
A Tale of Two Systems

A Tale of Two Systems by René Reitsma and Kevin Krueger is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except
where otherwise noted.

Download for free at https://open.oregonstate.education/

taleoftwosystems

Publication and on-going maintenance of this textbook is possible due to

grant support from Oregon State University Ecampus.

Suggest a correction

Contents

Preface vii

About the Authors xii

Acknowledgements xv

1. TeachEngineering (TE) Overview 1

2. Why Build (Twice!) Instead of Buy, Rent or Open

Source?

14

3. TE 1.0 – XML 24

4. TE 2.0 – JSON 65

5. Relational (TE 1.0) vs. NoSQL (TE 2.0) 92

6. Document Accessioning 139

7. Why Build Revisited 157

8. The Develop… Test… Build… Deploy Cycle 162

Appendix A: When Editing Code Files, Use a Text

Editor; Not(!) a Word Processor

175

Appendix B: (Unintended?) Denial of Service

Attack

180

Appendix C: Fake Link Requests 186

Appendix D: I am robot… 194

Creative Commons License 212

Recommended Citations 213

Versioning 216

Preface

One of the hallmarks of successful information system architectures

is their longevity. Luc Hohmann’s insightful 2005 book Beyond

Software Architecture carries this notion in its subtitle: Creating and

Sustaining Winning Solutions. Coming back to school from their

internships in industry, our students often comment on how old

some of the information systems they worked with that summer

were. In times where the media keep telling us that current

technology will be obsolete in six months, these old systems must

indeed appear anachronistic; fossils from the times when people

wrote their programs in COBOL on green screens.

Older, so called ‘legacy’ systems or applications survive for any

number of reasons. Some of these reasons are not very desirable; for

instance, the lack of agility of an organization, users’ unwillingness

to learn new things, or the conservative power of those who have

sold their hearts to the old system. Yet good system architectures

are good precisely because they have been designed to

accommodate the vagaries of a changing world; i.e., they can be

adapted and extended so that they do indeed ‘live long.’ So long, in

fact, that they may survive their original designers.

Still, regardless of how good systems serve their users, eventually,

when the cost for fixes, adaptions and extensions becomes too high

or when new technologies offer opportunities for providing entirely

new services or significant efficiencies and speed gains, it is time to

either buy, rent or build something new.

This is the story of one such rebuilds. The system in question

is www.teachengineering.org —TE— a digital library of K-12

engineering curriculum that was built from the ground up with

established technology and which for 13 years enjoyed lasting

support from its growing user community and its sponsors. These

13 years, however, cover the period during which smartphones and

tablets became commonplace, during which the Internet of Things

Preface | vii

started replacing the Semantic Web, during which NoSQL databases

made their way out of the research labs and into everyday

development shops, during which we collectively started moving IT

functions and services into ‘the cloud,’ and during which computing

performance doubled a few times, yet again. Alongside these

technical developments we saw, certainly since the last five years

or so, a rapidly growing emphasis on usability and graphic design,

partly because of the need to move applications into the mobile

domain, partly because of the need and desire to improve both

ergonomics and aesthetics. During this same period,

TeachEngineering’s user base grew from a few hundred to more

than 3 million users annually, its collection size quadrupled, it went

through several user interface renewals, and significant

functionality was added while having an exemplary service record,

and it enjoyed continued financial support from its sponsors. All

of this took place without any significant architecture changes. In

Hohmann’s terms, it was indeed a ‘winning architecture.’

Yet, although the system architecture could probably have

survived a while longer, it started to become clear that with the

newer technologies, better and newer services could be developed

faster and at lower cost, that moving most of its functionality into

the cloud would both boost performance and lower maintenance

cost, and that the system’s resource and code footprint could be

significantly reduced by rebuilding it on a different architecture,

with different and more modern technology. And, of course, with

a new architecture some of the mistakes and unfortunate choices

built into the old architecture could be avoided.

In this monograph we provide a side-by-side of this rebuild. We

lay out the choices made in the old architecture —we refer to it as

TE 1.0— and compare and contrast them with the choices made for

TE 2.0. We explain why both the 1.0 and 2.0 choices were made and

discuss the advantages and disadvantages associated with them.

The various technologies we (briefly) describe and explain can all

be found in traditional Information Systems Design & Analysis

textbooks. However, in the traditional texts these technologies are

viii | Preface

typically presented as a laundry list of options, each with

advantages, disadvantages and examples. Rarely, however, are they

discussed in the context of a single, integrated case study and even

rarer in an evolutionary and side-by-side —1.0 vs. 2.0— fashion.

The two systems, TE 1.0 and TE 2.0, both share as well as use

alternate and contrasting technologies. Both groups of technologies

are discussed, demonstrated and compared and contrasted with

each other and the reasons for using them and/or replacing them

are discussed and explained.

Along with the discussion of some of these technologies, we

provide a series of small cases from our TeachEngineering

experience, stories of the sort of things system maintainers are

confronted with while their systems are live and being used. These

range from strange user requests to Denial of Service attacks and

from having to filter out robot activity to covert attempts by

advertisers to infiltrate the system. For each of the technologies

and for most of these case histories we provide —mostly on-line—

exploratory exercises.

Intended Audience

This text is meant as a case study and companion text to many

Systems Analysis & Design textbooks used in undergraduate

Management Information Systems (MIS), Business Information

Systems (BIS) and Computer Information Systems (CIS) programs.

The US counts about 1,300 (undergraduate + graduate) such

programs (Mandiwalla et al., 2016). These texts typically contain

short descriptions of technologies which give students some sense

of what these technologies are used for, but do not provide much

context or reflection on why these technologies might or might not

be applied and what such applications actually amount to in real life.

As a consequence, students, having worked their way through these

textbooks and associated courses will have had little exposure to

Preface | ix

the reasoning which must take place when making choices between

these technologies and to what goes into combining them into

working and successful system architectures. It is our hope that this

Tale of Two Systems (pun very much intended) will help mitigate this

problem a little.

Instructor Support

Although instructors of Systems Analysis and Design courses

typically have themselves experience in architecting and building

systems, setting up demonstration and experiential learning sites

equipped with cases where students can explore and practice the

technologies discussed in textbooks and coursework can be

daunting. Fortunately, technology-specific interactive web sites

where such exploration can take place are rapidly becoming

available. Examples of these are w3schools.com, sqlfiddle.com,

dotnetfiddle.net, codechef.com and others. In the exercise sections

of our text (all marked with the symbol) we have done our best

to rely on those publicly available facilities where possible, thereby

minimizing set-up time and cost for instructors as well as students.

In cases where we could not (yet) rely on publicly available

services, we have included instructions on how to set up local

environments for practicing; most often on the reader’s own,

personal machine.

This book does not (yet) contain lists of test and quiz questions

or practice assignments for two reasons. First, we believe that good

instructors can and are interested in formulating their own. Second,

we have not have had the time to collect and publish those items.

However, we very much do invite readers of this text to submit such

items for addition to this text. If you do so (just contact one of us),

we will take a look at what you have, and if we like it we will add it to

our text with full credits to you.

x | Preface

References

• Hohmann, L. (2005) Beyond Software Architecture. Creating and

Sustaining Winning Solutions. Addison Wesley.

• Mandiwalla, M., Harold, C., Yastremsky, D. (2016) Information

Systems Job Index 2016. Assoc. of Information Systems and

Temple University. http://isjobindex.com/is-programs

Preface | xi

About the Authors

René Reitsma

René

Reitsma is a professor of Business Information Systems at Oregon

State University’s College of Business. He grew up and was educated

in the Netherlands. Prior to receiving his PhD from Radboud

University in 1990, he worked at the International Institute for

Applied Systems Analysis (IIASA) in Laxenburg, Austria on a project

developing an expert system for regional economic development.

René joined the University of Colorado, Boulder’s Center for

Advanced Decision Support in Water and Environmental Systems

(CADSWES) in 1990, working on the design and development of

water resources information systems. In the summer of 1998 he

accepted a faculty position in Business Information Systems at Saint

Francis Xavier (STFX) in Nova Scotia, Canada. He joined the faculty

at Oregon State University in 2002.

René teaches courses in Information Systems Analysis, Design

xii | About the Authors

and Development and has ample practical experience in designing

and building information systems. His motivation for writing this

book was the lack of technical exercises, examples and critically

discussed experiences of real-world system building in the typical

Information Systems Design and Development textbooks.

René can be reached at reitsmar ‘at’ oregonstate.edu

Kevin Krueger

Kevin

Krueger is Founder and Principal Consultant at SolutionWave, a

boutique custom software development firm. With more than 15

years of software development experience, he currently specializes

in web application development. He enjoys the exposure to a wide

variety of industries that being a consultant affords him. Depending

on the client, he acts in a number of roles including software

developer, product manager, project manager, and business analyst.

He has worked on projects for Fortune 500 organizations, large

public institutions, small startups, and everything in between.

Kevin’s business experience started in the 9th grade when he and

a business partner started selling computers in rural North Dakota.

A few years after graduating from North Dakota State University in

Fargo with a B.S. in Computer Science, Kevin moved to Colorado in

2001 where he currently resides with wife and daughter.

Kevin can be reached at solutionwave.net

About the Authors | xiii

Both René and Kevin are TeachEngineering.org (TE) developers.

Whereas René was responsible for the design and development of

the first version of TE (TE 1.0), Kevin is the designer and developer

for TE 2.0 which runs on a different set of technologies and a

different system architecture. Since they both are interested in

making good architectural decisions, and since they both believe

that much can be learned from comparing and contrasting TE 1.0

with TE 2.0, they decided to collaborate on writing this text.

xiv | About the Authors

Acknowledgements

This material is based upon work supported by the National Science

Foundation under grant no. EEF 1544495. Any opinions, findings, and

conclusions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of the National

Science Foundation.

Acknowledgements | xv

1. TeachEngineering (TE)
Overview

Introduction

This chapter contains an overview of the TeachEngineering (TE)

system (www.teachengineering.org). We briefly discuss its origin as

an attempt to build a unified digital library from a diverse set of

K-12 engineering curricula which had been developed at various US

engineering schools. At the time of its inception in 2002, few if any

standard solutions for this problem were available and the system

was designed and developed from the ground up. It became one of

several hundred digital libraries which around 2005 comprised the

National Science Digital Library (NSDL) project, funded by the US

National Science Foundation (Zia, 2004). Now, quite some time later,

TeachEngineering enjoys a user base of about 3.5 million users, has

recently been rebuilt on a new architecture and remains as one of

fewer than 100 collections in NSDL.

Brief History

In the late 1990s the Division of Graduate Education (DGE) of the

US National Science Foundation started its Graduate STEM Fellows

in K-12 Education or GK-12 program (NSF-AAAS, 2013). The program

meant to bring K-12 Science, Technology, Engineering and

Mathematics (STEM) teachers and university graduates together in

an attempt to develop new and innovative K-12 STEM curriculum.

With an annual budget of about $55 million, by 2010 the program

had made 299 awards at 182 institutions, provided resources to

TeachEngineering (TE) Overview | 1

almost 11,000 K-12 teachers in 5,500 schools and impacted more

than 500,000 K-12 students (NSF, 2010). In the process, a treasure

trove of innovative STEM curriculum had been developed.

Unfortunately, most of that curriculum sat undetected on ‘Google

shelves’ where, through the usual processes of web site entropy

and link rot, it quickly became stale and abandoned as its creators,

having completed their projects, went their ways. It was, as

described by Lima (2011) in relation to information visualization

websites, as if “the whole field suffers from memory loss.” To make

matters worse, the GK-12 curriculum was not published to any

standards and hence, existed in a multitude of layouts and

electronic formats, various logical structures and hierarchies, and

followed many different kinds of pedagogical approaches. As a

consequence, much GK-12 curriculum was difficult to find; was

lost in a sea of Google search results; was rarely aligned with K-12

educational standards; was not maintained; and was difficult to

compare with and relate to other GK-12 materials.

Foreseeing this process of curricular entropy, a group of

engineering faculty and GK-12 grant holders at the University of

Colorado, Duke University, Colorado School of Mines, and

Worcester Polytechnic University, supplemented by one of us from

Oregon State University (Figure 1) decided to apply for an NSDL

grant to collect all GK-12 engineering curriculum―the E in STEM―

standardize it, make it searchable, align it with K-12 educational

standards, and host it as one of NSDL’s digital libraries. That was

in 2002. Now, 16 years later, TeachEngineering is still supported by

NSF and a variety of other funders. It has grown to more than 1,500

curricular items contributed by many universities and programs and

enjoys a patronage of over 3 million users per year. NSF’s GK-12

program is no longer active but curriculum developed in other NSF

programs, such as Research Experiences for Teachers (RET) and

Math and Science Partnership (MSP), as well as that of lots of other

K-12 curriculum developers continues to find its way to

TeachEngineering for two reasons: because NSF encourages its

grantees to publish their work in TeachEngineering and because

2 | TeachEngineering (TE) Overview

TeachEngineering consolidates good K-12 Engineering curriculum

in a single, searchable and easily operable location on the web.

Figure 1: TeachEngineering’s original developers from the University of
Colorado, Duke University, Colorado School of Mines, Worcester Polytechnic
University and Oregon State University.

The TeachEngineering Document Collection

A quick look at TeachEngineering curriculum

(https://www.teachengineering.org/curriculum/browse) reveals

how the library is structured. It consists of a collection of

documents, each of which is of one of four types: activity, lesson,

curricular unit and sprinkle. Lessons introduce certain topics and

provide background information on those topics. Practically all

lessons refer to one or more activities which are hands-on exercises

that illustrate and practice the concepts introduced in the lesson.

When several lessons all address a central theme, they are often

—although not necessarily— bundled on a so-called curricular unit.

Sprinkles are shortened versions of activities. They are not part

TeachEngineering (TE) Overview | 3

of lessons and curricular units and are therefore not part of fully

structured learning plans. Instead, they are meant for informal

learning settings such as after-school clubs. All sprinkles are in both

English and Spanish.

All documents are further classified to belong to one or several

of 15 subject areas (Algebra, Chemistry, Computer Science, etc.).

For example, the unit Evolutionary Engineering: Simple Machines

from Pyramids to Skyscrapers is categorized under the subject areas

Geometry, Physical Science, Problem Solving, Reasoning and Proof,

and Science and Technology. It has six lessons and seven activities.

Lessons and activities do not have to be part of units; they can live

‘on their own,’ and activities can be part of curricular units without

being part of a lesson. This hierarchical structure is unidirectional.

This means that whereas activities or lessons can live on units, units

cannot live on a lesson or an activity. Nor can a lesson live on an

activity (Figure 2).

Figure 2: Hierarchical structure of TE documents. (a) General example. The
curricular unit C1 has three lessons (L1-L3) and six activities (A1-A6). Five
activities (A2-A6) reside on lessons and one (A1) resides directly on the unit. (b)
The All Caught Up curricular unit consists of two lessons and three activities.

As of January 2020, TeachEngineering has 89 curricular units, 516

lessons and 1059 activities.

4 | TeachEngineering (TE) Overview

Controlled Document Content

In order for TeachEngineering to expose and disseminate K-12

engineering curriculum in a single, unified, standards-aligned,

searchable and quality-controlled digital library, a standardized

structure had to be imposed on each and every document. For

instance, all activities, lessons and curricular units must have a

summary section, a section which explains the curriculum’s

connection with engineering, a set of keywords, the document’s

intended grade level, the time required to execute it, a set of K-12

educational standards to which the curriculum is aligned, etc.

Figure 3 shows part of a TeachEngineering activity as it appears

in a user’s Web browser. Note its Summary, Engineering Connection

and the data in the Quick Look box.

Figure 3: partial rendering of a TeachEngineering activity.

Although the precise list of document components —different for

different document types— is not important here, it is important to

realize that these components come in two types: mandatory and

optional. Figure 4 graphically displays some of the components of a

TeachEngineering lesson. Solid-line rectangles indicate mandatory

TeachEngineering (TE) Overview | 5

components, while dashed lines indicate optional components.

Note that the content specification once again is a hierarchy. For

instance, while a lesson must have a grade specification (te:grade),

the grade specification itself must have a target with optional

upper– and/or lower bounds. When we consider this type of

hierarchy as a tree (Figure 4), the leaves of this tree —its terminal

nodes— must be of a specific computational data type (not shown

in Figure 4). For instance, the target lowerbound and upperbound

values must be byte-size integers.

Putting such strict structural and data type constraints on

document content accomplishes two things. First, it allows the

construction of a collection of documents with a single, unified

content structure and a common look-and-feel. Second, and just

as important, it allows for automatic, software-based procedures

for processing collection content. Examples of these processes are

document ingestion and registration —a process known as document

accessioning— quality control, document indexing, and metadata

generation.

6 | TeachEngineering (TE) Overview

Figure 4: Partial structure and content of a lesson. Solid-line rectangles
indicate mandatory components; dashed lines indicate optional components
(graphic generated with XMLSpy).[footnote]The document structure as
displayed here is that of TE 1.0. In TE 2.0 some of these components were
dropped and others were added. The principle that documents have a certain
(enforced) structure, however, remains unaltered.[/footnote]

The latter point ―automatic generation of metadata― is important

as it is a classic bottleneck in the population of digital document

repositories. With metadata, we mean data about a document rather

than the document’s content. For example, author names,

copyrights and title, or in our case, things such as grade level,

TeachEngineering (TE) Overview | 7

keywords, expendable cost, required time, etc. Collections which

rely on manually entered metadata often suffer from the classic

problem that such data entry is boring, time consuming, is error

prone and must be reviewed and possibly redone when a document

changes. As a consequence, much of the items in digital libraries

have very minimal metadata, which itself reduces their chances

of being found in searches and therefore their chances of being

used. Being able to automatically generate a lot of good metadata is

therefore a good thing. Chapters 3, 4 and 5 cover the various ways

in which TE content was and is controlled in TE 1.0 and 2.0.

K-12 Educational Standards

It will come as no surprise that in this age of performance metrics,

K-12 education is subject to delivering predefined learning

outcomes. These outcomes are known as ‘educational standards’ or

‘standards.’ In the USA the determination and authoring of these

standards is the authority of individual states and within the states

sometimes of individual districts. Although attempts at harmonizing

standards across states ―we refer to the Common Core for

Mathematics and English and the Next Generation Science

Standards initiatives (Conley, 2014; NRC, 2011)― have met with some

success, the USA educational standards landscape remains quite

complex and in constant flux. Not only do standards change on

a regular basis, but different states have different standards; they

completely or partially adopt the harmonization standards or write

their own variations of those standards. When they write their own,

the standards show great variety in granularity and approach

between states (Marshall & Reitsma, 2011; Reitsma & Diekema, 2011;

Reitsma et al., 2012). The fact that across the whole USA there

are approximately 65,000 K-12 science standards, speaks to the

complexity of the USA’s K-12 standards landscape.

Early in development of TE 1.0, our TeachEngineering team

8 | TeachEngineering (TE) Overview

decided that we were in no position to continuously track evolving

K-12 Science and Engineering standards and that we would prefer

acquiring those standards from an external provider. Similarly, since

figuring out for all 50 states and for each document which standards

are supported by (align with) which document was not one of our

core competencies, we hoped to acquire this service elsewhere.

Fortunately, at the time of TE 1.0 development, the Achievement

Standard Network (ASN) project was established (Sutton & Golder,

2008) and was, like TeachEngineering, partly funded by NSF’s NSDL

project. The ASN project maintains a repository of all K-12

educational standards in the USA, issues new versions when

standard sets change and makes these sets available to others. The

ASN is currently owned and operated by D2L, a learning-platform

company. TeachEngineering has enjoyed a long-term relationship

with ASN and although major differences exist between how TE 1.0

used to and TE 2.0 now uses the ASN, the ASN continues to function

as TeachEngineering’s de facto repository of K-12 standards.

Whereas K-12 standard tracking is readily available from services

such as ASN, standard alignment; i.e., matching documents with

standards, is far more problematic. Although it is not our goal here

to thoroughly analyze the standard alignment problem, it is

important to know that each TeachEngineering document is aligned

with one of more K-12 educational standards and since standards

frequently change, these alignments must be regularly updated as

well. Chapter 5 covers the differences between TE 1.0 and 2.0 in how

they represent and include standards.

Collection Editing and Document Accessioning

Although invisible to TeachEngineering users, TeachEngineering

documents do not make it automatically and miraculously into the

collection. Instead, they go through a structured review process,

first for content and once accepted for content, for editing and

TeachEngineering (TE) Overview | 9

formatting. Once a document is ready, it must be ingested into and

registered to the collection.

The process starts with TeachEngineering curricular staff and

several external reviewers reviewing the submissions for content

and compliance on standard TeachEngineering acceptance criteria.

Is it engineering? Is it good science? Does it fit the objectives of

TeachEngineering? Is it well written? Is it aligned with standards

and do the alignments seem reasonable? Is it attractive, both for

teachers and students? Is it internally consistent? Are concepts

properly explained and procedures well described? Is anything

missing? Depending on the answers to these questions, a

submission might be refused, conditionally accepted, or accepted as

is.

Once accepted, the document must be formatted to fit the

TeachEngineering document template. This process changed quite

dramatically between TE 1.0 and 2.0. Finally, the now formatted

document must be registered to the collection so that it can be

searched, displayed, saved as a bookmark, commented on, rated, etc.

Chapter 6 covers document accessioning in both the TE 1,.0 and TE

2.0 versions.

System Implementation and Collection Hosting

Just as invisible to TeachEngineering users as the collection editing

and document accessioning process, is the collection’s web hosting.

Since TeachEngineering is a web-based digital library it must be

web hosted and although the general principles of web hosting are

the same for both versions 1.0 and 2.0, the specific implementations

are quite different. Whereas TE 1.0 was hosted on Linux on an

intra-university Linux cloud, TE 2.0 is hosted on Microsoft’s Azure

cloud. And whereas TE 1.0 used Google’s Site Search Engine, TE

2.0 uses Microsoft’s Azure Search and whereas TE 1.0’s website was

written in the PHP programming language running against a MySQL

10 | TeachEngineering (TE) Overview

SQL database, 2.0 was written in C# running against the RavenDB

JSON database. These differences are significant and reflect some of

the more general developments in web-based technologies as they

occurred over the last 5-10 years. We discuss and illustrate these

elsewhere in our text.

Extras

In addition to the TE core functions mentioned above, a system

such as TE has a number of what we would like to call ‘extras;’

facilities which make life for both the system maintainers and the

system users easier. Some of these are the following:

• Facilities where users can store frequently used curriculum or

where they can rate and review curriculum.

• Facilities for users to contact the staff; for instance, to report a

problem or to ask a question.

• Facilities for the staff to track system use.

• Facilities which aggregate collection information so that at any

time TeachEngineering staff can know how many documents

of type x or from school y are stored in the collection.

• Facilities which make it easy for users to group and print

curriculum.

Once again, both TE 1.0 and 2.0 had these (and other) facilities, but

they architected them in different ways.

Continuous Quality Control

A system such as TeachEngineering is on-line and is meant to serve

users anywhere in the world at any time. But it is also continuously

TeachEngineering (TE) Overview | 11

changing in that new documents come on-line, existing ones are

revised, new users register themselves, and users who care and

desire to do so can leave comments and ratings behind. Add to that

that TE has about 3 million (different) users per year and it becomes

clear that a system such as this must be carefully monitored to

make sure that it functions properly. And in case it stops functioning

properly, technical staff must be alerted and informed about what

is wrong so that they can fix the problem. Although both TE 1.0 and

2.0 employed significant amounts of monitoring, they go about it in

different ways.

References

Conley, D.T. (2014) The Common Core State Standards: Insight into

Their Development and Purpose.

Lima, M. (2011) Visual Complexity. Mapping Patterns of Information.

Princeton Architectural Press. New York, New York.

Marshall, B. Reitsma, R. (2011) World vs. Method: Educational

Standard Formulation Impacts Document Retrieval. Proceedings

of the Joint Conference on Digital Libraries (JCDL’11), Ottawa,

Canada.

NRC (2012) A Framework for K-12 Science Education. Practices,

Crosscutting Concepts, and Core Ideas. National Academies Press,

Washington, D.C.

NSF (2010) GK-12: Preparing Tomorrow’s Scientists and Engineers

for the Challenges of the 21st Century. Available:

http://www.gk12.org/files/2010/04/2010_GK12_Overview.ppt.

NSF-AAAS (2013) The Power of Partnerships. A Guide from the NSF

Graduate Stem Fellows in K–12 Education (GK–12) Program.

Available: http://www.gk12.org/files/2013/07/

GK-12_updated.pdf

Reitsma, R., Diekema, A. (2011) Comparison of Human and Machine-

12 | TeachEngineering (TE) Overview

based Educational Standard Assignment Networks. International

Journal on Digital Libraries. 11. 209-223.

Reitsma, R., Marshall, B., Chart, T. (2012) Can Intermediary-based

Science Standards Crosswalking Work? Some Evidence from

Mining the Standard Alignment Tool (SAT). Journal of the

American Society for Information Science and Technology. 63.

1843-1858.

Sutton, S.A., Golder, D. (2008) Achievement Standards Network

(ASN): An Application Profile for Mapping K-12 Educational

Resources to Achievement Standards. Proceedings of the

International Conference on Dublin Core and Metadata

Applications, Berlin, Germany.

Zia, L. (2004) The NSF National Science, Technology, Engineering

and Mathematics Education Digital Library (NSDL) Program. D-

Lib Magazine, 2, 10:3.

TeachEngineering (TE) Overview | 13

2. Why Build (Twice!) Instead
of Buy, Rent or Open Source?

Build or Buy?

Not very long ago, in-house building of IS application systems,

either from the ground up or at least parts of them, was the norm.

Nowadays, however, we can often acquire such a system or many of

its components from somewhere else. This contrast —build vs. buy—

is emphasized in many modern IS design and development texts

(e.g., Kock, 2007, Valacich et al., 2016). Of course, the principle of

using components built by others to construct a system has always

been followed except perhaps in the very early days of computing.

Those of us who designed and developed applications 15 or 20 years

ago already did not write our own operating systems, compilers,

relational databases, window managers or indeed many

programming language primitives such as those needed to open a

file, compare strings, take the square root of a number or print

a string to an output device.1 Of course, with the advances in

1. One of us actually wrote a very simple window manager

in the late 1980s for MS-DOS, Microsoft’s operating

system for IBM PCs and like systems. Unlike the more

advanced systems at the time such as Sun’s SunView,

Apple’s Mac System, and Atari’s TOS, there was no

production version of a window managing system for

MS-DOS. Since our application at the time could really

benefit from such a window manager, we wrote our own

14 | Why Build (Twice!) Instead of
Buy, Rent or Open Source?

computing and programming, an ever faster growing supply of both

complete application systems and system components, both

complex and powerful as well as elementary, have become available

for developers to use and integrate rather than to program

themselves into their systems.

What does this mean in practice? On the system level it means

that before we decide to build our own, we inventory the supply of

existing systems to see if a whole or part-worth solution is already

available and if so, if we should acquire it. Similarly, on the

subsystem level, we look for components we can integrate into

our system as black boxes; i.e., system components the internal

workings of which we neither know nor need to know. As long as

these components have a usable and working Application Program

Interface (API); i.e., a mechanism through which other parts of our

system can communicate with them, we can integrate them into our

system. Note that whereas even a few years ago we would deploy

these third party components on our own local storage networks,

nowadays, these components can be hosted elsewhere on the

Internet and even be owned and managed by third parties.

It is therefore true that, more than in the past, we should look

around for existing products before we decide to build our own.

There are at least two good reasons for this. First, existing products

have often been tested and vetted by the community. If an existing

product does not perform well —it is buggy, runs slowly, takes too

much memory, etc.— it will likely not survive long in a community

which scrutinizes everything and in which different offerings of the

same functionality compete for our demand. The usual notion of

leading vs. bleeding edge applies here. Step in early and you might

be leading with a new-fangled tool, but the risk of having invested in

an inferior product is real. Step in later and that risk is reduced —the

product has had time to debug and refine— but gaining a strategic

(very minimal) version loosely based on Sun’s Pixrect

library.

Why Build (Twice!) Instead of Buy, Rent or Open Source? | 15

or temporary advantage with that product will be harder because

of the later adoption. Since, when looking for building blocks we

tend to care more about the reliability and performance of these

components than their novelty, a late adoption approach of trying

to use proven rather than novel tools, might be advisable. A good

example of purposeful late adoption comes from a paper by Sullivan

and Beach (2004) who studied the relationship between the

required reliability of tools and specific types of operations. They

found that in high-risk, high-reliability types of situations such as

the military or firefighting, tools which have not yet been proven

reliable (which is not to say that they are unreliable), are mostly

taboo because the price for unreliability —grave injury and death—

is simply too high. Of course, as extensively explored by Homann

(2005) in his book ‘Beyond Software Architecture,’ the more common

situation is that of tension between software developers —Homann

calls them ‘tarchitects’— which care deeply about the quality,

reliability and aesthetic quality of their software, and the business

managers —Homan calls them ‘marketects’— who are responsible

for shipping and selling product. Paul Ford (2015), in a special The

Code Issue of Bloomberg Business Week Magazine also explores this

tension.

The second reason for using ready-made components or even

entire systems is that building components and systems from

scratch is expensive, both in terms of time and required skill levels

and money. It is certainly true that writing software these days takes

significantly less time than even a little while ago. For example, most

programming languages these days have very powerful primitives

and code libraries which we can simply rely on. However, not only

does it take (expensive) experience and skills to find and deploy the

right components, but combining the various components into an

integrated system and testing the many execution paths through

such a system takes time and effort. Moreover, this testing itself

must be monitored and quality assured which increases demands

on time and financial resources.

16 | Why Build (Twice!) Instead of Buy, Rent or Open Source?

So Why Was TeachEngineering Built Rather
Than Bought… Twice?

When TE 1.0 was conceived (2002), we looked around for a system

which we could use to store and host the collection of documents

we had in mind, or on top of which we could build a new system.

Since TE was supposed to be a digital library (DL) and was funded by

the DL community of the National Science Foundation, we naturally

looked at the available DL systems. At the time, three more or less

established systems were in use (we might have missed one; hard to

say):

• DSpace, a turnkey DL system jointly developed by

Massachusetts Institute of Technology and Hewlett Packard

Labs,

• Fedora (now Fedora Commons), initially developed at Cornell

University, and

• Perseus, a DL developed at Tufts University.

Perseus had been around for a while; DSpace and Fedora were both

new in that DSpace had just been released (2002) and Fedora was

fresher still.

