in an interpreted language, in order to write a program, we’ll need to create a file of Python 
code, and then supply it as input to the interpreting program. There are a few ways to do this: (1) use an interactive 
graphical environment like Jupyter notebook; (2) run the interpreter ourselves on the command line, giving the file name 
containing our code as an argument; or (3) making the code file an executable script in the command line environment 
using #! syntax. 

JupyterJupyter  Notebook Notebook 

For those wishing to program Python without working on the command line, a variety of graphical environments are 
available. A typical installation of Python from http://python.org includes the “Idle” code editor. One of the nicer 
alternatives to this default is known as Jupyter, which runs in a web browser allows the programmer to interleave sections 
of code and documentation. 

Installing Jupyter requires that Python already be installed (from http://python.org), and then requires using the 
command line terminal in Linux, OS X, or Windows; see http://jupyter.org/install for details. Once installed, it can be 
started from the command line by running jupyter notebook: 

The Jupyter interface will open in the default desktop web browser, showing the list of folders and files in whatever 
directory the command was run from. 
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Clicking the “New” button, followed by “Python Notebook” will create a new notebook document composed of 
“cells.” Cells in a notebook can contain human-readable text (as documentation) or lines of Python code. Whether the 
text in the cell is interpreted as code or text depends on the choice made in the “Cell” menu. 

Each cell may be “executed” by clicking on the “Play” button; doing so causes text cells to change to a nicely 
formatted output, and executes lines of code for code cells. But beware: the output of a given cell often depends on what 
other cells have been executed and in which order (see the “Cell output depends on the order of execution” cell in the 
figure below). 
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For this reason, I highly recommend making the assumption that all code cells will be executed in top-to-bottom 
order, which can be accomplished by selecting “Run All” from the “Cell” menu whenever you want to execute any code. 
Doing so causes all the cells to be re-executed each time it is run, it but has the advantage of ensuring the correctness of 
the overall notebook as changes are made to cells over time. 

Specified Interpreter Specified Interpreter 

As convenient as iPython notebook is, because the previous part of this book focused on the command line, and Python 
interfaces quite nicely with it, the examples here will be from the command line environment. Because Python programs 
are interpreted scripts, we can manually specify the interpreter on the command line each time we run such a script. 

For this method, we first have to edit a code file that we’ll call helloworld.py (.py is the traditional extension for 
Python programs). On the command line, we’ll edit code files with our text editor nano, passing in a few extra parameters: 

The -w tells nano not to automatically wrap long lines (we’re writing code after all, not an essay), -i says to automatically 
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indent newlines to the current indentation level, -T 4 says that tab-stops should be four spaces wide, and -E says that 
tabs should be converted to spaces (four of them). This usage of four spaces per indentation level is widely agreed upon 
by the Python community as being easy on the eyes. (“One best way,” remember?) We’ll put a simple call to the print() 
function in the file: 

As usual, Control-o saves the file (press Enter if prompted about the file name) and Control-x exits nano. Next, to run it, 
all we need to do is call the Python interpreter on the file: 

Success! We’ve written our first Python program! 

Making the File Executable Making the File Executable 

An alternative method is to make the code file an executable script. First, we have to edit the code file to include a special 
first line: 

For this method to work, the first two characters of the file must be #! (in fact, the entire line needs to be replicated 
exactly); although nano is displaying what looks to be a blank line above our #! line, there isn’t really one there. 

In chapter 5, “Permissions and Executables,” we discussed the #! line as containing the absolute path to the 
interpreter, as in #!/usr/bin/bash for bash scripts. In this case, we are specifying something slightly different: #!/usr/
bin/env python. The env program, among other things, searches for the installed location of the given argument and 
executes that. A #! line like this will cause a Python program to be successfully executed, even if it is installed in a 
nonstandard location. (One may ask if env is ever installed in a nonstandard location. Fortunately, it is rare to find env 
located anywhere other than in /usr/bin.) 

Next, we need to exit nano and make the file executable by using the chmod utility, and finally we can run it with 
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./helloworld.py. This specifies that the program helloworld.py should be run and that it exists in the current directory 
(./). 

Configuring and Using nano Configuring and Using nano 

Generally, you won’t want to type nano -w -i -E -T 4 ... every time you want to edit a Python code file. Fortunately, 

nano can be configured to automatically use these options if they are specified correctly in a file called .nanorc in your 

home directory. But this may not be the best choice, either: when editing files that are not Python code, you likely 

don’t want to convert all your tab entries to spaces. Instead, you may want to define a shell alias called nanopy 

specifically for editing Python code. To have this shell alias preserved for each login session, the relevant code would 

need to be added to your .bashrc (assuming your shell is bash): 

If you are going to perform the above, double-check that the command is exactly as written. After logging out and back 

in, you can edit a Python code file with the alias using nanopy helloworld.py. 

As evident from the code sample above, nano can also provide syntax highlighting (coloring of code for readability) if 

your $HOME/.nanorc and related files are configured properly, though it isn’t necessary for programming. 

Don’t forget that it is often useful to have multiple terminal windows open simultaneously. You can use one for 

editing, one for running your program and testing, and perhaps a third running top, displaying how much CPU and RAM 

your program is using. 

Although not as powerful as more sophisticated text editors such as emacs or vim, nano is easy to use and includes a 

number of features such as editing multiple files, cutting and pasting within and between files, regular-expression-

based search and search/replace, spell check, and more. While editing, nano can also take you directly to a line 

number (Control–-), which will come in handy when you need to go directly to a line that caused an error. 

Whatever editor you choose to use, reading some documentation will help you be much more productive. For the 

rest of our code samples, we’ll be showing screenshots from within vim, primarily because it provides prettier syntax 

highlighting. 

Exercises Exercises 

1. Create a file of Python code on the command line containing a simple print("Hello!") statement. Execute it by 

specifying the interpreter. If you are running iPython notebook, try to create a similarly simple notebook and 

execute the cell. 

2. Create a file of Python code, make it an executable script, and execute it. Does that work? Why or why not? 

3. Determine which version of Python you are running (perhaps by running python --version). Test to see which 

versions of print work for you: print("Hello!") or print "Hello!". (The former is much preferred.) 
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14. Elementary Data Types 

Variables are vital to nearly all programming languages. In Python, variables are “names that refer to data.” The most 
basic types of data that can be referred to are defined by how contemporary computers work and are shared by most 
languages. 

Integers, Floats, and Booleans Integers, Floats, and Booleans 

Consider the integer 10, and the real number 5.64. It turns out that these two are represented differently in the 
computer’s binary code, partly for reasons of efficiency (e.g., storing 10 vs. 10.0000000000). Python and most other 
languages consider integers and real numbers to be two different “types”: real numbers are called floats (short for “floating 
point numbers”), and integers are called ints. We assign data like floats and ints to variables using the = operator. 

While we’re on the topic of variables, variable names in Python should always start with a lowercase letter and contain 
only letters, underscores, and numbers. 

Note that the interpreter ignores # characters and anything after them on the line.
1
 This allows us to put 

“comments” in our code. Blank lines don’t matter, either, allowing the insertion of blank lines in the code for ease of 
reading. 

We can convert an int type into a float type using the float() function, which takes one parameter inside the 
parentheses: 

Similarly, we can convert floats to ints using the int() function, which truncates the floating point value at the decimal 
point (so 5.64 will be truncated to the int type 5, while -4.67 would be truncated to the int type -4): 

This information is useful because of a particular caveat when working with most programming languages, Python 
included: if we perform mathematical operations using only int types, the result will always be an int. Thus, if we want 
to have our operations return a floating point value, we need to convert at least one of the inputs on the right-hand side 
to a float type first. Fortunately, we can do this in-line: 

1. The # symbols are ignored unless they occur within a pair of quotes. Technically, the interpreter also ignores the #! line, but it is 
needed to help the system find the interpreter in the execution process. 
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In the last line above, we see that mathematical expressions can be grouped with parentheses in the usual way (to override 
the standard order of operations if needed), and if a subexpression returns a float, then it will travel up the chain to induce 
floating-point math for the rest of the expression.

2 

Another property of importance is that the right-hand side of an assignment is evaluated before the assignment 
happens. 

Aside from the usual addition and subtraction, other mathematical operators of note include ** for exponential powers 
and % for modulus (to indicate a remainder after integer division, e.g., 7 % 3 is 1, 8 % 3 is 2, 9 % 3 is 0, and so on). 

Notice that we’ve reused the variables a, b, and c; this is completely allowable, but we must remember that they now refer 
to different data. (Recall that a variable in Python is a name that refers to, or references, some data.) In general, execution 
of lines within the same file (or cell in an iPython notebook) happens in an orderly top-to-bottom fashion, though later 
we’ll see “control structures” that alter this flow. 

Booleans are simple data types that hold either the special value True or the special value False. Many functions 
return Booleans, as do comparisons: 

For now, we won’t use Boolean values much, but later on they’ll be important for controlling the flow of our programs. 

Strings Strings 

Strings, which hold sequences of letters, digits, and other characters, are the most interesting basic data type.
3
 We can 

specify the contents using either single or double quotes, which can be useful if we want the string itself to contain a 
quote. Alternatively, we can escape odd characters like quotes if they would confuse the interpreter as it attempts to parse 
the file. 

2. This isn’t true in Python 3.0 and later; e.g., 10/3 will return the float 3.33333. 

3. Unlike C and some other languages, Python does not have a “char” datatype specifically for storing a single character. 
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Strings can be added together with + to concatenate them, which results in a new string being returned so that it can be 
assigned to a variable. The print() function, in its simplest form, takes a single value such as a string as a parameter. This 
could be a variable referring to a piece of data, or the result of a computation that returns one: 

We cannot concatenate strings to data types that aren’t strings, however. 

Running the above code would result in a TypeError: cannot concatenate 'str' and 'float' objects, and the 
offending line number would be reported. In general, the actual bug in your code might be before the line reporting the 
error. This particular error example wouldn’t occur if we had specified height = "5.5" in the previous line, because two 
strings can be concatenated successfully. 

Fortunately, most built-in data types in Python can be converted to a string (or a string describing them) using the 
str() function, which returns a string. 

As the above illustrates, we may choose in some cases to store the result of an expression in a variable for later use, or we 
may wish to use a more complex expression directly. The choice is a balance between verbose code and less verbose code, 
either of which can enhance readability. You should use whatever makes the most sense to you, the person most likely to 
have to read the code later! 

Python makes it easy to extract a single-character string from a string using brackets, or “index” syntax. Remember 
that in Python, the first letter of a string occurs at index 0. 

The use of brackets is also known as “slice” syntax, because we can them it to extract a slice (substring) of a string with 
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the following syntax: string_var[begin_index:end_index]. Again, indexing of a string starts at 0. Because things can’t 
be too easy, the beginning index is inclusive, while the ending index is exclusive. 

A good way to remember this confusing bit of syntax is to think of indices as occurring between the letters. 
If a string looks like it could be converted to an int or float type, it probably can be 

with the float() or int() conversion functions. If such a conversion doesn’t make 
sense, however, Python will crash with an error. For example, the last line below will 
produce the error ValueError: could not convert string to float: XY_2.7Q. 

To get the length of a string, we can use the len() function, which returns an int. We can use this in conjunction with [] 
syntax to get the last letter of a string, even if we don’t know the length of the string before the program is run. We need 
to remember, though, that the index of the last character is one less than the length, based on the indexing rules. 

Similarly, if we want a substring from position 2 to the end of the string, we need to remember the peculiarities of the [] 
slice notation, which is inclusive:exclusive. 

Immutability Immutability 

In some languages it is possible to change the contents of a string after it’s been created. In Python and some other 
languages, this is not the case, and strings are said to be immutable. Data are said to be immutable if they cannot be 
altered after their initial creation. The following line of code, for example, would cause an error like TypeError: 'str' 

object does not support item assignment: 

Languages like Python and Java make strings immutable for a variety of reasons, including computational efficiency and 
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as a safeguard to prevent certain common classes of programming bugs. For computational biology, where we often wish 
to modify strings representing biological sequences, this is an annoyance. We’ll learn several strategies to work around 
this problem in future chapters. 

In many cases, we can make it look like we are changing the contents of some string data by reusing the variable 
name. In the code below, we are defining strings seqa and seqb, as well as seqc as the concatenation of these, and then 
seqd as a substring of seqc. Finally, we reuse the seqa variable name to refer to different data (which gets copied from the 
original). 

Here’s how we might represent these variables and the data stored in memory, both before and after the reassignment of 
seqa. 

Because the string "ACTAG" is immutable, redefining seqa results in an entirely different piece of data being created. 
The original string "ACTAG" will still exist in memory (RAM) for a short time, but because it is not accessible via any 
variables, Python will eventually clean it out to make room in memory in a process known as garbage collection.

4
 Garbage 

collection is an automatic, periodic process of de-allocating memory used by data that are no longer accessible (and hence 
no longer needed) by the program. 

This immutability of strings could result in code that takes much longer to execute than expected, because 
concatenating strings results in copying of data (see the results of seqc = seqa + seqb above). For example, if we had a 
command that concatenated chromosome strings (millions of letters each) to create a genome string, genome = chr1 + 

chr2 + chr3 + chr4, the result would be a copy of all four chromosomes being created in memory! On the other hand, 
in many cases, Python can use the immutability of strings to its advantage. Suppose, for example, that we wanted to get 

4. Garbage collection is a common feature of high-level languages like Python, though some compiled languages support it as well. 
C does not: programmers are required to ensure that all unused data are erased during program execution. Failure to do so is 
known as a “memory leak” and causes many real-world software crashes. 
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a large substring from a large string, centromere_region = chr1[0:1500000]. In this case, Python doesn’t need to make 
a copy of the substring in memory. Because the original string can never change, all it needs is some bookkeeping behind 
the scenes to remember that the centromere_region variable is associated with part of string chr1 references. This is why 
seqd in the figure above does not duplicate data from seqc. 

None of this discussion is to imply that you should worry about the computational efficiency of these operations 
at this point. Rather, the concept of immutability and the definition of a variable (in Python) as a “name that refers to 
some data” are important enough to warrant formal discussion. 

Exercises Exercises 

1. Create and run a Python program that uses integers, floats, and strings, and converts between these types. 

Try using the bool() function to convert an integer, float, or string to Boolean and print the results. What kinds 

of integers, floats, and strings are converted to a Boolean False, and what kinds are converted to True? 

2. We know that we can’t use the + operator to concatenate a string type and integer type, but what happens 

when we multiply a string by an integer? (This is a feature that is fairly specific to Python.) 

3. What happens when you attempt to use a float type as an index into a string using [] syntax? What happens 

when you use a negative integer? 

4. Suppose you have a sequence string as a variable, like seq = "ACTAGATGA". Using only the concepts from this 

chapter, write some code that uses the seq variable to create two new variables, first_half and second_half that 

contain the first half (rounded down) and the second half (rounded up) of seq. When printed, these two should 

print "ACTA" and "GATGA", respectively. 

Importantly, your code should work no matter the string seq refers to, without changing any other code, so long 

as the length of the string is at least two letters. For example, if seq = "TACTTG", then the same code should result 

in first_half referring to "TAC" and second_half referring to "TTG". 
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15. Collections and Looping: Lists and for 

A list, as its name implies, is a list of data (integers, floats, strings, Booleans, or even other lists or more complicated data 
types). Python lists are similar to arrays or vectors in other languages. Like letters in strings, elements of a list are indexed 
starting at 0 using [] syntax. We can also use brackets to create a list with a few elements of different types, though in 
practice we won’t do this often. 

Just like with strings, we can use [] notation to get a sublist “slice,” and we can use the len() function to get the length 
of a list. 

Unlike strings, though, lists are mutable, meaning we can modify them after they’ve been created, for example, by 
replacing an element with another element. As mentioned above, lists can even contain other lists! 

We will typically want our code to create an empty list, and then add data elements to it one element at a time. An empty 
list is returned by calling the list() function with no parameters. Given a variable which references a list object, we 
can append an element to the end using the .append() method, giving the method the element we want to append as a 
parameter. 

This syntax might seem a bit odd compared to what we’ve seen so far. Here new_list.append("G") is telling the list 
object the new_list variable refers to to run its .append() method, taking as a parameter the string "G". We’ll explore the 
concepts of objects and methods more formally in later chapters. For now, consider the list not just a collection of data, 
but a “smart” object with which we can interact using . methods. 

Note that the .append() method asks the list to modify itself (which it can do, because lists are mutable), but this 
operation doesn’t return anything of use.

1 

1. It returns a special data type known as None, which allows for a variable to exist but not reference any data. (Technically, None is a 
type of data, albeit a very simple one.) None can be used as a type of placeholder, and so in some situations isn’t entirely useless. 
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This type of command opens up the possibility for some insidious bugs; for example, a line like new_list 
= new_list.append("C") looks innocent enough and causes no immediate error, but it is probably not what the 
programmer intended. The reason is that the new_list.append("C") call successfully asks the list to modify itself, but 
then the None value is returned, which would be assigned to the new_list variable with the assignment. At the end of the 
line, new_list will refer to None, and the list itself will no longer be accessible. (In fact, it will be garbage collected in due 
time.) In short, use some_list.append(el), not some_list = some_list.append(el). 

We often want to sort lists, which we can do in two ways. First, we could use the sorted() function, which takes 
a list as a parameter and returns a new copy of the list in sorted order, leaving the original alone. Alternatively, we could 
call a lists .sort() method to ask a list to sort itself in place. 

As with the .append() method above, the .sort() method returns None, so the following would almost surely have 
resulted in a bug: a_list = a_list.sort(). 

At this point, one would be forgiven for thinking that . methods always return None and so assignment based on 
the results isn’t useful. But before we move on from lists, let’s introduce a simple way to split a string up into a list of 
substrings, using the .split() method on a string data type. For example, let’s split up a string wherever the subsequence 
"TA" occurs. 

If the sequence was instead "CGCGTATACAGA", the resulting list would have contained ["CGCG", "", "CAGA"] (that is, one 
of the elements would be a zero-length empty string). This example illustrates that strings, like lists, are also “smart” 
objects with which we can interact using. methods. (In fact, so are integers, floats, and all other Python types that we’ll 
cover.) 

Tuples (Immutable Lists) Tuples (Immutable Lists) 

As noted above, lists are mutable, meaning they can be altered after their creation. In some special cases, it is helpful to 
create an immutable version of a list, called a “tuple” in Python. Like lists, tuples can be created in two ways: with the 
tuple() function (which returns an empty tuple) or directly. 
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Tuples work much like lists—we can call len() on them and extract elements or slices with [] syntax. We can’t change, 
remove, or insert elements.

2 

Looping with for Looping with for 

A for-loop in Python executes a block of code, once for each element of an iterable data type: one which can be accessed 
one element at a time, in order. As it turns out, both strings and lists are such iterable types in Python, though for now 
we’ll explore only iterating over lists with for-loops. 

A block is a set of lines of code that are grouped as a unit; in many cases they are executed as a unit as well, 
perhaps more than one time. Blocks in Python are indicated by being indented an additional level (usually with four 
spaces—remember to be consistent with this indentation practice). 

When using a for-loop to iterate over a list, we need to specify a variable name that will reference each element of 
the list in turn. 

In the above, one line is indented an additional level just below the line defining the for-loop. In the for-loop, the gene_id 
variable is set to reference each element of the gene_ids list in turn. Here’s the output of the loop: 

Using for-loops in Python often confuses beginners, because a variable (e.g., gene_id) is being assigned without using 
the standard = assignment operator. If it helps, you can think of the first loop through the block as executing gene_id = 

gene_ids[0], the next time around as executing gene_id = gene_ids[1], and so on, until all elements of gene_ids have 
been used. 

Blocks may contain multiple lines (including blank lines) so that multiple lines of code can work together. Here’s a 
modified loop that keeps a counter variable, incrementing it by one each time. 

2. Tuples are a cause of one of the more confusing parts of Python, because they are created by enclosing a list of elements inside of 
parentheses, but function calls also take parameters listed inside of parentheses, and mathematical expressions are grouped by 
parentheses, too! Consider the expression (4 + 3) * 2. Is (4 + 3) an integer, or a single-element tuple? Actually, it’s an integer. By 
default, Python looks for a comma to determine whether a tuple should be created, so (4 + 3) is an integer, while (4 + 3, 8) is a 
two-element tuple and (4 + 3,) is a single-element tuple. Use parentheses deliberately in Python: either to group mathematical 
expressions, create tuples, or call functions—where the function name and opening parenthesis are neighboring, as in print(a) 
rather than print (a). Needlessly adding parentheses (and thereby accidentally creating tuples) has been the cause of some 
difficult-to-find bugs. 
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The output of this loop would be the same as the output above, with an additional line printing 3 (the contents of 
counter after the loop ends). 

Some common errors when using block structures in Python include the following, many of which will result in an 
IndentationError. 

1. Not using the same number of spaces for each indentation level, or mixing tab indentation with multiple-space 
indentation. (Most Python programmers prefer using four spaces per level.) 

2. Forgetting the colon : that ends the line before the block. 

3. Using something like a for-loop line that requires a block, but not indenting the next line. 

4. Needlessly indenting (creating a block) without a corresponding for-loop definition line. 

We often want to loop over a range of integers. Conveniently, the range() function returns a list of numbers.
3
 It 

commonly takes two parameters: (1) the starting integer (inclusive) and (2) the ending integer (exclusive). Thus we could 
program our for-loop slightly differently by generating a list of integers to use as indices, and iterating over that: 

3. An alternative to range() in Python 2.7 is xrange(), which produces an iterable type that works much like a list of numbers but is 
more memory efficient. In more recent versions of Python (3.0 and above) the range() function works like xrange() and xrange() has 
been removed. Programmers using Python 2.7 may wish to use xrange() for efficiency, but we’ll stick with range() so that our code 
works with the widest variety of Python versions, even if it sacrifices efficiency in some cases. There is one important difference 
between range() and xrange() in Python 2.7: range() returns a list, while xrange() returns an iterable type that lacks some features of 
true lists. For example, nums = range(0, 4) followed by nums[3] = 1000 would result in nums referencing [0, 1, 2, 1000], while nums = 
xrange(0, 4) followed by nums[3] = 1000 would produce an error. 
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The output of one of the loops above: 

The second example above illustrates the rationale behind the inclusive/exclusive nature of the range() function: because 
indices start at zero and go to one less than the length of the list, we can use range(0, len(ids)) (as opposed to needing 
to modify the ending index) to properly iterate over the indices of ids without first knowing the length of the list. 
Seasoned programmers generally find this intuitive, but those who are not used to counting from zero may need some 
practice. You should study these examples of looping carefully, and try them out. These concepts are often more difficult 
for beginners, but they are important to learn. 

Loops and the blocks they control can be nested, to powerful effect: 

In the above, the outer for-loop controls a block of five lines; contained within is the inner for-loop controlling a block of 
only two lines. The outer block is principally concerned with the variable i, while the inner block is principally concerned 
with the variable j. We see that both blocks also make use of variables defined outside them; the inner block makes use of 
sum, i, and j, while lines specific to the outer block make use of sum and i (but not j). This is a common pattern we’ll be 
seeing more often. Can you determine the value of total at the end without running the code? 

List Comprehensions List Comprehensions 

Python and a few other languages include specialized shorthand syntax for creating lists from other lists known as 

list comprehensions. Effectively, this shorthand combines a for-loop syntax and list-creation syntax into a single line. 

Here’s a quick example: starting with a list of numbers [1, 2, 3, 4, 5, 6], we generate a list of squares ([1, 4, 9, 16, 

25, 36]): 

Here we’re using a naming convention of num in nums, but like a for-loop, the looping variable can be named almost 

anything; for example, squares = [x ** 2 for x in nums] would accomplish the same task. 

List comprehensions can be quite flexible and used in creative ways. Given a list of sequences, we can easily generate 

a list of lengths. 
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These structures support “conditional inclusion” as well, though we haven’t yet covered operators like ==: 

The next example generates a list of 1s for each element where the first base is "T", and then uses the sum() function to 

sum up the list, resulting in a count of sequences beginning with "T". 

Although many Python programmers often use list comprehensions, we won’t use them much in this book. Partially, 

this is because they are a feature that many programming languages don’t have, but also because they can become 

difficult to read and understand owing to their compactness. As an example, what do you think the following 

comprehension does? [x for x in range(2, n) if x not in [j for i in range(2, sqrtn) for j in range (i*2, n, i)]] 

(Suppose n = 100 and sqrtn = 10. This example also makes use of the fact that range() can take a step argument, as in 

range(start, stop, step). ) 

Exercises Exercises 

1. What is the value of total at the end of each loop set below? First, see if you can compute the answers by 

hand, and then write and execute the code with some added print() statements to check your answers. 

2. Suppose we say the first for-loop block above has “depth” 1 and “width” 4, and the second has depth 2 and 

width 4, and the third has depth 3 and width 4. Can you define an equation that indicates what the total would 

be for a nested for-loop block with depth d and width w? How does this equation relate to the number of times 

the interpreter has to execute the line total = total + 1? 

3. Determine an equation that relates the final value of total below to the value of x. 
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4. Given a declaration of a sequence string, like seq = "ATGATAGAGGGATACGGGATAG", and a subsequence of interest, like 

subseq = "GATA", write some code that prints all of the locations of that substring in the sequence, one per line, 

using only the Python concepts we’ve covered so far (such as len(), for-loops, and .split()). For the above 

example, the output should be 3, 11, and 18. 

Your code should still work if the substring occurs at the start or end of the sequence, or if the subsequence 

occurs back to back (e.g., in "GATACCGATAGATA", "GATA" occurs at positions 1, 7, and 11). As a hint, you may assume the 

subsequence is not self-overlapping (e.g., you needn’t worry about locating "GAGA" in "GAGAGAGAGA", which would 

occur at positions 1, 3, 5, and 7). 

5. Suppose we have a matrix represented as a list of columns: cols = [[10, 20, 30, 40], [5, 6, 7, 8], [0.9, 0.10, 

0.11, 0.12]]. Because each column is an internal list, this arrangement is said to be in “column-major order.” 

Write some code that produces the same data in “row-major order”; for example, rows should contain [[10, 5, 

0.9], [20, 6, 0.10], [30, 7, 0.11], [40, 8, 0.12]]. You can assume that all columns have the same number of 

elements and that the matrix is at least 2 by 2. 

This problem is a bit tricky, but it will help you organize your thoughts around loops and lists. You might start by 

first determining the number of rows in the data, and then building the “structure” of rows as a list of empty lists. 
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16. File Input and Output 

So far, all the data we’ve been working with have been “hard-coded” into our programs. In real life, though, we’ll be 
seeking data from external files. 

We can access data that exist in an external file (a text file, usually) using a file handle, a special kind of data type we 
can connect to using an external source. In its simplest form, a file handle for reading data works sort of like a pipe: the 
operating system puts data (usually strings) in one end, and we extract data out of the other end, usually one line at a 
time. File handles for writing to files move the data in the opposite direction. 

To use a file handle in Python, we have to tell the interpreter that we want to utilize some input/output functions 
by first putting the special command import io near the top of our program. This command imports the io module, 
making available extra functions that exist within it. These functions also use a dot syntax to specify the module they 
exist in, which is confusingly similar to the dot syntax discussed previously for methods. To associate a file handle called 
fhandle with the file “filename.txt", for example, the command is fhandle = io.open("filename.txt", "rU"), where 
open() is a function in the imported io module. The r indicates that we’re creating a read-only file handle, and the U lets 
the interpreter know that we want a “universal” interpretation for newlines, to allow reading files created on Microsoft 
Windows systems or Unix-like systems.

1
 The file handle data type has a method called .readline(), which returns the 

next available line from the pipe as a string; so, line = fhandle.readline() extracts a string (line) from the file handle 
and assigns it to line. 

Let’s create a small file with three lines each containing a gene ID, a tab, and a corresponding GC-content value. 

1. Python includes a simple open() function that works largely the same way as the io.open() shown here. In the newest versions of 
Python (Python 3.0 and up), open() is actually a shortcut to io.open(), whereas in older versions the two operate slightly differently. 
For consistency, let’s stick with an explicit io.open(), which works the same in all recent versions (Python 2.7 and up). With regard 
to the "U" parameter, Microsoft- and Unix-based systems utilize different encodings for newlines. The "U" parameter handles this 
transparently, so that all types of newlines can be considered as Unix based, \n, even if the file in question was created on a 
Microsoft system. 
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Now let’s create a program that reads and prints the data. When we are finished reading data from a file, we need to run 
the file handle’s .close() method. Using .close() causes the file handle to alert the operating system that we are done 
reading data from the handle. At this point the operating system is free to remove the back-end “pipe” and any data that 
might be in it. 

If the file doesn’t exist or is not readable by the program, you will get an IOError indicating either No such file 

or directory or Permission denied with the file name you attempted to open.
2
 Because our file does exist, we can 

successfully execute the code and inspect the results: 

2. In many languages, it is good practice to test whether a file handle was successfully opened, and if not, exit the program with an 
error. We could also do such tests in Python, but because Python by default quits with an informative error in this situation 
anyway, we won't worry as much about checking for errors here. Python also includes a special with keyword that handles both 
opening and closing the file: 

Python documentation recommends using with in this way, as it is slightly safer in cases of program crashes that occur when a file 
handle is open. Still, we leave this idea to a footnote, as the open and close are explicit and straightforward. 
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There are a few things to note here. First, each time we call fhandle.readline(), the file handle returns a different 
string: the next string waiting to be popped out of the pipe. Second, we see that the output contains our three lines, 
but separated by blank lines: this is because there are “newline” characters already in the file. We don’t see these newline 
characters, but we can represent them ourselves if we like, in a string with the control code \n. Similarly, tab characters 
have a control code like \t. The file is actually a single serial string, and the .readline() method asks the file handle to 
return everything up to and including the next \n. 

In the end, the reason for the blank lines in our output is that the print() function, for our convenience, appends a \n to 
the end of any string that we print (otherwise, most of our output would all be on the same line). Thus each line read in 
from the file is being printed with two \n characters. We’ll learn how to print without an additional newline later, when 
we learn how to write data to files. For now, we’ll solve the problem by removing leading and trailing whitespace (spaces, 
tabs, and newlines) by asking a string to run its .strip() method. 

Although we’re calling import io again, it is just for clarity: a program only needs to import a module once (and usually 
these are collected near the top of the program). Here’s the modified output: 
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If you feel adventurous (and you should!), you can try method chaining, where the dot syntax for methods can be 
appended so long as the previous method returned the correct type. 

To tie this into earlier concepts, after we’ve extracted each line and stripped off the trailing whitespace, we can use 
.split("\t") to split each line into a list of strings. From there, we can use float() to convert the second element of 
each into a float type, and compute the mean GC content. 

The above prints the average GC content of the three lines as 0.523333333. (Because .strip() also returns a string, we 
could have further chained methods, as in line1_list = fhandle.readline().strip().split("\t").) 

Because file handles work like a pipe, they don’t allow for “random access”; we can get the next bit of data out of 
the end of the pipe, but that’s it.

3
 One might think that a command like line5 = fhandle[4] would work, but instead it 

would produce an error like TypeError: '_io.BufferedReader' object has no attribute '__getitem__'. 
On the other hand, like lists, file handles are iterable, meaning we can use a for-loop to access each line in order. A 

simple program to read lines of a file and print them one at a time (without extra blank lines) might look like this: 

3. In more sophisticated usage of file handles, our pipe analogy breaks down. It’s possible to “rewind” or “fast-forward” the operating 
system’s current position in the file being read, if we know how far the “read head” needs to move to get to the data we want. 
Perhaps a better analogy for file handles would be an old-fashioned magnetic cassette tape, perhaps a fitting analogy given that 
files were once stored on such tapes. 
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Like .readline(), using a for-loop extracts lines from the pipe. So, if you call .readline() twice on a file handle attached 
to a file with 10 lines, and then run a for-loop on that file handle, the for-loop will iterate over the remaining 8 lines. This 
call could be useful if you want to remove a header line from a text table before processing the remaining lines with a 
loop, for example. 

Writing Data Writing Data 

Writing data to a file works much the same way as reading data: we open a file handle (which again works like a pipe), 
and call a method on the handle called .write() to write strings to it. In this case, instead of using the "rU" parameter in 
calling io.open(), we’ll use "w" to indicate that we want to write to the file. Be warned: when you open a file handle for 
writing in this manner, it overwrites any existing contents of the file. If you’d rather append to the file, you can instead 
use "a".

4 

Unlike the print() function, the .write() method of a file handle does not automatically include an additional 
newline character "\n". Thus, if you wish to write multiple lines to a file handle, you have to add them yourself. Here’s 
an example that prints the numbers 0 through 9 to a file, one per line. 

As mentioned above, a file handle opened for writing works like a pipe that is set up by the operating system. When 
writing, however, we put data into the pipe, and the operating system pulls the data out the other side, writing it to the 
file on disk. 

4. It’s also possible to open a file handle for simultaneous reading and writing. We won’t cover it here, as that functionality is less 
often needed. 
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Because the operating system is busy handling similar requests for many programs on the system, it may not get around 
to pulling the data from the pipe and writing to the file on disk right away. So, it’s important that we remember to call the 
.close() method on the file handle when we are done writing data; this tells the operating system that any information 
left in the pipe should be flushed out and saved to disk, and that the pipe structure can be cleaned up. If our program 
were to crash (or were to be killed) before the handle was properly closed, data in the pipe may never get written. 

Computing a Mean Computing a Mean 

Let’s put many of the skills we’ve learned so far into practice to compute the mean of the E values from the output 
of BLAST, which is formatted as a simple text table with tabs separating the columns. Here’s what the file, 
pz_blastx_yeast_top1.txt, looks like in less -S. Although the reader will have to take our word for it, the eleventh 
column of this file contains E values like 5e-14, 2e-112, and 1e-18. 

When solving a problem like this, it’s usually a good idea to first write, in simple English (or your nonprogramming 
language of choice), the strategy you intend to use to solve the problem. The strategy here will be as follows: the mean of 
a set of numbers is defined as their sum, divided by the count of them. We’ll need to keep at least two important variables, 
eval_sum and counter. After opening the file with io.open(), we can loop through the lines and extract each E value. 
(This will require cleaning up the line with .strip(), splitting it into pieces using .split("\t"), and finally converting 
the E value to a float rather than using the string.) For each line that we see, we can add the E value extracted to the 
eval_sum variable, and we’ll add 1 to the counter variable as well. In the end, we can simply report eval_sum/counter. 

It often helps to convert this strategy into something partway between natural language and code, called 
pseudocode, which can help tremendously in organizing your thoughts, particularly for complex programs: 
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import io 
open fhandle 

counter = 0 
sum_eval = 0.0 

for each line in fhandle 
linestripped = line.strip() 
break into a list of strings with line_list = linestripped.split("\t") 
eval as a string is in line_list at index 10 (11th column) 
add float(eval) to sum_eval and save in sum_eval 
add 1 to count and save in count 

  
mean = sum_eval divided by counter 
print("mean is " + mean) 

With the pseudocode sketched out, we can write the actual code for our program. When executed, it reliably prints Mean 
is: 1.37212611293e-08. 

Note that the actual Python code (in blast_mean.py) ended up looking quite a lot like the pseudocode—this is one of 
the frequently cited selling points for Python. (For this reason, we’ll also skip the pseudocode step for most examples in 
this book, though it can still be a valuable technique when programming in any language.) 

This may seem like a fair amount of work to compute a simple mean, but it is a consequence of writing software 
“from scratch,” and we have to start somewhere! Additionally, the benefit of learning these techniques will pay off over 
the long run when it comes to solving novel problems. 
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The Process of Programming The Process of Programming 

Although the process of designing a strategy (and pseudocode) seems tedious, it’s highly recommended. As you progress 
in your abilities, your strategies and pseudocode will become more terse and higher level, but you should never skip the 
planning steps before coding. (On the other hand, there is also the danger of over-planning, but this more often effects 
teams of coders working on large projects.) 

There’s another thing worth noting at this point: programs like the above are almost never written top-to-bottom 
in their entirety, at least not without requiring significant debugging! You may forget that the result of splitting a string 
results in a list of strings, resulting in an error on a line like eval_sum = eval_sum + eval_str because eval_sum is a float, 
while eval_str is a string. After finding and fixing this error, you may find yet another error if you attempt to print with 
a line like print("Mean is: " + mean), because again the types don’t match and can’t be concatenated. After all this, 
perhaps you find the resulting mean to unexpectedly be a large number, like 131.18, only to find out it was because you 
accidently used eval_str = line_list[11], forgetting that list indices start at 0. 

There are two strategies for avoiding long chains of annoying bugs like this, and harder-to-find (and thus more 
dangerous) bugs that result in incorrect output that isn’t obviously incorrect. The first strategy is to only write a few lines 
at a time, and test newly added lines with print() statements that reveal whether they are doing what they are supposed 
to. In the example above, you might write a few lines and do some printing to ensure that you can successfully open the 
file handle and read from it (if the file is large, create a smaller version for testing). Then write a simple for-loop and do 
some printing to ensure you can successfully loop over the lines of the file and split them into lists of strings. Continue 
on by filling in some of the code in the for-loop, again printing and testing to ensure the code is doing what you think it 
is. And so on via iterative development. 

The second strategy, to avoid the more dangerous bugs that aren’t immediately obvious, is to test and develop your 
programs using small files for which you can calculate the answer by hand (or some other trusted process). When you 
know from testing that your program or even just parts of your program produces the intended output, hidden bugs 
are much less likely to slip through the cracks. Some people produce several small inputs that represent the variety of 
different input situations, run the tests, and compare the outputs to the expected results in an automated fashion. This 
is known as “unit testing,” a common practice in professional software development. 

Finally, remember that every programmer, no matter her experience level, gets frustrated from time to time! This is 
entirely normal, and a good strategy when this happens is to take a brief walk, or even take a break for the day, picking up 
again the next day. Some find they program efficiently in the morning, others late at night. Whatever you do, avoid the 
temptation to program by trial and error, mindlessly tweaking the code in the hopes that it will produce the output you 
want. Even if you succeed this way (which rarely happens), you’re likely to produce code with insidious bugs, and it may 
well be unreadable even to yourself in a few days’ time. 

Exercises Exercises 

1. Write a Python program to compute the sample standard deviation of the E values in the file 

pz_blastx_yeast_top1.txt. As a reminder, the sample standard deviation is defined as the square root of the sum of 

squared differences from the mean, divided by the number of values minus 1:    
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To accomplish this, you’ll need to make two passes over the data: one as in the example to compute the mean, 

and another to compute the sum of squared differences. This means you’ll need to access the E values twice. 

Rather than close and reopen the data file, you should create an initially empty list to which you can append 

each E value (in your first pass over the data) for later use. 

To compute the square root of a float, you will need to import the math module by calling import math near the top 

of your program. Then the math.sqrt() function will return the square root of a float; for example, math.sqrt(3.0) 

will return the float 1.7320508. 

2. If a_list is a list, then b_list = reversed(a_list) creates a “listreverseiterator” allowing one to loop over the 

elements with a for-loop in reverse order. Using this information, write a program called reverse_blast.py that 

reads the contents of pz_blastx_yeast_top1.txt and writes the lines in reverse order to a file called 

pz_blastx_yeast_top1_reversed.txt. 

3. A quine (after the logician and philosopher W. V. Quine) is a nonempty program that prints its own source 

code exactly. Use the io module and file handles to write a quine called quine.py. (Quine programs aren’t 

technically allowed to open files. Can you write a program that prints its own source code without using the io 

module?) 
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17. Conditional Control Flow 

The phrase “control flow” refers to the fact that constructs like for-loops change the flow of program execution away 
from the simple top-to-bottom order. There are several other types of control flow we will cover, two of which are 
“conditional” in nature. 

Using If-Statements Using If-Statements 

If-statements allow us to conditionally execute a block of code, depending on a variable referencing a Boolean True or 
False, or more commonly a condition that returns a Boolean True or False. The syntax is fairly simple, described here 
with an example. 

All the lines from the starting if to the last line in an elif: or else: block are part of the same logical construct. Such 
a construct must have exactly one if conditional block, may have one or more elif blocks (they are optional), and may 
have exactly one catchall else block at the end (also optional). Each conditional is evaluated in order: the first one that 
evaluates to True will run, and the rest will be skipped. If an else block is present, it will run if none of the earlier if or 
elif blocks did as a “last resort.” 

Just like with for-loops, if-statements can be nested inside of other blocks, and other blocks can occur inside if-
statement blocks. Also just like for-loops, Python uses indentation (standard practice is four spaces per indentation level) 
to indicate block structure, so you will get an error if you needlessly indent (without a corresponding control flow line 
like for, if, elif, or else) or forget to indent when an indentation is expected.

1 

1. Python is one of the only languages that require blocks to be delineated by indentation. Most other languages use pairs of curly 
brackets to delineate blocks. Many programmers feel this removes too much creativity in formatting of Python code, while others 
like that it enforces a common method for visually distinguishing blocks. 
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The above code would print Number short: 2 number long: 2. 

Using While-Loops Using While-Loops 

While-loops are less often used (depending on the nature of the programming being done), but they can be invaluable 
in certain situations and are a basic part of most programming languages. A while-loop executes a block of code so long 
as a condition remains True. Note that if the condition never becomes False, the block will execute over and over in an 
“infinite loop.” If the condition is False to begin with, however, the block is skipped entirely. 

The above will print Counter is now: 0, followed by Counter is now: 1, Counter is now: 2, Counter is now: 3, and 
finally Done. Counter ends with: 4. As with using a for-loop over a range of integers, we can also use a while-loop to 
access specific indices within a string or list. 

The above code will print base is: A, then base is: C, and so on, ending with base is: T before finally printing Done. 
While-loops can thus be used as a type of fine-grained for-loop, to iterate over elements of a string (or list), in turn using 
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simple integer indexes and [] syntax. While the above example adds 1 to base_index on each iteration, it could just as 
easily add some other number. Adding 3 would cause it to print every third base, for example. 

Boolean Operators and Connectives Boolean Operators and Connectives 

We’ve already seen one type of Boolean comparison, <, which returns whether the value of its left-hand side is less than 
the value of its right-hand side. There are a number of others: 

Operator Operator Meaning Meaning Example (with Example (with a = 7, , b = 3) ) 

< less than? a < b # False 

> greater than? a > b # True 

<= less than or equal to? a <= b # False 

>= greater than or equal to? a >= b # True 

!= not equal to? a != b # True 

== equal to? a == b # False 

These comparisons work for floats, integers, and even strings and lists. Sorting on strings and lists is done in lexicographic 
order: an ordering wherein item A is less than item B if the first element of A is less than the first element of B; in the 
case of a tie, the second element is considered, and so on. If in this process we run out of elements for comparison, that 
shorter one is smaller. When applied to strings, lexicographic order corresponds to the familiar alphabetical order. 

Let’s print the sorted version of a Python list of strings, which does its sorting using the comparisons above. Note 
that numeric digits are considered to be “less than” alphabetic characters, and uppercase letters come before lowercase 
letters. 

Boolean connectives let us combine conditionals that return True or False into more complex statements that also return 
Boolean types. 

Connective Connective Meaning Meaning Example (with Example (with a = 7, , b = 3) ) 

and True if both are True a < 8 and b == 3 # True 

or True if one or both are True a < 8 or b == 9 # True 

not True if following is False not a < 3 # True 

These can be grouped with parentheses, and usually should be to avoid confusion, especially when more than one test 
follow a not.

2 

2. In the absence of parentheses for grouping, and takes precedence over or, much like multiplication takes precedence over addition 
in numeric algebra. Boolean logic, by the way, is named after the nineteenth-century mathematician and philosopher George 
Boole, who first formally described the “logical algebra” of combining truth values with connectives like “and,” “or,” and “not.” 
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Finally, note that generally each side of an and or or should result in only True or False. The expression a == 3 or a 

== 7 has the correct form, whereas a == 3 or 7 does not. (In fact, 7 in the latter context will be taken to mean True, and 
so a == 3 or 7 will always result in True.) 

Logical Dangers Logical Dangers 

Notice the similarity between = and ==, and yet they have dramatically different meanings: the former is the variable 
assignment operator, while the latter is an equality test. Accidentally using one where the other is meant is an easy way 
to produce erroneous code. Here count == 1 won’t initialize count to 1; rather, it will return whether it already is 1 (or 
result in an error if count doesn’t exist as a variable at that point). The reverse mistake is harder to make, as Python does 
not allow variable assignment in if-statement and while-loop definitions. 

In the above, the intent is to determine whether the length of seq is a multiple of 3 (as determined by the result of 
len(seq)%3 using the modulus operator), but the if-statement in this case should actually be if remainder == 0:. In 
many languages, the above would be a difficult-to-find bug (remainder would be assigned to 0, and the result would be 
True anyway!). In Python, the result is an error: SyntaxError: invalid syntax. 

Still, a certain class of dangerous comparison is common to nearly every language, Python included: the comparison 
of two float types for equality or inequality. 

Although integers can be represented exactly in binary arithmetic (e.g., 751 in binary is represented exactly as 
1011101111), floating-point numbers can only be represented approximately. This shouldn’t be an entirely unfamiliar 
concept; for example, we might decide to round fractions to four decimal places when doing calculations on pencil and 
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paper, working with 1/3 as 0.3333. The trouble is that these rounding errors can compound in difficult-to-predict ways. 
If we decide to compute (1/3)*(1/3)/(1/3) as 0.3333*0.3333/0.3333, working left to right we’d start with 0.3333*0.3333 
rounded to four digits as 0.1110. This is then divided by 0.3333 and rounded again to produce an answer of 0.3330. 
So, even though we know that (1/3)*(1/3)/(1/3) == 1/3, our calculation process would call them unequal because it 
ultimately tests 0.3330 against 0.3333! 

Modern computers have many more digits of precision (about 15 decimal digits at a minimum, in most cases), but 
the problem remains the same. Worse, numbers that don’t need rounding in our Base-10 arithmetic system do require 
rounding in the computer’s Base-2 system. Consider 0.2, which in binary is 0.001100110011, and so on. Indeed, 0.2 * 

0.2 / 0.2 == 0.2 results in False! 
While comparing floats with <, >, <=, and >= is usually safe (within extremely small margins of error), comparison 

of floats with == and != usually indicates a misunderstanding of how floating-point numbers work.
3
 In practice, we’d 

determine if two floating-point values are sufficiently similar, within some defined margin of error. 

Counting Stop Codons Counting Stop Codons 

As an example of using conditional control flow, we’ll consider the file seq.txt, which contains a single DNA string on 
the first line. We wish to count the number of potential stop codons "TAG", "TAA", or "TGA" that occur in the sequence 
(on the forward strand only, for this example). 

