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Preface

This volume grew from sets of lecture notes by Thierry Giordano, Barry Jessup, and Monica Nevins for
teaching the course Introduction to Linear Algebra at the University of Ottawa. This book is intended
to serve as a text or companion to the course.

The approach we take in this book is not standard: we introduce vector spaces very early and only
treat linear systems after a thorough introduction to vector spaces.

We do this for at least two reasons. Our experience in teaching variations of this course over the
past 25 years to thousands of students has taught us that the material on vector spaces, usually found
toward the end of the course in a traditional textbook, is generally experienced by students as the most
difficult part of the course. In a 12 week course, to have the most difficult material near the end of the
course does not give most students enough opportunity to come to grips with the (seemingly) new ideas
introduced when we meet vector spaces for the first time.

In our experience, starting with vector spaces within the first two weeks allows students much more
time to appropriate the ‘big’ ideas in linear algebra: the notions of the set of all linear combinations of
vectors (the ‘span’) and the ‘linear independence’ of vectors. These notions lie at the heart of linear
algebra and are usually experienced as new and challenging by students who see them for the first time.
So, the sooner they see them, the better: we can use them, as well as the notions of basis and dimension
in the rest of the course, in different contexts. In this way, it has been our experience that most students
prefer to see the challenging material as early as possible, so that they have time to acquaint themselves
with material that is genuinely new and different from what they’ve seen in high school.

Another reason to tackle vector spaces as soon as possible is to alert students to the fact that there is
genuinely new and different material in the course! If one begins with material on linear systems many
students have seen in high school, (in low dimensions, at least), some can easily fall prey to the idea
that there’s not much to this course, will and will be at caught later on when vector spaces come along.
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A major theme of linear al-
gebra is how to generalize
ideas in geometry to higher di-
mensions, by interpreting geo-
metric ideas algebraically. At
the same time, one finds that
thinking about an algebraic
problem geometrically gives
insights into the algebra.

We begin our exploration of
these themes with a study of
the complex numbers, and
then a review of some high
school geometry (with an eye
to extending some of ideas
there to higher dimensions).
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1. Complex Numbers

In brief, one might say that algebra is the study of solutions of polynomial equations. Linear algebra is
then the study of solutions to linear equations. (It gets interesting when you allow multiple variables
and multiple equations, but we’ll get to that later.)

For today, let’s look at an application of Algebra, as a “welcome back to algebra” for everyone
after a long summer away, and as a heads up to our Engineers (particularly Electrical Engineers) and
Physicists who will soon be using complex numbers all the time.

1.1 Defining the Complex Numbers
The history of the complex numbers is very interesting: it does not begin, as one might think, with the
equation

x2 +1 = 0,

but rather with cubic equations! Everyone was certain that x2 +1 = 0 has no solutions – just look at the
graph of y = x2 +1, they’d argue.1 However every cubic equation (with real coefficients) does indeed
have at least one real solution - and imaginary numbers (they were called ‘impossible’ numbers for
some time) were invented to obtain formulae for the real roots of cubics.2

Nevertheless, let us denote one solution of x2 + 1 = 0 by i, for “imaginary” (notation thanks to
Euler, 1777):

i2 =−1 or i =
√
−1.

Now we define for a negative real number a,
√

a := (
√
|a|)i.

1Indeed, in ancient times one would have said that x+1 = 0 has no solutions either, since negative numbers don’t represent
quantities.

2Search the web for “the history of complex numbers".
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This may seem a bit fussy, but if we simply try to apply the normal rules of algebra, such as in:
√
−9 =

√
9 · (−1) =

√
9 ·
√
−1 = 3i,

we obtain the correct answer, but much caution is needed at the third equality.3 Stick with the fussy
definition for now!

(Please note that here, as in Calculus, we adhere to the convention that for real a,
√

a2 = |a|, that is,
the answer is the one positive square root, and not a choice of them.)

Now i alone is not quite enough. Consider the equation

x2 +4x+8 = 0.

By the quadratic formula, its roots are the two numbers

x =
−4±

√
16−32

2
=−2± 1

2

√
−16 =−2± 1

2
(4i) =−2±2i.

Let’s check that this makes sense: Plug x = (−2+2i) into the quadratic equation and simplify:

(−2+2i)2 +4(−2+2i)+8 = (4−4i−4i+4i2)+(−8+8i)+8 = 4+4i2 = 0

where in the last step we remembered that i2 =−1. Similarly we can check that −2−2i is also a root.
With these thoughts (and the quadratic formula) in mind, we make the following definition.

Definition 1.1.1 The set of complex numbers is the set

C= {a+bi : a,b ∈ R}.

(Read this as: “the set of all things of the form a+bi where a and b are real numbers”.)
When we write

z = a+bi ∈ C

(read as: z (or a+bi) belongs to C), then a is called the real part of z (denoted Re(z)) and b is called
the imaginary part of z (denoted Im(z)). Note that Re(z) and Im(z) are real numbers!

When Re(z) = 0 then z = bi and we say z is purely imaginary; when Im(z) = 0 then z = a is real.
Thus R⊂ C (read as: R is a subset of C).

The real numbers were drawn as the real number line; the complex numbers are drawn as the
complex plane as we shall soon see.

So notice that given any quadratic equation ax2 +bx+ c = 0, with real coefficients a,b,c, the roots
are

x =
−b
2a
±
√

b2−4ac
2a

.

If b2−4ac≥ 0, the roots are real, otherwise, they are complex numbers. So now EVERY quadratic
equation has two roots (counting a double root as two, now and always).

3A real course in Complex Analysis is needed here, otherwise one can get into trouble: e.g. 9 =
√

81 =
√

(−9)(−9) ̸=√
−9
√
−9 = 3i3i =−9. Indeed, the rule for positive real numbers a,b that (correctly) states:

√
ab =

√
a
√

b does not hold
in general. This may seem like a nuisance but is actually the source of lots of interesting math: search the web for “Riemann
surfaces and the square root".
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1.2 Algebra of the Complex Numbers

• Equality: a+bi = c+di⇔ a = c and b = d;
• Addition: (a+bi)+(c+di) = (a+ c)+(b+d)i
• Multiplication: (a+bi)(c+di) = (ac−bd)+(ad +bc)i

In fact, complex numbers satisfy all the same properties as R except there is no ordering (that is, “z > y”
doesn’t make sense).

What about division?
Problem 1.2.1 Solve (4+3i)z = 1, if possible; that is, what do we mean by

z =
1

4+3i
?

(PLEASE PLEASE remember that 1
2+3 ̸=

1
2 +

1
3 !!!!)

Solution The idea: remember that i is a square root – so use the standard trick of algebra called
rationalizing the denominator.

So
(a+bi)(a−bi) = a2− (bi)2 = a2 +b2

As a and b are real, a2 +b2 ̸= 0, unless both a and b are zero. So for z = a+bi, let
• z = a−bi, the complex conjugate of z
• |z|=

√
a2 +b2, the absolute value, or modulus, of z

(Note: z = 0 if and only if (iff) |z| = 0; and we CAN compare moduli of complex numbers:
|i|= |1|> |0|. Also note that we used complex conjugates in the quadratic formula; this is familiar!)

Now we have
zz = |z|2

so

z ·
(

z
|z|2

)
= 1

or
1
z
=

z
|z|2

.

Excellent! So

1
4+3i

=

(
1

4+3i

)(
4−3i
4−3i

)
=

4−3i
42 +32 =

4−3i
25

=
4
25
− 3

25
i.

Problem 1.2.2 Simplify
3+2i
−2+4i

Solution Multiply by 1 = −2−4i
−2−4i :

3+2i
−2+4i

=
3+2i
−2+4i

· −2−4i
−2−4i

=
(3+2i)(−2−4i)
4+8i−8i−16i2

=
2−16i

20
=

1
10
− 4

5
i.

This is what we wanted: the answer is in a form that we recognize as a complex number.

Some other properties (easy to prove):
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Lemma 1.2.3 — Properties of Complex Numbers. Complex conjugation has the following
properties. Suppose that z,w ∈ C and c ∈ R.

•
1
z
=

z
|z|2

• z+w = z+w.
• cz = cz.
• zw = z w.
• z/w = z/w.

• z = z (eg: 3+2i = 3−2i = 3+2i)
• z = z iff z ∈ R
• z =−z iff z is purely imaginary
• |z| ∈ R and |z| ≥ 0
• |z|= |z|
• |zw|= |z| |w|
• |z/w|= |z|/|w|
• |z+w| ≤ |z|+ |w| (‘Triangle inequality’)
• If a is a real number then |a+0i| is the absolute value of a. (So we just write z = a rather than

z = a+0i; there’s no problem.)
Essentially what this is saying is that in any expression for a complex number z, the expression for z
is given by replacing each occurence of the symbol “i” with “−i”; you don’t have to simplify it first.

Proof. (You can discuss these with me, or with the TA in the DGD. Proving such things is important
because it shows you WHY something is true, and that in turn makes it hard to forget, or remember
falsely.)

(2) Suppose z and w are complex numbers. That means z = a+bi for some real numbers a and b,
and w = c+di for some real numbers c and d. Then

z+w = (a+ c)+(b+d)i so z+w = (a+ c)− (b+d)i.

On the other hand, z = a−bi and w = c−di, so that

z+w = (a+ c)+(−b−d)i = (a+ c)− (b+d)i.

Hence the two sides are equal, which completes the proof.
We prove another one, and leave the rest as exercises. (For the triangle inequality, it’s easier to use

geometry, below; and for the multiplicative property, it’s easier to use polar form.)
(10) Suppose z is a complex number. Then

|z|=
√

zz

whereas

|z|=
√

z z =
√

zz =
√

zz = |z|

by all that we’ve established before. So the two are equal. ■
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1.3 Geometry of the complex numbers

Each complex number is written as a+bi with a and b real numbers. To picture this, think of a+bi as
the point (a,b) in the xy-plane. Then a+bi is a point in the plane, which in this context we call the
complex plane. The horizontal axis is called the real axis and the vertical axis is called the imaginary
axis.

Addition of two complex numbers is the same as the addition of two vectors in the plane. The
negation of a complex number is just the negation of the corresponding vector. Multiplication by
real numbers is just scalar multiplication, but multiplication by complex numbers is a combination of
rotation and scaling (try it out!).

Complex conjugation is just the reflection of the vector through the real axis. So if z = a+bi then
z = a−bi.

The modulus of z is just the length of the vector representing z. (Recall that the length of the vector
from the origin to (a,b) is

√
a2 +b2. )

1.4 Polar Form of Complex Numbers

These are also called “polar coordinates” and show up in Calculus II, for the real plane.
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So if z = x+ y i ∈ C then
x
r
= cos(θ),

y
r
= sin(θ)

and

r = |z|=
√

x2 + y2

Therefore:

z = x+ yi = r cos(θ)+ ir sin(θ) = r(cos(θ)+ isin(θ)).

(Note that θ = arg(z) (argument of z) is not uniquely determined, since θ ′ = θ + 2nπ , n ∈ Z, also
works. We usually pick −π < θ ≤ π and write θ = Arg(z), the principal argument of z.)

In 1748, Euler proved

ez = 1+ z+
z2

2
+ · · ·=

∞

∑
n=0

zn

n!

(power series) so in fact by comparing power series with trig functions we get, surprisingly,

eiθ = cos(θ)+ isin(θ).

So modern notation is: the polar form of the complex number z is

z = reiθ .

■ Example 1.4.1 See the diagram below and check that 2i = 2ei π

2 , −i = e−i π

2 , −1 = eiπ , and 1+ i =√
2ei π

4 ■
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We have
• reiθ = r′eiθ ′ iff r = r′ and θ = θ ′+2nπ , some n ∈ Z.
• reiθ = re−iθ

• |eiθ |= 1 for any θ

1.5 Multiplying complex numbers in polar form
Note that if z = reiθ and w = seiφ then

zw = (r(cos(θ)+ isin(θ)))(s(cos(φ)+ isin(φ))

= (rs)((cos(θ)cos(φ)− sin(θ)sin(φ))+ i(cos(θ)sin(φ)+ sin(θ)cos(φ)))

= rs(cos(θ +φ)+ isin(θ +φ))

= rsei(θ+φ)

That is: it’s like the usual multiplication with exponents. (Same for division.)

Problem 1.5.1 Compute
i

1+ i

Solution From before, we have i = ei π

2 and 1+ i =
√

2ei π

4 so

i
1+ i

=
ei π

2
√

2ei π

4
=

1√
2

ei π

4
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(check, using the long method!)

1.6 The Fundamental Theorem of Algebra
We noted above that every quadratic polynomial with real coefficients has two roots, and in fact if one
root was complex and not real, then so was the other, and the two roots are complex conjugates.

Conversely, given a complex number z, one polynomial with roots z and z is

(x− z)(x− z) = x2− (z+ z)x+ zz.

Is this a polynomial with real coefficients? YES! Write z = a+ ib, then z+ z = 2a, which is real; and
zz is real (as we proved earlier).

So: every real polynomial has complex roots, and every complex number is the root of some real
polynomial.

That said, if you take two complex numbers z and w which are not conjugate, then (x− z)(x−w)
will just be some random quadratic polynomial with complex coefficients. Which begs the question: if
you take all quadratic polynomials with complex coefficients, and use the quadratic formula to solve
them, what extra numbers (like i) do you need this time?

Answer: NONE. The complex numbers are the top of the heap, and all you’ll ever need:

Theorem 1.6.1 — Fundamental Theorem of Algebra. Every polynomial with coefficients in the
complex numbers factors completely into linear factors of the form ax+b, with a,b ∈ C.

1.7 Some musings about the meaning of the Fundamental Theorem of Algebra
This answers a really big nagging problem of algebra: shouldn’t every quadratic have 2 roots, and every
cubic 3 (allowing multiple roots)? But the quadratic x2 +2 didn’t have any roots over the reals.

In Calculus, we accept this by sketching the graph of y = x2 + 2 and saying, “Look, it doesn’t
intersect the x-axis. That explains it.”

“Explains what, exactly?” an algebraist responds. “You’re still missing two roots.”
In algebra, we are looking for unifying themes, things that are common across all problems of a

particular type. We look for wonderful universal solutions. The complex numbers are one example of a
universal solution: we added

√
−1 and suddenly all problems were solved: x2 +2 has two roots, and

ix7 +3x2− (4+ i) has 7 roots.
(Well, one might admit, not all problems are completely solved. The Fundamental Theorem of

Algebra doesn’t say ANYTHING about FINDING the roots. It just says that they exist. We end up
going back to Calculus for help in finding them.)

For the rest of this course, we will be considering LINEAR algebra, which is a particular branch of
algebra where, it turns out, there are fantastically universal solutions to absolutely everything (not just
“existence”, but actually ways of finding solutions!).

Problems
Those marked with a ⋆ have solutions at the back of the book. Try them yourself first.
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Problem 1.1 ⋆

Express the following complex numbers in Cartesian form: a+bi, with a,b ∈ R.

a) (2+ i)(2+2i)

b)
1

1+ i

c)
8+3i
5−3i

d)
5+5

√
3 i√

2−
√

2 i

e)
(1+2i)(2+5i)

3+4i

f)
1− i
2− i

+
2+ i
1− i

g)
1

(1− i)(3−2i)

Problem 1.2 ⋆Find the polar form of the following complex numbers: (i.e., either as reiθ or as
r(cosθ + isinθ), with r ≥ 0 and −π < θ ≤ π)

a) 3
√

3−3i

b)
3
√

3−3i√
2+ i
√

2

c)
1−
√

3i
−1+ i

d)
5+5

√
3i√

2−
√

2i

e)
3+3

√
3i

−2+2i

Problem 1.3 Find the modulus of each of the complex numbers in questions 1 & 2. (Remember that

|zw|= |z| |w| and that if w ̸= 0, then
∣∣∣ z
w

∣∣∣= |z||w| .)
Problem 1.4 ⋆If z is a complex number,

(i) Is it possible that z = z̄?
(ii) Is it possible that |z̄|> |z|?
(iii) Is it possible that z̄ = 2z?

Give examples to illustrate your affirmative answers, and explanations if you say the statement is
always false.
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Problem 1.5 For budding algebraists...
Show that there is no ‘proper’ ordering on the complex numbers, that is, there is no binary relation >
with the property that if x > 0 and y > z then xy > xz.



2. Vector Geometry

Much of the material in this chapter may be review from high school, but it allows us to set the stage
for the upcoming chapters.

2.1 Vectors in Rn

Vector comes from the Latin vehere, which means to carry, or to convey; abstractly we think of the
vector as taking us along the arrow that we represent it with. For example, we use vectors in Physics to
indicate the magnitude and direction of a force.

Let’s use our understanding of the geometry and algebra of vectors in low dimensions (2 and 3) to
develop some ideas about the geometry and algebra in higher dimensions.

Algebra Geometry
R, real numbers, scalars real line
R2 = {(x,y)|x,y ∈ R}, vectors u = (x,y) plane
R3 = {(x,y,z)|x,y,z ∈ R}, vectors u = (x,y,z) 3-space
...
(why not keep going?)
...
R4 = {(x1,x2,x3,x4)|xi ∈ R}, vectors x = (x1,x2,x3,x4)
Hamilton (1843): extended C to hamiltonians space-time

n ∈ Z, n > 0: Rn = {(x1,x2, · · · ,xn)|xi ∈ R}
x = (x1, · · · ,xn) n-space
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Notation
We have several different notations which we use for writing vectors, which we use interchangeably:

• x = (1,2,3,4)

• x =


1
2
3
4


• x =

[
1 2 3 4

]T , where the exponent T stands for tranpose. (Transposition means turning
rows into columns (and vice versa).)

The vertical notation (also referred to as matrix form) is the easiest to read but the first one is easier to
write.

(The reason for the vertical vector notation comes from matrix multiplication, which we’ll get to
later.)

2.2 Manipulation of vectors in Rn

The algebraic rules for Rn extend directly from the algebraic rules for R2 and R3:
• Equality: (x1, · · · ,xn) = (y1, · · · ,yn)⇔ xi = yi for all i ∈ {1, · · · ,n}. (In particular, (x1, · · · ,xn) ̸=
(y1, · · · ,ym) if n ̸= m.)

• Addition: (x1, · · · ,xn)+(y1, · · · ,yn) = (x1 + y1, · · · ,xn + yn)
• Zero vector: 0 = (0,0, · · · ,0) ∈ Rn

• Negative: if x = (x1, · · · ,xn) then −x = (−x1, · · · ,−xn)
• Multiplication by a scalar: let c ∈ R be a scalar, then c(x1, · · · ,xn) = (cx1, · · · ,cxn)

Note that we don’t have any way of multiplying two vectors; the closest we can get to that is the dot
product, which gives a scalar as an answer, or the cross product, which only works in R31. There’s
even a way to have ‘multi-products’ of n−1 vectors in Rn, and get an answer in Rn. Once you’ve seen
the determinant later, you’ll know exactly what to do if you look again at the definition of the cross
product.

There are geometric interpretations of each of the above algebraic rules, which we can draw in 2
(and 3, if you draw well) dimensions.

• Equality: two vectors are equal if they have the same magnitude and direction
• Addition: parallelogram rule, or head-to-tail rule
• Zero vector: the vector with zero length
• Negative: the same arrow with head and tail exchanged
• Scalar multiple: scale the vector by |c|, and change direction if c < 0; or: two vectors are parallel

if and only if they are scalar multiples of one another.

2.3 Linear combinations (Important Concept!)
The only operations we have are: vector addition, and scalar multiplication. We are going to be
interested in the question: If I already have the vectors u1, u2, · · · , um (that is, m vectors in Rn), can I
produce another vector by scaling each vector and adding them together, in some way?

By analogy: Say u1 is parallel to Bank Street pointing north and u2 is parallel to Laurier Ave,
pointing east; then I can get anywhere downtown by going in the direction of u1 (or its negative) for a

1However, there are ways generalize the cross product in Rn for every n, but the product doesn’t live in Rn! Search the
web for ‘exterior algebra’.
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little way, and then taking direction u2 (or its negative) for a little way. But I can’t get underground, or
into the air, by following those directions. I’m stuck on the plane which is the ground.

Algebraically, this all comes down to the following definition.

Definition 2.3.1 If k1,k2, · · · ,km ∈ R are scalars, and u1,u2, · · · ,um ∈ Rn are vectors, then

k1u1 + k2u2 + · · ·+ kmum

is called a linear combination of u1,u2, · · · ,um.

■ Example 2.3.2 Let u1 = (1,2,3) and u2 = (1,0,0).
Then x = (17,4,6) is a linear combination of u1 and u2 because17

4
6

= 2

1
2
3

+15

1
0
0

 .

But y = (0,1,0) is not a linear combination of u1 and u2 because the equation0
1
0

= a

1
2
3

+b

1
0
0

 (2.1)

would imply 0
1
0

=

 a
2a
3a

+

b
0
0


=

a+b
2a
3a


So that

0 = a+b, 1 = 2a, and 0 = 3a;

but the second and third equations are contradictory, so there cannot be a solution to (2.1). Thus y isn’t
a linear combination of u1 and u2. ■

2.4 Properties of vector addition and scalar multiplication
Note that all the usual algebraic properties of addition and scalar multiplication hold, whether our
vectors have 2 components or n components. That is, let u,v,w ∈ Rn and let c,c′ ∈ R; then we have:

• u+0 = u
• u+(−u) = 0
• (u+v)+w = u+(v+w)
• u+v = v+u
• c(u+v) = cu+ cv
• (c+ c′)u = cu+ c′u
• (cc′)u = c(c′u)
• 1u = u

Bear these properties in mind, as they are the key to generalizing to vector spaces beyond Rn.
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2.5 More geometry: the Dot Product in Rn

The dot product (also called an inner product) gives us an algebraic way to describe some interesting
geometric properties: length of a vector, and angle between two vectors.

Recall the dot product from R3:
Let u = (x1,x2,x3) and v = (y1,y2,y3) be two vectors in R3. Then their dot product is

u ·v = x1y1 + x2y2 + x3y3.

Note that this is a scalar.
Once we have the dot product, we define:

• ∥u∥=
√

x2
1 + x2

2 + x2
3 =
√

u ·u, the length or norm of u;
• ∥u−v∥ is the distance between u and v.

We can see that this is correct, by drawing a cube with main diagonal u and noting that the length of
the main diagonal is given by the square root of the sum of the squares of the lengths of the sides by
repeated applications of the Pythagorean theorem.

So, let’s generalize this to Rn:

Definition 2.5.1 Let u = (x1, . . . ,xn) and v = (y1, . . . ,yn) be vectors in Rn. Then their dot product is
defined to be

u ·v = x1y1 + · · ·+ xnyn

and the norm of u is defined to be

∥u∥=
√

u ·u =
√

x2
1 + · · ·+ x2

n

We sometimes call Rn, equipped with the dot product, Euclidean n-space.a

aAs opposed to, for example, ’Minkowski spacetime’, where the ‘lengths’ of vectors can be imaginary! Search the
web for ‘minkowski space wiki’.