Assessing the functionality of these three systems, it quickly

became clear that whereas they all offered what are nowadays

considered standard DL core functions such as cataloging, search

and metadata provisioning, they offered little else. In particular,

unlike more modern so-called content and document management

systems, these early DL systems lacked user interface

configurability which meant that users (and those offering the

library) had to ‘live’ within the very limited interface capabilities of

these systems. Since these were also the days of a rapidly expanding

world-wide web and a rapidly growing toolset for presenting

Why Build (Twice!) Instead of Buy, Rent or Open Source? | 17

materials in web browsers, we deemed the rigidity and lack of

flexibility and API’s of these early systems insufficient for our goals.2

Of course, we (TeachEngineering) were not the only ones coming

to that conclusion. The lack of user interface configurability of these

early systems drove many other DL initiatives to develop their own

software. Good examples of these are projects such as the Applied

Math and Science Education Repository (AMSER), the AAPT

ComPADRE Physics and Astronomy Digital Library, the Alexandria

Digital Library (ADL), the (now defunct) Digital Library for Earth

System Education (DLESE) and quite a few others. Although these

projects developed most of their own software, they still used off-

the-shelf generic components and generic shell systems. For

instance, ComPADRE used (and still uses) ColdFusion, a web

application platform for deploying web page components. Likewise,

most of these systems rely on database software acquired from

database management system makers such as Oracle, IBM, or

others, and all of them rely on standard and generic web (HTTP)

servers for serving their web pages. As for TE 1.0, it too used quite

a few standard, third party components such as the Apache HTTP

2. Important note. In Beyond Software Architecture

Homann (2005) refers to a phenomenon known as

résumé-driven design. With this he means that system

designers may favor design choices which appeal to

them from the perspective of learning or exploring new

technologies. Similarly, since system designers and

software engineers are in the business of, well…,

building (programming) systems, they may be

predispositioned to favor building a system over using

off-the-shelf solutions. For reasons of full disclosure,

both of us were not disappointed in —and had some real

influence over— the decision to build rather than to buy.

18 | Why Build (Twice!) Instead of Buy, Rent or Open Source?

web server, the XMLFile program for serving metadata, the MySQL

relational database, Altova’s XMLSpy for formulating document

standards, the world-wide web consortium’s (W3C) HTML and URL

(weblink) checkers, and a few more. Still, these earlier DL systems

contained a lot of custom-written code.

What About TE 2.0?

In 2015, it was decided that the TE 1.0 architecture, although still

running fine, was ready for an overhaul to make it more flexible,

have better performance, use newer coding standards and provide

better opportunities for system extensions as well as some end-

user modifiability. Between 2002 (TE 1.0 conception) and 2015 (TE

2.0 conception), information technology advanced a great deal.

Machines became a lot faster, new programming languages were

born and raised, nonrelational databases made a big comeback,

virtual machines became commonplace and ‘the cloud’ came alive in

its various forms such as Software as a Service (SaaS) and Platform

as a Service (PaaS). Another significant difference between the 2002

and 2015 Web technology landscapes was the new availability of so-

called content management frameworks (aka content-management

systems or CMS). Although less specific than the aforementioned

DL generic systems, these systems are aimed at providing full

functionality for servicing content on the web, including user

interface configurability. One popular example of such a system is

Drupal, a community-maintained and open-source CMS which in

2015 was deployed at more than one million websites including the

main websites of both our institutions, Oregon State University and

the University of Colorado, Boulder.3 We, therefore, should answer

3. To detect if a website is Drupal based, point your Web

browser to the website and display the page’s HTML

Why Build (Twice!) Instead of Buy, Rent or Open Source? | 19

the following question. If at the time of TE 2.0 re-architecting these

CMS’s were broadly available, why did we decide to once again build

TE 2.0 from the ground up rather than implementing it in one of

these CMS’s?

Indeed, using one of the existing open-source content

management systems as a foundation for TE 2.0 would have had

a number of advantages. The most popular content management

systems: WordPress, Joomla and Drupal, have all been around for

quite some time, have active development communities and have

rich collections of add-in widgets and modules for supplementing

functionality. In many ways, these content management systems

provide turn-key solutions with minimal to no coding required.

Yet, a few concerns drove us towards building TE 2.0 rather than

using an existing CMS as its foundation. Out of the box, CMS’s are

meant to facilitate the publishing of loosely structured content in

HTML form. TE curricular documents, on the other hand, are very

structured in that each document follows one of four prescribed

templates containing specific text sections along with metadata

such as grade levels, educational standards, required time,

estimated cost, group size, etc. Curriculum documents are also

hierarchically related to each other. For example, curricular units

can have (child) lessons, which in turn can have (child) activities

(Figure 1).

source code (view source code). Drupal pages contain

the generator meta tag with its content attribute set to

Drupal x where x is the Drupal version number.

20 | Why Build (Twice!) Instead of Buy, Rent or Open Source?

Figure 1: Hierarchical structure of TE documents. (a) General example. The
curricular unit C1 has three lessons (L1-L3) and six activities (A1-A6). Five
activities (A2-A6) reside on lessons and one (A1) resides directly on the unit. (b)
The All Caught Up curricular unit consists of two lessons and three activities.

It would of course be possible to customize any of the popular

content management systems to work with this structured data.

However, customizing a content management system requires a

developer to not only be familiar with the programming languages,

databases, and other tools used to build the CMS, but also its

Application Programming Interfaces (APIs) and extensibility points.

This steepens the learning curve for developers.

Second, since the development of the popular CMS’s in the early

2000’s, so-called schema-free NoSQL document databases have

emerged as powerful tools for working with structured and semi-

structured data of which TE curricular documents are a good

example4. CMS support for document databases was limited in 2015.

Of the “big three” mentioned earlier, only Drupal lists limited

support for a single document database (MongoDB).

Third, although CMS’s increasingly allow developers to give the

systems their own look and feel, they do enforce certain

4. An important difference between TE 1.0 and TE 2.0 is the

switch from a relational (SQL) database backend to a

NoSQL backend. We extensively discuss this switch in

later chapters

Why Build (Twice!) Instead of Buy, Rent or Open Source? | 21

conventions and structures. These apply to screen layout and visual

components, but also to how the CMS reaches out to external data

sources and how end users interact with it. Although this by no

means implies that one could not develop a TE-like system within

these constraints, being free from them has its advantages. Whereas

for content providers with limited coding and development

capabilities these constraints represent a price well worth paying in

exchange for easy-to-use, predefined layout options, for providers

such as the TE team with professional software developers, the

reverse might be the case.

Finally, the three most popular content management systems are

built using the PHP programming language. TE 2.0 was developed

at the Integrated Teaching & Learning Laboratory (ITLL) at the

University of Colorado, Boulder. ITLL has two full-time software

developers on staff and the other software it develops and supports

is primarily based on the Microsoft .NET platform. Given the small

size of the development team, there was a strong desire to not

introduce another development stack to first learn and master, then

support and maintain. While there are a few fairly popular content

management systems built on the .NET platform, for example,

Orchard and DotNetNuke, they do not have nearly the same level of

adoption as the content management systems built on PHP.

A Word on Open Source

A question we are sometimes asked is whether we could have

(re)built TE open source and whether or not TE is open source?

The first question is easier to answer than the second. No, we

do not think that TE, or most systems for that matter, could have

initially been developed as open source. The typical open source

model is that the initial developer writes a first, working version

of an application, then makes it available under a free or open

source software (FOSS) license and invites others to contribute

22 | Why Build (Twice!) Instead of Buy, Rent or Open Source?

to it. Two classic examples are the GNU software collection and

the Linux kernel. When Richard Stallman set out to build GNU,

a free version of the Unix operating system, he first developed

components himself and then invited others to join him in adding

components and improving existing ones. Similarly, when Linus

Torvalds announced in August 1991 that he was working on the

Linux kernel, he had by then completed a set of working

components to which others could add and modify. More recent

examples are the Drupal CMS mentioned earlier, open sourced by

Dries Buytaert in 2001, and .NET Core, Microsoft’s open source

version of .NET released in 2016. In each of these cases, a set of core

functionality was developed prior to open sourcing them.

The straight answer to the second question —is TE open source?—

is also ‘no,’ but only because we estimate that open sourcing it

is more work than we are willing to take on, not because we do

not want to share. It is important to realize that open sourcing

a code base involves more than putting it on a web or FTP site

along with a licensing statement. One can do that, of course, and

it might be picked up by those who want to try or use it. However,

accommodating changes, additions, and documentation requires

careful management of the code base and this implies work which

until now we have hesitated to take on.

References

Ford, P. (2015) The Code Issue. Special Issue on Programming/

Coding. Bloomberg Business Week Magazine. June 2015.

Homann, L. (2005) Beyond Software Architecture. Addison-Wesley.

Sullivan, J. J., Beach, R. (2004). A Conceptual Model for Systems

Development and Operation in High Reliability Organizations. In:

Hunter, M. G., Dhanda, K. (Eds.). Information Systems: Exploring

Applications in Business and Government. The Information

Institute. Las Vegas, NV.

Why Build (Twice!) Instead of Buy, Rent or Open Source? | 23

3. TE 1.0 – XML

Introduction

TE 1.0 relied heavily on Extensible Markup Language (XML). XML

was invented in the second half of the 1990s to overcome a

fundamental problem of the early world-wide web. The problem

was that the predominant language for representing web content,

HyperText Markup Language (HTML), was meant to express how

information was to be formatted on web pages viewed by human

users, but that that formatting was of little use to ‘users’

represented by machines; i.e., programs. Whereas humans are quite

good at extracting meaning from how information is formatted,

programs just need content, and formatting only gets in the way

of extracting that content. Yet HTML was meant to specify content

through formatting. XML solved this problem by providing a text-

based and structured way to specify content without formatting.

In this chapter, we introduce XML as a data representation and

data exchange format and provide some examples of how it was

used in TE 1.0. In the next chapter, we discuss XML’s recent

competitor and TE 2.0’s choice: JSON. In the chapter following the

JSON chapter we go deeper into how XML was used in TE 1.0 and

JSON in TE 2.0.

Coding Content with XML

One of the more influential advances in modern-day electronic data

exchange, and one which caused web-based data exchanges, aka

web services to flourish, was the introduction and standardization

of Extensible Markup Language (XML) in the late 1990s (Bosak &

24 | TE 1.0 – XML

Bray, 1999). Until that time, messages requested and served over the

web were dominated by the HyperText Markup Language (HTML).

As explained in a 1999 article in Scientific American by Jon Bosak and

Tim Bray ―two of the originators of the XML specification― HTML

is a language for specifying how documents must be formatted and

rendered, typically so that humans can easily read them. However,

HTML is not very well suited for communicating the actual content

of documents (in terms of their information content) or for that

matter, any set of data. This deceptively simple statement requires

some explanation.

When we, as humans, inspect web pages, we use their formatting

and layout to guide us through their organization and contents.

We look at a page and we may see sections and paragraphs, lists

and sublists, tables, figures, and text, all of which help us to order,

structure, and understand the contents of the document. In

addition, we read the symbols, words, figure captions, and

sentences, gleaning their semantic contents from the terms and

expressions they contain. As a consequence, on a web page we

can immediately recognize the stock quote or the trajectory of the

share price over the last six hours from a chart, a table or even a

text. Since a human designed the page to be read and processed by

another human, we can count on each other’s perceptual pattern

recognition and semantic capabilities when exchanging information

through a formatted text. We are made painfully aware of this when

confronted with a badly structured, cluttered or poorly formatted

HTML web page or when the page was created by someone with a

different frame of mind or a different sense of layout or aesthetics.

What were the authors thinking when they put this page together?

However, if we want to offer contents across the web that must

be consumed by programs rather than human beings, we can no

longer rely on the formats, typesetting and even the terms of the

document to implicitly communicate meaning. Instead, we must

provide an explicit semantic model of the content of the document

along with the document itself. It is this ability to provide content

TE 1.0 – XML | 25

along with a semantic model of that content that makes XML such a

nice language for programmatic data exchange.

Although for details on XML, its history, use and governance, we

refer to the available literature on this topic; we provide here a small

example of this dual provision of contents and semantics.

Consider TeachEngineering: an electronic collection of lesson

materials for K-12 STEM education. Now suppose that we want

to give others ―machines other than our own― access to those

materials so that these machines can extract information from

them. In other words, we want to offer a web service. What should

these lesson materials look like when requested by such an external

machine or program? Let us simplify matters a little and assume

that a TE lesson consists of only the following:

• Declaration that says it is a lesson

• Lesson title

• Target grade band

• Target lesson duration

• Needed supplies and their estimated cost

• Summary

• Keywords

• Educational standards to which the lesson is aligned

• Main lesson contents

• References

• Copyright(s)

In XML such a lesson might be represented as follows:

<lesson>
<title>Hindsight is 20/20</title>
<grade target="5" lowerbound="3" upperbound="6"/>
<time total="50" unit="minutes"/>
<lesson_cost amount="0" unit="USDollars"/>
<summary>Students measure their eyesight and learn how lenses can
enhance eyesight
</summary>

26 | TE 1.0 – XML

<keywords>
<keyword>eyesight</keyword>
<keyword>vision</keyword>
<keyword>20/20</keyword>

</keywords>

<edu_standards>
<edu_standard identifier="14000"/>
<edu_standard identifier="14011"/>

</edu_standards>

<lesson_body>With our eyes we see the world around us. Having two
eyes helps us see a larger area than just one eye and with two
eyes we can... etc. etc.
</lesson_body>
<copyright owner="We, the legal owners of this document"
year="2016" />

</lesson>

Notice how the various components of a lesson are each contained

in special tags such as <copyright> (line 24) or <title> (line 2).

Hence, to find which educational standards this lesson supports, all

we have to do is find the <edu_standards> tag (line 16-19) and each

of the <edu_standard> tags nested within it.

Exercise 3.1
Copy the above XML fragment to a file called something.xml

and pick it up with your web browser (Control-O makes

your web browser pop up a file browser). Notice that your

web browser recognizes the content of the file as XML and

TE 1.0 – XML | 27

renders it accordingly. It sees, for instance, that several

<keyword>s are contained within the <keywords> tag and

that there is regular text within each <keyword>. The same

applies to the <edu_standards> and <edu_standard>
tags.

The above XML format is rather rigid and not entirely

pleasant for us humans to read. However, it is this rigid

notion of information items placed inside these tags and

tags themselves placed within other tags that provides

three essential advantages for machine-based reading:

1. Information is represented in a hierarchical format;

i.e., tags inside other tags. Hierarchies provide a lot of

expressiveness; i.e., most (although not all) types of

information can be expressed by means of a

hierarchy.

2. It is relatively easy to write programs that can read

and process hierarchically organized data.

3. If such a program cannot successfully read such a

data set, it is likely that the data set is not well formed

and hence, we have a good means of distinguishing

well-formed from malformed data sets.

Let us take a look at another example. Figure 1 contains the music

notation of a fragment from Beethoven’s famous fifth symphony

(listen to it!):

Figure 1: The first five bars of the main melody of Beethoven’s Symphony
No 5.

28 | TE 1.0 – XML

For those of us who can read music notation, the information

contained in this image is clear:

• The piece is set in the key of C-minor () (or E-flat

major: from these first few bars you cannot really tell which of

the two it is). This implies that E’s, B’s and A’s must be flatted (

).

• Time signature is 2/4; i.e., two quarter-note beats per bar ().

• First bar consists of a ½-beat rest () followed by three ½-

beat G’s ().

• Second bar contains a 2-beat E-flat (). The note has a

fermata (), indicating that the performer or conductor is

free to hold the note as long as desired.

• The two 2-beat D’s in bars four and five must be connected

(tied) and played as a single 4-beat note. Once again, this note

has a fermata and can therefore be held for as long as desired (

).

Now note that for humans who can read music, all this information

is stored in the graphic patterns of music notation. For instance, it

is the location of a note relative to the five lines in the staff and

the staff’s clef () which indicates its pitch, and the duration

of a note is indicated by whether it is solid or open or how notes

are graphically connected. Likewise, the fermata is just a graphical

TE 1.0 – XML | 29

symbol which we interpret as an instruction on how long to hold the

note.

However, whereas this kind of information is relatively easy for us

humans to glean from the graphic patterns, for a machine, this is not

nearly so easy. Although in these days of optical pattern recognition

and machine learning we are quickly getting closer to this, a much

more practical approach would be to write this same information in

formatted text such as XML so that a program can read it and do

something with it.

What might Beethoven’s first bars of Figure 1 look like in XML?

How about something like the following?1

<score>
<clef>g</clef>
<key base_note=”c” qualifier=”minor”>

<key_modifiers>
<note>E</note><mod>flat</mod>
<note>B</note><mod>flat</mod>
<note>A</note><mod>flat</mod>

</key_modifiers
</key>
<time_signature numerator = “2” denominator=”4”/>
<bars>

<bar count=”1”>
<rest bar_count = “1” duration=”8”/>
<note bar_count = “2” pitch=”G” duration=”8”/>
<note bar_count = “3” pitch=”G” duration=”8”/>

1. Please note the XML offered here is a l’improviste (off

the cuff) and not at all based on a good model of music

structure. It is merely meant to provide an example of

how, in principle, a music score can be represented in

XML.

30 | TE 1.0 – XML

<note bar_count = “4” pitch=”G” duration=”8”/>
</bar>
<bar count=”2”>

<note bar_count = “1” pitch=”E” duration=”2”
articulation=”fermata”/>

</bar>
.
.
.
Etc.

</bars>
</score>

Looking at the example above, you may wonder about why some

information is coded as so-called XML elements (entries of the form

<tag>information</tag>), whereas other information is coded

in the form of so-called attributes (entries in the form of

attribute=”value”). For instance, instead of

<note bar_count = “4” pitch=”G” duration=”8”/>

could we not just as well have written the following?

<note>
<bar_count>4</bar_count>
<pitch>G</pitch>
<duration>8</duration>

</note>

The answer is that either way of writing this information works just

fine. As far as we know, a choice of one or the other is essentially

a matter of convenience and aesthetics on the side of the designer

of the XML specification. As we mention in the next chapter (JSON;

an alternative for XML), however, this ambivalence is one of the

arguments that JSON aficionados routinely use against XML.

At this point you should not be surprised that indeed there are

TE 1.0 – XML | 31

several XML models for representing music. One of them is

MusicXML.2

This notion of communicating information with hierarchically

organized text instead of graphics naturally applies to other

domains as well. Take, for instance mathematical notation. Figure 2

shows the formula for the (uncorrected) standard deviation.

Figure 2: Formula for the (uncorrected) standard
deviation.

Once again, we humans can read this information just fine because

we have a great capacity (and training) to glean its meaning from its

symbols and their relative positions. But as was the case with the

music graphic, asking a machine to decipher these same symbols

and relative positions seems like the long way around. Why not just

represent the same information in hierarchic textual, XML form?

Something like the following:

<equation>
<left_side>

<term>
<symbol>S</symbol>

2. Several competing specifications for Music XML exist. In

this text we care only to convey the notion of writing an

XML representation for sheet/score music and take no

position on which XML format is to be preferred.

32 | TE 1.0 – XML

_{<var>N</var>}
</term>

</left_side>
<right_side>

<sqrt>
<product>

<left>
<quotient>

<nominator>1</nominator>
<denominator><var>N</var></denominator>

</quotient>
</left>
<right>

<sum>
Etc.

</sum>
</right>

</product>
</sqrt>

</right_side>
</equation>

As with the music example, this XML was entirely made up by us

and is only meant to illustrate the notion of representing content

in hierarchical text form which is normally represented in graphic

form. However, MathML is a standard implementation of this.

What is interesting in MathML is that it consists of two parts:

Presentation MathML and Content MathML. Whereas Presentation

MathML is comparable with standard HTML, i.e., a language for

specifying how mathematical expressions must be displayed,

Content MathML corresponds to what we tried to show above,

namely a textual presentation of the structure and meaning of

mathematical expressions. The following sample is taken verbatim

from the MathML Wikipedia page:

Expression: ax2 + bx + c

TE 1.0 – XML | 33

MathML:

<math>
<apply>

<plus/>
<apply>

<times/>
<ci>a</ci>
<apply>

<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
</apply>
<apply>

<times/>
<ci>b</ci>
<ci>x</ci>

</apply>
<ci>c</ci>

</apply>
</math>

Lots of XML specifications other than MusicML and MathML have

been developed over the years. One which is currently in active

use by the US Securities and Exchange Commission (SEC) is XBRL

for business reporting (Baldwin & Brown, 2006). For a list of many

more, point your web browser to https://en.wikipedia.org/wiki/

List_of_XML_markup_languages.

XML Syntax Specification: DTD and XML
Schema

One of the characteristics of web services, programs which serve

34 | TE 1.0 – XML

XML or JSON content over the web, is that they are self-describing.

For XML, this takes the form of a so-called Document Type

Definition (DTD) or the more recent XML Schema Definition (XSD).

DTS and XSD are meta documents, meaning that they contain

information about the documents containing the actual XML data.

This meta information serves two purposes: it informs

programmers (as well as programs) on how to interpret an XML

document and it can be used to check an XML document against the

rules specified for that XML (a process known as ‘validation’).

A helpful way to understand this notion is to consider a DTD/

XSD document to specify the syntax ―grammar and vocabulary―

of an XML specification. For instance, going back to the example of

our TeachEngineering 1.0 lesson, the DTD/XSD for the lesson would

specify that a lesson document must have a title, a target grade

band, one or more keywords, one or more standard alignments,

time and cost estimates, etc. It would further specify that a grade

band contains a target grade and a low and a high grade which are

numbers, that the keyword list contains at least one keyword which

itself is a string of characters, that a copyright consists of an owner

and a year, etc.

A fragment of the XSD for the above lesson document defining

the syntax for the grade, time and keyword information might look

something like the following:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3c.org/2001/XMLSchema">
<xs:element name="lesson">

<xs:complexType>
<xs:sequence>

<!--semantics for the <grade> element-->
<xs:element name="grade">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:unsignedByte">

TE 1.0 – XML | 35

<xs:attribute name="lowerBound" type="xs:unsignedByte"
use="optional"/>

<xs:attribute name="upperBound" type="xs:unsignedByte"
use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<!--semantics for the <time> element-->
<xs:element name=”time”>

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:float">
<xs:attribute name="unit" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="minutes"/>
<xs:enumeration value="hours"/>
<xs:enumeration value="days"/>
<xs:enumeration value="weeks"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>

<!--semantics for the <keywords> element-->
<xs:element name="keywords">

<xs:complexType>
<xs:sequence>

<xs:element name="keyword" type="string"
maxOccurs="unbounded"/>

36 | TE 1.0 – XML

</xs:sequence>
</xs:complexType>

</xs:element>
Etc.

Notice how the schema specifies how components of an XML lesson

must be structured. For instance, the <keywords> element (line

42-48) is defined as a sequence of <keyword>s where each

<keyword> is a string of characters of any length (line 45). Similarly,

the lesson <time> (line 22-39) has a value which is a floating-point

number and has a required <unit> which is one of the strings’

minutes, hours, days or weeks (line 28-32).

As for the xs: prefix on all definitions, the code

xmlns:xs="http://www.w3c.org/2001/XMLSchema"

on line 2 indicates that each of these terms―element, complexType,

sequence, string, etc.― is defined by the W3C’s 2001 XMLSchema.

Note: Well formed ≠ Valid

Now we have discussed both XML and DTD/XSD, we can make the

distinction between well-formed and malformed XML documents

on the one hand and valid and invalid ones on the other (Table 1).

Table 1: relationships between XML well-formedness and validity

Well formed Malformed

Valid 1

Invalid 2 3

An XML document is considered well formed if it obeys the basic

XML syntax rules. With this, we mean that all content is stored

within XML elements; i.e., that all content is tag delimited and

properly nested. A simple example clarifies this.

TE 1.0 – XML | 37

Exercise 3.2
Store the following text in a file with .xml extension and

pick it up with your web browser (Control-o makes the web

browser pop up a file browser):

<art_collection>
<object type="painting"

<title>Memory of the Garden at Etten</title>
<artist>Vincent van Gogh</artist>
<year>1888</year>
<description>Two women on the left. A third works in her
garden</description>
<location>

<place>Hermitage</place>
<city>St. Petersburg</city>
<country>Russia</country>

</location>
</object>

<object type="painting">
<title>The Swing</title>
<artist>Pierre Auguste Renoir</artist>
<year>1886</year>
<description>Woman on a swing. Two men and a toddler
watch</description>
<location>

<place>Musee d'Orsay</place>
<city>Paris</city>
<country>France</country>

</location>

38 | TE 1.0 – XML

</object>
</art_collection>

Notice how your web browser complains about a

problem on line 3 at position 9. It sees the <title>
element, but the previous element <object> has no

closing chevron (>) and hence, the <title> tag is in an

illegitimate position. Regardless of any of the values and

data stored in any of the elements, this type of error

violates the basic syntax rules of XML. The document is not

well formed and any malformed document is considered

invalid (cell 3 in Table 1).

However, an XML document can be well formed yet still

be invalid (cell 2 in Table 1). This occurs if the document

obeys the basic XML syntax rules but violates the rules of

the DTD/XSD. An example would be a well-formed lesson

document which does not have a summary or a grade

specification. Such an omission does render the document

invalid, even though it is well formed.

Must all XML have a DTD/XSD?

A question which often pops up when discussing XML and DTD/

XSD is whether or not DTD/XSD are mandatory? Must we always

go through the trouble of specifying a DTD/XSD in order to use

XML? A related question is whether we must process a DTD/XSD

to read and consume XML? The answer to both questions is ‘no,’ a

DTD/XSL is not required. However, if, as a data provider you make

XML available to others, it is good practice to formulate a DTD or

XSD for it so that you can validate your XML before you expose it

TE 1.0 – XML | 39

to the world. If, on the other hand, you are a consumer of XML, it is

often sufficient to just read the on-line documentation of the XML

web service you are consuming, and you certainly do not have to

generate a DTD/XSD yourself.

Enough Theory. Time for some Hands-on

Exercise 3.3
Point your browser to http://faculty.bus.oregonstate.edu/

reitsma/family.xml. Notice that we have a small XML

dataset of a family of two people:

<?xml version="1.0" encoding="UTF-8"?>
<family>

<person gender="male">
<firstname>Don</firstname>
<lastname>Hurst</lastname>

</person>
<person gender="female">

<firstname>Mary</firstname>
<lastname>Hurst</lastname>

</person>
</family>

Let us now assume that we want to write a program

which can automatically pick up this data set and extract

the family members from it. (Make sure that you

understand the larger picture here. Assume that instead of

having a hardwired, static XML data set on the web site, we

40 | TE 1.0 – XML

can pass the web service a family identifier and it will

respond, on-the-fly, with a list of family members in XML.

For instance, we might send it a request asking for the

members of the Hurst family upon which it replies with the

data above).

Please note that there exists a variety of ways and models

to extract data from XML files or web services. Suffice it

here to say that in each of the following three examples

―PHP, C# and JavaScript― the XML is stored in memory

as a so-called Document Object Model (DOM). A DOM is

essentially a hierarchical, tree-like memory structure (we

have already discussed how XML documents are

hierarchical and, hence, they nicely fit a tree structure).

Again, several methods for extracting information from

such a DOM tree exist.

Exercise 3.4
Requesting XML over the web (HTTP) and extracting data

from it using PHP

Store the following in a file called family.php:

<?php

//request the xml from the remote server and load it into a variable
$my_xml=simplexml_load_file(
"http://faculty.bus.oregonstate.edu/reitsma/family.xml") or
die("Error: Cannot create object");

TE 1.0 – XML | 41

//extract the persons and print their firstname and lastname
foreach($my_xml->children() as $persons)
{

echo $persons->firstname . " ";
echo $persons->lastname . "\n";

}

?>

Run this program:

• If you have PHP installed on your machine: on the

command line:

>php family.php

• at phpfiddle.org: paste the code and run.

Output:

• On the command line:

Don Hurst
Mary Hurst

• On phpfiddle.org:

Don Hurst Mary Hurst

Question: Why would the command-line output be

different from the phpfiddle.org output? Hint: note how the

PHP program inserts a “\n” between the two names.

However, a newline in HTML is represented with a “
” or

“<p>” tag.

42 | TE 1.0 – XML

Exercise 3.5
Requesting XML over the web (HTTP) and extracting data

from it using C#

Consider the following C# program:

using System;
using System.IO;
using System.Xml;

class Foo
{

static void Main()
{

XmlDocument xmlD;
XmlNodeList person_nodeList;

//Create the XML Document
xmlD = new XmlDocument();

xmlD.Load(
"http://faculty.bus.oregonstate.edu/reitsma/family.xml"
);

//Get the list of name nodes
person_nodeList = xmlD.SelectNodes("/family/person");

//Loop through the nodes
foreach (XmlNode name_node in person_nodeList)
{

//Get the 'firstName' element value
string firstNameValue =

TE 1.0 – XML | 43

name_node.ChildNodes.Item(0).InnerText;

//Get the 'lastName' element value
string lastNameValue =
name_node.ChildNodes.Item(1).InnerText;

//Write result to the console
Console.Write(firstNameValue + " " + lastNameValue);
Console.WriteLine();

}

} // end Main()
} // end class Foo

If you have Visual Studio on your machine:

1. Store this code in a file with a *.cs extension; e.g.,

foo.cs.

2. Start Visual Studio → Visual Studio Tools Developer

Command Prompt for VS3

3. On the resultant command prompt, run the

following commands:

1. >cd file_path_to_the_foo.cs_file
2. >csc foo.cs (compile the program)

3. Microsoft frequently changes the name of this menu

option and its location on the Start menu. Important,

however, is to know that a normal command-line

window (cmd) window will not work unless a path to the

C# compiler (csc.exe) has been set.

44 | TE 1.0 – XML

3. >foo (run it)

In dotnetfiddle.net, set the Project Type to Console, enter

the code in the source code window, and hit the Run

button. Note that you may be prompted that Main() must

be declared public in a public class. If so, change these lines

as follows:

class Foo→ public class Foo

static void Main()→ public static void
Main()

Exercise 3.6
Requesting XML over the web (HTTP) and extracting data

from it using JavaScript.

One of the advantages of JavaScript is that pretty much all

web browsers have a JavaScript interpreter built in. Hence,

there is nothing to install beyond your web browser to

write and run JavaScript code. Here is the JavaScript

program. Note that the JavaScript is embedded in a little bit

of HTML (the JavaScript is the code within the <script>
and </script> tags):

<html>
<p id="family"></p>

<script>
var request = new XMLHttpRequest();

TE 1.0 – XML | 45

request.onreadystatechange = extract;
request.open("GET",
"http://faculty.bus.oregonstate.edu/reitsma/family.xml",

true);
request.send();

function extract()
{

if (request.readyState == 4 && request.status == 200)
{

var xmlDoc = request.responseXML;
var my_str = "";
var persons = xmlDoc.getElementsByTagName("person");
for (var i = 0; i < persons.length; i++)
{

var firstname = persons[i].childNodes[1];
var lastname = persons[i].childNodes[3];
my_str = my_str + firstname.innerHTML + " "
+ lastname.innerHTML + "
";

}
document.getElementById("family").innerHTML = my_str;

}
}
</script>
</html>

You may try storing this file with the *.html extension on

your local file system and then pick it up with your browser,

but that will almost certainly not work because this implies

46 | TE 1.0 – XML

a security risk.4 To make this work, however, we installed

the exact same code at http://faculty.bus.oregonstate.edu/

reitsma/family.html and if you point your browser there,

things should work just fine. (To see the HTML/JavaScript

source code, right-click View Page Source or point your

browser to view-source:http://faculty.bus.oregonstate.edu/

reitsma/family.html.)