Our strategy will be as follows: First, we’ll need to open the file and read the sequence from the first line. We’ll need 
to keep a counter of the number of stop codons that we see; this counter will start at zero and we’ll add one to it for each 
"TAG", "TAA", or "TGA" subsequence we see. To find these three possibilities, we can use a for-loop and string slicing to 
inspect every 3bp subsequence of the sequence; the 3bp sequence at index 0 of seq occurs at seq[0:3], the one at position 
1 occurs at seq[1:4], and so on. 

We must be careful not to attempt to read a subsequence that doesn’t occur in the sequence. If seq = "AGAGAT", 
there are only four possible 3bp sequences, and attempting to select the one starting at index 4, seq[4:7], would result in 
an error. To make matters worse, string indexing starts at 0, and there are also the peculiarities of the inclusive/exclusive 
nature of [] slicing and the range() function! 

To help out, let’s draw a picture of an example sequence, with various indices and 3bp subsequences we’d like to 
look at annotated. 

3. You can see this for yourself: print(0.2*0.2/0.2 == 0.2) prints False! Some mathematically oriented languages are able to work 
entirely symbolically with such equations, bypassing the need to work with numbers at all. This requires a sophisticated parsing 
engine but enables such languages to evaluate even generic expressions like x*x/x == x as true. 
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Given a starting index index, the 3bp subsequence is 
defined as seq[index:index + 3]. For the sequence 
above, len(seq) would return 15. The first start index we 
are interested in is 0, while the last start index we want to 
include is 12, or len(seq) - 3. If we were to use the 
range() function to return a list of start sequences we are 
interested in, we would use range(0, len(seq) - 3 + 

1), where the + 1 accounts for the fact that range() 
includes the first index, but is exclusive in the last index.

4 

We should also remember to run .strip() on the 
read sequence, as we don’t want the inclusion of any \n newline characters messing up the correct computation of the 
sequence length! 

Notice in the code below (which can be found in the file stop_count_seq.py) the commented-out line 
#print(codon). 

While coding, we used this line to print each codon to be sure that 3bp subsequences were reliably being considered, 
especially the first and last in seq1.txt (ATA and AAT). This is an important part of the debugging process because it is easy 
to make small “off-by-one” errors with this type of code. When satisfied with the solution, we simply commented out the 
print statement. 

For windowing tasks like this, it can occasionally be easier to access the indices with a while-loop. 

4. Yes, this sort of detailed logical thinking can be tedious, but it becomes easier with practice. Drawing pictures and considering 
small examples is also invaluable when working on programming problems, so keep a pencil and piece of paper handy. 
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If we wished to access nonoverlapping codons, we could use index = index + 3 rather than index = index + 1 without 
any other changes to the code. Similarly, if we wished to inspect 5bp windows, we could replace instances of 3 with 5 (or 
use a windowsize variable). 

Exercises Exercises 

1. The molecular weight of a single-stranded DNA string (in g/mol) is (count of "A")*313.21 + (count of "T")*304.2 

+ (count of "C")*289.18 + (count of "G")*329.21 – 61.96 (to account for removal of one phosphate and the addition 

of a hydroxyl on the single strand). 

Write code that prints the total molecular weight for the sequence in the file seq.txt. The result should be 

21483.8. Call your program mol_weight_seq.py. 

2. The file seqs.txt contains a number of sequences, one sequence per line. Write a new Python program that 

prints the molecular weight of each on a new line. For example: 

You may wish to use substantial parts of the answer for question 1 inside of a loop of some kind. Call your 

program mol_weight_seqs.py. 

3. The file ids_seqs.txt contains the same sequences as seqs.txt; however, this file also contains sequence IDs, 

with one ID per line followed by a tab character (\t) followed by the sequence. Modify your program from 

question 2 to print the same output, in a similar format: one ID per line, followed by a tab character, followed by 

the molecular weight. The output format should thus look like so (but the numbers will be different, to avoid 

giving away the answer): 
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Call your program mol_weight_ids_seqs.py. 

Because the tab characters cause the output to align differently depending on the length of the ID string, you 

may wish to run the output through the command line tool column with a -t option, which automatically formats 

tab-separated input. 

4. Create a modified version of the program in question 3 of chapter 15, “Collections and Looping, Part 1: Lists 

and for,” so that it also identifies the locations of subsequences that are self-overlapping. For example, "GAGA" 

occurs in "GAGAGAGAGATATGAGA" at positions 1, 3, 5, 7, and 14. 
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18. Python Functions 

The psychological profiling [of a programmer] is mostly the ability to shift 

levels of abstraction, from low level to high level. To see something in the 

small and to see something in the large. 

~Donald Knuth 

Functions (sometimes called “subroutines”) are arguably the most important concept in programming. We’ve already 
seen their use in many contexts, for example, when using functions like len() and float(). Here’s a bit of code that 
computes the GC content of a DNA sequence in a variable called seq: 

What if we wanted to compute the GC content for multiple different variables in our code? Should we rewrite our GC-
computing for-loop for each different variable? No way! First, we’d be at a much higher risk of bugs (it’s a probabilistic 
fact that more typing leads to more typos). Second, the whole point of programming is for the computer to do all the 
work, not us. 

Ideally, we’d like to encapsulate the functionality of computing GC content, just as the functionality of getting 
the length of a sequence is encapsulated by the len() function. We want to just be able to say gc = gc_content(seq). 
Functions allow us to do exactly this: encapsulate a block of code for reuse whenever we need it. There are three 
important parts of a function: 

1. The input (parameters given to the function). 

2. The code block that is to be executed using those parameters. As usual, an additional level of indentation will 
define the block. 

3. The output of the function, called the return value. This may be optional, if the function “does something” (like 
print()) rather than “returns something” (like len()). 

Ignoring point 2, functions can actually represent a mathematical ideal: they relate inputs to outputs. They even have 
domains (the set of all valid inputs) and ranges (the set of all potential outputs). 
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We define functions in Python using the def keyword, and in Python functions must be defined before they can be 
executed. Here’s an example function that computes a “base composition” (count of a character in a given string) given 
two parameters: (1) the sequence (a string) and (2) the base/character to look for (also a string). 

The last two lines above call the function with different parameters—note that the parameter variable names (in this case 
seq and query_base) need not relate to the variable names of the data outside the function. This is an important point 
to which we’ll return. When the interpreter reads the def line and corresponding block, the function is defined (available 
for use), but the lines are not run, or called, until the function is used in the last two lines. 

One of the best things about functions is that they can call other functions, provided they’ve already been defined 
at the time they are called. 

160 Part II: Programming in Python

160  |  Shawn T. O’Neil



Because functions need only to be defined before they are called, it is common to see collections of functions first in a 
program. Further, the order of definition need not correspond to their order of execution: either the gc_content() or 
the base_composition() function definition could occur first in this file and the computation would still work. 

The idea of encapsulating small ideas into functions in this way is a powerful one, and from this point forward you 
should attempt to think mostly in terms of “what function am I writing/do I need,” rather than “what program am I 
writing?” 

Important Notes about Functions Important Notes about Functions 

In an effort to produce clean, readable, and reusable code, you should strive to follow these rules when writing functions. 

1. Function blocks should only utilize variables that are either created within the function block (e.g., g_cont and 
c_cont within the gc_content() function above), or passed in as parameters (e.g., seq). Functions should be 
“worlds unto themselves” that only interact with the outside world through their parameters and return 
statement. The following redefinition of the gc_content() function would work, but it would be considered bad 
form because seq4 is used but is not one of the two types listed. 
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Notice the difference: the function takes no parameters and so must use the same variable names as defined 
outside the function. This makes the function strongly tied to the context in which it is called. Because function 
definitions may be hundreds or thousands of lines removed from where they are called (or even present in a 
different file), this makes the task of coding much more difficult. 

2. Document the use of each function with comments. What parameters are taken, and what types should they be? 
Do the parameters need to conform to any specification? For example: “this function works only for DNA strings, 
not RNA strings.” What is returned? Although above we’ve commented on our functions by using simple 
comment lines, Python allows you to specify a special kind of function comment called a “docstring.” These 
triple-quoted strings must occur at the top of the function block, and they may span multiple lines. 

Later, when we discuss documentation for Python code, we’ll learn how the Python interpreter can automatically 
collate these comments into nice, human-readable documents for others who might want to call your functions. 
Otherwise, we’ll be using regular comments for function documentation. 

3. Functions shouldn’t be “too long.” This is subjective and dependent on context, but most programmers are 
uncomfortable with functions that are more than one page long in their editor window.

1
 The idea is that a 

function encapsulates a single, small, reusable idea. If you find yourself writing a function that is hard to read or 
understand, consider breaking it into two functions that need to be called in sequence, or into one short function 
that calls another short function. 

4. Write lots of functions! Even if a section of code is only going to be called once, it is completely acceptable make a 
function out of it if it encapsulates some idea or well-separable block. After all, you never know if you might need 
to use it again, and just the act of encapsulating the code helps you ensure its correctness, allowing you to forget 
about it when working on the rest of your program. 

1. With the advent of large monitors, perhaps this is no longer a good rule of thumb! Personally, I find that few of my functions need 
to exceed 30 lines in length, depending only somewhat on the language I’m writing in. 

162 Part II: Programming in Python

162  |  Shawn T. O’Neil



GC Content over Sequences in a File GC Content over Sequences in a File 

In chapter 17, “Conditional Control Flow,” one of the exercises involved computing the molecular weight for each 
sequence in a tab-separated file of IDs and sequences, ids_seqs.txt. Here are the lines of this file viewed with less -S: 

If you completed the molecular weight exercise in chapter 17, you might have found it somewhat challenging. Without 
using functions, you likely needed to use a for-loop to iterate over each line of the file, and within there another for-loop 
to iterate over each base of the current sequence, and inside of that an if-statement to determine the molecular weight of 
each base. 

Here we’ll write a similar program, except this time we’ll make use of a function that returns the GC content of its 
parameter. The entire solution is actually quite short and readable. 
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In the above code (ids_seqs_gcs.py), there’s a clear “separation of concerns” that makes designing a solution easier. One 
function handles counting bases in a DNA sequence, and another the computation of the GC content. With those out 
of the way, we can turn our focus to parsing the input file and printing the output. 

To simplify exposition, most of the small code samples in the next few chapters don’t involve creating new 
functions. Most of the exercises will suggest writing functions as a means of breaking a problem down into its 
component parts, however. 

Exercises Exercises 

1. We have now covered four of the basic control-flow structures common to most programming languages. 

What are they, and what do they do? 
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2. We often want to look at some sort of windows of a sequence; perhaps we want to look at the codons of a 

sequence like "ACTTAGAGC"("ACT", "TAG", and "AGC"), which we can think of as a 3bp “window size” and a 3bp “step 

size.” Or perhaps we want to consider overlapping windows of 6-mers (like "ACTTAG", "CTTAGA", "TTAGAG", and 

"TAGAGC", window size 6, step size 1). 

Write a program with a function called get_windows() that takes three parameters: the sequence to extract 

windows from (string), the window size (int), and the step size (int). The function should return a list of strings, 

one per window, with no “partial windows” if the last window would run off the end of the sequence. 

(You might find a while-loop to be more helpful than a for-loop for this exercise.) Use this code to test your 

function: 

This code should output the following: 

3. Although the get_windows() function is designed to run on strings, indexing in strings and in lists works the 

same in Python. What happens if you run get_windows([1, 2, 3, 4, 5, 6, 7, 8], 3, 2)? 

4. Redo exercise 1 from chapter 17, but this time write and use a molecular_weight() function that takes a DNA 

string as a parameter called seq. 
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19. Command Line Interfacing 

While Python is a great language for stand-alone programming, it’s also a first-class language for interfacing with the 
Unix/Linux command line. This chapter explores some of those concepts, allowing us to use Python as “glue” to connect 
other powerful command line concepts. 

Standard Input is a File Handle Standard Input is a File Handle 

In previous chapters, we saw that simple Unix/Linux utilities such as grep and sort can be chained together for a variety 
of data manipulation tasks. 

The above command uses grep to match lines in the file pz_stats.table against the pattern _L, which are printed to 
standard output. Using the | redirect, we send this output to sort on its standard input and sort the lines on the second 
column in general numeric order, before piping this output to less -S. 

Again, sort and less are not reading their input from a file, but rather from standard input streams. Similarly, they are 
not writing their output to a file, but just printing to the standard output streams. It’s often useful to design our own 
small utilities as Python programs that operate in the same way. 

The “file handle as a pipe” analogy that we’ve been using will serve us well when writing programs that read input 
from standard input. The file handle associated with standard input is easy to use in Python. We just have to import the 
sys module, and then sys.stdin is a variable that references the read-only file handle that works just like any other. We 
don’t even have to use io.open(). Here’s a program that prints each line passed into it on standard input. 
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In this case, we’re using sys.stdin much like the read-only file handles we saw in previous examples. We can test our 
program on a simple file holding some gene IDs: 

But if we attempt to run our program without giving it any input on the standard input stream, it will sit and wait for 
data that will never come. 

To kill the program, we can use the usual Control-c. The reason for this behavior is that the standard input stream can be 
used for input from standard out of another program (as we wish to do), or it can be used to build interactive programs. 
To see this, we can run the same program, except this time we’ll type some input using the keyboard, and when we’re 
done we’ll send the control code Control-d, which is a way to tell Python we are done sending input. 

This hints at some interesting possibilities for interactive programs,
1
 but in this case it would likely be confusing for 

someone wanting to utilize our program by piping data to it. Fortunately, sys.stdin has a method called .isatty() that 
returns True if there are no data present on the input stream when it is called. (TTY is short for “TeleTYpewriter,” a 
common name for a keyboard-connected input device of decades past.) So, we can fairly easily modify our program to 
quit with some helpful usage text if it detects that there are no data present on standard input. 

1. Try using a line of code like value = input("What is your name? ") followed by print(value). Note that when running the program and 
prompted, you’ll need to include quotes when typing your name (e.g., "Shawn"). 
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It’s almost always a good idea for a program to check whether it is being called correctly, and to give some helpful usage 
information if not. It’s also common to include, in comments near the top of the program, authoring information such 
as date of last update and contact information. You may also need or want to include some copyright and licensing text, 
either of your own choice or your institution’s. 

Note that we haven’t called .close() on the standard input file handle. Although Python won’t complain if you 
do, it is not required, as standard input is a special type of file handle that the operating system handles automatically. 

Standard Output as a File Handle Standard Output as a File Handle 

Anything printed by a Python program is printed to the standard output stream, and so this output can also be sent to 
other programs for processing. 

However, the sys module also provides access to the standard output file handle, sys.stdout. Just like other output-
oriented file handles, we can call .write() on this file handle to print. The main difference between this method and 
calling print() is that while print() by default adds a "\n" newline character sys.stdout.write() does not.

2
 This 

feature can be particularly useful when we wish to print a table in an element-by-element fashion because the data are 
not stored in strings representing individual rows. 

Output from the above: 

2. In Python 3.0 and above, the print() function can also take some parameters to specify whether the "\n" should be printed or not, 
or even be replaced by some other character. 
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While print() is a simple way to print a line of text, sys.stdout.write() gives you more control over the formatting of 
printed output. As with sys.stdin, there is no need to call .close() on the file handle. Unlike other output-oriented file 
handles, data are regularly flushed from the pipe (either for printing or to another program’s standard input). 

Command Line Parameters Command Line Parameters 

So far, even though we’ve been executing our programs from the command line, none of our Python programs have 
accepted input parameters. Consider the example from chapter 18, “Python Functions,” where we computed the GC 
content for each sequence in a file. Rather than hard-coding the file name into the io.open() call, it would be preferable 
to supply the file name to work with on the command line, as in ./ids_seqs_gcs.py ids_seqs.txt. 

The sys module again comes to the rescue. After importing sys, the variable sys.argv references a list of strings 
that contain, starting at index 0, the name of the script itself, then each parameter. Because sys.argv is always a list of 
strings, if we want to input a float or integer argument, we’ll need to convert the appropriate parameter using int() or 
float() before use. 

This code also determines whether the expected number of parameters has been given by the user by looking at 
len(sys.argv), exiting if this isn’t the case. 

As with other programs run on the command line, if we wish to send a single parameter that contains spaces, we need to 
wrap it in single or double quotes. 

Although we won’t cover it here, the argparse module makes writing scripts that require input parameters of different 
types relatively easy. The argparse module also automates the printing and formatting of help information that can be 
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accessed by users who run the program with a -h or --help flag. A variety of tutorials for argparse can be found online. 
(There is also a simpler, but less featureful, module optparse.) 

Executing Shell Commands within Python Executing Shell Commands within Python 

It is sometimes useful to execute other programs from within our own programs. This could be because we want to 
execute an algorithmically generated series of commands (e.g., perhaps we want to run a genome assembly program on a 
variety of files in sequence), or perhaps we want to get the output of a program run on the command line. 

Consider the command line task of listing all of the files in the current directory matching the pattern 
cluster*.fasta. For this we can use ls -1 cluster*.fasta, where -1 tells ls to print its output as a single column 
of file names, and cluster*.fasta matches all file names matching the desired pattern (like cluster_AB.fasta, 
cluster_AC.fasta, cluster_AG.fasta, and cluster_D.fasta.). 

There are a few ways to get this information in a Python program, but one of the easiest is to run the ls -1 

cluster*.fasta command from within our program, capturing the result as a string.
3
 The subprocess module allows 

us to do exactly this by using the subprocess.check_output() function. This function takes a number of potential 
parameters, but we’ll run it with just two: (1) the command we wish to execute (as a string) and (2) shell = True, which 
indicates that the Python interpreter should run the command as though we had run it on the command line. 

The result of the function call is a single string containing whatever the command printed to standard output. 
Because it’s a single string, if we want it represented as a list of lines, we need to first .strip() off any newline characters 
at the end, and then split it on the \n characters that separate the lines. 

Running the program, we see that the result is a list of strings, one per file: 

3. An alternative method to get a list of files is to use the os module and the os.listdir() function, which will return a list of file 
names. For listing and working with file names and paths, the functions in the os module are are preferred, because they will work 
whether the program is run on a Windows system or a Unix-like system.For running shell commands more generally, the 
subprocess module is useful. Here we’re illustrating that on the Unix/Linux command line, it can do both jobs by calling out to 
system utilities. 
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With this list of file names in hand, we might wish to run a series of assemblies with the program runAssembly (produced 
by 454 Life Sciences for assembling transcript sequences). This program requires a -o parameter to specify where outputs 
should be written as well as a file name input; we generate these with string operations to “build” a command to execute. 
Once we are satisfied with the commands, we can uncomment the actual call to subprocess.check_output(). 

This version of the program reports the commands that will be run.
4 

While a command is running via the subprocess.check_output() function in this way, the program will wait before 
continuing to the next line (though you’ll likely only notice if the command takes a long time to execute). If the 
command crashes or is killed, the Python program will crash with a CalledProcessError too (usually a good thing!). 

Other functions in the subprocess module allow for running commands in the background—so the script doesn’t 
wait for them to complete before continuing in its own execution—and to work with multiple such processes while 
communicating with them. Other Python modules even allow for advanced work with parallel execution and threading, 
though these topics are beyond the scope of this chapter. 

Don’t forget that you are responsible for the execution of your programs! If you write a program that executes many 
other programs, you can quickly utilize more computational resources than you realize. If you are working on a system 

4. Here we are splitting filenames into a [name, extension] list with filename.split("."). This method won't work if there are multiple 
.s in the file. A more robust alternative is found in the os module: os.path.splitext("this.file.txt") would return ["this.file", 
"txt"]. 
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that you don’t mind taking some risks with, you could try to run the following program, which executes a copy of itself 
(which in turn executes a copy of itself, which in turn executes a copy of itself, and on and on): 

Exercises Exercises 

1. The table-printing example used sys.stdout to nicely print a table in column-major order. Write a function 

called print_row_major() that prints a table stored in row-major order, so a call like print_row_major([["A", "B"], 

["C", "D"], ["E", "F"]]) results in output looking like: 

2. Write a program called stdin_eval_mean.py that reads a file in the format of pz_blastx_yeast_top1.txt on sys.stdin, 

computes the mean of the E-value column (column 11, with values like 1e-32), and prints the mean to standard 

output. If there are no data on standard input, the program should produce a “usage” message. 

Next, try running the program with cat pz_blastx_yeast_top1.txt | ./stdin_eval_mean.py. Also, try prefiltering the 

lines before the computation with something like cat pz_blastx_yeast_top1.txt | grep '_L' | ./stdin_eval_mean.py. 

Now copy this program to one called stdin_eval_sd.py that reads in pz_blastx_yeast_top1.txt on sys.stdin and 

computes and prints the standard deviation of the E values. Again, try running the program with and without 

prefiltering with grep. (At this point you should be comfortable with writing mean() and sd() functions that take 

lists of floats and return answers. Your sd() function might well call the mean() function.) 

3. Modify the stdin_eval_mean.py program above (call the new version stdin_eval_mean_threshold.py) to accept an 

E-value upper threshold as a first parameter. Thus cat pz_blastx_yeast_top1.txt | ./stdin_eval_mean.py 1e-6 should 

compute and print the mean of the E-value column, but only for those lines whose E value is less than 1e-6. 

(You’ll need to use sys.argv and be sure to convert the entry therein to a float.) 

Your program should print usage information and exit if either there are no data provided on standard input, or 

if there is no threshold argument. 
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20. Dictionaries 

Dictionaries (often called “hash tables” in other languages) are an efficient and incredibly useful way to associate data 
with other data. Consider a list, which associates each data element in the list with an integer starting at zero: 

A dictionary works in much the same way, except instead of indices, dictionaries use “keys,” which may be integers or 
strings.

1
 We’ll usually draw dictionaries longwise, and include the keys within the illustrating brackets, because they are 

as much a part of the dictionary structure as the values: 
Let’s create a dictionary holding these keys and values 

with some code, calling it ids_to_gcs. Note that this 
name encodes both what the keys and values represent, 
which can be handy when keeping track of the contents 
of these structures. To create an empty dictionary, we call 
the dict() function with no parameters, which returns 
the empty dictionary. Then, we can assign and retrieve values much like we do with lists, except (1) we’ll be using strings 
as keys instead of integer indices, and (2) we can assign values to keys even if the key is not already present. 

We can then access individual values just like with a list: 

1. Dictionary keys may be any immutable type, which includes integers and strings, but they also include a number of other more 
exotic types, like tuples (immutable lists). Although floats are also immutable, because keys are looked up on the basis of equality 
and rounding errors can compound, it is generally not recommended to use them as dictionary keys. 
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However, we cannot access a value for a key that doesn’t exist. This will result in a KeyError, and the program will halt. 

Dictionaries go one way only: given the key, we can look up the value, but given a value, we can’t easily find the 
corresponding key. Also, the name “dictionary” is a bit misleading, because although real dictionaries are sorted in 
alphabetical order, Python dictionaries have no intrinsic order. Unlike lists, which are ordered and have a first and last 
element, Python makes no guarantees about how the key/value pairs are stored internally. Also, each unique key can only 
be present once in the dictionary and associated with one value, though that value might be something complex like a 
list, or even another dictionary. Perhaps a better analogy would be a set of labeled shelves, where each label can only be 
used once. 

There are a variety of functions and methods that we can use to 
operate on dictionaries in Python. For example, the len() function 
will return the number of key/value pairs in a dictionary. For the 
dictionary above, len(ids_to_gcs) will return 3. If we want, we can 
get a list of all the keys in a dictionary using its .keys() method, 
though this list may be in a random order because dictionaries are 
unordered. We could always sort the list, and loop over that: 

Similarly, we can get a list of all the values using .values(), again in no particular order. So, ids_to_gcs.values() will 
return a list of three floats.

2 

If we try to get a value for a key that isn’t present in the dictionary, we’ll get a KeyError. So, we will usually want to 
test whether a key is present before attempting to read its value. We can do this with the dictionary’s .has_key() method, 
which returns True if the key is present in the dictionary.

3 

Using the in keyword for dictionaries is generally preferred by the Python community, and in fact .has_key() 

2. In Python 3.0 and later, what is returned by .keys() and .values() is not technically a list but a “view,” which operates similarly to a 
list without using any additional memory. The code shown still works, but ids.sort() (the sort-in-place version) would not, as 
views do not have a .sort() method. 

3. There is also a more Python-specific method of querying for a key in a dictionary: "TL34_X" in ids_to_gcs is equivalent to 
ids_to_gcs.has_keys("TL34_X"). Interestingly, the in keyword also works for lists: if ids = ["CYP6B", "CATB", "AGP4"], then "TL34_X" in ids 
will return False. However, in this case every entry in ids must be compared to "TL34_X" to make this determination, and so in is 
much slower for lists than for dictionaries. 
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has been removed in Python 3.0 and later. For the purposes of this book, we'll use .has_key() when working with 
dictionaries so it is clear exactly what is happening. 

Counting Gene Ontology Terms Counting Gene Ontology Terms 

To illustrate the usage of a dictionary in practice, consider the file PZ.annot.txt, the result of annotating a set of 
assembled transcripts with gene ontology (GO) terms and numbers. Each tab-separated line gives a gene ID, an 
annotation with a GO number, and a corresponding human-readable term associated with that number. 

In this file, each gene may be associated with multiple GO numbers, and each GO number may be associated with 
multiple genes. Further, each GO term may be associated with multiple different GO numbers. How many times is each 
ID found in this file? Ideally, we’d like to produce tab-separated output that looks like so: 

Our strategy: To practice some of the command line interaction concepts, we’ll have this program read the file on 
standard input and write its output to standard output (as discussed in chapter 19, “Command Line Interfacing”). We’ll 
need to keep a dictionary, where the keys are the gene IDs and the values are the counts. A for-loop will do to read in 
each line, stripping off the ending newline and splitting the result into a list on the tab character, \t. If the ID is in the 
dictionary, we’ll add one to the value. Because the dictionary will start empty, we will frequently run into IDs that aren’t 
already present in the dictionary; in these cases we can set the value to 1. Once we have processed the entire input, we can 
loop over the dictionary printing each count and ID. 

In the code below (go_id_count.py), when the dictionary has the seqid key, we’re both reading from the dictionary 
(on the right-hand side) and writing to the value (on the left-hand side). 
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But when the key is not present, we’re simply writing to the value. In the loop that prints the dictionary contents, we are 
not checking for the presence of each id before reading it to print, because the list of ids_list is guaranteed to contain 
exactly those keys that are in the dictionary, as it is the result of ids_to_counts.keys(). 

What’s the advantage of organizing our Python program to read rows and columns on standard input and write rows 
and columns to standard output? Well, if we know the built-in command line tools well enough, we can utilize them 
along with our program for other analyses. For example, we can first filter the data with grep to select those lines that 
match the term transcriptase: 

The result is only lines containing the word “transcriptase”: 
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If we then feed those results through our program (cat PZ.annot.txt | grep 'transcriptase' | ./go_id_count.py), 
we see only counts for IDs among those lines. 

Finally, we could pipe the results through wc to count these lines and determine how many IDs were annotated at 
least once with that term (21). If we wanted to instead see which eight genes had the most annotations matching 
“transcriptase,” we could do that, too, by sorting on the counts and using head to print the top eight lines (here we’re 
breaking up the long command with backslashes, which allow us to continue typing on the next line in the terminal).

4 

It appears gene PZ32722_B has been annotated as a transcriptase seven times. This example illustrates that, as we work and 
build tools, if we consider how they might interact with other tools (even other pieces of code, like functions), we can 
increase our efficiency remarkably. 

4. For simple problems like this, if we know the command line tools well enough, we don’t even need to use Python. This version of 
the problem can be solved with a pipeline like cat PZ.annot.txt | grep 'transcriptase' | awk '{print $1}' | sort | uniq -c | sort 
-k1,1nr | head. 
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Extracting All Lines Matching a Set of IDs Extracting All Lines Matching a Set of IDs 

Another useful property of dictionaries is that the .has_key() method is very efficient. Suppose we had an unordered 
list of strings, and we wanted to determine whether a particular string occurred in the list. This can be done, but it would 
require looking at each element (in a for-loop, perhaps) to see if it equaled the one we are searching for. If we instead 
stored the strings as keys in a dictionary (storing "present", or the number 1, or anything else in the value), we could 
use the .has_key() method, which takes a single time step (effectively, on average) no matter how many keys are in the 
dictionary.

5 

Returning to the GO/ID list from the last example, suppose that we had the following problem: we wish to first 
identify all those genes (rows in the table) that were labeled with GO:0001539 (which we can do easily with grep on the 
command line), and then we wish to extract all rows from the table matching those IDs to get an idea of what other 
annotations those genes might have. 

In essence, we want to print all entries of a file: 

Where the first column matches any ID in the first column of another input: 

As it turns out, the above problem is common in data analysis (subsetting lines on the basis of an input “query” set), so 
we’ll be careful to design a program that is not specific to this data set, except that the IDs in question are found in the 
first column.

6 

We’ll write a program called match_1st_cols.py that takes two inputs: on standard input, it will read a number 

5. In computer science terms, we say that searching an unordered list runs in time , or “order ,” where  is taken to 
be the size of the list. The .has_key() method runs in , which is to say that the time taken is independent of the size of the 
dictionary. If we need to do such a search many times, these differences can add up significantly. More information on run-time 
considerations is covered in chapter 25, “Algorithms and Data Structures.” 

6. The grep utility can perform a similar operation; grep -f query_patterns.txt subject_file.txt will print all lines in subject_file.txt that 
are matched by any of the patterns in query_patterns.txt. But this requires that all patterns are compared to all lines (even if the 
patterns are simple), and so our custom Python solution is much faster when the number of queries is large (because the 
.has_key() method is so fast). 
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of lines that have the query IDs we wish to extract, and it will also take a parameter that specifies the file from which 
matching lines should be printed. For this instance, we would like to be able to execute our program as follows: 

In terms of code, the program can first read the input from standard input and create a dictionary that has keys 
corresponding to each ID that we wish to extract (the values can be anything). Next, the program will loop over the 
lines of the input file (specified in sys.argv[1]), and for each ID check it with .has_key() against the dictionary created 
previously; if it’s found, the line is printed. 

Making the program (match_1st_cols.py) executable and running it reveals all annotations for those IDs that are 
annotated with GO:0001539. 
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As before, we can use this strategy to easily extract all the lines matching a variety of criteria, just by modifying one or 
both inputs. Given any list of gene IDs of interest from a collaborator, for example, we could use that on the standard 
input and extract the corresponding lines from the GO file. 

Exercises Exercises 

1. Dictionaries are often used for simple lookups. For example, a dictionary might have keys for all three base-

pair DNA sequences ("TGG", "GCC", "TAG", and so on) whose values correspond to amino acid codes 

(correspondingly, "W", "A", "*" for “stop,” and so on). The full table can be found on the web by searching for 

“amino acid codon table.” 

Write a function called codon_to_aa() that takes in a single three-base-pair string and returns a one-character 

string with the corresponding amino acid code. You may need to define all 64 possibilities, so be careful not to 

make any typos! If the input is not a valid three-base-pair DNA string, the function should return "X" to signify 

“unknown.” Test your function with a few calls like print(codon_to_aa("TGG")), print(codon_to_aa("TAA")), and 

print(codon_to_aa("BOB")). 

2. Combine the result of the codon_to_aa() function above with the get_windows() function from the exercises in 

chapter 18, “Python Functions,” to produce a dna_to_aa() function. Given a string like "AAACTGTCTCTA", the function 

should return its translation as "KLSL". 

3. Use the get_windows() function to write a count_kmers() function; it should take two parameters (a DNA sequence 

and an integer) and return a dictionary of k-mers to count for those k-mers. For example, 

count_kmers("AAACTGTCTCTA", 3) should return a dictionary with keys "AAA", "AAC", "ACT", "CTG", "TGT", "GTC", "TCT", "CTC", 

"CTA" and corresponding values 1, 1, 1, 1, 1, 1, 2, 1, 1. (K-mer counting is an important step in many bioinformatics 

algorithms, including genome assembly.) 

4. Create a function union_dictionaries() that takes two dictionaries as parameters returns their “union” as a 

dictionary—when a key is found in both, the larger value should be used in the output. If dictionary dict_a maps 

"A", "B", "C" to 3, 2, 6, and dict_b maps "B", "C", "D" to 7, 4, 1, for example, the output should map "A", "B", "C", "D" to 

3, 7, 6, 1. 
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21. Bioinformatics Knick-knacks and 
Regular Expressions 

Chapter 14, “Elementary Data Types,” mentioned that strings in Python are immutable, meaning they can’t be modified 
after they have been created. For computational biology, this characteristic is often a hindrance. To get around this 
limitation, we frequently convert strings into lists of single-character strings, modify the lists as necessary, and convert the 
lists of characters back to strings when needed. Python comes built-in with a number of functions that operate on lists 
and strings useful for computational biology. 

Converting a String into a List of Single-Character Strings Converting a String into a List of Single-Character Strings 

Remember that because Python strings are immutable, we can’t run something like 

To convert a string into a list of single-character strings, we can pass the string as a parameter to the list() function 
(which, when called with no parameters, creates an empty list): 

Converting a List of Strings into a String Converting a List of Strings into a String 

If we happen to have a list of strings (such as the list of single-character strings above), we can join them into a single 
string using the .join() method of whatever string we wish to use as a separator for the output string. 

The syntax seems a bit backward, "separator".join(list_variable), but it makes sense when considering what the 
method .-syntax says: it asks the string “separator" to produce a string given the input list list_variable. Because the 
output is of type string, it makes sense that we should ask a string to do this production. 
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Reverse a List Reverse a List 

Sometimes we may want to reverse the order of a list. We can do this with the list’s .reverse() method which asks the 
list to reverse itself in place (but returns None). 

As with the .sort() and .append() methods from chapter 15, “Collections and Looping, Part 1: Lists and for,” 
.reverse() returns None, so a line like base_list = base_list.reverse() would almost surely be a bug. 

Reverse a String Reverse a String 

There are two ways to reverse a string in Python: (1) first, convert it into a list of single-character strings, then reverse 
the list, then join it back into a string, or (2) use “extended slice syntax.” The former solution uses the methods 
described above, whereas the second method extends the [] slice syntax so that the brackets can contain values for 
[start:end:step], where start and end can be empty (to indicate the first and last indices of the string), and step can 
be -1 (to indicate stepping backward in the string). 

Although the extended slice syntax is quite a bit faster and requires less typing, it is a bit more difficult to read. A search 
online for “python string reverse” would likely reveal this solution first. 

Simple Find and Replace in a String Simple Find and Replace in a String 

We’ve already seen how to split a string into a list of strings with the .split() method. A similar method, .replace(), 
allows us to replace all matching substrings of a string with another string. Because strings are immutable, this method 
returns a modified copy of the original string. 

Also because strings are immutable, the original data are left unchanged. Because a variable is simply a name we use to 
refer to some data, however, we can make it look like we’ve modified the original string by reassigning the seq variable to 
whatever is returned by the method. 
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Commands versus Queries Commands versus Queries 

Why do some operations (like a list’s .sort() method) change the data in place but return None, while others (like a 
string’s .split() method or the len() function) return something but leave the original data alone? Why is it so rare 
to see operations that do both? The reason is that the designers of Python (usually) try to follow what is known as the 
principle of command-query separation, a philosophical principle in the design of programming languages that states 
that single operations should either modify data or return answers to queries, but not both. 

The idea behind this principle is that upon reading code, it should be immediately obvious what it does, a feature 
that is easily achieved if each operation only has one thing it can do. When operations both change data and return an 
answer, there is a temptation to “code by side effect,” that is, to make use of simultaneous effects to minimize typing at 
the cost of clarity. Compared to many other languages, Python makes a stronger attempt to follow this principle. 

Regular Expressions Regular Expressions 

Regular expressions, common to many programming languages and even command line tools like sed, are syntax for 
matching sophisticated patterns in strings. The simplest patterns are just simple strings; for example, "ATG" is the pattern 
for a start codon. Because Python treats backslashes as special in strings (e.g., "\t" is not actually "\" followed by a "t", 
but rather a tab character), patterns for regular expressions in Python are usually expressed as “raw strings,” indicated by 
prefixing them with an r. So, r"ATG" is also the pattern for a start codon, but r"\t" is the regular expression for "\" and 
"t" rather than the tab character. 

Python regular expression functionality is imported with the re module by using import re near the top of the script. 
There are many functions in the re module for working with strings and regular expression patterns, but we’ll cover just 
the three most important ones: (1) searching for a pattern in a string, (2) replacing a pattern in a string, and (3) splitting 
a string into a list of strings based on a pattern. 

Searching for a Pattern in a String Searching for a Pattern in a String 

Searching for a pattern is accomplished with the re.search() function. Most functions in the re module return a special 
SRE_Match data type, or a list of them (with their own set of methods), or None if no match was found. The if- statement 
(and while-loops) in Python treats None as false, so we can easily use re.search() in an if-statement. The result of a 
successful match can tell us the location of the match in the query using the .start() method: 
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Replace a Pattern in a String Replace a Pattern in a String 

The re.subn() function can be used to search and replace a pattern within a string. It takes at least four important 
arguments (and some optional ones we won’t discuss here): (1) the pattern to search for, (2) the replacement string to 
replace matches with, (3) the string to look in, and (4) the maximum number of replacements to make (0 to replace all 
matches). This function returns a list

1
 containing two elements: at index 0, the modified copy of the string, and at index 

1, the number of replacements made. 

Split a String into a List of Strings Based on a Pattern Split a String into a List of Strings Based on a Pattern 

We’ve already seen that we can split a string based on simple strings with .split(). Being able to split on complex regular 
expressions is often useful as well, and the re.split() function provides this functionality. 

We’ll leave it as an exercise for the reader to determine what would be output for a sequence where the matches are back 
to back, or where the matches overlap, as in re.split(r"ATA", "GCATATAGG"). 

The Language of Regular Expressions, in Python The Language of Regular Expressions, in Python 

In chapter 11, “Patterns (Regular Expressions),” we covered regular expressions in some detail when discussing the 
command line regular expression engine sed. Regular expressions in Python work similarly: simple strings like r"ATG" 
match their expressions, dots match any single character (r"CC." matches any P codon), and brackets can be used for 
matching one of a set of characters (r"[ACTG]" matches one of a DNA sequence, and r"[A-Za-z0-9_]" is shorthand for 

1. Actually, it returns a tuple, which works much like a list but is immutable. Tuples are briefly covered in chapter 15. 
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“any alphanumeric character and the underscore”). Parentheses group patterns, and the plus sign modifies the previous 
group (or implied group) to match one or more times (* for zero or more), and vertical pipes | work as an “or,” as 
in r"([ACTG])+(TAG|TAA|TGA)", which will match any sequence of DNA terminated by a stop codon (TAG, TAA, or 
TGA). Rounding out the discussion from previous chapters, Python regular expressions also support curly brackets (e.g., 
r"(AT){10,100}" matches an "AT" repeated 10 to 100 times) and standard notation for the start and end of the string. 
(Note that r"^([ACTG])+$" matches a string of DNA and only DNA. For more detailed examples of these regular 
expression constructs, refer to chapter 11.) 

The regular expression syntax of Python, however, does differ from the POSIX-extended syntax we discussed for 
sed, and in fact provides an extra-extended syntax known as “Perl-style” regular expressions. These support a number of 
sophisticated features, two of which are detailed here. 

First, operators that specify that a match should be repeated—such as plus signs, curly brackets, and asterisks—are 
by default “greedy.” The same is true in the POSIX-extended syntax used by sed. In Python, however, we have the option 
of making the operator non-greedy, or more accurately, reluctant. Consider the pattern r"([ACTG])+(TAG|TAA|TGA)", 
which matches a DNA sequence terminated by a stop codon. The greedy part, ([ACTG])+, will consume all but the last 
stop codon, leaving as little of the remaining string as possible to make the rest of the pattern match. 

In Python, if we want to make the plus sign reluctant, we can follow it with a question mark, which causes the match to 
leave as much as possible for later parts of the pattern. 

The reluctance operator can also follow the asterisk and curly brackets, but beware: when used without following one of 
these three repetition operators, the question mark operator works as an “optional” operator (e.g., r"C(ATG)?C" matches 
"CC" and "CATGC"). 

The second major difference between Python (Perl-style) regular expressions and POSIX-extended regular 
expressions is in how they specify character classes. As mentioned above, a pattern like r"[A-Za-z0-9_]" is shorthand for 
“any alphanumeric and the underscore,” so a series of alphanumerics can be matched with r"[A-Za-z0-9_]+". In POSIX 
regular expressions, the character class A-Za-z0-9_ can be specified with [:alnum:], and the pattern would then need to 
be used like [[:alnum:]]+ in sed. 

The Perl-style regular expression syntax used by Python introduced a number of shorthand codes for character 
classes. For example, \w is the shorthand for “any alphanumeric and the underscore,” so r"\w+" is the pattern for a 
series of these and is equivalent to r"[A-Za-z0-9_]+". The pattern \W matches any character that is not alphanumeric 
or the underscore, so r"\W+" matches a series of these (equivalent to r"[^A-Za-z0-9_]+"). Perhaps the most important 
shorthand class is \s, which matches a single whitespace character: a tab, space, or newline character (\S matches any non-
whitespace character). This is most useful when parsing input, where it cannot be guaranteed that words are separated 
by tabs, spaces, or some combination thereof. 
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In the code above, we’ve replaced the split on "\t" that we’re used to with a re.split() on r"\s+", which will ensure 
that we correctly parse the pieces of the line even if they are separated with multiple tabs, spaces, or some combination 
thereof. 

Counting Promoter Elements Counting Promoter Elements 

Consider the file grape_promoters.txt, which contains on each line 1000bp upstream of gene regions in the Vitis 
vinifera genome: 

These columns are not separated by a tab character, but rather by a variable number of spaces. 
Promoter motifs are small DNA patterns nearby gene sequences to which the cellular machinery binds in order to 

help initiate the gene-transcription process. For example, the ABF protein binds to the DNA pattern "CACGTGGC" if it is 
near a gene in some plants. Some motifs are flexible and can be described by regular expressions; the GATA protein binds 
to any short DNA sequence matching the pattern "[AT]GATA[GA]". We wish to analyze the V. vinifera upstream regions 
above, and count for each the number of occurrences of the GATA motif. Our output should look like so: 

After importing the io and re modules, we’ll first write a function count_motifs() that takes two parameters: first a 

188 Part II: Programming in Python

188  |  Shawn T. O’Neil

https://github.com/osuoer/computational-biology/blob/master/grape_promoters.txt?raw=true


sequence in which to count motif matches, and second a motif for which to search. There are a variety of ways we 
could code this function, but a simple solution will be to use re.split() to split the sequence on the motif regular 
expression—the number of motifs will then be the length of the result minus one (because if no motifs are found, no 
split will be done; if one is found, one split will be done, and so on). 

With this function written and tested, we can open the file using io.open() and loop over each line, calling the 
count_motifs() function on each sequence with the motif r"[AT]GATA[GA]". Because the columns are separated with a 
variable number of spaces instead of single tab or space characters, we’ll use re.split() to split each line into pieces. 

First, we’ll write and test the function that counts motifs and offers an example usage, where the number of matches 
should be two. 

Next we can finish the program, using re.split() to process each line. 

When run, this simple program (grape_count_gata.py) produces the output desired above. Because the output is sent 
to standard output, we can further filter the results through the sort and head command line utilities to identify which 
promoters are most likely to be found by GATA: ./grape_count_gata.py | sort -k2,2nr | head -n 10. 
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Exercises Exercises 

1. Write a function called reverse_complement() that takes a DNA sequence parameter and returns its reverse 

complement (i.e., reverses the string, switches A’s and T’s, and switches G’s and C’s). 

2. DNA sequences that are destined to be turned into proteins are “read” by the cellular machinery in one of six 

“reading frames” with lengths that are multiples of three. The first three are derived from the sequence itself, 

starting at index 0, index 1, and index 2; the first three reading frames of "ACTAGACG" are "ACTAGA", "CTAGAC", and 

"TAGACG". 

To derive reading frames three, four, and five, we first reverse-complement the sequence ("CGTCTAGT") and then 

produce frames from indices 0, 1, and 2, resulting in "CGTCTA", "GTCTAG", and "TCTAGT". 

Using the reverse_complement() function from above (and potentially the get_windows() function from chapter 18, 

“Python Functions”), write a seq_to_six_frames() function that takes a DNA sequence as a parameter and returns a 

list of the six reading frames (as strings). 

3. Write a function called longest_non_stop() that takes a DNA sequence as a parameter and returns the longest 

amino acid sequence that can be produced from it. This is done by generating the six reading frames from the 

sequence, converting each to an amino acid sequence (probably using the dna_to_aa() function from chapter 20, 

“Dictionaries”), and then trimming the resulting sequences down to the first “stop” codon ("*") if there are any. 

In the DNA sequence seq = "AGCTACTAGGAAGATAGACGATTAGAC", for example, the six translations are SY*EDRRLD (Frame 1), 

ATRKIDD* (Frame 2), LLGR*TIR (Frame 3), V*SSIFLVA (Frame 4), SNRLSS** (Frame 5), and LIVYLPSS (Frame 6). In order of 

lengths, the possibilities are thus "V", "SY", "LLGR", "SNRLSS", "ATRKIDD", and "LIVYLPSS". As a result, 

longest_non_stop(seq) should return "LIVYLPSS". 

4. Modify the grape_count_gata.py program, calling it motifs_count.py so that it can read the file name and motifs to 

process (the latter as a comma-separated list) on sys.argv. When run as ./motifs_count.py grape_promoters.txt 

[AT]GATA[GA],[CGT]ACGTG[GT][AC],TTGAC, the output should look like: 

5. Genotyping by sequencing (GBS) is a method for identifying genetic variants in a DNA sample by first splitting 

chromosomes in pseudorandom locations through the application of restriction enzymes and then sequencing 

short reads from the ends of the resulting fragments: 
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In the above, black lines represent input DNA sequence, red lines are cut sites, and green lines represent output 

from the sequencing machine. (Some simplifications have been made to the figure above for the sake of clarity.) 

The result is much higher depth of sequencing at fewer locations, which can be useful in a variety of contexts, 

including looking for genetic variants between different versions of the same chromosome (which requires 

many reads from the same location to statistically confirm those variants). 

The restriction enzymes cut on the basis of patterns; for example, the ApeK1 enzyme cuts DNA molecules at the 

pattern "GC[AT]GC". Based on the recognized patterns, some enzymes are “frequent cutters” and some are not; 

more frequent cutters sample more locations in a genome but sacrifice depth of sequencing. For this reason, 

researchers often want to know, given an enzyme pattern and genome sequence, the distribution of fragment 

lengths that will result. 

Write a function gbs_cut() that takes a DNA sequence, a regular expression pattern, and a “bin size.” It should 

return a dictionary mapping sequence lengths, rounded down to the nearest bin size, to the number of 

fragments produced by the cutter in that bin. As an example, "AAAAGCAGCAAAAAAGCTGCAAGCAGCAAAAA" when processed 

with "GC[AT]GC" produces fragment sizes of 4, 6, 2, and 5. If grouped in a bin size of 3, the dictionary would have 

keys 0, 3, and 6, and values 1, 1, and 2. 
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22. Variables and Scope 

In chapter 18, “Python Functions,” we learned that a function should use only variables that have either been defined 
within the block of the function, or passed in explicitly as parameters (Rule 1). This rule works closely with our definition 
of a variable in Python, as a name that refers to some data. 