■ Example 2.5.2 Let u = (1,2,−1,0,1), v = (1,3,2,1,1). Then

u ·v = 1+6−2+0+1 = 6

and ∥v∥=
√

1+9+4+1+1 =
√

16 = 4. ■

Note that for any vector u ∈ Rn:
∥u∥= 0⇔ u = 0

(because the norm is still the sum of real squares, and so is never zero unless each component is).

2.6 Orthogonality
Recall that in R2 and R3, we have that

u ·v = 0⇔ u and v are orthogonal ( or ‘perpendicular’).
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Definition 2.6.1 Let u,v ∈ Rn. Then u and v are said to be orthogonal if u ·v = 0.

■ Example 2.6.2 The vectors (1,2,−2,1) and (4,1,3,0) of R4 are orthogonal (perpendicular), since
1
2
−2
1

 ·


4
1
3
0

= 4+2−6+0 = 0.

■

2.7 Angles between vectors in Rn

Now saying that two vectors are orthogonal is another way of saying that they meet at a 90◦ angle. We
can determine the angle between vectors in R2 and R3; can that be generalized as well? We need to
know one fact:

Theorem 2.7.1 — Cauchy-Schwarz Inequality. If u,v ∈ Rn, then

|u ·v| ≤ ∥u∥ ∥v∥

The proof2 is straightforward.
Applying this to ∥u+v∥2 = (u+v) · (u+v) yields

∥u+v∥ ≤ ∥u∥+∥v∥

which is the triangle inequality (which looks the same as the one we noted for C in our first class).

Definition 2.7.2 If u,v ∈ Rn and u,v ̸= 0, then the angle θ between u and v is defined to be the
number θ which satisfies:

• cosθ =
u ·v
∥u∥ ∥v∥

• 0≤ θ ≤ π

(The first condition makes sense because of the Cauchy-Schwarz inequality, since this inequality
implies that the number on the right hand side is always between −1 and 1. The second condition
guarantees uniqueness of θ . )

■ Example 2.7.3 The angle between u = (0,0,3,4,5) and v = (−1,1,−1,1,2) is θ , where

cos(θ) =
u ·v
∥u∥ ∥v∥

=
11√
50
√

8
=

11
20

.

We find θ = arccos(11/20).3 ■

Of particular interest:
• Two non-zero vectors u, v are orthogonal if the angle between them is π

2 (or 90◦). Now
cos(π

2 ) = 0, so by our formula, the numerator u ·v has to be zero. That’s where the orthogonality
condition came from.

2For x ∈ R, consider the quadratic function q(x) = ∥u+ xv∥2. Expand the right hand side as (u+ xv) · (u+ xv), compute
the discriminant ‘b2−4ac’, which (as q(x)≥ 0 for all x) must satisfy b2−4ac≤ 0. Simplifying this, one obtains the desired
inequality.

3With the help of a calculator –which you’ll never need in this course –, θ ≃ 0.988432≃ 56.6◦.
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Figure 2.1: Orthogonal projection of v on u.

• Two vectors u and v are parallel if the angle between them is either 0◦ or π . Now cos(0) = 1 and
cos(π) =−1, so in this case u ·v =±∥u∥ ∥v∥ attains its maximum value (in absolute terms).

2.8 Orthogonal Projections onto lines in Rn

The idea of the orthogonal projection is: given two nonzero vectors u and v, then the projection of v
onto u, denoted

proju(v)

is the unique vector which satisfies
• proju(v) is parallel to u (so a scalar multiple of u)
• v−proju(v) is orthogonal to u (so gives dot product zero).
As a result, we have decomposed v as a sum

v = (proju(v))+(v−proju(v))

of something parallel to u and something perpendicular to u, as in our picture.
So how do we find proju(v)? It turns out to be easy. Using either trigonometry, or just solving

directly from the above two conditions, you get:

proju(v) =
v ·u
∥u∥2 u.

(Careful: the quotient is just a scalar. To remember this: if you are projecting onto u your answer is
always a multiple of u, which is also the term that appears in the denominator.)

■ Example 2.8.1 Let u = (1,0,0) and v = (2,3,4). Write v as a sum of two vectors, one parallel to u
and one orthogonal to u. (Presumably you could guess the answer to this one, but let’s see what the
formula does.) We calculate:

proju(v) =
v ·u
∥u∥2 u =

2+0+0
12 +02 +02

1
0
0

=

2
0
0


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and v−proju(v) = (2,3,4)− (2,0,0) = (0,3,4), so our decomposition is

v =

2
3
4

=

2
0
0

+

0
3
4


and it’s clear that the first is parallel to u while the second is orthogonal to u — and that this is the only
possible pair of vectors that satisfy this. ■

■ Example 2.8.2 Let u = (1,1) and v = (2,3). Then

proju(v) =
v ·u
∥u∥2 u =

2+3
12 +12

[
1
1

]
=

[
5/2
5/2

]
is the projection of (2,3) onto (1,1). ■

Orthogonal projection is used in UMTS (Universal Mobile Telecommunications System) to correct
fuzziness and errors in signals and produce more reliable communications.

Another way of talking about orthogonal projection is to say that we are finding the closest point to
v on the line from the origin in direction u. So our next goal is to talk about lines and planes.

Problems
Those marked with a ⋆ have solutions at the back of the book. Try them yourself first.

Problem 2.1 Write down the zero vector in R2, R3 and R5.

Problem 2.2 Prove that u+(v+w) = (u+v)+w for any u,v,w ∈ R3.

Problem 2.3 ⋆If A = (1, 2, 3), B = (−5, −2, 5), C = (−2, 8, −10) and D is the midpoint of AB,
find the coordinates of the midpoint of CD.

Problem 2.4 Solve the following problems using the dot product.

a) Find all values of k such that (k, k, 1) and (k, 5, 6) are orthogonal.

b) ⋆Find the angle between the vectors (0, 3, −3) and (−2, 2, −1).

c) If A = (2, 4, 1), B = (3, 0, 9) and C = (1, 4, 0), find the angle ∠BAC.

Problem 2.5 ⋆Solve the following problems.

a) If u = (2, 1, 3) and v = (3, 3, 3) find projv u.

b) If u = (3, 3, 6) and v = (2, −1, 1) find ∥projv u∥.





3. Lines and Planes

In the last chapter we discussed the algebra and geometry of vectors in R2 and R3, and extended all the
notions of vector addition, scalar multiplication, the dot product, angles and orthogonality to Rn.

Now, let’s consider lines and planes in R2 and R3. We’ll see that while some ideas generalize easily
to Rn, others take more work; in fact, working out what, exactly, a reasonable analogue of a line or a
plane in Rn is one of our goals in this course.

3.1 Describing Lines

A line in R2 or R3 is completely determined by specifying its direction and a point on the line. Since
we prefer working with vectors, replace the point by its position vector.

So a line L going through the tip of v0 and such that d is a vector parallel to the direction of L can
be described as the set

L = {v0 + td|t ∈ R}.

That is, any point v on the line L can be written as v = v0 + td for some t.

Figure 3.1: Vector parametric form for L
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■ Example 3.1.1 Consider the line y = 3x+2 in R2. We can get a parametric equation for this line by
letting x = t be the parameter and solving for y; this gives x = t and y = 3t +2. In vector form, this is[

x
y

]
=

[
t

3t +2

]
=

[
0+1t
2+3t

]
=

[
0
2

]
+ t

[
1
3

]
so the line is

L =

{[
0
2

]
+ t

[
1
3

]∣∣∣ t ∈ R
}
.

Note: Another way to get a parametric equation for this line: it goes through the points (0,2) and
(−2

3 ,0), for example. So a direction vector is

d =

[
0
2

]
−
[
−2/3

0

]
=

[
2/3
2

]
.

We can take v0 = (0,2). So we get

L =

{[
0
2

]
+ t

[
2/3
2

]∣∣∣ t ∈ R
}
.

NOTICE that our answer is not unique! It depends on our choices. BOTH of our answers are completely
correct (check with a sketch!). ■

CAUTION!! We often use the variable t for the parameter. But if you are comparing two different
lines, you must use different letters to represent parameters on different lines!

■ Example 3.1.2 Find the point of intersection of L = {t(1,2)|t ∈R} and L′ = {(0,1)+ t(3,0)|t ∈R}.
WRONG METHOD: Set t(1,2) = (0,1)+ t(3,0) and solve for t.
This doesn’t give an answer for t; but that’s only because the two lines don’t arrive at the point of

intersection at the same time t. The lines still intersect!
CORRECT METHOD: Find parameters s and t such that t(1,2) = (0,1)+ s(3,0). This gives t = 1

2
and s = 1

6 , and the point of intersection is thus (1
2 ,1). ■

The form

L = {v0 + td|t ∈ R}

for a line in Rn is called the vector form or parametric form. In R2 (but NOT R3), you can describe a
line by an equation like ax+by = c; this is called the point-normal or Cartesian form.

You can also expand the parametric form in coordinates: if v0 = (a,b,c) and d = (d1,d2,d3) then
our line is the set of all v = (x1,x2,x3) such that

x1 = a+ td1

x2 = b+ td2

x3 = c+ td3

for some t ∈ R.
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Figure 3.2: The cartesian equation of a plane: point-normal form

3.2 About the Geometry of Lines

There is only one line in R: all of R.
Given two distinct lines in R2, they are either parallel or they intersect.
Given two distinct lines in R3, they could be parallel, or they could intersect, or they could be skew.

In the first two cases, they are contained in a unique plane; in the third case there is no plane containing
both of them (but you can find two parallel planes such that each contains one of the lines).

3.3 Describing Planes in R3

Recall that planes in R3 are described by an equation in point-normal or Cartesian form. That is, a
plane is described as the set of all points (x,y,z) such that

ax+by+ cz = d

where n = (a,b,c) is a normal vector to the plane and d ∈ R.
How did we get this equation? Look below. If v0 is some point on the plane, then v is on the plane

iff (v−v0) ·n = 0:
So the plane through v0 with normal vector n is

W = {v ∈ R3|(v−v0) ·n = 0}.
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■ Example 3.3.1 The plane through v0 = (1,0,3) with normal vector n = (−1,1,2) is

W = {v ∈ R3|(v−v0) ·n = 0}
= {(x,y,z)|((x,y,z)− (1,0,3)) · (−1,1,2) = 0}
= {(x,y,z)|− (x−1)+(y−0)+2(z−3) = 0}
= {(x,y,z)|− x+ y+2z = 5}

(Note that the coefficients in the Cartesian equation give you a normal vector.) ■

The normal vector is handy for many things.

Problem 3.3.2 Find the distance from the point P = (1,2,3) to the plane W with Cartesian equation
3x−4z =−1.
Solution Let A be any point on the plane, say A = (1,0,1), and Q be the (unknown) closest point
on the plane to P. As the diagram suggestsa, we want the length of the projection of A−P onto the
normal vector.

Finding the distance of P to the plane W .

So

∥P−Q∥= ∥projn(P−A)∥
= ∥proj(3,0,−4)(0,2,2)∥

= ∥ 0+0−8
32 +(−4)2 (3,0,−4)∥

=
8
25
∥(3,0,−4)∥

=
8
25

√
25 =

8
5
.

aAnd here’s a proof, for the properly skeptical reader: if Q′ is any other point on W , ∥P−Q′∥2 = ∥P−Q+Q−Q′∥2 =
∥P−Q∥2 + ∥Q−Q′∥2 (because P−Q and Q−Q′ are perpendicular, so the Pythagorean theorem applies). Hence
∥P−Q′∥2 ≥ ∥P−Q∥2.

Let’s tackle a more straightforward problem: the intersection of two planes.
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Problem 3.3.3 Find the intersection of the planes x+ y+ z = 3 and x− y− z = 2.
Solution We need to find all (x,y,z) which satisfy both equations. Subtracting the second equation
from the first yields 2y+2z = 1 or y = 1

2 − z; then from the first we have x = 3− (1
2 − z)− z = 5

2 .
But z can be anything; in fact we can take z to our parameter (and so now call it t):

x =
5
2
, y =

1
2
− t, z = t

which in vector form is the line

L =


5/2

1/2
0

+ t

 0
−1
1

 |t ∈ R

 .

3.4 Geometry of Planes in R3

We define the “angle” between two planes to be the angle between their normal vectors. It equals the
angle of the “wedge” that they make (although proving that takes some thought).

Now, to compare with the case of lines:
The only plane in R2 is all of R2.
Given two distinct planes in R3, they are either parallel or they intersect.
Makes you wonder about R4, doesn’t it?
That said, we don’t have a good way to describe a plane in R4 (yet). A parametric equation in one

variable gives a line, in any Rn. But something fishy is happening with the normal forms:

n Equation in Rn Resulting Geometric Object
1 ax = b point
2 ax+by = c line
3 ax+by+ cz = d plane
4 ax1 +bx2 + cx3 +dx4 = e ??

Idea: one equation is cutting down one degree of freedom (later: dimension), so the result is always
an object of dimension n−1 (which is called a hyperplane in dimensions bigger than 3).

Our answer will eventually be: Since intersecting two planes in R3 (usually) gives you a line,
intersecting two hyperplanes in R4 should give you a plane.

This is something we’ll be coming back to over the next few weeks.
But for now: let’s get back to solid ground (or rather, R3) and discuss how to produce normal

vectors to planes fairly easily.

3.5 Cross products in R3

Let’s use the notation:

î =

1
0
0

 , ĵ =

0
1
0

 , k̂ =

0
0
1

 .

Then (x,y,z) = xî+ y ĵ+ zk̂.
In the following, we also use notation from the determinant which for now is just very convenient.
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The cross product of u = (x,y,z) and v = (x′,y′,z′) is a new vector, denoted u× v, which is
calculated as follows:

u×v =

∣∣∣∣∣∣
î ĵ k̂
x y z
x′ y′ z′

∣∣∣∣∣∣
=
(
yz′− y′z,−(xz′− x′z),xy′− x′y

)
=

(∣∣∣∣y z
y′ z′

∣∣∣∣ ,− ∣∣∣∣x z
x′ z′

∣∣∣∣ , ∣∣∣∣x y
x′ y′

∣∣∣∣)

Problem 3.5.1 Find (1,2,3)× (4,5,6).
Solution Write this as a determinant (or at least on top of each other) and then solve:∣∣∣∣∣∣

î ĵ k̂
1 2 3
4 5 6

∣∣∣∣∣∣= (12−15,−(6−12),5−8) = (−3,6,−3).

Problem 3.5.2 Find (4,5,6)× (1,2,3).
Solution Same process:∣∣∣∣∣∣

î ĵ k̂
4 5 6
1 2 3

∣∣∣∣∣∣= (15−12,−(12−6),8−5) = (3,−6,3)

HA! We got the NEGATIVE.

Notice, though, that

(1,2,3) · (3,−6,3) = 3−12+9 = 0, (4,5,6) · (3,−6,3) = 12−30+18 = 0.

None of this was just luck.

Theorem 3.5.3 — Properties of the Cross Product. Let u,v,w ∈ R3. Then
• u×v =−v×u
• (u×v) ·u = 0
• (u×v) ·v = 0
• (u+v)×w = u×w+v×w
• ∥u×v∥= ∥u∥ ∥v∥sin(θ) where 0≤ θ ≤ π is the angle between u and v. This is in fact the

area of the parallelogram with sides u and v.
BUT, usually: u× (v×w) ̸= (u×v)×w; the cross product is neither commutative nor associative.
(Eg: î× (k̂× k̂) = 0 but (î× k̂)× k̂ =−î.)

Consequently: if two vectors are parallel, then their cross product is zero. Otherwise, their cross
product is one of the two vectors orthogonal to both u and v and of length ∥u∥ ∥v∥sinθ , where θ is the
angle between u and v. The cross product is used in Physics for measuring torque, for example, and
figuring out the direction of the answer uses the right-hand rule. We also often memorize î× ĵ = k̂ and
its cyclic permutations.
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3.6 First application of cross product: finding normal vectors

The cross product gives a normal vector to the plane parallel to two vectors u and v.

Problem 3.6.1 Find an equation of the plane containing the three points A = (1,2,3), B = (1,0,0)
and C = (0,1,1).
Solution The vectors B⃗A = (0,2,3) and B⃗C = (−1,1,1) are both parallel to the plane, so a normal
vector to the plane must be orthogonal to each of these. So take their cross product:∣∣∣∣∣∣

î ĵ k̂
0 2 3
−1 1 1

∣∣∣∣∣∣= (−1,−3,2)

(Check your answer! This should be orthogonal to B⃗A and B⃗C.)
So an equation for the plane has the form

−x−3y+2z = d

and plugging in the point B, for example, yields d =−1.

3.7 Second Application: volumes of parallelepipeds (Scalar Triple Product)

Theorem 3.7.1 — Volume of a parallelepiped. The volume of the parallelepiped with sides u, v
and w in R3 is

|(u×v) ·w|.

In particular, the order of the vectors doesn’t matter.

We can prove this using more trigonometry: the volume of the parallelepiped is the area of the
base (a parallelogram) times the height; the area of the base is the norm of the cross product of two of
the vectors (∥u×v∥), and the height is going to be ∥w∥cos(θ) where θ is the angle between w and a
normal vector to the base.

Problem 3.7.2 Find the volume of the parallelepiped with sides u = (1,0,1), v = (1,2,2) and
w = (10,0,0).
Solution We calculate:

u×v =

∣∣∣∣∣∣
î ĵ k̂
1 0 1
1 2 2

∣∣∣∣∣∣= (−2,−1,2)

so
(u×v) ·w = (−2,−1,2) · (10,0,0) =−20

so the volume is 20.

So what does it mean if (u×v) ·w = 0? Zero volume of a parallelepiped means it wasn’t really a
parallelepiped at all — the three vectors must all lie in a plane. We say such vectors are coplanar or
linearly dependent (key phrase for later).
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3.8 Final remarks about lines, planes, and higher-dimensional objects in Rn

These are just some thoughts to preview some of the ideas we want to explore over the next several
weeks. We have great ways to describe lines and planes in R2 and R3, but we have an inkling that there
must be “2-dimensional” objects in R4 which we can’t describe by either of the two methods described
so far (parametric equations or normal equations).

Or can we?
To get a line, we gave ourselves one parameter (one degree of freedom). If we give ourselves two

parameters, for two different direction vectors, this describes a plane. That is

W = {v0 + sd1 + td2|s, t ∈ R}

describes the plane with normal vector d1×d2 and going through the point v0.
We will explore statements like this in the course of understanding subspaces of general vector

spaces.

Problems
Problem 3.1 Solve the following problems using the cross and/or dot products.

a) If u = (3, −1, 4) and u = (−1, 6, −5), find u×v.

b) ⋆Find all vectors in R3 which are orthogonal to both (−1,1,5) and (2,1,2).

c) If u = (4, −1, 7), v = (2, 1, 2) and w = (−1, −2, 3), find (u×v)×w.

d) ⋆If u = (−4, 2, 7), v = (2, 1, 2) and w = (1, 2, 3), find u · (v×w).

Problem 3.2 Solve the following problems using the appropriate products.

a) Find the area of the parallelogram determined by the vectors u=(1, −1, 0) and v=(2, −3, 1).

b) ⋆Find the area of the triangle with vertices A = (−1, 5, 0), B = (1, 0, 4) and C = (1, 4, 0).

c) Find the area of the triangle whose vertices are P = (1, 1, −1), Q = (2, 0, 1) and R =
(1, −1, 3).

d) ⋆Find the volume of the parallelepiped determined by u = (1, 1, 0), v = (1, 0, −1) and
w = (1, 1, 1).

e) Find the volume of the parallelepiped determined by u = (1,−2,3), v = (1,3,1) and w =
(2,1,2).

Problem 3.3 Solve the following problems.

a) ⋆Find the point of intersection of the plane with Cartesian equation 2x+2y− z = 5, and the
line with parametric equations x = 4− t, y = 13−6t, z =−7+4t.

b) ⋆If L is the line passing through (1, 1, 0) and (2, 3, 1), find the point of intersection of L with
the plane with Cartesian equation x+ y− z = 1.
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c) Find the point where the lines with parametric equations x = t−1, y = 6− t, z =−4+3t and
x =−3−4t, y = 6−2t, z =−5+3t intersect.

d) ⋆Do the planes with Cartesian equations 2x−3y+4z = 6 and 4x−6y+8z = 11 intersect?

e) Find the line of intersection of the planes with Cartesian equations 5x+ 7y− 4z = 8 and
x− y =−8.

f) ⋆Find the line of intersection of the planes with Cartesian equations x+ 11y− 4z = 40 and
x− y =−8.

Problem 3.4 Solve the following problems.

a) Find the distance from the point (0, −5, 2) to the plane with Cartesian equation 2x+3y+5z =
2.

b) ⋆Find the distance from the point (−2, 5, 9) to the plane with Cartesian equation 6x+2y−3z =
−8

c) Find the distance from the point (5, 4, 7) to the line containing the points (3, −1, 2) and
(3, 1, 1).

d) ⋆Find the distance from the point (8, 6, 11) to the line containing the points (0, 1, 3) and
(3, 5, 4).

e) Find angle between the planes with Cartesian equations x− z = 7 and y− z = 234

Problem 3.5 Find the scalar and vector parametric forms for the following lines:

a) The line containing (3, −1, 4) and (−1, 5, 1).

b) ⋆The line containing (−5, 0, 1) and which is parallel to the two planes with Cartesian equations
2x−4y+ z = 0 and x−3y−2z = 1

c) The line passing through (1, 1, −1) and which is perpendicular to the plane with Cartesian
equation 2x− y+3z = 4

Problem 3.6 Find a Cartesian equation for each of the following planes:

a) The plane containing (3,−1,4), (−1,5,1) and (0,2,−2).

b) ⋆The plane parallel to the vector (1,1,−2) and containing the points (1,5,18) and (4,2,−6)

c) The plane passing through the points (2,1,−1) and (3,2,1), and parallel to the x–axis.

d) ⋆The plane containing the two lines {(t−1,6− t,−4+3t) | t ∈ R} and {(−3−4t,6+2t,7+
5t) |∈ R}

e) The plane which contains the point (-1, 0, 2) and the line of intersection of the two planes
3x+2y− z = 5 and 2x+ y+2z = 1.



46 Chapter 3. Lines and Planes

f) ⋆The plane containing the point (1,−1,2) and the line
{(4,−1+2t,2+ t) | t ∈ R}.

g) The plane through the origin parallel to the two vectors (1,1,−1) and (2,3,5).

h) ⋆The plane containing the point (1, −7, 8) which is perpendicular to the line {(2+ 2t,7−
4t,−3+ t | t ∈ R}.

i) The plane containing the point (2, 4, 3) and which is perpendicular to the planes with Cartesian
equations x+2y− z = 1 and 3x−4y = 2.