TE 1.0 Documents Coded and Stored as XML

In their 1999 article in Scientific American, Bosak and Bray

considered an XML-equipped web the “Next Generation Web”. With

this, they meant that until that time, Web content carried in HTTP

4. The security risk rests in the web browser running

JavaScript code instructing it to reach out to an external

server. This interacting of an HTTP client (the web

browser) with an external source to dynamically

generate content is known as Asynchronous JavaScript

with XML (AJAX) technology. By default, reaching out to

a server located in another domain than the one from

which the original content was requested―aka Cross

Origin Resource Sharing (CORS) ―is forbidden (one can

easily imagine typing in a login and password which is

then used to access a third party site; all in real-time

from the user’s computer, yet entirely unbeknownst to

the user).

TE 1.0 – XML | 47

was meant to be presented to humans, whereas with XML we now

had a way to present content format-free to machines. Moreover,

along with XML came tools and protocols which made it relatively

easy to programmatically process XML.

When we developed TE 1.0 in the early 2000s, we liked this

concept so much that we decided to store all TE content in XML.

Exercise 3.7

To see this, first take a look at an arbitrary TE 1.0 activity

at:

https://COB-TE-Web.bus.oregonstate.edu/

view_activity.php?url=collection/mis_/activities/

mis_eyes/mis_eyes_lesson01_activity1.xml

When you look at the page source in your browser (right-

click: View page source), you immediately see that the page

is an HTML page. This makes much sense, as the page is

meant for human users and hence, HTML is a good way of

rendering this information in a web browser.

However, a quick look at the activity’s URL shows that the

program view_activity.php has passed the parameter url

which is set to the value collection/mis_/activities/

mis_eyes/mis_eyes_lesson01_activity1.xml.

If we thus point our browser to: https://COB-TE-

Web.bus.oregonstate.edu/collection/mis_/activities/

mis_eyes/mis_eyes_lesson01_activity1.xml, we see the

actual XML holding the activity information. Each activity

has 14 components: <title>, <header>, <dependency>,

<time>, <activity_groupsize>, etc. Most of these are

48 | TE 1.0 – XML

complex types in that they have one or more components

of their own.

When TE 1.0 receives a request to render an activity, its

view_activity.php program extracts the various

components from the associated XML file, translates them

into HTML and serves the HTML to the requester.

View_activity.php does some other things as well. Scroll

down through the activity XML to the <edu_standards>
tag. Notice how for this activity seven standards are

defined, each with an Sxxxxxxx identifier (<edu
_standard identifier=”Sxxxxxxx”>). However, when

you switch back to the HTML view and look for the

Educational Standards section, you find the text of those

standards rather than their identifiers. How’s that done?

Quite simply, really. As view_activity.php renders the

activity, it extracts the <edu _standard>tags and their

identifiers from the XML. It then queries a database which

holds these standards with those identifiers for the

associated standard texts, their grade level, their

geographic origin, etc. Having received this information

back from the database, it encodes it in HTML and serves it

up as part of the activity’s HTML representation.

Service-Oriented Architectures and Business
Process Management

Reading ‘between the lines,’ one can see a grander plan for how

whole system architectures based on XML (or JSON) web services

can be built: a company-wide or world-wide network of information

processing software services that is utilized by software programs

TE 1.0 – XML | 49

that connect to this network and request services from it. Service

requesters and providers communicate with each other through

common protocols and expose each other’s interfaces through

which they exchange information (Berners-Lee et al., 2001).

One expression of this vision is what are known as Service-

Oriented Architectures (SOA). MacKenzie et al. (2006) define SOA as

a “paradigm for utilizing and organizing distributed capabilities that

may be under the control of different ownership domains”; in other

words, the distribution of software components over machines,

networks and possibly organizations that are accessed as web

services. Whereas in a traditional system architecture we would

embed functionality within the applications that need it, in an SOA,

our application software would fulfill the role of a communications

officer and information integrator with most, if not all of the

functionality provided by (web) services elsewhere on the network.

Some of these services might run on our own machines; others can

reside at third parties. Some may be freely available whereas others

may be ‘for fee.’

Regardless of where these services reside and who owns them,

however, they all can be accessed using some or all of the methods

that we have discussed above. They exchange information in forms

such as XML, they receive and send messages with protocols such

as SOAP and they are self describing through the exposure of their

XSD, DTD or WSDL (SOAP and WSDL are XML specifications for

generalized message exchange). Hence, as long as the applications

requesting their information can formulate their requests following

these protocols, they can interoperate with the services.

TE 1.0 Web Services Example I: K-12 Standards

As mentioned in the introductory chapter, all of TeachEngineering’s

curriculum is aligned with K-12 STEM standards. Although the TE

team is responsible for these alignments, it is not in the business

50 | TE 1.0 – XML

of tracking the standards themselves. With each of the US states

changing its standards, on average, once every five years and with

a current total of about 65,000 such standards, tracking the

standards themselves was deemed better to be left to a third party.

This party, as previously mentioned, is the Achievement Standard

Network (ASN) project, owned and operated by the Desire2Learn

(D2L) company.

Very much in the spirit of web services as discussed here, ASN

makes its standard set available as an XML-based service.5

Here is a (simplified) fragment of one of ASN’s standard sets,

namely the 2015 South Dakota Science standards. The fragment

contains two Kindergarten (K)-level standards:

<rdf:RDF xmlns:asn="http://purl.org/ASN/schema/core/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:gemq="http://purl.org/gem/qualifiers/"
xmlns:loc="http://www.loc.gov/loc.terms/relators/"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:skos="http://www.w3.org/2004/02/skos/core#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<cc:attributionURL
rdf:resource="http://asn.desire2learn.com/resources/D2627218" />
<dc:title xml:lang="en-US">South Dakota Science
Standards</dc:title>

5. Although ASN still serves standards as XML if so desired,

it has recently shifted to serving them in JSON, a data

exchange standard we will discuss and practice in the

next chapter.

TE 1.0 – XML | 51

<dcterms:description xml:lang="en-US">The South Dakota
Science Standards realize a vision for science education
in which students are expected to actively engage in science
and engineering practices and apply crosscutting concepts
to deepen their understanding of core ideas. These standards
are designed to guide the planning of instruction and the
development of assessments of learning from kindergarten
through twelfth grade. This document presents a starting
point for informed dialogue among those dedicated and
committed to quality education in South Dakota. By providing
a common set of expectations for all students in all schools,
this dialogue will be strengthened and enhanced.
</dcterms:description>
<asn:repositoryDate
rdf:datatype="http://purl.org/dc/terms/W3CDTF">
2015-05-19</asn:repositoryDate>

<asn:Statement
rdf:about="http://asn.desire2learn.com/resources/S2627378">

<asn:statementNotation>K-PS2-1</asn:statementNotation>
<dcterms:educationLevel
rdf:resource="http://purl.org/ASN/scheme/ASNEducationLevel/K" />
<dcterms:subject
rdf:resource="http://purl.org/ASN/scheme/ASNTopic/science" />
<dcterms:description xml:lang="en-US">Plan and carry out an
investigation to compare the effects of different strengths
or different directions of pushes and pulls on the motion
of an object.</dcterms:description>

</asn:Statement>

<asn:Statement
rdf:about="http://asn.desire2learn.com/resources/S2627379">

<asn:statementNotation>K-PS2-1</asn:statementNotation>
<dcterms:educationLevel
rdf:resource="http://purl.org/ASN/scheme/ASNEducationLevel/K" />

52 | TE 1.0 – XML

<dcterms:subject
rdf:resource="http://purl.org/ASN/scheme/ASNTopic/science" />
<dcterms:description xml:lang="en-US">Analyze data to
determine if a design solution works as intended to change
the speed or direction of an object with a push or a pull.
</dcterms:description>

</asn:Statement>

Notice how at the very top, the XML fragment contains a reference

to the XSD that governs it:

http://purl.org/ASN/schema/core/

Notice also that depending on how much we need to know about

this web service, we might or might not need to analyze this XSD.

If all we want to do is write a program which grabs the texts of the

various standards, we do not really have to know the XSD at all. All

we have to know is how to extract the <dcterms:description>
elements, something which a quick study of the example shows us.

Exercise 3.8
Note how each of these two standard representations

contains a link to a more human-readable representation:

http://asn.desire2learn.com/resources/Sxxxxxxx

Point your browser to each of these to see what else they

hold.

TE 1.0 Web Services Example II: Metadata

TE 1.0 – XML | 53

Provisioning

A second example of the application of web services in TE 1.0 is

comprised of metadata provisioning. One of the goals of the

National Science Digital Library (NSDL) project mentioned in the

introductory chapter was that as a centralized registry of digital

science libraries, NSDL would be up-to-date on all the holdings of

all its member libraries. For users ―or patrons in library jargon―

this would mean that they could come to NSDL and conduct faceted

searches over all its member libraries without having to separately

search all these libraries. With faceted search, we mean a search

which is qualified by certain constraints. For instance, a South

Dakota seventh grade science teacher might ask NSDL if any of its

member libraries contains curriculum which supports standard MS-

ESS3-1 (Construct a scientific explanation based on evidence for how

the uneven distributions of Earth’s mineral, energy, and groundwater

resources are the result of past and current geoscience processes) or

for a 10th grade teacher, if there is a curriculum which addresses

plate tectonics which can be completed within two hours.

Two standard approaches to serve such a query come to mind.

The first is known as federated search. In this approach a search

query is distributed over the various members of the federation; in

this case NSDL. Each of these members conducts its own search and

reports back to the central agency which then comprises and sorts

the results, and hands them to the original requester.

A second approach is that of the data hub in which the searchable

data are centrally collected, independent of any future searches.

Once a search request comes in, it can be served from the central

location without involvement of the members.

Question: Compare and contrast the federated and data hub

approaches to search. What are the advantages and disadvantages

of each?

As the architects of NSDL realized that it was not very likely

that all its member libraries would have their search facilities up

54 | TE 1.0 – XML

and running all the time and that they would all function quickly

enough to support federated searches, it decided in favor of the

data hub approach. This implied that it would periodically ask its

member libraries for information about their holdings and centrally

store this information, so that it could serve searches from it when

requested. This approach, however, brings up three questions: what

information should the member libraries submit, what form should

the information be in, and what sort of data exchange mechanism

should be used to collect it? Having worked your way through this

chapter up to this point, can you guess the answer to these

questions?

• Question: What information should the member libraries

submit? Answer: NSDL and its members should decide on a

standard set of data items representing member holdings.

• Question: What form should the information be in? Answer:

XML is a good candidate. Supported by a DTD/XSD which

represents the required and optional data items, XML provides

a formalization which can be easily served by the members and

consumed by the central entity.

• Question: What sort of data exchange mechanism should be

used to collect it? Answer: An HTTP/XML web service should

work fine.

Fortunately for NSDL and its member libraries, the second and

third questions had already been addressed by the digital library

world at large and its Open Archives Initiative (OAI). In 2002, OAI

released its Protocol for Metadata Harvesting (OAI-PMH); an XML-

over-HTTP protocol for exposing and harvesting library metadata.

Consequently, NSDL asked all its member libraries to expose the

data about their holdings using this protocol.

TE 1.0 – XML | 55

Exercise 3.9
To see OAI-PMH at work in TeachEngineering 1.0, point

your browser to the following URL (give it a few seconds to

generate results; the program on the other side must do a lt

of work):

https://COB-TE-Web.bus.oregonstate.edu/cgi-bin/OAI-

XMLFile-2.1/XMLFile/tecollection-set/

oai.pl?verb=ListRecords&metadataPrefix=nsdl_dc

Take a look at the returned XML and notice the following:

• The OAI-PMH’s XSD is located at

http://www.openarchives.org/OAI/2.0/OAI-

PMH.xsd

• Collapse each of the <record>s (click on the ‘-‘

sign in front of each of them). You will notice that

only 20 records are served as part of this request.

However, if you look at the <resumptionToken> tag

at the bottom of the XML, you will see that the

completeListSize=1551.

• The reason for serving only the first 20 records is

the same as Google serving only the first 10 search

results when doing a Google search, namely that

serving all records at once can easily bog down

communication channels. Hence, if, in OAI-PMH, you

want additional results, you have to issue follow-up

requests requesting the next set of 20 results:

• https://COB-TE-Web.bus.oregonstate.edu/cgi-bin/

OAI-XMLFile-2.1/XMLFile/tecollection-set/

oai.pl?verb=ListRecords&resumptionToken=nsdl!!!nsdl

_dc!206

56 | TE 1.0 – XML

• Open up the first (top) <record> and take a look at

its content. Notice how for this TeachEngineering

items a variety of metadata are provided; e.g.,

<dc:title>, <dc:creator>, <dc:description>,

<dc:publisher>, etc.

• Notice the dc prefix in each of elements listed in

the previous points. This stands for Dublin Core, a

widely accepted and used standard for describing

library or collection holdings.

Serving Different XML Formats with XSLT

Let us take it one last step further. We just saw how, in the model

for NSDL data hub harvesting, TE provides information on its

collection’s holdings in XML over HTTP (using OAI-PMH), in Dublin

Core (dc) format (quite a mouthful). But how about providing

information about these same resources in other formats? For

instance, IEEE developed the Learning Object Model (IEEE-LOM)

format which is different from Dublin Core in that it was developed

not to capture generic library item information, but to capture

learning and pedagogy-related information. If we would now want

to service IEEE-LOM requests in addition to NSDL-DC requests,

would we have to develop a whole new and additional web service?

Fortunately, the answer is ‘no,’ if the IEEE-LOM consumer can

6. Please ignore the mysterious sequences of bangs (!) in

the resumptionToken parameter. They are part of the

darker recesses of OAI-PMH.

TE 1.0 – XML | 57

harvest OAI-PMH. This requires some explanation. Consider the

three components at work here:

1. HTTP: the information transfer medium

2. XML (DC, IEEE-LOM or something else): the meta data carrier

3. OAI-PMH: the protocol for requesting and extracting the XML

over HTTP

Seen from this perspective, the difference between DC, IEEE-LOM

or, for that matter, any other XML representation of item metadata

is the only variable and hence, if we could easily translate between

one type of XML and another, and if indeed the consumer can

process OAI-PMH, we should be in business.

As it happens, the widely accepted XML translation technology

called Extensible Stylesheet Language Transformations (XSLT) does

just that: convert between different types of XML. The way it works

is, at least in principle, both elegant and easy. All you need to do is

formulate a set of rules which express the translation from one type

of XML, for instance DC, to another, for instance IEEE-LOM. Next,

you need a program which can execute these translations, called an

‘XSLT processor.’ Once you have these two, all you need to do is run

the processor and point it to an XML file with the original XML and,

if all is well, it will output the information in the other XML version.

Exercise 3.10
Once again, consider our ‘family’ XML document at:

http://faculty.bus.oregonstate.edu/reitsma/family.xml

<?xml version="1.0" encoding="UTF-8"?>
<family>

<person gender="male">

58 | TE 1.0 – XML

<firstname>Don</firstname>
<lastname>Hurst</lastname>

</person>
<person gender="female">

<firstname>Mary</firstname>
<lastname>Hurst</lastname>

</person>
</family>

Now let us assume that we want to translate this into a

form of XML which only holds the <firstname>s and

ignores the <lastname>s; i.e., something like the following:

<?xml version="1.0" encoding="UTF-8"?>
<family>

<person gender="male">Don</person>
<person gender="female">Mary</person>

</family>

In other words, we must ‘translate’ the first form of XML

to the second form of XML.

Now, consider the following file with XSLT translation

rules:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/family">
<family>

<xsl:apply-templates select="person"/>

TE 1.0 – XML | 59

</family>
</xsl:template>

<xsl:template match="person">
<person gender="{@gender}">

<xsl:value-of select="firstname" />
</person>

</xsl:template>

</xsl:stylesheet>

The file contains two rules: the first (<xsl:template
match="/family">) specifies that the translation of a

<family> consists of the translation of each <person>
within the <family>. The second (<xsl:template
match="person">) says that only a <person>’s gender and

the <firstname> must be copied. However, the

<firstname> tag itself should not be copied.

Running this XSLT on the original XML file, we should

indeed get:

<?xml version="1.0" encoding="UTF-8"?>
<family>

<person gender="male">Don</person>
<person gender="female">Mary</person>

</family>

Let us now try this.

1. Point your web browser to http://www.utilities-

online.info/xsltransformation.

2. Enter our family.xml code into the XML frame.

60 | TE 1.0 – XML

3. Remove the line <?xml version=”1.0″

encoding=”UTF-8″?>

4. Enter our XSLT code into the XSL frame.

5. Remove the line <?xml version=”1.0″

encoding=”UTF-8″?>

6. Test both codes for validity (check buttons below

the frames). If you get an error on the XSL syntax,

check the double quotes (sometimes cutting and

pasting quotes and double quotes across platforms

causes problems).

7. Click the Transform XML with XSL button and note

the results in the Results frame.

This approach, of course, suggests lots of other

possibilities. Using the same technique, we can, for

instance, translate from the original XML into HTML. All we

have to do is modify the XSLT. Let us see if we can make

Don and Mary show up in an HTML table by modifying the

XSL:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:template match="/">
<html>
<body>

<h2>Family Members</h2>
<table border="1">

<tr bgcolor="red">
<th style="text-align:left">First name</th>
<th style="text-align:left">Last name</th>

TE 1.0 – XML | 61

</tr>
<xsl:for-each select="family/person">
<tr>

<td><xsl:value-of select="firstname"/></td>
<td><xsl:value-of select="lastname"/></td>

</tr>
</xsl:for-each>

</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

Try it and notice how we have now transformed from

XML into HTML using XSLT (Dump the HTML to a file and

pick it up with your web browser). Not bad, hey?

XSLT in TE 1.0

Going back to the DC / IEEE-LOM situation in TE 1.0, we might

consider using DC as the base XML and writing an XSLT to translate

from DC to IEEE-LOM. The problem with that approach, however, is

that the DC format accommodates only a small set of attributes and,

hence, many things about TeachEngineering documents cannot be

easily coded in DC to start with.

This, however, suggests a different, and we think better approach.

Rather than using DC or for that matter IEEE-LOM as the base XML,

why not use our own TE-internal XML as a base and then use XSLT

to translate to whatever format anybody ever wants? That way, we

have an internal XML format that can accommodate anything we

62 | TE 1.0 – XML

might ever have in a TE document, yet we can use XSLT technology

to serve DC, IEEE-LOM or anything else.This is very much the same

approach that a program such as Excel uses to present identical

data in different formats; for instance, a number can be shown

with different amounts of decimals, as a percent, etc. Internally to

the program there is only one representation, but to the user this

representation can be changed though a transform.

If the requester of that information can process OAI-PMH, we

have a nice XML—XSLT—OAI-PMH pipeline for serving anything as

an XML web service.

So this is what we did in TE 1.0. Much to our fortune, the OAI-

PMH functionality was available as the open source XMLFile

package written in Perl by Hussein Suleman (2002) while at Virginia

Tech. Since Suleman had already provisioned the server with means

to accommodate multiple XSLTs (nice!), all we had to do was write

the various XSLTs to translate from the base XML into the requested

formats.

References

Allen, P. (2006) Service Orientation: Winning Strategies and Best

Practices. Cambridge University Press. Cambridge, UK.

Baldwin, A.A., Brown, C.E., Trinkle, B.S. (2006) XBRL: An Impacts

Framework and Research Challenge. Journal of Emerging

Technologies in Accounting, Vol. 3, pp. 97-116.

Berners-Lee, T, Hendler, J., Lassila, O. (2001) The Semantic Web.

Scientific American. 284. 34-43.

Bosak, J., Bray, T. (1999) XML and the Second-Generation Web.

Scientific American. May. 34-38, 40-43.

MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R. (2006)

Reference Model for Service-Oriented Architectures 1.0. Public

Review Draft 2. OASIS. http://www.oasis-open.org/committees/

download.php/18486/pr-2changes.pdf. Accessed: 12/2016.

TE 1.0 – XML | 63

Pulier, E., Taylor, H. (2006) Understanding Enterprise SOA. Manning.

Greenwich, CT.

Suleman, Hossein (2002) XMLFile. Available:

http://www.dlib.vt.edu/projects/OAI/software/oai-file/oai-

file.html. Accessed: 12/2016 (no longer available).

Vasudevan, V. (2001) A Web Services Primer A review of the

emerging XML-based web services platform, examining the core

components of SOAP, WSDL and UDDI.

W3C (2002) Web Services Activity Statement. http://www.w3.org/

2002/ws/Activity.html. Accessed: 04/07/2008

W3C (2004) Web Services Glossary. http://www.w3.org/TR/ws-

gloss/#defs. Accessed: 04/07/2008

64 | TE 1.0 – XML

4. TE 2.0 – JSON

JavaScript Object Notation (JSON) – The New
XML

XML was an invention which made possible a great variety of

programmatic use of web content. The new kid on the block,

however, is a lighter-weight data interchange format known as

JSON (pronounced: Jay-son).

Although JSON’s history goes back almost as far as XML’s, its

recent rise as an alternative for XML stems from several factors:

• It is light weight in that it has less overhead than XML (just

take this for granted right now; we will explain this later).

• It is often―although not necessarily―less verbose (less

‘wordy’) than XML and, therefore, faster to transfer across

networks.

• It is tightly linked with JavaScript, which has seen very rapid

growth as the programming language for web browser-based

processing.

• A growing number of databases support the storage and

retrieval of data as JSON.

Before we consider each of these, let us first look at JSON as a

means of representing information.

JSON, as XML, is a way of hierarchically representing data in that

it uses the same tree-like structure to represent information in

nested form. Table 1 shows the identical information in both XML

and JSON (example taken from Wikipedia’s JSON page).

TE 2.0 – JSON | 65

T
a
b
l
e
1
.
T
h
e
s
a
m
e
d
a
t
a
r
e
p
r
e
s
e
n
t
e
d
b
o
t
h
i
n
X
M
L
(
l
e
f
t
)
a
n
d
J
S
O
N
(
r
i
g

66 | TE 2.0 – JSON

h
t
)

TE 2.0 – JSON | 67

XML

<person>
<firstName>John</firstName>
<lastName>Smith</lastName>
<age>25</age>
<address>

<streetAddress>21 2nd Street</streetAddress>
<city>New York</city>
<state>NY</state>
<postalCode>10021</postalCode>

</address>
<phoneNumbers>

<phoneNumber>
<type>home</type>
<number>212 555-1234</number>

</phoneNumber>
<phoneNumber>

<type>fax</type>
<number>646 555-4567</number>

</phoneNumber>
</phoneNumbers>
<gender>

<type>male</type>
</gender>

</person>

JSON

68 | TE 2.0 – JSON

{
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"

},
"phoneNumber": [

{
"type": "home",
"number": "212 555-1234"

},
{

"type": "fax",
"number": "646 555-4567"

}
],
"gender": {
"type": "male"
}

}

Consider the JSON. It is a data structure which consists of a single

complex element ([json]{}[/json]) containing six sub elements:

[json]firstName[/json] [json]lastName[/json], [json]age[/json],

[json]address{}[/json], [json]phoneNumber[][/json] and

[json]gender{}[/json]. Of these, [json]address{}[/json] and

[json]gender{}[/json] are once again complex.

[json]phoneNumber[][/json] is an array ([json][][/json]) containing

two complex elements.

TE 2.0 – JSON | 69

The JSON representation looks very much like a JavaScript data

structure. In fact, it actually is just such a structure, which we can

prove with the following exercise.

Exercise 4.1
Store the following content into a file foo.html and pick it

up with your browser.

<html>
<script language="javascript">
var foo = {

"firstName": "John",
"lastName": "Smith",
"age": 25,
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"

},
"phoneNumber": [

{
"type": "home",
"number": "212 555-1234"

},
{

"type": "fax",
"number": "646 555-4567"

}
],
"gender": {

70 | TE 2.0 – JSON

"type": "male"
}

}
alert(foo.gender.type);
</script>
</html>

What did we just do? We declared a JavaScript variable

foo and assigned it the JSON structure. Next, we passed

foo’s gender.type to the JavaScript alert() method,

which pops it up in your browser. So apparently, the JSON

structure in Table 1 is perfect JavaScript code all by itself.

Hence, it fits seamlessly and without parsing or special

processing in a JavaScript program.

If we compare this code with the exercise in the previous

chapter where we used JavaScript to parse XML, the

advantage of using JSON over XML when working in

JavaScript becomes clear. Since JSON is just JavaScript―at

least on the data side of things―when working in

JavaScript, no parsing or special processing of JSON is

needed. We can just grab it, store it in a variable and we are

ready to go.

Of course, it does not really matter whether the JSON is

embedded in the JavaScript as in our example above or if

we retrieve it from an external source. Let us do the latter.

Exercise 4.2

TE 2.0 – JSON | 71

Point your browser at http://faculty.bus.oregonstate.edu/

reitsma/person.html and note how it results in John Smith

being echoed in your browser. Now look at the person.html

source code:

<html>

<p id="person"></p>

<script>
var request = new XMLHttpRequest();
request.overrideMimeType("application/json");
request.onreadystatechange = extract;
request.open("GET",

"http://faculty.bus.oregonstate.edu/reitsma/person.js",
true

);
request.send();

function extract()
{

if (request.readyState == 4 && request.status == 200)
{

var person = JSON.parse(request.responseText);
document.getElementById("person").innerHTML =

person.firstName + " " + person.lastName;

}
}
</script>

</html>

72 | TE 2.0 – JSON

Notice how this is pretty much exactly what we did in the

exercise in the previous chapter when we retrieved XML

from a web source and parsed it. Here we retrieved JSON

from a web source (http://faculty.bus.oregonstate.edu/

reitsma/person.js) and echoed some of its content.

Also note the call to JSON.parse(). The method takes in

a string returned from the external web source and tries

parsing it into a JavaScript structure. If the string

represents valid JSON―as in our case―that will work just

fine. We then assign that structure to the variable person:

var person = JSON.parse(request.responseText);

As we did in the XML variant of this, we then extract

information from that person and substitute it for the

content of the HTML tag with id=”person”:

document.getElementById("person").innerHTML =
person.firstName + " " + person.lastName;

JSON in PHP and C#

Whereas JSON is particularly efficient to use in a JavaScript context,

it can, just as XML, be used in other contexts as well. In fact, JSON

has become such a common format for exposing and exchanging

data across the web that many programming languages other than

JavaScript can be used to consume or generate JSON. Let us, once

again, extract John Smith from the external JSON web source, but

this time using PHP and C#.

TE 2.0 – JSON | 73

Exercise 4.3
At phpfiddle.org enter the following code in the CodeSpace

and run it. Nice!

<?php

$json = file_get_contents(
"http://faculty.bus.oregonstate.edu/reitsma/person.js"

);
$person = json_decode($json, true);
echo $person['firstName'] . " " . $person['lastName'];

?>

Exercise 4.4
To do this in C#, we must have access to some JSON

processing software first. Since at the time of this writing,

the .NET System.Json Namespace had become defunct, for

this example we are relying on Newtonsoft.Json (aka

Json.NET). However, in order to prevent you from having to

install this component on your machine, we will run this

example in dotnetfiddle.net.

1. Enter the following C# code at dotnetfiddle.net.

using System;

74 | TE 2.0 – JSON

using System.Net;
using Newtonsoft.Json.Linq;

public class Foo
{

public static void Main()
{

string json = new
WebClient().DownloadString(
"http://faculty.bus.oregonstate.edu/reitsma/person.js"
);

JObject person = JObject.Parse(json);

string firstNameValue =
person.GetValue("firstName").Value<string>();

string lastNameValue =
person.GetValue("lastName").Value<string>();

//Write result to the console
Console.Write(firstNameValue + " " + lastNameValue);
Console.WriteLine();

} // end Main()
} // end class Foo

2. In the textbox for NuGet Packages do a search for

(type) json and select the latest stable version of

Newtonsoft.Json.

3. Run

TE 2.0 – JSON | 75

DTDs or XSDs for JSON: JSON Schema

In the previous chapter we discussed how DTDs and XSDs are used

to declare the syntax of XML documents. We also discussed

document validation as one of the functions of these specifications.

You may therefore wonder whether or not a similar standard exists

for JSON documents. Indeed, there is such a standard, namely JSON

Schema, sponsored by the Internet Engineering Task Force (ITEF).

JSON Schema is heavily based on the approach taken by XML

Schema. Just as XSDs are written in XML, so is JSON Schema written

in JSON and just as for XML, the JSON Schema is self-describing.

To provide a flavor of JSON Schema, we use the example from

json-schema.org (2016) of a simple product catalog. Here is the

JSON for the catalog (only two products included1):

[
{

"id": 2,
"name": "An ice sculpture",
"price": 12.50,
"tags": ["cold", "ice"],
"dimensions": {

"length": 7.0,
"width": 12.0,

1. In this example we ignore details such as the units on

dimensional numbers. For instance, are product

dimensions in feet, inches, centimeters? And how about

product weight? Similarly, any warehouse would likely

have some identifier associated with it rather than just

longitude and latitude. Still, as an example of JSON/

Schema, this works fine.

76 | TE 2.0 – JSON

"height": 9.5
},
"warehouseLocation": {

"latitude": -78.75,
"longitude": 20.4

}
},
{

"id": 3,
"name": "A blue mouse",
"price": 25.50,
"dimensions": {

"length": 3.1,
"width": 1.0,
"height": 1.0

},
"warehouseLocation": {

"latitude": 54.4,
"longitude": -32.7

}
}

]

Pretty straightforward so far (note: the product catalog is an array

([…])). Now let us take a look at its JSON Schema:

{
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Product set",
"type": "array",
"items": {

"title": "Product",
"type": "object",
"properties": {

"id": {
"description": "The unique identifier for a product",

TE 2.0 – JSON | 77

"type": "number"
},
"name": {

"type": "string"
},
"price": {

"type": "number",
"minimum": 0,
"exclusiveMinimum": true

},
"tags": {

"type": "array",
"items": {

"type": "string"
},
"minItems": 1,
"uniqueItems": true

},
"dimensions": {

"type": "object",
"properties": {

"length": {"type": "number"},
"width": {"type": "number"},
"height": {"type": "number"}

},
"required": ["length", "width", "height"]

},
"warehouseLocation": {
"description": "Coordinates of the warehouse with the product",
"$ref": "http://json-schema.org/geo"
}

},
"required": ["id", "name", "price"]

}
}

78 | TE 2.0 – JSON

Studying this data structure, one quickly notices its ‘programming’

or ‘programmatic’ orientation. For instance, it declares variables to

be of traditional data types such as string, array or number. Also, the

variable required is a string array containing the strings “id”, “name”

and “price”. This programmatic orientation makes JSON structures

a little easier to parse than XML strings and, as mentioned before,

since JSON is essentially JavaScript, makes JSON integrate

seamlessly into JavaScript programs.