This is a powerful concept, allowing us to pass parameters to functions and get returned values. In Python, a single 
piece of data may be referenced by multiple variables. Parameter variables are new names for the same data. We can 
explore this concept with a simple example. 

In this code sample, we have created a single list, but we are associating two variable names with it, nums and numsb. When 
we modify the list through one name, the change is reflected through the other (we can only change the data because lists 
are mutable, but even immutable data may be referred to by multiple names). 

The same thing happens when we use a parameter in a function. Let’s revisit the gc_content() function, which 
makes use of a base_composition() function that we wrote (but leave out here for clarity). In this listing, all of the 
variable names belonging to the function are highlighted in red, whereas other “global” variable names are highlighted in 
purple and underlined with a dashed line. According to Rule 1, we shouldn’t see any purple/underlined variables in the 
function definition. 
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Outside of the function, the string data "ACCCTAGACTG" 
was assigned to the variable seq3, but inside the function, 
it was assigned to the variable seq. Inside the function, the 
data value 0.54 was referenced by the variable gc, and 
outside it was referenced by seq3_gc.

1 

We know that we could access the variable seq3 
from inside the function, even if we shouldn’t. But what 
about the other way around? Could we access the gc 
variable, which was defined within the function, outside 
the function? 

In fact, we cannot. The above print(gc) line, even after the computation of seq3_gc, would produce a NameError: 
name 'gc' is not defined. This error occurs because variables have scope, and the gc variable’s scope is limited, from 
the time it is defined to the end of the function block in which it is defined (all of the red-highlighted variables share this 
feature). Variables with limited scope are called local variables. A variable’s scope is the context in which can be used. It 
defines “how long the variable lives,” or “where the variable exists.” A variable with limited scope, as in the execution of a 
function, is called a local variable. 

After the function call ends, the picture would look more like so: 
Eventually, the garbage collector will notice that no variables 

refer to the data 2, 4, and 11, and it will clear those out of RAM 
to make room for new data. 

Because scope talks about variables, it has little to do with 
the data to which a variable refers—except to say that data are 
garbage collected when there are no variables referring to that 
data in any current scope. Nevertheless, because the gc variable 
is not in scope after the function ends, we can’t use it outside of 
the function block. 

One of the particularly interesting and powerful features 

1. Many languages work like Python and allow different variables to refer to the same data, but in some languages this is impossible 
or less common. In some languages, all data are immutable, making the point moot. R is an example where most variables end up 
referring to unique data; see the box in chapter 29, “R Functions,” for a more detailed comparison. 
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of local variables is that they exist independently of any other variables that might happen to exist at the time with the 
same name (sometimes they are said to “shadow” other variables with the same name). Consider the following code: 

What do you think the last line, print(gc), will print? If you guessed "Measure of G and C bases in a sequence", you 
are right! Even though the gc_content() function defines its own gc variable, because this variable is local, it does not 
“step on” the outside gc variable. In summary: 

• Variables defined within a function (and parameters to a function) are local to the function call. 

• These local variables “shadow” any other variables that might exist during the execution of the function. 

• When the function call ends, the local variables are forgotten. 

One of the important lessons of scope is knowing when it might lead to trouble. This is easiest to see if we were to 
compare how scoping works with another language, C++ in this case. In C++, variables are declared with their types, 
and variables declared within an if-statement block (or any other block) are also local to that block. This means that they 
go out of scope when the block ends. If we were to try and use them outside of the block in which they were declared, an 
error would occur. 

In Python, on the other hand, variables declared in if-statements, for-loop blocks, and while-loop blocks are not 
local variables, and stay in scope outside of the block. Thus we say that C++ has “block-level” scoping, while Python uses 
only “function-level” scoping. The brackets in the figure below illustrate the scope for some variables in equivalent C++ 
and Python code. Because C++ uses block-level scoping, and x and y are declared inside of blocks, we cannot access their 
contents outside of those blocks. 
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This might seem like an advantage for Python, but in this case we think that that C++ may have it right. After all, if 
we needed for the y and z variables to be accessible after the if-blocks in the C++ example, we could have declared them 
along with x. We might even have given them a default value to hold using declarations like int y = -1 and int z = -1; 
if these variables still hold -1 after the if-blocks are run, then we know that those internal lines didn’t execute. This would 
be especially helpful if the value of x wasn’t set to five as it is here, but rather is dependent on the input data. 

In Python, on the other hand, code like this might cause a problem. If the x variable is dependent on the input 
data, then the y and z variables might never be set at all, leading to an eventual NameError when they are later accessed. 
We certainly shouldn’t consider any program that sometimes produces an error, depending on the input data, to be very 
good! 

Probably the best way around this sort of problem is to pretend that Python uses block-level scoping, declaring 
variables in the widest block/level in which they will be used. None is a good default value that we can later check for if we 
want to conditionally execute later code on the basis of whether variables were actually set to something useful: 

This code will not crash, no matter the value of x. Setting initial values for these variables to None before the if-blocks also 
provides a reminder and visual clue that these variables are intended to be used outside of the nested if-blocks, and that 
we should check their contents before using them later. 

C++ and other block-level-scoped languages thus encourage “short-lived” variables, which is a good programming 
mantra. Defining variables only when needed and using them for as short a time as possible helps to produce clearer, 
more modular, and even more efficient code (because short-lived variables allow the garbage collector to clean out more 
data). In a way, breaking Rule 1 of functions is a similar type of abuse of variable scope. 

Beginning programmers often find it easier to avoid these 
conventions by setting a large number of variables near the 
beginning of a program and then accessing and setting them at 
various points throughout the program. This is sometimes 
colloquially called “spaghetti code,” because the long-distance 
connections created between the different areas of code 
resemble spaghetti. Rarely does this strategy pay off, however. 
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As discussed in chapter 25, “Algorithms and Data Structures,” local variables and similar concepts allow us to solve 
complex problems in fascinating and elegant ways. 

Exercises Exercises 

1. Create a RAM/variable diagram that illustrates the following segment of code, and use it to explain the 

printed output. 

2. Create a RAM/variable diagram that illustrates the following segment of code, and use it to explain the 

printed output. 

3. Step through the following code, and create a RAM/variable diagram for each time a “#point” is reached. 

(Because #point 1 is reached twice, that will mean four diagrams.) You can assume that data are never garbage 

collected, but that local variables do disappear. 
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4. What is returned by a function in Python if no return statement is specified? 
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23. Objects and Classes 

This book, when initially introducing Python, mentioned some of the features of the language, such as its emphasis on 
“one best way” and readable code. Python also provides quite a bit of built-in functionality through importable modules 
such as sys, re, and subprocess. 

Python provides another advantage: it is naturally “object oriented,” even though we haven’t discussed this point 
yet. Although there are competing paradigms for the best way to architect programs, the object-oriented paradigm is 
commonly used for software engineering and large-project management.

1
 Even for small programs, though, the basic 

concepts of object orientation can make the task of programming easier. 
An object, practically speaking, is a segment of memory (RAM) that references both data (referred to by instance 

variables) of various types and associated functions that can operate on the data.
2
 Functions belonging to objects are 

called methods. Said another way, a method is a function that is associated with an object, and an instance variable is a 
variable that belongs to an object. 

In Python, objects are the data that we have been associating with variables. What the methods are, how they work, 
and what the data are (e.g., a list of numbers, dictionary of strings, etc.) are defined by a class: the collection of code that 
serves as the “blueprint” for objects of that type and how they work. 

Thus the class (much like the blueprint for a house) 
defines the structure of objects, but each object’s instance 
variables may refer to different data elements so long as 
they conform to the defined structure (much like how 
different families may live in houses built from the same 
blueprint). In Python, each piece of data we routinely 
encounter constitutes an object. Each data type we’ve 
dealt with so far (lists, strings, dictionaries, and so on) has 
a class definition—a blueprint—that defines it. For 
example, lists have data (numbers, strings, or any other 
type) and methods such as .sort() and .append(). 

1. Another prominent methodology for programming is the “functional” paradigm, wherein functions are the main focus and data 
are usually immutable. While Python also supports functional programming, we won’t focus on this topic. On the other hand, the 
R programming language emphasizes functional programming, so we’ll explore this paradigm in more detail in later chapters. 

2. This definition is not precise, and in fact intentionally misrepresents how objects are stored in RAM. (In reality, all objects of the 
same type share a single set of functions/methods.) But this definition will serve us well conceptually. 
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In a sense, calling object methods makes a request of the object: nums_list.sort() might be interpreted as “object 
referred to by nums_list, please run your sort() method.” Upon receiving this message, the object will reorder its data.

3 

Creating New Classes Creating New Classes 

Definitions for Python classes are just blocks of code, indicated by an additional level of indentation (like function 
blocks, if-statement blocks, and loop blocks). Each class definition requires three things, two of which we are already 
familiar with: 

1. Methods (functions) that belong to objects of the class. 

2. Instance variables referring to data. 

3. A special method called a constructor. This method will be called automatically whenever a new object of the class 
is created, and must have the name __init__. 

One peculiarity of Python is that each method of an object must take as its first argument a parameter called self,
4
 which 

we use to access the instance variables. Let’s start by defining a class, Gene (class names traditionally begin with a capital 
letter): each Gene object will have (1) an id (string) and (2) a sequence (also a string). When creating a Gene object, we 
should define its id and sequence by passing them as parameters to the __init__ method. 

Outside of the block defining the class, we can make use of it to create and interact with Gene objects. 

3. Although some have criticized the anthropomorphization of objects this way, it’s perfectly fine—so long as we always say “please!” 

4. This first parameter doesn’t technically need to be named self, but it is a widely accepted standard. 
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(Normally we don’t include print() calls in the constructor; we’re doing so here just to clarify the object creation 
process.) Executing the above: 
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Note that even though each method (including the constructor) takes as its first parameter self, we don’t specify this 
parameter when calling methods for the objects. (For example, .print_id() takes a self parameter that we don’t specify 
when calling it.) It’s quite common to forget to include this “implicit” self parameter; if you do, you’ll get an error 
like TypeError: print_id() takes no arguments (1 given), because the number of parameters taken by the method 
doesn’t match the number given when called. Also, any parameters sent to the creation function (Gene("AY342", 
"CATTGAC")) are passed on to the constructor (__init__(self, creationid, creationseq)). 

What is self? The self parameter is a variable that is given to the method so that the object can refer to “itself.” 
Much like other people might refer to you by your name, you might refer to yourself as “self,” as in “self: remember to 
resubmit that manuscript tomorrow.” 

Interestingly, in some sense, the methods defined for classes are breaking the first rule of functions: they are 
accessing variables that aren’t passed in as parameters! This is actually all right. The entire point of objects is that they 
hold functions and data that the functions can always be assumed to have direct access to. 

Let’s continue our example by adding a method that computes the GC content of the self.sequence instance 
variable. This method needs to be included in the block defining the class; notice that a method belonging to an object 
can call another method belonging to itself, so we can compute GC content as a pair of methods, much like we did with 
simple functions: 
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Resulting in the output: 

It can also be useful to write methods that let us get and set the instance variables of an object. We might add to our 
class definition methods to get and set the sequence, for example, by having the methods refer to the self.seq instance 
variable. 
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We could make use of this added functionality later in our code with a line like print("gene A's sequence is " + 

geneA.get_seq()) or geneA.set_seq("ACTAGGGG"). 
Although methods can return values (as with .base_composition() and .gc_content()) and perform some action 

that modifies the object (as with .set_seq()), the principle of command-query separation states that they shouldn’t do 
both unless it is absolutely necessary. 

Is it possible for us to modify the instance variables of an object directly? It makes sense that we can; because the 
gene object’s name for itself is self and sets its sequence via self.sequence, we should be able to set the gene object’s 
sequence using our name for it, geneA. In fact, geneA.sequence = "ACTAGGGG" would have the same result as calling 
geneA.set_seq("ACTAGGGG"), as defined above. 

So why might we want to use “getter” and “setter” methods as opposed to directly modifying or reading an object’s 
instance variables? The difference is related a bit to politeness—if not to the object itself, then to whomever wrote the 
code for the class. By using methods, we are requesting that the object change its sequence data, whereas directly setting 
instance variables just reaches in and changes it—which is a bit like performing open-heart surgery without the patient’s 
permission! 

This is a subtle distinction, but it’s considered serious business to many programmers. To see why, suppose that 
there are many methods that won’t work at all on RNA sequences, so we must make sure that the sequence instance 
variable never has any U characters in it. In this case, we could have the .set_seq() method decide whether or not to 
accept the sequence: 

Python has an assert statement for this sort of error checking. Like a function, it takes two parameters, but unlike a 
function, parentheses are not allowed. 
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When using an assert, if the check doesn’t evaluate to True, then the program will stop and report the specified error. 
The complete code for this example can be found in the file gene_class.py. 

Using methods when working with objects is about encapsulation and letting the objects do as much work as 
possible. That way, they can ensure correct results so that you (or whomever you are sharing code with, which might be 
“future you”) don’t have to. Objects can have any number of instance variables, and the methods may access and modify 
them, but it’s a good idea to ensure that all instance variables are left in a coherent state for a given object. For example, if 
a Gene object has an instance variable for the sequence, and another holding its GC content, then the GC content should 
be updated whenever the sequence is. Even better is to compute such quantities as needed, like we did above.

5 

The steps for writing a class definition are as follows: 

1. Decide what concept or entity the objects of that class will represent, as well as what data (instance variables) and 
methods (functions) they will have. 

2. Create a constructor method and have it initialize all of the instance variables, either with parameters passed into 
the constructor, or as empty (e.g., something like self.id = "" or self.go_terms = list()). Although instance 
variables can be created by any method, having them all initialized in the constructor provides a quick visual 
reference to refer to when coding. 

3. Write methods that set or get the instance variables, compute calculations, call other methods or functions, and so 
on. Don’t forget the self parameter! 

Exercises Exercises 

1. Create a program objects_test.py that defines and uses a class. The class can be anything you want, but it 

should have at least two methods (other than the constructor) and at least two instance variables. One of the 

methods should be an “action” that you can ask an object of that class to perform, and the other should return 

an “answer.” 

Instantiate your class into at least two objects, and try your methods on them. 

2. Once defined, classes (and objects of those types) can be used anywhere, including other class definitions. 

Write two class definitions, one of which contains multiple instances of the other. For example, instance 

variables in a House object could refer to several different Room objects. (For a more biologically inspired example, 

a Gene object could have a self.exons that contains a list of Exon objects.) 

The example below illustrates this more thoroughly, but having some practice first will be beneficial. 

3. If classes implement some special methods, then we can compare objects of those types with ==, <, and the 

other comparison operators. 

When comparing two Gene objects, for example, we might say that they are equal if their sequences are equal, 

and geneA is less than geneB if geneA.seq < geneB.seq. Thus we can add a special method __eq__(), which, given the 

5. One might ask whether a Gene object would ever need to allow its sequence to change at all. One possible reason would be if we 
were simulating mutations over time; a method like .mutate(0.05) might ask a gene to randomly change 5% of its bases. 
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usual self and a reference to another object of the same type called other, returns True if we’d consider the two 

equal and False otherwise: 

We can also implement an __lt__() method for “less than”: 

With these, Python can work out how to compare Gene objects with < and ==. The other comparisons can be 

enabled by defining __le__() (for <=), __gt__() (for >), __ge__() (for >=) and __ne__() (for !=). 

Finally, if we have a list of Gene objects genes_list which define these comparators, then Python can sort 

according to our comparison criteria with genes_list.sort() and sorted(genes_list). 

Explore these concepts by defining your own ordered data type, implementing __eq__(), __lt__(), and the 

other comparison methods. Compare two objects of those types with the standard comparison operators, and 

sort a list of them. You might also try implementing a __repr__() method, which should return a string 

representing the object, enabling print() (as in print(geneA)). 

Counting SNPs Counting SNPs 

As it turns out, multiple classes can be defined that interact with each other: instance variables of a custom class may 
refer to custom object types. Consider the file trio.subset.vcf, a VCF (variant call format) file for describing single-
nucleotide polymorphisms (SNPs, pronounced “snips”) across individuals in a group or population. In this case, the file 
represents a random sampling of SNPs from three people—a mother, a father, and their daughter—compared to the 
reference human genome.

6 

6. This file was obtained from the 1000 Human Genomes Project at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/
2010_07/trio/snps/, in the file CEU.trio.2010_03.genotypes.vcf.gz. After decompressing, we sampled 5% of the SNPs at random with 
awk '{if($1 ~ "##" || rand() < 0.05) {print $0}}' CEU.trio.2010_03.genotypes.vcf > trio.sample.vcf; see chapter 10, "Rows and Columns" 
for details. 
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This file contains a variety of information, including header lines starting with # describing some of the coding found 
in the file. Columns 1, 2, 3, 4, and 5 represent the chromosome number of the SNP, the SNP’s position on the 
chromosome, the ID of the SNP (if it has previously been described in human populations), the base present in 
the reference at that position, and an alternative base found in one of the three family members, respectively. Other 
columns describe various information; this file follows the “VCF 4.0” format, which is described in more detail at 
http://www.1000genomes.org/node/101. Some columns contain a . entry, which indicates that the information isn’t 
present; in the case of the ID column, these represent novel polymorphisms identified in this trio. 

For this example, we are interested in the first five columns, and the main questions are: 

• How many transitions (A vs. G or C vs. T) are there within the data for each chromosome? 

• How many transversions (anything else) are there within the data for each chromosome? 

We may in the future have other questions about transitions and transversions on a per-chromosome basis. To answer 
the questions above, and to prepare for future ones, we’ll start by defining some classes to represent these various entities. 
This example will prove to be a bit longer than others we’ve studied, partially because it allows us to illustrate answering 
multiple questions using the same codebase if we do some extra work up front, but also because object-oriented designs 
tend to result in significantly more code (a common criticism of using classes and objects). 

SNP Class 

A SNP object will hold relevant information about a single nonheader line in the VCF file. Instance variables would 
include the reference allele (a one-character string, e.g., "A"), the alternative allele (a one-character string, e.g., "G"), the 
name of the chromosome on which it exists (a string, e.g., "1"), the reference position (an integer, e.g., 799739), and the 
ID of the SNP (e.g., "rs57181708" or "."). Because we’ll be parsing lines one at a time, all of this information can be 
provided in the constructor. 
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SNP objects should be able to answer questions: .is_transition() should return True if the SNP is a transition 
and False otherwise by looking at the two allele instance variables. Similarly, .is_transversion() should return True if 
the SNP is a transversion and False otherwise. 

Chromosome Class 

A Chromosome object will hold data for an individual chromosome, including the chromosome name (a string, e.g., 
"1"), and all of the SNP objects that are located on that chromosome. We could store the SNP objects in a list, but we 
could also consider storing them in a dictionary, which maps SNP locations (integers) to the SNP objects. Then we can 
not only gain access to the list of SNPs (using the dictionary’s .values() method) or the list of locations (using the 
dictionary’s .keys() method), but also, given any location, we can get access to the SNP at that location. (We can even 
use .has_key() to determine whether a SNP exists at a given location.) 

The chromosome constructor will initialize the name of the chromosome as self.chrname, but the snps dictionary will 
start as empty. 

A Chromosome object should be able to answer questions as well: .count_transitions() should tell us the number 
of transition SNPs, and .count_transversions() should return the number of transversion SNPs. We’re also going to 
need some way to add a SNP object to a chromosome’s SNP dictionary because it starts empty. We’ll accomplish this 
with an .add_snp() method, which will take all of the information for a SNP, create the new SNP object, and add it to 
the dictionary. If a SNP already exists at that location, an error should occur, because our program shouldn’t accept VCF 
files that have multiple rows with the same position for the same chromosome. 

For overall strategy, once we have our classes defined (and debugged), the “executable” portion of our program will 
be fairly simple: we’ll need to keep a collection of Chromosome objects that we can interact with to add SNPs, and at the 
end we’ll just loop through these and ask each how many transitions and transversions it has. It makes sense to keep these 
Chromosome objects in a dictionary as well, with the keys being the chromosome names (strings) and the values being the 
Chromosome objects. We’ll call this dictionary chrnames_to_chrs. 
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As we loop through each line of input (reading a file name given in sys.argv[1]), we’ll split it apart and check whether 
the chromosome name is in the dictionary with .has_key(). If so, we’ll ask the object in that slot to add a SNP with 
.add_snp(). If not, then we’ll need to first create a new Chromosome object, ask it to .add_snp(), and finally add it to the 
dictionary. Of course, all of this should happen only for nonheader lines. 

We’ll start with the SNP class, and then the Chromosome class. Although it is difficult to show here, it’s a good idea 
to work on and debug each method in turn (with occasional print() statements), starting with the constructors. Because 
a SNP is only a SNP if the reference and alternative allele differ, we’ll assert this condition in the constructor so an error 
is produced if we ever try to create a nonpolymorphic SNP (which wouldn’t actually be a SNP at all). 
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Note the shortcut that we took in the above code for the .is_transversion() method, which calls the .is_transition() 
method and returns the opposite answer. This sort of “shortcut” coding has its benefits and downsides. One benefit 
is that we can reuse methods rather than copying and pasting to produce many similar chunks of code, reducing the 
potential surface area for bugs to occur. A downside is that we have to be more careful—in this case, we’ve had to ensure 
that the alleles differ (via the assert in the constructor), so a SNP must be either a transition or transversion. (Is this 
actually true? What if someone were to attempt to create a SNP object with non-DNA characters? It’s always wise to 
consider ways code could be inadvertently misused.) 

The above shows the start of the script and the SNP class; code like this could be tested with just a few lines: 
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Although we won’t ultimately leave these testing lines in, they provide a good sanity check for the code. If these checks 
were wrapped in a function that could be called whenever we make changes to the code, we would have what is known 
as a unit test, or a collection of code (often one or more functions), with the specific purpose of testing functionality of 
other code for correctness.

7
 These can be especially useful as code changes over time. 

Let’s continue on with the Chromosome class. Note that the .add_snp() method contains assertions that the SNP 
location is not a duplicate and that the chromosome name for the new SNP matches the chromosome’s self.chrname. 

Now we can write the methods for .count_transitions() and .count_transversions(). Because we’ve ensured that 
each SNP object is either a transition or a transversion, and no locations are duplicated within a chromosome, the 

7. Unit tests are often automated; in fact, Python includes a module for building unit tests called unittest. 
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.count_transversions() method can make direct use of the .count_transitions() method and the total number of 
SNPs stored via len(self.locations_to_snps). (Alternatively, we could make a count_transversions() that operates 
similarly to count_transitions() by looping over all the SNP objects.) 

The corresponding test code is below. Here we are using assert statements, but we could also use lines like 
print(chr1.count_transitions()) and ensure the output is as expected. 

With the class definitions created and debugged, we can write the “executable” part of the program, concerned with 
parsing the input file (from a filename given in sys.argv[1]) and printing the results. First, the portion of code that 
checks whether the user has given a file name (and produces some help text if not) and reads the data in. Again, we are 
storing a collection of Chromosome objects in a chrnames_to_chrs dictionary. For each VCF line, we determine whether 
a Chromosome with that name already exists: if so, we ask that object to .add_snp(). If not, we create a new Chromosome 
object, ask it to .add_snp(), and add it to the dictionary. 
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In the chr_obj = chrnames_to_chrs[chrname] line above, we are defining a variable referring to the Chromosome object 
in the dictionary, and after that we are asking that object to add the SNP with .add_snp(). We could have combined 
these two with syntax like chrnames_to_chrs[chrname].add_snp(). 

Finally, a small block of code prints out the results by looping over the keys in the dictionary, accessing each 
Chromosome object and asking it the number of transitions and transversions: 
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We’ll have to remove or comment out the testing code (particularly the tests we expected to fail) to see the results. But 
once we do that, we can run the program (called snps_ex.py). 

What we’ve created here is no small thing, with nearly 150 lines of code! And yet each piece of code is encapsulated 
in some way; even the long for-loop represents the code to parse the input file and populate the chrnames_to_chrs 
dictionary. By clearly naming our variables, methods, and classes we can quickly see what each entity does. We can reason 
about this program without too much difficulty at the highest level of abstraction but also delve down to understand 
each piece individually. As a benefit, we can easily reuse or adapt this code in a powerful way by adding or modifying 
methods. 

An Extension: Searching for SNP-Dense Regions An Extension: Searching for SNP-Dense Regions 

Counting transitions and transversions on a per-chromosome basis for this VCF file could have been accomplished 
without defining classes and objects. But one of the advantages of spending some time organizing the code up front is 
that we can more easily answer related questions about the same data. 

Suppose that, having determined the number of transitions and transversions per chromosome, we’re now 
interested in determining the most SNP-dense region of each chromosome. There are a number of ways we could define 
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SNP density, but we’ll choose an easy one: given a region from positions l to m, the density is the number of SNPs 
occurring within l and m divided by the size of the region, m – l + 1, times 1,000 (for SNPs per 1,000 base pairs). 

For a Chromosome object to be able to tell us the highest-density region, it will need to be able to compute the density for 
any given region by counting the SNPs in that region. We can start by adding to the chromosome class a method that 
computes the SNP density between two positions l and m. 

After debugging this method and ensuring it works, we can write a method that finds the highest-density region. But 
how should we define our regions? Let’s say we want to consider regions of 100,000 bases. Then we might consider bases 
1 to 100,000 to be a region, 100,001 to 200,000 to be a region, and so on, up until the start of the region considered is 
past the last SNP location. We can accomplish this with a while-loop. The strategy will be to keep information on the 
densest region found so far (including its density as well as start and end location), and update this answer as needed in 
the loop.

8 

8. This strategy is not the fastest we could have devised. In order to determine the highest-density region, we have to consider each 
region, and the computation for each region involves looping over all of the SNP positions (the vast majority of which lie outside 
the region). More sophisticated algorithms exist that would run much faster, but they are outside the scope of this book. 
Nevertheless, a slow solution is better than no solution! 
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In the above, we needed to access the position of the last SNP on the chromosome (so that the code could stop 
considering regions beyond the last SNP). Rather than write that code directly in the method, we decided that should be 
its own method, and marked it with a “todo” comment. So, we need to add this method as well: 

In the code that prints the results, we can add the new call to .max_density(100000) for each chromosome, and print 
the relevant information. 
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Let’s call our new snps_ex_density.py (piping the result through column -t to more easily see the tab-separated column 
layout): 

Again, none of the individual methods or sections of code are particularly long or complex, yet together they represent a 
rather sophisticated analysis program. 

Summary Summary 

Perhaps you find these examples using classes and objects for problem solving to be elegant, or perhaps not. Some 
programmers think that this sort of organization results in overly verbose and complex code. It is certainly easy to get too 
ambitious with the idea of classes and objects. Creating custom classes for every little thing risks confusion and needless 
hassle. In the end, it is up to each programmer to decide what level of encapsulation is right for the project; for most 
people, good separation of concepts by using classes is an art form that requires practice. 

When should you consider creating a class? 

• When you have many different types of data relating to the same concept, and you’d like to keep them organized 
into single objects as instance variables. 

• When you have many different functions related to the same concept, and you’d like to keep them organized into 
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single objects as methods. 

• When you have a concept that is simple now, but you suspect might increase in complexity in the future as you 
add to it. Like functions, classes enable code to be reused, and it is easy to add new methods and instance variables 
to classes when needed. 

Inheritance and Polymorphism Inheritance and Polymorphism 

Despite this discussion of objects, there are some unique features of the object-oriented paradigm that we haven’t 

covered but are sometimes considered integral to the topic. In particular, most object-oriented languages (Python 

included) support inheritance and polymorphism for objects and classes. 

Inheritance is the idea that some types of classes may be represented as special cases of other types of classes. 

Consider a class defining a Sequence, which might have instance variables for self.seq and self.id. Sequences might be 

able to report their length, and so might have a .length_bp() method, returning len(self.seq). There may also be many 

other operations a generic Sequence could support, like .get_id(). Now, suppose we wanted to implement an 

OpenReadingFrame class; it too should have a self.id and a self.seq and be able to report its .length_bp(). Because an object 

of this type would represent an open reading frame, it probably should also have a .get_translation() method returning 

the amino-acid translation of its self.seq. By using inheritance, we can define the OpenReadingFrame class as a type of 

Sequence class, saving us from having to re-implement .length_bp()—we’d only need to implement the class-specific 

.get_translation() method and any other methods would be automatically inherited from the Sequence class. 

Polymorphism is the idea that inheriting class types don’t have to accept the default methods inherited, and they are 
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free to re-implement (or “override”) specific methods even if their “parent” or “sibling” classes already define them. For 

example, we might consider another class called AminoAcidSequence that inherits from Sequence, so it too will have a 

.get_id() and .length_bp(); in this case, though, the inherited .length_bp() would be wrong, because len(self.seq) would 

be three times too short. So, an AminoAcidSequence could override the .length_bp() method to return 3*len(self.seq). The 

interesting feature of polymorphism is that given an object like gene_A, we don’t even need to know what “kind” of 

Sequence object it is: running gene_A.length_bp() will return the right answer if it is any of these three kinds of sequence. 

These ideas are considered by many to be the defining points of “object-oriented design,” and they allow programmers 

to structure their code in hierarchical ways (via inheritance) while allowing interesting patterns of flexibility (via 

polymorphism). We haven’t covered them in detail here, as making good use of them requires a fair amount of practice. 

Besides, the simple idea of encapsulating data and functions into objects provides quite a lot of benefit in itself! 

Exercises Exercises 

1. Modify the snps_ex_density.py script to output, for each 100,000bp region of each chromosome, the percentage 

of SNPs that are transitions and the number of SNPs in each window. The output should be a format that looks 

like so: 

In the section on R programming (chapter 37, “Plotting Data and ggplot2”), we’ll discover easy ways to visualize 

this type of output. 

2. The random module (used with import random) allows us to make random choices; for example, random.random() 

returns a random float between 0.0 and 1.0. The random.randint(a, b) function returns a random integer between 

a and b (inclusive); for example, random.randint(1, 4) could return 1, 2, 3, or 4. There’s also a random.choice() 

function; given a list, it returns a single element (at random) from it. So, if bases = ["A", "C", "T", "G"], then 

random.choice(bases) will return a single string, either "A", "C", "T", or "G". 

Create a program called pop_sim.py. In this program write a Bug class; a “bug” object will represent an individual 
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organism with a genome, from which a fitness can be calculated. For example, if a = Bug(), perhaps a will have a 

self.genome as a list of 100 random DNA bases (e.g. ["G", "T", "A", "G", ...; these should be created in the 

constructor). You should implement a .get_fitness() method which returns a float computed in some way from 

self.genome, for example the number of G or C bases, plus 5 if the genome contains three "A" characters in a row. 

Bug objects should also have a .mutate_random_base() method, which causes a random element of self.genome to be 

set to a random element from ["A", "C", "G", "T"]. Finally, implement a .set_base() method, which sets a specific 

index in the genome to a specific base: a.set_base(3, "T") should set self.genome[3] to "T". 

Test your program by creating a list of 10 Bug objects, and in a for-loop, have each run its .mutate_random_base() 

method and print its new fitness. 

3. Next, create a Population class. Population objects will have a list of Bug objects (say, 50) called self.bug_list. 

This Population class should have a .create_offspring() method, which will: 1) create a new_pop list, 2) for each 

element oldbug of self.bug_list: a) create a new Bug object newbug, b) and set the genome of newbug (one base at a 

time) to be the same as that of oldbug, c) call newbug.mutate_random_base(), and d) add oldbug and newbug to new_pop. 

Finally, this method should 3) set self.bug_pop to new_pop. 

The Population class will also have a .cull() method; this should reduce self.bug_pop to the top 50% of bug objects 

by fitness. (You might find the exercise above discussing .__lt__() and similar methods useful, as they will allow 

you to sort self.bug_pop by fitness if implemented properly.) 

Finally, implement a .get_mean_fitness() method, which should return the average fitness of self.bug_pop. 

To test your code, instantiate a p = Population() object, and in a for-loop: 1) run p.create_offspring(), 2) run 

p.cull(), and 3) print p.get_mean_fitness(), allowing you to see the evolutionary progress of your simulation. 

4. Modify the simulation program above to explore its dynamics. You could consider adding a 

.get_best_individual() method to the Population class, for example, or implement a “mating” scheme whereby 

offspring genomes are mixes of two parent genomes. You could also try tweaking the .get_fitness() method. 

This sort of simulation is known as a genetic algorithm, especially when the evolved individuals represent 

potential solutions to a computational problem.
9 

9. The idea of simulating populations “in silico” is not only quite fun, but has also produced interesting insights into population dynamics. For an example, see 
Hinton and Nowlan, “How Learning Can Guide Evolution,” Complex Systems 1 (1987): 495–502. Simulation of complex systems using random sampling is 
commonly known as a Monte Carlo method. For a more fanciful treatment of simulations of natural systems, see Daniel Shiffman, The Nature of Code (author, 
2012). The examples there use the graphical language available at http://processing.org, though a Python version is also available at http://py.processing.org. 
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24. Application Programming Interfaces, 
Modules, Packages, Syntactic Sugar 

We know that objects like lists have methods such as .sort() and .append(). Do they have others? They do, and one way 
to find them is to run Python in the interactive mode on the command line.

1 

To do this, we execute the python interpreter without specifying a file to interpret. The result is a Python prompt, 
>>>, where we can type individual lines of Python code and see the results. 

The interactive mode, aside from providing an interface for running quick tests of Python functionality, includes a help 
system! Simply run the help() function on either a class name (like help(list)) or an instance of the class. 

This command opens an interactive viewer in which we can scroll to see all the methods that an object of that type 
provides. Here’s a sample from the help page: 

Browsing through this documentation reveals that Python lists have many methods, including .append(), .count(), 
and others. Sometimes the documentation isn’t as clear as one would hope. In these cases, some experimentation may 
be required. Between the description above and some code tests, for example, can you determine what a list’s .count() 
method does and how to use it effectively? 

The set of methods and instance variables belonging to an object or class is known as its API, or Application 
Programming Interface. The API is the set of functions, methods, or variables provided by an encapsulated collection 

1. Much of this information is also available online at http://docs.python.org. 
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of code. APIs are an important part of programming because they represent the “user interface” for programming 
constructs that others have written. 

Sometimes it can be useful to determine what class or “type” to which a variable refers, especially for looking up 
the API for objects of that type. The type() function comes in handy when combined with a print() call—it prints the 
type (the class) of data referenced by a variable. The result can then be investigated with help(). 

Modules Modules 

Consider this chunk of code from the example in chapter 23, “Objects and Classes,” which makes use of the Chromosome 
and SNP class definitions: 

This segment of code takes a file name and produces a dictionary with nicely organized contents of the file. Because this 
functionality is succinctly defined, it makes sense to turn this into a function that takes the file name as a parameter and 
returns the dictionary. The code is almost exactly the same, except for being wrapped up in a function definition. 
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Later, we can call this function to do all the work of parsing a given file name: 

Now, what if this function and the two class definitions were things that we wanted to use in other projects? We may 
wish to make a module out of them—a file containing Python code (usually related to a single topic, such as a set of 
functions or class definitions related to a particular kind of data or processing). 

We’ve seen a number of modules already, including io, re, and sys. To use a module, we just need to run import 
modulename. As it turns out, modules are simply files of Python code ending in .py! Thus, when we use import 
modulename, the interpreter searches for a modulename.py containing the various function and class definitions. Module 
files may either exist in a system-wide location, or be present in the working directory of the program importing them.

2 

2. Python modules and packages need not be installed system-wide or be present in the same directory as the program that uses 
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Importing the module in this way creates a namespace for the module. This namespace categorizes all of the 
functions and classes contained within that module so that different modules may have functions, classes, and variables 
with the same name without conflicting. 

If we have the above two files in the same directory as our program, source code like the following would print 4, 64, 
"TAC", and 2.71828. 

Unfortunately, Python uses the . operator in multiple similar ways, such as indicating a method belonging to an object 
(as in a_list.append("ID3")) and to indicate a function, variable, or class definition belonging to a namespace (as 
above). 

Thus, as a “container” for names, the namespace allows different modules to name functions, classes, and variables 
the same way without conflicting. Just as a class may be documented by its API, so may modules: a module’s API 
describes the functions, classes, and variables it defines. These may also be accessed through the interactive help menu 
(and online). Try running import re followed by help(re) to see all the functions provided by the re module. 

them. The environment variable $PYTHONPATH lists the directories that are searched for modules and packages, to which each user is 
free to add their own search paths. 
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There are a huge number of modules (and packages) available for download online, and Python also comes with a wide 
variety of useful modules by default. Aside from re, sys, and io, discussed previously, some of the potentially more 
interesting modules include: 

• string: common string operations (changing case, formatting, etc.) 

• time, datetime and calendar: operations on dates and times 

• random: generating and working with random numbers 

• argparse: user-friendly parsing of complex arguments on the command line 

• Tkinter: creating graphical user interfaces (with buttons, scroll bars, etc.) 

• unittest: automating the creation and running of unit tests 

• turtle: a simple interface for displaying line-based graphics
3 

Tutorials for these specific modules may be found online, as may lists of many other packages and modules that come 
installed with Python or that are available for download. 

Creating a Module Creating a Module 

Let’s create a module called MyVCFModule.py to hold the two class definitions and parsing function from the last example. 
While we’re doing so, we’ll also convert the comments that we had created for our classes, methods, and functions into 
“docstrings.” Docstrings are triple-quoted strings that provide similar functionality to comments, but can be parsed later 
to produce the module’s API. They may span multiple lines, but should occur immediately inside the corresponding 
module, class, or function definition. Here we leave out the contents of the methods and functions (which are the same 
as in the previous chapter) to save space: 

3. The turtle graphics module is a fun way to understand and visualize computational processes (and similar packages are available 
for many programming languages). While this book isn’t the place for such explorations, the reader can learn more about them in 
Jeffrey Elkner, Allen Downey, and Chris Meyers’s excellent book, How to Think Like a Computer Scientist (Green Tea Press, 2002). 
As of this writing, a version of the book is available online at http://interactivepython.org/runestone/static/thinkcspy/
index.html. 

Chapter 24. Application Programming Interfaces, Modules, Packages, Syntactic Sugar 225

Computational Biology  |  225

https://github.com/osuoer/computational-biology/blob/master/MyVCFModule.py?raw=true
http://interactivepython.org/runestone/static/thinkcspy/index.html
http://interactivepython.org/runestone/static/thinkcspy/index.html


The program that makes use of this module, which exists in a separate file in the same directory (perhaps called 
snps_ex2.py), is short and sweet.

4 

4. In some Python scripts, you may find a line if __name__ == '__main__':. The code within this if-statement will run, but only if the file 
is run as a script. If it is imported as a module, the block will not run. This lets developers write files that can serve both purposes, 
and many developers include it by default so that their script's functions and class definitions can be utilized in the future by 
importing the file as a module. 
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Should other projects need to parse VCF files, this module may again be of use. By the way, because we documented our 
module with docstrings, its API is readily accessible through the interactive help interface. 

Part of the API help page: 

Chapter 24. Application Programming Interfaces, Modules, Packages, Syntactic Sugar 227

Computational Biology  |  227



Packages Packages 

As if Python didn’t already have enough “boxes” for encapsulation—functions, objects, modules, and so on—there are 
also packages. In Python, a “package” is a directory containing some module files.

5 

A package directory must also contain a special file called __init__.py, which lets Python know that the directory 
should be treated as a package from which modules may be imported. (One could put code in this file that would be 
executed when the import statement is run, but we won’t explore this feature here.) 

As an example, suppose that along with our MyVCFModule.py, 
we also had created a module for parsing gene ontology files 
called GOParseModule.py. We could put these together into a 
package (directory) called MyBioParsers. 

To use a module contained in a package, the syntax is 

5. Packages may also contain other files, like files containing specific data sets or even code written in other languages like C. Thus 
some modules may need to be installed by more complicated processes than simply decompressing them in the right location. 
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from packagename import modulename.
6
 Our Python program could live in the same directory in which the 

MyBioParsers directory was found, and might begin like so: 

Later, the module itself can be used just as before. 

Parsing a FASTA File Parsing a FASTA File 

Up until this point, we’ve skipped something that is widely considered a “basic” in computational biology: reading a 
FASTA file. For the most part, the previous examples needing sequence data read that data from simple row/column 
formatted files. 

Most sequence data, however, appear in so-called FASTA format, where each sequence has a header line starting with > 
and an ID, and the sequence is broken up over any number of following lines before the next header line appears. 

Parsing data in FASTA format isn’t too difficult, but it requires an extra preprocessing step (usually involving a loop and 
a variable that keeps track of the “current” ID; so long as subsequent lines don’t match the > character, they must be 
sequence lines and can be appended to a list of strings to be later joined for that ID). While reinventing the FASTA-

6. You might occasionally see a line like from modulename import *. This allows one to use the functions and other definitions inside of 
modulename without prefixing them with modulename.. For example, we can import math and then use print(math.sqrt(3.0)), or we can 
from math import * and then print(sqrt(3.0)). The latter is usually avoided, because if multiple modules contain the same function or 
other names, then it is not possible to disambiguate them. 
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parsing wheel is good practice for novice coders, the BioPython package provides functions to parse these and many other 
formats.

7 

BioPython is a large package with many modules and APIs, which you can read more about at 
http://biopython.org. For the specific application of parsing a FASTA file, a good place to start is a simple web search for 
“biopython fasta,” which leads us to a wiki page describing the SeqIO module, complete with an example. 

This screenshot shows a few differences from the way we’ve been writing code, for example, the use of open() as opposed 
to io.open(), and the call to print record.id rather than our usual print(record.id) (the former of which will work 
only in older versions of Python, whereas the latter will work in all reasonably recent versions of Python). Nevertheless, 
given our knowledge of packages, modules, and objects, we can deduce the following from this simple code example: 

1. The SeqIO module can be imported from the Bio package. 

2. A file handle is opened. 

3. The SeqIO.parse() function is called, and it takes two parameters: the file handle from which to read data, and a 
specification string describing the file format. 

4. This function returns something iterable (similar to a list, or a regular file handle), so it can be looped over with a 
for-loop. 

5. The loop accesses a series of objects of some kind, and each gets associated with the variable name record. 

6. The record.id is printed, which is (apparently) an instance variable belonging to the record object. 

7. The file handle is closed (always good practice!). 

7. Depending on the system you are working on, you may already have the BioPython package. If not, you can use the pip install 
utility to install it: pip install BioPython, or if you don’t have administrator privileges, pip install --user BioPython. Some older 
versions of Python don’t come with the pip utility, but this can be installed with an older tool: easy_install pip or easy_install --
user pip. 
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If we do some more reading on the SeqIO wiki page, we’d find that the record objects actually have the class SeqRecord, 
and they also have a seq instance variable providing access to the full sequence. 

Putting this all together, here’s a short program that converts a FASTA file to the row/column format we’ve been 
dealing with. 

Syntactic Sugar Syntactic Sugar 

In Python, nearly everything is an object, even simple integers! By looking at an integer’s API, for example, we discover 
that they provide a method called .bit_length(). 

Here’s a portion of the API view: 

We can try it like so, to discover that the integer 7 can be represented with three binary bits (as 111): 
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If you were to try and view the API for an integer as we’ve done, you’d see a number of odd-looking methods, such as 
.__add__() and .__abs__(): 

This seems to indicate that we can get the absolute value of an integer by using a method call or by using the standard 
function call syntax. Similarly, we can apparently add an integer to another by using method call or the standard + 
operator. These are indeed true, and we can use the standard functions and operators or their method versions: 

Operations like addition look like basic, fundamental operations, and Python accomplishes such operations through 
method calls on objects.

8
 A statement like a = b + c is converted to a = b.__add__(c) behind the scenes. Although 

we can run such method-oriented operations ourselves, the awkward double-underscore syntax is how the designers let 
us know that those methods are for internal use, and we should stick with the standard syntax. This automatic syntax 
conversion is known as syntactic sugar, and it is present in many programming languages so that they can be internally 
consistent but more pleasant (“sweeter”) for humans to work with. 

Exercises Exercises 

1. Create a module called mymodule.py that includes at least a class definition and function definition, as well as 

documents the module, class, methods, and functions with docstrings. Create a myprogram.py that imports this 

module and makes use of the functionality in it. Also try viewing the API for your module in the interactive 

Python interpreter with import mymodule and help(mymodule). 

2. Browse through the online API at http://docs.python.org/2/library for the “Python Standard Library,” and 

especially anything related to strings. Also, review the API documentation for the io, sys, re, math, and random 

modules. 

3. For this exercise, we’re going to install a module from the web and make use of it to parse a VCF file 

trio.sample.vcf. The VCF-reading module we’re going to install is located on GitHub (an increasingly popular 

place to host software): https://github.com/jamescasbon/PyVCF. 

The first thing to do is to clone this repository from the .git link (which requires we have the git tool installed). 

This cloning should download a PyVCF folder; cd to there and use ls to view the contents: 

8. It is safe to say that Python isn’t “merely” object oriented, it is very object oriented. 

232 Part II: Programming in Python

232  |  Shawn T. O’Neil

http://docs.python.org/2/library
https://github.com/osuoer/computational-biology/blob/master/trio.sample.vcf?raw=true
https://github.com/osuoer/computational-biology/blob/master/trio.sample.vcf?raw=true
https://github.com/jamescasbon/PyVCF


Next, we need to install it—this will set up the module and its needed files, and put them into a hidden folder 

called .local inside of your home directory (Python also looks there for modules and packages by default). To get 

it into .local in your own home directory rather than using a system-wide install (which you may not have 

permission to do), we have to add --user to the command that runs the setup.py script: 

Once this is done, go back to your original directory, and then you can fire up the Python interactive 

interpreter, load the module, and view its API: 

(Sadly, the API documentation in the package itself is not that great—the online version at http://pyvcf.rtfd.org 

is better, specifically in the introduction.) 

4. Write a program called vcf_module_use.py that imports this vcf module and uses it to count and print how many 

lines in trio.sample.vcf have a reference allele of "A". (Note that you should import and use the module, rather 

than parsing each line yourself.) 
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25. Algorithms and Data Structures 

Having learned so many programming concepts—variables and the data to which they refer, functions, loops, and so 
on—it would be a shame not to talk about some of the surprising and elegant methods they enable. Computer science 
students spend years learning about these topics, and the themes in this chapter underlie much of bioinformatics. 

We’ll start with algorithms, which according to a classic book on the topic—Introduction to Algorithms by 
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein—are: 

any well-defined computational procedure that takes some value, or set of 

values, as input and produces some value, or set of values, as output. 