Problem 3.7 Find a vector parametric form for the planes with Cartesian equations given as follows.
(i.e. find some a ∈ H and two non-zero, non-parallel vectors u,v ∈ R3, parallel to the plane H. Then
H = {a+ su+ tv | s, t ∈ R}.)

a) x− y− z = 3

b) ⋆x− y−2z = 4

c) 2x− y+ z = 5

d) y+2x =−3

e) x− y+2z = 0

f) x+ y+ z =−1

Problem 3.8 ⋆Let u,v and w be any vectors in R3. Determine which of the following statements
could be false, and give an example to illustrate each of your answers.

(1) u ·v = v ·u
(2) u×v = v×u
(3) u · (v+w) = v ·u+w ·u
(4) (u+2v)×v = u×v
(5) (u×v)×w = u× (v×w)

Problem 3.9 ⋆Let u, v and w be vectors in R3. Which of the following statements are (always) true?
Explain your answers, including giving examples to illustrate statements which could be false.

(i) (u×v) ·v = 0.
(ii) (v×u) ·v =−1.
(iii) (u×v) ·w is the volume of the of the parallelepiped determined by u, v and w.
(iv) ∥u×v∥= ∥u∥∥v∥ cosθ where θ is the angle between u and v.
(v) |u ·v|= ∥u∥∥v∥ cosθ where θ is the angle between u and v.

Problem 3.10 Prove the identity u× (v×w) = (u ·w)v− (u ·v)w for all u,v,w ∈ R3, as follows:
Denote the difference between the left hand side of the identity and the right hand side by D(u,v,w).

First note that, by properties of the dot and cross products, for all k ∈ R, u,v,w,u′,v′,w′ ∈ R3,
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it’s easy to see that the following identities hold.

(i) D(ku+u′,v,w) = k D(u,v,w)+D(u′,v,w)

(ii) D(u,kv+v′,w) = k D(u,v,w)+D(u,v′,w)

(iii) D(u,v,kw+w′) = k D(u,v,w)+D(u,v,w′)

(iv) Also: D(u,v,w) =−D(u,w,v)

(Properties (i)–(iii) are summarized by saying that “D is linear in each argument”. More on this
when we get to linear transformations.)

Now since every vector in R3 is a linear combination of î = (1,0,0), ĵ = (0,1,0) and k̂ = (0,0,1),
by the identities above, it suffices to check that D(u,v,w) = 0 when u is î, ĵ and k̂, and v and w are
one the 6 pairs of two distinct choices from {î, ĵ, k̂}. Restricted to these (18) choices, it’s easy to see
D(u,v,w) is zero unless u is v or w, so we really only need to check D(u,u,w) = 0 in the 6 cases
where u ∈ {î, ĵ, k̂} and w ∈ {î, ĵ, k̂}\{u}. This amounts to 6 easy computations. Having checked
those, you’re done!
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4. Vector Spaces

So far, we have established that it isn’t too hard to generalize our notion of vectors to include elements
of Rn. We still call them vectors even though we can no longer quite imagine them as arrows in space.

As we worked through vector geometry, we also saw a number of problems coming up, principally
among them: what are the higher-dimensional analogues of lines and planes? How can you describe
them?

We will tackle this problem next, but it turns out that the best way to do this is to step back and
see just how far we can generalize this notion of vector spaces — was Rn the only set that behaves
substantially like R2 and R3, or are there many more mathematical objects out there that, if we look at
them in the right way, are just like vectors, too?

4.1 A first example
So far: we agree that the elements of R, R2 and R3 are geometric vectors.

We also agree that we can call elements of Rn, for n≥ 4, vectors.
What we are looking for next: non-geometric, non-Rn vectors.

■ Example 4.1.1 Spaces of Equations
Consider three equations, which we name E1, E2 and E3:

E1 : x− y− z =−1

E2 : 2x− y+ z = 1

E3 : −x+2y+4z = 4

We can create new equations from these ones; for example,

E4 = E2−2E1 : y+3z = 3
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or
E1 +E3 : y+3z = 3

So we can even say
E2−2E1 = E1 +E3

and it is legitimate to rewrite this as:
3E1−E2 +E3 = 0

where “0” stands for the equation “0 = 0”.
Well, what are we really saying here?
• We can add two equations to get another equation.
• We can multiply an equation by a scalar to get another equation.
• There’s a zero equation given by 0 = 0. Let’s call it E0.
• Equations have negatives:

−E1 :−x+ y+ z = 1

Why is this the negative? Because now (E1)+(−E1) = E0.
• The usual rules of arithmetic hold:

– E1 +E2 = E2 +E1
– E1 +(E2 +E3) = (E1 +E2)+E3
– k(E1 +E2) = kE1 + kE2
– (k+ l)E1 = kE1 + lE1
– (kl)E1 = k(lE1)
– 1E1 = E1

In other words: these are exactly the properties of Rn that we identified last week! So even though
we have no reasonable way (yet) of writing “equations” as n-tuples of numbers, algebraically we
recognize that they act just like vectors do. ■

! Major idea #1 (this chapter): there are lots of different vector spaces besides Rn.

We can specialize this a bit more (which also helps us start to see the value in this approach):
Consider the space E of all equations “obtainable from” (also say: generated by or spanned by) E1,

E2, and E3:
E = {k1E1 + k2E2 + k3E3 | ki ∈ R}.

(This is the set of all linear combinations of those three equations!) In fact, E itself acts like a space of
vectors (in the sense above, and to be made precise below).

The kinds of questions you’d want to ask: Is there an equation of the form y = y0 in E ? That is, can
we solve for y?1 (Or for x, for that matter.)

■ Example 4.1.2 Can we find a,b,y0 ∈ R so that the equation y = y0 equals aE1 + bE2? Answer:
NO. Why? The coefficient of x in aE1 +bE2 is a+2b and the coefficient of z in aE1 +bE2 is −a+b.
The only way these can both be zero is if a and b are zero (check); but then aE1 +bE2 = E0, the zero
equation. So we can’t get an equation like y = y0. ■

1The connection is that: to solve for y, what you’re honestly doing is taking linear combinations of equations.
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(We of course want to answer tougher questions than that, but our technique (Gaussian elimination,
Chapter 11) will be based entirely on this idea of taking linear combinations of equations.)

Stoichiometry is the science of figuring out how to produce a given chemical as a result of reactions
of other, easier to obtain, chemicals. In stoichiometry, you let E be the set of all known chemical
reactions and want to choose a best (linear) combination of reactions which will result in what you
wanted.

! Major idea #2: (next two chapters): Subspaces and spanning sets. To answer
particular problems, we typically need to understand the subspace spanned by
some vectors.

4.2 So what do we really need?

Idea: vectors don’t have to be geometric, or even n-tuples. But we want things that act like our known
examples of vectors algebraically. (Please note: we’re going to ignore the geometry (like the dot
product) for quite a while; we’re now just focussing on the algebra.)

So we need:
• V : a set of “vectors” of some sort
• a rule for “adding” two “vectors” (denoted with +)
• a rule for “scalar multiplication” of a “vector” by an element c ∈ R

such that all 10 of the following axioms hold:
Closure (These two axioms guarantee that V is “big enough”)

(1) The sum of two vectors should again be a vector. (That is, if u,v ∈V then u+v ∈V .)
(2) Any scalar multiple of a vector should again be a vector. (That is, if u ∈V and c ∈ R then
cu ∈V .)

Existence (These two axioms guarantee that V has the ‘basics’)
(3) There should be a zero vector 0 in V ; it must satisfy 0+u = u for all u ∈V .
(4) Every vector in V should have a negative in V . That is, given u ∈V , there should exist another
vector −u ∈V such that u+(−u) = 0.

Arithmetic properties (These axioms guarantee that operations behave the way they did in Rn)
For any u,v,w ∈V and any c,d ∈ R:
(5) u+v = v+u
(6) u+(v+w) = (u+v)+w
(7) c(u+v) = cu+ cv
(8) (c+d)u = cu+du
(9) c(du) = (cd)u
(10) 1u = u.

Definition 4.2.1 Any set V with two operations as above, satisfying these 10 axioms is called a
vector space.

Note that even though they are not axioms, it is indeed true that the zero vector is the result of
scaling any vector by 0 ∈ R, and the negative of a vector is given by multiplying it by −1 ∈ R. See
problem 4.14.
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4.3 Examples of Vector Spaces

■ Example 4.3.1 R, R2, . . ., Rn are all vector spaces, with the usual operations. ■

■ Example 4.3.2 E is a vector space, as is the set of all linear equations in n variables, with the usual
operations. ■

■ Example 4.3.3 The set V = {0}, with operations given by the rule 0+0 = 0, and c ·0 = 0, is a vector
space : the zero vector space. (But the empty set is not a vector space because it doesn’t contain 0!) ■

■ Example 4.3.4 The set V = {(x,2x)|x ∈ R}, with the standard operations from R2 is a vector space
because:

• CLOSURE (1) Let u,v ∈V . Then u = (x,2x) for some x ∈R and v = (y,2y) for some y ∈R. So
u+v = (x+ y,2x+2y) = (x+ y,2(x+ y)) and this is in V because it is of the form (z,2z) with
z = x+ y ∈ R.

• CLOSURE (2) Let u = (x,2x) and c ∈ R. Then cu = (cx,c(2x)) = (cx,2(cx)) which is again in
V because it has the form (z,2z) with z = cx ∈ R.

• EXISTENCE (3) The zero vector of R2 is (0,0); this lies in V and moreover since it satisfies
0+u = u for any u ∈ R2, it certainly satisfies that for the u ∈V . So it is a zero vector and it lies
in V .

• EXISTENCE (4) The negative of u=(x,2x) is (−x,−2x)= (−x,2(−x)) since (x,2x)+(−x,2(−x))=
(0,0) and we see that (−x,2(−x)) ∈V . So it’s the negative and it lies in V .

• ALGEBRAIC PROPERTIES (5)-(10): these are all ok because they all work for ANY u,v,w in
R2, so they certainly work for any vectors u,v,w in V .

So this is a vector space. ■

■ Example 4.3.5 The set V = {(x,x+2)|x ∈ R}, with the usual operations of R2 is NOT A VECTOR
SPACE.

To show that V is not a vector space, it is enough to give just ONE example of just ONE axiom that
fails even ONCE. (Because being a vector space means that all those axioms are always true.)

But let’s look at ALL the axioms, just to see how this fails in lots of different ways.
• CLOSURE (1) Take (x,x+2) and (y,y+2). Then their sum is (x+y,x+y+4) which does NOT

have the correct form (z,z+2), for any z. That is, when you add two elements in this set, you
end up OUTSIDE the set. It is NOT CLOSED UNDER ADDITION.

• CLOSURE (2) Take c ∈ R and u = (x,x+2) ∈V . Then c(x,x+2) = (cx,cx+2c) so whenever
c ̸= 1, cu /∈V . So V is NOT CLOSED UNDER SCALAR MULTIPLICATION.

• EXISTENCE (3) The zero vector (0,0) is not in V , since you can’t have (0,0) = (z,z+2) for
any z ∈ R. (See exercise 4.1 (h).)

• EXISTENCE (4) The negative of u = (x,x+2) is −u = (−x,−x−2), which doesn’t lie in V .
• ALGEBRAIC PROPERTIES (5)-(10): these are all fine, because the actual operations are fine;

it’s the subset of R2 we chose that was “bad”.
■

! Remember this: a subset of a vector space can’t be a vector space unless it
contains the zero vector. So lines and planes that don’t pass through the origin
are not vector spaces.
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Definition 4.3.6 A matrix is a table of numbers, usually enclosed in square brackets. It’s size is
m×n if it has m rows and n columns. For instance,[

1 2 3
4 5 6

]
is a 2×3 matrix. Two matrices of the same size can be added componentwise, like[

1 2
3 4

]
+

[
5 6
7 8

]
=

[
6 8
10 12

]
and we can scalar multiply them componentwise as well, like

2
[

1 2
3 4

]
=

[
2 4
6 8

]
.

■ Example 4.3.7 V = M22(R) =
{[

a b
c d

]
|a,b,c,d ∈ R

}
, with the above operations.

We check the axioms: closure is fine (sum and scalar multiples give you 2× 2 matrices again);

existence: (3)
[

0 0
0 0

]
∈M22(R) and clearly adding this to a matrix A gives you A back again, and (4)[

−a −b
−c −d

]
∈M22(R) and adding this to

[
a b
c d

]
gives you the zero matrix, so indeed every matrix in

M22(R) has a negative in M22(R).
The algebraic properties (5)-(10) are just like in R4; checking them is straightforward. I include the

proof below, using a few different (acceptable) techniques.

Begin by letting u =

[
u1 u2
u3 u4

]
, v =

[
v1 v2
v3 v4

]
, etc, and let c,d ∈ R. Then

• (5) u+v =

[
u1 + v1 u2 + v2
u3 + v3 u4 + v4

]
and v+u =

[
v1 +u1 v2 +u2
v3 +u3 v4 +u4

]
; these are equal. So (5) holds.

• (6) u+(v+w) =

[
u1 u2
u3 u4

]
+

[
v1 +w1 v2 +w2
v3 +w3 v4 +w4

]
=

[
u1 +(v1 +w1) u2 +(v2 +w2)
u3 +(v3 +w3) u4 +(v4 +w4)

]
and sim-

ilarly (u+v)+w =

[
(u1 + v1)+w1 (u2 + v2)+w2
(u3 + v3)+w3 (u4 + v4)+w4

]
; these are equal. So (6) holds.

• (7)

c(u+v) = c
[

u1 + v1 u2 + v2
u3 + v3 u4 + v4

]
=

[
c(u1 + v1) c(u2 + v2)
c(u3 + v3) c(u4 + v4)

]
=

[
cu1 + cv1 cu2 + cv2
cu3 + cv3 cu4 + cv4

]
=

[
cu1 cu2
cu3 cu4

]
+

[
cv1 cv2
cv3 cv4

]
= cu+ cv

so this axiom holds.
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• (8)

(c+d)u = (c+d)
[

u1 u2
u3 u4

]
=

[
(c+d)u1 (c+d)u2
(c+d)u3 (c+d)u4

]
=

[
cu1 +du1 cu2 +du2
cu3 +du3 cu4 +du4

]
=

[
cu1 cu2
cu3 cu4

]
+

[
du1 du2
du3 du4

]
= cu+du

as required, so this axiom holds.
• (9) Compare the ith component of each side, 1 ≤ i ≤ 4. The ith entry of a(bu) is a(bui) and

the ith entry of (ab)u is (ab)ui, and these are equal in R. So a(bu) = (ab)u since each of their
entries are equal.

• (10) The i entry of 1u is 1ui = ui, which is the ith entry of u. So 1u = u.
So M22(R) is a vector space. ■

! In fact, Mmn(R), the set of all m×n matrices, when given operations analogous
to those described above, is a vector space, for any m,n≥ 1.

Our next example is a space of functions. We first establish some notation.

Definition 4.3.8 Let [a,b] denote the interval {x ∈ R|a≤ x≤ b}, and let

F [a,b] = { f | f : [a,b]→ R}

be the set of all functions with domain [a,b] with values in R. For f ,g ∈ F [a,b], we have that f = g
if and only if f (x) = g(x) for all x ∈ [a,b]. Moreover, we define f +g to be the function which sends
x to f (x)+g(x), that is:

( f +g)(x) = f (x)+g(x)

and for any scalar c ∈ R, c f is the function taking x to c f (x), that is:

(c f )(x) = c( f (x)).

Geometrically, addition corresponds to vertically adding the graphs of f and g; and scalar multipli-
cation corresponds to scaling the graph of f by c.

■ Example 4.3.9 Space of functions
F [a,b] is a vector space with these operations.
Check: closure is good; the zero vector is the zero function which sends every x to 0; the negative

of f is the function − f which sends x to − f (x); and the algebraic operation axioms all hold.
■
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■ Example 4.3.10 We could also consider F(R), the set of all functions from R to R, with the same
operations; this is also a vector space. So for example cos(x) ∈ F(R) and x+ x2 ∈ F(R); in fact all
polynomial functions are contained in F(R). But 1

x , tan(x) /∈ F(R) because they are not defined on all
of R. ■

In several of our examples, axioms (5)-(10) were obviously true because they were true for a larger
superset of vectors. What this means is that we will have a shortcut for checking if a subset of a vector
space (with the same operations) is itself a vector space.

Problems

Remark: In the following examples, explain your answer, which means: if you say a set closed under
some operation, give an explanation (‘proof’) which works in all cases: don’t choose examples and
simply verify it works for your chosen examples. On the other hand, if you say the set isn’t closed
under some operation, you must give an example to illustrate your answer.

Problem 4.1 Determine whether the following sets are closed under the indicated rule for addition.

a) {(x,x+2) ∈ R2 | x ∈ R}; standard addition of vectors in R2

b) ⋆{(x,y) ∈ R2 | x−3y = 0}; standard addition of vectors in R2

c) {(x,y) ∈ R2 | x−3y = 1}; standard addition of vectors in R2

d) ⋆{(x,y) ∈ R2 | xy≥ 0} ; standard addition of vectors in R2

e) {(x,y,z) ∈ R3 | x+2y+ z = 0} ; standard addition of vectors in R3

f) ⋆{(x,y,z) ∈ R3 | x+2y+ z = 1} ; standard addition of vectors in R3

g) {(x,y,z,w) ∈ R4 | x− y+ z−w = 0}; standard addition of vectors in R4.

h) ⋆{(x,x+2) ∈ R2 | x ∈ R}; Non-standard addition: (x,y)+̃(x′,y′) = (x+ x′,y+ y′−2).

i) {(x,y,z)∈R3 | x+2y+z= 1} ; Non-standard addition: (x,y,z)+̃(x′,y′,z′) = (x+x′,y+y′,z+
z′−1).

Problem 4.2 Determine whether each of the following sets is closed under the indicated rule for
multiplication of vectors by scalars.

a) {(x,x+2) ∈ R2 | x ∈ R}; standard rule for multiplication of vectors in R2 by scalars.

b) ⋆{(x,y) ∈ R2 | x−3y = 0}; standard rule for multiplication of vectors in R2 by scalars.

c) {(x,y) ∈ R2 | x−3y = 1}; standard rule for multiplication of vectors in R2 by scalars.

d) ⋆{(x,y) ∈ R2 | xy≥ 0}; standard rule for multiplication of vectors in R2 by scalars.

e) {(x,y,z) ∈ R3 | x+2y+ z = 0}; standard rule for multiplication of vectors in R3 by scalars.

f) ⋆{(x,y,z) ∈ R3 | x+2y+ z = 1}; standard rule for multiplication of vectors in R3 by scalars.
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g) {(x,y,z,w) ∈ R4 | x− y+ z−w = 0}; standard rule for multiplication of vectors in R4 by
scalars.

h) ⋆{(x,x+2) ∈ R2 | x ∈ R}; Non-standard multiplication of vectors by scalars k ∈ R:

k⊛ (x,y) = (kx,ky−2k+2).

i) {(x,y,z) ∈ R3 | x+2y+ z = 1} ; Non-standard multiplication of vectors by scalars k ∈ R:

k⊛ (x,y,z) = (kx,ky,kz− k+1).

Problem 4.3 Determine whether the following subsets of F(R) = { f | f : R→ R} are closed under
the standard addition of functions in F(R). (Recall that F(R) consists of all real-valued functions of
a real variable; i.e., all functions with domain R, taking values in R).

a) { f ∈ F(R) | f (2) = 0} ;

b) ⋆{ f ∈ F(R) | f (2) = 1}.

c) { f ∈ F(R) | f (1) = 2}.

d) ⋆{ f ∈ F(R) | for all x ∈ R, f (x)≤ 0}.

e) { f ∈ F(R) | For all x ∈ R, f (−x) = f (x)}

f) ⋆{ f ∈ F(R) | For all x ∈ R, f (−x) =− f (x)}

g) { f ∈ F(R) | f is twice-differentiable, and for all x ∈ R, f ′′(x)+ f (x) = 0}

Problem 4.4 Determine whether the following sets are closed under the standard rule for multiplica-
tion of functions by scalars in F(R).

a) { f ∈ F(R) | f (2) = 0}.

b) ⋆{ f ∈ F(R) | f (2) = 1}.

c) { f ∈ F(R) | f (1) = 2}.

d) ⋆{ f ∈ F(R) | For all x ∈ R, f (x)≤ 0}

e) { f ∈ F(R) | For all x ∈ R, f (−x) = f (x)}

f) ⋆{ f ∈ F(R) | For all x ∈ R, f (−x) =− f (x)}

g) { f ∈ F(R) | f is twice-differentiable, and for all x ∈ R, f ′′(x)+ f (x) = 0}

Problem 4.5 Determine whether the following sets are closed under the standard operation of
addition of matrices in M22(R).
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a)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ b = c

}
.

b) ⋆

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a+d = 0

}
.

c)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ ad−bc = 0

}
.

d) ⋆

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ ad = 0

}
.

e)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ bc = 1

}
.

Problem 4.6 Determine whether the following sets are closed under the standard rule for multiplica-
tion of matrices by scalars in M22(R).

a)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ b = c

}
.

b) ⋆

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a+d = 0

}
.

c)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ ad−bc = 0

}
.

d) ⋆

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ ad = 0

}
.

e)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ bc = 1

}
.

Problem 4.7 The following sets have been given the indicated rules for addition of vectors, and
multiplication of objects by real scalars (the so-called ‘vector operations’ ). If possible, check if
there is a zero vector in the subset in each case. If it is possible, show your choice works in all cases,
and if it is not possible, give an example to illustrate your answer.

(Note: in the last two parts, since the vector operations are not the standard ones, the zero vector
will probably not be the one you’re accustomed to.)

a) {(x,x+2) ∈ R2 | x ∈ R}; standard vectors operations in R2.

b) ⋆{(x,y) ∈ R2 | x−3y = 0}; standard vectors operations in R2.
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c) {(x,y) ∈ R2 | x−3y = 1}; standard vectors operations in R2.

d) ⋆{(x,y) ∈ R2 | xy≥ 0}; standard vectors operations in R2.

e) {(x,y,z) ∈ R3 | x+2y+ z = 0}; standard vectors operations in R3.

f) ⋆{(x,y,z) ∈ R3 | x+2y+ z = 1}; standard vectors operations in R3.

g) {(x,y,z,w) ∈ R4 | x− y+ z−w = 0}; ; standard vectors operations in R4.

h) ⋆{(x,x+2) ∈ R2 | x ∈ R}; Non-standard operations:– Addition: (x,y)+̃(x′,y′) = (x+ x′,y+
y′−2). Multiplication of vectors by scalars k ∈ R: k⊛ (x,y) = (kx,ky−2k+2).

i) {(x,y,z) ∈ R3 | x+2y+ z = 1} ; Non-standard operations:– Addition: (x,y)+̃(x′,y′) = (x+
x′,y+y′,z+z′−1). Multiplication of vectors by scalars k∈R: k⊛(x,y,z) = (kx,ky,kz−k+1).