Discussion: XML vs. JSON; XSD vs. JSON
Schema; is this just the next cycle?

In the previous section we introduced JSON Schema as a way to

specify the syntax of a JSON document, just as XSD is a way to

specify the syntax of an XML document. So one might ask: if JSON

is essentially like XML and if it too requires a validation meta layer

(JSON Schema), what is its real advantage over XML, if any? Let us

reconsider the (alleged) advantages of JSON mentioned at the start

of this chapter:

• JSON is light weight: it has less overhead than XML. It is less

verbose than XML and, therefore, faster to transfer across

networks.

• It is tightly linked with JavaScript which has seen very rapid

growth as the programming language for Web browser-based

processing.

• A growing number of databases support the storage and

retrieval of data as JSON.

The tight linkage with JavaScript and the availability of fast

databases which store data as JSON are clear JSON advantages.

Using ‘raw’ JSON directly in our (JavaScript) programs eliminates a

parsing step. Similarly, because JSON is so closely related to object-

TE 2.0 – JSON | 79

oriented data representation, JSON structures are easily

(de)serializable in object-oriented programming languages other

than JavaScript. With (de)serialization we mean the conversion of a

JSON string into an object in memory (deserialization) or vice versa

(serialization).

The availability of JSON databases is another important factor in

the attractiveness of JSON. If we can just ‘throw’ JSON structures

into a database and then have the database software search those

structures for certain data elements, that can make life nice and

easy, especially if we are willing and able to relax on the ‘normal

form’ and integrity constraints we are so accustomed to in the

relational world. There are, of course, XML databases as well, yet

somehow, JSON seems to be the ‘new kid in town,’ quickly either

replacing XML or providing an additional format for data exchange.

What about the ‘light weight’ argument, though? It is true that

XML seems more verbose. After all, in XML we must embed data in

tags whereas in JSON there is no such requirement. To gain a rough

idea of the relative sizes of XML vs. JSON data sets, we compared

the sizes of a small series of data sets randomly collected (scout’s

honor!) from www.data.gov, available in both XML and JSON (Table

2). Except for the smallest of data sets, the XML sets are, on average,

almost twice the size of the corresponding JSON sets.

80 | TE 2.0 – JSON

Table 2: Comparison of XML and JSON data sets found at www.data.gov.

www.data.gov data set2
XML

(bytes)
JSON

(bytes)
XML/
JSON

data.consumerfinance.gov/api/
views.xml{ json} 132003 143515 .920

data.cdc.gov/api/views/ebbj-sh54/
rows.xml?accessType=DOWNLOAD 36055 51102 .706

data.cdc.gov/api/views/w9j2-ggv5/
rows.xml?accessType=DOWNLOAD 566948 352678 1.608

data.cdc.gov/api/views/fwns-azgu/
rows.xml?accessType=DOWNLOAD 5178244 2353920 2.200

data.montgomerycountymd.gov/api/
views/4mse-ku6q/
rows.xml?accessType=DOWNLOAD 1513181656 677424751 2.234

data.illinois.gov/api/views/t224-vrp2/
rows.xml?accessType=DOWNLOAD 630175 362823 1.737

data.oregon.gov/api/views/kgdq-26yj/
rows.xml?accessType=DOWNLOAD 1268018 707931 1.791

data.oregon.gov/api/views/c5a8-vfhd/
rows.xml?accessType=DOWNLOAD 500160 324444 1.542

data.ny.gov/api/views/rsxa-xf6b/
rows.xml?accessType=DOWNLOAD 140290178 71363706 1.966

data.ny.gov/api/views/e8ky-4vqe/
rows.xml?accessType=DOWNLOAD 875873994 329161433 2.661

Another dimension of ‘weight’ is the overhead: the extra load or

burden associated with working with XML vs. JSON datasets. One

aspect of this concerns the programming effort required to process

data sets. Whereas a very rich array of tools and protocols is

available to create, manipulate and parse XML data sets, fewer such

tools are available for JSON. The JSON toolset, however, is rapidly

growing and may already have caught up. Another aspect concerns

required overhead in terms of XSDs or Schemas. To be clear, neither

2. All URLs refer to the XML version of the data sets (*.xml).

To retrieve the JSON versions, replace .xml with .json.

TE 2.0 – JSON | 81

XML nor JSON mandates the use of a schema and, hence, one

should not hold the existence of extensive XML schemas and the

relative absence of JSON schemas as a relative JSON advantage.

However, since XML is the older of the two technologies, it has

a much deeper penetration in organizational, business and

governmental computing and, hence, its ecosystem of protocols for

standardization and validation is quite encompassing. Examples of

these are XSD but also protocols such as SOAP, WSDL and the now

defunct UDDI which were aimed to make XML into a general and

overarching data representation and data exchange mechanism.

Elegant and general as these might be, they often resulted in highly

complex and arcane data structures and made computing harder by

adding more ‘regulation’ in the form of additional hurdles to take.

These protocols can be experienced as constraints or ‘overkill’ by

those who wish to rapidly develop an application without being

encumbered with those ‘governance’ protocols. Although the

absence of these protocols from much of the (current) JSON

ecosystem should, perhaps, not be considered as a proper argument

in the XML vs. JSON debate, the relative laissez faire climate of the

current JSON world does seem to promote developers to move away

from XML and toward JSON. Will this trend continue? That remains

to be seen. As JSON becomes more entrenched in organizational,

business and governmental computing and data exchanges, the

desire for validation, translation and specification of rich and

complex data structures will likely increase. This could then well

drive ‘regulation’ in the form of protocol specification, and this

implies programming overhead in pretty much the same way it

occurred for XML. Still, JSON’s footprint in terms of byte size

advantage, its database advantage and its (de)serialization advantage

are real. Perhaps the most likely outcome is that JSON and XML both

remain relevant and complementary technologies, with JSON being

most prevalent in gluing together modern applications and XML

being used for marking-up content and in data exchange scenarios

where rigorous validation (XSD) and transformation (XSLT) are

called for.

82 | TE 2.0 – JSON

Exercise 4.5: Who is putting out JSON
services?

As with XML web services, JSON services do not typically

come across the Web browser of people. The reason, of

course, is that those services are meant for machines

(programs) to be consumed, not people. Still, with a little

googling it is pretty easy to find some of the many JSON

services currently in function.

One example is Yahoo Finance’s API for requesting stock

quotes. The API can generate both XML and JSON; all you

have to do is tell it which one you want.

• Ask the API for a stock quote of YAHOO (ticker

symbol YHOO) as XML:

https://query.yahooapis.com/v1/public/yql?q=select *
from yahoo.finance.quotes where symbol in
('YHOO')&format=xml&env=store:
//datatables.org/alltableswithkeys

• Next, request the same information as JSON

https://query.yahooapis.com/v1/public/yql?q=select *
from yahoo.finance.quotes where symbol in
('YHOO')&format=json&env=store:
//datatables.org/alltableswithkeys

Although not of central importance here, note how the

URL contains a parameter q which is set to a query in Yahoo

Query Language (YQL):

TE 2.0 – JSON | 83

select * from yahoo.finance.quotes where symbol in ('YHOO')

Also note that whereas your web browser recognizes the

return from the XML service as XML and automatically

displays the returned code in a form friendly for human

reading, it might not render the JSON at all. Instead, it just

shows it as an unstructured string. There are several ways

to make this string more readable though. Some of these

are web browser specific, such as the JSONView plugin for

the Firefox browser or JSON Viewer for the Chrome

browser. A browser-agnostic, on-line service is available at

http://jsonviewer.stack.hu/. Simply enter any JSON string

in the site’s Text tab and click on the Viewer tab.

The data sets listed in Table 2 show that static JSON sets

are also increasingly available. One only needs to peruse

the thousands of data sets available through www.data.gov

to notice that increasingly, JSON is one of the formats

offered for data retrieval. It is interesting, perhaps, to see

how this penetration/adoption differs in different domains,

at least for now. For instance, many governmental data sets

related to ‘Health’ are available in both JSON and XML

format, yet of the 278 ‘Energy’ data sets (01/06/2017), only

seven were available as XML and zero as JSON. A similar

situation applies to the ‘Agriculture’ data sets.

TeachEngineering (TE 2.0) Documents as JSON
structures

In the previous chapter on XML we saw that TE 1.0 documents

were stored as XML structures. This worked fine and served some

84 | TE 2.0 – JSON

valuable purposes such as document rendering, document

validation and metadata provisioning. In case you must refresh your

memory on TE 1.0 XML, refer back to the TE 1.0 example.

In TE 2.0, however, we switched from XML to JSON. The switch

was motivated by the reasons mentioned in the opening paragraph

of this chapter: JSON is light weight, quick to transport and perhaps

most important, the recent availability of JSON-based databases

which allow for fast storage and retrieval of JSON-based data.

Take a look at the (partial and abbreviated!!) JSON representation

of the same ‘intraocular’ document we looked at in XML:

{
"Header":"<p><img data-url=
\"mis_/activities/mis_eyes/mis_eyes_lesson01_activity1_image1web.jpg\"
data-rights=\"Apple Valley Eye Care. Used with permission.

"

data-caption=\"As seen in the image, irreparable vision loss can

occur in persons with glaucoma.\" alt=\"A photograph of two

young girls looking at a camera. The edges of the image have a

black vignette—a loss in clarity towards the corners and sides of an

image—which portrays what is seen when damage to the optic

TE 2.0 – JSON | 85

nerve has occurred due to the effects of glaucoma.\" /></p>",

"Dependencies":[{ "Url":"mis_eyes_lesson01", "Description":null,

"Text":"These Eyes!", "LinkType":"Lesson" }], "Time":{

"TotalMinutes":350, "Details":"<p>(seven 50-minute class

periods)</p>" }, "GroupSize":3, "Cost":{ "Amount":0.3,

"Details":"<p>Students use online web quest (free), 3D modeling app

(free) and a 3D printer (or modeling clay) to design and create

prototypes.</p>" }, "EngineeringConnection":"<p>Biomedical

engineers rely on modeling to design and create prototypes for

devices that may not yet be approved for testing. In order to

prepare for the cost of manufacturing a device, careful

consideration goes into the potential constraints of that device.

Using various software programs, engineers design and visualize

the device they wish to create in order to determine whether the

future device is worth the effort, time and expense. Mirroring real-

world engineers, in this activity, students play the role of engineers

challenged to create intraocular pressure sensor prototypes to

measure pressure within the eyes of people with glaucoma.</p>",

"EngineeringCategoryType":"Category2EngineeringAnalysisOrParti

alDesign", "Keywords":["3D printer", "3D printing", "at-scale

modeling", "biomedical"], "EducationalStandards":[{

"Id":"http://asn.jesandco.org/resources/S113010D",

"StandardsDocumentId":"http://asn.jesandco.org/resources/

D1000332", "Jurisdiction":"Michigan", "Subject":"Science",

"ListId":null, "Description":["Science Processes", "Reflection and

Social Implications", "K-7 Standard S.RS: Develop an understanding

that claims and evidence for their scientific merit should be

analyzed. Understand how scientists decide what constitutes

scientific knowledge. Develop an understanding of the importance

of reflection on scientific knowledge and its application to new

situations to better understand the role of science in society and

technology.", "Reflecting on knowledge is the application of

scientific knowledge to new and different situations. Reflecting on

knowledge requires careful analysis of evidence that guides

decision-making and the application of science throughout history

86 | TE 2.0 – JSON

and within society.", "Design solutions to problems using

technology."], "GradeLowerBound":7, "GradeUpperBound":7,

"StatementNotation":"S.RS.07.16",

"AlternateStatementNotation":"S.RS.07.16" }, {

"Id":"http://asn.jesandco.org/resources/S114173E",

"StandardsDocumentId":"http://asn.jesandco.org/resources/

D10003E9", "Jurisdiction":"International Technology and

Engineering Educators Association", "Subject":"Technology",

"ListId":"E.", "Description":["Design", "Students will develop an

understanding of the attributes of design.", "In order to realize the

attributes of design, students should learn that:", "Design is a

creative planning process that leads to useful products and

systems."], "GradeLowerBound":6, "GradeUpperBound":8,

"StatementNotation":null, "AlternateStatementNotation":null },

Comparing things with the TE 1.0 XML, things look quite similar.

However, there are a few important differences:

1. Whereas in the XML version of the documents only a reference

to an educational standard was kept, such as S113010D or

S114173E, in the JSON version not only the identifiers, but all

the properties of the standard―description, grade levels, etc.

― are stored as well. To anyone trained in and used to

relational database modeling and so-called ‘normal form’ this

raises a big red flag as it implies a potential for a lot of data

duplication because each time that the standard appears in a

document, its entire content is stored in that document. How

likely is this to happen? Table 3 shows a tally of only the ten

most-referenced standards and the number of times they

occur. Just for these ten standards this results in 1,121

duplications. Add to that, that in TeachEngineering more than

1,200 different standards are used more than once and we can

see why relationally trained system designers raise their

eyebrows when they notice this.

TE 2.0 – JSON | 87

Table 3: Ten most referenced K-12 education standards in
TeachEngineering and their number of occurrences.

Standard Number of occurrences in
TeachEngineering

S11416DD 176

S11434D3 140

S2454468 127

S2454533 125

S2454534 117

S11416DA 107

S2454469 92

S11416D0 83

S1143549 81

S114174D 73

Total number of duplicates in the ten
most referenced standards 1,121

It is important, however, to realize that this difference between

the TE 1.0 XML representation and the TE 2.0 JSON

representation is not at all related to differences in how XML

and JSON represent information. After all, the designers of TE

2.0, could have easily chosen to include only the standard

references in the JSON representation and leave out the

standards’ contents. Choosing to include the standards’

contents in the documents and hence having to accept its

consequences in the form of quite extensive data duplication,

88 | TE 2.0 – JSON

therefore, was entirely an architectural decision. We discuss

this decision in the next chapter on document databases.

2. A second difference between the XML and JSON

representation is that certain members of the JSON

representation seem to contain explicit HTML. For instance,

the text of the Header section of the activity JSON above

contains HTML’s <p> and tags. On first inspection, this

may seem strange as in the previous chapter we celebrated the

value of text-based web services such as the ones based on

XML (and hence, JSON), because they liberated developers

from the use of HTML, a language meant for formatting rather

than content description. Why then, one may ask, introduce

formatting instructions in the content description?

Interestingly, when we take a look at the TE 1.0 XML content of

that same header, we see something similar:

<header>
<text_section>

<text_block format="text">
<text_element>

<image description="A photograph of two young girls
looking at a camera. The edges of the image have
a black vignette—a loss in clarity towards the
corners and sides of an image—which portrays what
is seen when damage to the optic nerve has
occurred due to the effects of glaucoma."

url="mis_eyes_lesson01_activity1_image1web.jpg"
rights="Apple Valley Eye Care. Used with permission.

http://aveyecare.com/photolibrary_rf_photo_of_glaucoma_vision.jpg"
caption="As seen in the image, irreparable vision
loss can occur in persons with glaucoma."
/>

</text_element>
</text_block>

</text_section>

TE 2.0 – JSON | 89

</header>

Clearly, in both cases we see formatting instructions included

in the content descriptions. In the JSON case, the instructions

are pure HTML whereas in the XML case they are XML-based

elements conveying the same information. So what is going on

here? Why this re-mixing of content and formatting of the XML

and JSON after all this work in the late 1990s and early 2000s to

separate them? The reason is subtle but not uncommon. When

looking at TeachEngineering pages, we see that all documents

of the same kind —lessons, activities, sprinkles— all have the

same basic layout. Yet not all documents from the same type

are precisely the same. For instance, some documents have

more images than others and some documents center certain

sections of text whereas others do not. Since the curriculum

authors have some freedom to layout contents within the

structural constraints of the collection, the formatting stored

in both the XML and JSON representations is that specified by

the document authors and must be considered intrinsic to the

document’s content.

Up to this point we have seen some of the differences and

similarities between XML and JSON. On the face of it, the

differences may seem hardly significant enough to warrant a

wholesale switch from XML to JSON. Sure, JSON is perhaps a little

faster and is perhaps easier to work with in JavaScript. The

perspective changes quite dramatically, however, when we consider

the integration of JSON and the new generation of NoSQL

document databases, especially the JSON-based ones. That is the

topic of our next chapter.

90 | TE 2.0 – JSON

References

JSON-schema.org (2016) Example data. http://json-schema.org/

example1.html. Accessed: 12/2016 (no longer available)

TE 2.0 – JSON | 91

5. Relational (TE 1.0) vs.
NoSQL (TE 2.0)

Introduction: Relational is no Longer the Default
MO

Whereas the coding (programming) side of system development

has witnessed more or less constant innovation over the years, the

data management side of things has long been dominated by the

relational model, originally developed by E.F. Codd in the 1970s

while at IBM (Codd 1970, 1982). One (imperfect) indicator of the

dominance and penetration of the relational model in business IT

systems is the share of coverage the relational vs. NoSQL database

technologies receive in (Business) Information System Analysis and

Design textbooks. Table 1 contains an inventory of a few of those

books, namely the ones sitting on the shelves of one of us. Not a

scientific sample, but telling nonetheless.

92 | Relational (TE 1.0) vs. NoSQL (TE
2.0)

Table 1: Coverage of relational vs. NoSQL in some System Analysis and Design textboo

Textbook

Valacich, J.S., George, J.F., Hofer, J.A. (2015) Essentials of Systems Analysis and Design. Pearson.

Satzinger, J., Jackson, R., Burd, S. (2016) Systems Analysis and Design in a Changing World. CENGA
Learning.

Tilley, S., Rosenblatt, H. (2017) Systems Analysis and Design. CENGAGE Learning.

Dennis, A., Wixom, B.H., Roth, R.A. (2014) System Analysis and Design. 6th ed. John Wiley & Sons.

Dennis, A., Wixom, B.H., Tegarden, D. (2012) System Analysis & Design with UML Version 2.0
Sons.

Dennis, A., Wixom, B.H., Tegarden, D. (2015) System Analysis & Design. An Object-Oriented A
UML. 5th ed. John Wiley & Sons.

Coronel C., Morris, S. (2016) Database Systems. Design, Implementation and Management. Ce
learning.

To be clear, pointing out the almost total absence of NoSQL

coverage in these texts is not meant as a critique of these texts. The

relational database remains a dominant work horse of transaction

processing and hence, remains at the heart of business computing.

But whereas for a very long time it was essentially the only

commonly available viable option for all of business

computing—transaction processing or not—new, equally viable and

commonly available non-relational alternatives for non-transaction

processing are making quick inroads.

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 93

Figure 1: Lookup structure of a key-value store (source:
https://en.wikipedia.org/wiki/File:KeyValue.PNG)

Of the six texts listed in Table 1, only Dennis, Wixom & Tegarden

(2012, 2015) and Coronel & Morris give explicit attention to these

non-relational or NoSQL options. Dennis et al. recognize three

types: key-value stores, document stores and columnar stores. Key-

value stores are databases which function like lookup tables where

values to be looked up are indexed by a key as indicated by Figure

1. As the Wikipedia page on key-value stores shows, quite a few

implementations are available these days. One of the better-known

ones is the open-source implementation Riak. Columnar (or

column-oriented) databases are databases which transpose the

rows and columns of relational databases. Rows become columns

and vice versa. This type of representation is meant to imply faster

processing for what in the relational world would be column-

oriented operations, which in the columnar database become row-

oriented operations. Wikipedia contains a list of implementations of

this type of database.

Which brings us to the document store, a type of NoSQL database

which is most relevant for us because that is what TE 2.0 uses.

Document stores, aka Document Management Systems, have quite

94 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

a history. Already in the 1980s several systems were commercially

available to manage an organization’s paper documents, followed

by systems for managing electronic documents. However, whereas

these systems typically enforced their own binary representation

on documents or stored the documents in their native formats and

then kept their metadata for sorting and searching, many modern

NoSQL document stores store documents as text in a standard

format such as XML or JSON. RavenDB and MongoDB, for example,

store documents in JSON format. The fact that there typically are

no constraints on the data other than these text-formatting ones

is important because it implies that as long as a text complies with

the format, it is considered a valid ‘document’ regardless of its

information content. Hence, from the document store’s perspective,

the JSON text {“foo”: “bar”} is as much a ‘document’ as a

complex JSON structure representing a TeachEngineering lesson.

This notion of a document as a structured text shares

characteristics with the notion of classes and objects in object-

oriented programming (OOP) but also with tables in a relational

database. But whereas OOP objects typically live in program

memory and are stored in CPU-specific or byte-compiled binary

formats, NoSQL documents exist as text. And whereas in relational

databases we often distribute the information of an entity or object

over multiple tables in order to satisfy normal form, in NoSQL

document stores —as in key-value stores— we often duplicate data

and neither maintain nor worry about the database integrity

constraints so familiar from relational databases.

So, What Gives?

One might ask why these NoSQL data stores came to the fore

anyway? What was so wrong with the relational model that made

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 95

NoSQL alternatives attractive? And if the NoSQL databases are

indeed ‘no SQL,’1 how does one interact with them?

Let us first say that on the issue of which of these alternatives

is better, the dust has by no means settled. The web is rife with

articles, statements and blog posts which offer some angle, often

highly technical, to sway the argument one way or the other. Yet a

few generally accepted assessments can be made (refer to Buckler

(2015) for a similar comparison).

• There are few if any functions which can be fulfilled by one

that cannot be fulfilled by the other. Most if not everything

that can be accomplished with a NoSQL database can be

accomplished with a relational database and vice versa.

However…

• Modern, industry-strength relational databases are very good

at providing so-called ‘data consistency;’ i.e., the property that

everyone looking at the data sees the same thing. Whereas

such consistency is particularly important in transaction

processing —a bank balance should not be different when

looked at by different actors from different locations,

consistency is less important in non-transaction data

processing. A good example would be pattern-finding

applications such as those used in business intelligence or

business analytics. A pattern is not stable—and hence, not a

real pattern—if a single observation changes it. For example,

when analyzing the 30-day log of our web server, any single

request taken from the log should not make a difference. And if

it does, we did not have a stable pattern anyway.

NoSQL databases are not always equipped with the same

consistency-enforcing mechanisms as the relational ones such

as locking and concurrency control. For example, in the NoSQL

1. Some interpret the term NoSQL as ‘No SQL.’ Others

interpret it as ‘Not Only SQL.’

96 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

database RavenDB, operations on individual documents are

immediately consistent. However, queries in RavenDB at best

guarantee ‘eventual consistency;’ i.e., the notion that, on

average or eventually, different observers see the same thing.

Although eventual consistency is insufficient for transaction

processing, it is often sufficient in non-transactional contexts.

• Because unlike relational databases NoSQL databases are not

encumbered with 40 years of engineering investments, their

licenses are a lot less expensive, especially in cases where lots

of data must be distributed over several or lots of different

machines and different locations. Whereas that does not help

when consistency is needed, it can weigh significantly if

eventual consistency is good enough.

• Relational databases enforce relational integrity (read: primary

and foreign key constraints). NoSQL databases do not. But

what if we are willing to sacrifice some automatic integrity

checking for simpler application code or faster running

programs? As we mentioned in the previous chapter, the TE

2.0 JSON representation of documents contains a lot(!) of

duplicated data when compared with the TE 1.0

representation, and yet, the 2.0 system runs faster and the

codes are less complicated. Of course, making a correction to

all that duplicated data would require more work, but if these

corrections are rare and can be accomplished without service

interruption…

• NoSQL databases tend to be light weight; i.e., no complicated

and distributed client-server systems must be set up (hence,

their cost advantage). However, this does not imply that

complicated systems cannot be built with these systems. On

the contrary, NoSQL databases are often used in highly

distributed systems with multiple levels of data duplication,

and complex algorithms must often be devised to retrieve

information from these various locations to then be locally

aggregated.

• Relational databases have predefined schemas meaning that

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 97

only specific types of data can be stored in predefined tables.

NoSQL databases do not have this constraint. Referring to the

JSON databases such as RavenDB and MongoDB again, one is

free to store the {“foo”: “bar”} document alongside a

complex TeachEngineering lesson. One can easily conceive of

some (dis)advantages either way.

• So-called joins; i.e., querying data across multiple tables in a

single SQL query, are the bread and butter of relational

databases. NoSQL databases do not have joins. Of course, not

having joins while having a database in normal form would

mean a lot of extra programming, but since in a noSQL

database we are more than welcome to ignore normal form,

not having joins does not have to be a problem.2

• Relational databases traditionally scale vertically by just adding

more CPU’s, memory and storage space. NoSQL databases

scale horizontally by adding more machines.

• Querying. Whereas SQL is the universal language for

interacting with relational databases, no such language is

available for NoSQL databases. Since NoSQL is not a standard,

there is no standard querying protocol. Therefore, most

NoSQL implementations have their own syntax and API.

However, because of SQL’s installed base and popularity, some

NoSQL databases offer SQL-like querying protocols. Moreover,

since many software applications —databases or not— offer

some sort of data retrieval mechanism, efforts to develop

supra or ‘über’ query languages are underway. We have already

seen one of these in the previous chapter, namely Yahoo Query

2. Although standard instructional texts on relational

database design emphasize design for normal form,

practitioners frequently denormalize (parts of) a

relational database for the same reason; namely to write

easier and/or faster code.

98 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

Language (YQL), a SQL-like language which can be used to

query across Yahoo services. Similarly, Microsoft has

developed its Language INtegrated Query (LINQ), a SQL-like

language for programmatic querying across its .NET products.

We also must stress that as relational and NoSQL technologies

evolve, the lines between them are blurring. For instance,

PostgreSQL, a mature and popular open-source relational database

supports JSON as a first-class data type. This affords developers

the option of using both relational and NoSQL patterns where

appropriate in the same application without needing to select two

separate database management systems.

TE 1.0: XML/Relational

In this section we discuss the XML/relational architecture used in

TE 1.0. If you just want to learn about the TE 2.0 JSON/NoSQL

version, feel free to skip this section. However, this section contains

some concepts and ideas which you might find interesting, and it

assists a better understanding of the relational-NoSQL distinctions.

When we designed TE 1.0 in 2002 NoSQL databases were just a

research topic, and using a relational database as our main facility

for storing and retrieving data was a pretty much a forgone

conclusion. What was nice at the time too was the availability of

MySQL; a freely available and open-source relational database.

We had also decided to use XML as the means for storing

TeachEngineering content; not so much for fast querying and

searching, but as a means to specify document structure and to

manage document validity (refer to Chapter 3 for details on XML

and validity checking). Consequently, we needed a way to index the

content of the documents as written by the curriculum authors into

the MySQL relational database.

At the time that we were designing this indexing mechanism,

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 99

however, the structure of the TeachEngineering documents was still

quite fluid. Although we had settled on the main document types

(curricular units, lessons and activities) and most of their mandatory

components such as title, summary, standard alignments, etc., we

fully expected that components would change or be added in the

first few years of operations. Moreover, we considered it quite likely

that in the future entirely new document types might have to be

added to the collection.3 As mentioned above, however, relational

databases follow a schema and once that schema is implemented

in a table structure and their associated integrity constraints set

up, and once tables fill with data and application codes are written,

database schema changes become quite burdensome. This then

created a problem. On the one hand we knew that a relational

database would work fine for storing and retrieving document data,

yet the documents’ structure would remain subject to changes in

the foreseeable future and relational databases are not very flexible

in accommodating these changes.

After some consideration, it was decided to implement an auto-

generating database schema; i.e., implement a basic database

schema which, augmented with some basic application code, could

auto-generate the full schema (Reitsma et al., 2005). With this auto-

generation concept we mean that database construction; i.e., the

actual generation of the tables, integrity constraints and indexes

occurs in two steps:

• The first step consists of a traditional, hardwired schema of

meta (master) tables which are populated with instructions on

how the actual document database must be constructed.

• In a second step, a program extracts the instructions from the

3. Although much later than originally expected, in 2014 a

brand-new document type, the so-called ‘sprinkle’ was

indeed added.

100 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

meta tables, builds the data tables accordingly and then

processes the documents, one by one, to index them into

those data tables.

This approach, although a little tricky to set up, has the advantage

that the entire document database schema other than a small set

of never-changing meta tables, is implemented by a program and

requires no human intervention; i.e., no SQL scripts for schema

generation have to be written, modified or run. Better still, when

structural changes to the database are needed, all we have to do

is change a few entries in the meta tables and let the program

generate a brand-new database while the existing production

database and system remain operational. When the application

codes that rely on the new database structure are ready, just release

both those codes and the new database and business continues

uninterrupted with a new database and indexing structure in place.

Data Tables

The following discusses a few of the data tables in the TE 1.0

database:

• Although the various document types have certain

characteristics in common; e.g., they all have a title and a

summary, the differences between them gave sufficient reason

to set up document-type specific data tables. Hence, we have a

table which stores activity data, one which stores lesson data,

one which stores sprinkle data, etc. However, since we

frequently must retrieve data across document types; e.g., ‘list

all documents with target grade level x,’ it can be beneficial to

have a copy of the data common to these document types in its

own table. This, of course, implies violating normal form, but

such denormalization can pay nice dividends in programming

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 101

productivity as well as code execution speed.

• K-12 standards have a table of their own.

• Since the relationship between TeachEngineering documents

and K-12 educational standards is a many-to-many one, a

document-standard associative table is used to store those

relationships. Foreign key constraints point to columns in the

referenced tables.

• Since the TeachEngineering collection consists of several

hierarchies of documents; for instance, a curricular unit

document referring to several lessons and each lesson

referring to several activities (see Chapter 1), we must keep

track of this hierarchy if we want to answer questions such as

‘list all the lessons and activities of unit x.’ Hence, we keep a

table which stores these parent-child relationships.

• TeachEngineering documents contain links to other

TeachEngineering documents and support materials as well as

links to other pages on the web. In order to keep track of what

we are pointing to and of the status of those links, we store all

of these document-link relationships in a separate table.

• Several auxiliary tables for keeping track of registered

TeachEngineering users, curriculum reviews, keywords and

vocabulary terms, etc. are kept as well.

Meta tables

To facilitate automated schema generation, two meta tables,

Relation and Types were defined.

102 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

Relation table (definition)

Field Type Null Key Default

id int(10) unsigned NO PRI NULL

groupname varchar(100) NO

component varchar(100) NO

Relation table (sample records)

id Groupname component

22 Activity cost_amount

6 Activity edu_std

72 Activity engineering_connection

18 Activity grade_target

21 Activity keywords

5 Activity summary

70 Activity time_in_minutes

4 Activity title

52 child_document link_text

50 child_document link_type

49 child_document link_url

46 Vocabulary vocab_definition

45 Vocabulary vocab_word

Types table (definition)

Field Type Null Key Default

id int(10) unsigned NO PRI NULL

name varchar(100) NO

expression varchar(250) NO

cast enum(‘string’,’number’,’group’,’root’) NO string

nullable enum(‘yes”no’) YES YES NULL

datatype varchar(50) YES NULL

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 103

Types table (sample records)

id name expression cast nullable

19 child_document /child_documents/link group NULL

24 cost_amount /activity_cost/@amount number yes

25 cost_unit /activity_cost/@unit string yes

6 edu_std /edu_standards/edu_standard group NULL

1 edu_std_id /@identifier string yes

33 engineering_category /engineering_category_TYPE/@category string yes

14 grade_lowerbound /grade/@lowerbound number yes

13 grade_target /grade/@target number no

15 grade_upperbound /grade/@upperbound number yes

26 keywords /keywords/keyword group NULL

27 keyword string yes

Records in the Relation table declare the nesting (hierarchy) of

components. For instance, an activity has a title, a summary, etc.