With such a broad definition, all of the Python coding we’ve done could accurately be categorized as practice in 
algorithms. The word “algorithm,” by the way, derives from the name of the eighth-century Persian mathematician al-
Khwārizmī, who developed systematic approaches for solving equations (among other accomplishments). Although 
most functioning code may be characterized as an algorithm, algorithms usually involve more than just collating data and 
are paired with well-defined problems, providing a specification for what valid inputs are and what the corresponding 
outputs should be. Some examples of problems include: 

1. Given a list of  numbers in arbitrary order, return it or a copy of it in sorted order. (The “sorting” 
problem.) 

2. Given a list of  numbers in sorted order and a query number q, return True if q is present in the list and 
False if it is not. (The “searching” problem.) 

3. Given two strings of length  and , line them up against each other (inserting dashes where 
necessary to make them the same length) to maximize a score based on the character matches. (The “string 
alignment” problem.) 

Clearly, some problems, like the string alignment problem, are of special interest for life scientists. Others, like sorting 
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and searching, are ubiquitous. No matter who cares about the problem, a good algorithm for solving it should do so 
efficiently. Usually, “efficiently” means “in a short amount of time,” though with the large data sets produced by modern 
DNA-sequencing technologies, it often also means “using a small amount of memory.” 

Most bioinformatics problems like string alignment require rather sophisticated methods built from simpler 
concepts, so we’ll start with the usual introductory topic for algorithms design and analysis: sorting. After all, someone 
had to write Python’s sorted() function for lists, and it does form a good basis for study. 

Consider a small list of five numbers, in unsorted order. 

What code might we write to sort these numbers? Whatever it is, it might make sense to put it into a function that 
takes an unsorted list, and returns a copy of it in sorted order (to stay consistent with Python’s use of the principle of 
command-query separation). To start, we’ll make a copy of the list, and then we’ll have the function merely “fix up” 
some of the out-of-order numbers in this copy by looking at a sliding window of size 2—pairs of adjacent numbers—and 
switching their placement if they are out of order. 

Just fixing up a handful of pairs in this way won’t result in the list being sorted, but it should be obvious that because 
the pairs of fix-ups overlap, the largest number will have found its way to the last position. In a sense, it “bubbled” to the 
top. If we were to repeat this process, the second-to-largest number must also find its way to the correct spot. In fact, if 
we repeat this process as many times as there are numbers, the list will be fully sorted. 
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This algorithm for sorting is affectionately known as “bubblesort.” In a rough sense, how many operations will this 
algorithm perform, in the worst case, for a list of size ? Suppose the if-statement always finds True, and numbers 
need to be swapped. In this case, each operation of the inner loop requires five or so “time steps” (four assignments and an 
if check). The inner loop runs  times (if there are  numbers), which is itself repeated
times in the outer loop. The copy step to produce the new c_nums list also uses  steps, so the total number of 
basic operations is, more or less,    

When analyzing the running time of an algorithm, however, we only care about the “big stuff.” 

Order Notation Order Notation 

In computing an algorithm’s run time, we only care about the highest-order terms, and we tend to ignore constants that 
aren’t related to the “size” of the input. We say that the run time is order of the highest-order term (without constants), 
which we denote with an uppercase :  is 

We read this as “five  squared minus four  is order  squared” or “five  squared 
minus four  is big-oh  squared.” Because this run time talks about a particular algorithm, we might also 
say “bubblesort is order  squared.” Big-O notation implies that, roughly, an algorithm will run in time less than 
or equal to the equation interpreted as a function of the input size, in the worst case (ignoring constants and small terms). 

Worst-case analysis assumes that we get unlucky with every input, but in many cases the algorithm might run faster 
in practice. So, why do we do worst-case analysis? First, it gives the user of an algorithm a guarantee—nobody wants 
to hear that software might use a certain amount of time. Second, while it is sometimes possible to do average-case 
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analysis, it requires knowledge of the distribution of input data in practice (which is rare) or more sophisticated analysis 
techniques. 

Why do we use order notation to characterize algorithm run time, dropping small terms and constants? First, 
although we stated previously that each basic operation is one “computer step,” that’s not really true: the line 
c_nums[index + 1] = leftnum requires both an addition and an assignment. But no one wants to count each CPU cycle 
individually, especially if the result won’t change how we compare two algorithms for large data sets, which is the primary 
purpose of order notation. Dropping off constant terms and lower-order terms makes good mathematical sense in these 
cases. For large enough input (i.e., all  greater than some size ), even terms that seem like they would make 
a big difference turn out not to matter, as the following hypothetical comparison demonstrates.    

200n^{\textcolor{white}{\hat{\textcolor{black}{1.5}}}} + 20n, \text{for } n > \text{some } c, \\ O(n^{2}) 
&>O(n^{1.5}), \\ \text{Time Alg A} &> \text{Time Alg B (for large inputs).} \end{aligned} \]" title="Rendered by 
QuickLaTeX.com"> 
(Technically in the above 
O(n^{\textcolor{white}{\hat{\textcolor{black}{1.5}}}})" title="Rendered by QuickLaTeX.com" height="24" 
width="256" style="vertical-align: -4px;"> is an abuse of notation; we should say  is 
based on the definition of the notation.) In this case,  is larger than 
when  is larger than 400,024,000 (which is this example’s ). 

So, although order notation seems like a fuzzy way of looking at the efficiency of an algorithm, it’s a rigorously 
defined and reasonable way to do so.

1
 Because some programming languages are faster than others—but only by a 

constant factor (perhaps compiled C code is 100 times faster than Python)—a good algorithm implemented in a slow 
language often beats a mediocre algorithm implemented in a fast language! 

Now, a run time of  isn’t very good: the time taken to sort a list of numbers will grow quadratically 
with the size of the list. 

 isn’t great, but for the sorting 
problem we can do better, and we’ll return to the study of 
algorithms and sorting a bit later. First, let’s detour and 
talk about interesting ways we can organize data, using 
variables and the objects to which they refer. 

1. When analyzing an algorithm in Python, however, not all lines are a single computational step. For example, Python has a built-in 
sorted() function for sorting, and although it is not as slow as bubblesort, it takes much longer than one step to sort millions of 
numbers. If an algorithm makes use of a function like sorted(), the run time of that (based on the size of the input given) also needs 
to be considered. A function that calls our bubblesort function  times, for example, would run in time . 
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Data Structures Data Structures 

A data structure is an organization for a collection of data that ideally allows for fast access and certain operations on the 
data. We’ve seen a couple of data structures already in Python: lists and dictionaries. Given such a structure, we might 
ask questions like: 

• Does the data structure keep its elements in a specific order (such as sorted order)? If we use .append() to add 
elements to lists, lists are kept in the order items are added. If we wanted the list to stay sorted, we’d have to ensure 
new elements are inserted in right spot. 

• How long does it take to add a new element? For Python lists, the .append() method operates in time , 
which is to say a single element can be added to the end, and the time taken does not depend on how big the list is. 
Unfortunately, this won’t be true if we need to keep the list sorted, because inserting into the middle requires 
rearranging the way the data are stored. 

• How long does it take to find the smallest element? Because using .append() adds elements to the end of the list, 
unless we keep the list sorted, we need to search the entire list for the smallest element. This operation takes time 

, where  is the length of the list. If the list is sorted, though, it takes only  time to look at the 
front of it. 

There are trade-offs that we can make when thinking about how to use data structures. Suppose, for example, that we 
wanted to quickly find the smallest element of a list, even as items are added to it. One possibility would be to sort the 
list after each addition; if we did that, then the smallest element would always be at index 0 for quick retrieval. But this is 
a lot of work, and the total time spent sorting would start to outweigh the benefits of keeping the list sorted in the first 
place! Even better, we could write a function that (1) inserts the new item to the end and then (2) bubbles it backward to 
its correct location; only one such bubbling would be needed for each insertion, but each is an  operation (unless 
we could somehow guarantee that only large elements are added). 

Finding the smallest item is easy, as we know it is always present at index 0. 

Structure Structure Insert an Item Insert an Item Get Smallest Get Smallest 

Sorted Simple List 

Instead, let’s do something much more creative, and build our own data structure from scratch. While this data structure 
is a lot of trouble to create for only a little benefit, it does have its uses and serves as a building block for many other 
sophisticated structures. 
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Sorted Linked Lists Sorted Linked Lists 

Our data structure, called a “sorted linked list,” will keep a collection of items in sorted order, and will do the work of 
inserting new items in the correct location in that order. These items could be integers, floats, or strings, anything that 
can be compared with the < operator (which, recall, compares strings in lexicographic order; as discussed in previous 
chapters, we can even define our own object types that are comparable with > by implementing .__lt__(), .__eq__() 
and similar methods). 

To accomplish this task, we’re going to make heavy use of classes and objects, and the fact that a variable (even an 
instance variable) is a name that refers to an object. 

The strategy will be to have two types of objects: the first, which we’ll call a LinkedList, will be the main 
type of object with which our programs will interact (much like we interacted with Chromosome objects in previous 
chapters, while SNP objects were dealt with by the Chromosome objects). The LinkedList object will have methods like 
.insert_item() and .get_smallest(). The other objects will be of type Node, and each of these will have an instance 
variable self.item that will refer to the item stored by an individual Node. So, drawing just the objects in RAM, our 
sorted linked list of three items (4, 7, and 9) might look something like this: 

(The objects are unlikely to be neatly organized this way in RAM—we’re showing them in a line for illustration only.) 
The arrows in this figure indicate that after we create a new LinkedList object called itemlist, this variable is a name 
that refers to an object, and each Node object has a self.item instance variable that refers to a “data” object of some type, 
like an integer or string.

2 

Now, if this collection of objects were to exist as shown, it wouldn’t be that useful. Our program would only be 
able to interact with the itemlist object, and in fact there are no variables that refer to the individual Node objects, so 
they would be deleted via garbage collection. 

Here’s the trick: if an instance variable is just a variable (and hence a reference to an object), we can give each Node 
object a self.next_n instance variable that will refer to the next node in line. Similarly, the LinkedList object will have a 
self.first_n instance variable that will refer to the first one. 

2. There is no reason a Node object couldn’t also hold other information. For example, nodes could have a self.snp to hold an SNP 
object as well, with self.item being the location of the SNP, so SNPs are stored in order of their locations. 
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The last Node object’s self.next_n refers to None, a placeholder that we can use to allow a variable to reference “nothing 
here.” Actually, None will be the initial value for self.next_n when a new node is created, and we’ll have to add methods 
for get_next_n() and set_next_n() that allow us to get or change a Node’s next_n variable at will. The LinkedLists’s 
first_n variable will similarly be initialized as None in the constructor. 

Suppose that we have this data structure in place, and we want to add the number 2; this would be the new 
“smallest” item. To do this we’d need to run itemlist.insert_item(2), and this method would consider the following 
questions to handle all of the possible cases for inserting an item (by using if-statements): 

1. Is self.first_n equal to None? If so, then the new item is the only item, so create a new Node holding the new item 
and set self.first_n to that node. 

2. If self.first_n is not equal to None: 

a. Is the new item smaller than self.first_n’s item? If so, then (1) create a new Node holding the new item, (2) 
set its next_n to self.first_n, and then (3) set self.first_n to the new node. Here’s an illustration for this 
case: 

b. Otherwise, the new node does not go between the LinkedList object and the first Node object. In this case, 
we could treat the self.first_n object as though it were itself a LinkedList, if only it had an 
.insert_item() method. 
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This case (b) is really the heart of the linked list strategy: each Node object will also have an .insert_item() method. 
Further, each node’s insert_item() will follow the same logic as above: if self.next_n is None, the new node goes after 
that node. If not, the node needs to determine if the new node should go between itself and the next node, or if it should 
“pass the buck” to the node next in line. 

Now we can turn to the code. First, here’s the code for the LinkedList class. 

The highlighted lines above are those illustrated in step 2a and are crucial; in particular, the order in which the various 
variables are set makes all the difference. What would happen if self.first_n = newnode was called before 
newnode.set_next(self.first_n)? We would lose all references to the rest of the list: itemlist.first_n would refer to 
newnode, the new node’s .next_n would refer to None, and no variable would refer to the node holding 3—it would be 
lost in RAM and eventually garbage collected. 

As mentioned above, the class for a Node is quite similar. In fact, it is possible to build linked lists with only one 
object type, but this would necessitate a “dummy” node to represent an empty list anyway (perhaps storing None in its 
self.item). 
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Our new data structure is relatively easy to use, and it keeps itself sorted nicely: 

Linked List Methods Linked List Methods 

This idea of “passing the buck” between nodes is pretty clever, and it allows us to write sophisticated queries on our data 
structure with ease. Suppose we wanted to ask whether a given item is already present in the list. 

To solve a problem like this, we can think of each node as implementing a decision procedure (using a method, 
like .is_item_present(query)). The LinkedList interface object would return False if its self.first_n is None (to 
indicate the list is empty, so the query item can’t be present). If its self.first_n is not None, it calls 
self.first_n.is_item_present(query), expecting that node to either return True or False. 
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For a node, the decision procedure is only slightly more complex: 

1. Check whether self.item is equal to the query. If so, a True can safely be returned. 

2. Otherwise: 

a. If self.next_n is None, then False can be returned, because if the buck got passed to the end of the list, no 
node has matched the query. 

b. If self.next_n does exist, on the other hand, just pass the buck down the line, and rely on the answer to 
come back, which can be returned. 

Here is a quick demonstration of the usage (the whole script can be found in the file linkedlist.py): 

Notice the similarity in all of these methods: each node first determines whether it can answer the problem—if so, it 
computes and returns the answer. If not, it checks for a node to pass the problem on to, and if one exists, the buck is 
passed. Notice that at each buck pass the method being called is the same—it’s just being called for a different object. 
And each time the overall “problem” gets smaller as the number of nodes left to pass the buck to decreases. 

How much time does it take to insert an item into a list that is already of length ? Because the new item 
might have to go at the end of the list, the buck might need to be passed  times, meaning an insertion is . 
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What about getting the smallest element? In the LinkedList’s .get_smallest() method, it only needs to determine 
whether self.first_n is None, and if not, it returns the element stored in that node. Because there is no buck passing, 
the time is . 

Structure Structure Insert an Item Insert an Item Get Smallest Get Smallest 

Sorted Simple List 

Sorted Linked List 

The creation of the sorted linked list structure didn’t get us much over a more straightforward list kept in sorted order 
via bubbling, but the ideas implemented here pave the way for much more sophisticated solutions. 

Exercises Exercises 

1. How much time would it take to insert  sequences into a Python list, and then at the end sort it with 

bubblesort in the worst-case scenario (using order notation)? 

2. How much time would it take to insert  elements into a sorted linked list that starts empty, in the 

worst-case scenario (using order notation)? (Note that the first insertion is quick, but the second item might 

take two buck-passes, the third may take three, and so on.) 

3. Add “pass the buck” methods to the LinkedList and Node classes that result in each item being printed in order. 

4. Write “pass the buck” methods that cause the list of items to be printed, but in reverse order. 

5. Add methods to the LinkedList and Node classes so that the linked list can be converted into a normal list (in any 

order, though reverse order is most natural). For example, print(itemlist.collect_to_list()) should print 

something like ['9', '3', '7']. 

Divide and Conquer Divide and Conquer 

So far, both the algorithm (bubblesort) and the data structure (sorted linked list) we’ve studied have been linear in nature. 
Here, we’ll see how these ideas can be extended in “bifurcating” ways. 

Let’s consider the sorted linked list from the last section, which was defined by a “controlling” class (the 
LinkedList) and a number of nearly identical Nodes, each with a reference to a “next” Node object in the line. So long as 
certain rules were followed (e.g., that the list was kept in sorted order), this allowed each node to make local decisions that 
resulted in global answers to questions. 

What if we gave each node a bit more power? Rather than a single self.next_n instance variable, what if there were 
two: a self.left_n and a self.right_n? We will need a corresponding rule to keep things organized: smaller items go 
toward the left, and larger (or equal-sized) items go toward the right. This data structure is the well-known binary tree. 

Chapter 25. Algorithms and Data Structures 245

Computational Biology  |  245



The illustration above looks quite a bit more complicated. But if we inspect this structure closely, it’s quite similar to the 
linked list:

3
 there is a controlling class of BinaryTree, and instead of a self.first_n instance variable, it has an instance 

variable called self.root_n, because the node it references is the “root” of the tree. Before any items have been inserted, 
self.root_n will be None. Upon an item insertion, if self.root_n is None, the new item goes there; otherwise, the buck 
is necessarily passed to self.root_n. We’ll see why in a moment. 

Now, for the Node class, we’ll need a constructor, as well as “get” and “set” methods for both left_n and right_n, which 
initially are set to None. 

3. If we ignore all the nodes’ self.left_n references (i.e., the entire left side of the tree), then the self.right_n path from top to the 
lower right is a sorted linked list! Similarly, the path from the top to the lower left is a reverse-sorted linked list. 
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What about a node’s .insert_item() method? What sort of decision-making process needs to happen? The process is 
even simpler than for a sorted linked list. If each node always follows the rule that smaller items can be found to the left 
and larger or equal items can always be found to the right, then new items can always be inserted at the bottom of the 
tree. In the tree above, for example, a node holding 8 would be placed to the right of (and “below”) the node holding 7. 
The decision process for a node is thus as follows: 

1. Is the new item to insert less than our self.item? If so, the new item goes to the left: 

a. Is self.left_n equal to None? If so, then we need to create a new node holding the new item, and set 
self.left_n to that node. 

b. If not, we can pass the buck to self.left_n. 

2. Otherwise, the item must be larger than or equal to self.item, so it needs to go to the right: 

a. Is self.right_n equal to None? If so, then we need to create a new node holding the new item, and set 
self.right_n to that node. 

b. If not, we can pass the buck to self.right_n. 

In the previous figure of a tree, 8 would go to the right of 7, 6 would go to the left of 7, 18 would go the right of 11, and 
so on. The logic for inserting a new item is thus quite simple, from a node’s point of view: 
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The remaining method to consider is the tree’s .get_smallest(). In the case of a linked list, the smallest item (if present) 
was the first node in the list, and so could be accessed with no buck passing. But in the case of a binary tree, this isn’t 
true: the smallest item can be found all the way to the left. The code for .get_smallest() in the Tree class and the 
corresponding Node class reflects this. 

In the case of a node, if self.left_n is None, then that node’s item must be the smallest one, because it can assume 
the message was only ever passed toward it to the left. Similar usage code as for the linked list demonstrates that this 
wonderful structure (binarytree.py) really does work: 

The most interesting question is: how much time does it take to insert a new item into a tree that already contains
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 items? The answer depends on the shape of the tree. Suppose that the tree is nice and “bushy,” meaning that all 
nodes except those at the bottom have nodes to their left and right. 

The time taken to insert an item is the number of times the buck needs to be passed to reach the bottom of the tree. In 
this case, at each node, the total number of nodes in consideration is reduced by half; first , then , then , 
and so on, until there is only a single place the new item could go. How many times can a number  be divided in 
half until reaching a value of 1 (or smaller)? The formula is . It takes the same amount of time to find the smallest 
item for a bushy tree, because the length down the left-hand side is the same as any other path to a “leaf” in the tree. 

Structure Structure Insert an Item Insert an Item Get Smallest Get Smallest 

Sorted Simple List 

Sorted Linked List 

“Bushy” Binary Tree 

In general, the logarithm of  is much smaller than  itself, so a binary tree trades off some speed in finding 
the smallest element for speed in insertion. 

Note, however, that the shape of a tree depends on the order in which the items are inserted; for example if 10 is 
inserted into an empty tree, followed by 9, the 9 will go to the left. Further inserting 8 will put it all the way to the left of 
9. Thus, it is possible that a tree isn’t in fact bushy, but rather very unbalanced. For an extreme example, if the numbers 
from  were inserted in that order, the tree would look like so: 
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In this case, the tree has degenerated into a reverse-sorted linked list. So, the insertion time (for 1, for example) is , 
and finding the smallest item is also, because the tree is heavily unbalanced in a leftward direction. Unfortunately, in 
practice, we can’t guarantee the order in which data will be inserted, and such runs of consecutive insertions aren’t 
uncommon in real-world data. 

More sophisticated structures called “balanced” binary trees have modifications to their insertion methods that 
ensure the tree stays bushy, no matter what order items are inserted. This is tricky, as it requires manipulating the 
structure of the tree after insertions, but the structure manipulation itself can’t take too long or the benefit of insertion 
is lost. Examples of balanced binary trees include so-called red-black trees, and AVL trees (named after Georgy Adelson-
Velsky and Evgenii Landis, who first described them). 

Structure Structure Insert an Item Insert an Item Get Smallest Get Smallest 

Sorted Simple List 

Sorted Linked List 

“Bushy” Binary Tree 

“Un-bushy” Binary Tree 

Balanced Binary Tree 

In practice, we don’t make a distinction between “bushy” and “un-bushy” binary trees: simple binary-search trees are 
 for both .insert_item() and .get_smallest(), because we cannot guarantee bushiness (recall that we assume 

worst-case performance when analyzing an algorithm). Real applications thus use AVL trees, red-black trees, or other 
more sophisticated data structures. 

Exercises Exercises 

1. Add “pass the buck” methods to BinaryTree and its Node class for .print_in_order() and .print_reverse_order(), 
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causing the items to be printed in sorted and reverse-sorted order, respectively. 

2. Add .count_nodes() methods that return the total number of items stored in the tree. How long does it take, in 

order notation? Does this depend on whether the tree is bushy or not? If so, what would be the run time for a 

bushy versus un-bushy tree? 

3. Add .count_leaves() methods that return the total number of “leaves” (nodes with None in left_n and right_n). 

4. Binary search trees are so called because they can easily and efficiently determine whether a query item is 

present. Add .is_item_present() methods that return True if a query item exists in the tree and False otherwise 

(similar to the LinkedList .is_item_present()). How long does it take, in order notation? Does this depend on 

whether the tree is bushy or not? If so, what would be the run time for a bushy versus un-bushy tree? 

5. Modify the binary tree code so that duplicate items can’t be stored in separate nodes. 

Back to Sorting Back to Sorting 

We previously left the topic of sorting having developed bubblesort, an  method for sorting a simple list 
of items. We can certainly do better. 

One of the interesting features of the insert_item() method used by nodes in both the tree and linked list is that 
this method, for any given node, calls itself, but in another node. In reality, there aren’t multiple copies of the method 
stored in RAM; rather, a single method is shared between them, and only the self parameter is really changing. So, this 
method (which is just a function associated with a class) is actually calling itself. 

In a related way, it turns out that any function (not associated with an object) can call itself. Suppose we wanted to 
compute the factorial function, defined as    

One of the most interesting features of the factorial function is that it can be defined in terms of itself:    

If we wanted to compute factorial(7), a logical way to think would be: “first, I’ll compute the factorial of 6, then 
multiply it by 7.” This reduces the problem to computing factorial(6), which we can logically solve in the same way. 
Eventually we’ll want to compute factorial(1), and realize that is just 1. The code follows this logic impeccably: 
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As surprising as it might be, this bit of code really works.
4
 The reason is that the parameter n is a local variable, and so 

in each call of the function it is independent of any other n variable that might exist.
5
 The call to factorial(7) has an n 

equal to 7, which calls factorial(6), which in turn gets its own n equal to 6, and so on. Each call waits at the subanswer 
= factorial(n-1) line, and only when factorial(1) is reached do the returns start percolating back up the chain of 
calls. Because calling a function is a quick operation ( ), the time taken to compute factorial(n) is , one for 
each call and addition computed at each level. 

This strategy—a function that calls itself—is called recursion. There are usually at least two cases considered by a 
recursive function: (1) the base case, which returns an immediate answer if the data are simple enough, and (2) the 
recursive case, which computes one or more subanswers and modifies them to return the final answer. In the recursive 
case, the data on which to operate must get “closer” to the base case. If they do not, then the chain of calls will never 
finish. 

Applying recursion to sorting items is relatively straightforward. The more difficult part will be determining how 
fast it runs for a list of size . We’ll illustrate the general strategy with an algorithm called quicksort, first described 
in 1960 by Tony Hoare. 

For an overall strategy, we’ll implement the recursive sort in a function called quicksort(). The first thing to check 
is whether the list is of length 1 or 0: if so, we can simply return it since it is already sorted. (This is the base case of the 
recursive method.) If not, we’ll pick a “pivot” element from the input list; usually, this will be a random element, but 

4. Factorials can be easily (and slightly more efficiently) computed with a loop, but we’re more interested in illustrating the concept 
of a self-calling function. 

5. Additionally, the operations of defining a function and executing it are disjoint, so there’s nothing to stop a function being defined 
in terms of itself. 
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we’ll use the first element as the pivot to start with. Next, we’ll break the input list into three lists: lt, containing the 
elements less than the pivot; eq, containing the elements equal to the pivot; and gt, containing elements greater than the 
pivot. Next, we’ll sort lt and gt to produce lt_sorted and gt_sorted. The answer, then, is a new list containing first the 
elements from lt_sorted, then the elements from eq, and finally the elements from gt_sorted. 

The interesting parts of the code below are the highlighted lines: how do we sort lt and gt to produce lt_sorted 
and gt_sorted? 

We could use Python’s built-in sorted() function, but that’s clearly cheating. We could use bubblesort, but doing so 
would result in our function suffering the same time bound as for bubblesort (we say “time bound” because the order 
notation essentially provides an upper bound on time usage). The answer is to use recursion: because lt and gt must 
both be smaller than the input list, as subproblems they are getting closer to the base case, and we can call quicksort() 
on them! 

Let’s attempt to analyze the running time of quicksort()—will it be better than, equal to, or worse than bubblesort? As 
with the binary trees covered previously, it turns out the answer is “it depends.” 

First, we’ll consider how long the function takes to run—not counting the subcalls to quicksort()—on a list of 
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size . The first step is to pick a pivot, which is quick. Next, we split the input list into three sublists. Because 
appending to a list is quick, but all  elements need to be appended to one of the three, the time spent in this 
section is . After the subcalls, the sorted versions of the lists need to be appended to the answer list, and because 
there are  things to append, the time there is also . Thus, not counting the recursive subcalls, the run time 
is  plus  which is . 

But that’s not the end of the story—we can’t just ignore the time taken to sort the sublists, even though they are 
smaller. For the sake of argument, let’s suppose we always get “lucky,” and the pivot happens to be the median element of 
the input list, so len(lt) and len(gt) are both approximately . We can visualize the execution of the function calls 
as a sort of “call tree,” where the size of the nodes represents how big the input list is. 

Here, the top “node” represents the work done by the 
first call; before it can finish, it must call to sort the lt list 
on the second layer, which must again call to sort its own 
lt list, and so on, until the bottom layer, where a base case 
is reached. The path of execution can be traced in the 
figure along the line. To analyze the run time of the 
algorithm, we can note that the amount of work done at 
each layer is , so the total amount of work is this 
value times the number of layers. In the case where the 
pivots split the lists roughly in half, the result is the same 
as the number of layers in the bushy binary tree: 

. Thus, in this idealized scenario, the total run 
time is , which is much better than the 

 of bubblesort.
6 

This equation assumes that the pivots split the input 
lists more or less in half, which is likely to be the case (on 
average), if we choose the pivots at random. But we didn’t 
choose at random; we used nums[0]. What would happen 
if the input to the list happened to be already sorted? In 
this case, the pivot would always be the first element, lt 
would always be empty, and gt would have one fewer 
element. The “work tree” would also be different. 

6. This proof is a visually oriented one, and not terribly rigorous. A more formalized proof would develop what is known as a 
recurrence relation for the behavior of the algorithm, in the form of , to be solved for , 
representing the time taken to sort  items. 
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In this “unlucky” case, the work on each level is 
approximately , 
and so on, so the total work is 

 which is . Does this 
mean that in the worst case quicksort() is as slow as 
bubblesort? Unfortunately, yes. But some very smart 
people have analyzed quicksort() (assuming the pivot 
element is chosen at random, rather than using the first 
element) and proved that in the average case the run time 
is , and the chances of significantly worse 
performance are astronomically small. Further, a similar 
method known as “mergesort” operates by guaranteeing 
an even 50/50 split (of a different kind). 

Algorithm Algorithm Average Case Average Case Worst Case Worst Case 

Bubblesort 

Quicksort 

Mergesort 

Using random selection for pivot, quicksort() is fast in practice, though mergesort and similar algorithms are frequently 
used as well. (Python’s .sort() and sorted() use a variant of mergesort called “Timsort.”) Although as mentioned above 
worst-case analysis is most prevalent in algorithms analysis, quicksort() is one of the few exceptions to this rule. 

These discussions of algorithms and data structures might seem esoteric, but they should illustrate the beauty and 
creativeness possible in programming. Further, recursively defined methods and sophisticated data structures underlie 
many methods in bioinformatics, including pairwise sequence alignment, reference-guided alignment, and Hidden 
Markov Models. 

Exercises Exercises 

1. The first step for writing mergesort() is to write a function called merge(); it should take two sorted lists 

(together comprising  elements) and return a merged sorted version. For example, merge([1, 2, 4, 5, 8, 

9, 10, 15], [2, 3, 6, 11, 12, 13]) should return the list [1, 2, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15], and it 

should do so in time , where  is the total number of elements from both lists. (Note that .append() 

on a Python list is time , as are mathematical expressions like c = a + b, but other list operations like 

.insert() are not.) 

The mergesort() function should first split the input list into two almost-equal-sized pieces (e.g., first_half = 

input_list[0:len(input_list)/2]); these can then be sorted recursively with mergesort(), and finally the merge() 

Chapter 25. Algorithms and Data Structures 255

Computational Biology  |  255



function can be used to combine the sorted pieces into a single answer. If all steps in the function (not counting 

the recursive calls) are , then the total time will be . 

Implement merge() and mergesort(). 

2. The Fibonacci numbers (1, 1, 2, 3, 5, 8, 13, etc.) are, like the factorials, recursively defined:    

Write a recursive function fib() that returns the th Fibonacci number (fib(1) should return 1, fib(3) 

should return 2, fib(10) should return 55). 

3. Next, write a function called fib_loop() that returns the th Fibonacci by using a simple loop. What is 

the run time, in order notation, in terms of ? Compare how long it takes to compute fib(35) versus 

fib_loop(35), and then try fib(40) versus fib_loop(40). Why do you think fib() takes so much longer? Try drawing 

the “call trees” for fib(1), fib(2), fib(3), fib(4), fib(5), and fib(6). Could you make a guess as to what the run time 

of this function is in order notation? Can you imagine any ways it could be sped up? 
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26. An Introduction 

The R programming language has a rich history, tracing its roots to the S language originally developed for statistical 
computing in the mid-1970s at (where else?) Bell Laboratories. Later, the open-source R project extended the capabilities 
of S while incorporating features of languages like LISP and Scheme. 

Many features of R are shared with Python: both are high-level, interpreted languages. (For a discussion of 
interpreted vs. compiled languages, see chapter 13, “Hello, World”.) Both languages provide a wide array of features 
and functions for common tasks, and both languages are buttressed by a staggering variety of additional packages for 
more specialized analyses. Superficially, much of their syntax is similar, though below the surface lie significant (and 
fascinating) differences. 

Practically, the major difference between the two languages lies in what built-in features and functions are available, 
and what packages are available for download. Where Python is considered a “general purpose” language, R specializes 
in statistical analyses. Need to build a mixed nonlinear model for a large table of numerical values from a multifactorial 
experiment? R is probably the tool of choice. Need to count potential promoter motifs in a large sequence set? Python 
is likely a better candidate. R does support functionality for the types of string analyses covered in the section on Python 
(such as DNA sequence analysis and regular expressions), but these are currently easier to work with in Python. Python 
provides excellent data plotting through the matplotlib library, but R’s ggplot2 library quickly became one of the 
dominant tools for data visualization since its initial release in 2005. 

Where the analysis of biological data is concerned, both languages have grown rapidly. The bioconductor packages 
in R provide many statistical bioinformatics tools, while BioPython focuses on some statistical methods and many 
sequence-oriented methods such as multiple alignment. As of this writing, both languages appear be heading toward a 
common feature set: relatively recent Python packages such as pandas, numpy, scipy, and statsmodels add functionality 
that has been present in R for decades, while R has grown in general functionality and popularity. For now, though, 
both languages still make great additions to a computational biologist’s repertoire, and both are supported by large and 
engaged communities. 

So which of these two languages (and of course Python and R are far from the only two choices) should an aspiring 
computational biologist learn first? Well, the placement of Python in this book is no accident. For most users, Python 
is a better “introductory programming experience,” even if the experience is brief, for a couple of reasons. First, much 
of Python was designed with education and ease of use in mind, easing the transition to computational thinking and 
explaining its current popularity in Computer Science departments around the world. Second, Python shares more 
similarity with other “mainstream” languages like Java, C, and C++ than does R, easing transference of concepts should 
one wish to continue on the programming journey. Further, R contains a much larger menagerie of data types and 
specialized syntax for working with them, as well as multiple frameworks for things like variable assignment and object 
orientation. Effective R programmers arguably have more to keep in mind as they work. 

R is a remarkably flexible language. With so much flexibility comes both power and interesting ways of thinking 
about programming. While Python emphasizes the use of for-loops and if-statements to control program flow, R 
provides an alternative syntax for manipulation of data through sophisticated logical statements. (For-loops and if-
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statements are discussed late in this section.) Functions are quite important in Python, but in R they take on such 
significance that we are required to think about them at a higher level (as types of data that can be operated on by 
other functions). For many of the statistical tasks in which R excels, the underlying interpreter code is highly optimized 
or parallelized so that analyses of millions or billions of data points can be completed quickly. Finally, many excellent 
packages are available only for R. 

Ultimately, though, the answer to “which language should I learn?” is as dynamic as “which language should I 
use?” There are good arguments to be made for (and against) all tools, and the types of skills you wish to acquire and 
situational needs will play a large role at any given time. Some advice: eventually, learn to program in multiple languages. 
The benefits of learning more than one language are easily on par with learning to program in the first place! 

Hello, World Hello, World 

R is an interpreted language, meaning that an R program is a text file (or multiple text files, in some cases) with 
commands that are interpreted by another program interacting with the CPU and RAM through the operating system. 
On the command line, the R interpreter is simply R, which we can run and send commands to one at a time. 

When we are done working with the R interpreter this way, we can run quit(save = "no") to exit, instructing that any 
temporary data that we haven’t already explicitly saved should not be saved. 

We will occasionally need to work with the R interpreter in this way, particularly when we need to install packages. For 
the most part, however, we will run R programs as executable scripts, much like we did for Python. In this case, we use 
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the Rscript interpreter via the familiar #!/usr/bin/env Rscript line, which as always must be the first line of the file. 
(See chapter 5, “Permissions and Executables,” for more information on creating executable script files on the command 
line.) 

As with other script types, we can make this script executable with chmod and execute it. 

RStudio RStudio 

Programming in R on the command line works as well as any other language, but the most common way to program in 
R today is using an integrated development environment (IDE) known as RStudio. Graphical IDEs like RStudio help 
the programmer to write code, manage the various files associated with a project, and provide hints and documentation 
during the programming process. Many IDEs (like Eclipse and Xcode) are complicated pieces of software in their own 
right. The RStudio IDE is moderately complex, but the developers have worked hard to focus on ease of use specifically 
for the R programming language. It is available for Windows, OS X, and Linux, at http://rstudio.com. Installing 
RStudio requires first installing the R interpreter from http://www.r-project.org. 
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When first opened, RStudio presents three panes. On the left is the same interface with the interpreter that we saw by 
running R on the command line. On the lower right is a pane presenting tabs for a file browser, a help browser, and a 
panel where plots can be viewed. The upper right pane shows the history of commands that the interpreter has run since 
it opened and the “global environment,” illustrating some information about which variables and data the interpreter 
currently has stored in memory. 

None of these three panes, however, is the one we are primarily interested in! To open up the most important pane, 
we need to create a new “R script” file—a text file of R commands, just like the executable script on the command line. 
To do this, we use the button with a green plus sign. 

The new pane is an editor for our code file. Here we’ve entered three lines of code (a line like #!/usr/bin/env Rstudio is 
only necessary for running R scripts on the command line). 
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The file editor pane contains a number of buttons, four of which are worth discussing immediately. First, the save button 
(the small blue diskette) saves the file—R script files traditionally get the file extension .R. Farther to the right, the Run 
button sends the highlighted section of code to the interpreter window, even if that section is multiple lines (which are 
executed by the interpreter in sequence, as with most languages). The next button (with the loopy blue arrow) reruns the 
most recently run section of code, even if it is not highlighted. Finally, the Source button runs all the code in the file, just 
as would the Rscript version on the command line. The outputs of Run and Source are shown in the interpreter pane 
below, in black text. 

Note that the Run button allows the programmer to execute lines of code out of their natural order—we could just 
as easily run lines 2, 3, and 4 in that order (by highlighting them with the mouse and clicking Run) as we could 4 followed 
by 3 followed by 2 (by highlighting and running each in turn). As it turns out, programs are usually sensitive to the order 
in which lines of code are executed! So, as much as possible, avoid the Run button and instead use the Source button. This 
means that sections of code will be rerun as you develop your programs. The benefit is that you can be sure that your 
code will run in a non-RStudio environment as well, and you will be less likely to create confusing code.

1
 For the most 

part, we won’t illustrate code directly in RStudio, but rather as simple text files and snippets of them. 

Libraries/Packages Libraries/Packages 

While a default installation of the R interpreter includes a huge number of functions and packages, many additional 
libraries have been made available on CRAN (the Comprehensive R Archive Network), providing important new 

1. On the other hand, some sections of code might run for many minutes or even hours, so you could consider carefully avoiding 
rerunning those sections of code when needed. 
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functions. Fortunately, installing these libraries from CRAN is easy and requires only the interactive R interpreter and 
an internet connection.

2 

As an example, we’ll install the stringr package, which provides additional functions for working with character-
like data types (this will be the first additional package we’ll need in later chapters). To install it at the interactive R 
console, we need to run install.packages("stringr"). You may be asked whether the package should be installed in a 
“personal library” and whether to create such a personal library, to which you can answer y. You may also be prompted 
to select a nearby geographical location from which to download the package, also known as a “mirror.” 

Once the package has been installed, using it in an R script is as easy as first calling library("stringr") or 
library(stringr), after which the functions provided by the library are available. In this example, we’re using the 
str_split() function provided by the stringr package; the printed output would be "Hello" "world" rather than 
"Hello world". 

Note that install.packages() needs to be run only once per package, and should usually be done in the interactive R 
interpreter. The library() function will need to be used (once) for each library in each R script that uses it. These calls 
are usually collected near the top of the script. 

Exercises Exercises 

1. If you are working on the command line, create an executable file interpreted by Rscript and have it print 

some information. If you prefer to try RStudio, install it and create a new R script, having it print several lines of 

text and using the Source button to run the entire script. Experiment with the “Run” and “Re-Run” buttons as 

well. 

2. If you are working in RStudio, use the interface to create a new “Project” (represented by a directory in the 

file system housing data, R scripts, and other files related to an analysis project) and create several R scripts. For 

one of the scripts you create, try clicking the “Compile Notebook” icon (it looks like a small notepad) to create 

an HTML report, and save it in the project directory. 

3. If you are using RStudio, try creating a new “R Markdown” file rather than an R script file. R Markdown files 

allow you to mix “chunks” of R code along with text documentation, which can then be “knitted” into a nicely 

formatted HTML report. Save the report in the project directory. 

4. Install the stringr library via the interactive console and write a script that uses the str_split() function in it. If 

you are using RStudio, libraries can also be installed in the “Packages” tab of the RStudio interface. 

2. In R, the terms “library” and “package” are frequently used synonymously, but technically they are distinct. The library is the 
directory where packages (collections of code and data providing the functionality) are stored. 
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27. Variables and Data 

Like most languages, R lets us assign data to variables. In fact, we can do so using either the = assignment operator or the 
<- operator, though the latter is most commonly found and generally preferred. 

Here, print() is a function, which prints the contents of its parameter (to the interpreter window in RStudio, or 
standard output on the command line). This function has the “side effect” of printing the output but doesn’t return 
anything.

1
 By contrast, the abs() function returns the absolute value of its input without any other effects. 

The interpreter ignores # characters and anything after them on a single line, so we can use them to insert comments in 
our code for explanation or to improve readability. Blank lines are ignored, so we can add them to improve readability as 
well. 

You might be curious why the extra [1] is included in the printed output; we’ll return to that point soon, but for 
now, let it suffice to say that the number 4.4 is the first (and only) of a collection of values being printed. 

The right-hand side of an assignment is usually evaluated first, so we can do tricky things like reuse variable names 
in expressions. 

Variable and function names in R deserve some special discussion. There are a variety of conventions, but a common one 
that we’ll use is the same convention we used for Python: variable names should (1) consist of only letters and numbers 
and underscores, (2) start with a lowercase letter, (3) use underscores to separate words, and (4) be meaningful and 
descriptive to make code more readable. 

In R, variable and function names are also allowed to include the . character, which contains no special meaning 
(unlike in many other languages). So, alpha.abs <- abs(alpha) is not an uncommon thing to see, though we’ll be 
sticking with the convention alpha_abs <- abs(alpha). R variables may be almost anything, so long as we are willing to 

1. The R interpreter will also print the contents of any variable or value returned without being assigned to a variable. For example, 
the lines alpha and 3 + 4 are equivalent to print(alpha) and print(3 + 4). Such “printless” prints are common in R code, but we prefer 
the more explicit and readable call to the print() function. 
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surround the name with back-tick characters. So, `alpha abs` <- abs(alpha) would be a valid line of code, as would a 
following line like print(`alpha abs`), though this is not recommended. 

Numerics, Integers, Characters, and Logicals Numerics, Integers, Characters, and Logicals 

One of the most basic types of data in R is the “numeric,” also known as a float, or floating-pointing number in other 
languages.

2
 R even supports scientific notation for these types. 

R also provides a separate type for integers, numbers that don’t have a fractional value. They are important, but less 
commonly seen in R primarily because numbers are created as numerics, even if they look like integers. 

It is possible to convert numeric types to actual integer types with the as.integer() function, and vice versa with the 
as.numeric() function. 

When converting to an integer type, decimal parts are removed, and thus the values are rounded toward 0 (4.8 becomes 
4, and -4.8 would become -4.) 

The “character” data type holds a string of characters (though of course the string may contain only a single 
character, or no characters as in ''). These can be specified using either single or double quotes. 

Concatenating character strings is trickier in R than in some other languages, so we’ll cover that in chapter 32, “Character 
and Categorical Data.” (The cat() function works similarly, and allows us to include special characters like tabs and 
newlines by using \t and \n, respectively; cat("Shawn\tO'Neil") would output something like Shawn O'Neil.) 

Character types are different from integers and numerics, and they can’t be treated like them even if they look like 
them. However, the as.character() and as.numeric() functions will convert character strings to the respective type if 
it is possible to do so. 

By default, the R interpreter will produce a warning (NAs induced by conversion) if such a conversion doesn’t make 
sense, as in as.numeric("Shawn"). It is also possible to convert a numeric or integer type to a character type, using 
as.character(). 

2. This reflects the most common use of the term "numeric" in R, though perhaps not the most accurate. R has a double type which 
implements floating-point numbers, and technically both these and integers are subtypes of numeric. 
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The “logical” data type, known as a Boolean type in other languages, is one of the more important types for R. These 
simple types store either the special value TRUE or the special value FALSE (by default, these can also be represented by 
the shorthand T and F, though this shorthand is less preferred because some coders occasionally use T and F for variable 
names as well). Comparisons between other types return logical values (unless they result in a warning or error of some 
kind). It is possible to compare character types with comparators like < and >; the comparison is done in lexicographic 
(dictionary) order. 

But beware: in R (and Python), such comparisons also work when they should perhaps instead result in an error: 
character types can be validly compared to numeric types, and character values are always considered larger. This 
particular property has resulted in a number of programming mistakes. 

R supports <, >, <=, >=, ==, and != comparisons, and these have the same meaning as for the comparisons in Python (see 
chapter 17, “Conditional Control Flow,” for details). For numeric types, R suffers from the same caveat about equality 
comparison as Python and other languages: rounding errors for numbers with decimal expansions can compound in 
dangerous ways, and so comparing numerics for equality should be done with care. (You can see this by trying to run 
print(0.2 * 0.2 / 0.2 == 0.2), which will result in FALSE; again, see chapter 17 for details.

3
) The “official” way to 

compare two numerics for approximate equality in R is rather clunky: isTRUE(all.equal(a, b)) returns TRUE if a and 
b are approximately equal (or, if they contain multiple values, all elements are). We’ll explore some alternatives in later 
chapters. 

Speaking of programming mistakes, because <- is the preferred assignment operator but = is also an assignment operator, 
one must be careful when coding with these and the == or < comparison operators. Consider the following similar 
statements, all of which have different meanings. 

R also supports logical connectives, though these take on a slightly different syntax than most other languages. 

3. Because whole numbers are by default stored as numerics (rather than integers), this may cause some discomfort when 
attempting to compare them. But because whole numbers can be stored exactly as numerics (without rounding), statements like 
4 + 1 == 5, equivalent to 4.0 + 1.0 == 5.0, would result in TRUE. Still, some cases of division might cause a problem, as in (1/5) * (1/
5) / (1/5) == (1/5). 

Chapter 27. Variables and Data 267

Computational Biology  |  267



Connective Connective Meaning Meaning Example (with Example (with a <- 7, , b <- 3) ) 

& and: True if both sides are True a < 8 & b == 3    # True 

| or: True if one or both sides are True a < 8 | b == 9    # True 

! not: True if following is False ! a < 3           # True 

These can be grouped with parentheses, and usually should be to avoid confusion. 

When combining logical expressions this way, each side of an ampersand or | must result in a logical—the code a == 9 

| 7 is not the same as a == 9 | a == 7 (and, in fact, the former will always result in TRUE with no warning). 
Because R is such a dynamic language, it can often be useful to check what type of data a particular variable is 

referring to. This can be accomplished with the class() function, which returns a character string of the appropriate 
type. 

We’ll do this frequently as we continue to learn about various R data types. 

Exercises Exercises 

1. Given a set of variables, a, b, c, and d, find assignments of them to either TRUE or FALSE such that the result 

variable holds TRUE. 

2. Without running the code, try to reason out what print(class(class(4.5))) would result in. 

3. Try converting a character type like "1e-50" to a numeric type with as.numeric(), and one like "1x10^5". What are 

the numeric values after conversion? Try converting the numeric value 0.00000001 to a character type—what is 

the string produced? What are the smallest and largest numerics you can create? 
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4. The is.numeric() function returns the logical TRUE if its input is a numeric type, and FALSE otherwise. The 

functions is.character(), is.integer(), and is.logical() do the same for their respective types. Try using these to 

test whether specific variables are specific types. 