Problem 4.8 Explain your answers to the following:
a) ⋆Determine whether the zero function of F(R) belongs to each of the subsets in question 3.

b) Determine whether the zero matrix of M22(R) belongs to each of the subsets in question 5.

Problem 4.9 The following sets have been given the indicated rules for addition of vectors, and
multiplication of objects by real scalars. In each case, If possible, check if vector in the subset has a
‘negative’ in the subset.

Again, since the vector operations are not the standard ones, the negative of a vector will probably
not be the one you’re accustomed to seeing.

a) {(x,x+2) ∈ R2 | x ∈ R}; Non-standard Operations:– Addition: (x,y)+̃(x′,y′) = (x+ x′,y+
y′−2). Multiplication of vectors by scalars k ∈ R: k⊛ (x,y) = (kx,ky−2k+2).

b) ⋆{(x,y,z) ∈ R3 | x+2y+ z = 1} ; Non-standard Operations:– Addition:

(x,y)+̃(x′,y′) = (x+ x′,y+ y′,z+ z′−1).

Multiplication of vectors by scalars k ∈ R: k⊛ (x,y,z) = (kx,ky,kz− k+1).

Problem 4.10 Explain your answers to the following:
a) ⋆Determine whether the subsets in question 1 (given the operations described in questions 1

and 2) are vector spaces.

b) Determine whether the subsets of F(R) in question 3, equipped with the standard vector
operations of F(R) are vector spaces.

c) Determine whether the subsets of M22(R) in question 5, equipped with the standard vector
operations of M22(R) are vector spaces.
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Problem 4.11 Explain your answers to the following:
a) ⋆Determine whether the subsets of F(R) in question 3 are vector spaces.

b) Determine whether the zero function of F(R) belongs to each of the subsets in question 3.

c) Determine whether the zero matrix of M22(R) belongs to each of the subsets in question 5.

Problem 4.12 Justify your answers to the following:
a) Equip the set V = R2 with the non-standard operations:– Addition:

(x,y)+̃(x′,y′) = (x+ x′,y+ y′−2).

Multiplication of vectors by scalars k ∈ R:

k⊛ (x,y) = (kx,ky−2k+2).

Check that R2, with these new operations, is indeed a vector space.

b) Equip the set V = R3 non-standard operations:– Addition:

(x,y,z)+̃(x′,y′,z′) = (x+ x′,y+ y′,+y,z+ z′−1).

Multiplication of vectors by scalars k ∈ R:

k⊛ (x,y,z) = (kx,ky,kz− k+1).

Check that R3, with these new operations, is indeed a vector space.

In these cases, you will even need to check the arithmetic axioms, as the operations are
weird. For example, the distributive axiom: k⊛ (u+̃v) = k⊛u+̃k⊛ v is true, but definitely not
obviously so!

Problem 4.13 Let E = {“ax+by+ cz = d” | a,b,c,d ∈ R} be the set of linear equations with real
coefficients in the variables x, y and z. Equip E with the usual operations on equations that you
learned in high school: addition of equations, denoted here by “⊕" and multiplication by scalars,
denoted here by “⊛", as follows:

“ax+by+ cz = d”⊕ “ex+ f y+gz = h” = “(a+ e)x+(b+ f )y+(c+g)z = d +h”

and
∀k ∈ R, k⊛ “ax+by+ cz = d” = “kax+ kby+ kcz = k d”.

Prove that E is a vector space.

Problem 4.14 (For the mathematically curious)
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a) It is not amongst the axioms for a vector space V that 0v = 0 for all vectors v ∈V . (Here the
zero on the left hand side of the equation is the scalar zero, while the zero on the right hand
side of the equation is the zero vector.)
Nevertheless, it is indeed true in every vector space that 0v = 0 for all vectors v ∈V .
Prove this, using a few of the axioms for a vector space.

b) Neither it is amongst the axioms for a vector space V that (−1)v =−v for all vectors v ∈V ,
where the ‘(−1)v’ on the left hand side of the equation indicates the result of multiplication of
v by the scalar −1, and the ‘−v’ on the right hand side of the equation indicates the negative
of v – whose existence is guaranteed by one of the axioms.
Nonetheless, it is indeed true in every vector space that (−1)v =−v for all vectors v ∈V .
Prove this, using a few of the axioms for a vector space. You might find part (a) useful.

c) Let /0 = {} denote the empty set. Could it be made into a vector space?

d) And here’s another interesting vector space: Define V to be the set of formal power series. A
formal power series is an expression of the form

∞

∑
n=0

anxn = a0 +a1x+a2x2 + · · ·

where the coefficients an are real numbers. Define addition by the formula

∞

∑
n=0

anxn +
∞

∑
n=0

bnxn =
∞

∑
n=0

(an +bn)xn

and scalar multiplication by

c
∞

∑
n=0

anxn =
∞

∑
n=0

canxn.

Show that this is a vector space.a

aNote that in general these are not functions on R, since most of the time, if you plug in any non-zero value for x, the
sum makes no sense (technical term: ‘ the series diverges’). The convergent ones (that is, ones where you can plug in some
values of x and it actually makes sense) include the power series for ex, cos(x) and sin(x), which we glimpsed in our first
class. Power series are terrifically useful tools in Calculus. If you’re lucky, you’ll learn what ‘convergence’ really means
for an infinite series in MAT1325 or MAT2125.
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In the last chapter, we established the concept of a vector space, which is a set V on which we can
perform two operations (addition and scalar multiplication) such that 10 axioms are satisfied. The result
is: a vector space is algebraically indistinguishable from things like Rn (as far as addition and scalar
multiplication go).

We met some particularly nice vector spaces:
• Rn, n≥ 1
• E , a space of linear equations in 3 variables
• F [a,b], functions on the interval [a,b]
• F(R), functions on the real line
• Mm×n(R), m×n real matrices

And for each of these, we had to check 10 axioms. But we noticed that sometimes, the last 6 axioms
(the ones dealing purely with algebraic properties) were “obvious”.

Let’s consider this more carefully.

5.1 Subsets of Vectors Spaces

Suppose V is a vector space, and W ⊆V is a subset of V .

■ Example 5.1.1 Let V = R2 (we know it’s a vector space), and let W = {(x,2x)|x ∈ R}. Use the
same operations of addition and scalar multiplication on W as we use in R2. What do we really need to
verify to decide if it’s a vector space?

closure: (1) closure under addition: if (x,2x) and (y,2y) are in W , then (x,2x)+ (y,2y) = (x+
y,2(x+ y)), which is in W because it has the correct form (z,2z) with z = x+ y. YES.

(2) closure under scalar multiplication: if (x,2x) ∈W and c ∈ R then c(x,2x) = (cx,2(cx)) ∈W as
well. YES.
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existence: (3) the zero vector is (0,0), which is in W . But we don’t need to bother checking if
0+u = u for each u ∈W , because we know this is true for all u ∈R2 already (since V is a vector space
and so satisfies axiom (3)). So it’s enough to know that 0 ∈W .

(4) if u ∈W , then we know that −u = (−1)u ∈W because (2) is true. And again, we know that the
negative has the correct property because we checked it when we decided that V was a vector space.

algebraic properties: (5)-(10) All of these properties are known to be true for any vectors in V ; so
in particular they are true for any vectors in the smaller set W ⊂V . So we don’t need to check them
again!

We conclude: W is a vector space. ■

Definition 5.1.2 A subset W of a vector space V is called a subspace (or subspace of V ) if it is a
vector space when given the same operations of addition and scalar multiplication as V .

■ Example 5.1.3 W = {(x,2x)|x ∈ R} is a subspace of R2. ■

Theorem 5.1.4 — Subspace Test. : If V is a vector space and W ⊆V , then W is a subspace of V if
and only if the following 3 conditions hold:

1. 0 ∈W .
2. W is closed under addition: for every u,v ∈W , u+v is again in W .
3. W is closed under multiplication by scalars: for every u ∈W and r ∈ R, ru is again in W .

Think of this theorem as giving you a shortcut to working out if certain sets are vector spaces. We
saw in the example above why it comes down to just these three axioms. 1

5.2 Many examples
Now let us apply the subspace test to acquire many more examples of vector spaces. On the homework
and in the suggested exercises, you’ll see many examples of subsets to which the subspace test does not
apply (because the operations aren’t the same) or where the subspace test fails. Do many examples to
develop your intution about what does and does not constitute a vector space!

Problem 5.2.1 Let T = {u ∈ R3|u · (1,2,3) = 0}, with the usual operations on R3. Is this a
subspace?
Solution Notice that T ⊂ R3 and T ̸= R3. In fact, T is the plane with equation

x+2y+3z = 0.

Since we’re using the usual operations on R3, we apply the subspace test:
1. Is 0 ∈ T ? Yes, since 0 = (0,0,0) satisfies the condition u · (1,2,3) = 0.
2. Is T closed under addition?

Well, suppose u and v are in T .
That means u · (1,2,3) = 0 and v · (1,2,3) = 0.

1You might wonder why we have to include the first one, though, since 0u = 0 so it ought to follow from closure under
scalar multiplication. It does, but only if the set W is not the empty set. So if W isn’t empty, then it’s enough to check axioms
(2) and (3). BUT as a general rule, (1) is super-easy to check; and if it fails you know W isn’t a subspace. So it’s a quick way
to exclude certain sets and we always use it.
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We need to decide if u+v ∈ T .
That means we need to decide if (u+v) · (1,2,3) = 0.
We calculate: (u+v) · (1,2,3) = (u · (1,2,3))+(v · (1,2,3)) = 0+0 = 0.
So u+v ∈ T , and we conclude T is closed under addition.

3. Is T closed under multiplication by scalars?
Let k ∈ R and u ∈ T .
So we have that u · (1,2,3) = 0.
We want to decide if ku ∈ T .
That means we need to see if (ku) · (1,2,3) = 0.
We calculate: (ku) · (1,2,3) = k(u · (1,2,3)) = k(0) = 0.
So ku ∈ T and so T is closed under scalar multiplication.

So YES, T is a subspace of R3.

Notice that we could have replaced the vector (1,2,3) with any vector n, and the result would have
been the same. In fact:

! Any plane through the origin in R3 is a subspace.

Furthermore, if a plane in R3 doesn’t go through the origin, then it fails the first condition of the
subspace test. So we have:

! Any plane in R3 which doesn’t go through the origin is not a subspace.

Problem 5.2.2 Let v ∈ Rn and set L = {tv|t ∈ R} to be the line in Rn through the origin with
direction vector v (with the usual operations from Rn). Is L a subspace?
Solution We apply the subspace test.

1. Yes, 0 ∈ L: take t = 0.
2. If tv and sv are two points in L, then tv+ sv = (t + s)v which is again a multiple of v, so lies

in L. So L is closed under addition.
3. If tv ∈ L and k ∈ R then k(tv) = (kt)v, which is a multiple of v, so it lies in L. Thus L is

closed under scalar multiplication.
We conclude that L is a subspace of Rn.

Similarly to above, we deduce:

! Any line through the origin in Rn is a subspace. Any line in Rn which does not
go through the origin is not a subspace.

Problem 5.2.3 Let V = F(R), the vector space of all functions with domain R. Let P be the set of
all polynomial functions, that is, P consists of all functions that can be written as

p(x) = a0 +a1x+a2x2 + · · ·+anxn

for some n≥ 0 and ai ∈ R. Is P a vector space?
Solution We first note (it may not seem obvious) that the natural operations of adding two
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polynomials, and multiplying a polynomial by a scalar, are exactly the usual operations on functions
F(R). So P⊂ F(R) with the same operations, so we can apply the subspace test. (Phew!)

1. Is 0 ∈ P? Remember that 0, here, is the function which when you plug in any x you get 0
as an answer. Well, that’s the zero polynomial: p(x) = 0+0x+0x2. (Or just p(x) = 0, for
short.) It’s a polynomial, so 0 ∈ P.

2. Is P closed under addition? Yes: the sum of two polynomials is again a polynomial (it’s not
as though you could get an exponential function or something like that).

3. Is P closed under scalar multiplication? Yes: multiplying a polynomial by a scalar gives
another polynomial.

So yes, P is a subspace, so a vector space.

Definition 5.2.4 The transpose of an m× n matrix A is the n×m matrix AT whose rows are the
columns of A. For example, [

a b
c d

]T

=

[
a c
b d

]
.

Problem 5.2.5 Let S = {A ∈M22(R)|AT = A} be the set of symmetric 2× 2 matrices (with the
usual operations). Is this a vector space?
Solution Since S⊂M22(R), and we’re using the same operations, we can apply the subspace test.

But it’s helpful to get more comfortable with this set S, first. Rewrite it as:

S =

{[
a b
c d

]
|
[

a b
c d

]T

=

[
a b
c d

]}

=

{[
a b
c d

]
|
[

a c
b d

]
=

[
a b
c d

]}
=

{[
a b
b d

]
|a,b,d ∈ R

}
Oh, that’s more clear!

1. By taking a = 0, b = 0 and d = 0, we get the zero matrix; so this is in S.
2. Take two arbitary matrices in S, and add them:[

a b
b d

]
+

[
a′ b′

b′ d′

]
=

[
a+a′ b+b′

b+b′ d +d′

]
This is again in S, since it matches the required pattern to be in S (that the (1,2) and (2,1)
entries of the matrix are equal). So S is closed under addition.

3. Let k ∈ R; then

k
[

a b
b d

]
=

[
ka kb
kb kd

]
is again in S, so S is closed under scalar multiplication.

So S is a subspace of M22(R).

Problems
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Problem 5.1 Determine whether each of the following is a subspace of the indicated vector space.
Assume the vector space has the standard operations unless otherwise indicated.

Remember some useful shortcuts we established in class: (1) every line or plane through the
origin in R2 or R3 is a subspace; (2) See the Theorem 6.4.1 in the next chapter : Every ‘span’ is a
subspace: i.e. if W = span{v1, . . . ,vk} for some vectors v1, . . . ,vk in a vector space V , then W is a
subspace of V . Once you’ve seen Theorem 6.4.1, you only use the subspace test as a last resort!

a) {(2x,x) ∈ R2 | x ∈ R}; R2.

b) ⋆{(x,x−3) ∈ R2 | x ∈ R}; R2.

c) {(x,y) ∈ R2 | xy = 0}; R2.

d) {(x,x+2) ∈ R2 | x ∈ R}; R2.

e) ⋆{(x,y) ∈ R2 | x−3y = 0}; R2.

f) {(x,y) ∈ R2 | x−3y = 1}; R2.

g) ⋆{(x,y) ∈ R2 | xy≥ 0}; R2.

h) {(x,y,z) ∈ R3 | x+2y+ z = 0}; R3.

i) ⋆{(x,y,z) ∈ R3 | x+2y+ z = 1}; R3.

j) {(x,y,z) ∈ R3 | xyz = 0}; R3.

k) ⋆{(x,y,z,w) ∈ R4 | x− y+ z−w = 0} ; R4.

l) {(x,y,z,w) ∈ R4 | xy = zw} ; R4.

m) ∗ {(x,x+2) ∈ R2 | x ∈ R}; Non-standard operations:– Addition:

(x,y)+̃(x′,y′) = (x+ x′,y+ y−2).

Multiplication of vectors by scalars k ∈ R: k⊛ (x,y) = (kx,ky−2k+2).

n) ∗ {(x,y,z) ∈ R3 | x+2y+ z = 1} ; Non-standard operations:– Addition:

(x,y,z)+̃(x′,y′,z′) = (x+ x′,y+ y′,z+ z′−1)

Multiplication of vectors by scalars k ∈ R: k⊛ (x,y,z) = (kx,ky,kz− k+1).

Problem 5.2 Determine whether each of the following is a subspace of of F(R) = { f | f : R→ R}
with its standard operations. (Here, you’ll need to use the subspace test.)

a) { f ∈ F(R) | f (2) = 0} ;

b) ⋆{ f ∈ F(R) | f (2) = 1}.

c) { f ∈ F(R) | f (1) = 2}.
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d) ⋆{ f ∈ F(R) | for all x ∈ R, f (x)≤ 0}.

e) { f ∈ F(R) | For all x ∈ R, f (−x) = f (x)}

f) ⋆{ f ∈ F(R) | For all x ∈ R, f (−x) =− f (x)}

g) { f ∈ F(R) | f is twice-differentiable, and for all x ∈ R, f ′′(x)+ f (x) = 0}

h) ⋆P= {p ∈ F(R) | p is a polynomial function in the variable x}

Problem 5.3 Determine whether the following are subspaces of

P= {p ∈ F(R) | p is a polynomial function in the variable x},

with its standard operations. (In some parts, you’ll be able to use the fact that everything of the form
span{v1, . . . ,vn} is a subspace.)

a) {p ∈ P | deg(p) = 2}a

b) ⋆{p ∈ P | deg(p)≤ 2}

c) Pn = {p ∈ P | deg(p)≤ n}

d) ⋆{p ∈ P2 | p(1) = 0}.

e) {p ∈ P2 | p(1) = 2}.

f) ⋆{p ∈ P3 | p(2) p(3) = 0}.

g) {p ∈ P3 | p(2) = p(3) = 0}.

h) ⋆{p ∈ P2 | p(1)+ p(−1) = 0}.

aRecall that the degree of a polynomial p(x) = anxn + · · ·+a1x+a0, is deg(p) = max{k | ak ̸= 0}

Problem 5.4 Determine whether the following are subspaces of M22(R), with its standard operations.
(If you’ve read ahead, in some parts, you’ll be able to us the fact that everything of the form
span{v1, . . . ,vn} is a subspace.)

a)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ b = c

}
.

b) ⋆

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a = d = 0 & b =−c

}
.

c)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a+d = 0

}
.

d) ⋆

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ bc = 1

}
.
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e)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ ad = 0

}
.

f)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ ad−bc = 0

}
.





6. The Span of Vectors in a Vector Space

Our goal here is to render finite the infinite! All1 subspaces are infinite sets of vectors. We have a
couple of different ways of describing subspaces, for example:

1. W = {things | conditions on things} like

W = {(x,y,z) ∈ R3 | x−2y+ z = 0}.

2. U = {things with parameters | parameters are real}, like

S = {
[

a b
b d

]
| a,b,d ∈ R}.

Each of (1) and (2) has it own advantages, but here, we’ll see that you can completely identify a
subspace given in the form of (2) by just giving a finite list of vectors.

This idea is crucial when it comes time to apply this in the real world: when you need to communi-
cate a subspace (such as an error-correcting code), it is WAY easier to just send n vectors and then say:
“take their span”, rather than to try to digitally communicate an infinite set defined by equations and/or
parameters.

As an added bonus: we’ll prove another shortcut to testing if something is a vector space (and this
one is fantastically easy).

1but one - {0}
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6.1 Converting sets of form (1) to form (2)
■ Example 6.1.1 Consider W = {(x,y,z) | x−2y+ z = 0}, of the first kind. Then

W = {(x,y,z) | x−2y+ z = 0}
= {(x,y,z) | x = 2y− z}
= {(2y− z,y,z) | y,z ∈ R}

which is of the second kind. ■

The idea is just: the “condition” can always be rephrased as one or more equations; solve the
equations in terms of one or more variables. (This is something we’ll come back to in Chapter 11.)

6.2 Describing (infinite) sets of the form (2) with a finite number of vectors
■ Example 6.2.1 With W as above:

W = {(2y− z,y,z) | y,z ∈ R}
= {(2y,y,0)+(−z,0,z) | y,z ∈ R}
= {y(2,1,0)+ z(−1,0,1) | y,z ∈ R}

This shows that W is the set of all linear combinations of (2,1,0) and (−1,0,1). We give it a special
name and notation:

W = span{(2,1,0),(−1,0,1)}
which we read out loud as “W is the span of (2,1,0) and (−1,0,1)”, or alternatively “W is the span of
(the set) {(2,1,0),(−1,0,1)}”. ■

■ Example 6.2.2 Here’s another:

S =

{[
a b
b d

]∣∣∣a,b,d ∈ R
}

=

{
a
[

1 0
0 0

]
+b

[
0 1
1 0

]
+d

[
0 0
0 1

]∣∣∣a,b,d ∈ R
}

= span
{[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
.

■

6.3 The definition of span
Let v1, v2, · · · ,vm be vectors in a vector space V .

Definition 6.3.1 1. If a1,a2, · · · ,am are scalars, then the vector

a1v1 +a2v2 + · · ·+amvm

is called a linear combination of v1, . . . ,vm.
2. The set of all linear combinations of v1, . . . ,vm is called the span of v1, . . . ,vm. We have

span{v1, . . . ,vm}= {a1v1 +a2v2 + · · ·+amvm | a1, · · · ,am ∈ R}.
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In this case, {v1, . . . ,vm} is called the spanning set for span{v1, . . . ,vm}; or we say that
{v1, . . . ,vm} spans span{v1, . . . ,vm}.

3. A vector space (or subspace) W is spanned by v1, . . . ,vm ∈W if W = span{v1, . . . ,vm}. Then
we say {v1, . . . ,vm} spans W .

■ Example 6.3.2 Above, we had W = span{(2,1,0),(−1,0,1)}. Call these two vectors v1 and v2;
then W is spanned by v1 and v2; or {v1,v2} spans W . ■

■ Example 6.3.3 We also found that S was the span of three matrices; call them M1, M2 and M3. So S
is spanned by M1,M2 and M3; or the set {M1,M2,M3} spans S. ■

■ Example 6.3.4 A line in Rn through the origin has the form L = {tv | t ∈R} So in fact L = span{v};
L is the subspace spanned by the vector v. ■

■ Example 6.3.5 The vector (1,2) ∈ R2 spans the line in direction (1,2). The vector (1,2) is an
element of R2 but it does not span all of R2 because, for example, the vector (1,3) can’t be obtained
from (1,2) using vector operations (linear combinations). ■

! Caution: If a set of vectors lies in Rn, that doesn’t mean they span Rn. The
subspace they span is the (usually smaller) subspace of all vectors obtainable as
linear combinations from your finite set.

6.4 The BIG THEOREM about spans

Theorem 6.4.1 — Spanned sets are subspaces. Let V be a vector space.
If {v1, . . . ,vm} ⊂V , define U = span{v1, . . . ,vm}. Then

1. U is always a subspace of V .
2. If W is any subspace of V which contains all the vectors v1, . . . ,vm, then in fact U ⊆W (that

is, W must also contain every vector in their span). So U is the smallest subspace that contains
v1, . . . ,vm.