Similarly, any reference to a child document has a link_text, a_link

type and a link_url. Note that this information is similar to that

contained in the documents’ XML Schema (XSD). Essentially, the

Relation table declares all the needed data tables (groupname) and

those tables’ columns (component).

The Types table in its turn declares for each component its

datatype, nullability as well as an XPath expression to be used to

extract its content from the XML document. For example, the cost

associated with an activity (cost_amount) is a float, can be null

(yes) and can be extracted from the XML document with the XPath

expression /activity_cost/@amount. Similarly, the grade_target of

a document is an int(10), cannot be null (no) and can be extracted

with the XPath expression /grade/@target. Note that array-like

datatypes such as edu_standards are not a column in a table.

Instead, they represent a list of individual standards just as keywords

104 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

is a list of individual keywords. They have an XPath expression but

no datatype.4

Between the Relation and the Types tables, the entire data schema

of the database is declared and as a side effect, for each column

in any of the tables, we have the XPath expression to find its

document-specific value. Hence, it becomes relatively

straightforward to write a program which reads the content from

these two tables, formulates and runs the associated SQL create
table statements to generate the tables, uses the XPath

expressions to extract the values to be inserted into these tables

from the XML documents, and then uses SQL insert statements to

populate the tables.

What is particularly nice about this approach is that all that is

needed to integrate a brand new document type into the collection

is to add a few rows to the Types and Relation tables. The auto-

generation process takes care of the rest. Hence, when in 2014 a

new so-called sprinkle document type was introduced —essentially

an abbreviated activity— all that had to be done was to add the

following rows to the Types and Relation tables:

4. XPath is a language for extracting content from XML

pages.

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 105

Records added to the Relation table to store sprinkle document data

id groupname component

84 sprinkle Title

86 sprinkle total_time

87 sprinkle sprinkle_groupsize

88 sprinkle total_time_unit

89 sprinkle grade_target

90 sprinkle grade_lowerbound

91 sprinkle grade_upperbound

93 sprinkle sprinkle_cost_amount

96 sprinkle Link

97 sprinkle time_in_minutes

98 sprinkle engineering_connection

103 sprinkle Summary

104 sprinkle dependency

105 sprinkle translation

Records added to the Types table for storing sprinkle document data

id name expression Cast nullable datatype

34 sprinkle /sprinkle Root NULL NULL

35 sprinkle_groupsize /sprinkle_groupsize Number yes int(10)

36 sprinkle_cost_amount /sprinkle_cost/@amount Number yes float

Adding these few records resulted in the automatic generation of a

sprinkle table with the requisite columns, their declared datatypes

and nullabilities. Extraction of sprinkle information from the

sprinkle XML documents to be stored in the tables was done

automatically through the associated XPath expressions. Not a

single manual SQL create table or alter table statement had

to be issued, and no changes to the program which generates and

populates the database had to be made.

106 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

TE 2.0: JSON/NoSQL

The process described in the previous section worked fine for

almost 13 years during which time it accommodated numerous

changes to the documents’ structure such as the addition of the

sprinkle document type. During those years the collection grew

from a few hundred to over 1,500 documents. Yet when the decision

was made to rebuild the system, the architectural choice of having

a separate store of XML-based documents to be indexed into a

relational database was questioned in light of the newly available

NoSQL document stores. Why not, instead of having two more or

less independent representations of the documents (XML and

relational database), have just one, namely the document database;

i.e., a database which houses the documents themselves. If that

database of documents can be flexibly and efficiently searched,

it would eliminate a lot of backend software needed to keep the

document repository and the database in sync with each other.

Better still, when rendering documents in a web browser one would

not have to retrieve data from both sources and stitch it all together

anymore. Instead, it could just come from a single source.

To illustrate the latter point consider the way a document was

rendered in TE 1.0. Figure 2 shows a section of an activity on heat

flow. In the Related Curriculum box the activity lists its parent, the

Visual Art and Writing lesson. This ‘parental’ information, however,

is not stored on the activity itself because in TeachEngineering,

documents declare their descendants but not their parents. In TE

1.0 we rendered this same information; i.e., the lesson from which

the activity descended. However, whereas in TE. 1.0 most of the

rendered information came directly from the XML document, the

document’s parent-child information was retrieved from the

database. Hence, two independent sources of information had to

be independently queried and retrieved, each across networks and

different computers, only to then be stitched together into a single

HTML Web page.

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 107

We could have, in TE 1.0, stored not just the typical lookup

information of documents in the database; e.g., title, target grade,

required time, summary, keywords, etc., but also the entire text of

documents. Had we done that we would have only had to access a

single source of information for rendering. Except… we did not. In

hindsight, perhaps, we should have?

Fast forward to 2015, TE 2.0 and the availability of NoSQL

document databases such as MongoDB and RavenDB. Now, we no

longer have to separate document content from document

searching since the basic data of these databases are the documents

themselves. Hence, we have everything we want to know about

these documents in a single store. In addition, these databases,

partly because their data structures are so simple (no multi-table

normalized data structures and no referential constraints), are really

fast!

Figure 2: Heat flow activity lists Related Curriculum

Earlier in this chapter, we discussed how RavenDB provides

eventual consistency for document queries. Clearly, consistency is

something that requires careful consideration when designing an

application. In a highly transactional application, receiving out-of-

date data from queries could be quite problematic. For instance, a

108 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

query on a bank account or credit card balance or on the number of

available seats on a future airplane ride must be correct at all times.

But for a system such as TeachEngineering, eventual consistency

is just fine. Curriculum documents do not change that often, and

even if they do, it is perfectly acceptable if queries return a previous

version for a (limited) period of time. Similarly, when a new

document is made available it would be perfectly acceptable if that

document is not immediately available everywhere in the world.

Moreover, due to the relatively small number of documents stored

in TE 2.0’s RavenDB database, the’ eventual’ in ‘eventual consistency’

means in practice that queries return up-to-date results in a matter

of seconds after a change to is made.

Some Practice with two JSON Document Stores:
RavenDB and MongoDB

In the remainder of this chapter we work through some practice

examples running against two well-known JSON document stores:

RavenDB and MongoDB. We will run the same examples against

both databases so that you acquire a feeling how interacting with

them is different, yet how the concepts behind them in terms of

non-relational JSON storage are quite similar if not identical. For

both document stores we first use a very simple example of four

very simple JSON documents. The example (swatches) is taken from

MongoDB’s documentation pages. Next, we run a more realistic (but

still very small) example of six TeachEngineering so-called ‘sprinkle’

documents. Sprinkles are abbreviated versions of TeachEngineering

activities.

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 109

Exercise 5.1: A Little RavenDB

One of the freely available JSON document databases is

RavenDB. RavenDB was written for .NET. At the time of this

writing RavenDB 4 is available. It supports multiple

platforms/operating systems.

We will install a Windows version of RavenDB locally and

communicate with it using C#.

• Download the RavenDB installer from

https://ravendb.net/downloads.

• Unzip the RavenDB-4….zip file to an appropriate

place on your system; e.g., c:\temp.

• Right-click the file run.ps1 and select the Run with

PowerShell option from the menu.

• You will be prompted from the PowerShell window

to change the execution policy. Anwer (type) with ‘A’.

• The installation script loads a license agreement

page into your browser. Please read it and Accept it.

• Another page will be loaded into your browser. It

offers a choice between a secure and unsecure

installation. Choose unsecure.

• The next page allows you to specify the port on

which the Raven DB server will be listening. The

default is port 8080. Select Next.

• RavenDB will next be installed and its server

started.

• We can communicate with the server in several

ways. We will use HTTP at port 8080 on the local

110 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

machine: http://127.0.0.1:8080.

For our example, take a look at the following JSON array

containing four swatch documents5. Each document

represents a fabric swatch with the following

characteristics:

• name

• qty (quantity)

• tags, each having:

◦ string describing the material; e.g., cotton or

wool

◦ size containing:

▪ h (height)

▪ w (width)

▪ uom (unit of measurement)

[
{ "name": "cotton_swatch", "qty": 100, "tags":

["cotton"], "size": { "h": 28, "w": 35.5,
"uom": "cm" } },

{ "name ": "wool_swatch", "qty": 200, "tags":
["wool"], "size": { "h": 28, "w": 35.5,
"uom": "cm" } },

{ "mame ": "linen_swatch", "qty": 300, "tags":
["linen"], "size": { "h": 28, "w": 35.5,
"uom": "cm" } },

5. Swatch: a sample or example item; typically a sample

piece of fabric or other type of material.

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 111

{ "name ": "cotton_swatch", "qty": 100, "tags":
["cotton"], "size": { "h": 50, "w": 50,
"uom": "cm" } }

]

These are the four ‘documents’ which we will

programmatically store and query in RavenDB.

We will be using Visual Studio and the C# language.67

Our program will communicate with RavenDB over HTTP.

For this example we will be using the standard

(de)serialization approach; i.e., we will hold the documents

in objects of the Swatch class in our C# program and then

programmatically store them in RavenDB. RavenDB will

store them as JSON strings (documents). After they are

stored we will run a few queries against the database.

In order to hold the swatches as objects, we need a class

definition for them. We can, of course, figure this out by

ourselves, but let us use the services of others and have

6. Visual Studio is Microsoft’s .NET Integrated

Development Environment (IDE). Although it is available

in several configurations, for these examples we will be

using the freely available Community Edition.

7. There is a public RavenDB playground available for

testing and experimentation. It can be accessed at

http://live-test.ravendb.net/. For more information,

visit https://ravendb.net/docs/article-page/3.5/

csharp/start/playground-server.

112 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

http://json2csharp.com/ do it for us. Simply enter the

above JSON array in and click Generate. The result:

public class Size
{

//we will use a ‘decimal’ instead
public int h { get; set; }
// we will use a ‘decimal’ instead
public double w { get; set; }
public string uom { get; set; }

}

public class RootObject //we will use ‘Swatch’ instead
{

public string name { get; set; }
public int qty { get; set; }
public List<string> tags { get; set; }
public Size size { get; set; }

}

With these class definitions we can write our Raven

program. However, in order for our program to interact

with RavenDB, we must first install the required RavenDB

Client on our machine:

• Project –> Manage NuGet Packages…

• Find RavenDB.Client

• Click Install

• Click OK

Here is the (console) C# program:

using System;
using System.Collections.Generic;

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 113

using System.Linq;
using Raven.Client.Documents;
using Raven.Client.Documents.Indexes;
using Raven.Client.Documents.Operations;
using Raven.Client.Exceptions;
using Raven.Client.Exceptions.Database;
using Raven.Client.ServerWide;
using Raven.Client.ServerWide.Operations;

namespace RavenDB
{

public class Swatch //Define the Swatch class
{

public string Id { get; set; }
public string Name { get; set; }
public int Qty { get; set; }
public List<string> Tags { get; set; }
public Size Size { get; set; }

}

//Define the Size class(every Swatch has a Size)
public class Size
{

public decimal W { get; set; }
public decimal H { get; set; }
public string Uom { get; set; }

}

public class SwatchIndex :
AbstractIndexCreationTask<Swatch>

{
/* Method for creating the index. The index is

114 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

RavenDB's catalog of items it uses to conduct
retrievals/searches */

public SwatchIndex()
{

Map = items => from item in items
select new
{

item.Name,
item.Qty,
item.Tags,
item.Size.H,
item.Size.W,
item.Size.Uom

};
}

}

//Program which interacts with RavenDB
class Program
{

//inputs or retrieves JSON data from Raven
static void Main(string[] args)
{

//Create a list of Swatches
var Items = new List<Swatch>
{

new Swatch {
Id = "items/1", Name = "cotton_item",
Qty = 100, Tags = new List<string> { "cotton" },
Size = new Size { H = 28, W = 35.5m, Uom = "cm"}

},

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 115

new Swatch {
Id = "items/2", Name = "wool_item",
Qty = 200, Tags = new List<string> { "wool" },
Size = new Size { H = 28, W = 35.5m, Uom = "cm" }

},
new Swatch {

Id = "items/3", Name = "linen_item",
Qty = 300, Tags = new List<string> { "linen" },
Size = new Size { H = 28, W = 35.5m, Uom = "cm" }

},
new Swatch {

Id = "items/4", Name = "cotton_item",
Qty = 100, Tags = new List<string> { "cotton" },
Size = new Size { H = 50, W = 50, Uom = "cm" }

}
};

string databaseName = "foo";

/* We will communicate with Raven over HTTP at
port 127.0.0.1:8080.
CHANGE THIS IN THE LINE BELOW DEPENDING ON THE
PORT ON WHICH RAVENDB IS LISTENING. */

DocumentStore store = new DocumentStore
{

Urls = new[] { "http://localhost:8080" },
Database = databaseName

};

store.Initialize();

//Create the database if it doesn't already exist

116 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

CreateDatabaseIfNotExists(store, databaseName);

//Run index creation
new SwatchIndex().Execute(store);

//Open the store's session
using (var session = store.OpenSession())
{

//Loop through the Items
foreach (var item in Items)
{

//Store the item in the session
session.Store(item);

}
//Save all pending changes
session.SaveChanges();

/* Query for all swatches named "cotton_item"
and store them in a List */

var cottonSwatches = session
.Query<Swatch, SwatchIndex>()
.Where(x => x.Name == "cotton_item")
.ToList();

Console.WriteLine(
"Swatches with name 'cotton_item':");
//Write them out
foreach (var swatch in cottonSwatches)
{

Console.WriteLine(swatch.Id);
}

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 117

/* Query for all swatches with a Quantity > 100
and store them in a List */

var highQuantitySwatches = session
.Query<Swatch, SwatchIndex>()
.Where(x => x.Qty > 100)
.ToList();

Console.WriteLine("Swatches with quantity > 100:");
//Write them out
foreach (var swatch in highQuantitySwatches)
{

Console.WriteLine(swatch.Id);
}
Console.WriteLine("Hit a key");
Console.ReadKey();

}
}

//Creates the database if it does not exist
public static void CreateDatabaseIfNotExists(

DocumentStore store, string database)
{

database = store.Database;
try
{

store.Maintenance.ForDatabase(database).
Send(new GetStatisticsOperation());

// The database already exists
}
catch (DatabaseDoesNotExistException)
{

try

118 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

{
//we do not have the database yet; create it
store.Maintenance.Server.

Send(new CreateDatabaseOperation(
new DatabaseRecord(database)));

}
catch (ConcurrencyException)
{

System.Console.WriteLine(
"Error... creating database");

System.Environment.Exit(1);
}

}
}

}
}

So how does all this work?

• We first define the classes Swatch and Size in

accordance with the class structures returned from

http://json2csharp.com/.

• We then define an index for swatches:

SwatchIndex. In RavenDB an index specifies the

associations of the properties of documents with

those documents so that at some point in the future

we can query them. For instance, if we ever want to

find documents that have a certain Name or Qty, we

must build an index for those properties. Internally,

RavenDB uses Lucene.Net, an open-source search

engine library, to do its indexing and querying.

• We then load up a list of Swatch objects (called

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 119

Items).

• Each of the Swatches in the Items list is then sent

to RavenDB for storage.

◦ Note that we do not(!) send the Swatches as

JSON structures to RavenDB. We could do that

too, but in this case we let RavenDB figure out

how to make JSON structures from the Swatch
objects and store them.

foreach (var item in Items) //Loop through the Items
{

//Store the item in the session
session.Store(item);

}

• After storing the Swatches in RavenDB, we

formulate a few queries and send them to RavenDB

for retrieval. The results are printed to the console.

The queries take a form which may look a little odd:

var cottonSwatches = session
.Query<Swatch, ItemIndex>()
.Where(x => x.name == "cotton_item")
.ToList();

and

var highQuantitySwatches = session
.Query<Swatch, ItemIndex>()
.Where(x => x.qty > 100)
.ToList();

These queries use RavenDB’s Query() method,

120 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

which supports .NET’s Language INtegrated Query or

LINQ. LINQ has a conceptual similarity with SQL

(select … from … where …), but it is, of course, not at

all relational. Instead, it is a general-purpose language

for querying a great variety of data structures. In

Microsoft’s own words: “.NET Language-Integrated

Query defines a set of general purpose standard query

operators that allow traversal, filter, and projection

operations to be expressed in a direct yet declarative

way in any .NET-based programming language.“

Note, by the way, that when you run this program several

times in a row, the number of swatches stored in RavenDB

remains the same. This is because we explicitly specify a

value for the Id property of each swatch. By convention,

RavenDB treats the Id property as the unique identifier for

each document (similar to a primary key in a relational

database table). Hence, each time you run the program the

existing documents are overwritten. Alternatively, if the Id

property was not specified for each document, RavenDB

would automatically generate one. Each subsequent run of

the program would then add new versions of the

documents to the database, each with a unique value for

the Id property.

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 121

Exercise 5.2: A Little MongoDB

Another NoSQL/JSON document database we can

practice with is the open source NoSQL database

MongoDB.

We will install the MongoDB 4.0.4 (Community) Server

locally. We assume a Windows machine, but installs for

other platforms are available as well.

• Download the MongoDB Server (as MSI file) from

https://www.mongodb.com/download-

center?jmp=nav#community

◦ Run the downloaded installation script

(Select the Complete (not the Custom) version

and uncheck the Install Compass option).

• Find the folder/directory where MongoDB has

been installed (typically c:\Program Files\MongoDB)

and navigate to its \Server\ version_no\bin folder

where the executables mongod.exe and mongo.exe are

stored.

◦ mongod.exe starts the server instance.

◦ mongo.exe starts a mongo command shell

through which we can send commands to

mongod.

• By default, MongoDB relies on being able to store

data in the c:\data\db folder. Either create this folder

using the Windows File Browser, or pop up a

122 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

Windows command line and run the command:

mkdir c:\data\db

• If you have not already done so, run mongod.exe to

start the MongoDB server.

We will communicate with MongoDB in two modes: first,

by sending it commands directly using its command shell

and then programmatically using C#.

Exercise 5.3: MongoDB Command Shell

• Run mongo.exe to start a MongoDB command shell.

Enter all commands mentioned below in this

command shell).

As in RavenDB, MongoDB structures its contents

hierarchically in databases, collections within databases

and records (called ‘documents’) within collections.

• Start a new database foo and make it the current

database:

use foo

• Create a collection fooCollection in database foo:

db.createCollection("fooCollection")

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 123

Now we have a collection, we can add documents to it.

We will use the swatches documents again (they came

directly from MongoDB’s own documentation pages).

• Add four documents to fooCollection:

db.fooCollection.insertOne({ "swatch": "cotton_ swatch",
"qty": 100, "tags": ["cotton"],
"size": { "h": 28, "w": 35.5, "uom": "cm" } })

db.fooCollection.insertOne({ "swatch": "wool_ swatch",
"qty": 200, "tags": ["wool"],
"size": { "h": 28, "w": 35.5, "uom": "cm" } })

db.fooCollection.insertOne({ "swatch": "linen_ swatch",
"qty": 300, "tags": ["linen"],
"size": { "h": 28, "w": 35.5, "uom": "cm" } })

db.fooCollection.insertOne({ "swatch": "cotton_ swatch",
"qty": 100, "tags": ["cotton"],
"size": { "h": 50, "w": 50, "uom": "cm" } })

Now let us start querying foo.fooCollection

• Let us see what we have in the collection. Since we

pass no criteria to the find() method, all documents in

fooCollection are returned:

db.fooCollection.find()

• Which swatches made of cotton do we have?

db.fooCollection.find({ "tags": "cotton" })

• Of which swatches do we have more than 100?

db.fooCollection.find({ "qty": { $gt: 100 } })

124 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

Exercise 5.4: MongoDB Programmatic
Interaction

Now that we have played with command-driven

MongoDB, we can try our hand at having a program issue

the commands for us. We will use C# as our language, but

MongoDB can be programmatically accessed with other

languages as well.

A note before we start. When you google for C#

examples of MongoDB interactions, you will find a lot of

code with the async and await keywords. These codes are

typically written for applications which will asynchronously

process MongoDB queries. With ‘asynchronous’ we mean

that these applications will not sequentially queue up

commands, executing them in order and waiting for one to

come back before the next one is sent. Instead, they send

commands to MongoDB whenever they need to and

process the replies in any order in which they come back.

This approach makes a lot of sense in production

environments where lots of queries must be issued and

different queries demand different amounts of time to

complete. However, for our simple examples, we will just

use more traditional synchronous communication. We issue

a single command and wait until it returns before we send

the next one.

Instead of hardcoding the JSON documents, we will pick

them up from a file. Store the following JSON in the file

swatches.json:

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 125

[
{ "swatch": "cotton_ swatch", "qty": 100,

"tags": ["cotton"],
"size": { "h": 28, "w": 35.5, "uom": "cm" } },

{ "swatch": "wool_ swatch", "qty": 200,
"tags": ["wool"],
"size": { "h": 28, "w": 35.5, "uom": "cm" } },

{ "swatch": "linen_swatch", "qty": 300,
"tags": ["linen"],
"size": { "h": 28, "w": 35.5, "uom": "cm" } },

{ "swatch": "cotton_swatch", "qty": 100,
"tags": ["cotton"],
"size": { "h": 50, "w": 50, "uom": "cm" } }

]

To validate the syntax of the above JSON segment, check

it with an on-line JSON parser such as

http://jsonparseronline.com.

We once again will be using Visual Studio and a console

app to run these examples. However, in order for our

program to interact with MongoDB, we must first install the

required MongoDB and Json.Net packages:

• Project –>

• Manage NuGet Packages

• Find and select Newtonsoft.Json, MongoDB.Driver

and MongoDB.Bson

• Click Install.

• Click OK.

Here is the (console) C# program for inserting the four

documents stored in the swatches.json file into the

swatchesCollection:

126 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

using System;
using System.IO;
using MongoDB.Bson;
using MongoDB.Driver;
using Newtonsoft.Json.Linq;

namespace mongodb_c_sharp
{

class Program
{

/* This code assumes that the swatches.json file is
stored at C:\swatches.json. If you stored it elsewhere,
just change the jsonFilePath string below */
const string jsonFilePath = "C:\\swatches.json";

// We will use the “swatches” database
const string dbName = "swatches";

// We will use the “swatchesCollection” collection
const string collectionName = "swatchesCollection";

static void Main(string[] args)
{

/* Open a connection to mongoDB.
We are assuming localhost */
string connectString = "mongodb://localhost";

MongoClient client = null;
try { client = new MongoClient(connectString); }
catch
{

Console.WriteLine("Error connecting to MongoDB. Is mongod.exe running?");

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 127

Environment.Exit(1); // Exit on failed connection
}

/* Attach to the swatches database (create it if it
does not yet exist) */
IMongoDatabase database = client.GetDatabase(dbName);

// Get the swatchesCollection collection
var collection = database.GetCollection<BsonDocument>
(collectionName);

// Read the JSON file into a string
StreamReader reader = new StreamReader(jsonFilePath);
string json_str = reader.ReadToEnd();

// Load the JSON into a JArray
JArray arr = JArray.Parse(json_str);

/* Loop through the JArray and insert each of its
documents into the database */
foreach (JObject obj in arr)
{

BsonDocument doc =
BsonDocument.Parse(obj.ToString());

collection.InsertOne(doc);
} // end of foreach

} // end of Main()
} // end of Program class

} // end of Namespace

If you still have your MongoDB command shell open (if

128 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

not, just start it again —see previous section on how to do

this), let us see what the program accomplished:

use swatches

db.swatchesCollection.find()

Next, we run the program which queries

swatchesCollection for those swatches of which we

have more than 100 (qty > 100). Here is the (console)

program:

using System;
using MongoDB.Bson;
using MongoDB.Driver;

namespace mongodb_c_sharp
{

class Program
{

// We will use the "swatches" database
const string dbName = "swatches";

// We will use the "swatchesCollection" collection
const string collectionName = "swatchesCollection";
static void Main(string[] args)
{

/* Open a connection to mongoDB.
We are assuming localhost */
string connectString = "mongodb://localhost";

MongoClient client = null;
try { client = new MongoClient(connectString); }

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 129

catch
{

Console.WriteLine("Error connecting to MongoDB. Is mongod.exe running?");
Environment.Exit(1); // Exit on failed connection

}

// Attach to the swatches database
IMongoDatabase database = client.GetDatabase(dbName);

// Get the swatchesCollection collection
var collection = database.GetCollection<BsonDocument>

(collectionName);

// Find swatches with “qty” > 100
// First, build a filter
var filter = Builders<BsonDocument>

.Filter.Gt("qty", 100);
// Then apply the filter to querying the collection
var resultList = collection.Find(filter).ToList();

// Write the results to the console
foreach (var result in resultList)

Console.WriteLine(result);

Console.WriteLine("Hit a key");
Console.ReadKey();

} // end of Main()
} // end of Program class

} // end of Namespace

Now, while still in Mongo’s command shell, query the foo

130 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

database again to see if its collection of swatches is still

available (). Of course it still is, but it nice to see anyway.

Exercise 5.5: MongoDB Programmatic
Interaction: TeachEngineering Example –
Sprinkles

Now we have run through a basic (swatches) example, we

can apply the same approach to a small sample of more

complex but conceptually identical TE 2.0 JSON

documents. Sprinkles are abbreviated versions of

TeachEngineering activities. Our sample contains six TE 2.0

sprinkle documents and is stored at

http://faculty.bus.oregonstate.edu/reitsma/sprinkles.json.

Download the content of

http://faculty.bus.oregonstate.edu/reitsma/sprinkles.json

and store it in a file called sprinkles.json.8 Please take a

8. We could, of course, write code which retrieves the

JSON over HTTP (from the given URL) rather than first

storing the JSON on the local file system. However, for

the sake of being able to use pretty much the exact same

code as in the previous examples, we will read the JSON

from a local file and insert it into the database.

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 131

moment to study the content of the file. Notice that it is a

JSON array containing six elements; i.e., six sprinkles. Also

notice that although the elements are all sprinkle

documents and they all have the same structure, their

elements are not always specified in the same order. For

instance, whereas the third and following documents start

with a Header element followed by a Dependencies element,

the first two documents have their Header specified

elsewhere.

First, just like in the swatches case, we will

programmatically import the data. We use the exact same

program as we used for loading the swatches data, except

for some changes to the following constants:

• Set the const dbName to sprinkles.9

• Set the const collectionName to

sprinklesCollection.

• Set the const jsonFilePath to

c:\\sprinkles.json.

Assuming that your MongoDB server (mongod.exe) is

running, running the program will load the six sprinkles

into the sprinkleCollection.

Now the reverse: programmatically finding the number of

sprinkles for which the required time >= 50 minutes

(Time.TotalMinutes >= 50). Again, we use pretty much the

9. We can, of course, use the swatches database to store

sprinkle data, but in order to keep the examples

independent of each other, we use a new database.

132 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

exact same program as we used for retrieving swatches

data, except for a few simple changes:

• Set the const dbName to sprinkles.

• Set the const collectionName to

sprinklesCollection.

• Change the line which defines the query filter as

follows:

var filter = Builders<BsonDocument>.Filter
.Gte("Time.TotalMinutes", 50);

• Remove (comment out) the foreach() loop and

replace it with the following:

Console.WriteLine(resultList.Count);

• The result should be 5 (check it manually against

the sprinkles.json file).

Exercise 5.6: RavenDB Programmatic
Interaction: TeachEngineering Example —
Sprinkles

Let us now repeat the sprinkle example we just ran

against MongoDb, but this time run it against RavenDB.

When you look through the program you will see that

unlike what we did in our earlier (swatches) example, this

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 133

time we do not generate a search index prior to searching.

Instead, we follow the MongoDB example above and search

through the documents in real-time without such an index.

Of course, in a production environment, generating the

indexes ahead of time would save (significant) search time,

but for our case here we tried keeping the MongoDB and

RavenDB examples similar.

using System;
using System.IO;
// Do not forget to add the RavenDB NuGet package!
using Raven.Client.Document;
using Raven.Json.Linq;

namespace RavenDB
{

/* Program which interacts with RavenDB using a few
TeachEngineering 'sprinkle' documents */
class Program
{

//inputs or retrieves JSON data from Raven
static void Main(string[] args)
{

/* This code assumes that the sprinkles.json file is
stored at C:\sprinkles.json If you stored it
elsewhere, change the jsonFilePath string below */
const string jsonFilePath = "C:\\sprinkles.json";

// Make a new document store
var store = new DocumentStore
{

/* We will communicate with Raven over HTTP at
localhost:8080 */

134 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

Url = "http://localhost:8080",
/* We will communicate with database
‘sprinklesCollection’ */
DefaultDatabase = "sprinklesCollection"

};

store.Initialize(); //Initialize the store

/* This next statement is not appropriate for
production use, but is used to ensure that the
index is up to date before returning query
results */
store.Conventions.DefaultQueryingConsistency =

ConsistencyOptions.
AlwaysWaitForNonStaleResultsAsOfLastWrite;

// Read the JSON file into a string
StreamReader reader = new StreamReader(jsonFilePath);
string json_str = reader.ReadToEnd();

// Load the JSON into a JArray
var arr = RavenJArray.Parse(json_str);

/* Loop through the JArray and insert each of its
documents into the database */
foreach (RavenJObject obj in arr)
{

store.DatabaseCommands.Put(null, null, obj, null);
} // end of foreach

/* Query for sprinkles greater than or equal to 50
minutes in length Note that unlike in the swatches

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 135

example, we do not create an explicit index ahead
of time. RavenDB will automatically create an index
for us. This works for ad-hoc queries, but in a
typical application it is best to create the indexes
ahead of time. */
using (var session = store.OpenSession())
{

var results =
session.Advanced.DocumentQuery<object>()

.WhereGreaterThanOrEqual("Time.TotalMinutes", 50);
Console.WriteLine(results.Count());

}

Console.WriteLine("Hit a key");
Console.ReadKey();

}
}

}

Once again, running this program should result in a

search result of ‘5.’

Summary and Conclusion

In this chapter we took a look at how TeachEngineering evolved

from a system with a relational database at its core and XML

representing documents (TE 1.0), to a system running off of a NoSQL

database with JSON representing documents (TE 2.0). Whereas the

relational/XML model worked fine during the 12 years of TE 1.0,

the new NoSQL/JSON alternative provides the advantage that JSON

136 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

is used as both the document and the database format. This

unification of representation significantly reduces system

complexity from a software engineering point of view.