5. What happens when you run a line like print("ABC"* 4)? What about print("ABC" + 4)? Why do you think the 

results are what they are? How about print("ABC" + "DEF")? Finally, try the following: print(TRUE + 5), print(TRUE + 

7), print(FALSE + 5), print(FALSE + 7), print(TRUE * 4), and print(FALSE * 4). What do you think is happening here? 
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28. Vectors 

Vectors (similar to single-type arrays in other languages) are ordered collections of simple types, usually numerics, 
integers, characters, or logicals. We can create vectors using the c() function (for concatenate), which takes as parameters 
the elements to put into the vector: 

The c() function can take other vectors as parameters, too—it will “deconstruct” all subvectors and return one large 
vector, rather than a vector of vectors. 

We can extract individual elements from a vector using [] syntax; though note that, unlike many other languages, the 
first element is at index 1. 

The length() function returns the number of elements of a vector (or similar types, like lists, which we’ll cover later) as 
an integer: 

We can use this to extract the last element of a vector, for example. 

No “Naked Data”: Vectors Have (a) Class No “Naked Data”: Vectors Have (a) Class 

So far in our discussion of R’s data types, we’ve been making a simplification, or at least we’ve been leaving something 
out. Even individual values like the numeric 4.6 are actually vectors of length one. Which is to say, gc_content <- 0.34 

is equivalent to gc_content <- c(0.34), and in both cases, length(gc_content) will return 1, which itself is a vector of 
length one. This applies to numerics, integers, logicals, and character types. Thus, at least compared to other languages, 
R has no “naked data”; the vector is the most basic unit of data that R has. This is slightly more confusing for character 
types than others, as each individual element is a string of characters of any length (including potentially the “empty” 
string ""). 
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This explains quite a lot about R, including some curiosities such as why print(gc_content) prints [1] 0.34. This 
output is indicating that gc_content is a vector, the first element of which is 0.34. Consider the seq() function, which 
returns a vector of numerics; it takes three parameters:

1
 (1) the number at which to start, (2) the number at which to end, 

and (3) the step size. 

When we print the result, we’ll get output like the following, where the list of numbers is formatted such that it spans 
the width of the output window. 

The numbers in brackets indicate that the first element of the printed vector is 1.0, the sixteenth element is 8.5, and the 
thirty-first element is 16.0. 

By the way, to produce a sequence of integers (rather than numerics), the step-size argument can be left off, as in 
seq(1,20). This is equivalent to a commonly seen shorthand, 1:20. 

If all of our integers, logicals, and so on are actually vectors, and we can tell their type by running the class() 
function on them, then vectors must be the things that we are examining the class of. So, what if we attempt to mix types 
within a vector, for example, by including an integer with some logicals? 

Running print(class(mix)) will result in "integer". In fact, if we attempt to print out mix with print(mix), we’d find 
that the logicals have been converted into integers! 

R has chosen to convert TRUE into 1 and FALSE into 0; these are standard binary values for true and false, whereas there is 
no standard logical value for a given integer. Similarly, if a numeric is added, everything is converted to numeric. 

And if a character string is added, everything is converted into a character string (with 3.5 becoming "3.5", TRUE 
becoming "TRUE", and so on). 

In summary, vectors are the most basic unit of data in R, and they cannot mix types—R will autoconvert any mixed types 
in a single vector to a “lowest common denominator,” in the order of logical (most specific), integer, numeric, character 
(most general). This can sometimes result in difficult-to-find bugs, particularly when reading data from a file. If a file has 

1. Most R functions take a large number of parameters, but many of them are optional. In the next chapter, we’ll see what such 
optional parameters look like, and how to get an extensive list of all the parameters that built-in R functions can take. 
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a column of what appears to be numbers, but a single element cannot be interpreted as a number, the entire vector may 
be converted to a character type with no warning as the file is read in. We’ll discuss reading data in from text files after 
examining vectors and their properties. 

Subsetting Vectors, Selective Replacement Subsetting Vectors, Selective Replacement 

Consider the fact that we can use [] syntax to extract single elements from vectors: 

Based on the above, we know that the 20 extracted is a vector of length one. The 2 used in the brackets is also a vector of 
length one; thus the line above is equivalent to second_el <- nums[c(2)]. Does this mean that we can use longer vectors 
for extracting elements? Yes! 

In fact, the extracted elements were even placed in the resulting two-element vector in the order in which they were 
extracted (the third element followed by the second element). We can use a similar syntax to selectively replace elements 
by specific indices in vectors. 

Selective replacement is the process of replacing selected elements of a vector (or similar structure) by specifying which 
elements to replace with [] indexing syntax combined with assignment <-.

2 

R vectors (and many other data container types) can be named, that is, associated with a character vector of the 
same length. We can set and subsequently get this names vector using the names() function, but the syntax is a little odd. 

Named vectors, when printed, display their names as well. The result from above: 

2. The term “selective replacement” is not widely used outside of this book. In some situations, the term “conditional replacement” is 
used, but we wanted to define some concrete terminology to capture the entirety of the idea. 
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Named vectors may not seem that helpful now, but the concept will be quite useful later. Named vectors give us another 
way to subset and selectively replace in vectors: by name. 

Although R doesn’t enforce it, the names should be unique to avoid confusion when selecting or selectively replacing 
this way. Having updated Student A’s and Student B’s score, the change is reflected in the output: 

There’s one final and extremely powerful way of subsetting and selectively replacing in a vector: by logical vector. By 
indexing with a vector of logicals of the same length as the vector to be indexed, we can extract only those elements where 
the logical vector has a TRUE value. 

While indexing by index number and by name allows us to extract elements in any given order, indexing by logical doesn’t 
afford us this possibility. 

We can perform selective replacement this way as well; let’s suppose Students A and C retake their quizzes and 
moderately improve their scores. 

And the printed output: 

In this case, the length of the replacement vector (c(159, 169)) is equal to the number of TRUE values in the indexing 
vector (c(TRUE, FALSE, TRUE)); we’ll explore whether this is a requirement below. 

In summary, we have three important ways of indexing into/selecting from/selectively replacing in vectors: 

1. by index number vector, 

2. by character vector (if the vector is named), and 
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3. by logical vector. 

Vectorized Operations, NA Values Vectorized Operations, NA Values 

If vectors are the most basic unit of data in R, all of the functions and operators we’ve been working 
with—as.numeric(), *, and even comparisons like >—implicitly work over entire vectors. 

In this example, each element of the character vector has been converted, so that class(numerics) would return 
"numeric". The final character string, "9b3x", cannot be reasonably converted to a numeric type, and so it has been 
replaced by NA. When this happens, the interpreter produces a warning message: NAs introduced by coercion. 

NA is a special value in R that indicates either missing data or a failed computation of some type (as in attempting 
to convert "9b3x" to a numeric). Most operations involving NA values return NA values; for example, NA + 3 returns NA, 
and many functions that operate on entire vectors return an NA if any element is NA. A canonical example is the mean() 
function. 

Such functions often include an optional parameter that we can give, na.rm = TRUE, specifying that NA values should be 
removed before the function is run. 

While this is convenient, there is a way for us to remove NA values from any vector (see below). 
Other special values in R include NaN, for “Not a Number,” returned by calculations such as the square root of -1, 

sqrt(-1), and Inf for “Infinity,” returned by calculations such as 1/0. (Inf/Inf, by the way, returns NaN.) 
Returning to the concept of vectorized operations, simple arithmetic operations such as +, *, /, -, ^ (exponent), 

and %% (modulus) are vectorized as well, meaning that an expression like 3 * 7 is equivalent to c(3) * c(7). When the 
vectors are longer than a single element, the operation is done on an element-by-element basis. 

If we consider the * operator, it takes two inputs (numeric or integer) and returns an 
output (numeric or integer) for each pair from the vectors. This is quite similar to the 
comparison >, which takes two inputs (numeric or integer or character) and returns a 
logical. 

Chapter 28. Vectors 275

Computational Biology  |  275



Vector Recycling Vector Recycling 

What happens if we try to multiply two vectors that aren’t the same length? It turns out that the shorter of the two will 
be reused as needed, in a process known as vector recycling, or the reuse of the shorter vector in a vectorized operation. 

This works well when working with vectors of length one against longer vectors, because the length-one vector will be 
recycled as needed. 

If the length of the longer vector is not a multiple of the length of the shorter, however, the last recycle will go only 
partway through. 

When this happens, the interpreter prints a warning: longer object length is not a multiple of shorter object 

length. There are few situations where this type of partial recycling is not an accident, and it should be avoided. 
Vector recycling also applies to selective replacement; for example, we can selectively replace four elements of a 

vector with elements from a two-element vector: 

More often we’ll selectively replace elements of a vector with a length-one vector. 

These concepts, when combined with vector indexing of various kinds, are quite powerful. Consider that an expression 
like values > 35 is itself vectorized, with the shorter vector (holding just 35) being recycled such that what is returned is 
a logical vector with TRUE values where the elements of values are greater than 35. We could use this vector as an indexing 
vector for selective replacement if we wish. 
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More succinctly, rather than create a temporary variable for select_vec, we can place the expression values > 35 directly 
within the brackets. 

Similarly, we could use the result of something like mean(values) to replace all elements of a vector greater than the mean 
with 0 easily, no matter the order of the elements! 

More often, we’ll want to extract such values using logical selection. 

These sorts of vectorized selections, especially when combined with logical vectors, are a powerful and important part of 
R, so study them until you are confident with the technique. 

Exercises Exercises 

1. Suppose we have r as a range of numbers from 1 to 30 in steps of 0.3; r<- seq(1, 30, 0.3). Using just the 

as.integer() function, logical indexing, and comparisons like >, generate a sequence r_decimals that contains all 

values of r that are not round integers. (That is, it should contain all values of r except 1.0, 2.0, 3.0, and so on. 

There should be 297 of them.) 

2. We briefly mentioned the %%, or “modulus,” operator, which returns the remainder of a number after integer 

division (e.g., 4 %% 3 == 1 and 4 %% 4 == 0; it is also vectorized). Given any vector r, for example r <- seq(1, 30, 

0.3), produce a vector r_every_other that contains every other element of r. You will likely want to use %%, the == 

equality comparison, and you might also want to use seq() to generate a vector of indices of the same length as 

r. 

Do the same again, but modify the code to extract every third element of r into a vector called r_every_third. 

3. From chapter 27, “Variables and Data,” we know that comparisons like ==, !=, >= are available as well. Further, 

we know that ! negates the values of a logical vector, while & combines two logical vectors with “and,” and | 

combines two logical vectors with “or.” Use these, along with the %% operator discussed above, to produce a 

vector div_3_4 of all integers between 1 and 1,000 (inclusive) that are evenly divisible by 3 and evenly divisible by 

4. (There are 83 of them.) Create another, not_div_5_6, of numbers that are not evenly divisible by 5 or 6. (There 
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are 667 of them. For example, 1,000 should not be included because it is divisible by 5, and 18 should not be 

included because it is divisible by 6, but 34 should be because it is divisible by neither.) 

Common Vector Functions Common Vector Functions 

As vectors (specifically numeric vectors) are so ubiquitous, R has dozens (hundreds, actually) of functions that do useful 
things with them. While we can’t cover all of them, we can quickly cover a few that will be important in future chapters. 

First, we’ve already seen the seq() and length() functions; the former generates a numeric vector comprising a 
sequence of numbers, and the latter returns the length of a vector as a single-element integer vector. 

Presented without an example, mean(), sd(), and median() return the mean, standard deviation, and median of a 
numeric vector, respectively. (Provided that none of the input elements are NA, though all three accept the na.rm = 

TRUE parameter.) Generalizing median(), the quantile() function returns the Yth percentile of a function, or multiple 
percentiles if the second argument has more than one element. 

The output is a named numeric vector: 

The unique() function removes duplicates in a vector, leaving the remaining elements in order of their first occurrence, 
and the rev() function reverses a vector. 

There is the sort() function, which sorts a vector (in natural order for numerics and integers, and lexicographic 
(dictionary) order for character vectors). Perhaps more interesting is the order() function, which returns an integer 
vector of indices describing where the original elements of the vector would need to be placed to produce a sorted order. 

In this example, the order vector, 2 5 3 4 1, indicates that the second element of rev_uniq would come first, followed 
by the fifth, and so on. Thus we could produce a sorted version of rev_uniq with rev_uniq[order_rev_uniq] (by virtue 
of vectors’ index-based selection), or more succinctly with rev_uniq[order(rev_uniq)]. 
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Importantly, this allows us to rearrange multiple vectors with a common order determined by a single one. For example, 
given two vectors, id and score, which are related element-wise, we might decide to rearrange both sets in alphabetical 
order for id. 

The sample() function returns a random sampling from a vector of a given size, either with replacement or without as 
specified with the replace = parameter (FALSE is the default if unspecified). 

The rep() function repeats a vector to produce a longer vector. We can repeat in an element-by-element fashion, or over 
the whole vector, depending on whether the each = parameter is used or not. 

Last (but not least) for this discussion is the is.na() function: given a vector with elements that are possibly NA values, it 
returns a logical vector whole elements are TRUE in indices where the original was NA, allowing us to easily indicate which 
elements of vectors are NA and remove them. 

Notice the use of the exclamation point in the above to negate the logical vector returned by is.na(). 
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Generating Random Data Generating Random Data 

R excels at working with probability distributions, including generating random samples from them. Many distributions 
are supported, including the Normal (Gaussian), Log-Normal, Exponential, Gamma, Student’s t, and so on. Here we’ll 
just look at generating samples from a few for use in future examples. 

First, the rnorm() function generates a numeric vector of a given length sampled from the Normal distribution with 
specified mean (with mean =) and standard deviation (with sd =). 

Similarly, the runif() function samples from a uniform distribution limited by a minimum and maximum value. 

The rexp() generates data from an Exponential distribution with a given “rate” parameter, controlling the rate of decay 
of the density function (the mean of large samples will approach 1.0/rate). 

R includes a large number of statistical tests, though we won’t be covering much in the way of statistics other than a few 
driving examples. The t.test() function runs a two-sided student’s t-test comparing the means of two vectors. What is 
returned is a more complex data type with class "htest". 

When printed, this complex data type formats itself into nice, human-readable output: 
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Reading and Writing Tabular Data, Wrapping Long Lines Reading and Writing Tabular Data, Wrapping Long Lines 

Before we go much further, we’re going to want to be able to import data into our R programs from external files (which 
we’ll assume to be rows and columns of data in text files). We’ll do this with read.table(), and the result will be a type 
of data known as a “data frame” (or data.frame in code). We’ll cover the nuances of data frames later, but note for now 
that they can be thought of as a collection of vectors (of equal length), one for each column in the table. 

As an example, let’s suppose we have a tab-separated text file in our present working directory called states.txt.
3 

Each row represents one of the US states along with information on population, per capita income, illiteracy rate, murder 
rate (per 100,000), percentage of high school graduates, and region (all measured in the 1970s). The first row contains a 
“header” line with column names. 

Later in the file, someone has decided to annotate Michigan’s line, indicating it as the “mitten” state: 

Like most functions, read.table() takes many potential parameters (23, in fact), but most of them have reasonable 
defaults. Still, there are five or so that we will commonly need to set. Because of the need to set so many parameters, using 
read.table() often results in a long line of code. Fortunately, the R interpreter allows us to break long lines over multiple 
lines, so long as each line ends on a character that doesn’t complete the expression (so the interpreter knows it needs to 
keep reading following lines before executing them). Common character choices are the comma and plus sign. When we 
do wrap a long line in this way, it’s customary to indent the following lines to indicate their continuance in a visual way. 

When reading states.txt, the file = parameter specifies the file name to be read, while header = TRUE indicates to the 
interpreter that the first line in the file gives the column names (without it, the column names will be "V1", "V2", "V3" and 
so on). The sep = "\t" parameter indicates that tab characters are used to separate the columns in the file (the default 

3. When running on the command line, the present working directory is inherited from the shell. In RStudio, the present working 
directory is set to the “project” directory if the file is part of a project folder. In either case, it is possible to change the working 
directory from within R using the setwd() directory, as in setwd("/home/username/rproject") in Unix/Linux and setwd("C:/Documents and 
Settings/username/My Documents/rproject") in Windows. It is also possible to specify file names by absolute path, as in /home/username/
rproject/states.txt, no matter the present working directory. 
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is any whitespace), and comment.char = "#" indicates that # characters and anything after them should be ignored while 
reading the file (which is appropriate, as evident by the # mitten annotation in the file). The stringsAsFactors = FALSE 

parameter is more cryptic: it tells the interpreter to leave the character-vector columns (like region in this example) as 
character vectors, rather than convert them to the more sophisticated factor data type (to be covered in later chapters). 

At this point, the states variable contains the data frame holding the columns (vectors) of data. We can print it 
with print(states), but the result is quite a lot of output: 

It might make better sense to extract just the first 10 rows of data and print them, which we can do with the head() 
function (head() can also extract just the first few elements of a long vector). 

The functions nrow() and ncol() return the number of rows and columns of a data frame, respectively (which is 
preferred over length(), which returns the number of columns); the dim() function returns a two-element vector with 
number of rows (at index 1) and number of columns (at index 2). 

As mentioned previously, individual columns of a data frame are (almost always) vectors. To access one of these 
individual vectors, we can use a special $ syntax, with the column name following the $. 

So long as the column name is sufficiently simple (in particular, so long as it doesn’t have any spaces), then the quote 
marks around the column name can be (and often are) omitted. 

Although this syntax can be used to extract a column from a data frame as a vector, note that it refers to the vector 
within the data frame as well. In a sense, states$income is the vector stored in the states data frame. Thus we can use 
techniques like selective replacement to work with them just like any other vectors. Here, we’ll replace all instances of 
“North Central” in the states$region vector with just the term “Central,” effectively renaming the region.

4 

4. If you have any familiarity with R, you might have run across the attach() function, which takes a data frame and results in the 
creation of a separate vector for each column. Generally, “disassembling” a data frame this way is a bad idea—after all, the columns 
of a data frame are usually associated with each other for a reason! Further, this function results in the creation of many variables 
with names based on the column names of the data frame. Because these names aren’t clearly delimited in the code, it’s easy to 
create hard-to-find bugs and mix up columns from multiple data frames this way. 
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Writing a data frame to a tab-separated file is accomplished with the write.table() function.
5
 As with read.table(), 

write.table() can take quite a few parameters, most of which have reasonable defaults. But there are six or so we’ll want 
to set more often than others. Let’s write the modified states data frame to a file called states_modified.txt as a tab-
separated file. 

The first two parameters here are the data frame to write and the file name to write to. The quote = FALSE parameter 
specifies that quotation marks shouldn’t be written around character types in the output (so the name column will have 
entries like Alabama and Alaska rather than "Alabama" and "Alaska"). The sep = "\t" indicates that tabs should separate 
the columns, while row.names = FALSE indicates that row names should not be written (because they don’t contain any 
meaningful information for this data frame), and col.names = TRUE indicates that we do want the column names output 
to the first line of the file as a “header” line. 

R and the Unix/Linux Command Line R and the Unix/Linux Command Line 

In chapter 26, “An Introduction,” we mentioned that R scripts can be run from the command line by using the #!/usr/

bin/env Rscript executable environment. (Older versions of R required the user to run a command like R CMD BATCH 

scriptname.R, but today using Rscript is preferred.) We devoted more discussion to interfacing Python with the command 

line environment than we will R, partially because R isn’t as frequently used that way, but also because it’s quite easy. 

When using read.table(), for example, data can be read from standard input by using the file name "stdin". Anything 

that is printed from an R script goes to standard output by default. Because R does a fair amount of formatting when 

printing, however, it is often more convenient to print data frames using write.table() specifying file = "". 

Finally, to get command line parameters into an R script as a character vector, the line args <- 

commandArgs(trailingOnly = TRUE) will do the trick. Here’s a simple script that will read a table on standard input, write it 

to standard output, and also read and print out any command line arguments: 

5. There are also more specialized functions for both reading and writing tabular data, such as read.csv() and write.csv(). We’ve 
focused on read.table() and write.table() because they are flexible enough to read and write tables in a variety of formats, 
including comma separated, tab separated, and so on. 
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Try making this script executable on the command line, and running it on p450s_blastp_yeast_top1.txt with something 

like cat p450s_blastp_yeast_top1.txt | ./stdin_stdout_ex.R arg1 'arg 2'. 

Exercises Exercises 

1. Suppose we have any odd-length numeric vector (e.g., sample<- c(3.2, 5.1, 2.5, 1.6, 7.9) or sample <- runif(25, 

min = 0, max = 1)). Write some lines of code that result in printing the median of the vector, without using the 

median() or quantile() functions. You might find the length() and as.integer() functions to be helpful. 

2. If sample is a sample from an exponential distribution, for example, sample <- rexp(1000, rate = 1.5), then the 

median of the sample is generally smaller than the mean. Generate a vector, between_median_mean, that contains all 

values of sample that are larger than (or equal to) the median of the sample, and less than (or equal to) the mean 

of the sample. 

3. Read in the states.txt file into a data frame as described. Extract a numeric vector called murder_lowincome 

containing murder rates for just those states with per capita incomes less than the median per capita income 

(you can use the median() function this time). Similarly, extract a vector called murder_highincome containing 

murder rates for just those states with greater than (or equal to) the median per capita income. Run a two-

sample t.test() to determine whether the mean murder rates are different between these two groups. 

4. Let states be the state information data frame described above. Describe what the various operations below 

do in terms of indexing, selective replacement, vector recycling, and the types of data involved (e.g., numeric 

vectors and logical vectors). To get you started, the first line adds a new column to the states data frame called 

"newpop" that contains the same information as the "population" column. 

5. Determine the number of unique regions that are listed in the states data frame. Determine the number of 

unique regions represented by states with greater than the median income. 

6. What does the sum() function report for a numeric vector c(2, 3, 0, 1, 0, 2)? How about for c(1, 0, 0, 1, 1, 

0)? And, finally, how about for the logical vector c(TRUE, FALSE, FALSE, TRUE, TRUE, FALSE)? How could the sum() 
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function thus be useful in a logical context? 
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29. R Functions 

While we could continue to cover R’s unique and powerful vector syntax, it’s time to have some fun and learn about 
functions. Functions in R are similar to their Python counterparts: they encapsulate a block of code, making it reusable 
as well as allowing us to consider the block in isolation of the rest of the program. As with functions in most languages, 
R functions consist of three main parts: 

1. The input (parameters given to the function). 

2. The code block that is to be executed using those parameters. In R, blocks are defined by a matching pair of curly 
brackets, { and }. 

3. The output of the function, called the return value. This may be optional if the function “does something” (like 
print()) rather than “returns something.” 

Let’s consider the problem of determining which elements of two numeric vectors, say vec1 and vec2, are close enough 
to equal to call them equal. As mentioned in chapter 27, “Variables and Data,” the standard way to check if all elements 
in two equal-length vectors are approximately pairwise-equal is to use isTRUE(all.equal(vec1, vec2)), which returns a 
single TRUE if this is the case and a single FALSE if not. 

But perhaps we’d rather like a logical vector indicating which elements are approximately equal. The most 
straightforward way to do this is by comparing the absolute difference between the elements with some small epsilon 
value. 

As a review of the last chapter, what is happening here is that the - operation is vectorized over the left- and right-hand 
sides, producing a vector (using vector recycling if one of the two were shorter, which not the case here; see chapter 28), as 
is the abs() function, which takes a vector and returns a vector of absolute values. Similarly, the < operator is vectorized, 
and because epsilon is a vector of length one, so it is compared to all elements of the result of abs(vec1 - vec2) using 
vector recycling, for the final result of a logical vector. 

Because this sort of operation is something we might want to perform many times, we could write a function for it. 
In this case, we’ll call our function equalish(); here’s the R code for defining and running such a function. 
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There are many things to note here. First, when defining a function, we define the parameters it can take. Parameters in R 
functions have a position (a is at position 1, b is at position 2, and epsilon is at position 3) and a name (a, b, and epsilon). 
Some parameters may have a default value: the value they should have if unspecified otherwise, while other parameters 
may be required: the user of the function must specify them. Default values are assigned within the parameter list with = 
(not <- as in standard variable assignment). 

The block that defines the operations performed by the function is enclosed in curly brackets, usually with the 
opening bracket on the same line as the function/parameter list definition, and the closing bracket on its own line. We’ve 
indented the lines that belong to the function block by two spaces (an R convention). Although not required, this is a 
good idea, as it makes code much more readable. The value that is returned by the function is specified with a call to 
a special return() function—functions can only return one value, though it might be something sophisticated like a 
vector or data frame.

1 

After a function has been defined, it can be called, as in eq <- equalish(vec1, vec2). The variable names 
associated with the data outside the function (in this case vec1 and vec2) needn’t match the parameter names inside the 
function (a and b). This is an important point to which we will return. 

In the call above, we let the epsilon parameter take its default value of 0.00001. We could alternatively use a stricter 
comparison. 

In R, arguments to functions may be specified by position (as in the example above), by name, or by a combination. 

1. Any variable that is simply stated (without assignment) in a function will be returned. So, this definition is equivalent: 

Some R programmers prefer this syntax; for this text, however, we’ll stick to using the more explicit return(). This also helps 
differentiate between such “returnless returns” and “printless prints” (see the footnote in Chapter 27, Variables and Data). 
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Many R functions take a few required parameters and many nonrequired parameters with reasonable defaults; this calling 
scheme allows us to specify the required parameters as well as only those nonrequired ones that we wish to change. 

In general, you should specify parameters by position first (if you want to specify any by position), then by name. 
Although the following calls will work, they’re quite confusing. 

We frequently use default parameters to specify named parameters in functions called within the function we’re 
defining. Here is an example of a function that computes the difference in means of two vectors; it takes an optional 
remove_NAs parameter that defaults to FALSE. If this is specified as TRUE, the na.rm parameter in the calls to mean() is set 
to TRUE as well in the computation. 

For continuity with other R functions, it might have made better sense to call the parameter na.rm; in this case, we 
would modify the computation lines to read like m1 <- mean(vec1, na.rm = na.rm). Although it may seem that the R 
interpreter would be confused by the duplicate variable names, the fact that the mean() parameter na.rm happens to have 
the same name as the variable being passed will cause no trouble. 

Variables and Scope Variables and Scope 

Let’s run a quick experiment. Inside our function, the variable result has been assigned with the line result <- abs(a 

- b) < epsilon. After we run the function, is it possible to access that variable by printing it? 

Printing doesn’t work! 

This variable doesn’t print because, as in most languages, variables assigned within functions have a scope local to 
that function block. (A variable’s scope is the context in which it can be accessed.) The same goes for the parameter 
variables—we would have no more success with print(a), print(b), or print(epsilon) outside of the function. 

One of the best features of these local variables is that they are independent of any variables that might already exist. 
For example, the function creates a variable called result (which we now know is a local variable scoped to the function 
block). What if, outside of our function, we also had a result variable being used for an entirely different purpose? 
Would the function overwrite its contents? 
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True to the independence of the local result variable inside the function, the contents of the external result are not 
overwritten. 

This feature of how variables work within functions might seem somewhat strange, but the upshot is important: 
functions can be fully encapsulated. If they are designed correctly, their usage cannot affect the code context in which 
they are used (the only way standard R functions can affect the “outside world” is to return some value). Functions 
that have this property and always return the same value given the same inputs (e.g., have no random component) are 
called “pure.” They can be treated as abstract black boxes and designed in isolation of the code that will use them, and 
the code that uses them can be designed without consideration of the internals of functions it calls. This type of design 
dramatically reduces the cognitive load for the programmer. 

Now, let’s try the reverse experiment: if a variable is defined outside of the function (before it is called), can it be 
accessed from within the function block definition? 

The lack of error in the output indicates that yes, the function block can access such external variables: 

This means that it is possible to write functions that take no parameters and simply access the external variables they will 
need for computation. 

But writing such functions is fairly bad practice. Why? Because although the function still cannot affect the external 
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environment, it is now quite dependent on the state of the external environment in which it is called. The function will 
only work if external variables called vec1, vec2, and epsilon happen to exist and have the right types of data when the 
function is called. Consider this: the former version of the function could be copied and pasted into an entirely different 
program and still be guaranteed to work (because the a and b parameters are required local variables), but that’s not the 
case here. 

The same four “rules” for designing functions in Python apply to R: 

1. Functions should only access local variables that have been assigned within the function block, or have been passed 
as parameters (either required or with defaults). 

2. Document the use of each function with comments. What parameters are taken, and what types should they be? 
Do the parameters need to conform to any specification, or are there any caveats to using the function? Also, what 
is returned? 

3. Functions shouldn’t be “too long.” This is subjective and context dependent, but most programmers are 
uncomfortable with functions that are more than one page long in their editor window. The idea is that a 
function encapsulates a single, small, reusable idea. If you do find yourself writing a function that is hard to read 
and understand, consider breaking it into two functions that need to be called in sequence, or a short function 
that calls another short function. 

4. Write lots of functions! Even if a block of code is only going to be called once, it’s ok to make a function out of it 
(if it encapsulates some idea or well-separable block). After all, you never know if you might need to use it again, 
and just the act of encapsulating the code helps you ensure its correctness and forget about it when working on the 
rest of your program. 

Argument Passing and Variable Semantics Argument Passing and Variable Semantics 

So far, the differences we’ve seen between Python and R have mostly been in R’s emphasis on vectorized operations. 

In later chapters, we’ll also see that R emphasizes the creative use of functions more strongly than does Python (which 

should at the very least be a good reason to study them well). 

There is another dramatic difference between these two languages, having to do with variables and their relationship 

to data. This is probably easiest to see with a couple of similar code examples. First, here’s some Python code that 

declares a list of numbers nums, creates a new variable based on the original called numsb, modifies the first element of 

numsb, and then prints both. 

The output indicates that nums and numsb are both variables (or “names,” in Python parlance) for the same underlying 

data. 

Corresponding R code and output reveals that R handles variables very differently: 

Chapter 29. R Functions 291

Computational Biology  |  291



While in Python it’s common for the same underlying data to be referenced by multiple variables, in R, unique variables 

are almost always associated with unique data. Often these semantics are emphasized in the context of local variables 

for functions. Here’s the same thing, but the operation is mediated by a function call. First, the Python version and 

output: 

And now the R version and output: 

In the Python code, the param local variable is a new variable for the same underlying data, whereas in the R code the 

local param variable is a new variable for new underlying data. These two paradigms are found in a wide variety of 

languages; the latter is known as “pass-by-value,” though one could think of it as “pass-by-copy.” This doesn’t mean 

that R always creates a copy–it uses a “copy-on-write” strategy behind the scenes to avoid excess work. As for the 

former, the Python documentation refers to it as “pass-by-assignment,” and the effect is similar to “pass-by-reference.” 

(The term “pass-by-reference” has a very narrow technical definition, but is often used as a catch-all for this type of 

behavior.) 

There are advantages and disadvantages to both strategies. The somewhat more difficult scheme used by Python is 

both speedier and allows for more easy implementations of some sophisticated algorithms (like the structures covered 

in chapter 25, “Algorithms and Data Structures”). The pass-by-value scheme, on the other hand, can be easier to code 

with, because functions that follow rule 1 above can’t surreptitiously modify data: they are “side effect free.” 
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Getting Help Getting Help 

The R interpreter comes with extensive documentation for all of the functions that are built-in. Now that we know how 
to write functions, reading this documentation will be easy. 

The help page for a particular function can be accessed by running help("function_name") in the interactive 
console, as in help("t.test") for help with the t.test() function. 

Alternatively, if the function name contains no special characters, we can use the shorthand ?function_name, as in 
?t.test. The help is provided in an interactive window in which you can use the arrow keys to scroll up and down. 

The help pages generally have the following sections, and there may be others: 

• Description: Short description of the function. 

• Usage: An example of how the function should be called, usually listing the most important parameters; 
parameters with defaults are shown with an equal sign. 

• Arguments: What each parameter accepted by the function does. 

• Details: Notes about the function and caveats to be aware of when using the function. 

• Value: What is returned by the function. 

Chapter 29. R Functions 293

Computational Biology  |  293



• References: Any pertinent journal article or book citations. These are particularly useful for complex statistical 
functions. 

• Examples: Example code using the function. Unfortunately, many examples are written for those who are familiar 
with the basics of the function, and illustrate more complex usage. 

• See Also: Other related functions that a user might find interesting. 

If a function belongs to a package (such as str_split() in the stringr package), one can either load the package first 
(with library(stringr)) and access the help for the function as usual (help("str_split")), or specify the package 
directly, as in help("str_split", package = "stringr"). An overview help page for all functions in the package can be 
accessed with help(package = "stringr"). 

Finally, in the interactive window, using help.search("average") will search the documentation for all functions 
mentioning the term “average”—the shortcut for this is ??average. 

Exercises Exercises 

1. We often wish to “normalize” a vector of numbers by first subtracting the mean from each number and then 

dividing each by the standard deviation of the numbers. Write a function called normalize_mean_sd() that takes 

such a vector and returns the normalized version. The function should work even if any values are NA (the 

normalized version of NA should simply be NA). 

2. The t.test() function tests whether the means of two numeric vectors are unequal. There are multiple 

versions of t-tests: some assume that the variances of the input vectors are equal, and others do not make this 

assumption. By default, does t.test() assume equal variances? How can this behavior be changed? 

3. Using the help documentation, generate a vector of 100 samples from a Poisson distribution with the lambda 

parameter (which controls the shape of the distribution) set to 2.0. 

4. The following function computes the difference in mean of two vectors, but breaks at least one of the “rules” 

for writing functions. Fix it so that it conforms. (Note that it is also lacking proper documentation.) 

5. The following code generates two random samples, and then computes and prints the difference in 

coefficient of variation for the samples (defined as the standard deviation divided by the mean). Explain how this 

code works, step by step, in terms of local variables, parameters, and returned values. What if immediately 

before sample1 <- rnorm(100, mean = 4, sd = 2), we had result <- "Test message.", and after print(answer), we had 
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print(result)? What would be printed, and why? 
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30. Lists and Attributes 

The next important data type in our journey through R is the list. Lists are quite similar to vectors—they are ordered 
collections of data, indexable by index number, logical vector, and name (if the list is named). Lists, however, can 
hold multiple different types of data (including other lists). Suppose we had three different vectors representing some 
information about the plant Arabidopsis thaliana. 

We can then use the list() function to gather these vectors together into a single unit with class "list". 

Graphically, we might represent this list like so: 

Here, the [1] syntax is indicating that the elements of the list are vectors (as in when vectors are printed). Like vectors, 
lists can be indexed by index vector and logical vector. 

Both of the above assign to the variable sublist a list looking like: 
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This seems straightforward enough: subsetting a list with an indexing vector returns a smaller list with the requested 
elements. But this rule can be deceiving if we forget that a vector is the most basic element of data. Because 2 is the length-
one vector c(2), athal[2] returns not the second element of the athal list, but rather a length-one list with a single 
element (the vector of ecotypes). 

A graphical representation of this list: 

We will thus need a different syntax if we wish to extract an individual element from a list. This alternate syntax is 
athal[[2]]. 

If we wanted to extract the second ecotype directly, we would need to use the relatively clunky second_ecotype <- 

athal[[2]][2], which accesses the second element of the vector (accessed by [2]) inside of the of the second element of 
the list (accessed by [[2]]). 

When we print a list, this structure and the double-bracket syntax is reflected in the output. 

Named Lists, Lists within Lists Named Lists, Lists within Lists 

Like vectors, lists can be named—associated with a character vector of equal length—using the names() function. We can 
use an index vector of names to extract a sublist, and we can use [[]] syntax to extract individual elements by name. 
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We can even extract elements from a list if the name of the element we want is stored in another variable, using the [[]] 
syntax. 

As fun as this double-bracket syntax is, because extracting elements from a list by name is a common operation, there is 
a shortcut using $ syntax. 

In fact, if the name doesn’t contain any special characters (spaces, etc.), then the quotation marks can be left off. 

This shortcut is widely used and convenient, but, because the quotes are implied, we can’t use $ syntax to extract an 
element by name if that name is stored in an intermediary variable. For example, if extract_name <- "ecotypes", then 
athal$extract_name will expand to athal[["extract_name"]], and we won’t get the ecotypes vector. This common 
error reflects a misunderstanding of the syntactic sugar employed by R. Similarly, the $ syntax won’t work for names like 
"# Chromosomes" because that name contains a space and a special character (for this reason, names of list elements are 
often simplified). 

Frequently, $ syntax is combined with vector syntax if the element of the list being referred to is a vector. For 
example, we can directly extract the third ecotype, or set the third ecotype. 

Continuing with this example, let’s suppose we have another list that describes information about each chromosome. 
We can start with an empty list, and assign elements to it by name. 

This list of two elements relates to A. thaliana, so it makes sense to include it somehow in the athal list. Fortunately, lists 
can contain other lists, so we’ll assign this chrs list as element of the athal list. 

Lists are an excellent container for general collections of heterogeneous data in a single organized “object.” (These differ 
from Python objects in that they don’t have methods stored in them as well, but we’ll see how R works with methods in 
later chapters.) If we ran print(athal) at this point, all this information would be printed, but unfortunately in a fairly 
unfriendly manner: 
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This output does illustrate something of interest, however. We can chain the $ syntax to access elements of lists and 
contained lists by name. For example, lengths <- athal$ChrInfo$Lengths extracts the vector of lengths contained in the 
internal ChrInfo list, and we can even modify elements of these vectors with syntax like athal$ChrInfo$GeneCounts[1] 
<- 7079 (perhaps a new gene was recently discovered on the first chromosome). Expanding the syntax a bit to use 
double-brackets rather than $ notation, these are equivalent to lengths <- athal[["ChrInfo"]][["Lengths"]] and 
athal[["ChrInfo"]][["GeneCounts"]][1] <- 7079. 

Attributes, Removing Elements, List Structure Attributes, Removing Elements, List Structure 

Lists are an excellent way to organize heterogeneous data, especially when data are stored in a Name → Value association,
1 

making it easy to access data by character name. But what if we want to look up some information associated with a piece 
of data but not represented in the data itself? This would be a type of “metadata,” and R allows us to associate metadata 
to any piece of data using what are called attributes. Suppose we have a simple vector of normally distributed data: 

Later, we might want know what type of data this is: is it normally distributed, or something else? We can solve this 
problem by assigning the term "normal" as an attribute of the data. The attribute also needs a name, which we’ll call 
"disttype". Attributes are assigned in a fashion similar to names. 

When printed, the output shows the attributes that have been assigned as well. 

1. R lists are often used like dictionaries in Python and hash tables in other languages, because of this easy and effective Name → 
Value lookup operation. It should be noted that (at least as of R 3.3), name lookups in lists are not as efficient as name lookups in 
Python dictionaries or other true hash tables. For an efficient and more idiomatic hash table/dictionary operation, there is also 
the package hash available for install with install.packages("hash"). 
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We can separately extract a given attribute from a data item, using syntax like sample_dist <- attr(sample, 

"disttype"). Attributes are used widely in R, though they are rarely modified in day-to-day usage of the language.
2 

To expand our A. thaliana example, let’s assign a “kingdom” attribute to the species vector. 

At this point, we’ve built a fairly sophisticated structure: a list containing vectors (one of which has an attribute) and 
another list, itself containing vectors, with the various list elements being named. If we were to run print(athal), we’d 
see rather messy output. Fortunately, R includes an alternative to print() called str(), which nicely prints the structure 
of a list (or other data object). Here’s the result of calling str(athal) at this point. 

Removing an element or attribute from a list is as simple as assigning it the special value NULL. 

The printed structure reveals that this information has been removed. 

What is the point of all this detailed list making and attribute assigning? It turns out to be quite important, because many 
R functions return exactly these sorts of complex attribute-laden lists. Consider the t.test() function, which compares 
the means of two vectors for statistical equality: 

2. For example, the names of a vector are stored as an attribute called “names”—the lines names(scores) <- c("Student A", "Student B", 
"Student C") and attr(scores, "names") <- c("Student A", "Student B", "Student C") are (almost) equivalent. Still, it is recommended to 
use specialized functions like names() rather than set them with attr() because the names() function includes additional checks on 
the sanity of the names vector. 
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When printed, the result is a nicely formatted, human-readable result. 

If we run str(tresult), however, we find the true nature of tresult: it’s a list! 

Given knowledge of this structure, we can easily extract specific elements, such as the p value with pval <- 

tresult$p.value or pval <- tresult[["p.value"]]. 
One final note about lists: vectors (and other types) can be converted into a list with the as.list() function. This 

will come in handy later, because lists are one of the most general data types in R, and we can use them for intermediary 
data representations. 

Exercises Exercises 

1. The following code first generates a random sample called a, and then a sample called response, wherein each 

element of response is an element of a times 1.5 plus some random noise: 

Next, we can easily create a linear model predicting values of response from a: 

302 Part III: Programming in R

302  |  Shawn T. O’Neil



When printed, the output nicely describes the parameters of the model. 

We can also easily test the significance of the parameters with the anova() function (to run an analysis of 

variance test on the model). 

The output again shows nicely formatted text: 

From the model, extract the coefficient of a into a variable called a_coeff (which would contain just the number 

1.533367 for this random sample).Next, from vartest extract the p value associated with the a coefficient into a 

vector called a_pval (for this random sample, the p value is 2.2e-16). 

2. Write a function called simple_lm_pval() that automates the process above; it should take two parameters (two 

potentially linearly dependent numeric vectors) and return the p value associated with the first (nonintercept) 

coefficient. 

3. Create a list containing three random samples from different distributions (e.g., from rnorm(), runif(), and 

rexp()), and add an attribute for "disttype" to each. Use print() and str() on the list to examine the attributes you 

added. 

4. Some names can be used with $ notation without quotation marks; if l <- list(values = c(20, 30)), then 

print(l$values) will print the internal vector. On the other hand, if l <- list("val-entries" = c(20, 30)), then 

quotations are required as in print(l$"val-entries"). By experimentation, determine at least five different 

characters that require the use of quotation marks when using $ notation. 

5. Experiment with the is.list() and as.list() functions, trying each of them on both vectors and lists. 
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31. Data Frames 

In chapter 28, “Vectors,” we briefly introduced data frames as storing tables of data. Now that we have a clear 
understanding of both vectors and lists, we can easily describe data frames. (If you hastily skipped chapters 28 and 30 to 
learn about data frames, now’s the time to return to them!) Data frames are essentially named lists, where the elements 
are vectors representing columns. But data frames provide a few more features than simple lists of vectors. They ensure 
that the component column vectors are always the same length, and they allow us to work with the data by row as well as 
by column. Data frames are some of the most useful and ubiquitous data types in R. 

While we’ve already covered using the read.table() function to produce a data frame based on the contents of a 
text file, it’s also possible to create a data frame from a set of vectors. 

When printed, the contents of the column vectors are displayed 
neatly, with the column names along the top and row names along the 
left-hand side. 

As with read.table(), the data.frame() function takes an 
optional stringsAsFactors argument, which specifies whether 
character vectors (like ids) should be converted to factor types (we’ll 
cover these in detail later). For now, we’ll disable this conversion. 

Running str(gene_info) reveals the data frame’s list-like 
nature: 

Like elements of lists, the columns of data frames don’t have to have names, but not having them is uncommon. Most 
data frames get column names when they are created (either by read.table() or data.frame()), and if unset, they usually 
default to V1, V2, and so on. The column names can be accessed and set with the names() function, or with the more 
appropriate colnames() function. 
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To highlight the list-like nature of data frames, we can work with data frames by column much like lists by element. The 
three lines in the following example all result in sub_info being a two-column data frame. 

An expression like gene_info[2] thus would not return a numeric vector of lengths, but rather a single-column data 
frame containing the numeric vector. We can use [[]] syntax and $ syntax to refer to the vectors contained within data 
frames as well (the latter is much more common). 

We can even delete columns of a data frame by setting the element to NULL, as in gene_info$lengths <- NULL. 
The real charm of data frames is that we can extract and otherwise work with them by row. Just as data frames 

have column names, they also have row names: a character vector of the same length as each column. Unfortunately, by 
default, the row names are "1", "2", "3", and so on, but when the data frame is printed, the quotation marks are left off 
(see the result of print(gene_info) above). The row names are accessible through the rownames() function. 

Data frames are indexable using an extended [] syntax: [<row_selector>, <column_selector>], where 
<row_selector> and <column_selector> are vectors. Just as with vectors and lists, these indexing/selection vectors may 
be integers (to select by index), characters (to select by name), or logicals (to select logically). Also as with vectors, when 
indexing by index position or name, the requested order is respected. 

Here’s the resulting output, illustrating that "3" and "1" were the row names, which now occur at the first and second 
row, respectively. 

1 

1. Unfortunately, when printed, quotation marks are left off of row names, commonly leading programmers to think that the row 
indexes are what is being displayed. Similarly, quotation marks are left off of columns that are character vectors (like the ids 
column in this example), which can cause confusion if the column is a character type with elements like "1", "2", and so on, 
potentially leading the programmer to think the column is numeric. In a final twist of confusion, using [<row_selector>, 
<column_selector>] syntax breaks a common pattern: [] indexing of a vector always returns a vector, [] indexing of a list always 
returns a list, and [<row_selector>, <column_selector>] indexing of a data frame always returns a data frame, unless it would have only 
one column, in which case the column/vector is returned. The remedy for this is [<row_selector>, <column_selector>, drop = FALSE], 
which instructs R not to “drop” a dimension. 
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If you find this confusing, consider what would happen if we first assigned the row names of the original data frame to 
something more reasonable, before the extraction. 

Now, when printed, the character nature of the row names is revealed. 

Finally, if one of <row_selector> or <column_selector> are not specified, then all rows or columns are included. As 
an example, gene_info[c(3,1), ] returns a data frame with the third and first rows and all three columns, while 
gene_info[, c("lengths", "ids")] returns one with only the "lengths" and "ids" columns, but all rows. 

Data Frame Operations Data Frame Operations 

Because data frames have much in common with lists and rows—and columns can be indexed by index number, name, 
or logical vector—there are many powerful ways we can manipulate them. Suppose we wanted to extract only those rows 
where the lengths column is less than 200, or the gcs column is less than 0.3. 

This syntax is concise but sophisticated. While gene_info$lengths refers to the numeric vector named "lengths" 
in the data frame, the < logical operator is vectorized, with the single element 200 being recycled as needed. The 
same process happens for gene_info$gcs < 0.3, and the logical-or operator | is vectorized, producing a logical vector 
later used for selecting the rows of interest. An even shorter version of these two lines would be selected <- 

gene_info[gene_info$lengths < 200 | gene_info$gcs < 0.3, ]. The printed output: 

If we wished to extract the gcs vector from this result, we could use something like selected_gcs <- selected$gcs. 
Sometimes more compact syntax is used, where the $ and column name are appended directly to the [] syntax. 