Proof. To prove (1), we apply the subspace test.
1. We have 0 = 0v1 + · · ·+0vm ∈U
2. If u = a1v1 + · · ·+ amvm and w = b1v1 + · · ·+ bmvm, then u+w = (a1 + b1)v1 + · · ·+(am +

bm)vm; and since this is a linear combination of v1, · · · ,vm, it is again in U . So U is closed under
addition.

3. If u ∈U is as above, and k ∈R, then ku = (ka1)v1 + · · ·+(kam)vm, which is again in U . So U is
closed under scalar multiplication.

Thus U is a subspace of V .
The proof of (2) is a straightfoward2 exercise using the closure properties of subspaces. ■

■ Example 6.4.2

W = {(x,y,x− y) | x,y ∈ R}
= {x(1,0,1)+ y(0,1,−1) | x,y ∈ R}
= span{(1,0,1),(0,1,−1)}

2If you don’t think so, please see the professor!
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Therefore, W is a subspace of R3. ■

! If you notice that your set is the span of some vectors, then (by this theorem)
you automatically know that it is a vector space. You don’t even have to use the
subspace test! Theorem 6.4.1 guarantees this. (Theorems are great for this kind
of time-saving.)

6.5 Applying Theorem 6.4.1 to identify more subspaces
Let’s see how this theorem can help us.

Problem 6.5.1 Let V = F(R) and let f (x) = cos(x), g(x) = sin(x). Set W = span{ f ,g}. This is a
subspace of F(R), by the theorem.

Let’s ask ourselves two questions:
(a) Is sin(x+1) ∈W?
(b) Is the constant function h(x) = 1 in W?

Solution For (a), we recall some nice trig identities for sums of angles:

sin(x+1) = sin(x)cos(1)+ sin(1)cos(x) = sin(1) f (x)+ cos(1)g(x).

Since sin(1) and cos(1) are just numbers, this is just a linear combination of f and g. So YES,
sin(x+1) ∈W .

For (b), we might have no inkling of what to do. The best way to proceed is to get some clues:
plug in a few values of x, and see what happens. That is, suppose h(x) = a f (x)+bg(x) for some
scalars a and b. Then we’d have:

For x = 0 : h(0) = a f (0)+bg(0)⇒ 1 = a

For x = π/2 : 1 = a(0)+b(1)⇒ 1 = b

Excellent so far! So IF it is true that h(x) = a f (x)+bg(x) THEN necessarily we must have a = 1
and b = 1, so that h(x) = cos(x)+ sin(x). But wait a minute – if you plug in x = π , the left hand
side is 1, but the right hand side is −1. So this isn’t true; it’s nonsense, a contradiction. Something
went wrong. The substitutions are fine, so it must be that our supposition, our hypothesis (that h is a
linear combination of f and g) must be false. We can then be sure, as we are that 1 ̸=−1, that h is
not in W .

■ Example 6.5.2 The set W = {a(1,0,1)+b(2,1,1) | a,b≥ 0} is NOT a subspace3. It is also NOT
the span of the vectors (1,0,1) and (2,1,1), because the span is the set of all linear combinations (not
just some). Moral: the parameters have to be allowed to take on all real numbers. ■

For the next example, we need a definition.

Definition 6.5.3 Given an n× n (“square”) matrix A, define the trace of A to be the sum of the

3Why not?
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elements on its main diagonal, denoted tr(A). Then tr(A) ∈ R. For example,

tr
[

a b
c d

]
= a+d.

Problem 6.5.4 Show that the set sl2 = {A ∈M22(R) | tr(A) = 0} is a subspace of M22(R). (This is
in fact an example of a Lie algebra a

Solution Using the formula in the definition above, we can rewrite this set as

sl2 =

{[
a b
c −a

]
| a,b,c ∈ R

}
.

so

sl2 = span
{[

1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
.

Since sl2 is the span of some vectors, it is a subspace.
a“Lie" is pronounced “lee", named after Sophus Lie, a Norwegian mathematician. Lie Algberas, and Lie Groups —

they’re great stuff. No, really — Sophus Lie’s idea of ‘continous symmetry’, now called Lie Groups was a huge boost to
mathematics and the ‘Lie Algebra’ idea is a way of rendering the infinite to the finite, just as we have done with the idea
of a spanning set for a subpace. See the wiki page for Sophus Lie.

There’s a funny but apocryphal story about a reseacher who was studying Lie Algebras, and who applied for, and
received, public funding—after proper peer review and also quite proper government review. Also quite properly, a
member of Canada’s Parliament at the time read part of the proposal. The Honourable Member then asked in the House
of Commons why Canada should support research into ‘lying’. The meaning of ‘Lie’ Algebras was afterwards explained
to him.

■ Example 6.5.5 Consider the set of 2×2 diagonal matrices, that is

D2 =

{[
a 0
0 d

]
| a,d ∈ R

}
.

Since

D2 =

{
a
[

1 0
0 0

]
+d

[
0 0
0 1

]
| a,d ∈ R

}
= span

{[
1 0
0 0

]
,

[
0 0
0 1

]}
we deduce that D2 is a subspace of M22(R). ■

6.6 So what are all the subspaces of Rn?

We can answer this geometrically for n = 1,2,3; and this certainly gives us a sense of the answer for
all vector spaces.

6.6.1 Subspaces of R
Well, {0} is a subspace of Rn, for any n; here, {0} is a subspace of R.

If W is a subspace of R which is not the zero subspace, then it contains some nonzero element, call
it x. But then, being a subspace, it contains all multiples of x—and that’s all of R!

Conclusion: R has only two subspaces: the zero space and the whole thing.
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6.6.2 Subspaces of R2

OK, again we get that {0} and R2 are subspaces of R2. But we also know that lines through the origin
are subspaces of R2.

Theorem 6.6.1 — Subspaces of R2. The only subspaces of R2 are
• the zero subspace,
• lines through the origin, and
• all of R2.

Proof. To prove this, start by letting W be an arbitrary subspace of R2. We want to argue that it has no
choice but to be one of the above subspaces.

Suppose W is a subspace of R2.
If it’s not the zero subspace, then it contains at least one nonzero vector, call it v.
Since W is a subspace, it must contain span{v}. (Theorem 6.4.1, part (2))
Now span{v} is the line through the origin with direction vector v.
So if W ̸= span{v}, it must be bigger; it must contain a vector not on that line, call it w.
Then v and w are not parallel; they are not collinear.
By (Theorem 6.4.1, part (2)): W contains span{v,w}.
So we are done if we can show that span{v,w}= R2.

The last step of the proof, as done in class, was entirely geometric. Here’s an algebraic proof.
Write v = (v1,v2) and w = (w1,w2). Let (x,y) be some arbitrary element of R2. To show that

(x,y) ∈ span{v,w}, we need to show that we can solve the equation[
x
y

]
= a

[
v1
v2

]
+b

[
w1
w2

]
for some a,b ∈ R. This is the same as solving the linear system for a and b:

av1 +bw1 = x

av2 +bw2 = y

Since v and w aren’t multiples of each other, the area of the parallelogram they generate – |v1w2−v2w1|–
isn’t zero. So v1w2− v2w1 ̸= 0. Then it is easy to check that:[

x
y

]
=

xw2− yw1

v1w2− v2w1
v+

v1y− v2x
v1w2− v2w1

w.

That is, these nasty looking fractions are the values of a and b you’d find by solving the equation above.
(For example, the first coordinate of the right hand side is

xw2− yw1

v1w2− v2w1
v1 +

v1y− v2x
v1w2− v2w1

w1 =
(xw2v1− yw1v1 + v1yw1− v2xw1)

v1w2− v2w1
= x

which equals the first coordinate of the left hand side.)
■

! We learned: if two nonzero vectors v,w ∈ R2 are not collinear (not parallel) then
span{v,w}= R2!
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6.6.3 Subspaces of R3

We know several kinds of subspaces of R3; but in fact, once again, we know them all!

Theorem 6.6.2 — Subspaces of R3. The only subspaces of R3 are:
• the zero subspace,
• lines through the origin,
• planes through the origin, and
• all of R3.

This is something we’ll be able to prove algebraically later, when we have more tools at our disposal.
For now, we can be convinced by a geometric argument, along the following lines:

Let W be some arbitrary subspace. If it’s not the zero space, then it contains span{v} for some
nonzero vector v ∈W . If it’s not that line, then it contains span{v,w} for some w ∈W which is not
collinear with v. Arguing as in R2, we deduce that this span is a plane through the origin. If W is not
equal to this plane, then it must contain another vector u such that u /∈ span{v,w}. With the help of
another picture, we realize that every vector in all of R3 lies in span{v,w,u}, and so W = R3.

6.7 Final thoughts on spans, and some difficulties
Problem 6.7.1 Show that

span{(0,1,1),(1,0,1)}= span{(1,1,2),(−1,1,0)} (6.1)

Solution Here are two ways of solving this problem. The first one only works in R3, but it’s nice
and short. The second one works in any vector space.

(1) We saw above that the span of two non-collinear vectors is a plane through the origin. We
can get a normal vector to the plane using the cross product.

So: the plane spanned by {(0,1,1),(1,0,1)} has normal vector (0,1,1)× (1,0,1) = (1,1,−1);
so it is given by the normal equation x+ y− z = 0. The plane spanned by {(1,1,2),(−1,1,0)}
has normal vector (1,1,2)× (−1,1,0) = (−2,−2,2) so has equation −2x−2y+2z = 0. But these
equations describe the same plane! So the two sides of (6.1) are equal.

(2) What if we didn’t have some insight into what these subspaces were (geometrically speak-
ing)? Well, we can use our big theorem on span. Namely:

Since

(1,1,2) = 1(0,1,1)+1(1,0,1) and (−1,1,0) = 1(0,1,1)−1(1,0,1)

we have that (1,1,2),(−1,1,0) ∈ span{(0,1,1),(1,0,1)}. So by the theorem 6.4.1(2),

span{(1,1,2),(−1,1,0)} ⊆ span{(0,1,1),(1,0,1)}.

Conversely, since

(0,1,1) =
1
2
(1,1,2)+

1
2
(−1,1,0) and (1,0,1) =

1
2
(1,1,2)− 1

2
(−1,1,0)
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we have that (0,1,1),(1,0,1) ∈ span{(1,1,2),(−1,1,0)}, so again by Theorem 6.4.1(2),

span{(0,1,1),(1,0,1)} ⊆ span{(1,1,2),(−1,1,0)}.

But if you have two sets W and U and you know W ⊆U and U ⊆W , then you must have W =U .
Hence we know the spans are equal.

! A first issue with spans: it’s not easy to tell if two subspaces are equal, just based
on the spanning sets you’re given.

Problem 6.7.2 Show that span{(0,1,1),(1,0,1)}= span{(0,1,1),(1,0,1),(1,1,2),(−1,1,0)}.
Solution The short answer: from the previous problem we know that all the vectors on the right
hand side lie in the plane x+ y− z = 0, so their span can’t be any bigger than that (since the span
is the SMALLEST subspace that contains the given vectors). And it can’t be any smaller than the
plane, since you can already get every vector of that plane via linear combinations of just two of
them. So they are equal.

The more complete answer: use the method (2) above. Clearly

(0,1,1),(1,0,1) ∈ span{(0,1,1),(1,0,1),(1,1,2),(−1,1,0)}

(since they’re in the spanning set!), so

span{(0,1,1),(1,0,1)} ⊆ span{(0,1,1),(1,0,1),(1,1,2),(−1,1,0)}.

On the other hand, using the previous example, we have that every one of the 4 vectors on the right
hand side lie in the span of (0,1,1) and (1,0,1), so we may similarly conclude that

span{(0,1,1),(1,0,1),(1,1,2),(−1,1,0)} ⊆ span{(0,1,1),(1,0,1)}.

Thus, the subspaces are equal.

! A second issue: Having more vectors in a spanning set DOESN’T imply that the
subspace they span is any bigger. You can’t judge the size of a subspace by just
looking at the spanning set.

(Or can you? That’s coming up soon.)

Problems
Problem 6.1 Justify your answers to the following:

a) Is the vector (1,2) a linear combination of (1,0) and (1,1)?

b) ⋆Is the vector (1,2) a linear combination of (1,1) and (2,2)?

c) Is the vector (1,2) a linear combination of (1,0) and (2,2)?
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d) ⋆Is the vector (1,2,2,3) a linear combination of (1,0,1,2) and (0,0,1,1)?

e) Is the vector (1,2,2,4) a linear combination of (1,0,1,2) and (0,0,1,1)?

f) ⋆Is the matrix
[

1 2
2 3

]
a linear combination of

[
1 0
1 2

]
and

[
0 1
0 1

]
?

g) Is the matrix
[

1 2
2 4

]
a linear combination of

[
1 0
1 2

]
and

[
0 1
0 1

]
?

h) ⋆Is the polynomial 1+ x2 a linear combination of 1+ x− x2 and x?

i) Is the polynomial 1+ x2 a linear combination of 1+ x and 1− x?

j) ⋆Is the function sinx a linear combination of the constant function 1 and cosx?

k) Is the function sin2 x a linear combination of the constant function 1 and cos2 x?

l) ⋆If u, v and w are any vectors in a vector space V , is u− v a linear combination of u, v and w?

m) If u, v and w are any vectors in a vector space V , is w always a linear combination of u, v ?

Problem 6.2 Justify your answers to the following:

a) Does the vector (3,4) belong to span{(1,2)}?

b) ⋆Is ‘(3,4) ∈ span{(1,2)}’ true? (Note that this is the same as the previous part, written using
mathematical notation.)

c) Is ‘(2,4) ∈ span{(1,2)}’ true?

d) ⋆How many vectors belong to span{(1,2)}?

e) Are the subsets {(1,2)} and span{(1,2)} equal?

f) ⋆Is {(1,2)} a subset of span{(1,2)}?

g) If v is a non-zero vector in a vector space, show that there are infinitely many vectors in
span{v}. (Is this true if v = 0?)

h) ⋆Suppose S is a subset of a vector space V . If S = spanS, explain why S must be a subspace of
V .

i) ∗ Suppose S is a subset of a vector space V . If S is actually a subspace of V , show that
S = spanS.

Note that to show that S = spanS, you must establish two facts:
(i) If w ∈ S, then w ∈ spanS, and

(ii) If w ∈ spanS, then w ∈ S.

Problem 6.3 Give two distinct finite spanning sets for each of the following subspaces.

a) {(2x,x) ∈ R2 | x ∈ R}
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b) ⋆{(x,y) ∈ R2 | 3x− y = 0}

c) {(x,y,z) ∈ R3 | x+ y−2z = 0}

d) ⋆{(x,y,z,w) ∈ R4 | x− y+ z−w = 0}

e)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ b = c

}
.

f) ⋆

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a = d = 0 and b =−c

}
.

g)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a+d = 0

}
.

h) ⋆

{[
a 0
0 b

]
∈M22(R)

∣∣∣∣∣ a,b ∈ R

}
.

i)

{[
0 b
−b 0

]
∈M22(R)

∣∣∣∣∣ b ∈ R

}
.

j) ⋆

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a+b+ c+d = 0

}
.

k) P2 = {p | p is a polynomial function withdeg(p)≤ 2}.

l) ⋆Pn = {p | p is a polynomial function withdeg(p)≤ n}.

m) {p ∈ P2 | p(2) = 0}.

n) ⋆{p ∈ P3 | p(2) = p(3) = 0}.

o) {p ∈ P2 | p(1)+ p(−1) = 0}.

p) ⋆span{sinx,cosx}.

q) span{1,sinx,cosx}.

r) ⋆span{1,sin2 x,cos2 x}.

s) ∗ {(x,x−3) ∈ R2 | x ∈ R}, equipped with the non-standard operations:– Addition:

(x,y)+̃(x′,y′) = (x+ x′,y+ y+3).

Multiplication of vectors by scalars k ∈ R:

k⊙ (x,y) = (kx,ky+3k−3).
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t) ∗ {(x,y,z) ∈ R3 | x+2y+ z = 2}; V = R3, Non-standard operations:– Addition:

(x,y,z)+̃(x′,y′,z′) = (x+ x′,y+ y,z+ z′−2).

Multiplication of vectors by scalars k ∈ R: k⊙ (x,y,z) = (kx,ky,kz−2k+2).

(Hint for parts (m)&(n): Recall the Factor/Remainder theorem from high school: if p is a polynomial
in the variable x of degree at least 1, and p(a) = 0 for some a ∈ R, then p has a factor of x−a, i.e.,
p(x) = (x−a)q(x), where q is a polynomial with deg(q) = deg(p)−1.)

Problem 6.4 Justify your answers to the following:

a) Suppose u and v belong to a vector space V . Show carefully that span{u,v}= span{u,u+v}.
That is , you must show two things:

(i) If w ∈ span{u,v}, then w ∈ span{u,u+v}, and
(ii) If w ∈ span{u,u+v}, then w ∈ span{u,v}.

b) ⋆Suppose u and v belong to a vector space V . Show carefully that span{u,v}= span{u−v,u+
v}. That is , you must show two things:

(i) If w ∈ span{u,v}, then w ∈ span{u−v,u+v}, and
(ii) If w ∈ span{u−v,u+v}, then w ∈ span{u,v}.

c) Suppose u ∈ span{v,w}. Show carefully that span{v,w}= span{u,v,w}.

d) ⋆Suppose span{v,w}= span{u,v,w}. Show carefully that u ∈ span{v,w}.

e) Show that x2 /∈ span{1,x}.a

f) ⋆Show that xn+1 /∈ Pn. b

g) ∗ Show that P does not have a finite spanning set. c

h) ⋆Assume for the moment (we’ll prove it later) that if W is a subspace of V , and V has a finite
spanning set, then so does W .
Use this fact and the previous part to prove that F(R) does not have a finite spanning set.

aHint: Proceed by contradiction: Suppose x2 ∈ span{1,x}. Write down explicitly what this means, re-write the
equation as q(x) = 0, where q(x) is some quadratic polynomial. Now, remember: every non-zero polynomial of degree 2
has at most 2 distinct roots. Look again at the equation q(x) = 0, and ask yourself how many roots this equation tells you
that q has. Now find your contradiction.

bHint: Generalize the idea in the previous hint, recalling that every non-zero polynomial of degree n+1 has at most
n+1 distinct roots.

cHint: Proceed by contradiction again. Suppose it did, say, P= span{p1, . . . , pk}, for some polynomials p1, . . . , pk.
Now define n = max{deg(p1), . . . ,deg(pk)}. Now show that xn+1 /∈ span{p1, . . . , pk}, using the same argument as in the
previous part. But of course xn+1 ∈ P, so there’s your contradiction.





7. Linear Dependence and Independence

In the last chapter, we introduced the concept of the span of some vectors. Given finitely many vectors
v1,v2, . . . ,vm, we define their span to be the set of all linear combinations of these vectors. We write

span{v1,v2, . . . ,vm}= {a1v1 +a2v2 + · · ·+amvm | ai ∈ R}.

Thus far, we should agree that:
• span{0}= {0}
• If v ̸= 0, then span{v} is the line through the origin in direction v.
• If u,v ̸= 0 and u and v are not parallel, then span{u,v} is a plane (at least: in R2 and R3).

(We also argued that three non-coplanar vectors should span all of R3, but this was only done verbally,
and I don’t expect you to feel convinced of that one, yet.)

Notice the (geometric!) conditions we had to place on our statements. For now, let’s agree that they
are necessary, and then work out what the correct algebraic version of these conditions should be, so
that we can apply it to any vector space.

(We’ll call the condition linear independence and one thing it will guarantee, as we’ll see, is that
if {v1,v2, . . . ,vm} is a linearly independent set, then the vector space span{v1,v2, . . . ,vm} is strictly
bigger than the vector space span{v1,v2, . . . ,vm−1} (or the span of any proper subset).)

7.1 Difficulties with span: Nonuniqueness of spanning sets

The first issue to mention here is not one we’re going to be able to solve; but we need to discuss it to be
aware of the issue.

■ Example 7.1.1 span{(1,2)} = span{(2,4)} since these vectors are parallel and so span the same
line. ■
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■ Example 7.1.2 If W = span{(1,0,1),(0,1,0)} and U = span{(1,1,1),(1,−1,1)} then in fact W =
U . Why?

First note that (1,1,1) = (1,0,1)+(0,1,0) and (1,−1,1) = (1,0,1)− (0,1,0). Now apply Theo-
rem 6.4.1:

The set W = span{(1,0,1),(0,1,0)} is a subspace of R3 by Theorem 6.4.1(1).
We’ve just shown that (1,1,1) and (1,−1,1) are in W (because they are linear combinations of a
spanning set for W ).
Thus by part (2) of the theorem, span{(1,1,1),(1,−1,1)} ⊆W .
So U ⊆W .

Next, write (1,0,1) = 1
2(1,1,1)+

1
2(1,−1,1) and (0,1,0) = 1

2(1,1,1)−
1
2(1,−1,1), and apply the

same argument as above, with the roles of U and W reversed, to deduce that W ⊆U .
Hence W =U . ■

! Moral: You can’t usually tell if two subspaces are equal just by looking at their
spanning sets! Every vector space (except the zero vector space) has infinitely
many spanning sets.

7.2 Difficulties with span: more vectors in the spanning set doesn’t mean more
vectors in their span

The second issue is more serious, but it is one that we can (and will) repair.

Problem 7.2.1 Show that

span{(1,2)}= span{(0,0),(1,2)}= span{(1,2),(2,4),(3,6)}.

Solution For the first equality, note that:

span{(0,0),(1,2)}= {a(0,0)+b(1,2) | a,b ∈ R}= {b(1,2) | b ∈ R}= span{(1,2)}.

Also, note that

span{(1,2),(2,4),(3,6)}= {a(1,2)+b(2,4)+ c(3,6) | a,b,c ∈ R}
= {a(1,2)+2b(1,2)+3c(1,2) | a,b,c ∈ R}
= {(a+2b+3c)(1,2) | a,b,c ∈ R}

This set is certainly contained in span{(1,2)}. Now, for any t ∈ R, you could set a = t,b = 0,c = 0,
to get t(1,2) in this set. So we have

span{(1,2),(2,4),(3,6)}= span{(1,2)}

! Moral: The number of elements in the spanning set for a subspace W does not
necessarily tell you how “big” W is.
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Geometrically, we see that the problem is that all the vectors are collinear (meaning, parallel, or all
lying on one line). Similar problems would occur in R3 if we had three coplanar vectors, that is, all
lying in a plane. So what is the algebraic analogue of these statements?

7.3 Algebraic version of “2 vectors are collinear”
Two vectors u and v being collinear, or parallel, means that either they are multiples of one another or
one of them is 0.

So it’s not enough to just say u = kv for some k ∈ R (because maybe v = 0 and then this equation
wouldn’t work).