We also argued that whereas the property of ‘consistency’ which

is well entrenched in industry-strength relational databases, is of

crucial importance in transactional settings, ‘eventual consistency’

is plenty good for an application such as TeachEngineering. As such,

we can forgo much of the concurrency control facilities built into

relational databases and instead rely on a less advanced but also

much less expensive and easier to maintain NoSQL database.

Similarly, since the data footprint for a system such as

TeachEngineering is quite small ─the current size of the RavenDB

database is a mere 170 MB─ replicating some data in a controlled

and managed way is quite acceptable. This again implies that we

can forego the mechanisms for adhering to and maintaining strict

normal form, and that in turn implies that we do not need

sophisticated data merge and search methods such as relational

table joins.

We very much care to state that none of the NoSQL material we

have discussed and practiced here deters from the value and utility

of relational databases. For systems which require ‘consistency,’

relational databases with their sophisticated built-in concurrency

controls continue to be a good and often the best choice. But if

‘eventual consistency’ is good enough and if you have data

governance policies and practices in place which prevent the

inconsistent representation of data, then you should at least

consider a modern NoSQL database as a possible candidate for

storing your data.

References

Buckler, C. (2015) SQL vs. NoSQL: The Differences. Available:

Relational (TE 1.0) vs. NoSQL (TE 2.0) | 137

https://www.sitepoint.com/sql-vs-nosql-differences/.

Accessed: 12/2016.

Codd, E. F. (1970) A Relational Model of Data for Large Shared Data

Banks. Communications of the ACM. 13. 377-387.

Codd, E. F. (1982) Relational database: A Practical Foundation for

Productivity. Communications of the ACM. 25. 109-117.

Dennis, A., Wixom, B.H., Roth, R.A. (2014) System Analysis and Design.

5th ed. John Wiley & Sons.

Dennis, A., Wixom, B.H., Tegarden, D. (2012) System Analysis &

Design with UML Version 2.0. John Wiley & Sons.

Dennis, A., Wixom, B.H., Tegarden, D. (2015) System Analysis &

Design. An Object-Oriented Approach with UML. 5th ed. John Wiley

& Sons.

Reitsma, R., Whitehead, B., Suryadevara, V. (2005) Digital Libraries

and XML-Relational Data Binding. Dr. Dobbs Journal. 371. 42-47.

Satzinger, J., Jackson, R., Burd, S. (2016) Systems Analysis and Design

in a Changing World. CENGAGE Learning.

Tilley, S., Rosenblatt, H. (2017) Systems Analysis and Design.

CENGAGE Learning.

Valacich, J.S., George, J.F., Hofer, J.A. (2015) Essentials of Systems

Analysis and Design. Pearson.

138 | Relational (TE 1.0) vs. NoSQL (TE 2.0)

6. Document Accessioning

Introduction

All libraries, digital or not, have processes for formally accepting

and including items into their collection; a process known as

accessioning, and for removing items from their collection known

as deaccessioning. In this chapter we contrast and compare the

accessioning methods of TE 1.0 and 2.0. We will see that, once

again, the choice of XML vs. JSON, although not strictly a cause

for difference in accessioning approaches, almost naturally led to

differences between the two architectures. The most significant

of these differences is that whereas in TE 1.0 document editing

and accessioning where two separate processes executed and

controlled by different people, in TE 2.0 they became integrated into

a single process executed by the document editor.

Authoring ≠ Editing

One way in which we can categorize digital libraries is in content

collections and meta collections. In a meta collection, no actual

content is kept; only meta data are kept. A good example of a meta

data collection is NSDL.org. NSDL (or National Science Digital

Library) maintains meta data of about 80 digital library collections

and allows faceted searches over those 80 collections. The actual

items themselves, however, are held by the various collections over

which NSDL can search.

For meta collections, accessioning tends to be a relatively simple

process, mostly because each item they represent —a so-called meta

record— tends not to contain much data. In fact, in many cases this

Document Accessioning | 139

accessioning is fully or semi-automated in that it can be entirely

accommodated with Web services offered by the various libraries

which allow their meta data to be collected by the meta collection.

Of course, the main difficulty for meta collections is to keep them

synchronized with the content collections they reference. Items

newly added to the content collections must be referenced, without

too long a delay, in the meta collection, and documents no longer

available in the content collections must be dereferenced or

removed from the meta collection.

For content collections, however, accessioning tends to be more

complicated, partly because the items to be accessioned are more

complicated and partly because they often have to be reformatted.

TeachEngineering documents —in both TE 1.0 and TE 2.0— are

typically submitted by their authors as text-processed documents;

most often Microsoft Word documents. Their authors are neither

asked nor required to maintain strict formatting rules, but they are

required to provide specific types of information for specific types

of content such as a summary, a title, grade levels, etc. Depending

on the type of document, entire text sections are either mandatory

or optional. TeachEngineering lessons, for instance, must have a

Background section and activities must have an Activity Procedure

section. TeachEngineering document editors work with the authors

to rework their documents so that they comply with the required

structure. Once done, however, the documents are still in text-

processed form. Hence, as we have learned in the previous chapter,

the first step of accessioning consists of converting them from text-

processed form into the format required by the collection: XML for

TE 1.0; JSON for TE 2.0. This conversion is done by special editing

staff known internally as ‘taggers.’1

1. The term tagger stems from the TE 1.0 period during

which document conversion consisted of embedding

content in XML ‘tags.’

140 | Document Accessioning

TE 1.0 Tagging: Word XML

As discussed in the previous chapter, all TE 1.0 documents were

stored as XML. Hence, conversion of their content as written by

their authors to TE-specific XML was the main objective of the

tagging process. This constituted a problem because the TE-XML

specification was complex and asking taggers to themselves apply

the proper tags to document content would almost certainly lead to

failure. Moreover, as mentioned in chapter 3, the TE XML contained

both content and some formatting tags. This mixing of tag types

and the myriad of validation rules associated with these tags made

it essentially impossible for student workers —the TE 1.0 tagging

staff consisted mainly of student workers— to directly edit the

documents in XML.

Of course, we as TeachEngineering were not the only ones having

this problem. With the rapidly increasing popularity of XML came

the common need to convert documents from one form or another

into XML, and this task is not very human friendly.

Fortunately, Altova, a company specializing in XML technology

made available (for free) its Authentic tool for in-document, what-

you-see-is-what-you-get (WYSIWYG) editing of XML documents.

With Authentic, TE taggers could view and edit TE documents

without having to know their XML, yet Authentic would save their

document in TE-XML format. Moreover, since Authentic kept track

of the TE-XML schemas —recall that an XML schema is the

specification of the rules of validity for a particular type of XML

document— Authentic protects editors from violating the Schema,

thereby guaranteeing that documents remain valid.

Document Accessioning | 141

Figure 1: Editing a section of the Tug of War activity’s XML representation in
Altova’s Authentic.

Figure 2: Section of Tug of War activity rendered in TeachEngineering

Figure 1 shows part of a TE 1.0 activity edit session using Authentic.

Note how the look-and-feel of the activity as seen in Authentic is

quite different from the look-and-feel of that same activity when

rendered in TE 1.0 (Figure 2). There are two reasons for this

difference. First and foremost, XML is (mostly) about content and

content can be rendered in many different ways. Second, because

XML is (mostly) about content, no great effort was neither made

nor needed to precisely render the activity in Authentic as it would

render in TeachEngineering. Still, in order to show a tagger the

142 | Document Accessioning

rendered version of the document, the TE 1.0 system offered a

(password-protected) w

eb page where the tagger could test render the document.

You might, at this point, be wondering who then determines the

look-and-feel of the Authentic version of the document and how

that look-and-feel is set up? This would be a good question and it

also points out the cleverness of Altova’s business model. In a way,

Altova’s business model associated with Authentic is the reverse

of that of Adobe’s business model associated with its PDF Reader.

Adobe gives away PDF Reader as a loss leader so that it can generate

revenue from other PDF-generating and PDF-processing products.

Demand for these products would be low if few people can read

what comes out of them. With Authentic we have the reverse

situation. Altova sells tools for generating and validating XML

schema’s. One of the uses of those schemas is for people to edit

documents in XML which follow those schemas. So Altova makes

the Authentic XML editor available free of charge but generates

revenue with the tools that produce the files —XSDs and Authentic

WYSIWIG document layouts— with which documents can be edited

in Authentic. Hence, in TE 1.0, the TE engineers used Altova tools

to construct the document XSDs and to generate a layout for

WISYWIG editing in Authentic. TE taggers then used the free-of-

charge Authentic tool to do the actual document editing and used

a TeachEngineering test-rendering service to see the rendered

version of the edited document.

TE 1.0 Document Ingestion and Rendering

Although XML editing of the document was the most labor-

intensive step of the accessioning process, once we had an XML

version of a TE document, we were not quite there yet as it still had

to be registered to the collection. In TE 1.0 this was done in three

steps.

Document Accessioning | 143

1. Document check-in. The tagger would check the document

into a central code repository (aka version control) system.

Code repository systems such as CVS, Subversion, Team

Foundation Version Control, and Git maintain a history and a

copy of all code changes, allow reverting to previous versions

of the code, track who made which change when, and can

checkpoint whole collections of code in so-called code

branches or releases. They are indispensable for code

development, especially when more than one coder is involved.

Although developed for managing program source code, these

systems can of course be used for tracking and maintaining

other types of electronic data sets as well, for instance XML or

JSON documents. Hence, in TE 1.0, taggers, once a document

had been converted to XML, checked that document into a

central code repository system.

2. Meta data generation. Once checked into the code repository

system, a program run once or twice a day would extract data

from the XML documents and generate meta data for them.

Recall from chapter 3 that these meta data were served to

third party users interested in TeachEngineering contents.

One of those was NSDL.org whose data-harvesting programs

would visit the TeachEngineering meta data web service

monthly to inquire about the state of the collection. A side

effect of this meta data generator, however, was additional

quality control of the content of the document. As we have

seen, XSDs are an impressive quality control tool as they can

be used to check the validity of XML documents. Such validity

checking, however, is limited to the syntax of the document.

Hence, a perfectly valid XML document can nevertheless have

lots of problems. For example, it may contain a link to a non-

existing image or document or it may declare a link to a TE

lesson whereas in fact the link points to an activity. One of the

things that the meta data generator did, therefore, was to

conduct another set of quality control checks on the

documents. If it deemed a document to be in violation of one

144 | Document Accessioning

or more of its rules, no meta data would be generated for it

and the document would not be ingested into the collection. It

would, of course, remain in the code repository system from

which the tagger could then check it out, fix the problem(s)

flagged by the meta data generator and check it back in for the

next round of meta data generation.

3. Document indexing. Twice daily TE 1.0 ran a process which

would actually ingest newly created or modified documents.

We named this process ‘the spider’ because its method of

picking up documents for ingestion was very similar to that of

so-called web crawlers, aka ‘web spiders.’ Such a crawler is a

process which extracts from a document all the data it is

looking for, after which it then looks for references or links to

other documents and then crawls those in turn. Whereas most

modern crawlers are multi-threaded; i.e., they simultaneously

crawl more than one document, the TE 1.0 spider was simple

and processed only one document at the time. This was

perfectly acceptable, however, because although the overall

process would complete more quickly if crawls would run in

parallel, we only had to complete the process once or twice a

day. Figure 3 shows the process of spidering a TE 1.0

document; in its generic form as pseudo code (a) and as an

example of spidering a TE 1.0 curricular unit on heart valves (b).

Note how the process in (a) is recursive, i.e., the spider()

method contains a call to spider().

Document Accessioning | 145

(a)

spider (document)
{

document.index_content(); // index the document
doc_links = document.find_links(); // find links in the

// document
foreach (doc in doc_links) // spider all doc_links

if (spidered(doc) == false) // only spider when
// not yet spidered

spider(doc);
}

(b)

Curricular Unit: Aging Heart Valves:

◦ Lesson: Heart to Heart:

▪ Activity: The Mighty Heart
▪ Activity: What’s with all the pressure?

◦ Lesson: Blood Pressure Basics:

▪ Activity: Model Heart Valves

0. Spider curricular unit:
Aging Heart Valves:

Index content of Aging Heart Valves
Doc_links found:

Lesson: Heart to Heart
Lesson: Blood Pressure Basics
1. Spider lesson: Heart to Heart:

Index content of Blood Pressure Basics
Doc_links found:

Activity: The Mighty Heart
Activity: What’s with all the pressure?
1a. Spider activity The Mighty Heart:

Index content of The Mighty Heart
Doc_links found: none

1b. Spider activity What’s with all the pressure?:
Index content of What’s with all the pressure?
Doc_links found: none

2. Spider lesson: Blood Pressure Basics:
Index content of Blood Pressure Basics
Doc_links found:

Activity: Model Heart Valves
2a. Spider activity Model Heart Valves:

Index content of Model Heart Valves
Doc_links found: none

Figure 3: TE 1.0 document spidering. Generic algorithm (a) and Curricular Unit example (b

146 | Document Accessioning

4. Document rendering. One last step in the document

production chain in both TE 1.0 and 2.0 is actual rendering of

documents in users’ browsers. To a large extent, this is the

simplest of the production steps, although it too has its

challenges. Rendering in TE 1.0 was accomplished in PHP, then

one of the more popular programming languages for Web-

based programming.

Rendering a TE 1.0 document relied partly on information

stored in a document’s XML content and partly on information

stored in the database generated during document indexing.

Whereas all of the document’s content could be rendered

directly from its XML, some aspects of rendering required a

database query. An example is a document’s ‘Related

Curriculum’ (Figure 4). Whereas a document may have

‘children;’ e.g., a lesson typically has one or more activities, it

does not contain information about its parents or

grandparents. Thus, while a lesson typically refers to its

activities, it does not contain information as to which

curricular unit it belongs. A document’s complete lineage,

however, can be constructed from all the parent-child

relationships stored in the database and hence a listing of

‘Related Curriculum’ can be extracted from the database, yet

not from the document’s XML.

Document Accessioning | 147

Figure 4: TE 1.0 rendering of The Mighty Heart activity’s ‘Related
Curriculum.’

A second example of database-reliant document rendering in

TE 1.0 concerns a document’s educational standards. Figure 5

shows the list of K-12 science and engineering standards to

which the activity The Mighty Heart have been aligned.

Figure 5: TE 1.0 rendering of The Mighty Heart activity’s aligned
engineering and science educational standards.

Because the relationship between educational standards and

documents is a so-called many-to-many one (a standard can

148 | Document Accessioning

be related to multiple documents and one document can have

multiple standards), in TE 1.0 standards were stored uniquely in

the database and documents referred to those standards with

standard IDs. For The Mighty Heart activity the associated XML

was as follows2:

<edu_standards>
<edu_standard identifier="S11326BD"/>
<edu_standard identifier="S11326BE"/>
<edu_standard identifier="S11416DF"/>

</edu_standards>

Hence, it is clear that in order to show the information

associated with the standard (text, grade level(s), issuing

agency, date of issuance, etc.), it must be retrieved from the

database rather than from the referring document.

TE 2.0 Tagging: Word JSON

While the TE 1.0 tagging process served the TeachEngineering team

well, it had a few notable downsides.

-The Authentic software to write (tag) the documents in XML

needed to be installed on each editor’s computer along with the

XML schema for each type of curriculum document.

-The editing workflow had a number of steps that required the

2. The S* standard identifiers are maintained by the

Achievement Standard Network project. They can be

viewed using the following URL:

http://asn.desire2learn.com/resources/

S*_code_goes_here

Document Accessioning | 149

editor to understand specialized software, including Authentic and

the Subversion version control system.

-Previewing a rendered document required the editor to upload

the resulting XML file to the TE site.

-The fact that the spider ran only twice a day limited how quickly

new documents (and edits to existing documents) appeared on the

site.

One of the goals with TE 2.0 was to streamline the tagging and

ingestion process. Since TeachEngineering is a website, the logical

choice was to allow editors to add and edit documents from their

web browser; no additional software required. As such, TE 2.0

includes a web/browser-based document editing interface that is

very similar to that of modern more generalized content

management systems such as WordPress (Figure 6)

The JavaScript and HTML open source text editor TinyMCE, a tool

specifically designed to integrate nicely with content management

systems, was used as the browser-based editor. TinyMCE provides

an interface that is very similar to a typical word processor.

Figure 6: TE 2.0 document editing interface for a Curricular Unit

150 | Document Accessioning

Figure 6 shows an example of editing a document in TE 2.0. The

interface provides a few options to support the editor’s workflow.

The Save button saves the in-progress document to the (RavenDB)

database. Documents that are in a draft state will not be visible to

the public. The Preview button shows what the rendered version

of the document will look like to end users. The Publish button

changes the document’s status from draft to published, making it

publicly visible. Any errors in the document, such as forgetting

a required field are called out by displaying a message and

highlighting the offending field with a red border. Publishing of a

document with errors is impossible.

As in the case of TE 1.0, documents in TE 2.0 are hierarchically

organized in that documents specify their children; e.g., a lesson

specifying its activities, or a curricular unit specifying its lessons.

But whereas in TE 1.0 editors had to specify these children with a

sometimes complex file path, in TE 2.0, they have a simple selection

interface for specifying these relationships and are no longer

required to know where documents are stored (Figure 7).

Document Accessioning | 151

Figure 7: TE 2.0’s interface for specifying a document’s child documents

One other noteworthy difference between TE 1.0 and TE 2.0’s

tagging processes is that with TE 1.0, content editors by necessity

had to have some knowledge of the internal structure and working

of TeachEngineering’s architecture. They had to create documents

using Authentic, and check the resulting XML document into source

control. With TE 2.0, editors edit documents using a familiar

WYSIWYG interface. The software behind the scenes takes care

of the technical details of serializing the documents to JSON and

storing them in RavenDB.

152 | Document Accessioning

TE 2.0 Document Ingestion and Rendering

With TE 2.0’s architecture, the document ingestion and rendering

process is greatly simplified. Here we will revisit the ingestion and

rendering steps from TE 1.0 and contrast them with the process in

TE 2.0.

1. Document check-in. In TE 2.0, there is no document check-in

process; i.e., no process of moving the file from the local

system into the TE repository of documents. When editors

save the document they are editing in TE 2.0’s web interface,

the document is immediately stored in RavenDB.

2. Metadata generation. In TE 2.0, there is no separate metadata

generation process. As noted in chapter 4, TE 2.0 neither

generates nor stores metadata. The JSON representation of the

curriculum document is the single version of the TE reality.

Whereas TE 1.0 always generated and exposed its metadata for

harvesting by meta collections such as the National Science

Digital Library (NSDL), TE 2.0 no longer does this. This is

mostly because the support for and use of generic metadata

harvesting protocols such as OAI-PMH (Open Archive

Initiative–Protocol for Metadata Harvesting) have dwindled in

popularity.

3. Document indexing. There is no document indexing step in TE

2.0. Since documents are immediately saved to RavenDB, there

is no need for a separate process to crawl and discover new or

modified documents.

4. Document rendering. At a high level, the document rendering

process in TE 2.0 is quite similar to TE 1.0’s process, with a few

key differences. For one thing, TE 2.0 was developed in C# as

opposed to PHP.

Whereas in TE 1.0 the hierarchical relationships between any

pair of documents were stored as parent-child rows in a

relational database table, in TE 2.0, the relationship between all

Document Accessioning | 153

of the curriculum documents are stored in RavenDB in a single

JSON document. This tree-like structure is cached in memory,

providing a fast way to find and render a document’s relatives

(ancestors and descendants). For example, a lesson will

typically have one parent curricular unit and one or more child

activities. The following is an en excerpt of the JSON document

which describes the relationship between documents.

{ "CurriculumId": "cla_energyunit",
"Title": "Energy Systems and Solutions",
"Rank": null,
"Description": null,
"Collection": "CurricularUnit",
"Children": [

{
"CurriculumId": "cla_lesson1_energyproblem",
"Title": "The Energy Problem",
"Rank": 1,
"Description": null,
"Collection": "Lesson",
"Children": [

{
"CurriculumId":

"cla_activity1_energy_intelligence",
"Title": "Energy Intelligence Agency",
"Rank": 1,
"Description":

"A short game in which students
find energy facts among a variety
of bogus clues.",

"Collection": "Activity",
"Children": []

}
… additional child activities are not shown here for brevity

Here you can see that the unit titled Energy Systems and

154 | Document Accessioning

Solutions has a child lesson titled The Energy Problem, which

itself has a child activity titled Energy Intelligence Agency. Since

this structure represents the hierarchy explicitly, it is generally

a lot faster to extract hierarchical relationships from it than

from a table which represents the hierarchy implicitly by means

of independent parent-child relationships.

Educational Standards are also handled differently in TE 2.0.

As noted earlier in this chapter, curriculum documents in TE

1.0 only stored the identifiers of the standards to which the

document was aligned. In TE 2.0, all of the properties necessary

to render a standard alignment on a curriculum page are

included in the JSON representation of the curriculum

document. As discussed in chapter 4, it can sometimes be

advantageous to de-normalize data in a database. This is an

example of such a case. Since standards do not change once

they are published by the standard’s creator, we do not need

to worry about having to update the details of a standard in

every document which is aligned to that standard. In addition,

storing the standards with the curriculum document boosts

performance by eliminating the need for additional queries to

retrieve standard details. Whereas this implies a lot of

duplication of standard data in the database, the significant

speed gain in extracting the document-standard relationships

is well worth the extra storage. The following is an example of

the properties of a standard that are embedded in a curriculum

document.

"EducationalStandards": [
{

"Id": "http://asn.jesandco.org/resources/S2454426",
"StandardsDocumentId":

"http://asn.jesandco.org/resources/D2454348",
"AncestorIds": [

"http://asn.jesandco.org/resources/S2454504",
"http://asn.jesandco.org/resources/S2454371",

Document Accessioning | 155

"http://asn.jesandco.org/resources/D2454348"
],
"Jurisdiction": "Next Generation Science Standards",
"Subject": "Science",
"ListId": null,
"Description": [

"Biological Evolution: Unity and Diversity",
"Students who demonstrate understanding can:",
"Construct an argument with evidence that in a particular
habitat some organisms can survive well, some survive
less well, and some cannot survive at all."

],
"GradeLowerBound": 3,
"GradeUpperBound": 3,
"StatementNotation": "3-LS4-3",
"AlternateStatementNotation": "3-LS4-3"

}
]

While the document accessioning experience in TE 2.0 is more

streamlined and user friendly, it does have a downside. In TE 1.0,

if a property was added to a curriculum document, updating the

XML schema was the only step needed to allow editors to utilize the

new property. This was because the Authentic tool would recognize

the schema change and the editing experience would automatically

adjust. In TE 2.0, adding a field requires a developer to make code

changes to the edit interface. On balance, however, since document

schemas do not change that often, the advantages of a (much) more

user-friendly document editing experience outweigh the occasional

need for code changes.

156 | Document Accessioning

7. Why Build Revisited

Why Build… Revisited

Increased Reliance on IS Service Providers

In the Why Build… chapter we described how the supply of IS

services to buy or rent from IS service providers is increasingly

becoming a reasonable alternative for building systems or system

components oneself. We mentioned savings in development and

maintenance costs and the fact that such external services are

typically more reliable and have been much more extensively tested

than one’s own systems as good reasons to consider buying or

renting rather than building.

We also noted that even those who build their own systems rarely

build them from the ground up. Just like people who like building

their own furniture typically buy their lumber and woodworking

tools —of course, some woodworkers grow their own lumber and

most woodworkers make at least some tools themselves— system

developers typically do not build their own compilers or

interpreters, operating systems, database software, web servers and

web browsers, etc.

Still, when we compare the presence of ‘built’ rather than ‘bought

or rented’ components in TE 2.0 with those of TE 1.0, we observe

a significantly increased reliance on outside service providers. As

information systems become more complex in that they provide

more functions and as these functions often involve networked

and Internet services, system builders increasingly ‘outsource’ these

functions to external service providers. In this (very short) chapter)

Why Build Revisited | 157

we again contrast TE 1.0 with TE 2.0, but this time from the

perspective of build vs. rent.

TE Searches: From Tool To Service

The chapter on Searching TeachEngineering laid out the various

approaches that were used in letting users search the TE collection

of documents. Both TE 1.0 and 2.0 used their internally developed

codes to search in their databases (tools) for faceted searches; e.g.,

grade-based searches or standard-based searches. TE 1.0 used a

relational database, TE 2.0 a JSON database. However, whereas at

first TE 1.0 used a locally installed tool (Lucene) for full text

searches, both TE 1.0 and 2.0 ended up relying on external text

search services: Google Site Search (now discontinued) in TE 1.0

and Microsoft’s Azure Search in TE 2.0. Whereas Google Site Search

pricing was based on the number of searches conducted, Azure

Search pricing is based on the amount of data stored and indexed.

Educational Standards

Both TE 1.0 and 2.0 relied on the services of D2L’s Achievement

Standards Network (ASN) for information about K-12 educational

(science) standards. ASN’s cloud services let users access anything

ASN knows about educational standards. Pricing is a fixed annual

fee.

Analytics

Both TE 1.0 and 2.0 rely on Google Analytics for analysis of their web

158 | Why Build Revisited

traffic. Whereas TE 1.0 also maintained its own log of all significant

website interactions, TE 2.0 no longer stores that information.

Database

As discussed in a previous chapter, rather than using a traditional

relational database such as MySQL as we did in TE 1.0, TE 2.0 uses

the RavenDB document database. Also in TE 1.0 we chose to install,

run, and maintain our own MySQL instance. Doing so, however,

implies assuming responsibility for securing, upgrading, and

supporting the database which is a significant burden for a small

team. In TE 2.0, therefore, we are procuring RavenDB services from

RavenHQ, a company affiliated with the developers of RavenDB, to

provide us with a fully managed instance of RavenDB. RavenHQ

takes care of database updates, security and the server

infrastructure required to run RavenDB. Pricing is based on the

desired performance level and amount of storage needed and

includes the license fee for RavenDB itself.

Social Networking

Whereas TE 1.0 had essentially no social networking aspects, social

networking has become an essential and quickly growing

component of TE 2.0. The freely available AddThis widget allows

users to share TE content via various social media channels such as

Twitter, Pinterest, Email, and Facebook.

Why Build Revisited | 159

User Involvement

One very special category of TE users consists of the many authors

who have contributed curriculum to TE. As described in the chapter

on Document Accessioning, in both TE 1.0 and TE 2.0, author

submissions are stored and managed in Open Journal Systems (OJS),

an open source system for managing peer-reviewed journals.

However, whereas under TE 1.0 the TE team ran its own installation

of OJS, in the summer of 2017 TE 2.0 switched to using a cloud-

based OJS provider. The main reason was that since OJS was and is

used purely as a tool for managing curriculum submissions, it was

considered cost effective to have a third party run and maintain it.

The service follows an annual subscription model with pricing based

on the amount of used storage.

Those who use TE as a source of teaching materials comprise,

of course, a much larger group. Such users fulfill an important role

in that they provide feedback on the functionality of the system,

but also on the content of the information served by it. As such,

it is in the mutual interest of both users and system maintainers

to capture user feedback and to act on that feedback. Of course,

some feedback is utter nonsense, disingenuous (refer to Appendix

C: Fake Link Requests) or consists of nothing but a rant. Much more

often, however, user feedback provides an angle on the system’s

functionality or its content which was missed by its creators or

maintainers and which, when taken into account, can lead to

functional or content improvements.

TE 1.0 had a simple, internally developed Contact Us web page

by means of which users could submit any sort of comment or

question. These comments were internally processed by the TE

team and were not shared on the TE site. Users could also submit

reviews of individual lessons or activities through an internally

developed Teacher Reviews web function. Unlike the Contact Us

feedback, Teacher Reviews were shared on the site.

In TE 2.0 the Contact Us facility was retained but other user

160 | Why Build Revisited

involvement functions were greatly expanded. One encompassed

switching from the internally hosted Teacher Reviews facility to

LinkEngineering, a cloud-hosted community platform where K-12

educators can share engineering experiences. LinkEngineering is a

collaborative project of the US National Academy of Engineering

and several other engineering-related organizations and is funded

by Chevron. As part of an agreement with one of TeachEngineering’s

funders, we decided to drop our own internal Teacher Reviews

facility and replace it with the LinkEngineering one.

A second change was the deployment of the Disqus commenting

service, hosted by Disqus.com, on the TE 2.0 curriculum pages. The

Disqus service collects user feedback in the form of comments and

allows other users to search, add and react to those comments

with their own, and connects users and their comments with social

network platforms. Disqus is free for non-profit organizations.

To further expand our engagement with users, TE 2.0 also uses

the email marketing automation platform MailChimp for

maintaining a mailing list of users who expressed an interest in

receiving our newsletter. MailChimp allows us to create and send

email newsletters and other email messages. MailChimp is free for

up to 2,000 mailing list subscribers.

Conclusion

Comparing TE 1.0 with TE 2.0, the trend of increasing reliance on

outside service providers is clear. Whereas previously we built our

own, working but relatively primitive and often buggy services, we

nowadays increasingly rely on far more comprehensive and more

stable externally provided services. These services not only work

better, but they give us more functionality and are typically less

expensive than building and maintaining our own.

Why Build Revisited | 161

8. The Develop… Test…
Build… Deploy Cycle

Introduction
When developing software, we typically apply some form of a

Develop… Test… Build… Deploy cycle; a structured progression of

work steps from developing code to testing that code, to building a

release version of that code, which is then deployed in a production

environment. Although these steps are typically executed in

succession, steps can be executed multiple times before a cycle

completes. For instance, if we find errors in the behavior of our code

while testing it, we go back to the Develop step to make fixes after

which we test again. Sometimes results found at one step may kick

us back several steps.

Testing code can happen on several scales and several levels of

integration. So-called ‘unit tests’ test smaller units of code to see

if those units behave properly under a variety of circumstances.

‘Integration tests’ on the other hand test if the larger code complex

in which the tested units are integrated works correctly. Of course,

this separation of units and complexes is somewhat arbitrary and

can be hierarchically layered in good system-theoretical fashion.

Whereas several units of code can be integrated into a larger

complex, that complex itself can be regarded as a unit in a yet larger

complex, in the same way that an element of a system can be a

(sub)system itself if we choose to further decompose it.

In order to test the complex, which is composed of units, we must

first Build it. With that we mean that we must indeed integrate the

units into a consistent and (hopefully) working whole. In software

engineering the term ‘build’ is reserved for this integration of codes

into such a working whole. This integration step works differently

for different types of programming languages, which does not have

to concern us for this discussion. For now, it suffices to think of the

162 | The Develop… Test… Build…
Deploy Cycle

build step as the integration of all the units of code, all functions and

methods that the system programmers have written, into a cohesive

and hopefully working whole.