Alternatively, and perhaps more clearly, we can first use $ notation to extract the column of interest, and then use [] 
logical indexing on the resulting vector. 
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Because subsetting data frame rows by logical condition is so common, there is a specialized function for this task: 
subset(). The first parameter is the data frame from which to select, and later parameters are logical expressions based 
on column names within that data frame (quotation marks are left off). For example, selected <- subset(gene_info, 

lengths < 200 | gcs < 0.3). If more than one logical expression is given, they are combined with & (and). Thus 
subset(gene_info, lengths < 200, gcs < 0.3) is equivalent to gene_info[gene_info$lengths < 200 & 

gene_info$gcs < 0.3 ,]. 
While the subset() function is convenient for simple extractions, knowing the ins and outs of [] selection for data 

frames as it relates to lists and vectors is a powerful tool. Consider the order() function, which, given a vector, returns 
an index vector that can be used for sorting. Just as with using order() to sort a vector, we can use order() to sort a data 
frame based on a particular column. 

The result is a data frame ordered by the lengths column: 

Because data frames force all column vectors to be the same length, we can create new columns by assigning to them by 
name, and relying on vector recycling to fill out the column as necessary. Let’s create a new column called gc_categories, 
which is initially filled with NA values, and then use selective replacement to assign values "low" or "high" depending on 
the contents of the gcs column. 

While there are more automated approaches for categorizing numerical data, the above example illustrates the flexibility 
and power of the data frame and vector syntax covered so far. 

One final note: while the head() function returns the first few elements of a vector or list, when applied to a data frame, 
it returns a similar data frame with only the first few rows. 
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Matrices and Arrays Matrices and Arrays 

Depending on the type of analysis, you might find yourself working with matrices in R, which are essentially two-

dimensional vectors. Like vectors, all elements of a matrix must be the same type, and attempts to mix types will result 

in autoconversion. Like data frames, they are two dimensional, and so can be indexed with [<row_selector>, 

<column_selector>] syntax. They also have rownames() and colnames(). 

There are a number of interesting functions for working with matrices, including det() (for computing the determinant 

of a matrix) and t() (for transposing a matrix). 

Arrays generalize the concept of multidimensional data; where matrices have only two dimensions, arrays may have 

two, three, or more. The line a <- array(c(1,1,1,1,2,2,2,2,3,3,3,3), dim = c(2,2,3)), for example, creates a three-

dimensional array, composed of three two-by-two matrices. The upper left element can be extracted as a[1,1,1]. 

Exercises Exercises 

1. Read the states.txt file into a data frame, as discussed in Chapter 28, Vectors. Extract a new data frame called 

states_name_pop containing only the columns for name and population. 

2. Using subset(), extract a data frame called states_gradincome_high containing all columns, and all rows where the 

income is greater than the median of income or where hs_grad is greater than the median of hs_grad. (There are 35 

such states listed in the table.) Next, do the same extraction with [<row_selector>, <column_selector>] syntax. 

3. Create a table called states_by_region_income, where the rows are ordered first by region and second by income. 

(The order() function can take multiple parameters as in order(vec1, vec2); they are considered in turn in 

determining the ordering.) 

4. Use order(), colnames(), and [<row_selector>,<column_selector>] syntax to create a data frame states_cols_ordered, 

where the columns are alphabetically ordered (i.e., hs_grad first, then income, then murder, then name, and so on). 

5. The nrow() function returns the number of rows in a data frame, while rev() reverses a vector and seq(a,b) 

returns a vector of integers from a to b (inclusive). Use these to produce states_by_income_rev, which is the states 

data frame but with rows appearing in reverse order of income (highest incomes on top). 

6. Try converting the states data frame to a matrix by running it through the as.matrix() function. What happens 

to the data, and why do you think that is? 
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32. Character and Categorical Data 

Scientific data sets, especially those to be analyzed statistically, commonly contain “categorical” entries. If each row in a 
data frame represents a single measurement, then one column might represent whether the measured value was from a 
“male” or “female,” or from the “control” group or “treatment” group. Sometimes these categories, while not numeric, 
have an intrinsic order, like “low,” “medium,” and “high” dosages. 

Sadly, more often than not, these entries are not encoded for easy analysis. Consider the tab-separated file 
expr_long_coded.txt, where each line represents an (normalized) expression reading for a gene (specified by the ID 
column) in a given sample group. This experiment tested the effects of a chemical treatment on an agricultural plant 
species. The sample group encodes information about what genotype was tested (either C6 or L4), the treatment applied 
to the plants (either control or chemical), the tissue type measured (either A, B, or C for leaf, stem, or root), and numbers 
for statistical replicates (1, 2, or 3). 

Initially, we’ll read the table into a data frame. For this set of data, we’ll likely want to work with the categorical 
information independently, for example, by extracting only values for the chemical treatment. This would be much easier 
if the data frame had individual columns for genotype, treatment, tissue, and replicate as opposed to a single, all-
encompassing sample column. 

A basic installation of R includes a number of functions for working with character vectors, but the stringr 
package (available via install.packes("stringr") on the interactive console) collects many of these into a set of nicely 
named functions with common options. For an overview, see help(package = "stringr"), but in this chapter we’ll 
cover a few of the most important functions from that package. 
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Splitting and Binding Columns Splitting and Binding Columns 

The str_split_fixed() function from the stringr package operates on each element of a character vector, splitting it 
into pieces based on a pattern. With this function, we can split each element of the expr_long$sample vector into three 
pieces based on the pattern "_". The “pattern” could be a regular expression, using the same syntax as used by Python 
(and similar to that used by sed). 

The value returned by the str_split_fixed() function is a matrix: like vectors, matrices can only contain a single data 
type (in fact, they are vectors with attributes specifying the number of rows and columns), but like data frames they can 
be accessed with [<row_selector>, <column_selector>] syntax. They may also have row and column names. 

Anyway, we’ll likely want to convert the matrix into a data frame using the data.frame() function, and assign some 
reasonable column names to the result. 

At this point, we have a data frame expr_long as well as sample_split_df. These two have the same number of rows in a 
corresponding order, but with different columns. To get these into a single data frame, we can use the cbind() function, 
which binds such data frames by their columns, and only works if they contain the same number of rows. 

A quick print(head(expr_long_split)) lets us know if we’re headed in the right direction. 
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At this point, the number of columns in the data frame has grown large, so print() has elected to wrap the final column 
around in the printed output. 

Detecting and %in% Detecting and %in% 

We still don’t have separate columns for tissue and replicate, but we do have this information encoded together in a 
tissuerep column. Because these values are encoded without a pattern to obviously split on, str_split_fixed() may 
not be the most straightforward solution. 

Although any solution assuming a priori knowledge of large data set contents is dangerous (as extraneous values 
have ways of creeping into data sets), a quick inspection of the data reveals that the tissue types are encoded as either A, B, 
or C, with apparently no other possibilities. Similarly, the replicate numbers are 1, 2, and 3. 

A handy function in the stringr package detects the presence of a pattern in every entry of a character vector, 
returning a logical vector. For the column tissuerep containing "A1", "A3", "B1", "B2", "B3", "C1", ..., for 
example, str_detect(expr_long_split$tissuerep, "A") would return the logical vector TRUE, TRUE, FALSE, FALSE, 

FALSE, .... Thus we can start by creating a new tissue column, initially filled with NA values. 

Then we’ll use selective replacement to fill this column with the value "A" where the tissuerep column has an "A" as 
identified by str_detect(). Similarly for "B" and "C". 

In chapter 34, “Reshaping and Joining Data Frames,” we’ll also consider more advanced methods for this sort of pattern-
based column splitting. As well, although we’re working with columns of data frames, it’s important to remember that 
they are still vectors (existing as columns), and that the functions we are demonstrating primarily operate on and return 
vectors. 

If our assumption, that "A", "B", and "C" were the only possible tissue types, was correct, there should be no NA 
values left in the tissue column. We should verify this assumption by attempting to print all rows where the tissue 
column is NA (using the is.na() function, which returns a logical vector). 

In this case, a data frame with zero rows is printed. There is a possibility that tissue types like "AA" have been recoded as 
simple "A" values using this technique—to avoid this outcome, we could use a more restrictive regular expression in the 
str_detect(), such as "^A\d$", which will only match elements that start with a single "A" followed by a single digit. See 
chapter 11, “Patterns (Regular Expressions),” and chapter 21, “Bioinformatics Knick-knacks and Regular Expressions,” 
for more information on regular-expression patterns. 

A similar set of commands can be used to fill a new replicate column. 

Chapter 32. Character and Categorical Data 313

Computational Biology  |  313



Again we search for leftover NA values, and find that this time there are some rows where the rep column is reported as 
NA, apparently because a few entries in the table have a replicate number of 0. 

There are a few ways we could handle this. We could determine what these five samples’ replicate numbers should be; 
perhaps they were miscoded somehow. Second, we could add "0" as a separate replicate possibility (so a few groups were 
represented by four replicates, rather than three). Alternatively, we could remove these mystery entries. 

Finally, we could remove all measurements for these gene IDs, including the other replicates. For this data set, 
we’ll opt for the latter, as the existence of these “mystery” measurements throws into doubt the accuracy of the other 
measurements, at least for this set of five IDs. 

To do this, we’ll first extract a vector of the “bad” gene IDs, using logical selection on the id column based on 
is.na() on the rep column. 

Now, for each element of the id column, which ones are equal to one of the elements in the bad_ids vector? Fortunately, 
R provides a %in% operator for this many-versus-many sort of comparison. Given two vectors, %in% returns a logical 
vector indicating which elements of the left vector match one of the elements in the right. For example, c(3, 2, 5, 

1) %in% c(1, 2) returns the logical vector FALSE, TRUE, FALSE, TRUE. This operation requires comparing each of the 
elements in the left vector against each of the elements of the right vector, so the number of comparisons is roughly the 
length of the first times the length of the second. If both are very large, such an operation could take quite some time to 
finish. 

Nevertheless, we can use the %in% operator along with logical selection to remove all rows containing a “bad” gene 
ID. 
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At this point, we could again check for NA values in the rep column to ensure the data have been cleaned up appropriately. 
If we wanted, we could also check length(bad_rows[bad_rows]) to see how many bad rows were identified and removed. 
(Do you see why?) 

Pasting Pasting 

While above we discussed splitting contents of character vectors into multiple vectors, occasionally we want to do the 
opposite: join the contents of character vectors together into a single character vector, element by element. The str_c() 
function from the stringr library accomplishes this task. 

The str_c() function is also useful for printing nicely formatted sentences for debugging. 

The Base-R function equivalent to str_c() is paste(), but while the default separator for str_c() is an empty string, "", 
the default separator for paste() is a single space, " ". The equivalent Base-R function for str_detect() is grepl(), and 
the closest equivalent to str_split_fixed() in Base-R is strsplit(). As mentioned previously, however, using these and 
other stringr functions for this type of character-vector manipulation is recommended. 

Factors Factors 

By now, factors have been mentioned a few times in passing, mostly in the context of using stringsAsFactors = FALSE, 
to prevent character vectors from being converted into factor types when data frames are created. Factors are a type 
of data relatively unique to R, and provide an alternative for storing categorical data compared with simple character 
vectors. 

A good method for understanding factors might be to understand one of the historical reasons for their 
development, even if the reason is no longer relevant today. How much space would the treatment column of the 
experimental data frame above require to store in memory, if the storage was done naively? Usually, a single character 
like "c" can be stored in a single byte (8 bits, depending on the encoding), so an entry like "chemical" would require 
8 bytes, and "control" would require 7. Given that there are ~360,000 entries in the full table, the total space required 
would be ~0.36 megabytes. Obviously, the amount of space would be greater for a larger table, and decades ago even a 
few megabytes of data could represent a challenge. 

But that’s for a naive encoding of the data. An alternative could be to encode "chemical" and "control" as simple 
integers 1 and 2 (4 bytes can encode integers from -2.1 to 2.1 billion), as well as a separate lookup table mapping the 
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integer 1 to "chemical" and 2 to "control". This would be a space savings of about two times, or more if the terms were 
longer. This type of storage and mapping mechanism is exactly what factors provide.

1 

We can convert a character vector (or factor) into a factor using the factor() function, and as usual the head() 
function can be used to extract the first few elements. 

When printed, factors display their levels as well as the individual data elements encoded to levels. Notice that the quote 
marks usually associated with character vectors are not shown. 

It is illustrating to attempt to use the str() and class() and attr() functions to dig into how factors are stored. Are 
they lists, like the results of the t.test() function, or something else? Unfortunately, they are relatively immune to the 
str() function; str(treatment_factor) reports: 

This result illustrates that the data appear to be coded as integers. If we were to run print(class(treatment_factor)), 
we would discover its class is "factor". 

As it turns out, the class of a data type is stored as an attribute. 

Above, we learned that we could remove an attribute by setting it to NULL. Let’s set the "class" attribute to NULL, and 
then run str() on it. 

Aha! This operation reveals a factor’s true nature: an integer vector, with an attribute of "levels" storing a character 
vector of labels, and an attribute for "class" that specifies the class of the vector as a factor. The data itself are stored as 
either 1 or 2, but the levels attribute has "chemical" as its first element (and hence an integer of 1 encodes "chemical") 
and "control" as its second (so 2 encodes "control"). 

This special "class" attribute controls how functions like str() and print() operate on an object, and if we want 
to change it, this is better done by using the class() accessor function rather than the attr() function as above. Let’s 
change the class back to factor. 

1. Although character vectors are also efficiently stored in modern-day versions of R, factors still have unique uses. 
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Renaming Factor Levels Renaming Factor Levels 

Because levels are stored as an attribute of the data, we can easily change the names of the levels by modifying the 
attribute. We can do this with the attr() function, but as usual, a specific accessor function called levels() is preferred. 

Why is the levels() function preferred over using attr()? Because when using attr(), there would be nothing to 
stop us from doing something irresponsible, like setting the levels to identical values, as in c("Water", "Water"). The 
levels() function will check for this and other absurdities. 

What the levels() function can’t check for, however, is the semantic meaning of the levels themselves. It would 
not be a good idea to mix up the names, so that "Chemical" would actually be referring to plants treated with water, and 
vice versa: 

The reason this is a bad idea is that using levels() only modifies the "levels" attribute but does nothing to the 
underlying integer data, breaking the mapping. 

Reordering Factor Levels Reordering Factor Levels 

Although we motivated factors on the basis of memory savings, in modern versions of R, even character vectors are stored 
internally using a sophisticated strategy, and modern computers generally have larger stores of RAM besides. Still, there 
is another motivation for factors: the fact that the levels may have a meaningful order. Some statistical tests might like to 
compare certain subsets of a data frame as defined by a factor; for example, numeric values associated with factor levels 
"low" might be compared to those labeled "medium", and those in turn should be compared to values labeled "high". But, 
given these labels, it makes no sense to compare the "low" readings directly to the "high" readings. Factors provide a way 
to specify that the data are categorical, but also that "low" < "medium" < "high". 

Thus we might like to specify or change the order of the levels within a factor, to say, for example, that the "Water" 
treatment is somehow less than the "Chemical" treatment. But we can’t do this by just renaming the levels. 

The most straightforward way to specify the order of a character vector or factor is to convert it to a factor with 
factor() (even if it already is a factor) and specify the order of the levels with the optional levels = parameter. Usually, 
if a specific order is being supplied, we’ll want to specify ordered = TRUE as well. The levels specified by the levels = 

parameter must match the existing entries. To simultaneously rename the levels, the labels = parameter can be used as 
well. 

Now, "Water" is used in place of "control", and the factor knows that "Water" < "Chemical". If we wished to have 
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"Chemical" < "Water", we would have needed to use levels = c("chemical", "control") and labels = 

c("Chemical", "Water") in the call to factor(). 

Disregarding the labels = argument (used only when we want to rename levels while reordering), because the levels 
= argument takes a character vector of the unique entries in the input vector, these could be precomputed to hold the 
levels in a given order. Perhaps we’d like to order the tissue types in reverse alphabetical order, for example: 

Rather than assigning to a separate tissues_factor variable, we could replace the data frame column with the ordered 
vector by assigning to expr_long_split$tissue. 

We often wish to order the levels of a factor according to some other data. In our example, we might want the “first” 
tissue type to be the one with the smallest mean expression, and the last to be the one with the highest mean expression. 
A specialized function, reorder(), makes this sort of ordering quick and relatively painless. It takes three important 
parameters (among other optional ones): 

1. The factor or character vector to convert to a factor with reordered levels. 

2. A (generally numeric) vector of the same length to use as reordering data. 

3. A function to use in determining what to do with argument 2. 

Here’s a quick canonical example. Suppose we have two vectors (or columns in a data frame), one of sampled fish species 
(“bass,” “salmon,” or “trout”) and another of corresponding weights. Notice that the salmon are generally heavy, the 
trout are light, and the bass are in between. 

If we were to convert the species vector into a factor with factor(species), we would get the default alphabetical 
ordering: bass, salmon, trout. If we’d prefer to organize the levels according to the mean of the group weights, we can use 
reorder(): 

With this assignment, species_factor will be an ordered factor with trout < bass < salmon. This small line of code 
does quite a lot, actually. It runs the mean() function on each group of weights defined by the different species labels, 
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sorts the results by those means, and uses the corresponding group ordering to set the factor levels. What is even more 
impressive is that we could have just as easily used median instead of mean, or any other function that operates on a 
numeric vector to produce a numeric summary. This idea of specifying functions as parameters in other functions is one 
of the powerful “functional” approaches taken by R, and we’ll be seeing more of it. 

Final Notes about Factors Final Notes about Factors 

In many ways, factors work much like character vectors and vice versa; %in% and == can be used to compare elements of 
factors just as they can with character vectors (e.g., tissues_factor == "A" returns the expected logical vector). 

Factors enforce that all elements are treated as one of the levels named in the levels attribute, or NA otherwise. A 
factor encoding 1 and 2 as male and female, for example, will treat any other underlying integer as NA. To get a factor to 
accept novel levels, the levels attribute must first be modified with the levels() function. 

Finally, because factors work much like character vectors, but don’t print their quotes, it can be difficult to tell them 
apart from other types when printed. This goes for simple character vectors when they are part of data frames. Consider 
the following printout of a data frame: 

Because quotation marks are left off when printing data frames, it’s impossible to tell from this simple output that the id 
column is a character vector, the tissue column is a factor, the count column is an integer vector, and the group column 
is a factor.

2
 Using class() on individual columns of a data frame can be useful for determining what types they actually 

are. 

Exercises Exercises 

1. In the annotation file PZ.annot.txt, each sequence ID (column 1) may be associated with multiple gene ontology 

(GO) “numbers” (column 2) and a number of different “terms” (column 3). Many IDs are associated with multiple 

GO numbers, and there is nothing to stop a particular number or term from being associated with multiple IDs. 

While most of the sequence IDs have an underscore suffix, not all do. Start by reading in this file (columns are 

tab separated) and then extracting a suffix_only data frame containing just those rows where the sequence ID 

2. Factors created from integer vectors are a special kind of headache. Consider a line like h <- factor(c(4, 1, 5, 6, 4)); because 
factors are treated like character types, this would be converted so it is based on c("4", "1", "5", "6", "4"), where the underlying 
mapping and storage have an almost arbitrary relationship to the elements. Try print(as.numeric(h)) to see the trouble one can get 
into when mixing up these types, as well as class(h) <- NULL followed by str(h) to see the underlying mapping and why this occurs. 
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contains an underscore. Similarly, extract a no_suffix data frame for rows where sequence IDs do not contain an 

underscore. 

Next, add to the suffix_only data frame columns for base_id and suffix, where base IDs are the parts before the 

underscore and suffices are the parts after the underscore (e.g., base_id is "PZ7180000023260" and suffix is "APN" for 

the ID "PZ7180000023260_APN"). 

Finally, produce versions of these two data frames where the GO: prefix has been removed from all entries of the 

second column. 

2. The line s <- sample(c("0", "1", "2", "3", "4"), size = 100, replace = TRUE) generates a character vector of 100 

random "0"s, "1"s, "2"s, "3"s, and "4"s. Suppose that "0" means “Strongly Disagree,” "1" means “Disagree,” "2" 

means “Neutral,” "3" means “Agree,” and "4" means “Strongly Agree.” Convert s into an ordered factor with levels 

Strongly Disagree < Disagree < Neutral < Agree < Strongly Agree. 

3. Like vectors, data frames (both rows and columns) can be selected by index number (numeric vector), logical 

vector, or name (character vector). Suppose that grade_current is a character vector generated by grade_current 

<- sample(c("A", "B", "C", "D", "E"), size = 100, replace = TRUE), and gpa is a numeric vector, as in gpa <- 

runif(100, min = 0.0, max = 4.0). Further, we add these as columns to a data frame, grades <- 

data.frame(current_grade, gpa, stringsAsFactors = FALSE). 

We are interested in pulling out all rows that have "A", "B", or "C" in the current_grade column. Describe, in detail, 

what each of the three potential solutions does: 

How does R interpret each one (i.e., what will R try to do for each), and what would the result be? Which one(s) 

is (are) correct? Which will report errors? Are the following three lines any different from the above three in 

what R tries to do? 
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33. Split, Apply, Combine 

Although we touched briefly on writing functions, the discussion has so far been largely about the various types of data 
used by R and the syntax and functions for working with them. These include vectors of various types, lists, data frames, 
factors, indexing, replacement, and vector recycling. 

At some point won’t we discuss analyzing a meaningful data set? Yes, and that point is now. We’ll continue to work 
with the gene expression data from chapter 32, “Character and Categorical Data,” after it’s been processed to include the 
appropriate individual columns using the functions in the stringr library. Here’s the code from the last chapter which 
pre-processed the input data: 
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As we continue, we’ll likely want to rerun our analysis script in different ways, without having to rerun all of the code 
above, as it takes a few minutes to run this preprocessing script. One good strategy would be to write this “cleaned” data 
frame out to a text file using write.table(), and read it back in to an analysis-only script with read.table(). Just for 
variety, though, let’s use the save() function, which stores any R object (such as a list, vector, or data frame) to a file in a 
compressed binary format. 

The traditional file extension for such an R-object file is .Rdata. Such data files are often shared among R programmers. 
The first few lines of the saved data frame are all readings for the same gene. There are ~360,000 lines in the full 
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data frame, with readings for over 11,000 genes. (The script above, which processes the expr_long_coded.txt file, can be 
found in the file expr_preprocess.R.) The figure below shows the results of print(head(expr_long_split)): 

Let’s start a new analysis script that loads this data frame before we begin our analysis of it. For this script we may also 
need the stringr library, and we’re going to include the dplyr library as well (which we assume has been separately 
installed with install.packages("dplyr") in the interactive console). 

The load() function creates a variable with the same name that was used in save(), and for convenience we’ve created a 
copy of the data frame with a shorter variable name, expr. While these sorts of R data files are convenient for R users, the 
benefit of a write.table() approach would be that other users and languages would have more direct access to the data 
(e.g., in Python or even Microsoft Excel). 

This data set represents a multifactor analysis of gene expression
1
 in two genotypes of a plant, where a control 

treatment (water) and a chemical treatment (pesticide) have been applied to each. Further, three tissue types were 
tested (A, B, and C, for leaf, stem, and root, respectively) and two or three replicates were tested for each combination 
for statistical power. These data represent microarray readings and have already been normalized and so are ready for 
analysis.

2
 (These data are also anonymized for this publication at the request of the researchers.) 

1. Here we’ll be using the colloquial term “gene” to refer to a genetic locus producing messenger RNA and its expression to be 
represented by the amount of mRNA (of the various isoforms) present in the cell at the sampling time. 

2. Microarrays are an older technology for measuring gene expression that have been largely supplanted by direct RNA-seq 
methods. For both technologies, the overall levels of expression vary between samples (e.g., owing to measurement efficiency) 
and must be modified so that values from different samples are comparable; microarray data are often  transformed as well in 
preparation for statistical analysis. Both steps have been performed for these data; we’ve avoided discussion of these preparatory 
steps as they are specific to the technology used and an area of active research for RNA-seq. Generally, RNA-seq analyses involve 
work at both the command line for data preprocessing and using functions from specialized R packages. 
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For now, we’ll focus on the genotype and treatment variables. Ignoring other variables, this gives us around 24 
expression readings for each gene. 

This sort of design is quite common in gene expression 
studies. It is unsurprising that gene expression will differ 
between two genotypes, and that gene expression will 
differ between two treatments. But genotypes and 
treatments frequently react in interesting ways. In this 
case, perhaps the L4 genotype is known to grow larger 
than the C6 genotype, and the chemical treatment is 
known to be harmful to the plants. Interestingly, it seems 
that the chemical treatment is less harmful to the L4 
genotype. 

The natural question is: which genes might be contributing 
to the increased durability of L4 under chemical exposure? We 
can’t simply look for the differences in mean expression 
between genotypes (with, say, t.test()), as that would capture 
many genes involved in plant size. Nor can we look for those 
with mean expression differences that are large between 
treatments, because we know many genes will react to a 
chemical treatment no matter what. Even both signals together 
(left side of the image below) are not that interesting, as they 
represent genes that are affected by the chemical and are 
involved with plant size, but may have nothing at all to do with 
unique features of L4 in the chemical treatment. What we are 

really interested in are genes with a differential response to the chemical between two the two genotypes (right side of the 
image below). 

Does that mean that we can look for genes where the mean difference is large in one genotype, but not the other? Or 
within one treatment, but not that other? No, because many of these interesting scenarios would be missed: 
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For each gene’s expression measurements, we need a classic ANOVA (analysis of variance) model. After accounting 
for the variance explained by the genotype difference (to which we can assign a p value indicating whether there is a 
difference) as well as the variance explained by the treatment (which will also have a p value), is the leftover variance—for 
the interaction/differential response—significant? 

A Single Gene Test, Formulas A Single Gene Test, Formulas 

To get started, we’ll run an ANOVA for just a single gene.
3
 First, we’ll need to isolate a sub-data frame consisting of 

readings for only a single ID. We can use the unique() function to get a vector of unique IDs, and then the %in% operator 
to select rows matching only the first of those. 

This data frame contains rows for a single gene and columns for expression, genotype, treatment, and others (we could 
verify this with a simple print() if needed). We wish to run an ANOVA for these variables, based on a linear model 
predicting expression values from genotype, treatment, and the interaction of these terms. 

The next step is to build a simple linear model using the lm() function, which takes as its only required parameter a 
“formula” describing how the predictor values should be related to the predicted values. Note the format of the formula: 
response_vector ~ predictor_vector1 + predictor_vector2 + predictor_vector1 : predictor_vector2, 
indicating that we wish to determine how to predict values in the response vector using elements from the predictor 
vectors. 

If the vectors or factors of interest exist within a data frame (as is the case here), then the lm() function can work with 
column names only and a data = argument. 

We can then print the linear model returned with print(lm1), as well as its structure with str(lm1), to see that it contains 
quite a bit of information as a named list: 

3. There are many interesting ways we could analyze these data. For the sake of focusing on R rather than statistical methods, we’ll 
stick to a relatively simple per gene 2x2 ANOVA model. 
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Before we continue, what is this expression ~ genotype + treatment + genotype : treatment “formula”? As usual, 
we can investigate a bit more by assigning it to a variable and using class() and str(). 

The output indicates that the class is of type "formula" and that it has an ".Environment" attribute. It’s a bit opaque, but 
a formula type in R is a container for a character vector of variable names and a syntax for relating them to each other. 
The environment attribute specifies where those variables should be searched for by default, though functions are free to 
ignore that (as in the case of data = for lm(), which specifies that the variables should be considered column names in the 
given data frame). Formulas don’t even need to specify variables that actually exist. Consider the following formula and 
the all.vars() function, which inspects a formula and returns a character vector of the unique variable names appearing 
in the formula. 

Anyway, let’s return to running the statistical test for the single gene we’ve isolated. The lm1 result contains the model 
predicting expressions from the other terms (where this “model” is a list with a particular set of elements). To get the 
associated p values, we’ll need to run it through R’s anova() function. 

Printing the result shows that the p values (labeled "Pr(>F)") for the genotype, treatment, and interaction terms are 0.97, 
0.41, and 0.56, respectively. If we want to extract the p values individually, we’ll need to first inspect its structure with 
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str(), revealing that the result is both a list and a data frame—unsurprising because a data frame is a type of list. The 
three p values are stored in the "Pr(>F)" name of the list. 

We can thus extract the p values vector as pvals1 <- anova1

F)"; notice that we must use the quotations to select from this list by name because of the special characters ((, >, and )) 
in the name. For the sake of argument, let's store these three values in a data frame with a single row, and column names 
"genotype", "treatment", and "genotype:treatment" to indicate what the values represent. 
"III.8_18_r_164_pvals_df" 
Output: 
"III.8_19_r_165_pvals_df_print" 
This isn't bad, but ideally we wouldn't be ``hard coding'' the names of these p values into the column names. The 
information is, after all, represented in the printed output of the print(anova1) call above. Because anova1 is a data frame 
as well as a list, these three names are actually the row names of the data frame. (Sometimes useful data hide in strange 
places!) 
"" 
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So, given any result of a call to anova(), no matter the formula used in the linear model, we should be able to 
computationally produce a single-row p-values data frame. But we've got to be clever. We can't just run pvals_df1 <- 

data.frame(pvals1)</code>, as this will result in a single-column data frame with three rows, rather 

than a single-row data frame with three columns. Rather, we'll first convert the p-values vector into 

a list with as.list(), the elements of which will become the columns of the data frame because data 

frames are a type of list. From there, we can assign the rownames() of anova1 to the colnames() of the 

pvals_df1 data frame.[footnote]For almost all data type conversions, R has a default interpretation 

(e.g., vectors are used as columns of data frames). As helpful as this is, it sometimes means 

nonstandard conversions require more creativity. Having a good understanding of the basic data types 

is thus useful in day-to-day analysis.[/footnote] 

"III.8_21_r_166_pvals_df_2" 

The programmatically generated output is as follows: 
"III.8_22_r_167_pvals_df_2_print" 

This time, there's an extra column for the residuals, but that's of little significance. This whole process—taking a sub-
data frame representing expression values for a single gene and producing a single-row data frame of p values—is a good 
candidate for encapsulating with a function. After all, there are well-defined inputs (the sub-data frame of data for a 
single gene) and well-defined outputs (the p-values data frame), and we're going to want to run it several thousand times, 
once for each gene ID. 
"III.8_23_r_168_pvals_df_function" 

To get the result for our expr1 sub-data frame, we'd simply need to call something like pvals_df1 <- 

sub_df_to_pvals_df(exp1)</code>. The next big question is: how are we going to run this function not for a single gene, but for 

all 11,000 in the data set? Before we can answer that question, we must learn more about the amazing world of functions in R. 

Exercises Generate a data frame with a large amount of data (say, one with two numeric columns, each holding 1,000,000 

entries). Write the data frame to a text file with write.table() and save the data frame to an R data file with save(). Check the 

size of the resulting files. Is one smaller than the other? By how much? The example we've covered—generating a small data 

frame of results (p values) from a frame of data (expression values) by using a function—is fairly complex owing to the nature 

of the experimental design and the test we've chosen. Still, the basic pattern is quite common and very useful. A default 

installation of R includes a number of example data sets. Consider the CO2 data frame, which describes CO2 uptake rates of 

plants in different treatments ("chilled" and "nonchilled"; see help(CO2) for more detailed information). Here's the output of 

print(head(CO2)): 

"III.8_24_r_168_2_co2_dataframe" 

The conc column lists different ambient CO2 concentrations under which the experiment was performed. Ultimately, we 
will want to test, for each concentration level, whether the uptake rate is different in chilled versus nonchilled conditions. 
We'll use a simple t test for this. Start by writing a function that takes a data frame with these five columns as a parameter 
and returns a single-row, single-column data frame containing a p value (reported by t.test()) for chilled uptake rates versus 
nonchilled uptake rates. (Your function will need to extract two vectors of update rates to provide to t.test(), one for 
chilled values and one for nonchilled.) Next, extract a sub-data frame containing rows where conc values are 1000, and run 
your function on it. Do the same for a sub-data frame containing conc value of 675. Attack of the Functions! While R has 
a dedicated function for computing the interquartile range (the range of data values between the 25th percentile and 
the 75th), let's write our own so that we can explore functions more generally. We'll call it ipercentile_range, to note that it 
computes an interpercentile range (where the percentiles just happen to be quartiles, for now). 
"III.8_25_r_169_ipercentile_range" 
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Next, let's make a list containing some samples of random data. 
"III.8_26_r_170_three_samples_list" 

To compute the three interquartile ranges, we could call the function three times, once per element of the list, and store 
the results in another list. 
"III.8_27_r_171_three_samples_list_call" 

Not too bad, but we can do better. Notice the declaration of the function—we've used the assignment operator <-</code> 
to assign to ipercentile_range, just as we do with other variables. In fact, ipercentile_range is a variable! And just as with other data, we can check its class and 

print it. 

"III.8_28_r_172_print_function_contents" 

When it is printed, we see the source code for the function: 
"III.8_29_r_173_print_function_contents_print" 

In R, functions are a type of data just like any other. Thus R is an example of a ``functional'' programming 
language.[footnote]Not all programming languages are ``functional'' in this way, and some are only partially functional. 
Python is an example of a mostly functional language, in that functions defined with the def keyword are also data just 
like any other. This book does not highlight the functional features of Python, however, preferring instead to focus on 
Python's object-oriented nature. Here, R's functional nature is the focus, and objects in R will be discussed only briefly 
later.[/footnote] One of the important implications is that functions can be passed as parameters to other functions; 
after all, they are just a type of data. This is a pretty tricky idea. Let's explore it a bit with the lapply() function. This 
function takes two parameters: first, a list, and second, a function to apply to each element of the list. The return value 
is a list representing the collated outputs of each function application. So, instead of using the four lines above to apply 
ipercentile_range() to each element of samples, we can say: 
"III.8_30_r_174_lapply_ipercentile_range" 

The resulting list will have the same three values as above, and the names of the elements in the output list will be 
inherited from the input list (so sample_irqs" title="Rendered by QuickLaTeX.com" height="2836" width="2358" style="vertical-align: -4px;">s1 will hold the first range 
or 5.44, for this random sample anyway). 

This is an example of the powerful “split-apply-combine” strategy for data analysis. In general, this strategy involves 
splitting a data set into pieces, applying an operation or function to each, and then combining the results into a single 
output set in some way. 

When the input and output are both lists, this operation is also known as a “map.” In fact, this paradigm underlies 
some parallel processing supercomputer frameworks like Google’s MapReduce and the open-source version of Hadoop 
(although these programs aren’t written in R). 
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Because lists are such a flexible data type, lapply() is quite useful. Still, in some cases—like this one—we’d prefer 
the output to be a vector instead of a list. This is common enough to warrant a conversion function called unlist() that 
extracts all of the elements and subelements of a list to produce a vector. 

Be warned: because lists are more flexible than vectors, if the list given to unlist() is not simple, the elements may be 
present in the vector in an odd order and they will be coerced into a common data type. 

The lapply() function can also take as input a vector instead of a list, and it is but one of the many “apply” 
functions in R. Other examples include apply(), which applies a function to each row or column of a matrix,

4
 and 

sapply() (for “simple apply”), which detects whether the return type should be a vector or matrix depending on the 
function applied. It’s easy to get confused with this diversity, so to start, it’s best to focus on lapply() given its relatively 
straightforward (but useful) nature. 

Collecting Parameters with … Collecting Parameters with … 

The help page for lapply() is interesting. It specifies that the function takes three parameters: X (the list to apply over), 
FUN (the function to apply), and ..., which the help page details as “optional arguments to FUN.” 

The ... parameter is common in R, if a bit mysterious at times. This “parameter” collects any number of named 
parameters supplied to the function in a single unit. This collection can then be used by the function; often they are 
passed on to functions called by the function. 

To illustrate this parameter, let’s modify our ipercentile_range() function to take two optional parameters, a 
lower and upper percentile from which the range should be computed. While the interquartile range is defined as the 
range in the data from the 25th to the 75th percentile, our function will be able to compute the range from any lower or 
upper percentile. 

Now we can call our function as ipercentile_range(sample

 to get the default 

interquartile range of the first sample, or as ipercentile_range(samples" title="Rendered by QuickLaTeX.com" 

4. Because the apply() function operates on matrices, it will silently convert any data frame given to it into a matrix. Because 
matrices can hold only a single type (whereas data frames can hold different types in different columns), using apply() on a data 
frame will first force an autoconversion so that all columns are the same type. As such, it is almost never correct to use apply() on 
a data frame with columns of different types. 
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height="40" width="586" style="vertical-align: -4px;">s2, lower = 0.05, upper = 0.95), to get the middle 90th 

percentile range. Similarly, we have the ability to supply the optional parameters through the ... of 

lapply(), which will in turn supply them to every call of the ipercentile_range function during the apply 

step. 

This syntax might seem a bit awkward, but something like it is necessary if we hope to pass functions that take multiple 
parameters as parameters to other functions. This also should help illuminate one of the commonly misunderstood 
features of R. 

Functions Are Everywhere Functions Are Everywhere 

Although mostly hidden from view, most (if not all) operations in R are actually function calls. Sometimes function 
names might contain nonalphanumeric characters. In these cases, we can enclose the function name in backticks, as in 
iqr1 <- `ipercentile_range`(samples$s1). (In chapter 27, “Variables and Data,” we learned that any variable name 
can be enclosed in backticks this way, though it’s rarely recommended.) 

What about something like the lowly addition operator, +? It works much like a function: given two inputs (left-
hand-side and right-hand-side vectors), it returns an output (the element-by-element sum). 

In fact, + really is a function that takes two parameters, but to call it that way we need to use backticks. 

This might be considered somewhat amazing—the “human-readable” version is converted into a corresponding function 
call behind the scenes by the interpreter. The latter, functional representation is easier for the interpreter to make use 
of than the human-friendly representation. This is an example of syntactic sugar: adjustments to a language that make 
it “sweeter” for human programmers. R contains quite a lot of syntactic sugar. Even the assignment operator <- is a 
function call! The line a <- c(1, 2, 3) is actually syntactic sugar for `<-`("a", c(1, 2, 3)). 

Because functions are just a type of data and function names are variables, we can easily reassign new functions to 
old names. Perhaps a colleague has left her R session open, so we decide to redefine + to mean “to the power of”: 
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Ok, maybe that’s a bit too evil. Another feature of R is that function names that begin and end with % and take two 
parameters signals that the function can be used as an infix function via syntactic sugar. 

Sugary Data Frame Split-Apply-Combine Sugary Data Frame Split-Apply-Combine 

Although the basic units of data in R are vectors, and lists are used to store heterogeneous data, data frames are important 
as a storage mechanism for tabular data. Because lapply() can apply a function to each element of a list, it can also apply 
a function to each column of a data frame. This fact can be used, for example, to extract all numeric columns from a data 
frame with an application of lapply() and is.numeric() (the latter returns TRUE when its input is a numeric type; we’ll 
leave the details as an exercise). 

For most tabular data, though, we aren’t interested in independently applying a function to each column. Rather, 
we more often wish to apply a function to different sets of rows grouped by one or more of the columns. (This is 
exactly what we want to do with the sub_df_to_pvals() function we wrote for our gene expression analysis.) The dplyr 
package (install.packages("dplyr")) provides this ability and is both powerful and easy to use, once we get used to its 
specialized syntactic sugar. 

Initially, we’ll cover two functions in the dplyr package, group_by() and do(): group_by() adds metadata (as 
attributes) to a data frame indicating which categorical columns define groups of rows and returns such a “grouped” data 
frame, while do() applies a given function to each group of a grouped data frame, and returns a data frame of results with 
grouping information included. 

To illustrate, we’ll first create a simple data frame on which to work, representing samples of fish from one of two 
different lakes: Green Lake or Detroit Lake. 

The nicely formatted printout: 
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First, we’ll group the data frame by the species column using group_by(). This function takes a data frame (or column-
named matrix or similar) and a listing of column names (without quotes) that define the groups as additional parameters. 
As with using the data = parameter for lm(), the function looks within the data frame for the columns specified. 

Is this data frame different from the original? Yes, but mostly in the attributes/metadata. When printed, we get some 
information on the “source” (where the data are stored—dplyr can access data from remote databases) and the groups: 

Handily, unlike regular data frames, “grouped” data frames print only the first few rows and columns, even if they 
are many thousands of rows long. Sometimes this is an undesirable feature—fortunately, running data.frame() on a 
grouped data frame returns an ungrouped version. The class() of a grouped data frame returns "data.frame" as well as 
"tbl", "tbl_df", and "grouped_df". Because a grouped data frame is also a regular data frame (and is also a list!), we can 
still do all of the fancy indexing operations on them covered in previous chapters. 

The do() function applies a function to each group of rows of a grouped data frame using a split-apply-combine 
strategy. The function applied must take as its first parameter a data frame, and it must return a data frame. Let’s write 
a function that, given a data frame or sub-data frame (group) of the fish data, returns a single-row data frame with 
columns for mean_weight and sd_weight. Both the mean() and sd() functions can take an na.rm argument to strip out 
any potential NA values in their inputs, so perhaps our function should take a similar optional parameter. 

This function takes as input a data frame with a column for weight and returns a data frame with summary statistics. We 
can run it on the original data frame: 
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Alternatively, we can call do() on the grouped data frame, telling it to run mean_sd_weight() on each group (sub-data 
frame). The syntax for do() differs slightly from that of lapply() in that we specify a . for the positional argument 
representing the sub-data frame. 

The result of the do() is another grouped data frame, made up of the rows returned by the applied function. Notice that 
the grouping columns have been added, even though we didn’t specify them in the ret_df inside the function. 

When developing functions that work with do(), you might run into an error like Error: Results are not data 

frames at positions: 1, 2. This error message indicates that the function is not returning a data frame type, which is 
required for do(). To diagnose problems like this, you can add print() statements inside of the function to inspect the 
contents of variables as the function is applied. 

We can also group data frames by multiple columns, resulting in a single group per combination of column entries.
5 

5. Because group_by() and similar functions take “bare” or “unquoted” column names, they can be difficult to call given a character 
vector. For functions in the dplyr and tidyr packages (covered later), versions with _ as part of the function name support this. For 
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The NA values for some standard deviations are the result of calling sd() on a vector of length one (because there was only 
one trout measurement per lake). 

Although the applied function must take a data frame and return a data frame, there are no restrictions on the 
nature of the returned data frame. Here our function returns a single-row data frame, but it could return multiple rows 
that would be stitched together in the combine step. As an example, here’s a function that, given a data frame, computes 
the mean() of the weight column, and subtracts that mean from all of the entries, returning the modified data frame (so-
called “mean normalization” of the data). 

And then we can easily mean-normalize the data on a per group basis! 

In the above output, -1.15 and 1.15 are the deviations from the mean of the trout group, and the others are deviations 
from the mean for the bass group. 

More Sugar, Optional Parameters, Summarize More Sugar, Optional Parameters, Summarize 

Something to note about the call to do() is that it differs syntactically from the call to lapply(). In do(), we specify not 
only the function to apply to each group, but also how that function will be called, using . to denote the input group 

example, fish_by_species_lake <- group_by(fish, species, lake) can be replaced with fish_by_species_lake <- group_by_(fish, 
c("species", "lake")). 
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data frame. This is somewhat clearer when we want to specify optional arguments to the applied function. In this case, 
we may want to specify that NA values should be removed by setting remove_nas = TRUE in each call to mean_sd_weight(). 

Speaking of syntactic sugar, the magrittr package (which is installed and loaded along with dplyr, though written by a 
different author) provides an interesting infix function, %>%. Consider the common pattern above; after the creation of 
a data frame (fish), we run it through a function to create an intermediary result (fish_by_species from group_by()), 
run that through another function to get another result (stats_by_species from mean_sd_weight()), and so on. While 
this process is clear, we could avoid the creation of multiple lines of code if we were willing to nest some of the function 
calls. 

This line of code certainly suffers from some readability problems. The infix %>% function supplies its left-hand side to its 
right-hand side (located by . in the right-hand side), returning the result of the call to the right-hand function. Thus we 
can rewrite the above as follows. 

Notice the similarity between this and method chaining in Python and stdin/stdout pipes on the command line. 
(It’s also possible to omit the . if it would be the first parameter, as in fish %>% group_by(species) %>% 

do(mean_sd_weight(.)).) 
We demonstrated that functions applied by do() can return multiple-row data frames (in the mean-normalization 

example), but our mean_sd_weight() function only returns a single-row data frame with columns made of simple 
summary statistics. For this sort of simplified need, the dplyr package provides a specialized function called summarize(), 
taking a grouped data frame and other parameters indicating how such group-wise summary statistics should be 
computed. This example produces the same output as above, without the need for the intermediary mean_sd_weight() 
function. 

The dplyr package provides quite a few other features and functions to explore, but even the simple combination of 
group_by() and do() represent a powerful paradigm. Because R is such a flexible language, the sort of advanced syntactic 
sugar used by dplyr is likely to become more common. Although some effort is required to understand these domain-
specific languages (DSLs) and how they relate to “normal” R, the time spent is often worth it. 

Exercises Exercises 

1. The primary purpose of lapply() is to run a function on each element of a list and collate the results into a list. 
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With some creativity, it can also be used to run an identical function call a large number of times. In this 

exercise we’ll look at how p values are distributed under the “null” model—when two random samples from the 

same distribution are compared. 

Start by writing a function null_pval() that generates two random samples with rnorm(100, mean = 0, sd = 1), 

compares them with t.test(), and returns the p value. The function should take a single parameter, say, x, but 

not actually make any use of it. 

Next, generate a list of 10,000 numbers with 10k_nums_list <- as.list(seq(1,10000)), and call 10k_pvals_list <- 

lapply(10k_nums, null_pval). Turn this into a vector with 10k_pvals_vec <- unlist(10k_pvals_list) and inspect the 

distribution with hist(10k_pvals_vec). 

What does this test reveal? What is the code you wrote doing, and why does it work? Why does the function 

need to take an x parameter that isn’t even used? What happens if you change one of the random samples to use 

rnorm(100, mean = 0.1, sd = 1)? 

2. If df is a data frame, using [] indexing treats it like a list of elements (columns). Write a function called 

numeric_cols() that takes a data frame as a parameter, and returns a version of the data frame with only the 

numeric columns kept. You may want to make use of lapply(), unlist(), as.numeric(), and the fact that lists (and 

data frames when treated like lists) can be indexed by logical vector. 

As an example, if df1 <- data.frame(id = c("PRQ", "XL2", "BB4"), val = c(23, 45.6, 62)), then print(numeric_cols(df1)) 

should print a data frame with only the val column. If df2 <- data.frame(srn = c(461, 514), name = c("Mel", "Ben"), 

age = c(27, 24)), then print(numeric_cols(df2)) should print a data frame with only srn and age columns. 

3. Write a function called subset_rows() that takes two parameters: first, a data frame df, and second, an integer n. 

The function should return a data frame consisting of n random rows from df (you may find the sample() function 

of use). 