You could go with:
• u = kv for some k ∈ R, or
• v = ku for some k ∈ R.

But here’s a nice compact way to get all the cases at once:

! Two vectors u and v are collinear if there exist scalars a,b ∈ R, not both zero,
such that

au+bv = 0

Since the coefficients aren’t both zero, you can rearrange this as above.

■ Example 7.3.1 The vectors (1,2,1) and (2,4,2) are collinear since

2(1,2,1)+(−1)(2,4,2) = (0,0,0).

■

■ Example 7.3.2 The vectors (1,2,1) and (0,0,0) are collinear since

0(1,2,1)+3(0,0,0) = (0,0,0)

(note that at least one of the coefficients isn’t zero). ■

7.4 Algebraic version of “3 vectors are coplanar”
Again, we could think of this as: one of the three vectors is in the span of the other two. So if the
vectors are u, v and w, they are coplanar if

• u = av+bw for some a,b ∈ R or
• v = au+bw for some a,b ∈ R or
• w = au+bv for some a,b ∈ R.

(Where again we had to include all three cases just in case one of the vectors is the zero vector.)
By the same method as above, this can be simplified to:

! Three vectors u, v and w are coplanar (lie in a plane) if there exists scalars
a,b,c ∈ R, not all zero such that

au+bv+ cw = 0
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■ Example 7.4.1 (1,0,1),(0,1,0),(1,1,1) are coplanar because

(1,0,1)+(0,1,0)− (1,1,1) = (0,0,0).

■

■ Example 7.4.2 (1,1,1),(2,2,2),(0,0,0) are coplanar because

2(1,1,1)+(−1)(2,2,2)+0(0,0,0) = (0,0,0)

or because
0(1,1,1)+0(2,2,2)+17(0,0,0) = (0,0,0)

(in fact these vectors were even collinear, but let’s be happy with coplanar for now). ■

7.5 Linear DEPENDENCE: the algebraic generalization of “collinear” and “copla-
nar”

Definition 7.5.1 Let V be a vector space and v1,v2, . . . ,vm ∈ V . Then the set {v1,v2, . . . ,vm} is
linearly dependent (or say: v1,v2, . . . ,vm are linearly dependent) if and only if there are scalars
a1,a2, . . . ,am ∈ R, not all zero such that

a1v1 + · · ·+amvm = 0.

This (and the definition of linear independence, coming up next) are key concepts for this course.
Take the time to note what the definition does not say: it doesn’t just say that there’s a solution to the
dependence equation a1v1 + · · ·+amvm = 0; it says there is a nontrivial solution to it. That is a huge
difference.

7.6 The contrapositive and linear INDEPENDENCE
So linear dependence is a concept (valid for any number of vectors, in any vector space, of any
dimension) that captures the idea that our set of vectors has some “redundancy", such as being collinear
or coplanar. The definition is quite complicated, so it is worth asking: so, what is the opposite of a set
being linearly dependent?

Rephrasing what we have above, we can say:
• Two vectors u and v are not collinear (equivalently, u and v are not parallel) if and only if

au+bv = 0⇔ a = b = 0

In words: they are not parallel if and only the ONLY solution to the equation au+bv = 0 is the
trivial solution a = b = 0 (which of course is always a solution).

• Three vectors u, v, w are not coplanar if and only if

au+bv+ cw = 0⇔ a = b = c = 0

In words: they are not coplanar if and only if the ONLY solution to the equation au+bv+cw = 0
is the trivial solution a = b = c = 0.
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Definition 7.6.1 Let V be a vector space and v1,v2, . . . ,vm ∈ V . Then the set {v1,v2, . . . ,vm} is
linearly independent (or say: v1,v2, . . . ,vm are linearly independent) if and only if the only solution
to

a1v1 + · · ·+amvm = 0

is the trivial solution a1 = 0, · · · , am = 0.

! Note that if some vectors are not linearly dependent, then they are linearly
independent, and vice versa.

We will abbreviate LI = linearly independent and LD = linearly dependent.

7.7 Examples
Let’s work with this definition in several examples.

■ Example 7.7.1 {(1,0),(0,1)} is LI because when you try to solve

a(1,0)+b(0,1) = (0,0)

you get
(a,b) = (0,0)

which means a = 0,b = 0. No choice! ■

■ Example 7.7.2 {(1,1),(1,−1)} is LI because when you try to solve

a(1,1)+b(1,−1) = (0,0)

you get
(a+b,a−b) = (0,0)

which gives a = b and a =−b, which forces a = 0 and b = 0, No choice! ■

■ Example 7.7.3 {(1,0),(0,1),(1,1)} is LD since when you try to solve

a(1,0)+b(0,1)+ c(1,1) = (0,0)

you notice that a = 1, b = 1 and c =−1 works. (In fact, you have infinitely many nontrivial solutions!)
Since we found a nontrivial solution, they are dependent. (Note that (1,1) ∈ span{(1,0),(0,1)}.) ■

■ Example 7.7.4 {(1,1,1)} is LI since solving k(1,1,1) = 0 forces k = 0. ■

■ Example 7.7.5
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
is LI since when you try to solve

a1

[
1 0
0 0

]
+a2

[
0 1
0 0

]
+a3

[
0 0
1 0

]
+a4

[
0 0
0 1

]
=

[
0 0
0 0

]
you get, by simplifying the left side, [

a1 a2
a3 a4

]
=

[
0 0
0 0

]
which means all your coefficients ai are forced to be zero. ■
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■ Example 7.7.6
{[

1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 −1

]
,

[
0 1
0 0

]}
is LD since we notice that

[
1 0
0 0

]
−
[

0 0
0 1

]
−
[

1 0
0 −1

]
+0

[
0 1
0 0

]
=

[
0 0
0 0

]
.

Note that the third matrix was in the span of the first two. ■

■ Example 7.7.7 {1,x,x2} is LI in P2 since

a(1)+b(x)+ c(x2) = 0

means that
a+bx+ cx2 = 0

for all real values of x. If c ̸= 0, the left hand side is a is a quadratic polynomial which can at at most
two distinct real roots! So c = 0. Then we have

a+bx = 0

for all real values of x. But if b ̸= 0, this equation has the single solution x =−a
b

! So b must be zero.

Now we see that a = 0. Hence a = b = c = 0.1 ■

■ Example 7.7.8 {4+4x+ x2,1+ x,x2} is LD in P2 since

1(4+4x+ x2)+(−4)(1+ x)+(−1)x2 = 0

is a nontrivial dependence equation. In fact, 4+4x+ x2 ∈ span{1+ x,x2}. ■

■ Example 7.7.9 {1,sinx,cosx} is LI in F(R) because suppose we have the equation

a(1)+bsin(x)+ ccos(x) = 0

then, plugging in some values of x gives you:
• x = 0 : a+ c = 0
• x = π/2 : a+b = 0
• x = π : a− c = 0

And we see from this (with a little bit of work) that a = b = c = 0. ■

■ Example 7.7.10 {1,sin2 x,cos2 x} is LD. Why? Since

(−1)1+(1)sin2 x+(1)cos2 x = 0, for all x ∈ R,

this is a nontrivial dependence relation. Note that cos2 x ∈ span{1,sin2 x}. ■

7.8 Facts (theorems) about linear independence and linear dependence
Let’s see how many general facts we can figure out about LI and LD sets. Let V be a vector space.

1Compare this argument with the hints given for problems 6.4 parts (e) and (f).
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FACT 1: If v ∈V , then {v} is linearly independent if and only if v ̸= 0.

Proof. if v ̸= 0, then kv = 0 only has solution k = 0 (LI); but if v = 0, then we have, for example,
3v = 0 (LD). ■

FACT 2: If {v1, . . . ,vm} is LD, then any set containing {v1, . . . ,vm} is also LD.

Point: you can’t “fix” a dependent set by adding more vectors to it. In R3, if 2 vectors are collinear,
then taking a third vector gives you at most a coplanar set.

Proof. Your set is LD so you have a nontrivial dependence relation

a1v1 + · · ·+amvm = 0

with not all ai = 0. Now consider the bigger set {v1, . . . ,vm,u1, . . . ,uk}. Then you have the equation

a1v1 + · · ·+amvm +0u1 + · · ·+0uk = 0

and not all coefficients are zero. So that means the big set is LD, too. ■

FACT 3: If {v1, · · · ,vm} is LI, then any subset is also LI.

■ Example 7.8.1 If three vectors are not coplanar, then for sure, no pair of them is collinear. ■

Proof. Fact 3 is in fact logically equivalent to Fact 2. Fact 2 says that if you contain an LD subset, then
you are LD. So you can’t be LI and contain an LD subset. ■

FACT 4: {0} is LD.

FACT 5: Any set containing the zero vector is LD.

! NOTICE: this means that subspaces are LD! And that’s perfectly OK. We are
only usually interested in whether or not spanning sets are LD or LI.

Proof. Use Fact 4 with Fact 2. ■

FACT 6: A set {u,v} is LD if and only if one of the vectors is a multiple of the other.

Proof. If au+ bv = 0 is a nontrivial dependence relation and a ̸= 0, then u = −b
a

v. If b ̸= 0 then

v =−a
b

u. (And if both are zero, it’s not a nontrivial dependence relation!) Conversely, if u = cv (or
v = au) for some c ∈ R, then u− cv = 0 (or −cu+v = 0) is a nontrivial dependence relation. ■
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FACT 7: A set with three or more vectors can be LD even though no two vectors are multiples of
one another.

■ Example 7.8.2 {(1,0),(0,1),(1,1)} are coplanar but no two vectors are collinear. ■

FACT 8: (See Theorem 8.1.1 in the next chapter) A set {v1, . . . ,vm} is LD if and only if there is at
least one vector vk ∈ {v1, . . . ,vm} which is in the span of {v1, . . . ,vk−1,vk+1, . . . ,vm}.

■ Example 7.8.3 (using the above example) (1,1) ∈ span{(1,0),(0,1)}. ■

! Caution: Fact 8 doesn’t mean that every vector is a linear combination of the
others. For example, {(1,1),(2,2),(1,3)} is LD BUT (1,3) /∈ span{(1,1),(2,2)}.

Proof. Suppose {v1, · · · ,vm} is LD. So there is some nontrivial dependence equation

a1v1 + · · ·+amvm = 0

with not all ai = 0. Let’s say that a1 ̸= 0 (we could always renumber the vectors so that this is the case).
Then we can solve for v1:

v1 =−
a2

a1
v2−·· ·−

am

a1
vm

which just says v1 ∈ span{v2, · · · ,vm}. Done.
Now the other direction. Suppose vm ∈ span{v1, · · · ,vm−1}. That means vm = b1v1 + · · ·+

bn−1vm−1. So we have
b1v1 + · · ·+bn−1vm−1 +(−1)vm = 0

and the coefficient of vn is −1, which is nonzero. Hence this is a nontrivial dependence relation (it
doesn’t even matter if all the bi were zero). Thus the set is LD. ■

Next chapter, we’ll put these ideas together with spanning sets.

Problems

Remarks:
1. A question with an asterisk ‘∗’ (or two) indicates a bonus-level question.
2. You must justify all your responses.

Problem 7.1 Which of the following sets are linearly independent in the indicated vector space? (If
you say they are, you must prove it using the definition; if you say the set is dependent, you must
give a non-trivial linear dependence relation that supports your answer. For example, if you say
{v1,v2,v3} is dependent, you must write something like v1−2v2 +v3 = 0, or v1 = 2v2−v3.)

a) {(1,1),(1,2)}; R2

b) ⋆{(1,1),(2,2)}; R2.

c) {(0,0),(1,1)}; R2
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d) ⋆{(1,1),(1,2),(1,0)}; R2.

e) {(1,1,1),(1,0,3)}; R3

f) ⋆{(1,1,1),(1,0,3),(0,0,0)}; R3.

g) {(1,1,1),(1,2,3),(2,3,4)}; R3

h) ⋆{(1,1,1),(1,0,3),(0,3,4)}; R3.

i) {(1,0,0),(0,1,0),(0,0,1),(1,2,3)}; R3

j) ⋆{(0,−3),(3,0)}; R2.

k) ∗a {(0,−3),(3,0)}; V = R2, but equipped with the non-standard operations:–

Addition: (x,y)+̃(x′,y′) = (x+ x′,y+ y+3).

Multiplication of vectors by scalars k ∈ R: k⊙ (x,y) = (kx,ky+3k−3).

l) ⋆{(1,0,0),(2,0,−2)}; R3.

m) ∗b {(1,0,0),(2,0,−2)}; V = R3, but equipped with non-standard operations:–

Addition: (x,y,z)+̃(x′,y′,z′) = (x+ x′,y+ y,z+ z′−2).

Multiplication of vectors by scalars k ∈ R: k⊙ (x,y,z) = (kx,ky,kz−2k+2)

aYou may be surprised by the correct answer in this example. See the professor for details.
bYou may not be so surprised by the correct answer in this example if you’ve already done part (k). See the professor

for details.

Problem 7.2 Which of the following sets are linearly independent in M22? (If you say they are,
you must prove it using the definition; if you say set is dependent, you must give a non-trivial linear
dependence relation that supports your answer. For example, if you say {A1,A2,A3} is dependent,
you must write something like A1−2A2 +A3 = 0, or A1 = 2A2−A3.)

a)
{[

1 0
1 2

]
,

[
0 1
0 1

]}
b) ⋆

{[
1 0
1 2

]
,

[
0 1
0 1

]
,

[
1 −2
−1 0

]}
c)

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
d) ⋆

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Problem 7.3 Which of the following sets are linearly independent in the indicated vector space ? (If
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you say they are, you must prove it using the definition; if you say set is dependent, you must give a
non-trivial linear dependence relation that supports your answer. For example, if you say { f1, f2, f3}
is dependent, you must write something like f1−2 f2 + f3 = 0, or f1 = 2 f2− f3.)

a) {1,1− x,1−2x}; P2 .

b) ⋆{1,1+ x,x2}; P2 .

c) {sinx,cosx}; F(R) .

d) ⋆{1,sinx,2cosx}; F(R) .

e) {2,2sin2 x,3cos2 x}; F(R).

f) ⋆{cos2x,sin2 x,cos2 x}; F(R).

g) {cos2x,1,sin2 x}; F(R).

h) ⋆{sin2x,sinxcosx}; F(R).

i) {sin(x+1),sinx,cosx}; F(R).

Problem 7.4 Justify your answers to the following:

a) Suppose V is a vector space, and a subset {v1,v2,v3} ⊂V is known to be linearly independent.
Show carefully that {v2,v3} is also linearly independent.

b) ⋆Suppose V is a vector space, and a subset {v1, . . . ,vk} ⊂V is known to be linearly independent.
Show carefully that {v2, . . . ,vk} is also linearly independent.

c) Suppose V is a vector space, and a subset {v1, . . . ,vk} ⊂V is known to be linearly independent.
If S is any subset of V with S⊆ {v1, . . . ,vk}, show carefully that S is also linearly independent.

d) ⋆Give an example of a linearly independent subset {v1,v2} in R3, and a vector v ∈R3 such that
{v,v1,v2} is linearly dependent.

e) Give an example of a linearly independent subset {A,B} in M22(R), and a matrix C ∈M22(R)
such that {A,B,C} is linearly dependent.

f) ⋆Give an example of a linearly independent subset {p,q} in P2, and a polynomial r ∈ P2 such
that {p,q,r} is linearly dependent.

g) Give an example of a linearly independent subset { f ,g} in F(R), and a function h ∈ F(R)
such that { f ,g,h} is linearly dependent.

Problem 7.5 Give an example of 3 vectors in u,v,w ∈ R3 such that no two of the vectors are
multiples of each other, but {u,v,w} is linearly dependent. Is this possible with just two vectors?



8. Linear independence and spanning sets

Last time, we defined linear independence and linear dependence. A set of vectors {v1,v2, · · · ,vm} is
linearly independent (LI) if the only solution to the dependence equation

a1v1 + · · ·+amvm = 0

is the trivial solution (a1 = 0, · · · , am = 0). The opposite of this is: the set of vectors is linearly
dependent (LD) if there is a nontrivial solution to

a1v1 + · · ·+amvm = 0

meaning, there is a solution to this dependence equation in which not all coefficients are zero (although
some might be). In this case, such an equation (with some nonzero coefficients) is called a dependence
relation on that set.

8.1 Important Results about Linear Independence and Linear Dependence
We deduced many useful things about LI and LD sets:

1. A set {v} consisting of just one vector is LI if and only if v ̸= 0.
2. If a set S is LD, then any set containing S is also LD.
3. If a set S is LI, then any subset of S is also LI.
4. {0} is LD.
5. Any set containing the zero vector is LD.
6. A set with two vectors is LD if and only if one of the vectors is a multiple of the other.
7. A set with three or more vectors could be LD even if no two vectors are multiples of one another.
We concluded last time with the following very important statement:
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Theorem 8.1.1 — Relation between linear dependence and spanning. A set {v1, · · · ,vm} is
LD if and only if there is at least one vector vk which is in the span of the rest.

! Caution: This theorem doesn’t mean that every vector is a linear combination of
the others. For example, {(1,1),(2,2),(1,3)} is LD but (1,3) /∈ span{(1,1),(2,2)}.

Proof. We have to show both directions of the “if and only if”.
First, suppose {v1, · · · ,vm} is LD. So there is some nontrivial dependence equation

a1v1 + · · ·+amvm = 0

with not all ai = 0. Let’s say that a1 ̸= 0 (we could always renumber the vectors so that this is the case).
Then we can solve for v1:

v1 =
−a2

a1
v2 + · · ·+

−am

a1
vm

which just says v1 ∈ span{v2, · · · ,vm}. Done.
Now the other direction. Suppose vn ∈ span{v1, · · · ,vn−1}. That means vn = b1v1+ · · ·+bn−1vn−1.

So we have
b1v1 + · · ·+bn−1vn−1 +(−1)vn = 0

and the coefficient of vn is −1, which is nonzero. Hence this is a nontrivial dependence relation (it
doesn’t even matter if all the bi were zero). Thus the set is LD. ■

8.2 Consequence: Any linearly dependent spanning set can be reduced
This is how we’re going to solve our problem!

■ Example 8.2.1 Let W = span{(1,0,0),(0,1,0),(1,1,0)}. Since

(1,1,0) = (1,0,0)+(0,1,0) ∈ span{(1,0,0),(0,1,0)},

and obviously (1,0,0) and (0,1,0) are also in span{(1,0,0),(0,1,0)}, it follows (from Theorem 6.4.1)
that the span of these three vectors is contained in span{(1,0,0),(0,1,0)}. So we deduce that

W = span{(1,0,0),(0,1,0)}.

(Notice the skipped step: we have

W ⊂ span{(1,0,0),(0,1,0)}

by our argument but we had
span{(1,0,0),(0,1,0)} ⊂W

as well (since the spanning set of the left side is a subset of the spanning set on the right side), and
that’s why we have equality.) ■

This example illustrates the following general theorem:
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Theorem 8.2.2 — Reducing spanning sets. Suppose W = span{v1, · · · ,vm}.
If v1 ∈ span{v2, · · · ,vm} then

W = span{v2, · · · ,vm}.

Proof. It is clear that span{v2, · · · ,vm} ⊆W .
Now suppose v1 = b2v2 + · · ·+bmvm. If w = a1v1 + · · ·+amvm ∈W , then

w = (a1b2 +a2)v2 + · · ·+(a1bm +am)vm ∈ span{v2, · · · ,vm}.

Hence, W ⊆ span{v2, · · · ,vm}, and so equality holds. ■

Using the notation of the theorem above, note that v1 ∈ span{v2, · · · ,vm} implies (by Theorem
8.1.1) that {v1,v2, · · · ,vm} is LD.

! In other words: We can DECREASE the size of any LINEARLY DEPENDENT
spanning set.

Further, if {v2, · · · ,vm} is dependent (say, v2 ∈ span{v3, · · · ,vm}), then

W = span{v1, · · · ,vm}= span{v2, · · · ,vm}= span{v3, · · · ,vm}.

And you can keep doing this until what you’re left with is a linearly independent spanning set for W .

8.3 Another consequence: finding bigger linearly independent sets
We certainly have an inkling, now, that if you want a linearly independent set, you can’t take too many
vectors. (But how many can you take? Good question; we’ll come back to this.) For now we have:

Theorem 8.3.1 — Enlarging linearly independent sets. Suppose {v1, · · · ,vm} is a LI subset of a
subspace W . For any v ∈W , we have

{v,v1, · · · ,vm} is LI ⇔ v /∈ span{v1, · · · ,vm}.

Proof. This is almost like Theorem 8.1.1 (contrast and compare!). So it has a similar proof.
Suppose the new larger set is LI. Then by Theorem 8.2.2, NO element of {v,v1, · · · ,vm} can be a

linear combination of the rest. In particular, v can’t be a linear combination of the rest. That’s the same
as saying that v /∈ span{v1, · · · ,vm}.

Conversely, suppose v /∈ span{v1, · · · ,vm}. Let’s show that {v,v1, · · · ,vm} is LI. Namely, if we
consider the dependence equation:

a0v+a1v1 + · · ·+amvm = 0.

We want to decide if this could have any nontrivial solutions.
Well, if a0 ̸= 0, then we know (previous proof) that we could solve for v in terms of the other

vectors, but our hypothesis is that this is not the case. So for sure we know that a0 = 0.
But then what we have left is

a1v1 + · · ·+amvm = 0

which is a dependence equation for the set {v1, · · · ,vm}. This set is LI, so all these ai must be zero.
Hence the only solution is the trivial one, which shows that {v,v1, · · · ,vm} is LI. ■
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! In other words: we can INCREASE the size of any LINEARLY INDEPENDENT
set so long as it does NOT already span our vector space.

8.4 Examples
Let’s see how to apply Theorem 8.3.1.

■ Example 8.4.1 The set {x2,1+2x} ⊂ P3 is LI, and x3 /∈ span{x2,1+2x} – see the hints given for
problems 6.4 parts (e) and (f), or example 7.7.7 on P. 81. Thus, {x3,x2,1+2x} is LI. ■

■ Example 8.4.2 The set
{[

0 1
0 0

]
,

[
1 0
0 0

]}
is LI (since we showed that there is a bigger set contain-

ing this one that is LI, last time). Moreover,[
0 0
1 0

]
/∈ span

{[
0 1
0 0

]
,

[
1 0
0 0

]}

since you can’t solve
[

0 0
1 0

]
=

[
a b
0 0

]
. Thus

{[
0 1
0 0

]
,

[
1 0
0 0

]
,

[
0 0
1 0

]}
is LI. ■

It can be hard work to find an element v that is not in the span of your LI set! Next chapter we’ll
start with some more thoughts on this.