Regardless of how much we test, however, the likelihood that we

have tested all possible code execution paths is small, and hence,

the likelihood that some untested code path will at some point in

time be executed and cause a problem is larger.1 Such problems

─better known as ‘bugs’─ may necessitate code fixes and hence,

a return to the Develop step. However, once code has been put

in production ─also known as being ‘deployed’ or ‘released’ and

sometimes as ‘shipped’─ that code can typically not be taken out of

production in order to be repaired. In such cases a parallel develop-

test-deploy cycle must be executed and a whole or partial code

update must be released.

As we will see in the remainder of this chapter, both TE 1.0 and TE

2.0 applied a structured and carefully followed develop-test-build-

deploy process, but TE 2.0’s implementation of this process was

brought in line with the newer, more modern ways of doing it.

But First: Version Control
Both TE 1.0 and 2.0 rely on a central repository of code shared

and agreed upon by all developers. This repository is kept and

1. In computer science, the application of so-called ‘formal

methods’ is aimed at mathematically and logically

analyzing and specifying the execution paths of code.

This is in contrast to the more common way of simply

empirically testing code paths by submitting the code to

a variety of specified use cases. Proponents of formal

methods propose that the proper application of such

methods significantly reduces the likelihood that faulty

code execution paths remain undetected prior to code

deployment.

The Develop… Test… Build… Deploy Cycle | 163

maintained in a so-called code-repository or source-control or

version-control system. These systems ─examples are Git,

Subversion, CVS, TFS, etc.─ manage all changes made to code, allow

multiple developers to jointly work on code without overwriting

each other’s work, and support so-called ‘branching;’ i.e., the forking

of a complex of code into a new complex of code.

In practice it is very difficult to develop and maintain a body

of code without using one of these version-control systems. Using

them, developers can revert to older versions of code, can track

which changes were made by whom and when, can compare

different versions of the same code base, line by line and character

by character.

These systems also provide protection against multiple

developers working on the same code base overwriting each other’s

work. How can that happen? Easy! Suppose that a certain file

contains the code for several methods (functions) and that one

developer must work on the code for one of those methods and

another developer must work on another method from that same

file. It would be quite inefficient if one of these developers would

have to wait for the other developer to be done with the file before

being able to make code changes. Yet if both developers each work

on a copy of the file, there is a very real danger that one merges

the modifications back into the code base at time t whereas the

other merges his or her code at t+x, thereby overwriting the work

of the first developer. Version-control systems manage this process

by keeping track of who checks in what code at which times. When

the system sees a potential cross-developer code override, it flags

this as a so-called ‘conflict’ and gives the developer triggering the

conflict several options to resolve the conflict.

Version-control systems also help out a lot with code integration;

that ‘build’ step we mentioned earlier. Suppose, for instance, that

a developer writes a new segment of code and that after carefully

checking and testing it (s)he checks the code into the version-

control system. Between the time the developer started working on

this code and the time (s)he checks it in, other developers made

164 | The Develop… Test… Build… Deploy Cycle

changes to existing code and added code of their own. Hence, it is

possible that the new code checked in last ‘breaks the build;’ i.e., that

it is not functionally compatible with the rest of the code. Version-

control systems provide at least one means of avoiding and one

means of mitigating this problem. Developers can update their local

copy of the code they have not worked on and test their additions

to see if they cause any problems (avoidance). On the integration/

build side of the process we can revert to a previous version of the

code which caused the build to brake and report to the developer

who broke the build that (s)he must modify the new code so that it

no longer breaks the build (mitigation).

TE 1.0 used the CVS version-control system early on, but migrated

to Subversion a few years later. TE 2.0 uses Git.

TE 1.0 Develop-Test-Deploy
The TE 1.0 develop-test-build-deploy process was effective and

simple, although perhaps not maximally flexible. The process

consisted of three steps:

• Step 1. Sandbox or development site coding and testing. New

code, code adjustments and code extensions are developed on

an internal system. For TE 1.0 this was a web site which,

although visible and accessible to the world, was anonymous in

that no links on the web pointed to it. Such an internal system

or site is typically called a sandbox (developers are free to ‘play’

in it). In TE 1.0 we called our sandbox our ‘new’ site.

Depending on how a software development group sets up its

sandboxing, individual developers can have their own,

individual sandbox, or, as in the TE 1.0 case, they can share a

common sandbox. Obviously, individual sandboxes provide

more opportunities to work on code without impacting other

developers. The TE 1.0 team, however, was small enough that a

single common sandbox, in combination with a version-control

system, worked just fine.Code developed in the sandbox would

typically be reviewed by TE 1.0 project members for functional

adequacy and robustness. Once approved, the code would be

The Develop… Test… Build… Deploy Cycle | 165

moved to the next step, namely the ‘test’ site.

• Step 2. Integration testing. Beside the (shared) sandbox, TE 1.0

maintained a release test site. This site ─software, database

content and document repository─ was synchronized with the

production/release site, but was used for testing all new and

modified code against the complete system. Hence, once

sandbox code was approved for release, it was deployed on the

test site for integration testing. The time it would take to

conduct this integration testing varied from just a few minutes

for a simple user interface change; g., a color change or fixing a

typo, to a day or longer for testing new or updated periodic

back-end processes.

Only once the software was verified to operate correctly on

the ‘test’ site, would it be released in production. In case errors

were found, the process returned to the sandbox stage.

• Step 3. Production/Deployment. Releasing sandbox-approved

and test site-verified code was quite easy because it consisted

of deploying the test site-verified code from the updated

version-control system to the production site.

All is Flux, Nothing Stays… TE 1.0 Continuous System Monitoring
One good way to experience Heraclitus’s famous “All is Flux,

Nothing Stays” or to experience the universal phenomenon of

system entropy, is to release code into production and sit back and

wait for it to stop functioning. Although the stepped process of

Sandbox à Test site à Production site is relatively safe in that it

limits the risk of releasing faulty or dysfunctional code, it is always

possible, and indeed likely, that at a later stage ─sometimes months

later─ a problem emerges. This can happen for a variety of reasons.

Perhaps a developer relied on a specific file system layout which

later on became invalid. Or perhaps code relies on pulling data

from an external service which for some reason or other suddenly

stops or seems to stop working (Did we not pay our annual license

fee? Did we run out of our free allocation of search queries? Is

166 | The Develop… Test… Build… Deploy Cycle

the service still running? Did the service change its API without us

making the necessary adjustments?).

Experienced software developers have great appreciation and

awareness of the principles of permanent flux and system entropy

and hence, will make sure that they build and deploy facilities which

continuously monitor the functioning of their systems. Of course,

these monitoring facilities need some monitoring themselves as

well. Although at least in theory this leads to an infinite regress,

monitoring the monitoring processes can mostly be accomplished

through simple and often manual procedures which can be

integrated into a team member’s job responsibilities. Table ??

contains a list of TE 1.0’s (automated) system monitoring processes.

Monitor Frequency Details

Systems
up test

Once per
minute

A simple test to see if our Website and database
are up and running.

Regression
tests

Every 12
hours

Tests for most new features and all bug fixes
are run in sequence.

The following is the summary of the last TE 1.0
regression test run on April 28, 2016:

Start Time: Thu Apr 28 04:00:04 2016
Total Run Time: 357.458 seconds

Test Cases Run: 139
Test Cases Passed: 137
Test Cases Failed: 2
Verifications Passed: 268
Verifications Failed: 2

Average Response Time: 2.544 seconds
Max Response Time: 85.099 seconds
Min Response Time: 0.002 seconds

Link
diagnostics

Every 12
hours

Test all Web links on the TE pages and report
failing links (the link, the source of the link, the
contributor of the source, the error code
associated with the failed link)

HTML
diagnostics

Once a
month

Run an HTML checker on a random sample of
Web (static and dynamic) web pages.

Metadata
harvesting
checker

Once a
month

A process which queries sites which harvest
our content, making sure that the sites
continue to harvest our content.

The Develop… Test… Build… Deploy Cycle | 167

TE 2.0 Develop-Test-Deploy
The development, testing, and deployment process in TE 2.0 is

similar to that of TE 1.0. The differences are in the details.

• Step 1. Development. In TE 2.0 developers code new features on

their local PC using a shared (development) instance of the

database. For larger teams, it would be better for developers to

have their own development copy of the database to allow

work to be done in isolation. However, due to the very small

size of the TE 2.0 development team, a shared development

database has not been problematic.New features are developed

as branches off of the main Git code repository branch. This

allows new features to be developed in isolation from the

production code base until they are ready to be released.A key

aspect of developing new features is the development of

corresponding unit tests, code that tests that a particular unit

of code behaves as intended. As of November 2017, the TE 2.0

code base comprises 395 unit tests for server-side C# code

and 313 unit tests for client-side JavaScript code. Beyond

verifying that code behaves as intended today, unit tests also

make it safer to make changes to code in the future. Without

unit tests, it is very difficult to ensure that code changes do

not break existing functionality.

• Step 2. Integration. When new feature development has

progressed to the point where it is ready to be included in the

next production release, it is merged onto the master branch

of the code repository. That is, the changes from the feature

branch are applied to the master branch. This triggers an

automated process which compiles the code, runs the unit

tests, and, if all of the unit tests pass, deploys the code to a

development instance of the site. The code is compiled in

‘Debug’ mode which includes debugging information and un-

minified2 JavaScript code to assist with debugging and

troubleshooting. As features that are to be included in the next

release are merged onto the master branch, this integration

168 | The Develop… Test… Build… Deploy Cycle

testing ensures that all of the code changes play well together.

• Step 3. Beta testing. Once integration testing verifies that the

code compiles and the automated tests pass, the master

branch is merged into the QA (quality assurance) branch. This

triggers another automated build and deployment process.

This time, the code is built in ‘Release’ mode which results in

compiled code that does not have debugging information

embedded and JavaScript which has been minified and

obfuscated3[3]. The output of the build is deployed to a beta

instance of the TeachEngineering site. This is a place where

the entire TE team can review and test changes to the site.

This process is also known as acceptance testing.

• Step 4. Staging. Once a set of code changes is ready to be

released, it is merged from the QA branch onto a branch called

Release. This triggers another build process that results in the

code being deployed to a staging environment which is an

exact duplicate of the production environment and uses the

production database. Additionally, this build process ends with

2. Minification is the process of removing all unnecessary

characters from source code; e.g., spaces, new lines and

comments. In the case of JavaScript (which runs in the

browser), this speeds up the transfer of the code from

the server to the client without affecting its

functionality. Minified code, however, is difficult to read

for humans, hence us using un-minified code for

debugging purposes.

3. Code obfuscation refers to the practice of purposefully

rendering source code difficult to read for humans,

typically in order to make it more difficult for ill-willed

individuals to search for weaknesses and security

exploits.

The Develop… Test… Build… Deploy Cycle | 169

a series of ‘Smoke Tests’ which perform automated browser-

based testing using Selenium, a tool for web browser scripting.

These tests exercise key functionality of the site to ensure that

nothing is broken; e., on fire.

• Step 5. Release. Once the staging site is verified to be working

correctly, it is swapped with the production site. That is, all

production traffic is redirected to the staging site, which

becomes the new production site. In the event a problem is

encountered after release that necessitates a roll back, it is

easy to redirect traffic back to the prior version of the site.

In TE 2.0, each of these steps is entirely automated and can be

initiated by executing one or two command line statements.

Automation is key to having quick, repeatable, and error-free

releases. This automation allows updates to TE 2.0 to be released

frequently, as often as once a day or more. Releasing software

updates more frequently results in smaller, less-risky updates.

Frequently integrating and releasing code is known as ‘Continuous

Integration’ and ‘Continuous Deployment.’ Prior to the widespread

adoption of these two practices, integration and releases would

happen much less frequently, often as infrequently as once a

quarter. This resulted in increased risk and longer feedback cycles.

Behind the Magic Curtain
There is a lot going on for each of the develop-test-deploy steps

described in the previous section. Code is retrieved from source

control, compiled, tested, and deployed. The process is highly

automated, and thus can seem somewhat magical at first glance.

Not too long ago, setting up an automated build and deployment

process like this required setting up, configuring, and maintaining

a build server such as Jenkins or TeamCity as well as a server for

running the chosen source control system. Similarly, hosting

development, testing, and production instances of an application

would typically involve buying, configuring, and maintaining

multiple servers.

With the emergence of software-as-a-service and the ‘cloud,’ it

170 | The Develop… Test… Build… Deploy Cycle

is no longer necessary to configure and maintain the basic

infrastructure; i.e., hardware and software needed to develop,

deploy, and host applications. For example, TE 2.0 utilizes Visual

Studio Team Services (VSTS) to host its Git repository and perform

the build and deployment process. As a cloud-hosted solution, VSTS

saves the TE team from having to maintain source control and

continuous integration servers.

Similarly, the development, beta, staging, and production

environments are hosted in Azure, Microsoft’s cloud hosting

platform. TE 2.0 uses Azure’s Platform as a Service (PaaS) offering

known as Azure App Service. With PaaS, the cloud provider takes

care of maintaining and updating the server and operating system

that runs the application. In effect, everything below the application

layer is abstracted away and managed by the cloud hosting provider.

This is especially beneficial for a small team such as the TE team.

Instead of worrying about operating system updates and hardware

maintenance, our limited resources can be focused on activities that

make TE a better product.

Azure App Service also provides a number of other value-added

capabilities. For example, if there is a sudden surge of traffic to

the TE site, Azure App Service will automatically add more server

capacity. When traffic levels subsequently drop to a level that does

not require additional capacity, the extra capacity is withdrawn.

Server capacity is billed by the minute and you only pay for capacity

when you are using it. This is one of the key benefits of hosting

applications in the cloud. In a traditional hosting model, one would

have to pay up front for the server capacity needed for peak load,

even if it is unused a vast majority of the time. With Platform as a

Service, capacity can be added and removed as demand warrants.

The ability to deploy code to a staging site and swap it with the

production site as described in steps 4 and 5 of the previous section

is also a feature of Azure App Service. This can be done with just a

few clicks or with a single command-line statement.

TE 2.0 Continuous System Monitoring
Azure App Service also provides a number of capabilities for

The Develop… Test… Build… Deploy Cycle | 171

monitoring application health. For TE 2.0, the site is configured to

send an alert via e-mail if certain adverse events happen. These

include heavy CPU load, heavy memory usage, excessive 500 errors,

and slow site response.

In addition, TE 2.0 uses Azure Application Insights, an Application

Performance Management tool. Application Insights captures

detailed data about application performance, errors, and user

activity. This data is fed into a web-based dashboard. It also uses

machine learning to detect events such as slow performance for

users in specific geographic locations or a rise in the number of

times a specific error happens. Application Insights has also been

configured to access TE from five different geographic locations

every five minutes. An email alert is generated if 3 or more of the

locations are unable to access the site.

TE Meta Monitoring
Besides pure functional aspects of system performance, there are

other, higher level (or ‘meta’) aspects which need regular reporting

and checking. In today’s web- and internet-based world, one of

these aspects is whether third parties which drive traffic to our

system; i.e., search engines such as Google, know about your

content and assess our content as an attractive target. This

information obviously must come from the parties owning the

search engines; it is not information internal to our system.

Fortunately, search engines such as Google often make their

diagnostics tools available so that as content providers we can know

how the search engines assess our content. In Google’s case one

of those tools is Google Search Console4. This tool provides lots of

information on how Google harvests your content. Needless to say,

then, that periodic monitoring of Google Search Console, either

manually or by using its API, provides valuable information on how

well your site is viewed by the world’s most popular search engine.

4. At the time of TE 1.0, this service was known as Google

Webmaster Tools.

172 | The Develop… Test… Build… Deploy Cycle

Another, valuable meta monitoring service is Google Analytics

(GA). GA is a service to which one can report requests coming into

one’s website. GA keeps a record of those requests and reports

them back on demand using any number of user-chosen facets. For

example, one may ask for a timeline of requests, for any time frame

and pretty much any time step. One can also ask for a breakdown

by technology, browser, operating system, location, page, etc.

Obviously, a lot of useful information will be hiding in these data.

Both TE 1.0 and TE 2.0 use(d) GA.

A third type of meta monitoring simply collects and reports

aggregate information about a system. For TeachEngineering this

means being able to tell how many items the library has at any

moment for any grade or combination of grades in the K-12 grade

range or how many different institutions have contributed

curriculum and how much they have contributed.

The Develop… Test… Build… Deploy Cycle | 173

Appendix A: When Editing
Code Files, Use a Text Editor;
Not(!) a Word Processor

On several occasions in this text you will encounter exercises which

require you to create files containing some textual content; perhaps

a PHP program, some XML, some JSON, etc. Although there are

several ways to create a file with text in it, most of us will use a

software application in which we type or copy/paste the text. When

you do this in the context of this book’s exercises, we want you to

use a so-called text editor, not a word processor.

For a quick lookup of common free and open source text editors

for Windows, macOS and Linux, see the table at the end of this

appendix. If you want to understand the difference between text

editors and word processors, read on.

A Word Processor and a Text Editor Are Not the
Same Thing

From experience we know that few students who are new to coding

realize that what looks to be text to them, does not look the same to

a machine. For instance, suppose that someone types the following

into the interface of a text editing program such as Windows’

Notepad: foo Enter goo

No-one will be surprised when it looks like the following on the

screen:

foo
goo

Appendix A: When Editing Code Files,
Use a Text Editor; Not(!) a Word

Let us assume that we now store these two lines of text in a file

called foo.txt.

When asked how many symbols (letters, bytes) foo.txt contains,

most people will say “six;” three for the word foo and three for the

word goo. However, if one would actually check how many bytes the

file foo.txt contains, one might find one of several answers, none of

which is “six.”

Let’s see what happens when on a Linux machine we create the

file (not using Notepad, because that is not a Linux text editor) and

we ask how many bytes the resultant file has. One of the Linux

commands for doing this is wc (for word count):

>wc foo.txt
2 2 8 foo.txt

wc tells us that the file has two lines (the first “2”), two words (the

second “2”) and eight (“8”) characters.

Another way is to check the byte count with the ls command:

>ls –l foo.txt
-rw-rw-r--. 1 userid userid 8 Nov 20 14:22 foo.txt

Notice the ‘8’ indicating the file size in bytes.1

To see each of the bytes in the file, we use the od (octal dump)

command:

>od –c foo.txt
f o o \n g o o \n

1. In these examples, characters are represented with

single bytes; i.e., one byte per character. However, in a

character representation system such as UTF-16,

characters are represented by two bytes each. Hence,

this would double the counts used here.

176 | Appendix A: When Editing Code Files, Use a Text Editor; Not(!) a Word
Processor

Sure enough, the file has eight one-byte characters in it. Six to form

the words foo and goo and two so-called new-line characters (\n).

The effect of these new-lines, of course, is that when you pull up the

file in a text editor, both foo and goo are on their own lines.

If we try this on Windows, however, we get a different result (we

once again read the files with the od command in Linux AFTER we

have created the file in Notepad):

>od –c foo.txt
f o o \r \n g o o

We once again have eight bytes, but this time foo and goo are

separated by a return character (\r) and a new-line character (\n),

while there is no new-line after goo.

If you find this confusing, look at the size of the file after we type

the exact foo and goo text in Ms Word and store it in a file foo.docx:

>ls –l foo.doxc
-rwxr-xr-x. 1 userid userid 11561 Nov 20 14:46 foo.docx

Holy, moly!! This time we end up with 11,561 bytes!

So what is going on here? Programs such as Microsoft’s Word and

Apple’s TextEdit are word processing programs. Their job is two-

fold: store text and format that text in any way the user specifies.

This formatting can take lots of forms, from changing font type

and font size, to line indentations, inter-line spacing, etc. Since all

this formatting information must be stored with the text, word-

processed texts typically have far more many bytes that text alone.

Hence the 11,000+ bytes for the simple foo/goo Word file.

If, on the other hand, we use a text editor (not a word processor),

such as Notepad, Notepad++ , TextMate, Sublime, nano, emacs, vi,

bluefish or one of a host of other ones, all we get out is plain,

Appendix A: When Editing Code Files, Use a Text Editor; Not(!) a Word
Processor | 177

unformatted text2. If in those texts we want some indentation at the

beginning of a line, we must type spaces and tabs, and if we want a

new line, we must type the newline character (Enter key) and those

are stored in the file, but nothing else.

Whereas this distinction between word processors and text

editors explains the size and content differences between the files

generated by them, it does not yet explain why the foo/goo text

files generated with a text editor in Linux and Windows are different

(same size, different content). That difference is explained by Linux

and Windows following different conventions for storing plain text

files.

Which Text Editor to Use?

In this text, you will only(!) use a text editor. Coders who write

program code, write their code using text editors, not word

processors. As explained above, word processors are used to make

text look good for humans to read. Program code, however, needs

no formatting other than distributing it over multiple lines and

adding some indentation; all of which can be easily accomplished

with the enter, space, and tab keys3.

This does, however, not mean that coders are impartial about

2. Files with unformatted text are known as ‘plain text’

files.

3. Many text editors can be set to automatically adjust text

layout associated with a specific programming language;

e.g., C, C++, HTML, Python, etc. In these cases, the text

editor automatically includes spaces, new-lines, tabs and

even parentheses and curly braces, each of which will, of

course, become part of the text.

178 | Appendix A: When Editing Code Files, Use a Text Editor; Not(!) a Word
Processor

which text editor to use. Most coders are very attached to and

enamored with their favorite text editor and will stick to it unless

something much better appears.

We, as authors of this text have no axe to grind as to what text

editor you use. However, we want you to not(!) use a word

processor, as this will likely cause all different sorts of problems

when you try to run the exercises. Unfortunately, recognizing

whether or not you have a word processor or a text editor is not

always easy, especially in confusing cases such as Apple’s TextEdit,

which is not(!) a text editor but a word processor, so better not use

it because it will not allow you to store plain text files.

The following table should help you find a few suitable (free and

open source) text editors. Once again, as authors we really do not

care which one you use. Just try one. If you like it, stick with it. If

you do not like it, grab another one (Just do not spend all your time

comparing specs between these, only to find out at the end that you

have no time left to actually use them).

Table 1: (very) limited list of free and open source text
editors

notepad++ bluefish TextMate vi emacs nano

Windows x x x x

MacOS x x x

Linux x x x x

Appendix A: When Editing Code Files, Use a Text Editor; Not(!) a Word
Processor | 179

Appendix B: (Unintended?)
Denial of Service Attack

The Attack

On Jan. 26, 2015, a little before 3 pm, some of the student workers

working on the TE 1.0 system informed us that the system had

slowed down to a trickle. A few minutes later, the systems group

hosting the TE (1.0) Web site informed us that both the HTTP

request rate and the associated request wait times as well as

database query times had all greatly increased. For individual users

accessing the system, request wait times had grown so much that,

as far as they were concerned, the system had halted.

Although symptoms such as these can have a variety of causes,

one likely candidate is a so-called Denial of Service (DoS) attack.

In a DoS attack, requests for service arrive at a machine at a rate

which is higher than the rate at which the requests can be served. In

process management language: the arrival rate outstrips the service

rate. In any capacity-constrained system (we see the same when

the rate of customers arriving at a restaurant outstrips the rate at

which these customers are served, or when the rate of cars arriving

at a highway on-ramp outstrips the capacity of the highway to

absorb these vehicles and move them along) this results in longer

wait times or more precisely, queueing times. Since the requests are

waiting in the queue to be served, the issuer of the request has the

impression that the entire service is halted, just like the driver of

a car stopped in a traffic jam on a busy road has the impression

that the road is blocked and vehicles ‘requesting’ passage are not

at all served. When this principle is abused and lots of requests are

purposefully directed at a service in order to overwhelm its service

capacity, we call it a Denial of Service (DoS) attack. If these requests

180 | Appendix B: (Unintended?)
Denial of Service Attack

are arriving form a large number of different machines, we speak of

a Distributed DoS (DDoS).

As our Jan. 26th, 2015 DoS incident illustrates, however, not all

DoS instances originate as targeted attacks.

Although our TeachEngineering server served a variety of

protocols and hence, a possible DoS could target any of these

services, we took a look at its Apache Web server log to see if it

would contain information about what was going on. The following

is a random one-second excerpt from those logs:

113.248.198.22 - - [26/Jan/2015:10:00:40 +0000]
"GET /announce.php?info_hash=
%A8%82c%F92%7F9%150%A9%112%10%CF%0C%0E%D8d%87s&peer_id=
%2DSD0100%2D%EC%9D%CB%BD%A7%2D%E5%EBw%A2F%BD&ip=
113.248.198.22&port=13337&uploaded=1005870892&downloaded=
1005870892&left=706329&numwant=200&key=2497&compact=
1&event=started HTTP/1.0" 302 587 "-" "Bittorrent"

117.79.232.6 - - [26/Jan/2015:10:00:40 +0000]
"GET /announce.php?info_hash=
%B8%A7%7B%11%9D%F2m%E8%EE%92%A8%DA%2Dxy%11%94%F8Z%E9&peer_id=
%2DUT3000%2D0%1C%D5%23%3A%92%5B%B0%BC%2ExO&ip=
192.168.1.104&port=1080&uploaded=0&downloaded=0&left=
289742100&numwant=200&key=644621065&compact=1&event=
started HTTP/1.0" 302 578 "-" "Bittorrent"

222.78.27.77 - - [26/Jan/2015:10:00:40 +0000]
"GET /announce.php?info_hash=
%8F%A6%81%3A%B7%2C%C1%C8%D1v%25%F8%B75Z%D2I%84%07H&peer_id=
%2DSD0100%2D%C3%26v%06%94%DB%29%CA%DD%84%C7%7B&ip=
222.78.27.77&port=19678&uploaded=125304832&downloaded=
125304832&left=878468806&numwant=200&key=31199&compact=
1 HTTP/1.0" 302 575 "-" "Bittorrent"

111.4.119.139 - - [26/Jan/2015:10:00:40 +0000]

Appendix B: (Unintended?) Denial of Service Attack | 181

"GET /announce.php?info_hash=
%DC%C9%A9%2Cwl%ED%7F%0Fmm%21p%D1%01%0C7%16%EFk&peer_id=
%2DSD0100%2D%9CkT%08%92%F2%CC%A8%AC%9E%00%7B&ip=
192.168.21.52&port=8123&uploaded=23068672&downloaded=
23068672&left=814367656&numwant=200&key=19228&compact=
1 HTTP/1.0" 302 566 "-" "Bittorrent"

115.201.102.64 - - [26/Jan/2015:10:00:40 +0000]
"GET /announce?info_hash=
%B5%F6%9CL%BF%A4%D0%2D%08%D7%13%070k%9C%80%29M%BA%BA&peer_id=
%2DSD0100%2D%21%B3Q%22O%BF%28%22%B5%8F%40q&ip=
115.201.102.64&port=13318&uploaded=1062366471&downloaded=
1062366471&left=1040028409&numwant=200&key=5854&compact=
1 HTTP/1.0" 302 572 "-" "Bittorrent"

222.131.158.50 - - [26/Jan/2015:10:00:40 +0000]
"GET /announce?info_hash=
z6%D5%97g%C1%9CIS%9B%10%F4%C0%8B%C1%99%AF%09g%C3&peer_id=
%2DSD0100%2D%D1%D4%E9%CF%1Ay%86%C7z%8F%95%F1&ip=
222.131.158.50&port=11338&uploaded=7219559940&downloaded=
7219559940&left=15781004769&numwant=200&key=17705&compact=
1 HTTP/1.0" 302 573 "-" "Bittorrent"

116.21.125.252 - - [26/Jan/2015:10:00:40 +0000]
"GET /announce?info_hash=
%A1%D0%BDy%FA%D7%27u%0A%96%8D%FDSb%EB%BF%8C%F3%EC%AD&peer_id=
%2DSD0100%2D%1AS%8356%28%06%AEe%05%E7%E6&ip=
192.168.1.99&port=13897&uploaded=149680706&downloaded=
149680706&left=72221773&numwant=200&key=30556&compact=
1 HTTP/1.0" 302 563 "-" "Bittorrent"

The log entries are easy to parse:

IP-address_of_the_requestor – - [date and time of the request]
“HTTP_request_method
/requested_file?URL_parameters HTTP_version” HTTP_response_code

182 | Appendix B: (Unintended?) Denial of Service Attack

number_of_bytes_returned “-“ “User_agent”

Looking at this series of requests, things started to become clear.

The machines making the requests were all based in China (you can

geographically trace these IP’s at www.yougetsignal.com/tools/

visual-tracert) and the requests all came from a software identifying

itself as BitTorrent, a well-known file-sharing protocol.

From this we concluded that somehow —most likely by accident

but possibly on purpose— our TeachEngineering machine had

become registered to be part of the BitTorrent file-sharing network

and we were being flooded with BitTorrent requests.

Now what?

Once we concluded that the problem was caused by a flood of

BitTorrent requests coming from China, we had to decide on a

remedy. The easiest and most obvious course of action would have

been to block all BitTorrent requests. This would probably have

worked just fine, but since we did not know whether the inclusion

of our IP in the BitTorrent network was accidental or purposeful,

we erred on the side of caution. We guessed that if the attack was

purposeful, blocking the requests might anger (or challenge) the

perpetrator(s), as a result of which we might become the target

of more vicious attacks. Hence, rather than blocking the requests

we decided to ‘deflect’ them. We replied to the requests with a

page without content but which resulted in a 200 (Success) HTTP

response code. Since serving these ‘null’ pages required very little

effort from our server and raised the service rate considerably, this

approach solved the problem for our users.

An alternative —and in hindsight perhaps preferable— strategy

would have been to have the server reply with an HTTP 404 or

410 error. A 404 error signals the requester that the requested

Appendix B: (Unintended?) Denial of Service Attack | 183

file cannot be found whereas a 410 indicates that the requested

resource is no longer available.

What most likely happened

We have learned since that our TeachEngineering machine was

very likely involved in an incident where Turkish and Chinese DNS

servers performed a kind of DNS spoofing, a process which replaces

server IP addresses with other, non-related ones. Here is the text

from a Jan. 2015 jwz.org blogpost by Jamie Zawinsky.

“After a bit of logging and searching I found out that some

Chinese ISP (probably CERNET according to the results of

whatsmydns.net) and some Turkish ISP (probably TTNET)

respond to dns queries such as a.tracker.thepiratebay.org with

various IPs that have nothing to do with piratebay or torrents.

In other words they seem to do some kind of DNS Cache

Poisoning for some bizarre reason.

So hundreds (if not thousands) of bitTorrent clients on those

countries make tons of ‘announces’ to my web servers which

result pretty much in a DDoS attack filling up all Apache’s

connections.

So basically, entire countries’ worth of porn hounds

randomly start hammering on my server all at once, even

though no BitTorrent traffic has ever passed to or from the

network it’s on, because for some unknown reason, the now-

long-defunct piratebay tracker sometimes resolves to my IP

address. Hooray.”

184 | Appendix B: (Unintended?) Denial of Service Attack

TE 2.0 and DoS?

Although there is no reason to expect that TE 2.0 is less likely

to be targeted by another DoS attack, either deliberately or by

mistake, it does seem reasonable to expect that it being hosted in

Microsoft’s Azure cloud should provide it with better, more robust

protection than the 1.0 version which was hosted at the university.