The iris data frame is a commonly-referenced built-in R data set, describing measurements of petals for a 

variety of iris species. Here’s the output of print(head(iris)): 

Use group_by() to group the iris data frame by the Species column, and then do() along with your subset_rows() 

function to generate a data frame consisting of 10 random rows per species. 

4. Interestingly, there’s nothing stopping a function called by do() (or lapply()) from itself calling do() (and/or 

lapply()). Write a set of functions that compares every species in the iris data frame to every other species, 

reporting the mean difference in Petal.Width. (In this printout the difference in means compares SpeciesA to 

SpeciesB.) 
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To accomplish this, you will want to write a function compare_petal_widths() that takes two sub-data frames, one 

containing data for species A (sub_dfa) and the other for species B (sub_dfb), and returns a data frame containing 

the name of the A species, the name of the B species, and the difference of mean Petal.Width. You can test your 

function by manually extracting data frames representing setosa and versicolor. 

Next, write a function one_vs_all_by_species() that again takes two parameters; the first will be a sub-data frame 

representing a single species (sub_df), but the second will be a data frame with data for all species (all_df). This 

function should group all_df by species, and use do() to call compare_petal_widths() on each group sending along 

sub_df as a secondary parameter. It should return the result. 

Finally, a function all_vs_all_by_species() can take a single data frame df, group it by species, and call 

one_vs_all_by_species() on each group, sending along df as a secondary parameter, returning the result. In the 

end, all that is needed is to call this function on iris. 

Gene Expression, Finished Gene Expression, Finished 

With the discussion of split-apply-combine and dplyr under our belts, let’s return to the task of creating and analyzing 
a linear model for each ID in the gene expression data set. As a reminder, we had left off having read in the “cleaned” 
data set, extracting a sub-data frame representing a single ID, and writing a function that takes such a sub-data frame and 
returns a single-row data frame of p values. (It should now be clear why we went through the trouble of ensuring our 
function takes a data frame as a parameter and returns one as well.) 

338 Part III: Programming in R

338  |  Shawn T. O’Neil



Now, we can use group_by() on the expr data frame to group by the id column, and do() to apply the 
sub_df_to_pvals_df() function to each group. Rather than work on the entire data set, though, let’s create a expr10 to 
hold a data frame representing measurements for 10 IDs; if we are satisfied with the results, we can always instead analyze 
the full expr table (though the full data set takes only a couple of minutes to analyze). 

The result is a nicely organized table of p values for each gene in the data set: 
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There is one more important issue to consider for an analysis like this: multiple test correction. Suppose for a moment 
that none of the ~11,000 genes are differentially expressed in any way. Because p values are distributed evenly between 
zero and one under the null hypothesis (no difference), for the genotype column alone we could expect ~11,000 * 0.05 
= 550 apparently (but erroneously) significant differences. Altering the scenario, suppose there were about 50 genes that 
truly were differentially expressed in the experiment: these would likely have small p values, but it is difficult to separate 
them from the other 550 apparently significant values. 

There are a variety of solutions to this problem. First, we could consider a much smaller threshold for significance. 
What threshold should that be? Well, if we wanted the number of apparently—but not really—significant p values to be 
small (on average), say, 0.05, we could solve for 11,000 * α = 0.05, suggesting a cutoff of α = 0.000004545. This is known 
as Bonferroni correction. The trouble is, this is a conservative correction, and it’s likely that even our 50 significant genes 
won’t pass that small threshold. 

The reason Bonferroni correction is so conservative is that we’ve specified that we’ll only accept the average number 
of false positives to be 0.05, which is quite small. We might alternatively say we would accept 10 false positives (and solve 
for 11,000 * α = 10); if the number of kept results is 100, that’s only a 10% false discovery rate (FDR), and so we can 
expect 90% of the kept results to be real (but we won’t know which are which!). On the other hand, if the number of 
kept results ends up being 15, that’s a 75% false discovery rate, indicating that we can expect most of the kept results to 
be false positives. 

Instead of specifying the number of false positives we’re willing to accept, we can instead specify the rate and 
deal with whatever number of kept results come out. There are several of these “FDR-controlling” methods available, 
and some make more assumptions about the data than others. For example, the methods of Benjamini and Hochberg 
(described in 1995 and known by the acronym “BH”) and Benjamini, Hochberg, and Yekutieli (from 2001, known 
as “BY”) differ in the amount of independence the many tests are assumed to have. The BY method assumes less 
independence between tests but generally results in more results for a given FDR rate. (Consult your local statistician or 
statistics textbook for details.) 

The p.adjust() function allows us to run either the Bonferroni, BH, or BY correction methods. It takes two 
arguments: first, a vector of p values to adjust, and, second, a method = parameter that can be set to "bonferroni", "BH", 
or "BY". (There are other possibilities, but these three are the most commonly used.) Returned is a vector of the same 
length of adjusted FDR values—selecting all entries with values less than Q is equivalent to setting an FDR rate cutoff of 
Q. 

In the final analysis of all genes, we will produce a BY-adjusted column for the interaction p values, and then select 
from the data set only those rows where the FDR rate is less than 0.05. (The full analysis script is located in the file 
expr_analyze.R.) 
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Unfortunately (or fortunately, depending on how much data one hopes to further analyze), only one gene is identified 
as having a significant interaction after BY correction in this analysis. (If 100 were returned, we would expect 5 of them 
to be false positives due to the 0.05 FDR cutoff used.) 

For grouped data frames, print() will omit printing some columns if they don’t fit in the display window. To see 
all the columns (including our new interaction_BY column), we can convert the grouped table back into a regular 
data frame and print the head() of it with print(head(data.frame(pvals_interaction_sig))). For the curious, the 
interaction_BY value of this ID is 0.048. 

Exercises Exercises 

1. We spent a fair amount of work ensuring that the data frame generated and returned by sub_df_to_pvals_df() 

was programmatically generated. Take advantage of this fact by making the formula a secondary parameter of 

the function, that is, as function(sub_df, form), so that within the function the linear model can be produced as 

lm1 <- lm(form, data = sub_df). 

Next, run the analysis with group_by() and do(), but specify some other formula in the do() call (perhaps 

something like expression ~ genotype + treatment + tissue). 

2. In a previous exercise in this chapter, we wrote a function that took a portion of the CO2 data frame and 

returned a data frame with a p value for a comparison of CO2 uptake values between chilled and nonchilled 

plants. Now, use group_by() and do() to run this test for each conc group, producing a data frame of p values. Use 

p.adjust() with Bonferroni correction to add an additional column of multiply-corrected values. 

3. While functions called by do() must take a data frame as their first parameter and must return a data frame, 

they are free to perform any other actions as well, like generating a plot or writing a file. Use group_by(), do(), and 

write.table() to write the contents of the CO2 data frame into seven text files, one for each conc level. Name them 

conc_95.txt, conc_175.txt, and so on. You may need paste() or str_c() (from the stringr library) to generate the file 

names. 
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34. Reshaping and Joining Data Frames 

Looking back at the split-apply-combine analysis for the gene expression data, it’s clear that the organization of the 
data worked in our favor (after we split the sample column into genotype, treatment, and other columns, at least). 
In particular, each row of the data frame represented a single measurement, and each column represented a variable 
(values that vary across measurements). This allowed us to easily group measurements by the ID column. It also worked 
well when building the linear model, as lm() uses a formula describing the relationship of equal-length vectors or 
columns (e.g., expr$expression ~ expr$treatment + expr$genotype), which are directly accessible as columns of the 
data frame. 

Data are often not organized in this “tidy” format. This data set, for example, was originally in a file called 
expr_wide.txt with the following format: 

Data formats like this are frequently more convenient for human readers than machines. Here, the id and annotation 
columns (the latter not shown) are variables as before, but the other column names each encode a variety of variables, 
and each row represents a large number of measurements. Data in this “shape” would be much more difficult to analyze 
with the tools we’ve covered so far. 

Converting between this format and the preferred format (and back) is the primary goal of the tidyr package. As 
usual, this package can be installed in the interactive interpreter with install.packages("tidyr"). The older reshape2 
package also handles this sort of data reorganization, and while the functions provided there are more flexible and 
powerful, tidyr covers the majority of needs while being easier to use. 

Gathering for Tidiness Gathering for Tidiness 

The gather() function in the tidyr package makes most untidy data frames tidier. The first parameter taken is the data 
frame to fix up, and the second and third are the “key” and “value” names for the newly created columns, respectively 
(without quotes). The remaining parameters specify the column names that need to be tidied (again, without quotes). 
Suppose we had a small, untidy data frame called expr_small, with columns for id, annotation, and columns for 
expression in the C6 and L4 genotypes. 

343

Computational Biology  |  343

https://github.com/osuoer/computational-biology/blob/master/expr_wide.txt?raw=true


In this case, we would run the gather() function as follows, where sample and expression are the new column names to 
create, and C6 and L4 are the columns that need tidying. (Notice the lack of quotation marks on all column names; this is 
common to both the tidyr and dplyr packages’ syntactic sugar.) 

Notice that the data in the nongathered, nontidied columns (id and annotation) have been repeated as necessary. If no 
columns to tidy have been specified (C6 and L4 in this case), the gather() assumes that all columns need to be reorganized, 
resulting in only two output columns (sample and expression). This would be obviously incorrect in this case. 

Listing all of the column names that need tidying presents a challenge when working with wide data frames 
like the full expression data set. To gather this table, we’d need to run gather(expr_wide, sample, expression, 

C6_chemical_A1, C6_chemical_A3, C6_chemical_B1, and so on, listing each of the 35 column names. Fortunately, 
gather() accepts an additional bit of syntactic sugar: using - and specifying the columns that don’t need to be gathered. 
We could thus gather the full data set with 

The gather() function takes a few other optional parameters, for example, for removing rows with NA values. See 
help("gather") in the interactive interpreter for more information. 

Ungathering with spread() Ungathering with spread() 

While this organization of the data—with each row being an observation and each column being a variable—is usually 
most convenient for analysis in R, sharing data with others often isn’t. People have an affinity for reading data tables 
where many measurements are listed in a single row, whereas “tidy” versions of data tables are often long with many 
repeated entries. Even when programmatically analyzing data tables, sometimes it helps to have multiple measurements 
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in a single row. If we wanted to compute the difference between the C6 and L4 genotype expressions for each treatment 
condition, we might wish to have C6_expression and L4_expression columns, so that we can later use vectorized 
subtraction to compute a C6_L4_difference column. 

The spread() function in the tidyr provides this, and in fact is the complement to the gather() function. The 
three important parameters are (1) the data frame to spread, (2) the column to use as the “key,” and (3) the column to 
use as the “values.” Consider the expr_gathered_small data frame from above. 

Converting this data frame back into the “wide” version is as simple as: 

Because the entries in the “key” column name become new column names, it would usually be a mistake to use a numeric 
column here. In particular, if we were to mix up the order and instead run spread(expr_gathered_small, expression, 

sample), we’d end up with a column for each unique value in the expression column, which could easily number in the 
hundreds of thousands and would likely crash the interpreter. 

In combination with group_by(), do(), and summarize() from the dplyr package, gather() and spread() can be 
used to aggregate and analyze tabular data in an almost limitless number of ways. Both the dplyr and tidyr packages 
include a number of other functions for working with data frames, including filtering rows or columns by selection 
criteria and organizing rows and columns. 

Splitting Columns Splitting Columns 

In chapter 32, “Character and Categorical Data,” we learned how to work with character vectors using functions like 
str_split_fixed() to split them into pieces based on a pattern, and str_detect() to produce a logical vector indicating 
which elements matched a pattern. The tidyr package also includes some specialized functions for these types of 
operations. Consider a small data frame expr_sample with columns for id, expression, and sample, like the precleaned 
data frame considered in previous chapters. 
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The tidyr function separate() can be used to quickly split a (character or factor) column into multiple columns based 
on a pattern. The first parameter is the data frame to work on, the second is the column to split within that data frame, 
the third specifies a character vector of newly split column names, and the fourth optional sep = parameter specifies the 
pattern (regular expression) to split on. 

Similarly, the extract() function splits a column into multiple columns based on a pattern (regular expression), but 
the pattern is more general and requires an understanding of regular expressions and back-referencing using () capture 
groups. Here, we’ll use the regular expression pattern "([A-Z])([0-9])" to match any single capital letter followed by 
a single digit, each of which get captured by a pair of parentheses. These values will become the entries for the newly 
created columns. 

Although we covered regular expressions in earlier chapters, for entries like C6_control_b3 where we assume the 
encoding is well-described, we could use a regular expression like "(C6|L4)_(control|chemical)_(A|B|C)(1|2|3)". 

While these functions are convenient for working with columns of data frames, an understanding of 
str_split_fixed() and str_detect() is nevertheless useful for working with character data in general. 
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Joining/Merging Data Frames, cbind() and rbind() Joining/Merging Data Frames, cbind() and rbind() 

Even after data frames have been reshaped and otherwise massaged to make analyses easy, occasionally similar or related 
data are present in two different data frames. Perhaps the annotations for a set of gene IDs are present in one data 
frame, while the p values from statistical results are present in another. Usually, such tables have one or more columns in 
common, perhaps an id column. 

Sometimes, each entry in one of the tables has a corresponding entry in the other, and vice versa. More often, some 
entries are shared, but others are not. Here’s an example of two small data frames where this is the case, called heights 
and ages. 

The merge() function (which comes with the basic installation of R) can quickly join these two data frames into one. By 
default, it finds all columns that have common names, and uses all entries that match in all of those columns. Here’s the 
result of merge(heights, ages): 

This is much easier to use than the command line join program: it can join on multiple columns, and the rows do not 
need to be in any common order. If we like, we can optionally specify a by = parameter, to specify which column names 
to join by as a character vector of column names. Here’s merge(heights, ages, by = c("first")): 

Because we specified that the joining should only happen by the first column, merge() assumed that the two columns 
named last could contain different data and thus should be represented by two different columns in the output. 

By default, merge() produces an “inner join,” meaning that rows are present in the output only if entries are present 
for both the left (heights) and right (ages) inputs. We can specify all = TRUE to perform a full “outer join.” Here’s 
merge(heights, ages, all = TRUE). 

In this example, NA values have been placed for entries that are unspecified. From here, rows with NA entries in either the 
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height or age column can be removed with row-based selection and is.na(), or a “left outer join” or “right outer join,” 
can be performed with all.x = TRUE or all.y = TRUE, respectively. 

In chapter 32, we also looked at cbind() after splitting character vectors into multicolumn data frames. This 
function binds two data frames into a single one on a column basis. It won’t work if the two data frames don’t have 
the same number of rows, but it will work if the two data frames have column names that are identical, in which case 
the output data frame might confusingly have multiple columns of the same name. This function will also leave the 
data frame rows in their original order, so be careful that the order of rows is consistent before binding. Generally, using 
merge() to join data frames by column is preferred to cbind(), even if it means ensuring some identifier column is always 
present to serve as a binding column. 

The rbind() function combines two data frames that may have different numbers of rows but have the same 
number of columns. Further, the column names of the two data frames must be identical. If the types of data are 
different, then after being combined with rbind(), columns of different types will be converted to the most general type 
using the same rules when mixing types within vectors. 

Using rbind() requires that the data from each input vector be copied to produce the output data frame, even 
if the variable name is to be reused as in df <- rbind(df, df2). Wherever possible, data frames should be generated 
with a split-apply-combine strategy (such as with group_by() and do()) or a reshaping technique, rather than with many 
repeated applications of rbind(). 

Exercises Exercises 

1. As discussed in exercises in Chapter 33, Split, Apply, Combine, the built-in CO2 data frame contains 

measurements of CO2 uptake rates for different plants in different locations under different ambient CO2 

concentrations. 

Use the spread() function in the tidyr library to produce a CO2_spread data frame that looks like so: 

Next, undo this operation with a gather(), re-creating the CO2 data frame as CO2_recreated. 

2. Occasionally, we want to “reshape” a data frame while simultaneously computing summaries of the data. The 

reshape2 package provides some sophisticated functions for this type of computation (specifically melt() and 

cast()), but we can also accomplish these sorts of tasks with group_by() and do() (or summarize()) from the dplyr 

package in combination with gather() and spread() from tidyr. 

From the CO2 data frame, generate a data frame like the following, where the last two columns report mean 

uptake for each Type/conc combination: 
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You’ll likely want to start by computing appropriate group-wise means from the original CO2 data. 

3. The built-in data frames beaver1 and beaver2 describe body temperature and activity observations of two 

beavers. Merge these two data frames into a single one that contains all the data and looks like so: 

Notice the column for name—be sure to include this column so it is clear to which beaver each measurement 

corresponds! 
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35. Procedural Programming 

For many (perhaps most) languages, control-flow structures like for-loops and if-statements are fundamental building 
blocks for writing useful programs. By contrast, in R, we can accomplish a lot by making use of vectorized operations, 
vector recycling, logical indexing, split-apply-combine, and so on. In general, R heavily emphasizes vectorized and 
functional operations, and these approaches should be used when possible; they are also usually optimized for speed. 
Still, R provides the standard repertoire of loops and conditional structures (which form the basis of the “procedural 
programming” paradigm) that can be used when other methods are clumsy or difficult to design. We’ve already seen 
functions, of course, which are incredibly important in the vast majority of programming languages. 

Conditional Looping with While-Loops Conditional Looping with While-Loops 

A while-loop executes a block of code over and over again, testing a given condition (which should be or return a logical 
vector) before each execution. In R, blocks are delineated with a pair of curly brackets. Standard practice is to place the 
first opening bracket on the line, defining the loop and the closing bracket on a line by itself, with the enclosing block 
indented by two spaces. 

In the execution of the above, when the while(count < 4) line is reached, count < 4 is run and returns the single-
element logical vector TRUE, resulting in the block being run and printing "Count is: " and 1, and then incrementing 
count by 1. Then the loop returns to the check; count being 2 is still less than 4, so the printing happens and count is 
incremented again to 3. The loop starts over, the check is executed, output is printed, and count is incremented to 4. 
The loop returns back to the top, but this time count < 4 results in FALSE, so the block is skipped, and finally execution 
moves on to print "Done!". 
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Because the check happens at the start, if count were to start at some larger number like 5, then the loop block would be 
skipped entirely and only "Done!" would be printed. 

Because no “naked data” exist in R and vectors are the most basic unit, the logical check inside the while() works 
with a logical vector. In the above, that vector just happened to have only a single element. What if the comparison 
returned a longer vector? In that case, only the first element of the logical vector will be considered by the while(), and a 
warning will be issued to the effect of condition has length > 1. This can have some strange consequences. Consider if 
instead of count <- 1, we had count <- c(1, 100). Because of the vectorized nature of addition, the output would be: 

Two handy functions can provide a measure of safety from such errors when used with simple conditionals: any() 
and all(). Given a logical vector, these functions return a single-element logical vector indicating whether any, or 
all, of the elements in the input vector are TRUE. Thus our while-loop conditional above might better be coded as 
while(any(count < 4)). (Can you tell the difference between this and while(any(count) < 4)?) 

Generating Truncated Random Data, Part I Generating Truncated Random Data, Part I 

The unique statistical features of R can be combined with control-flow structures like while-loops in interesting ways. 
R excels at generating random data from a given distribution; for example, rnorm(1000, mean = 20, sd = 10) returns a 
100-element numeric vector with values sampled from a normal distribution with mean 20 and standard deviation 10. 

Although we’ll cover plotting in more detail later, the hist() function allows us to produce a basic histogram from a 
numeric vector. (Doing so requires a graphical interface like Rstudio for easily displaying the output. See chapter 37, 
“Plotting Data and ggplot2,” for details on plotting in R.) 
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What if we wanted to sample numbers originally from this distribution, but limited to the range 0 to 30? One way 
to do this is by “resampling” any values that fall outside of this range. This will effectively truncate the distribution 
at these values, producing a new distribution with altered mean and standard deviation. (These sorts of “truncated by 
resampling” distributions are sometimes needed for simulation purposes.) 

Ideally, we’d like a function that encapsulates this idea, so we can say sample <- rnorm_trunc(0, 30, 1000, mean 

= 20, sd = 10). We’ll start by defining our function, and inside the function we’ll first produce an initial sample. 

Note the usage of mean = mean in the call to rnorm(). The right-hand side refers to the parameter passed to the 
rnorm_trunc() function, the left-hand side refers to the parameter taken by rnorm(), and the interpreter has no problem 
with this usage. 

Now, we’ll need to “fix” the sample so long as any of the values are less than lower or greater than upper. We’ll check 
as many times as needed using a while-loop. 

If any values are outside the desired range, we don’t want to just try an entirely new sample set, because the probability of 
generating just the right sample (within the range) is incredibly small, and we’d be looping for quite a while. Rather, we’ll 
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only resample those values that need it, by first generating a logical vector of “bad” elements. After that, we can generate 
a resample of the needed size and use selective replacement to replace the bad elements. 

Let’s try it: 

The plotted histogram reflects the truncated nature of the data set: 

If-Statements If-Statements 

An if-statement executes a block of code based on a conditional (like a while-loop, but the block can only be executed 
once). Like the check for while, only the first element of a logical vector is checked, so using any() and all() is suggested 
for safety unless we are sure the comparison will result in a single-element logical vector. 
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Like if-statements in Python, each conditional is checked in turn. As soon as one evaluates to TRUE, that block is 
executed and all the rest are skipped. Only one block of an if/else chain will be executed, and perhaps none will 
be. The if-controlled block is required to start the chain, but one or more else if-controlled blocks and the final 
else-controlled block are optional. 

In R, if we want to include one or more else if blocks or a single else block, the else if() or else keywords 
must appear on the same line as the previous closing curly bracket. This differs slightly from other languages and is a 
result of the way the R interpreter parses the code. 

Generating Truncated Random Data, Part II Generating Truncated Random Data, Part II 

One of the issues with our rnorm_trunc() function is that if the desired range is small, it might still require many 
resampling efforts to produce a result. For example, calling sample_trunc <- rnorm_trunc(15, 15.01, 1000, 20, 10) 

will take a long time to finish, because it is rare to randomly generate values between 15 and 15.01 from the given 
distribution. Instead, what we might like is for the function to give up after some number of resamplings (say, 100,000) 
and return a vector containing NA, indicating a failed computation. Later, we can check the returned result with is.na(). 
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The example so far illustrates a few different things: 

1. NA can act as a placeholder in our own functions, much like mean() will return NA if any of the input elements are 
themselves NA. 

2. If-statements may use else if and else, but they don’t have to. 

3. Functions may return from more than one point; when this happens, the function execution stops even if it’s 
inside of a loop.

1 

4. Blocks of code, such as those used by while-loops, if-statements, and functions, may be nested. It’s important to 
increase the indentation level for all lines within each nested block; otherwise, the code would be difficult to read. 

For-Loops For-Loops 

For-loops are the last control-flow structure we’ll study for R. Much like while-loops, they repeat a block of code. For-
loops, however, repeat a block of code once for each element of a vector (or list), setting a given variable name to each 
element of the vector (or list) in turn. 

1. Some programmers believe that functions should have only one return point, and it should always go at the end of a function. This 
can be accomplished by initializing the variable to return at the start of the function, modifying it as needed in the body, and 
finally returning at the end. This pattern is more difficult to implement in this type of function, though, where execution of the 
function needs to be broken out of from a loop. 
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While for-loops are important in many other languages, they are not as crucial in R. The reason is that many operations 
are vectorized, and functions like lapply() and do() provide for repeated computation in an entirely different way. 

There’s a bit of lore holding that for-loops are slower in R than in other languages. One way to determine whether 
this is true (and to what extent) is to write a quick loop that iterates one million times, perhaps printing on every 1,000th 
iteration. (We accomplish this by keeping a loop counter and using the modulus operator %% to check whether the 
remainder of counter divided by 1000 is 0.) 

When we run this operation we find that, while not quite instantaneous, this loop doesn’t take long at all. Here’s a quick 
comparison measuring the time to execute similar code for a few different languages (without printing, which itself takes 
some time) on a 2013 MacBook Pro. 

Language Language Loop 1 Million Loop 1 Million Loop 100 Million Loop 100 Million 

R (version 3.1) 0.39 seconds ~30 seconds 

Python (version 3.2) 0.16 seconds ~12 seconds 

Perl (version 5.16) 0.14 seconds ~13 seconds 

C (g++ version 4.2.1) 0.0006 seconds 0.2 seconds 

While R is the slowest of the bunch, it is “merely” twice as slow as the other interpreted languages, Python and Perl. 
The trouble with R is not that for-loops are slow, but that one of the most common uses for them—iteratively 

lengthening a vector with c() or a data frame with rbind()—is very slow. If we wanted to illustrate this problem, we 
could modify the loop above such that, instead of adding one to counter, we increase the length of the counter vector by 
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one with counter <- c(counter, 1). We’ll also modify the printing to reflect the interest in the length of the counter 
vector rather than its contents. 

In this case, we find that the loop starts just as fast as before, but as the counter vector gets longer, the time between 
printouts grows. And it continues to grow and grow, because the time it takes to do a single iteration of the loop is 
depending on the length of the counter vector (which is growing). 

To understand why this is the case, we have to inspect the line counter <- c(counter, 1), which appends a new 
element to the counter vector. Let’s consider a related set of lines, wherein two vectors are concatenated to produce a 
third. 

In the above, names will be the expected four-element vector, but the first_names and last_names have not been 
removed or altered by this operation—they persist and can still be printed or otherwise accessed later. In order to remove 
or alter items, the R interpreter copies information from each smaller vector into a new vector that is associated with the 
variable names. 

Now, we can return to counter <- c(counter, 1). The right-hand side copies information from both inputs to 
produce a new vector; this is then assigned to the variable counter. It makes little difference to the interpreter that the 
variable name is being reused and the original vector will no longer be accessible: the c() function (almost) always creates 
a new vector in RAM. The amount of time it takes to do this copying thus grows along with the length of the counter 
vector. 

The total amount of time taken to append n elements 
to a vector in a for-loop this way is roughly 

, meaning the time taken to grow a list of n 
elements grows quadratically in its final length! This 
problem is exacerbated when using rbind() inside of a 
for-loop to grow a data frame row by row (as in 
something like df <- rbind(df, c(val1, val2, 

val3))), as data frame columns are usually vectors, 
making rbind() a repeated application of c(). 

One solution to this problem in R is to “preallocate” 
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a vector (or data frame) of the appropriate size, and use replacement to assign to the elements in order using a carefully 
constructed loop. 

(Here we’re simply placing values of 1 into the vector, but more sophisticated examples are certainly possible.) This code 
runs much faster but has the downside of requiring that the programmer know in advance how large the data set will 
need to be.

2 

Does this mean we should never use loops in R? Certainly not! Sometimes looping is a natural fit for a problem, 
especially when it doesn’t involve dynamically growing a vector, list, or data frame. 

Exercises Exercises 

1. Using a for-loop and a preallocated vector, generate a vector of the first 100 Fibonacci numbers, 1, 1, 2, 3, 5, 8, 

and so on (the first two Fibonacci numbers are 1; otherwise, each is the sum of the previous two). 

2. A line like result <- readline(prompt = "What is your name?") will prompt the user to enter their name, and store 

the result as a character vector in result. Using this, a while-loop, and an if-statement, we can create a simple 

number-guessing game. 

Start by setting input <- 0 and rand to a random integer between 1 and 100 with rand <- sample(seq(1,100), size = 

1). Next, while input != rand: Read a guess from the user and convert it to an integer, storing the result in input. If 

input < rand, print "Higher!", otherwise if input > rand, print "Lower!", and otherwise report "You got it!". 

3. A paired student’s t -test assesses whether two vectors reveal a significant mean element-wise difference. For 

example, we might have a list of student scores before a training session and after. 

But the paired t-test should only be used when the differences (which in this case could be computed with 

scores_after - scores) are normally distributed. If they aren’t, a better test is the Wilcoxon signed-rank test: 

(While the t-test checks to determine whether the mean difference is significantly different from 0, the 

Wilcoxon signed-rank test checks to determine whether the median difference is significantly different from 0.) 

The process of determining whether data are normally distributed is not an easy one. But a function known as 

the Shapiro test is available in R, and it tests the null hypothesis that a numeric vector is not normally 

distributed. Thus the p value is small when data are not normal. The downside to a Shapiro test is that it and 

2. Another way to lengthen a vector or list in R is to assign to the index just off of the end of it, as in counter[length(counter) + 1] <- 
val. One might be tempted to use such a construction in a for-loop, thinking that the result will be the counter vector being 
modified “in place” and avoiding the expensive copying. One would be wrong, at least as of the time of this writing, because this 
line is actually syntactic sugar for a function call and assignment: counter <- `[<-`(counter, length(counter) + 1, val), which suffers 
the same problem as the c() function call. 
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similar tests tend to be oversensitive to non-normality when given large samples. The shapiro.test() function 

can be explored by running print(shapiro.test(rnorm(100, mean = 10, sd = 4))) and print(shapiro.test(rexp(100, 

rate = 2.0))). 

Write a function called wilcox_or_ttest() that takes two equal-length numeric vectors as parameters and returns 

a p value. If the shapiro.test() reports a p value of less than 0.05 on the difference of the vectors, the returned p 

value should be the result of a Wilcoxon rank-signed test. Otherwise, the returned p value should be the result 

of a t.test(). The function should also print information about which test is being run. Test your function with 

random data generated from rexp() and rnorm(). 

A Functional Extension A Functional Extension 

Having reviewed the procedural control-flow structures if, while, and for, let’s expand on our truncated random 
sampling example to explore more “functional” features of R and how they might be used. The function we designed, 
rnorm_trunc(), returns a random sample that is normally distributed but limited to a given range via resampling. The 
original sampling distribution is specified by the mean = and sd = parameters, which are passed to the call to rnorm() 
within rnorm_trunc(). 

What if we wanted to do the same thing, but for rexp(), which samples from an exponential distribution taking a rate 
= parameter? 

The distribution normally ranges from 0 to infinity, but we might want to resample to, say, 1 to 4. 
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One possibility would be to write an rexp_trunc() function that operates similarly to the rnorm_trunc() function, with 
changes specific for sampling from the exponential distribution. 

The two functions rnorm_trunc() and rexp_trunc() are incredibly similar—they differ only in the sampling function 
used and the parameters passed to them. Can we write a single function to do both jobs? We can, if we remember two 
important facts we’ve learned about functions and parameters in R. 

1. Functions like rnorm() and rexp() are a type of data like any other and so can be passed as parameters to other 
functions (as in the split-apply-combine strategy). 

2. The special parameter ... “collects” parameters so that functions can take arbitrary parameters. 
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Here, we’ll use ... to collect an arbitrary set of parameters and pass them on to internal function calls. When defining a 
function to take ..., it is usually specified last. So, we’ll write a function called sample_trunc() that takes five parameters: 

1. The lower limit, lower. 

2. The upper limit, upper. 

3. The sample size to generate, count. 

4. The function to call to generate samples, sample_func. 

5. Additional parameters to pass on to sample_func, .... 

We can call our sample_trunc() function using any number of sampling functions. We’ve seen rnorm(), which takes 
mean = and sd = parameters, and rexp(), which takes a rate = parameter, but there are many others, like dpois(), which 
generates Poisson distributions and takes a lambda = parameter. 
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In the first example above, mean = 20, sd = 10 is collated into ... in the call to sample_trunc(), as is rate = 1.5 in the 
second example and lambda = 2 in the third example. 

Exercises Exercises 

1. As discussed in a previous exercise, the t.test() and wilcox.test() functions both take two numeric vectors as 

their first parameters, and return a list with a $p.value entry. Write a function pval_from_test() that takes four 

parameters: the first two should be two numeric vectors (as in the t.test() and wilcox.test() functions), the third 

should be a test function (either t.test or wilcox.test), and the fourth should be any optional parameters to pass 

on (...). It should return the p value of the test run. 

Chapter 35. Procedural Programming 363

Computational Biology  |  363



We should then be able to run the test like so: 

The four values pval1, pval2, pval3, and pval4 should contain simple p values. 
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36. Objects and Classes in R 

In the chapters covering Python, we spent a fair amount of time discussing objects and their blueprints, known as classes. 
Generally speaking, an object is a collection of data along with functions (called “methods” in this context) designed 
specifically to work on that data. Classes comprise the definitions of those methods and data. 

As it turns out, while functions are the major focus in R, objects are also an important part of the language. (By no 
means are any of these concepts mutually exclusive.) While class definitions are nicely encapsulated in Python, in R, the 
pieces are more distributed, at least for the oldest and most commonly used “S3” system we’ll discuss here.

1
 With this in 

mind, it is best to examine some existing objects and methods before attempting to design our own. Let’s consider the 
creation of a small, linear model for some sample data. 

In chapter 30, “Lists and Attributes,” we learned that functions like lm() and anova() generally return a list (or a data 
frame, which is a type of list), and we can inspect the structure with str(). 

Here’s a sampling of the output lines for each call (there are quite a few pieces of data contained in the lm_result list): 

1. Modern versions of R have not one, not two, but three different systems for creating and working with objects. We’ll be discussing 
only the oldest and still most heavily used, known as S3. The other two are called S4 and Reference Classes, the latter of which is 
most similar to the class/object system used by Python. For more information on these and other object systems (and many other 
advanced R topics), see Norman Matloff, The Art of R Programming (San Francisco: No Starch Press, 2011), and Hadley Wickham, 
Advanced R (London: Chapman and Hall/CRC, 2014). 
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If these two results are so similar—both types of lists—then why are the outputs so different when we call 
print(lm_result) 

and print(anova_result)? 

How these printouts are produced is dictated by the "class" attribute of these lists, "lm" for lm_result and "anova" for 
anova_result. If we were to remove this attribute, we would get a default printed output similar to the result of str(). 
There are several ways to modify or remove the class attribute of a piece of data: using the attr() accessor function 
with attr(lm_result, "class") <- NULL, setting it using the more preferred class() accessor, as in class(lm_result) 
<- NULL, or using the even more specialized unclass() function, as in lm_result <- unclass(lm_result). In any case, 
running print(lm_result) after one of these three options will result in str()-like default printout. 

Now, how does R produce different output based on this class attribute? When we call print(lm_result), the 
interpreter notices that the "class" attribute is set to "lm", and searches for another function with a different name 
to actually run: print.lm(). Similarly, print(anova_result) calls print.anova() on the basis of the class of the input. 
These specialized functions assume that the input list will have certain elements and produce an output specific to that 
data. We can see this by trying to confuse R by setting the class attribute incorrectly with class(anova_result) <- "lm" 

and then print(anova_result): 
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Notice that the class names are part of the function names. This is R’s way of creating methods, stating that objects with 
class "x" should be printed with print.x(); this is known as dispatching and the general print() function is known as 
a generic function, whose purpose is to dispatch to an appropriate method (class-specific function) based on the class 
attribute of the input. 

In summary, when we call print(result) in R, because print() is a generic function, the interpreter checks the 
"class" attribute of result; suppose the class is "x". If a print.x() exists, that function will be called; otherwise, the 
print will fall back to print.default(), which produces output similar to str(). 

There are many different "print." methods; we can see them with methods("print"). 

Similarly, there are a variety of ".lm" methods specializing in dealing with data that have a "class" attribute of "lm". We 
can view these with methods(class = "lm"). 
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The message about nonvisible functions being asterisked indicates that, while these functions exist, we can’t call them 
directly as in print.lm(lm_result); we must use the generic print(). Many functions that we’ve dealt with are actually 
generics, including length(), mean(), hist(), and even str(). 

So, in its own way R, is also quite “object oriented.” A list (or other type, like a vector or data frame) with a given 
class attribute constitutes an object, and the various specialized methods are part of the class definition. 

Creating Our Own Classes Creating Our Own Classes 

Creating novel object types and methods is not something beginning R programmers are likely to do often. Still, an 
example will uncover more of the inner workings of R and might well be useful. 

First, we’ll need some type of data that we wish to represent with an object. For illustrative purposes, we’ll use the 
data returned by the nrorm_trunc() function defined in chapter 35, “Structural Programming.” Rather than producing 
a vector of samples, we might also want to store with that vector the original sampling mean and standard deviation 
(because the truncated data will have a different actual mean and standard deviation). We might also wish to store in this 
object the requested upper and lower limits. Because all of these pieces of data are of different types, it makes sense to 
store them in a list. 

The function above returns a list with the various elements, including the sample itself. It also sets the class attribute of 
the list to truncated_normal_sample—by convention, this class attribute is the same as the name of the function. Such a 
function that creates and returns an object with a defined class is called a constructor. 

Now, we can create an instance of a "truncated_normal_sample" object and print it. 

Because there is no print.truncated_normal_sample() function, however, the generic print() dispatches to 
print.default(), and the output is not pleasant. 
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If we want to stylize the printout, we need to create the customized method. We might also want to create a customized 
mean() function that returns the mean of the stored sample. 

The output: 
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This customized print function is rather crude; more sophisticated printing techniques (like cat() and paste()) could 
be used to produce friendlier output. 

So far, we’ve defined a custom mean.truncated_normal_sample() method, which returns the mean of the sample 
when we call the generic function mean(). This works because the generic function mean() already exists in R. What if we 
wanted to call a generic called originalmean(), which returns the object’s original_mean? In this case, we need to create 
our own specialized method as well as the generic function that dispatches to that method. Here’s how that looks: 

These functions—the constructor, specialized methods, and generic functions that don’t already exist in R—need to 
be defined only once, but they can be called as many times as we like. In fact, packages in R that are installed using 
install.packages() are often just such a collection of functions, along with documentation and other materials. 

Object-oriented programming is a large topic, and we’ve only scratched the surface. In particular, we haven’t 
covered topics like polymorphism, where an object may have multiple classes listed in the "class" attribute. In R, the 
topic of polymorphism isn’t difficult to describe in a technical sense, though making effective use of it is a challenge in 
software engineering. If an object has multiple classes, like "anova" and "data.frame", and a generic like print() is called 
on it, the interpreter will first look for print.anova(), and if that fails, it will try print.data.frame(), and failing that 
will fall back on print.default(). This allows objects to capture “is a type of” relationships, so methods that work with 
data frames don’t have to be rewritten for objects of class anova. 

Exercises Exercises 

1. Many functions in R are generic, including (as we’ll explore in chapter 37, “Plotting Data and ggplot2”) the plot() 

function, which produces graphical output. What are all of the different classes that can be plotted with the 

generic plot()? An example is plot.lm(); use help("plot.lm") to determine what is plotted when given an input 

with class attribute of "lm". 
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2. What methods are available for data with a class attribute of "matrix"? (For example, is there a plot.matrix() or 

lm.matrix()? What others are there?) 

3. Create your own class of some kind, complete with a constructor returning a list with its class attribute set, a 

specialized method for print(), and a new generic and associated method. 

4. Explore using other resources the difference between R’s S3 object system and its S4 object system. 
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37. Plotting Data and ggplot2 

R provides some of the most powerful and sophisticated data visualization tools of any program or programming 
language (though gnuplot mentioned in chapter 12, “Miscellanea,” is also quite sophisticated, and Python is catching up 
with increasingly powerful libraries like matplotlib). A basic installation of R provides an entire set of tools for plotting, 
and there are many libraries available for installation that extend or supplement this core set. One of these is ggplot2, 
which differs from many other data visualization packages in that it is designed around a well-conceived “grammar” of 
graphics.

1 

The ggplot2 package is not the most powerful or flexible—the graphics provided by default with R may take 
that title. Neither is ggplot2 the easiest—simpler programs like Microsoft Excel are much easier to use. What ggplot2 
provides is a remarkable balance of power and ease of use. As a bonus, the results are usually professional looking with 
little tweaking, and the integration into R makes data visualization a natural extension of data analysis. 

A Brief Introduction to Base-R Graphics A Brief Introduction to Base-R Graphics 

Although this chapter focuses on the ggplot2 package, it is worth having at least passing familiarity with some of the 
basic plotting tools included with R. First, how plots are generated depends on whether we are running R through 
a graphical user interface (like RStudio) or on the command line via the interactive R console or executable script. 
Although writing a noninteractive program for producing plots might seem counterintuitive, it is beneficial as a written 
record of how the plot was produced for future reference. Further, plotting is often the end result of a complex analysis, 
so it makes sense to think of graphical output much like any other program output that needs to be reproducible. 

When working with a graphical interface like RStudio, plots are by default shown in a pop-up window or in a 
special plotting panel for review. Alternatively, or if we are producing plots via a remote command line login, each plot 
will be saved to a PDF file called Rplots.pdf. The name of this file can be changed by calling the pdf() function, giving a 
file name to write to. To finish writing the PDF file, a call to dev.off() is required (it takes no parameters). 

The most basic plotting function (other than hist(), which we’ve already seen) is plot(). Like hist(), plot() is a 
generic function that determines what the plot should look like on the basis of class attributes of the data given to it. For 
example, given two numeric vectors of equal length, it produces a dotplot. 

1. The idea of a grammar of graphics was first introduced in 1967 by Jacques Bertin in his book Semiologie Graphique (Paris: 
Gauthier-Villars, 1967) and later expanded upon in 2005 by Leland Wilkinson et al. in The Grammar of Graphics (New York: 
Springer, 2005). Hadley Wickham, “A Layered Grammar of Graphics,” Journal of Computational and Graphical Statistics 19 (2010): 
3–28, originally described the R implementation. 
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The contents of dotplot.pdf: 

For the rest of this chapter, the pdf() and dev.off() calls are not specified in code examples. 
We can give the plot() function a hint about the type 

of plot we want by using the type = parameter, setting it 
to "p" for points, "l" for lines, "b" for both, and so on. 
For basic vector plotting like the above, plot() respects 
the order in which the data appear. Here’s the output of 
plot(vecx, vecy, type = "l"): 

We would have had to sort one or both input vectors 
to get something more reasonable, if that makes sense for 
the data. 

Other plotting functions like hist(), curve(), and 
boxplot() can be used to produce other plot types. Some 
plot types (though not all) can be added to previously 
plotted results as an additional layer by setting add = 

TRUE. For example, we can produce a dotplot of two random vectors, along with a histogram with normalized bar heights 
by using hist() with probability = TRUE and add = TRUE. 
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A plot like this will only look reasonable if the axes ranges 
are appropriate for both layers, which we must ensure 
ourselves. We do this by specifying ranges with the xlim 
= and ylim = parameters in the call to plot(), specifying 
length-two vectors. 

There are a number of hidden rules here. For example, 
plot() must be called before hist(), as add = TRUE isn’t 
accepted by the plot() function. Although hist() 

accepts xlim and ylim parameters, they are ignored when 
hist() is used with add = TRUE, so they must be specified 
in the plot() call in this example. There are many 
individual plotting functions like plot() and hist(), and 
each takes dozens of parameters with names like "las", 
"cex", "pch", and "tck" (these control the orientation of 
y-axis labels, font size, dot shapes, and tick-mark size, 
respectively). Unfortunately, the documentation of all of 
these functions and parameters oscillates between sparse 
and confusingly complex, though there are a number of 
books dedicated solely to the topic of plotting in R. 

Despite its complexities, one of the premier benefits of using plot() is that, as a generic, the plotted output is often 
customized for the type of input. As an example, let’s quickly create some linearly dependent data and run them through 
the lm() linear modeling function. 

If we give the lm_result (a list with class attribute "lm") to plot(), the call will be dispatched to plot.lm(), producing a 
number of plots appropriate for linear model parameters and data. The first of the five plots below was produced by the 
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call to plot(vecx, vecy), while the remaining four are plots specific to linear models and were produced by the single 
call to plot(lm_result) as a multipage PDF file. 

Overview of ggplot2 and Layers Overview of ggplot2 and Layers 

As mentioned previously, the ggplot2 package seeks to simplify the process of plotting while still providing a large 
amount of flexibility and power by implementing a “grammar” of graphical construction. Given this structure, we’re 
going to have to start by learning some (more) specialized vocabulary, followed by some (more) specialized syntax. There 
are several ways of interacting with ggplot2 of various complexity. We’ll start with the most complex first, to understand 
the structure of the grammar, and then move on to simpler methods that are easier to use (once framed in terms of the 
grammar). 

Unlike the generic plot() function, which can plot many different types of data (such as in the linear model 
example above), ggplot2 specializes in plotting data stored in data frames. 

A “plot” in ggplot2 is made up of the following components: 

1. One or more layers, each representing how some data should be plotted. Plot layers are the most important pieces, 
and they consist of five subparts: 

a. The data (a data frame), which contains the data to plot. 

b. A stat, which stands for “statistical mapping.” By default, this is the "identity" stat (for no modification) 
but could be some other mapping that processes the data data frame and produces a new data set that is 
actually plotted. 

c. A geom, short for “geometric object,” which specifies the shape to be drawn. For example, "point" specifies 
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that data should be plotted with points (as in a dotplot), "line" specifies that data should be plotted with 
lines (as in a line plot), and "bar" specifies that data should be plotted with bars (as in a histogram). 

d. A mapping of “aesthetics,” describing how properties of the geom (e.g., x and y position of points, or their 
color, size, and so on) relate to columns of the stat-transformed data. Each geom type cares about a specific 
set of aesthetics, though many are common. 

e. A position for the geom; usually, this is "identity" to suggest that the position of the geom should not be 
altered. Alternatives include "jitter", which adds some random noise to the location (so overlapping geom 
shapes are more easily viewable). 

2. One scale for each aesthetic used in layers. For example, each point’s x value occurs on a horizontal scale that we 
might wish to limit to a given range, and each point’s color value occurs on a color scale that we might wish to 
range from purple to orange, or black to blue. 

3. A facet specification, describing how paneling data across multiple similar plots should occur. 

4. A coordinate system to which to apply some scales. 
Usually, we won’t modify these from the defaults. For 
example, the default for x and y is to use a cartesian 
coordinate system, though polar is an option. 

5. Some theme information, such as font sizes and rotations, 
axis ticks, aspect ratios, background colors, and the like. 

6. A set of defaults. Defaults are an odd thing to list as a specific part of a plot, as these are the properties we don’t 
specify, but ggplot2 makes heavy use of them, so they are worth mentioning. 

When installed with install.packages("ggplot2") (in the interactive console) and loaded with library(ggplot2), the 
package comes with a data frame called diamonds. Each row of this data frame specifies some information about a single 
diamond; with about 54,000 rows and many types of columns (including numeric and categorical), it is an excellent data 
set with which to explore plotting. 

Let’s start by exploring the most important concept in the list of definitions above: the layer and its five components. 
To create a layer, we can start by creating an “empty” gg object by calling ggplot() with no parameters. To this we’ll 
add a layer with + and calling the layer() function, specifying the five components we want.

2
 Because these plotting 

2. Given the information in previous chapters on objects, you might have guessed that the type of object returned by ggplot() is a list 
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commands become fairly long, we break them up over multiple lines (ending broken lines with + or , to let the interpreter 
know the command isn’t finished) and indent them to help indicate where different pieces are contributing. 