Problems
Problem 8.1 Justify your answers to the following: (The setting is a general vector space V .)

a) Suppose u ∈ span{v,w}. Show carefully that {u,v,w} is linearly dependent.

b) ⋆Suppose u ∈ span{v,w}. Show carefully that span{v,w}= span{u,v,w}.

c) Suppose span{v,w}= span{u,v,w}. Show carefully that u ∈ span{v,w}.

d) ⋆Suppose span{v,w}= span{u,v,w}. Show carefully that {u,v,w} is linearly dependent.

e) Suppose span{u,v}= span{w,x}. Show carefully that {u,v,w} and {u,v,x} are both linearly
dependent.

f) ⋆Suppose {v,w} is linearly independent, and that u /∈ span{v,w}. Show carefully that {u,v,w}
is linearly independent.

g) Suppose {v,w} is linearly independent, and that u /∈ span{v,w}. Show carefully that span{v,w} ≠
span{u,v,w}.

h) ⋆Suppose span{v,w} ̸= span{u,v,w}. Show carefully that u /∈ span{v,w}.
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Problem 8.2 Justify your answers to the following:

a) Suppose that u,v,w are non-zero vectors in R4 such that u ·v = u ·w = v ·w = 0. Prove that
{u,v,w} is linearly independent.

b) ⋆Suppose two polynomials {p,q} satisfy p ̸= 0 and deg(p) < deg(q). Show carefully that
{p,q} is linearly independent.

c) Suppose a set of polynomials {p1, . . . , pk} satisfies 0 ̸= p1 and deg(p1) < deg(p2) < · · · <
deg(pk). Show carefully that {p1, . . . , pk} is linearly independent.

d) ∗ Suppose f ,g ∈ F(R) are differentiable functions and that f g′− f ′g is not the zero function.
Prove carefully that { f ,g} is linearly independent.a

e) Use the previous part of this question to give another proof (i.e., other the one seen in class)
that {sinx,cosx} is linearly independent.

f) ⋆∗ Suppose {u,v,w} are three vectors in R3 such that u · v×w ̸= 0. Prove carefully that
{u,v,w} is linearly independent.b

aHint: Proceed by contradiction.
bA geometric argument involving ‘volume’ is not sufficient. Hint: Instead, first recall that {u,v,w} is linearly

independent iff none of the vectors is a linear combination of the others. Now proceed by contradiction, and reduce the
number of cases to check from 3 to 1 by recalling from high school that for any three vectors v1,v2,v3 ∈ R3 we know that
v1 ·v2×v3 = v3 ·v1×v2 = v2 ·v3×v1.





9. Basis and Dimension

Last time, we showed that:
• Any spanning set which is linearly dependent can be reduced (without changing its span), by

removing a vector which is in the span of the rest.
• Any linearly independent set in W which doesn’t span W can be made into a larger linearly

independent set in W, by throwing in a vector which is not in the span of the set.

■ Example 9.0.1 The set {(1,2,1,1),(1,3,5,6)} is LI (since there are two vectors and neither is a
multiple of the other). Let’s find a bigger LI set containing these two vectors.

To find something not in their span, write it out:

span




1
2
1
1

 ,


1
3
5
6


=

a


1
2
1
1

+b


1
3
5
6

 | a,b ∈ R

=




a+b
2a+3b
a+5b
a+6b

 | a,b ∈ R


So we want to choose a vector (x1,x2,x3,x4) which can’t be expressed in this way. Well, we don’t need
to try hard, actually: what about (1,0,0,0)? Then we’d have

a+b = 1,2a+3b = 0,a+5b = 0,a+6b = 0

the last two equations give b = 0, so the first equation gives a = 1, but then the second equation fails.
Conclusion: {(1,2,1,1),(1,3,5,6),(1,0,0,0)} is LI. ■

Remark 9.0.2. Generally speaking, if your set doesn’t span the whole space, then if you pick a vector
at random, chances are it won’t be in the span of your set. (Think of a line or plane in R3: there are
FAR MORE points NOT on the line or plane than are actually on the line or plane.)
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Problem 9.0.3 The set {(1,0),(0,1)} is LI, as we saw before in example 7.7.1. Can we find v ∈R2

so that {(1,0),(0,1),v} is LI?
Solution NO! We know that span{(1,0),(0,1)}= R2 since every (x,y) ∈ R2 can be expressed as
x(1,0)+y(0,1). So there are no vectors v that satisfy the required condition of not being in the span
of our set.

In fact, we know that any two non-zero non-collinear (in other words, LI) vectors in R2 span all of
R2, so we can never make such a set bigger. We can rephrase this as:

FACT Any set of 3 or more vectors in R2 is LD.

Proof. Suppose S is a subset of R2 with 3 or more vectors. Let v1,v2 ∈ S.
If these are LD, we’re done (by our facts).
Otherwise, we know they span R2, as we saw in the proof of Theorem 6.6.1 – and noted afterwards.
So if v3 ∈ S is a third vector, it satisfies v3 ∈ span{v1,v2}.
But that means {v1,v2,v3} is a LD subset of S.
So S is LD. ■

! In other words: any LI set in R2 has at most two vectors; and any spanning set
of R2 has at least two vectors. So EVERY linearly independent spanning set has
exactly two vectors. WOW!

9.1 The BIG theorem relating LI sets to spanning sets
So what we know so far is: if S is a spanning set, then any bigger set (containing S) has to be LD. And
if instead S is a linearly independent set, then no proper subset could span the whole space. In fact, a
MUCH stronger result is true:

Theorem 9.1.1 — LI sets are never bigger than spanning sets. If a vector space V can be spanned
by n vectors, then any linearly independent subset has at most n vectors.

Equivalently: if V has a subset of m linearly independent vectors, then any spanning set has at
least m vectors.

! In other words: the size of any linearly independent set in V ≤ the size of any
spanning set of V .

The proof of this theorem is interesting; we’ll prove a special case later on, when V is a subspace
of Rn, and this can be used to see it in general. See me, or take MAT2141!

Let’s apply this theorem in some examples.

■ Example 9.1.2 We know that R3 is spanned by 3 vectors (eg: (1,0,0),(0,1,0),(0,0,1)). So any set
in R3 with 4 or more vectors is LD! ■

■ Example 9.1.3 We saw that M2,2(R) is spanned by 4 vectors. So any set of 5 or more 2×2 matrices
is LD! ■
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■ Example 9.1.4 The set of diagonal 2×2 matrices is spanned by two vectors, so any set of 3 or more
diagonal 2×2 matrices is LD. ■

■ Example 9.1.5 let W be a plane through the origin in R3. Then it is spanned by 2 vectors, so any 3
or more vectors in W are LD. (But of course you can always find a set of 3 vectors in R3 that are LI —
you just can’t find a set of 3 vectors that all lie in the subspace W that are LI.) ■

Well, this last example wasn’t really news (it amounts to saying that any three coplanar vectors are
linearly dependent, which is where we started before), except to say:

! The theorem applies to any vector space, including SUBSPACES; it talks about
the maximum number of linearly independent vectors IN THE SUBSPACE.

9.2 The critical balance: a basis of a vector space

Definition 9.2.1 A set {v1,v2, · · · ,vm} of vectors in V is called a basis of V if:
1. {v1,v2, · · · ,vm} in linearly independent, AND
2. {v1,v2, · · · ,vm} spans V .

Different ways to think about a basis:
• It’s a linearly independent spanning set of V .
• It’s a biggest possible linearly independent set in V .
• It’s a smallest possible spanning set of V .

■ Example 9.2.2 {(1,0),(0,1)} is a basis of R2. ■

■ Example 9.2.3 {1,x,x2} is a basis of P2. ■

■ Example 9.2.4
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
is a basis of M2,2(R). ■

■ Example 9.2.5 {(1,0)} is not a basis for R2, because it does not span R2. (It is a basis for U , the
line which is the x-axis in R2.) ■

■ Example 9.2.6 {(1,0),(0,1),(1,1)} is not a basis for R2, because it is LD. ■

Theorem 9.2.7 — All bases have the same size. If {v1, · · · ,vm} and {w1, · · · ,wk} are two bases
for a vector space V , then m = k.

Proof. Since {v1, · · · ,vm} spans V , and {w1, · · · ,wk} is LI, we know that m≥ k (big theorem).
Since {w1, · · · ,wk} spans V and {v1, · · · ,vm} is LI, we also know that k ≥ m (big theorem).
So m = k. ■

! In other words: all bases of V have the SAME number of vectors.
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9.3 Dimension of a vector space

Definition 9.3.1 If V has a finite basis {v1, · · · ,vn}, then the dimension of V is n, the number of
vectors in this basis. We write

dim(V ) = n

and also can say that V is finite-dimensional. If V doesn’t have a finite basis, then V is infinite
dimensional.

Remark 9.3.2. We will mainly focus on finite dimensional vector spaces in this course. To do interesting
things with infinite-dimensional spaces, take the next step after Calculus: analysis (MAT2125).

■ Example 9.3.3 dim(R2) = 2, because we found a basis with 2 elements. ■

■ Example 9.3.4 dim(P2) = 3, because we found a basis with 3 elements. ■

■ Example 9.3.5 dim(M2,2(R)) = 4, because we found a basis with 4 elements. ■

■ Example 9.3.6 The set {(1,0, · · · ,0),(0,1, · · · ,0), · · · ,(0,0, · · · ,1)} of vectors in Rn is linearly
independent and spans Rn (check!) and so dim(Rn) = n. ■

■ Example 9.3.7 The set {1,x,x2, · · · ,xn} is linearly independent – generalize the proof (found in
Example 7.7.7) that {1,x,x2} is linearly independent. It also spans Pn (check!) and so dim(Pn) = n+1.
■

■ Example 9.3.8 Consider the set of m× n matrices {Ei j | 1 ≤ i ≤ m,1 ≤ j ≤ n} where Ei j is the
matrix with zeros everywhere except for a 1 in the (i, j)th position. These are linearly independent
since

∑
i, j

ai jEi j

is the matrix with (i, j)th entry ai j. Hence if this sum is zero, each entry is zero, and so the dependence
equation has only the trivial solution. They span Mm,n(R) since an arbitrary matrix can be written in
the above form, with ai j equal to its (i, j)th coefficient for each i, j.

So this is a basis; and counting its elements we deduce that dim(Mm,n(R)) = mn. ■

■ Example 9.3.9 The vector space P is infinite dimensional. Why? We saw in Example 9.3.7 that for
any n, the set {1,x,x2, · · · ,xn} is linearly independent. Since a basis must be larger than any linearly
independent set, this shows that you couldn’t possibly find a finite basis for all of P. ■

■ Example 9.3.10 The vector space F(R) is also infinite dimensional, by the same argument. ■

We can also consider bases and dimensions of subspaces.

■ Example 9.3.11 Consider L = {A ∈M2,2(R) | tr(A) = 0}. We saw this is equal to

L =

{[
a b
c −a

]
| a,b,c ∈ R

}
= span

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
so it is a subspace and we have a spanning set {M1,M2,M3}. Is this spanning set linearly independent?
We check

aM1 +bM2 + cM3 = 0⇔
[

a b
c −a

]
=

[
0 0
0 0

]
which means a = b = c = 0. So {M1,M2,M3} is linearly independent and also spans L. This means it’s
a basis of L. So dim(L) = 3. ■
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Problem 9.3.12 Find a basis for W = span{1,sin(x),cos(x)}, a subspace of F(R).
Solution We note right away that {1,sin(x),cos(x)} is a spanning set for W . Is it linearly indepen-
dent? YES, as we verified a while ago. Therefore it is a basis for W and dim(W ) = 3.

Problem 9.3.13 Find a basis for U = {(x,y,z) | x+ z = 0}
Solution First we find a spanning set.

U = {(x,y,−x) | x,y ∈ R}= span{(1,0,−1),(0,1,0)}

So {(1,0,−1),(0,1,0)} spans U and it is linearly independent (since it consists of two vectors
which are not multiples of one another) so it is a basis. Thus dim(U) = 2.

Problems
1. A question with an asterisk ‘∗’ (or two) indicates a bonus-level question.
2. You must justify all your responses.

Problem 9.1 Give two distinct bases for each of the following subspaces, and hence give the
dimension of each subspace.

a) {(2x,x) ∈ R2 | x ∈ R}

b) ⋆{(x,y) ∈ R2 | 3x− y = 0}

c) {(x,y,z) ∈ R3 | x+ y−2z = 0}

d) ⋆{(x,y,z,w) ∈ R4 | x− y+ z−w = 0}

e)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ b = c

}
.

f) ⋆

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a+d = 0

}
.

g)

{[
a 0
0 b

]
∈M22(R)

∣∣∣∣∣ a,b ∈ R

}
.

h) ⋆

{[
0 −b
−b 0

]
∈M22(R)

∣∣∣∣∣ b ∈ R

}
.

i)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a+b+ c+d = 0

}
.

j) ⋆Pn.

k) {p ∈ P2 | p(2) = 0}.

l) ⋆{p ∈ P3 | p(2) = p(3) = 0}.

m) {p ∈ P2 | p(1)+ p(−1) = 0}.
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n) ⋆span{sinx,cosx}.

o) span{1,sinx,cosx}.

p) ⋆span{1,sin2 x,cos2 x}.

q) ∗ {(x,x−3) ∈ R2 | x ∈ R}, equipped with the non-standard operations:– Addition:

(x,y)+̃(x′,y′) = (x+ x′,y+ y+3).

Multiplication of vectors by scalars k ∈ R:

k⊙ (x,y) = (kx,ky+3k−3).

r) ∗ {(x,y,z) ∈ R3 | x+2y+ z = 2}; V = R3, Non-standard operations:– Addition:

(x,y,z)+̃(x′,y′,z′) = (x+ x′,y+ y,z+ z′−2).

Multiplication of vectors by scalars k ∈ R:

k⊙ (x,y,z) = (kx,ky,kz−2k+2).

Hint for parts (k)&(l): Recall the Factor/Remainder theorem from high school: if p is a polynomial
in the variable x of degree at least 1, and p(a) = 0 for some a ∈ R, then p has a factor of x−a, i.e.,
p(x) = (x−a)q(x), where q is a polynomial with deg(q) = deg(p)−1.)

Problem 9.2 Determine whether the following sets are bases of the indicated vector spaces.

a) {(1,2)}; (R2)

b) ⋆{(1,2),(−2,−4)}; (R2).

c) {(1,2),(3,4)}; (R2).

d) ⋆{(1,2),(3,4),(0,0)}; (R2).

e) {(1,2,3),(4,8,6)}; (R3).

f) ⋆{(1,2,3),(4,8,7)}; (R3).

g) {(1,2,3),(4,8,7),(3,6,4)}; (R3).

h) ⋆{(1,0,1,0),(0,1,0,1)}; (R4).

i)
{[

1 0
1 2

]
,

[
0 1
0 1

]}
; (M22)

j) ⋆
{[

1 0
1 2

]
,

[
0 1
0 1

]
,

[
1 −2
1 0

]}
; (M22)
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k)
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
; (M22)

l) {1,1− x,1−2x}; (P2).

m) ⋆{1,1+ x,x2}; (P2).

n) {sinx,cosx}; (F(R)).

o) ⋆{1,sinx,2cosx}; (F(R)).

p) {2,2sin2 x,3cos2 x}; (F(R)).

q) ∗∗ {(1,0),(0,0)}; V = R2, Non-standard operations:– Addition:

(x,y)+̃(x′,y′) = (x+ x′,y+ y−2).

Multiplication of vectors by scalars k ∈ R:

k⊛ (x,y) = (kx,ky−2k+2).

r) ∗∗ {(1,3),(2,4)}; V = R2, Non-standard operations:– Addition:

(x,y)+̃(x′,y′) = (x+ x′,y+ y−2).

Multiplication of vectors by scalars k ∈ R:

k⊛ (x,y) = (kx,ky−2k+2).

Problem 9.3 Let f (x) = 1+ x, g(x) = x+ x2 and h(x) = x+ x2 + x3 be polynomials in P and define
W = span{ f ,g,h}.

a) Show that f , g and h are linearly independent.
b) Find a basis for W and the dimension of W .

c) If j(x) = 1− x2 + x3 show that j ∈W .
d) What is dimspan{ f ,g,h, j}?

Problem 9.4 Let U = {(x,y,z,w) ∈ R4 | x− y+ z−w = 0}.

a) Find a basis for U and hence determine dimU .
b) Extend your basis in (a) to a basis of R4.

Problem 9.5 Consider the vector space F[0,2] = { f | f : [0,2]→ R}. (Give it the same operations
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as F(R).) Suppose f (x) = x, g(x) =
1

x+1
and let

W = span{ f ,g}.

a) Show that { f ,g} is linearly independent.
b) Find dimW .
c) If h(x) = x2, show that h /∈W .
d) What is the dimension of span{ f ,g,h}?

Problem 9.6 Let E = {“ax+by+ cz = d” | a,b,c,d ∈ R} be the set of linear equations with real
coefficients in the variables x, y and z. Equip E with the usual operations on equations that you
learned in high school: addition of equations, denoted here by “⊕" and multiplication by scalars,
denoted here by “⊛", as follows:

“ax+by+ cz = d”⊕ “ex+ f y+gz = h” = “(a+ e)x+(b+ f )y+(c+g)z = d +h”

and
∀k ∈ R, k⊛ “ax+by+ cz = d” = “kax+ kby+ kcz = k d”.

In an earlier exercise, you showed that with these operations, E is a vector space. Find a basis for
E and hence find dimE.



10. Dimension Theorems

In the previous chapter, we saw the important inequality:

! the size of any LI set in V ≤ the size of any spanning set of V

We used this result to deduce that any linearly independent spanning set of a vectors space V
(which we called a basis of V ) has the same number of elements. We called the number n of elements
in a basis for V the dimension of V , denoted dim(V ).

We also found bases for many of our favourite vector spaces, and started to see how to find bases of
other, more complicated, subspaces.

From the definition of dimension, we can now improve our inequality:

! the size of any LI set in V ≤ dimV ≤ the size of any spanning set of V

10.1 Every subspace of a finite-dimensional space has a finite basis
In the past chapters, we have shown that:

• If {v1, · · · ,vm} is a LI subset of V , then there are vectors vm+1, · · · ,vn in V such that {v1, · · · ,vm,
vm+1, · · · ,vn} is a basis for V (that is, every linearly independent subset of V can be extended to
a basis of V );

• Conversely, we saw that if S = {v1, · · · ,vl} is a spanning set of V , then there is a subset of S
which is a basis of V (that is, every spanning set can be reduced to a basis of V ).

Remark 10.1.1. If you were in an infinite-dimensional space, the process of adding more vectors to
your LI set might never stop, since it could happen that you can’t span your subspace with a finite
number of vectors. Hence our restriction. See also MAT2141.
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This means that in theory at least, you can always find a basis for any subspace: either start with a
spanning set and cut it down, or else start taking nonzero vectors from your set and forming larger and
larger LI sets.

A problem: this is computationally intensive. (We’ll come back to it soon!)

10.2 A shortcut to checking if a set is a basis

Theorem 10.2.1 — Shortcut to deciding if a set is a basis. Let V be a vector space and suppose
that we know that dim(V ) = n (and n < ∞). Then:

1. Any LI set {v1, · · · ,vn} of n vectors in V is a basis of V (that is, it also necessarily spans V !);
2. Any spanning set {v1, · · · ,vn} of V consisting of exactly n vectors is a basis of V (that is, it is

also necessarily LI!);

So this theorem says that if you already know the dimension of V , you have a shortcut to finding a
basis: just find an LI or a spanning set with the right number of elements.

Proof.
1. Suppose that {v1, · · · ,vn} ⊆V is LI and suppose instead that {v1, · · · ,vn} didn’t span V . Then

that would mean we could find v ∈V , such that {v,v1, · · · ,vn} is LI (cf results last week about
extending LI sets). But then we’d have a set with n+1 LI elements in V , even though dim(V ) = n
means V can be spanned by just n elements. This contradicts our important inequality, so can’t
be true. Thus our set must already span V , and hence be a basis.

2. Suppose now that span{v1, · · · ,vn}=V but that {v1, · · · ,vn} is NOT LI. Since it is LD, we can
remove at least one “redundant” vector without changing the span. That is, there is a subset
S⊂ {v1, · · · ,vn} with less than n elements such that span(S) = span{v1, · · · ,vn}=V . But then
we’d have a spanning set for V with fewer than n elements, contradicting our important inequality.
So that can’t be true; the spanning set must have been LI, and hence a basis.

■

Problem 10.2.2 Show that {(2,2,2),(7,1,−11)} is a basis for U = {(x,y,z)|2x−3y+ z = 0}.
Solution We see this is a plane through the origin, hence a 2-dimensional space. We verify that
both of the vectors given lie in U , since

2(2)−3(2)+2 = 0 and 2(7)−3(1)+(−11) = 0.

Moreover, since there are just two vectors, and they are not multiples of one another, we see they
are linearly independent. So:

• we have 2 vectors
• they lie in a 2-dimensional space
• they are linearly independent

So by the theorem, {(2,2,2),(7,1,−11)} is in fact a basis for U .

Problem 10.2.3 Extend {(2,2,2),(7,1,−11)} to a basis for R3.
Solution We know that dim(R3)= 3; so if we can find one more vector v so that {v,(2,2,2),(7,1,−11)}
is LI, we can deduce by the theorem that this new set is a basis for R3.

Now recall that since {(2,2,2),(7,1,−11)} is LI, the larger set {v,(2,2,2),(7,1,−11)} is LI if
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and only if v /∈ span{(2,2,2),(7,1,−11)}. That is, if and only if v /∈U . So pick any v = (x,y,z)
which does not satisfy the condition for being in U , such as v = (1,0,0).

Then {(1,0,0),(2,2,2),(7,1,−11)} is a basis for R3.

! Caution: we get this “shortcut” for checking that a set is a basis for V only if you
know the dimension of V .

So what kinds of clues help us to figure out the dimension of a space?

10.3 Dimension of subspaces of V

Theorem 10.3.1 — Dimensions of subspaces. Suppose that dim(V ) = n and that W is a subspace
of V . Then

1. 0≤ dim(W )≤ dim(V )
2. dim(W ) = dim(V ) if and only if W =V .
3. dim(W ) = 0 if and only if W = {0}.

Proof.
1. Start with a basis of W ; it has dim(W ) elements (which is ≥ 0!). Then this is a LI set in W ⊂V ,

so by our important inequality, dim(W )≤ dim(V ) since V is spanned by dim(V ) elements.
2. Suppose dim(W ) = dim(V ) = n. If W ̸= V , then that means there is a vector v ∈ V , such that

v /∈W . But then if {v1, · · · ,vn} is a basis for W , we would deduce that {v,v1, · · · ,vn} is a LI set
in V with n+1 elements, which contradicts the important inequality for V . So this is impossible;
we must have V ⊂W . (And we started with W ⊂V so we conclude W =V .)