Without suggesting that the protection provided by a university

lab or service is inherently insufficient, it stands to reason that

large cloud service providers expend a lot of effort on keeping their

renters safe from the vagaries of today’s Internet. Hence, it might

be a good idea to host services such as TE in an environment which

puts a premium on safety.

Appendix B: (Unintended?) Denial of Service Attack | 185

Appendix C: Fake Link
Requests

My name is Kelly: or How to Prey on People’s
Vanity and Love of Children and Good Causes

1

On October 8, 2013 the following email arrived at the

TeachEngineering project:

From: kellyh@enrichingkids.com

[mailto:kellyh@enrichingkids.com]

Sent: Tuesday, October 08, 2013 2:38 PM

To: TeachEngineering.org

Subject: feedback and a thank you for your green info

Good Evening –

My name is Kelly. I work with kids in a youth activities

program in Montpelier, Vermont. Recently a lot of questions

1. The cases described here were recorded over several

years. Although they are true recordings, recreating or

following them might not be possible anymore since

fraudulent individuals and endeavors frequently change

their identity and hidings. Also, some of the domain

names associated with these attempts have changed

ownership since we recorded these attempts.

186 | Appendix C: Fake Link Requests

have come up about ways we can help the environment and

decided to do a project on eco-friendly transportation. At the

end of our project we’re going to compile everyones research

into a packet to be distributed to earth science classes this

fall. This morning I came across your page xxx and wanted to

thank you. It has some good information ways to reduce your

impact on the environment that we’re going to include in our

packet.

My junior counselor Julianne, also found a site that has

some great information on eco-friendly transportation and

alternative fuels (automotivetouchup.com/touch-up-paint/

green-is-more-than-a-paint-color-for-cars); would you

mind adding it to your page if it’s not too much trouble? It

has some great resources not listed on your site and I’d like to

show Julianne and her professor that her hard work is paying

off.

Let me know what you think and if you get a chance to

update. Enjoy your week.:)

-Kelly

On first inspection, this email seems perfectly legitimate. It is polite,

friendly, flattering for sure, and it sounds quite convincing.

Moreover, the return email address looks bonafide, the reference

to a TeachEngineering lesson is perfectly integrated into the text

and the link requested to be included in TeachEngineering looks

innocuous and to-the-point. Indeed, this must surely be one of

the more clever attempts at infiltrating a website. One of us even

admits that he fell for it until a colleague pointed out that we had

encountered a similar attempt at infiltration before.

So what is the problem here? Very little, on the face of it. But

what if the request to include the link is merely an attempt to sneak

an advertisement onto our pages? Or worse: what if the content

Appendix C: Fake Link Requests | 187

to which the link points now, is changed to something a lot more

nefarious once the link is included on our pages?

Inspecting the link automotivetouchup.com/touch-up-paint/

green-is-more-than-a-paint-color-for-cars (at least at the time of

this writing) shows a page with seemingly innocent materials and

text referring to electrical and hybrid cars. However, it also contains

links to paint products and links to pages which themselves contain

links to products; i.e., materials visible to a spider/crawler.

So, we decided to look just a little deeper and try to figure out

who or what ‘Kelly’ is. Kelly’s email comes from enrichingkids.com,

so we pulled that up in our browser.

Figure 1: Home page of enrichingkids.com.

Again, this looks innocent enough. But then, when we start pulling

up some of the ‘tab’ pages, we note that although the data and

information on the tabs is innocent, they contain very little if any

information: no mission statement, no terms-of-use policy, no

ownership or organizational information. Nothing, really. Just

placeholder sentences such as “We strive to provide lifelong learning

opportunities and are pleased to have the opportunity to work with

you and your children.” True, the ‘Resources’ page points to about 30

seemingly legitimate resources, but these are all elsewhere on the

188 | Appendix C: Fake Link Requests

web and not owned by enrichingkids.com. Of course, most of the

links on Google’s search pages also point to materials not owned by

Google, but then again, Google does not ask us to be linked.

So it seems that enrichingkids is either a legitimate, though rather

clumsy web site, or it might be a dummy site meant to convince

those who do not immediately trust that Kelly indeed works hard for

kids.

But who or what is enrichingkids.com really? Who, for instance

owns the domain name? A quick ‘whois’ search yields the following:

Domain Name: enrichingkids.com

Creation Date: 23 Jun 2000 19:08:00

Registrant Name: WHOIS AGENT

Registrant Organization: WHOIS PRIVACY PROTECTION

SERVICE, INC.

Registrant Street: PMB 368, 14150 NE 20TH ST – F1

Registrant Street: C/O ENRICHINGKIDS.COM

Registrant City: BELLEVUE

Registrant State/Province: WA

Admin Email: HDDQCHRX@WHOISPRIVACYPROTECT.COM

This is where the plot thickens. HDDQCRX is a strange email

name, so who or what is WHOISPRIVACYPROTECT.COM (WHOIS

PRIVACY PROTECTION SERVICE, INC)? Pulling it up in the browser

gives the answer: “Whois Privacy Protect offers a premium service to

domain name registrants to protect their personal information from

being displayed in the public Whois database.”

Here again, we have no proof that Kelly is not at all interested in

kids and merely fishing for ad exposure (or worse). After all, domain

name owners may have good reasons to hide their identity from the

public. But by now we have encountered just a few too many items

of non-information. ‘Kelly’ has no last name and does not identify

herself in the email. The “youth activities program in Montpelier,

Vermont“ is not identified. Neither are Julianne or her professor.

The enrichingkids.com site has no real information and has all the

characters of a dummy or ghost site. And the domain name’s owner

is hiding him/her/itself behind a whois-masking service.

Appendix C: Fake Link Requests | 189

Clever, for sure. Actually, quite a bit cleverer than the Nigerian

offering you millions in exchange for a small donation. Just not

clever enough, though …and plenty sleazy.

Unfortunately, these fraudulent attempts at link intrusion,

possibly because of their cleverness and resultant success rate, are

increasing in frequency. Below are two more examples. You might

want to track down the origin of the emails and see what you

find there! Pay close attention to linguistic clues in the messages.

Whereas the spelling errors (typos) may lend a sense of authenticity

to the emails, the grammar errors are a clear sign that something

is amiss. Similarly, nonsensical references such as Sheryl’s “simple

machines field trip” reveal their fraudulent nature.

From: heather.graham@cmufsd.org

Sent: Wednesday, March 21, 2012 8:12 AM

To: TeachEngineering.org

Subject: Suggestions and Compliments on your site,

www.teachengineering.org!

Good morning & Happy Spring!

My name is Heather and I teach at Cleary Mountain

Elementary School in Virginia. I wanted to take a few

minutes to write to you because my students and I found your

webpage xxx very helpful! We have been using your resources

as a reference for our Recycling project in class!

My student, Erika, has been using another page that was

very helpful that she brought to my attention:

“Environmental Concerns – Recycling”

http://www.aaenvironment.com/environmental-

concerns-recycling.htm

I was wondering if you would mind adding it to your page?

190 | Appendix C: Fake Link Requests

We both thought it would be a perfect addition to your

collection of resources and I know that Erika would be

delighted to see her suggestion up on your page!

I have also decided that Erika will be receiving bonus

points on her next test for her newly discovered resource so

thanks so much for contributing to her eduction! ? We look

forward to hearing from you and thank you again!

Heather

From: Sheryl Wright [mailto:swright@goodwincc.org]

Sent: Wednesday, February 13, 2013 7:40 AM

To: TeachEngineering.org

Subject: a quick thanks for your helpful simple machine

resources… ?

Hi,

I just wanted to take the time to contact you and let you

know that my classmates and I have really enjoyed using

your page xxx for our simple machines field trip and projects.

My teacher, Mrs. Wright, thought it would be nice if we wrote

you a thank you note (using her email) to let you know that

it’s been such a great help for us ?

As a small token of our appreciation, we all thought it

would be nice send along another resource that we came

across during our project:

http://www.directfitautoparts.com/simple-machines-used-

in-autos.html It has some helpful information and sites to

Appendix C: Fake Link Requests | 191

learn all about simple machines (wheels, axles, levers, pulleys,

etc.) that we thought could help other students as well.

And if you decided to add it to you other resources, I’d love

to show Mrs. Wright that the site was up to share with other

students learning about simple machines ?

But thanks again for your help! And I hope to hear back

from you soon.

Sincerely,

Emma Hanley (and the rest of Mrs. Wright’s class)

From: teachengineering-request@lists.colorado.edu

On Behalf Of teachengineering (noreply)

Sent: Tuesday, August 16, 2016 11:25 AM

To: teachengineering@lists.colorado.edu

Subject: Contact Us Feedback

Name: Morgan Konarski

Email: m.konarski@safekidsusa.net

Comments:

Hi there, I just wanted to send you a quick email on behalf

of my son Christian. Christian is currently participating in

“Camp Grandma” while my husband and I are at work. While

at “Camp Grandma” my mother tries and finds fun things for

the two of them to do during the day that are both fun and

educational. This week, my mother decided to teach Christian

all about STEM and the opportunities kids have in all of those

subjects. Christian has said he’s always wanted to be an

engineer, so my mother has been trying to find fun games

192 | Appendix C: Fake Link Requests

and resources for them to check out. Christian was so excited

and fascinated that he insisted on doing research of his on

last night on engineering and careers in this industry. He

came across your page https://www.teachengineering.org/

k12engineering/what and told me how helpful and easy to

understand your page was. As a mother, I just wanted to

thank you for making it and your help in encouraging my son

with your resources. He also came across this great article

with a lot of info about STEM careers, engineering basics,

and full of STEM resources. Christian thought it might be a

great addition to the links and resources on your page. Here

it is if you wanna check it out “Computer and STEM Careers

for Kids” https://www.vodien.com/blog/education/

computer-stem-careers.php Would you consider adding it for

me? I would love to surprise him and show him that his

research will help other kids learn all about STEM in a fun

way! Thank you so much, Morgan Konarski

Appendix C: Fake Link Requests | 193

Appendix D: I am robot…

A Word on robots.txt

The robots.txt file, when inserted into the root of the web server’s

file system, can be used by web designers and administrators to

communicate instructions to robot software on how to behave. For

instance, web administrators may wish to exclude certain pages

from being visited by robots or may want to instruct robots to wait

a certain amount of time before making any subsequent requests.

Instructions in the robot.txt file follow the so-called robot

exclusion protocol or robot exclusion standard developed by Martijn

Koster in 1994. Although the protocol is not part of an official

standard or RFC, it is widely used on the web.

Why do we care to provide instructions to robots visiting our

web pages? Well, we generally welcome those robots which, by

extracting information from our pages, may give back to us in the

form of high rankings in search engines; e.g., Googlebot and Bing.

Yet, we often want to prevent even these welcome robots from

visiting certain sections of our web site or specific types of

information. For instance, we might have a set of web pages which

are exclusively for administrative use and we do not want them

to be advertised to the rest of the world. It may be fine to have

these pages exposed to the world for some time without enforcing

authentication protocols, but we just do not want them advertised

on Google. Similarly, we might, at one time or other, decide that

an existing set of pages should no longer be indexed by search

engines. It might take us some time, however, to take the pages

down. Instructing robots in the meantime not to access the pages

might just do the trick.

Naturally, the rules and instructions coded in a robots.txt file

cannot be enforced and thus, compliance is entirely left to the robot

194 | Appendix D: I am robot…

and hence, its programmer. ‘Good’ robots always first request the

robots.txt file and then follow the rules and directives coded in the

file. Most (but not all) ‘bad’ or ‘ill-behaved’ robots —the ones which

do not behave according to the rules of the robots.txt file— do not

even bother to request the robots.txt file. Hence, a quick scan of

your web server log to see which robots requested the file is a good

(although not perfect) indication of the set of ‘good’ robots issuing

requests to your site.

The two most important directives typically used in a robots.txt

file are the User-Agent and Disallow directives. The User-Agent

directive is used to specify the robots to which the other directive(s)

are directed. For instance, the directive

User-Agent: *

indicates ‘all robots,’ whereas the directive

User-Agent: googlebot

specifies that the directives apply to googlebot.

Different directives can be specified for different robots. For

instance, the content:

User-agent: googlebot

Disallow: /private/

User-agent: bing

Disallow: /

disallows googlebot the private directory whereas bing is disallowed

the whole site.

Googlebot is a pretty ‘good’ robot, although it ignores certain

types of directives. It ignores, for instance, the Crawl-delay directive

which can be used to specify time (in seconds) between requests,

but at least it says so explicitly and publicly in its documentation.

Appendix D: I am robot… | 195

Sniffing Out Robots

Robots also can be a drain on data communications, data retrieval

and data storage bandwidth. About 2/3 of all HTTP requests

TeachEngineering receives originate from robots. Hence, we might

benefit (some) from limiting the ‘good’ robots from accessing data

we do not want them to access, thereby limiting their use of

bandwidth. Of course, for the ‘bad’ robots the robots.txt method

does not work and we must resort to other means such as blocking

or diverting them rather than requesting them not to hit us.

Regardless of whether or not we want robots making requests

to our servers, we might have good reasons for at least wanting to

know if robots are part of the traffic we serve and if so, who and

what they are and what percentage of the traffic they represent:

• We might want to try and separate humans ―you know, the

creatures which Wikipedia defines as “…a branch of the

taxonomical tribe Hominini belonging to the family of great

apes”― from robots, simply because we want to know how

human users use our site.

• We might want to know what sort of burden; e.g., demand on

bandwidth, robots put on our systems.

• We might just be interested to see what these robots are doing

on our site.

• Etc.

We can try separating robots from humans either in real time; i.e.,

as the requests come in, or after the fact. If our goal is to block

robots or perhaps divert them to a place where they do not burden

our systems, we must do it in real-time. Oftentimes, however,

separation can wait until some time in the future; for instance when

generating periodic reports of system use. In many cases a

combination of these two approaches is used. For instance, we can

use periodic after-the-fact web server log analysis to discover the

196 | Appendix D: I am robot…

robots which visited us in a previous period and use those data to

block or divert these robots real-time in the future.

Real-time Robot Sniffing:

Several methods for real-time robot sniffing exist:

• JavaScript-based filtering. Robots typically (although not

always!) do not run/execute the JavaScript included in the web

pages they retrieve. JavaScript embedded in web pages is

meant to be executed by/on the client upon retrieval of the

web page. Whereas standard web browsers try executing these

JavaScript codes, very few robots do. This is mostly due to the

fact that the typical robot is not after proper functionality of

your web pages, but instead is after easy-to-extract

information such as the content of specific HTML or XML tags

such as the ones containing web links. Hence, we can make use

of snippets of JavaScript code which will most likely only be

executed by browsers driven by humans. This is, for instance,

one reason why the hit counts collected by standard Google

Analytics accounts contain very few if any robot hits. After all,

to register a hit on your web page with Google Analytics, you

include a snippet of JavaScript in your web page containing the

registration request. This snippet, as we just mentioned, is in

JavaScript and hence, is typically not executed by robots.

There is, of course, no guarantee. For instance, we can write a

robot program which makes HTTP requests at web sites

through a regular browser. In that case, the browser just acts

as a front to the robot, but the JavaScript will get executed and

the robot makes it through the filter.

• Real-time interrogation. Sometimes we just want to be very

confident that a human is on the other end of the line. This is

the case, for instance, when we ask for opinions, customer

Appendix D: I am robot… | 197

feedback or sign-up or confidential information. In such cases,

we might opt to use a procedure which in real-time separates

the humans from the machines, for instance by as asking the

requester to solve a puzzle such as arranging certain items in a

certain way or recognizing a particular pattern. Of course, as

machines get smarter at solving these puzzles, we have to

reformulate the puzzles. A good example is Google’s moving

away some time ago from a puzzle which asked requesters to

recognize residential house numbers on blurry pictures.

Whereas for a while this was a reliable human/machine

distinguishing test, image-processing algorithms have become

so good that this test is no longer sufficient.

• Honeypotting. Another way of recognizing robots in real-time

is to set a trap into which a human would not likely step. For

instance, we can include an invisible link in a web page which

would not likely be followed by a human but which a robot

which follows all the links on a page ―a so-called crawler or

spider― would blindly follow.

We successfully used this technique in TE 1.0 where in each

web page we included an invisible link to a server-side

program which, when triggered, would enter the IP address of

the requester in a database table of ‘suspected’ IPs. Every

month, we would conduct an after-the-fact analysis to

determine the list of (new) robots which had visited us that

month. The ones on the ‘suspect’ list were likely candidates.

Once again, however, there is no guarantee since nothing

prevents an interested individual to pull up the source of an

HTML page, notice the honeypot link and make a request

there, just out of curiosity.

• Checking a blacklist. It may also be possible to check if the IP

of an incoming request is included in one or more blacklists.

Consulting such lists as requests come in may help sniffing out

returning robots. Blacklists can be built up internally. For

instance, one of the products of periodic in-house after-the-

fact robot sniffing is a list of caught-in-the-act robots.

198 | Appendix D: I am robot…

Similarly, one can check IPs against blacklisted ones at public

sites such as http://www.projecthoneypot.org/

Of course, checking against blacklists takes time and especially

if this checking must be done remotely and/or against public

services, this might not be a feasible real-time option. It is,

however, an excellent option for after-the-fact robot sniffing.

After-the-fact Robot Sniffing

Just as for real-time robot sniffing, several after-the-fact―ex post if

you want to impress your friends― robot detection methods exist.

• Checking a blacklist. As mentioned at the end of the previous

section, checking against blacklists is useful. If the IP address

has been blacklisted as a robot or bad robot, it most likely is a

robot.

• Statistics. Since robots tend to behave different from humans,

we can mine our system logs for telltale patterns. Two of the

most telling variables are hit rates and inter-arrival times; i.e.,

the time elapsed between any two consecutive visits by the

same IP. Robots typically have higher hit rates and more

regular inter-arrival times than humans. Hence, there is a good

chance that at the top of a list sorted by hit count in

descending order, we find robots. Similarly, if we compute the

variability; e.g., the standard deviation of inter-arrival times

and we sort that list in ascending order ―smallest standard

deviations at the top― we once again find the robots at the

top. Another way of saying this is that since robots tend to

show very regular or periodic behavior, we should expect to

see very regular usage patterns.

Appendix D: I am robot… | 199

Thought Exercise D.1:
Here we explore this statistical approach for a single

month; i.e., April 2016 of TE 1.0 usage data. Assume a table

in a (MySQL) relational database called april_2016_hits.

Assume furthermore that from that table we have removed

all ‘internal’ hits; i.e., all hits coming from inside the

TeachEngineering organization. The april_2016_hits table

has the following structure:

Field Type Nullability Key

id int(11) no primary

host_ip varchar(20) no

host_name varchar(256) yes

host_referer varchar(256) yes

file varchar(256) no

querystring varchar(256) yes

username varchar(256) yes

timestamp datetime no

◦ Find the total number of hits:

select count(*)
from april_2016_hits;

777,018

◦ Find the number of different IPs:

select count(distinct(host_ip))
from april_2016_hits;

296,738

200 | Appendix D: I am robot…

◦ Find the 15 largest hitters and their hit counts

in descending order of hit count:

select host_ip, count(*) as mycount
from april_2016_hits
group by host_ip
order by mycount desc
limit 15;

Appendix D: I am robot… | 201

Figure 1: 15 largest April 2016 hitters and their hi

IP Hit
count

106.38.241.1
11

76.8.237.126

52.207.222.
53

161.97.140.2

199.15.233.1
62

52.10.17.20

70.32.40.2

54.208.169.1
26

96.5.120.25
0

96.5.121.250

192.187.119.1
86

69.30.213.8
2

52.11.40.118

107.152.3.27

52.91.70.160

40
07

206
5

134
2

126
5

105
1

103
4

969

934

933

893

792

772

766

733

696

Notice the exponential pattern (Figure 1).

◦ Let us first see if we can track these top two

202 | Appendix D: I am robot…

IPs down a bit (https://www.ultratools.com/

tools/ipWhoisLookupResult):

▪ 106.38.241.111: CHINANET-BJ, Beijing,

China. projecthoneypot.org flags this IP

as a likely robot (possible harmless spider)

▪ 76.8.237.126: TELEPAK-NETWORKS1, C-

Spire Fiber, Ridgeland, MS.

projecthoneypot.org does not have data

on this IP.

◦ Next, let us take a look at the hit patterns.

The first 100 timestamps by 106.38.241.111 in

April 2016:

select timestamp
from april_2016_hits
where host_ip = '106.38.241.111'
order by timestamp desc
limit 100; --(The inter-arrival times were computed

from the data returned
from the database query)

Appendix D: I am robot… | 203

Day Time Inter-arrival
time

Inter-arrival
time (secs)

4/8/2016 11:29:47

4/8/2016 11:31:53 0:02:06 126

4/8/2016 11:33:04 0:01:11 71

4/8/2016 11:36:24 0:03:20 200

4/8/2016 11:37:33 0:01:09 69

4/8/2016 11:38:42 0:01:09 69

4/8/2016 11:39:50 0:01:08 68

4/8/2016 11:41:00 0:01:10 70

4/8/2016 11:42:09 0:01:09 69

4/8/2016 11:43:20 0:01:11 71

4/8/2016 11:45:44 0:02:24 144

4/8/2016 11:46:52 0:01:08 68

4/8/2016 11:48:02 0:01:10 70

4/8/2016 11:49:12 0:01:10 70

4/8/2016 11:50:25 0:01:13 73

4/8/2016 11:51:33 0:01:08 68

4/8/2016 11:52:43 0:01:10 70

4/8/2016 11:53:51 0:01:08 68

4/8/2016 11:55:02 0:01:11 71

4/8/2016 11:57:46 0:02:44 164

4/8/2016 11:58:54 0:01:08 68

4/8/2016 12:00:09 0:01:15 75

4/8/2016 12:01:24 0:01:15 75

4/8/2016 12:02:36 0:01:12 72

4/8/2016 12:03:48 0:01:12 72

204 | Appendix D: I am robot…

4/8/2016 12:05:00 0:01:12 72

4/8/2016 12:07:19 0:02:19 139

4/8/2016 12:08:32 0:01:13 73

4/8/2016 12:09:42 0:01:10 70

4/8/2016 12:10:52 0:01:10 70

4/8/2016 12:12:04 0:01:12 72

4/8/2016 12:13:18 0:01:14 74

4/8/2016 12:15:40 0:02:22 142

4/8/2016 12:16:47 0:01:07 67

4/8/2016 12:17:55 0:01:08 68

4/8/2016 12:19:03 0:01:08 68

4/8/2016 12:20:12 0:01:09 69

4/8/2016 12:21:22 0:01:10 70

4/8/2016 12:22:38 0:01:16 76

4/8/2016 12:23:46 0:01:08 68

4/8/2016 12:24:59 0:01:13 73

4/8/2016 12:27:14 0:02:15 135

4/8/2016 12:28:23 0:01:09 69

4/8/2016 12:33:00 0:04:37 277

4/8/2016 12:34:08 0:01:08 68

4/8/2016 12:37:29 0:03:21 201

4/8/2016 12:38:41 0:01:12 72

4/8/2016 12:39:48 0:01:07 67

4/8/2016 12:40:56 0:01:08 68

4/8/2016 12:42:05 0:01:09 69

When studying the inter-arrival times; i.e.,

the time periods between hits, we notice that at

Appendix D: I am robot… | 205

least in the first 100 hits, there are no hits

within the same minute. When checked over

the total of 4,007 hits coming from this IP, we

find only 46 hits (1.1%) which occur within the

same minute and we find no more than two

such hits in any minute. Such a regular pattern

is quite unlikely to be generated by humans

using the TeachEngineering web site. Moreover,

the standard deviation of the inter-arrival times

(over the first 100 hits) is 38.12 seconds,

indicating a very periodic hit frequency. When

we remove the intervals of 100 seconds or

more, the standard deviation reduces to a mere

2.66 seconds and the mean inter-arrival time

becomes 70.46 seconds.

Finally, Figure 2 shows a histogram of the

inter-arrival times for the first 100 hits. It

indicates regular clustering at multiples of 70

minutes (70, 140, 210 and 280 minutes).

206 | Appendix D: I am robot…

Figure 2: histogram of the inter-arrival times for the
first 100 hits by IP 106.38.241.111.

These data indicate a very periodic behavior

which makes intra-minute hits very rare

indeed. From these data, plus the fact that this

IP has been flagged by projecthoneypot.org, we

can conclude that this IP represented a robot.

◦ For IP 76.8.237.126 we find the following

distribution of hits over the days in April:

select day(timestamp), count(*) from april_2016_hits
where host_ip = '76.8.237.126'
group by day(timestamp)
order by day(timestamp);

Appendix D: I am robot… | 207

Day (date) Hit count

1 1

4 9

5 1436

6 577

7 2

8 1

11 10

12 2

13 8

14 1

15 6

19 10

22 2

We notice that 97.5% (1436+577)/2065) of this

IP’s activity occurred on just two days: April 5th

and 6th.

Looking at the 1,436 hits for April 5th, we find

a mean inter-arrival time of 18.39 seconds and

an inter-arrival time standard deviation of 194

seconds. This is odd. Why the high standard

deviation? Looking through the records in the

spreadsheet (not provided here) we find five

pauses of 1000 seconds or more. After

eliminating these, the mean drops to 8.14

seconds and the standard deviation reduces to

a mere 16 seconds.

208 | Appendix D: I am robot…

These data are compatible with at least two

scenarios:

1. A robot/spider/crawler which either

pauses a few times or which gets stuck

several times after which it gets restarted.

2. A two-day workshop where (human)

participants connect to TeachEngineering

through a router or proxy server which,

to the outside world, makes all traffic

appear as coming from a single machine.

Looking a little deeper, the 1000+ second

pauses mentioned above appeared at typical

workday break intervals: 8:00-9:00 AM,

12:00-1:00 PM, etc.

At this point we looked at the actual requests

coming from this IP to see if these reveal some

sort of pattern we can diagnose. We retrieved a

list of requests, over both days in April, ordered

by frequency:

select file, count(*) from april_2016_hits
where host_ip = '76.8.237.126'
and (day(timestamp) = 5 or day(timestamp) = 6)
group by file
order by count(*) desc;

The results are telling:

Appendix D: I am robot… | 209

File Hit
count

/livinglabs/earthquakes/
socal.php 1034

/index.php 476

/livinglabs/earthquakes/
index.php 395

/livinglabs/index.php 30

/view_activity.php 29

/livinglabs/earthquakes/
sanfran.php 8

/livinglabs/earthquakes/
japan.php 6

/livinglabs/earthquakes/
mexico.php 6

/browse_subjectareas.php 4

/browse_lessons.php 4

/googlesearch_results_adv.php 4

/login.php 3

/whatisengr.php 2

/whyk12engr.php 2

/history.php 2

/ngss.php 2

/browse_curricularunits.php 2

/search_standards.php 1

/about.php 1

/view_lesson.php 1

/googlesearch_results.php 1

The vast majority of requests are associated

with a very specific and small set of

210 | Appendix D: I am robot…

TeachEngineering activities, namely the

Earthquakes Living Lab, with more than 40% of

the hits requesting the home pages of

TeachEngineering (index.php) and the

Earthquakes lab (/livinglabs/earthquakes/

index.php). Whereas this is not your typical

robot behavior, it is quite compatible with a

two-day workshop on earthquake-related

content where people come back to the system

several times through the home page, link

through to the Earthquakes Lab and take things

from there.

Appendix D: I am robot… | 211

Creative Commons License

This work is licensed by René Reitsma under a

Creative Commons Attribution-NonCommerical-Share

Alike 4.0 International License (CC BY-NC-SA)

You are free to:

Share — copy and redistribute the material in any

medium or format

Adapt — remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as

you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide

a link to the license, and indicate if

changes were made. You may do so in any reasonable

manner, but not in any way that suggests

the licensor endorses you or your use.

NonCommercial — You may not use the material for

commercial purposes.

ShareAlike — If you remix, transform, or build upon the

material, you must distribute your contributions under

the same license as the original.

No additional restrictions — You may not apply legal

terms or technological measures that legally restrict

others from doing anything the license permits.

212 | Creative Commons License

Recommended Citations

APA outline:

Source from website:

• (Full last name, first initial of first name). (Date of publication).

Title of source. Retrieved

from https://www.someaddress.com/full/url/

Source from print:

• (Full last name, first initial of first name). (Date of publication).

Title of source. Title of container (larger whole that the source

is in, i.e. a chapter in a book), volume number, page numbers.

Examples

If retrieving from a webpage:

• Berndt, T. J. (2002). Friendship quality and social

development. Retrieved from insert link.

If retrieving from a book:

• Berndt, T. J. (2002). Friendship quality and social

development. Current Directions in Psychological

Science, 11, 7-10.

MLA outline:

Author (last, first name). Title of source. Title of container (larger

Recommended Citations | 213

whole that the source is in, i.e. a chapter in a book), Other

contributors, Version, Number, Publisher, Publication Date,

Location (page numbers).

Examples

• Bagchi, Alaknanda. “Conflicting Nationalisms:

The Voice of the Subaltern in Mahasweta Devi’s

Bashai Tudu.” Tulsa Studies in Women’s Literature,

vol. 15, no. 1, 1996, pp. 41-50.

• Said, Edward W. Culture and Imperialism. Knopf,

1994.

Chicago outline:

Source from website:

• Lastname, Firstname. “Title of Web Page.” Name of Website.

Publishing organization, publication or revision date if

available. Access date if no other date is available. URL .

Source from print:

• Last name, First name. Title of Book. Place of publication:

Publisher, Year of publication.

Examples

214 | Recommended Citations

• Davidson, Donald, Essays on Actions and Events.

Oxford: Clarendon, 2001.

https://bibliotecamathom.files.wordpress.com/

2012/10/essays-on-actions-and-events.pdf.

• Kerouac, Jack. The Dharma Bums. New York:

Viking Press, 1958.

Recommended Citations | 215

Version Date Change Made Location in text

0.1 MM/DD/YYYY

Versioning

This page provides a record of changes made to this guide. Each set

of edits is acknowledged with a 0.01 increase in the version number.

The exported files for this toolkit reflect the most recent version.

If you find an error in this text, please fill out the form at bit.ly/

33cz3Q1

216 | Versioning

	A Tale of Two Systems
	Contents
	Preface
	About the Authors
	Acknowledgements
	TeachEngineering (TE) Overview
	Why Build (Twice!) Instead of Buy, Rent or Open Source?
	TE 1.0 – XML
	TE 2.0 – JSON
	Relational (TE 1.0) vs. NoSQL (TE 2.0)
	Document Accessioning
	Why Build Revisited
	The Develop… Test… Build… Deploy Cycle

	Appendix A: When Editing Code Files, Use a Text Editor; Not(!) a Word Processor
	Appendix B: (Unintended?) Denial of Service Attack
	Appendix C: Fake Link Requests
	Appendix D: I am robot…
	Creative Commons License
	Recommended Citations
	Versioning