Here, we’ve specified each of the five layer components described above. For the mapping of aesthetics, there is an 
internal call to an aes() function that describes how aesthetics of the geoms (x and y, and color in this case) relate to 
columns of the stat-adjusted data (in this case, the output columns from the stat are identical to the input columns).

3 

Finally, we note that ggplot2 has seamlessly handled the categorical column of cut. 
To save the result to a file or when not working in a graphical interface, we can use the pdf() function before the call 

to plot() followed by dev.off(), as we did for the Base-R graphics. Alternatively, we can use the specialized ggsave() 
function, which also allows us to specify the overall size of the plot (in inches at 300 dpi by default for PDFs). 

with class attribute set, where the class is set to "gg" and "ggplot". Further, a specialized `+.gg`() method is defined for objects of 
the "gg" class, and + is not just syntactic sugar for `+`(), but also a generic function that is dispatched! 

3. If you are reading this in black-and-white, then you'll have to trust that the colors differentiate the points. Later we'll discuss the 
importance of choosing color schemes that work in both grayscale and for colorblind readers, though we haven't covered the 
code concepts yet to do so. 
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Let’s add a layer to our plot that will also plot points on the x and y axes, by carat and price. This additional layer, 
however, will use a "smooth" stat, and we won’t color the points. (In recent versions of ggplot2, this layer example also 
requires a params = list(method = "auto") which sets the stat’s smoothing method. Below we’ll see how to write more 
compact code with this and other parameters set automatically.) 

In this case, the original data have been transformed by the "smooth" stat, so x = carat, y = price now specifies the 
columns in the stat-transformed data frame. If we were to switch this layer’s geom to "line", we would get a plot like 
below on the left, and if we add a color = cut in the aes() call, we would get a plot like below on the right. 
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In the right plot above, multiple lines have been created; they are a bit difficult to see, but we’ll see how to fix that in a bit. 
Note that the order of the layers matters: the second layer was plotted on top of the first. 

This second layer illustrates one of the more confusing aspects of ggplot2, namely, that aesthetic mappings 
(properties of geoms) and stat mappings interact. In the second layer above, we specified aes(x = carat, y = price), 
but we also specified the "smooth" stat. As a consequence, the underlying data representing carat and price were 
modified by the stat, and the stat knew which variables to smooth on the basis of this aesthetic mapping. 

For a second example, let’s look at the "bin" stat and the "bar" geom, which together create a histogram. The "bin" 
stat checks the x aesthetic mapping to determine which column to bin into discrete counts, and also creates some entirely 
new columns in the stat-transformed data, including one called ..count... The extra dots indicate to the user that the 
column produced by the stat is novel. The "bar" geom pays attention to the x aesthetic (to determine each bar’s location 
on the horizontal axis) and the y aesthetic (to determine each bar’s height). 

The result of plotting the above is shown below on the left. To complete the example, below on the right shows the same 
plot with geom = "point". We can easily see that the stat-transformed data contain only about 30 rows, with columns for 
bin centers (carat mapped on x) and counts (..count..). The "bin" stat also generates a ..density.. column you can 
explore. 
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Smart Defaults, Specialized Layer Functions Smart Defaults, Specialized Layer Functions 

Most of us are probably familiar with the standard plot types: histograms, fitted-line plots, scatterplots, and so on. 
Usually, the statistical mapping used will determine the common plot type and the geom to use. For example, a binning 
statistic likely goes with a bar geom to produce a histogram, and the point geom is most commonly paired with the 
identity statistic. (In fact, in older versions of ggplot2, if a stat or geom was unspecified in the call to layer(), a default 
was used on the basis of the other. Newer versions require both geom = and stat = to be specified when calling layer().) 
Similarly, when a binning statistic is used, the y aesthetic mapping defaults to ..count.. if unspecified. 

Because it is so common to specify a plot by specifying the statistical mapping to use, ggplot2() provides specialized 
layer functions that effectively move the specification of the stat to the function name and use the default geom (though 
it can still be changed). Similarly, we often wish to specify a plot by the geom type and accept the default stat for that 
geom (though, again, this can be changed by adding a stat = parameter.) Here are two more ways to plot the left 
histogram above: 

(There is a geom_bar() layer function, but its default is not the binning statistic; hence the alternative geom_histogram().) 
To reproduce the plot above on the right, we could use stat_bin(data = diamonds, mapping = aes(x = carat), 

geom = "point"). 
With so many defaults being set, the plotting commands can become quite small. These specialized layer functions 

represent the most commonly used methods for plotting in ggplot2, being both flexible and quick. 
Another example of defaults being set is the geom_boxplot() layer function, which uses a "boxplot" geom (a box 

with whiskers) and a default "boxplot" stat. The boxplot geom recognizes a number of aesthetics for the various pieces 
that position the box and whiskers, including x, y, middle, upper, lower, ymin, and ymax. Fortunately, most of these 
required values are created by the boxplot stat and set accordingly (much like the y aesthetic defaults to ..count.. for 
histograms); only the x and y aesthetics are required to determine the others. 
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We’ve mapped a discrete variable to x and a continuous variable to y—a boxplot would make considerably less sense the 
other way around! There is also a corresponding stat_boxplot() layer function, which specifies the stat and uses the 
default corresponding geom (boxplot). 

So far, we’ve been individually specifying the data = and mapping = parameters for each layer. It is common to see 
them set only once in the call to ggplot(), in which case they are inherited for all subsequent layers. We can also leave off 
the data = and mapping = names if we first specify the data. 
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Most users of ggplot2 prefer to utilize many of these “fall-through” settings and defaults, though we’ll specify all data 
and mappings for each layer for clarity. (And yes, different layers can use different data frames for their data = parameter.) 

There are many specialized layer functions for specific stats and geoms. Documentation for them and other features 
of ggplot2 can be found at http://docs.ggplot2.org. 

Exercises Exercises 

1. Use the Base-R plot() function to produce a PDF plot that looks like the following: 

There are 1,000 x values randomly (and uniformly) distributed between 0 and 100, and the y values follow a 

curve defined by the log() of x plus some random noise. 

2. R’s hist() function is a convenient way to produce a quick histogram. Try running hist(rnorm(1000, mean = 0, sd 

= 3)). Read the help for hist() to determine how to increase the number of “bins.” 

3. Use the layer() function in ggplot2 to produce a histogram of diamond prices. Next, try using geom_histogram() 

and stat_bin(). For these latter plots, try changing the number of bins from the default of 30. 

4. Try creating a dotplot of diamonds (point geom, identity stat) using layer() with x mapped to color and y 

mapped to price. What happens when you change the position to "jitter"? Next, add a boxplot layer on top of 

this dotplot layer. 

More Aesthetics and Mathematical Expressions More Aesthetics and Mathematical Expressions 

The geom_point() layer function deserves some special attention, not only because scatterplots are a particularly useful 
plot type for data exploration, but also because we can use it to illustrate more features of the ggplot2 package. 
Unfortunately, scatterplots tend to suffer from “overplotting” issues when the number of data points is large, as in 
previous examples. For now, we’ll get around this issue by generating a random subset of 1,000 diamonds for plotting, 
placing the sample in a data frame called dd. 
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First, the geom_point() layer accepts a number of aesthetics that might be useful in other situations as well. 

The result is probably too many aesthetics to map to values from the data, but sometimes for exploratory purposes 
(rather than publication), this isn’t a bad thing. In this plot we can see a few interesting features of the data. (1) Diamonds 
are usually cut to carat sizes that are round numbers (0.25, 0.5, 1.0, etc.). (2) The price per carat (mapped to color) is 
generally higher for larger diamonds. This means that not only are larger diamonds more expensive, but they are also 
more expensive on a per carat basis (they are rarer, after all). (3) Although it’s a bit difficult to see in this plot, it appears 
that points with the best cut (mapped to alpha, or “transparency”) are also of intermediate depth (mapped to the y axis). 
Or, at the very least, outliers in depth tend to have poorer “cut” values. 

This plot also illustrates that aesthetics can generally be mapped to continuous or discrete data, and ggplot2 will 
handle the data with grace. Further, we can specify the data as mathematical expressions of the columns in the input data 
frame (or even other data), as we did with color = price/carat. Doing so allows us to explore data sets in a powerful 
and flexible way. We could quickly discretize the price per carat by setting color = price/carat > 5000, for example, 
or we could reduce the range of these values by plotting with color = log(price/carat). In the subsection on scales, 
however, we’ll see that ggplot2 contains some friendly features for plotting data on log-adjusted and similar scales. 
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Because this plot is far too busy, let’s fix it by removing the alpha and size mapping, remembering the possibility of 
a relationship between cut and depth for future exploration. We’ll also add a layer for a smoothed fit line. 

Layer functions like layer() and geom_point() accept additional options on top of data, stat, geom, and mapping. In 
this example, the first layer would look better if it were partially transparent, so that the top layer could stand out. But we 
don’t want to map the alpha aesthetic to a property of the data—we just want it to set it to a constant for all the geoms 
in the layer. Thus we can set alpha = 0.2 outside the aes() mapping as an option for the layer itself. Similarly, we might 
want our fit line to be red, and we note from the documentation that the stat_smooth() layer takes a method argument 
that can be set; "auto" is the default for a non-linear smooth and "lm" will produce a linear fit. 

Chapter 37. Plotting Data and ggplot2 385

Computational Biology  |  385



As a general note, ggplot2 enforces that all layers share the same scales. For this reason, we would not want to plot in one 
layer x = carat, y = depth and in another x = carat, y = price; all of the y values will be forced into a single scale, 
and because depth ranges up to ~70 while prices range up to ~18,000, the depth values would be indiscernible. This also 
applies to color mappings, if multiple layers utilize them. 

The ggplot2 package enforces these rules for ease of understanding of plots that use multiple layers. For the same 
reasons, ggplot2 doesn’t support multiple y axes (i.e., a “left” y axis and “right” y axis), nor does it natively support three-
dimensional plots that are difficult to read on a two-dimensional surface, like paper or a computer monitor.

4 

Faceting Faceting 

Faceting is one of the techniques that can be fairly difficult to do in other graphics packages, but is easy in ggplot2. Facets 
implement the idea of “small multiples” championed by Edward Tufte.

5
 Different subsets of the data are plotted in 

independent panels, but each panel uses the same axes (scales), allowing for easy comparisons across panels. In ggplot2(), 
we can add a facet specification by adding another function call to the “chain” of layer functions defining the plot. 
Faceting is almost always done on discrete columns of the input data frame, though below are some techniques for 
discretizing continuous columns. 

The first facet-specification function is facet_wrap(). It takes one required parameter, three less often used but 
occasionally helpful parameters, and a few more that we won’t discuss here. 

1. The first parameter is a formula specifying the columns of the input data frame to facet by. For facet_wrap(), this 
formula is usually of the form ~ <column>, with no “variable” specified to the left of the ~. If we wish to facet on all 
combinations of multiple input columns, we can use ~ <column_1> + <column_2> + .... 

4. Yet we can quickly explore multidimensional data by using additional aesthetics like color, size, shape, alpha, and so on. If multiple 
y axes or three-dimensional plots are required, some other R packages can provide these features, as can the gnuplot command 
line utility. 

5. Many in the data visualization community consider Tufte’s books, especially The Visual Display of Quantitative Information 
(Cheshire, CT: Graphics Press, 1983), to be staples. These volumes are beautiful in their own right as examples of information 
presentation. 
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2. The nrow = parameter controls the number of rows of panels that should appear in the output. 

3. The ncol = parameter controls the number of columns of panels that should appear in the output. (The nrow 
times ncol parameters should be large enough to hold all of the needed panels. By default, nrow and ncol are 
determined automatically.) 

4. The scales = parameter can be set to "fixed" (the default), which specifies that all axes should be similarly scaled 
across panels. Setting this parameter to "free_x" allows the x axes to vary across panels, "free_y" allows the y axes 
to vary, and "free" allows both scales to vary. Because facets are usually designed to allow comparisons between 
panels, settings other than "fixed" should be avoided in most situations. 

Returning to the dotplots of the diamonds data, recall that there appeared to be some relationship between the “cut” and 
“depth” of diamonds, but in the previous plots, this relationship was difficult to see. Let’s plot the same thing as above, 
but this time facet on the cut column. 

Faceting this way produces a separate panel for each cut type, all on the same axes, but anything plot-specific (such as the 
fit lines) are computed independently. This reveals that “ideal” cut diamonds tend to have a depth of around 62, whereas 
lower-quality cuts deviate from this value. To facet on cut and color, the formula would be ~ cut + color, and a panel 
would be created for each cut/color combination. 

The facet_grid() function works much like facet_wrap() but allows us to facet according to not one but two 
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variables (or two combinations of multiple variables) simultaneously. One of the variables will vary across rows of panels, 
and the other will vary across columns. The first parameter is still a formula, but usually of the form <column_1> ~ 

<column_2>. Let’s replace the facet_wrap(~ cut) with facet_grid(cut ~ color): 

As the number of facets increases, readability can decrease, but having cut along the rows and color along the columns 
certainly helps reveal trends. In this facet specification, we see that “fair” diamonds are relatively rare in the data set, and 
the largest diamonds tend to be premium or ideal cuts in poor colors (I and J). Producing PDFs with larger dimensions 
in ggsave() can make plots with many features more readable. 

Like facet_wrap(), facet_grid() can take a scales = parameter to allow panel x and y axes to vary, though again 
this isn’t generally recommended, as it makes panels difficult to compare visually. The facet_grid() function includes 
another optional parameter, margins =, which when set to TRUE adds “aggregate” panels for each column and row of 
panels. Here’s the plot with facet_grid(cut ~ color, margins = TRUE): 
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When plotting a grid of facets, we can also use a period in the specification to indicate that the grid should consist of only 
a single row or column of panels. While facet_wrap() can also produce only a single row or grid, the margins = TRUE 

option can be used with facet_grid() to produce a row or column while simultaneously producing an aggregate panel. 
Here’s the same plot with facet_grid(. ~ cut, margins = TRUE). 

Facets are usually created for different values of categorical data. An attempt to facet over all the different values in a 
continuous column could result in millions of panels! (Or, more likely, a crashed instance of R.) Still, occasionally we 
do want to facet over continuous data by producing individual discretized “bins” for values. Consider if we wanted to 
facet on diamond price/carat, categorized as “high” (at least $10,000) or “low” (less than $10,000). Unfortunately, the 
formulas taken by facet_wrap() and facet_grid() do not allow for vectorized expressions, so facet_wrap(~ price/

carat < 10000) won’t work. 
The solution is to first create a new column of the data frame before plotting, as in dd$price_carat_low <- 

dd$price/dd$carat < 10000, to create a new logical column, and then facet on the newly created column with 
facet_wrap(~ price_carat_low). 

R also includes a function called cut() specifically for discretizing continuous vectors into factors. The first 
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parameter is the vector to discretize, and the second parameter is either a number of (equal-sized) bins to break the input 
into, or a vector of breakpoints for the bins. 

The cut() can take a labels = parameter as well, for cases when the default labels aren’t sufficient. 

Scales Scales 

Each aesthetic used in a plot is associated with a scale, whether it be the x and y or even color or size. For faceted plots, 
usually any scale adjustments are shared across facets, and for each layer in a plot, all scale properties must be shared as 
well. The different types of scales—continuous for x and y, color values for color, sizes for size—can all be modified 
to change the scale name, range, locations of breaks (or tick-marks) and labels of the breaks. There’s more to say about 
scales than can be covered in this book, but we’ll try to hit the high points. 

Rather than continue plotting the diamonds data set, let’s load up a data frame more biologically relevant. This 
table, stored in a file called contig_stats.txt, summarizes sequence statistics from a de novo genome assembly. Each row 
represents a “contig” from the assembly (a single sequence meant to represent a contiguous piece of the genome sequence 
produced from many overlapping sequenced pieces). 
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Each contig has an Average_coverage value, representing the average number of sequence reads covering each base in 
the assembled contig. These values can vary widely, potentially because of duplicated regions of the genome that were 
erroneously assembled into a single contig. The Consensus_length column indicates the length of the contig (in base 
pairs), and the gccontent column shows the percentage of G or C bases of the contig. 

Let’s produce a dotplot for this data with Average_coverage on the x axis and Consensus_length on the y. 
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The result isn’t very good. There are outliers on both axes, preventing us from seeing any trends in the data. Let’s adjust 
the x scale by adding a scale_x_continuous(), setting name = to fix up the name of the scale, and using limits = to set 
the limits of the scale to c(0, 1000). We’ll also use the corresponding scale_y_continuous() to set a proper name for the 
y axis. (For discrete scales, such as in the boxplot example above, the corresponding functions are scale_x_discrete() 
and scale_y_discrete().) 

This is much better. It appears that most of the longer contigs have a coverage of about 100X. Sadly, this strategy leaves 
out many large data points to show the trends in the small majority. Instead, we should either log-adjust the data by 
plotting aes(x = log(Average_coverage), y = Consensus_length), or log-adjust the scale. If we log-adjusted the data, 
we’d have to remember that the values are adjusted. It makes better sense to modify the scale itself, and plot the original 
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data on the nonlinear scale. This can be done by supplying a trans = parameter to the scale, and specifying the name of a 
supported transformation function to apply to the scale as a single-element character vector. In fact, let’s make both the 
x and y scales log-adjusted. While we’re at it, we’ll specify explicit break marks for the scales, as well as custom labels for 
those break marks. 

The result is below left, and it looks quite good. For a flourish, we can add an annotation_logticks(base = 10) to get 
logarithmically scaled tick-marks, shown below right. 

Other adjustment functions we could have used for the trans = parameter include "log2" or "sqrt", though "log10" is 
a common choice with which most viewers will be familiar. 

One of the issues left with our plot is that there are far too many data points to fit into this small space; this plot 
has an “overplotting” problem. There are a variety of solutions for overplotting, including random sampling, setting 
transparency of points, or using a different plot type altogether. We’ll turn this plot into a type of heat map, where points 
near each other will be grouped into a single “cell,” the color of which will represent some statistic of the points in that 
cell.

6 

There are two layer functions we can use for such a heat map, stat_summary_2d() and stat_summary_hex(). The 
former produces square cells, and the latter hexagons. (The stat_summary_hex() layer requires that we have the "binhex" 

6. These functions can be used to create heat maps, but generally the rows and columns of a heat map are orderable in different 
ways. Many packages are available for plotting heat maps of various sorts in R, perhaps one of the more interesting is the NeatMap 
package, which is based on ggplot2. 
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package installed via install.packages("binhex") in the interactive console.) We’ll use stat_summary_hex(), as it’s a bit 
more fun. This layer function requires more than the usual number of parameters and aesthetics: 

1. The data = data frame to plot (as usual). 

2. The mapping = aesthetics to set via aes() (as usual), requiring x, the variable to bin by on the x axis; y, the variable 
to bin by on the y axis; and z, the variable to color cells by. 

3. A fun = parameter, specifying the function to apply to the z values for each cell to determine the color. 

This might be a bit confusing without an example, so let’s replace the dotplot layer with a stat_summary_hex() layer 
plotting x and y the same way, but coloring cells by the mean gccontent of dots within that cell. 

The result, below left, has cells colored by the mean function applied to all of the gccontent values (from the z aesthetic), 
but it doesn’t reveal how many points are present in each cell. For this, we can use fun = length, which returns the 
number of elements in a vector rather than the mean, resulting in the plot below right. 

Like the x and y locations on the scales, the colors of the cells also exist on a scale. In this case, we can control it with 
the modifier scale_fill_gradient(). (Lines and other unfilled colors are controlled with scale_color_gradient(), and 
discrete color scales are controlled with scale_fill_descrete() and scale_color_discrete().) This means that color 
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scales can be named, transformed, and be given limits, breaks, and labels. Below, the string "#BFBCFF" specifies the light 
purple color at the top of the scale, based on the RGB color-coding scheme. 

We’ve also included a trans = "log10" adjustment in this color scale, indicating that it can be transformed just as other 
continuous scales. Using a log10 adjustment on a color scale may or may not be a good idea. For this data set, it more 
clearly illustrates the distribution of contigs in the plotted space, but makes comparisons between cells and to the legend 
more difficult. 

The RGB Color System The RGB Color System 

RBG stands for red, green, blue. Computer monitors and other digital devices display colors by the varying 
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intensities of tiny red, green, and blue light-emitting devices. A triplet of these makes up a single pixel in the display. 

The RGB scheme encodes a color as #<RR><GG><BB>, where <RR> encodes the amount of red light, <GG> the amount of 

green, and <BB> the amount of blue. These values can range from 00 (off) to FF (fully on); these are numbers encoded in 

hexadecimal format, meaning that after 9, the next digit is A, then B, and so on, up to F. (Counting from 49, for example, 

the next numbers are 4A, 4B, . . . 4F, 50, 51, etc.) Why red, green, and blue? Most humans have three types of cone cells in 

their eyes, and each is most responsive to either red, green, or blue light! An RGB scheme can thus represent nearly all 

colors that humans can see, though in the end we are limited by the gradations (#<RR><GG><BB> format can only take 

about 16.7 million different values) and the quality of the light-emitting devices (many of which can’t produce very 

bright light or be fully turned off in operation). Color blindness is a genetic anomaly caused by having only one or two 

of the three cone types, and a few rare but lucky individuals possess four cone types along with greater acuity in color 

vision (tetrachromacy). 

Something to consider when devising color scales is that not all of them are created equally—a fair percentage of viewers 
will have some form of color blindness, and another fair percentage of viewers will prefer to print a plot on a black-
and-white printer. The scale_color_brewer() function helps the user select good color palettes; it is based on the work 
found at colorbrewer2.org. Other scale types can be similarly adjusted, including alpha (transparency), and the sizes of 
points and lines. 

Coordinates Coordinates 

In addition to modifying properties of the scales, we can also modify how those scales are interpreted in the overall plot 
and in relation to each other. Some of the coordinate modifications are less common, but others (like coord_equal(), 
below) are handy. Often, coordinate adjustments are illustrated by considering a dotplot or barplot in polar coordinates. 
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The coord_polar() function requires a theta = parameter to indicate which axis (x or y) should be mapped to the 
rotation angle; the remaining axis is mapped to the radius. This coordinate modification can be used to produce 
interesting plots, especially when the geom used is "bar" or "line". 

The coord_flip() function can be used to flip the x and y axes. This feature is especially useful when the desire is 
to produce a horizontal histogram or boxplot. 

When setting the fill aesthetic, the subbars are stacked, which is the default. For a plot with bars presented side by side, 
one can add the position = "dodge" argument to the geom_bar() layer call. 

For one last coordinate adjustment, the values mapped to the horizontal and vertical axes are sometimes directly 
comparable, but the range is different. In our random subsample of diamonds dd, for example, the x and z columns are 
both measured in millimeters (representing the “width” and “height” of the diamond), but the z values are generally 
smaller. For illustration, a single unit on the horizontal axis should be the same size as a single unit on the vertical axis, but 
ggplot2 doesn’t ensure such sizing by default. We can specify the size by adding a coord_equal() coordinate adjustment. 
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Notice that without coord_equal() in the above left, the axes sizes aren’t quite comparable, but the grid marks are perfect 
squares in the above right. The coord_equal() adjustment can also be made with log-adjusted plots, and can sometimes 
produce nicer output even if the two axes aren’t in the same units. Here’s a comparison with and without coord_equal() 
applied to the final version of the contig length-versus-coverage plot above. 

As always, there are a number of other coordinate adjustments that are possible, and we’ve only covered some of the most 
useful or interesting. See http://docs.ggplot2.org for the full documentation. 

Theming, Annotations, Text, and Jitter Theming, Annotations, Text, and Jitter 

So far, we’ve covered customizing how data are plotted and axes/coordinates are represented, but we haven’t touched on 
“ancillary” properties of the plot like titles, background colors, and font sizes. These are part of the “theme” of the plot, 
and many aspects of the theme are adjusted by the theme() function. The exception is the addition of a title to a plot, 
which is accomplished with the ggtitle() function. 

The text-based parts of a plot are organized hierarchically (see the documentation for theme() for the full list). For 
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example, modifying the text = parameter will modify all text elements, while modifying axis.text = adjusts the tick 
labels along both axes, and axis.text.x = specifies properties of only the x-axis tick labels. Other text-theme elements 
include legend.text, axis.title (for axis names), plot.title, and strip.text (for facet labels). 

To adjust properties of these elements, we use a call to element_text() within the call to theme(). We can produce 
a quick plot counting diamonds by their cut and clarity, for example, setting a plot title and changing the overall text size 
to 16, and just the title size to 20. Shrinking text can be especially helpful for cases when facet labels or theme labels are 
too large to fit their respective boxes. 

The labels used for breaks are sometimes longer than will comfortably fit on the axes. Aside from changing their size, it 
sometimes helps to angle them by 30 or 45 degrees. When doing so, it also looks best to set hjust = 1 to right-justify the 
labels. 
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As this example might suggest, theming is itself a complex topic within ggplot2, and there are many options and special 
internal functions modifying nearly all aspects of a plot. 

Although ggsave() accepts width = and height = parameters specifying the overall size of the output file, because 
these parameters include the legend and axis labels, the plotting region has its aspect ratio determined automatically. 
Indicating that the plotting region should take a specific aspect ratio (defined as the height of the region over the width) 
also occurs within a theme() call. 

The observant reader might have noticed that, by default, all plotting regions in ggplot2 use a light gray background. 
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This is intentional: the idea is that a plot with a white background, when embedded into a manuscript, will leave a visual 
“hole,” interrupting the flow of the text. The shade of gray chosen for the default background is meant to blend in with 
the overall shade of a column of text. 

Some users prefer to use a more traditional white background, but doing so requires adjusting multiple elements, 
including the background itself, grid lines, and so on. So, ggplot2 includes a number of functions that can change the 
overall theme, such as theme_bw(). 

Because calls to theme_bw() et al. modify all theme elements, if we wish to also modify individual theme elements with 
theme(), those must be added to the chain after the call to theme_bw(). 

One feature of ggplot2 not yet covered is the use of text within plots, which are not theme adjustments but 
rather special types of plot layers. The geom_text() layer function makes it easy to create “dotplots” where each point 
is represented by a text label rather than a point. Here’s an example plotting the first 30 diamonds by carat and price, 
labeled by their cut. 

In the result (below left), it’s difficult to see that multiple diamonds are plotted in the same location in some cases. This 
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type of overplotting can happen with points as well; adding a position = "jitter" option to the geom_text() layer 
slightly modifies the location of all the geoms so that they stand out (below right). 

Various aesthetics of the text can be mapped to values of the data, including size, angle, color, and alpha. As with other 
layers, to change the font size (or other property) for all points to a constant value, the instruction should be given outside 
of the aes() call. 

Individual text labels—as well as individual line segments, rectangles, points, and other geoms—can be added with 
an annotate() layer. Such a layer takes as its first argument the name of the geom that will be added, and subsequently 
any aesthetics that should be set for that geom (without a call to aes()). Here’s an illustration, finishing out the previous 
length/coverage plot example. (The hjust = 0 in the text annotation indicates that the text should be left-justified with 
respect to the reference x and y.) 
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Ideally, we would strive to produce publication-ready graphics with well-documented and easily editable code. In some 
cases, however, adjustments or annotations are more easily added in graphical editing programs like Adobe Photoshop 
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or Illustrator (or open-source alternatives like Inkscape), so long as the interpretation and meaning of the data are not 
altered. 

Exercises Exercises 

1. Use ggplot2 to explore the trio.sample.vcf we analyzed in previous chapters. Can you effectively visualize the 

distribution of SNP locations across the chromosomes? 

2. Running the data() function (with no parameters) in the interactive R console will list the built-in data sets 

that are available. For example, USArrests describes arrest statistics in US states in 1973, with columns for per-

capita rates of murder, rape, and assault, and also one for percentage of state residents in urban areas (see 

help(USArrests) for details). 

First, see if you can reproduce this plot, where there is a facet for each state, and a bar for each crime type: 

You might need to first manipulate the data by creating a column for state names (rather than using the row 

names) and “gathering” some of the columns with tidyr. 

Next, see if you can reproduce the plot, but in such a way that the panels are ordered by the overall crime rate 

(Murder + Rape + Assault). 

3. Find at least one other way to illustrate the same data. Then, find a way to incorporate each state’s percentage 

of population in urban areas in the visualization. 

4. Generate a data set by using observation or experimentation, and visualize it! 
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Files 

Complete archive 
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MyVCFModule.py 4.8K 

MyVCFModule.pyc 4.7K 

PZ.annot.txt 1.3M 

binarytree.py 1.9K 

blast_mean.py 396 

cluster_AB.fasta 303K 

cluster_AC.fasta 52K 

cluster_AG.fasta 159K 

cluster_D.fasta 2.9M 

contig_stats.txt 575K 

count_ATs.sh 227 

expr_analyze.R 1.1K 

expr_long_coded.txt 25M 

expr_long_split.Rdata 3.7M 

expr_preprocess.R 1.7K 

expr_wide.txt 4.7M 

fasta_stats 3.0K 

gene_class.py 1.7K 

go_id_count.py 544 

grape_count_gata.py 441 

grape_promoters.txt 23M 

id_seq.txt 1.0K 

ids_seqs.txt 3.9K 

ids_seqs_gcs.py 965 

linkedlist.py 2.3K 

match_1st_cols.py 885 

orf_trans.fasta 4.8M 

p450s.fasta 16K 

p450s_blastp_yeast_yeast_top1.txt 1.9K 

pz_blastx_yeast_top1.txt 1.5K 

pz_blastx_yeast_top10.txt 51K 

pz_cDNAs.fasta 243K 

pz_cDNAs_sample.fasta 1.5K 

pz_stats.table 27K 

runhmmer.sh 342 

seq.txt 1.0K 

seqs.txt 3.8K 
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snps_ex.py 5.1K 

snps_ex2.py 709 

snps_ex_density.py 7.0K 

states.txt 1.8K 

stop_count_seq.py 341 

trio.sample.vcf 15M 

yeast_blastp_yeast_top2.txt 3.3M 

yeast_selected_ids.txt 202 
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Index 

Symbols Symbols 

• ! (R operator) 

• ! (shebang) 

• $-syntax (R), 

• %>% (“not a pipe” R operator) 

• %in% (R operator) 

• & (R operator) 

• * (shell wildcard) 

• . (in R) 

• . and .. (virtual directories) 

• … (R), 

• .bash-login (file) 

• .bashrc (file) 

• .git (directory) 

• .gitignore (file) 

• / (root directory) 

• 2> redirect (bash) 

• <- (R assignment) 

• > or >> redirect 

• ? (shell wildcard) 

• [[]]-syntax (R) 

• [] (Python) 

◦ slice syntax (Python) 

• []-syntax (R) 

• `+`() (as R function) 

• | (R operator) 

• | redirect 

◦ pipe, 

A A 

• absolute path 

◦ path 

• aes() 

◦ ggplot2 (R) 

• algorithms 

• alpha 

◦ ggplot2 (R) 

• annotation 

◦ ggplot2 (R) 

• ANOVA model (R) 

• any() and all() (R functions) 

• API 

◦ application programming interface 

• append() (to a Python list) 

• application programming interface 

◦ API 

• apply() (R function) 

• argv (Python list) 

• arrays (R) 

• as.character() (R function) 

• as.numeric() (R function) 

• assembly 

◦ bytecode 

• assert (Python) 
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• Atmosphere 

◦ CyVerse 

• attach() (R function) 

• attributes (R) 

• AVL tree (data structure) 

• awk (program), 

B B 

• back-reference (regular expression) 

• bash script 

◦ command-line argument 

◦ environment variable 

◦ if-statement 

◦ script 

• big-O notation 

◦ order notation 

• binary search tree (data structure) 

• BioConductor (R) 

• bioinformatics 

• BioPython 

• BLAST: Basic Local Alignment Search Tool 

• block (Python) 

◦ (R) 

• BLOSUM (BLAST scoring matrix) 

• boolean (Python) 

• boolean operators (Python) 

• boxplot() 

◦ ggplot2 (R) 

• BSD Unix (history) 

• bubblesort (algorithm) 

• bunzip2 (program) 

• bytecode 

◦ assembly 

C C 

• c() (R function) 

• call tree 

• calledprocesserror (error) 

• categorical data (R) 

• cbind() (R function), 

• cd (command) 

• Central Processing Unit 

◦ CPU 

• character (R) 

• character classes (regular expressions), 

• chgrp (program) 

• chmod (program) 

• chown (program) 

• class (Python) 

• class attribute (R) 

• class of vector (R) 

• class() (R function) 

• client 

• clone (git installation) 

• colnames() (R function) 

• color 

◦ ggplot2 (R) 

• column (program) 

• column-major order 

◦ row-major order 
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• command line interface (CLI) 

• command prompt 

• command-line argument 

◦ bash script 

• command-line arguments (Python) 

◦ (R) 

• comments (Python) 

◦ (R) 

• commit (git) 

• comparable objects (Python) 

• comparison (R) 

• compilation 

◦ see software installation 

• compiled languages 

• comprehensive R archive network 

◦ CRAN 

• computational biology 

• condition has length > 1 (warning) 

• configure (program) 

• constructor (Python) 

◦ (R) 

• continuous data 

◦ ggplot2 (R) 

• coordinate 

◦ ggplot2 (R), 

• copy-on-write 

• cp (program) 

• CPU 

◦ Central Processing Unit 

• CRAN 

◦ comprehensive R archive network 

• cut() (R function) 

• CyVerse 

◦ Atmosphere 

D D 

• data frame (R), 

• data structures 

• defaults 

◦ ggplot2 (R) 

• delete data frame column 

• deleting list elements (R) 

• diamonds dataset 

◦ ggplot2 (R) 

• dictionaries (Python) 

• diff (git) 

• dim() (R function) 

• discrete data 

◦ ggplot2 (R) 

• dispatch (R) 

• divide and conquer (algorithms/data structures) 

• do() (R function) 

• docstring (Python) 

• documentation (R functions) 

• DOS newlines 

◦ unix newlines 

• dplyr (R package) 

• du (program) 

E E 

• e-value (BLAST) 
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• echo (program) 

• encapsulation 

• env (program), 

• environment variable 

◦ bash script 

• escaping special characters 

• executable 

• exit (program) 

◦ logout 

• export (program) 

• external programs (Python) 

• extract() (R function) 

F F 

• facet 

◦ ggplot2 (R) 

• facet-wrap() 

◦ ggplot2 (R) 

• facetting 

◦ ggplot2 (R) 

• factorial function 

• factors (R) 

• FASTA format, 

• fasta-stats (program) 

• FASTQ format 

• Fibonacci function 

• file handle (Python) 

• filesystem 

• fill 

◦ ggplot2 (R) 

• finger (program) 

• fingerprint 

◦ ssh (program) 

• float (Python) 

• flybase 

• for-loop (bash) 

◦ (Python) 

◦ (R) 

• for-loop speed (R) 

• formula (R) 

• function (Python) 

• function arguments (R) 

• functional programming 

• functions (R) 

• functions as data (R) 

G G 

• garbage collection 

• gather() (R function) 

• generic functon (R) 

• geom 

◦ ggplot2 (R) 

• geom-histogram() 

◦ ggplot2 (R) 

• geom-point() 

◦ ggplot2 (R) 

• getter method 

• ggplot2 (R) 

◦ PDF output 

◦ aes() 
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◦ alpha 

◦ annotation 

◦ boxplot() 

◦ color 

◦ continuous data 

◦ coordinate, 

◦ defaults 

◦ diamonds dataset 

◦ discrete data 

◦ facet 

◦ facet-wrap() 

◦ facetting 

◦ fill 

◦ geom 

◦ geom-histogram() 

◦ geom-point() 

◦ ggsave() 

◦ grammar of graphics 

◦ layer 

◦ layer() 

◦ mapping 

◦ position 

◦ scale, , 

◦ scale limit 

◦ scale transformation 

◦ shape 

◦ size 

◦ stat 

◦ theme, 

◦ title 

• ggsave() 

◦ ggplot2 (R) 

• git (program) 

• GNU (GNU’s Not Unix) 

• gnuplot (program) 

• GPL 

◦ GNU Public License 

• grammar of graphics 

◦ ggplot2 (R) 

• graphical user interface (GUI) 

• greedy matching (regular expression) 

• grep (program), , 

• group-by() (R function) 

• grouped data frame (R) 

• groups (command) 

• gzip (program) 

H H 

• Hard Drive 

• hash tables 

◦ see dictionaries (Python) 

• head (program) 

• help() (Python function) 

◦ (R function) 

• hidden files 

• high scoring pair 

◦ HSP 

• hit (BLAST) 

• HMMER (midden markov protein search) 

• home directory 

• HSP 
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◦ high scoring pair 

I I 

• IDE 

◦ integrated development environment 

• if-statement 

◦ bash script 

• if-statement (awk) 

◦ (Python) 

◦ (R) 

• immutable 

• import (Python) 

• in keyword (Python) 

• indentationerror (error) 

• inheritance (Python) 

• installing a program 

• instance variable (Python) 

• integer (Python) 

◦ (R) 

• integrated development environment 

◦ IDE 

• interactive interpreter (Python) 

• interactive programs (Python) 

• interpreter, 

• ioerror (error) 

• iPython notebook 

• is.na() (R function) 

• iterable (Python) 

• iterative development, 

J J 

• join (program) 

• join() (Python method) 

K K 

• kernel 

• keyerror (error) 

• kill (program) 

L L 

• lapply() (R function) 

• layer 

◦ ggplot2 (R) 

• layer() 

◦ ggplot2 (R) 

• len() (Python function), 

• length() (R function) 

• less (program) 

• levels (in R factors) 

• levels (of factors, R) 

• lexicographic order 

• library (R) 

• linked list (data structure) 

• Linux (history) 

• list (Python) 

◦ (R) 

• list comprehensions (Python) 

• list() (Python function) 

• lists and strings (Python) 
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◦ strings and lists (Python) 

• load() (R function) 

• local variable, 

◦ (R) 

• logical (R) 

• logical selection (R) 

• logout 

◦ exit (program) 

• longer object length is not a multiple of shorter 
(warning) 

• ls (program) 

M M 

• make (program) 

• makefile 

• man (program) 

• mapping 

◦ ggplot2 (R) 

• markdown (in RStudio) 

• matrices (R) 

• mean() (R function) 

• median() (R function) 

• merge() (R function) 

• mergesort (algorithm) 

• method (Python) 

◦ (R) 

• method chaining 

• microarray 

• mkdir (program) 

• module 

◦ (Python) 

• modulus (Python) 

◦ (R) 

• monte-carlo method 

• mounting (in a filesystem) 

• multiple test correction (R) 

• muscle (program) 

• mutable 

◦ (Python) 

• mv (program) 

N N 

• NA (R) 

• na.rm (R) 

• named list (R) 

• named vectors (R) 

• nameerror (error) 

• names() (R function) 

• namespace 

• NaN (R) 

• nano (program) 

• NAs induced by conversion (warning) 

• NAs introduced by coercion (warning) 

• ncol() (R function) 

• network connection 

• newline 

• newlines (Python) 

• non-greedy (regular expressions) 

◦ reluctant (regular expressions) 

• nrow() (R function) 
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• numeric (R) 

O O 

• object (Python) 

• object not found (error) 

• omitting directory (error) 

• order notation 

◦ big-O notation 

• order() (R function) 

P P 

• p.adjust() (R function) 

• package (Python) 

◦ (R) 

• PAM (BLAST scoring matrix) 

• parameters (Python functions) 

• pass by value vs. reference 

• pass-the-buck (data structures) 

• passwd (program) 

• path 

◦ absolute path 

◦ relative path 

• PATH (environment variable) 

• PDF output 

◦ ggplot2 (R) 

• permission denied (error) 

• permissions 

• pipe 

◦ | redirect, 

• plot() (R function) 

• polymorphism (Python) 

◦ (R) 

• position 

◦ ggplot2 (R) 

• POSIX 

• pre-allocation (R) 

• prefix 

◦ see configure (program) 

• present working directory 

◦ PWD 

• principle of command-query separation 

• process substitution (bash) 

• ps (program) 

• pseudocode 

• pure function 

• Putty.exe (program) 

• PWD 

◦ present working directory 

• PWD (R) 

◦ present working directory (R) 

Q Q 

• quantile() (R function) 

• quicksort (algorithm) 

• Quine 

R R 

• RAM 

◦ Random Access Memory 

• random module (Python) 
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• Random Access Memory 

◦ RAM 

• random data (R) 

• range() (Python function) 

• raw string (Python) 

• rbind() (R function) 

• re-running commands 

• read.csv() (R function) 

• read.table() (R function) 

• recursion 

• red-black tree (data structure) 

• reference classes (R) 

• regular expression 

◦ (R), 

• relative path 

◦ path 

• reluctant (regular expressions) 

◦ non-greedy (regular expressions) 

• reordering factors (R) 

• rep() (R function) 

• replace() (Python method) 

• repository (git) 

• results are not data frames (error) 

• rev() (R function) 

• reverse complement 

• reverse() (Python function) 

• rexp() (R function) 

• RGB color system 

• rm (program) 

• RNA-seq 

• rnorm() (R function) 

• rounding errors (Python) 

◦ (R) 

• row-major order 

◦ column-major order 

• Rscript (program) 

• RStudio 

• rule 1 (functions), 

• runif() (R function) 

S S 

• S3 object system (R) 

• S4 object system (R) 

• sample() (R function) 

• sanity checking with uniq 

• sapply() (R function) 

• save() (R function) 

• scale 

◦ ggplot2 (R), , 

• scale limit 

◦ ggplot2 (R) 

• scale transformation 

◦ ggplot2 (R) 

• scope (of a variable) 

◦ (R variables) 

• scp (program) 

• script 

◦ bash script 

• script (Python) 

• sd() (R function) 

• search() (Python function) 
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• sed (program), , 

• selective replacement (R) 

• self (Python) 

• separate() (R function) 

• seq() (R function) 

• server 

• setenv (program) 

• setter method 

• setwd() (R function) 

• SFTP (secure file transfer) 

• shadowing (local variables) 

• shape 

◦ ggplot2 (R) 

• shell 

• shell alternatives (bash, tcsh) 

• shell command 

• shell variable 

• sickle (program) 

• side-effect-free function 

• simulation (Python) 

• size 

◦ ggplot2 (R) 

• slice (Python) 

• slice syntax (Python) 

◦ [] (Python) 

• software installation (source and binary) 

• sort (program) 

• sort() (R function) 

◦ see order() (R function) 

• sorting (algorithms) 

• spaghetti code 

• split() (Python function) 

◦ (Python method) 

• split-apply-combine (R) 

• splitting columns (R) 

• spread() (R function) 

• SQL 

◦ structured query language 

• ssh (program), 

◦ fingerprint 

• stable (sort option) 

• stage (git) 

• standard error 

• standard input, , 

◦ (R) 

• standard output, 

◦ (R) 

• stat 

◦ ggplot2 (R) 

• str() (R function) 

• str-c() (R function) 

• str-detect() (R function) 

• strategy (programming) 

• string (Python) 

• string concatenation (Python) 

• stringr (R package) 

• strings and lists (Python) 

◦ lists and strings (Python) 

• stringsAsFactors (R) 

• structured query language 

◦ SQL 

• subn() (Python function) 
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• subprocess (Python) 

• subroutine 

• subset() (R function) 

• sum() (Python function) 

◦ (R function) 

• summarize() (R function) 

• swapping, 

• swissprot 

◦ trembl, uniprot 

• syntactic sugar, 

• syntaxerror (error) 

T T 

• t.test() (R function) 

• tab-completion 

• tail (program) 

• tar (program) 

• telnet (program) 

• theme 

◦ ggplot2 (R), 

• tidy data (R) 

• tidyr (R package) 

• title 

◦ ggplot2 (R) 

• top (program) 

• trembl 

◦ uniprot swissprot 

• tuple (Python) 

• type() (Python function) 

• typeerror (error), , , 

U U 

• uname (program) 

• uncompress (program) 

• uniprot 

◦ swissprot trembl 

• uniq (program) 

• unique (sort option) 

• unique() (R function) 

• unit test, 

• Unix (history) 

• unix newlines 

◦ DOS newlines 

• unlist() (R function) 

• usage line (for software) 

• UseMethod() (R function) 

V V 

• valueerror (error) 

• variable (Python) 

• VCF format 

• vector recycling (R) 

• vectorized operations (R) 

• vectors (R) 

• version (git) 

• version control 

W W 

• wc (program) 

• wget (program) 
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• which (program) 

• while-loop (Python) 

◦ (R) 

• whitespace, 

• with (Python keyword) 

• write.csv() (R function) 

• write.table() (R function) 

X X 

• xrange() (Python function) 

Z Z 

• zip (program) 
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ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions 

under the same license as the original. 

No additional restrictions — You may not apply legal terms or technological measures that legally restrict 

others from doing anything the license permits. 
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Recommended Citations 

APAAPA outline: 
Source from website: 

• (Full last name, first initial of first name).  (Date of publication). Title of source. Retrieved 
from https://www.someaddress.com/full/url/ 

Source from print: 

• (Full last name, first initial of first name).  (Date of publication). Title of source. Title of container (larger whole 
that the source is in, i.e. a chapter in a book), volume number, page numbers. 

Examples 

If retrieving from a webpage: 

• Berndt, T. J. (2002). Friendship quality and social development. Retrieved from insert link. 

If retrieving from a book: 

• Berndt, T. J. (2002). Friendship quality and social development. Current Directions in Psychological 

Science, 11, 7-10. 

 
MLAMLA  outline: 
Author (last, first name). Title of source. Title of container (larger whole that the source is in, i.e. a chapter in a 

book), Other contributors, Version, Number, Publisher, Publication Date, Location (page numbers). 

Examples 

• Bagchi, Alaknanda. “Conflicting Nationalisms: The Voice of the Subaltern in Mahasweta Devi’s 

Bashai Tudu.” Tulsa Studies in Women’s Literature, vol. 15, no. 1, 1996, pp. 41-50. 

• Said, Edward W. Culture and Imperialism. Knopf, 1994. 

 
ChicagoChicago outline: 

Source from website: 
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• Lastname, Firstname. “Title of Web Page.” Name of Website. Publishing organization, publication or revision 
date if available. Access date if no other date is available. URL . 

Source from print: 

• Last name, First name. Title of Book. Place of publication: Publisher, Year of publication. 

Examples 

• Davidson, Donald, Essays on Actions and Events. Oxford: Clarendon, 2001. 

https://bibliotecamathom.files.wordpress.com/2012/10/essays-on-actions-and-events.pdf. 

• Kerouac, Jack. The Dharma Bums. New York: Viking Press, 1958. 
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Version Date Change Made Location in text 

0.1 MM/DD/YYYY   

    

    

Versioning 

This page provides a record of changes made to this guide. Each set of edits is acknowledged with a 0.01 increase in the 
version number. The exported files for this toolkit reflect the most recent version. 

If you find an error in this text, please fill out the form at bit.ly/33cz3Q1 
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