3. If dim(W ) = 0, and W contains a non-zero vector then by the important inequality we have a
contradiction, since then dim(W ) ≥ 1. Thus dimW = 0 =⇒ W = {0}. If on the other hand
W = {0}, then we shall take it as a convention that dim(W ) = 0.1

■

This theorem has some great consequences!

■ Example 10.3.2 Any subspace of R3 has dimension 0, 1, 2 or 3, by Theorem part (1). These
correspond to: the zero space (Theorem part (3)), lines (we proved this long ago), planes (ditto), and all
of R3 (Theorem part (2)). ■

■ Example 10.3.3 Any 4-dimensional subspace of M2×2(R) is all of M2×2(R). ■

■ Example 10.3.4 Any 2-dimensional subspace of U = {(x,y,z)|2x−3y+ z = 0} is all of U . ■

This last example illustrates an important idea:

! If U is a subspace of V such that dim(U) = m, then any subspace of V which is
contained in U is a subspace of U and so has dimension at most m.

1There are two other ways to define the dimension of a vector space: (a) take it to be the size of the largest linearly
independent set, or (b) the size of the smallest spanning set. These are equivalent to our definition for dim(W )≥ 1, and if we
use (a), for W = {⃗0}, it’s clear that the largest subset of W that is linearly independent is the empty set, which of course has
size 0. One can reconcile this with (b) if we all agree that that the span of the empty set is {⃗0}. If this sounds too weird to
you, stick with (a).
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That is, we don’t have to apply the theorem to just our favourite “big” vector spaces V .

10.4 What subspaces and dimension have given us
At the beginning of the course, we talked about lines and planes in R2 and R3 and wondered what their
generalizations to Rn should be.

We proposed the general concept of vector spaces, of which subspaces of Rn are an example, and
deduced that lines and planes through the origin were subspaces of R2 and R3, and (besides the zero
space and the whole space) these were all subspaces of R2 and R3.

So we agreed that “subspaces” provide the correct higher-dimensional analogue of “lines and
planes” (at least, the ones that go through the origin).

Now we have learned that every subspace has a basis, and that if S is a basis for U , then U = span(S).
In other words, we can describe every subspace of every vector space using parametric equations which
are like “higher-dimensional analogues” of the parametric equation for a line.

Furthermore, we have learned how to measure the size of a subspace (namely, by its dimension),
and thereby can classify all the possible subspaces of any vector space by their dimension. (For example,
in Rn we have subspaces of every dimension up to and including n, in Pn we have subspaces of every
dimension up to and including n+1, and in Mm×n(R) we have subspaces of every dimension up to and
including mn.)

So the first step in taking geometry to higher dimensions is behind us.

10.5 What bases of subspaces give us, Part I
So what is a basis good for? Last chapter, we alluded to one very important application: namely, you
know that any plane through the origin in R3 is “basically the same” as R2 — it looks the same, and
geometrically it is the same kind of object, but algebraically, it’s quite a challenge!

Problem 10.5.1 Consider the plane U = {(x,y,z)|x−4y+ z = 0} in R3. Show that

{(2/3,1/3,2/3),(1/
√

2,0,−1/
√

2)}

is a basis for U , and that moreover these basis vectors are orthogonal and have norm one. (We will
call such a special basis an orthonormal basis when we get to Chapter 19.)
Solution As before, we see that it suffices to verify that these two vectors (a) lie in U and (b) are
LI, since dim(U) = 2. So they form a basis. Next, we calculate their dot product (and get zero) so
they are orthogonal. Finally, we calculate their norms, and deduce that each has norm equal to 1.

(Recall that ∥(x,y,z)∥=
√

x2 + y2 + z2.)

What makes such a basis special is that these are exactly the properties that make the standard basis
special! So this is “like” a standard basis of U .

So as an application: Suppose you have an image in R2 (say, a photograph whose lower left corner
is at the origin, and whose upper right corner is at the point (640,480), so that each integer coordinate
pair corresponds to a pixel.). Then you can map this image onto the plane U by thinking of

(a,b) ∈ R2⇔ a
[
2/3,1/3,2/3

]
+b

[
1/
√

2,0,−1/
√

2
]

So for example if you want to colour the picture, then you have a colour for each integer coordinate
pair (a,b) and this tells you which (x,y,z) you should colour in R3 to make it look like your picture is
on this plane. ■
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This opens up more questions, though: how did I get such a nice basis for U? Can I do that in
different vector spaces and higher dimensions? We’ll see part of the answer in this course, and you’ll
do more of it later on.

10.6 What bases of subspaces are good for, Part II

An even more startling and wonderful application of bases is as follows.
First we need a definition.

Definition 10.6.1 An ordered basis {v1, · · · ,vn} is the set {v1, · · · ,vn} with the given order of the
vectors.

■ Example 10.6.2 The ordered basis {(1,0),(0,1)} of R2 is not the same ordered basis as {(0,1),(1,0)}
— even though, as sets, {(1,0),(0,1)}= {(0,1),(1,0)}, since both sides have exactly the same vectors
in them. The apparent order matters when we talk about ordered bases. ■

Theorem 10.6.3 — Coordinates. Suppose B = {v1, · · · ,vn} is an ordered basis for a vector space
V . Then for every v ∈V , there are unique scalars x1, · · · ,xn ∈ R so that

v = x1v1 + · · ·+ xnvn.

We call the n-tuple (x1,x2, . . . ,xn) the coordinates of v relative to the ordered basis B.

Proof. This isn’t hard to prove: Since B spans V , you can certainly write any vector as a linear
combination of elements of B. For uniqueness, we suppose we have two such expressions and prove
they are the same, as follows:

Suppose v = x1v1+ · · ·+xnvn and v = y1v1+ · · ·+ynvn. Subtract these two expressions; the answer
is v−v = 0. So we have

(x1− y1)v1 + · · ·+(xn− yn)vn = 0

but B is LI, so each of these coefficients must be zero, which says xi = yi for all i. Uniqueness
follows. ■

We can use this to identify n-dimensional vector spaces with Rn, just like we identified that plane U
with R2, above.

The idea is:

V ←→ Rn

v = x1v1 + · · ·+ xnvn ←→ (x1,x2, . . . ,xn)

For example, choosing the ordered basis B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
(the so-called

‘standard ordered’ basis) of M22(R), we have:

M22(R) ←→ R4[
a b
c d

]
←→ (a,b,c,d)
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Or, choosing B =

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
as an ordered basis for sl2, we have

sl2 ←→ R3[
a b
c −a

]
←→ (a,b,c)

Another example: choosing the standard ordered basis {1,x,x2} for P2 we have

P2 ←→ R3

a+bx+ cx2 ←→ (a,b,c)

! Caution: note that the order of your basis matters! If we’d picked B = {x2,x,1} as
our ordered basis for P2, we’d get coordinates (c,b,a) instead of (a,b,c), which
has the potential for a great deal of confusion. Hence: always be a bit cautious to
keep the order in mind.

Problems
Problem 10.1 Find the coordinates of the following vectors v with respect to the given ordered bases
B of the indicated vector space V :

a) v = (1,0); B = {(1,2),(2,−1)}; V = R2

b) ⋆v = (1,0,1); B = {(1,1,0),(1,−1,0),(0,0,1)}; V = R3

c) v = (1,3,−3); B = {(1,0,0),(0,−1,1),}; V = {w ∈ R3 | w · (0,1,1) = 0}

d) ⋆v =
[

1 0
1 −1

]
; B =

{[
0 0
1 0

]
,

[
0 1
0 0

]
,

[
1 0
0 −1

]}
; V = {A ∈M22 | trA = 0}

e) v = 1− x+3x2; B = {1− x,1+ x,1+ x2}; V = P2

f) ⋆v = sin(x+2); B = {sinx,cosx}; V = span{sinx,cosx}

Problem 10.2 a) ∗ Suppose V is a vector space, with dimV = 3, and that W and U are both
two-dimensional subspaces of V . Prove carefully that U ∩W ̸= {0}.

b) ∗ Suppose V is a vector space, with dimV = n > 0, and that W and U are subspaces of V with
dimU +dimW > n. Prove carefully that U ∩W ̸= {0}.
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We have seen how to solve
a number of important prob-
lems, at least theoretically; but
the calculations needed to
get to the solution — solving
linear systems — seems over-
whelming. What we need is
a practical, efficient, reliable
means to solve these linear sys-
tems, one that will minimize
the calculations we are re-
quired to carry out and the
amount of writing we need to
do; one that will allow us to de-
duce not just whether or not
there is a solution, but also if
there are lots of solutions (e.g.
nontrivial solutions).

This is the goal and purpose
of Gauss-Jordan elimination
(commonly called: row reduc-
tion).
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11. Solving systems of linear equations

We have seen many different kinds of linear systems showing up in different contexts in our course.
They arise in problems like: finding intersections of planes in R3; solving for a vector as a linear
combination of other vectors; or checking if a set of vectors is linearly independent. But they also occur
in a million other contexts, from balancing chemical equations to modelling physical systems. And
while the linear systems we’ve been looking at in this course tend to be fairly small, in practice there
are physical models that include thousands of variables and thousands of equations — systems that
would be IMPOSSIBLE to solve were it not for the fantastic fact that they are linear. Linear algebra
gives incredibly powerful tools for solving linear systems.

Here, we want to (a) decide what the goal of a good method for solving linear systems should be,
(b) establish the notation of augmented matrices which we use in row reduction and (c) start to learn
the process of row reduction.

11.1 Linear systems
By a linear system, we mean a collection of, say, m linear equations in, say, n variables, that we want to
solve simultaneously. By “simultaneously”, we mean: a solution to a linear system is an assignment of
values to each of the variables which makes ALL of the equations hold.

■ Example 11.1.1
x1 + 2x2 + x4 = 1

x3 − x4 = −1
(11.1)

is a linear system with m = 2 equations and n = 4 unknowns (or variables). We identify also the
coefficients of the system, and the right hand side (RHS), or constant terms.

Then (1,0,0,0) is NOT a solution to this linear system, because it doesn’t satisfy the second
equation.

And (0,0,0,1) IS a solution to this linear system, because it satisfies BOTH equations. ■
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Definition 11.1.2 The general solution to a linear system is the set of all solutions.

■ Example 11.1.3 We claim that

S = {(1−2s− t,s, t−1, t) | s, t ∈ R}

is the general solution to the linear system (11.1).
To show this, we check two things:
I: Check that (1−2s− t,s, t−1, t) is a solution to (11.1) for every s, t ∈ R:

(1−2s− t)+2(s)+ t = 1 ✓

t−1− (t) =−1 ✓

II: Check that EVERY solution to (11.1) is in S: Well, use the first equation to write

x1 = 1−2x2− x4

and the second equation to write
x3 =−1+ x4.

Thus, (x1,x2,x3,x4) is a solution to (11.1) if and only if

(x1,x2,x3,x4) = (1−2x2− x4,x2,−1+ x4,x4).

Changing the names of x2 to s and x4 to t, we recognize that this is exactly the set S above.
We say that s, t are the parameters of the general solution. Note that since the solution set S has

parameters, the system (11.1) has infinitely many solutions, since every different value of s ∈ R gives a
different solution.1 ■

Let’s look at some other examples, to get a sense of (a) what the possible kinds of general solutions
are, and (b) what makes a system “easy” to solve.

■ Example 11.1.4

x1 +2x2 +3x3 = 4

x2 + x3 = 5

x3 = 1

This is a 3×3 system (meaning, 3 equations and 3 unknowns); it could correspond to the intersection
of 3 planes. This system has a unique solution: (−7,4,1) (as you can check by back-substitution). ■

■ Example 11.1.5

x+ y = 1

2x+2y = 1

is a 2×2 system with no solutions at all. We could say the general solution is the empty set S = /0. ■

1The same holds for t, of course. So there is a ‘doubly-infinite’ family of solutions. We have been more precise about this
‘doubly-infinite’ business in a similar context before when we spoke of ‘dimension’ in Chapter 9. But beware: the set of
solutions here is not a subspace and so we can’t—in this course—speak of its dimension.
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Definition 11.1.6 • A linear system that has NO SOLUTIONS is called inconsistent.
• A linear system that has AT LEAST ONE solution is called consistent.

Sometimes, it’s easy to see that a system is consistent. For example, consider

x1 + x2− x3 = 0

2x1− x2 + x3 = 0.

It’s clear that (0,0,0) is a solution, because all the constant terms are zero.

Definition 11.1.7 • A linear system in which all the constants on the right hand side are zeros
is called homogeneous.

• A linear system in which at least one of the constants on the right hand side is nonzero is
called inhomogeneous.

! Homogeneous linear systems are ALWAYS consistent, since 0 = (0,0, · · · ,0) is
always a solution (called the trivial solution).

So homogeneous systems have all zeros on the RHS; what about when there are all zeros on the
LHS?

Definition 11.1.8 A linear equation in which all the coefficients are zero is called degenerate, that is,
it looks like

0x1 +0x2 + · · ·+0xn = b

for some b ∈ R. Note that if b ̸= 0, then this equation has no solution! (If b = 0, this equation has
every vector in Rn as a solution.)

! Any linear system containing a degenerate inhomogeneous equation is inconsis-
tent.

Now the amazing thing is: the three examples above list all possible types of behaviours of the
solution set.

Theorem 11.1.9 — Types of general solutions. Any linear system with real (or complex) coeffi-
cients has either

1. a unique solution
2. no solution, or
3. infinitely many solutions.

To see how remarkable that is, consider how very NOT TRUE it is for NON-LINEAR systems:
x2 = 64 has exactly two solutions; (x−2)(x−1)(x+1)(x−2) = 0 has exactly 4 solutions.
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11.2 Solving Linear Systems
The idea of our method for solving linear systems is: we start with a linear system, whose solution
is “hard to see”; then we apply an algorithm (called row reduction or Gaussian elimination or Gauss-
Jordan elimination) to change the linear system into a new one which has exactly the same general
solution, but where that solution set is really “easy to see.”

Also, we want a practical solution: an algorithm where you’re less likely to lose or forget an
equation, or where you mis-write some variables, or make mistakes in recopying things.

So let’s begin with an example of solving a system very methodically, being careful about not
losing equations:

■ Example 11.2.1 Solve the linear system

x+ y+2z = 3

x− y+ z = 2

y− z = 1

Let’s add (−1)× Eq(1) to Eq(2), to eliminate the x; but we’ll recopy the other two equations to keep
track:

x+ y+2z = 3

−2y− z =−1

y− z = 1

Next, we tackle the y variable. I can’t use the first equation to solve for y, because that’s the only
equation with an x in it. So in fact, let me swap the second and third equations:

x+ y+2z = 3

y− z = 1

−2y− z =−1

and now add 2× Eq(2) to Eq(3):

x+ y+2z = 3

y− z = 1

−3z = 1

Finally, multiply Eq(3) by −1
3 :

x+ y+2z = 3

y− z = 1

z =−1/3

Wonderful! At this point, I can see that z =−1/3, and I know that I can plug this into Eq(2) to deduce
that y = 2/3, and then plug both into Eq(1) to deduce that x = 3. (Check that this is a solution!) ■

First reality check: what operations did we perform?
• Add a multiple of one row to another row.
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• Interchange two rows.
• Multiply a row by a nonzero scalar.

Each of these steps can be reversed, and that ensures that we are not changing the general solution. (In
contrast, if we ever multiplied a row/equation by zero, that’s an irreversible process, and it amounts to
deleting one of the equations, which we agree would change your general solution.)

! These are called elementary row operations and they are exactly the three opera-
tions you can do to a linear system without changing the general solution. (What
you’re doing instead is turning the system itself into a simpler system.)

Second reality check: Did we really need all those variables and = signs?
Let’s replace the linear system above with its augmented matrix:1 1 2 | 3

1 −1 1 | 2
0 1 −1 | 1


So the part on the left is called the coefficient matrix and consists of all the coefficients of the original
linear system. If there were m equations and n unknowns then the coefficient matrix is of size m×n.
Each column of the coefficient matrix corresponds to one variable of the linear system (in this case, x, y
or z).

The line represents the equals sign, and helps to separate the last column. The last column contains
all the constant terms from all the equations in the system.

Now let’s perform the elementary row operations as before, but this time to the augmented matrix:1 1 2 | 3
1 −1 1 | 2
0 1 −1 | 1

 ∼
−R1 +R2→ R2

1 1 2 | 3
0 −2 −1 | −1
0 1 −1 | 1

 ∼
R2↔ R3

1 1 2 | 3
0 1 −1 | 1
0 −2 −1 | −1



∼
2R2 +R3→ R3

1 1 2 | 3
0 1 −1 | 1
0 0 −3 | 1

 ∼
−1

3 R3→ R3

1 1 2 | 3
0 1 −1 | 1
0 0 1 | −1/3


Notice:

• At each step, the augmented matrix here corresponded exactly to the modified linear system we
had created before.

• This last matrix corresponds to the last step of our calculation, at the moment that we realized we
could solve our linear system for a unique solution. And this last matrix has a special “shape”
which we will call the REF (row echelon form), below.

• We write ∼ rather than = because the matrices are definitely not EQUAL to each other. Rather,
we use the symbol ∼ for “equivalent” (later: “ row equivalent”) — meaning, the two linear
systems corresponding to these matrices have the same general solution.

• It’s helpful to write down the operation next to the row you will modify, particularly if you need
to “debug” a calculation.

■
Now, we still have some questions to answer:
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• Not every system will end up with a unique solution (as we saw); what is REF in general? How
do I know what I’m aiming for when I solve using row reduction?

• How do I read my solution off from REF?
• Are there any more shortcuts?

11.3 Row Echelon Form (REF) and Reduced Row Echelon Form (RREF)

Definition 11.3.1 A matrix (augmented or not) is in row echelon form or REF if
(1) All zero rows are at the bottom.
(2) The first nonzero entry in each row is a 1 (called a leading one or a pivot).
(3) Each leading 1 is to the right of the leading 1s in the rows above.
If, in addition, the matrix satisfies
(4) Each leading 1 is the only nonzero entry in its column
then the matrix is said to be in reduced row echelon form or RREF.

■ Example 11.3.2 The matrix [
1 2 3 4 5 | 5
0 0 1 1 2 | 0

]
is in REF because it satisfies (1)-(3). It is not in RREF because the entry above the leading 1 in the
second row is a 3 instead of a zero. ■

■ Example 11.3.3 The matrix 
1 2 | 3
0 1 | 8
0 0 | 0
0 0 | 0


is also in REF but not RREF. ■

Basically: from the REF we’ll always be able to tell if the system is inconsistent, or has a unique
solution, or has infinitely many solutions. From the RREF we will be able to just read off the solution
directly.

■ Example 11.3.4 Suppose you have row reduced and obtain the following RREF:1 0 0 | a
0 1 0 | b
0 0 1 | c


Then the linear system corresponding to this augmented matrix is x = a, y = b and z = c. In other
words, the solution to this linear system is unique and is given byx

y
z

=

a
b
c


■
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■ Example 11.3.5 Suppose you have row reduced and you got to the following REF:1 a 0 b | d
0 0 1 e | f
0 0 0 0 | g


Then there are two cases:

If g ̸= 0, then the last row corresponds to a degenerate equation, and so the system is inconsistent.
If g = 0, then this system is in RREF, and to get the general solution, we set the non-leading

variables, that is, the variables corresponding to columns of the coefficient matrix which don’t have
a leading 1, equal to parameters. Here, set x2 = s and x4 = t; then we deduce (by writing out the
equations corresponding to this matrix):

x1 =−as−bt +d, x2 = s, x3 = f − et, x4 = t

So our general solution is
{(−as−bt +d,s, f − et, t) | s, t ∈ R}.

■

! Rows of zeros are completely accidental; they happen whenever you started off
with one or more completely redundant equations. In particular, please note that
having infinitely many solutions is related to having non-leading variables, not to
having rows of zeros.

■ Example 11.3.6 Suppose our RREF is1 a 0 0 | c
0 0 1 0 | d
0 0 0 1 | e


Then we have only one nonleading variable: x2 = s, so our solution is

{(c−as,s,d,e) | s ∈ R}

■

Problems
Problem 11.1 Find the augmented matrix of the following linear systems.

a)
x + y + z = 0
−9x − 2y + 5z = 0
−x + y + 3z = 0
−7x − 2y + 3z = 0
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b) ⋆

x + w = 1
x + z + w = 0
x + y + z = −3
x + y − 2w = 2

c)
− 2x3 + 7x5 = 12

2x1 + 4x2 − 10x3 + 6x4 + 12x5 = 28
2x1 + 4x2 − 5x3 + 6x4 − 5x5 =−1

Problem 11.2 a) Find x and y so that the matrix
[

1 2
x y

]
is in reduced row-echelon form.

b) ⋆Find all (x,y) so that the matrix
[

1 0 1
x y 0

]
is in reduced row-echelon form.

c) Find all (a,b,c) so that the matrix

a 1 b b 0
0 0 0 1 1
0 0 0 0 c

 is in reduced row-echelon form.



12. Solving systems of linear equations, continued

Last time, we introduced the notion of the augmented matrix of a linear system, and defined the three
elementary row operations that we may perform:

• Add a multiple of one row to another row.
• Interchange two rows.
• Multiply a row by a nonzero scalar.

Definition 12.0.1 We say that two linear systems are equivalent if they have the same general
solution.

Theorem 12.0.2 — Equivalence of linear systems under row reduction. If an elementary row
operation is performed on the augmented matrix of a linear system, the resulting linear system is
equivalent to the original one.

Hence we make the following definition:

Definition 12.0.3 Two matrices A is row-equivalent to B, written A∼ B, if B can be obtained from
A by a finite sequence of elementary row operations.

(See problem 12.3 for interesting properties of this relation.)
So how does this help? Here, we’ll show how to row reduce ANY linear system to RREF, and also

show how to read the general solution from the RREF.
Recall: A matrix (augmented or not) is in row echelon form or REF if

(1) All zero rows are at the bottom.
(2) The first nonzero entry in each row is a 1 (called a leading one or a pivot).
(3) Each leading 1 is to the right of the leading 1s in the rows above.
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If, in addition, the matrix satisfies
(4) Each leading 1 is the only nonzero entry in its column
then the matrix is said to be in reduced row echelon form or RREF.

Theorem 12.0.4 — Uniqueness of the RREF. Every matrix is row equivalent to a unique matrix in
RREF.

(But matrices in just REF are not unique.)

12.1 Reading the solution from RREF
In the last chapter, we worked through several general examples of reading the solution from the RREF:

■ Example 12.1.1 From Example 11.3.4:

RREF:

1 0 0 | a
0 1 0 | b
0 0 1 | c

 Solution:


a

b
c

 .

■

■ Example 12.1.2 From Example 11.3.5:

RREF:

1 a 0 b | d
0 0 1 e | f
0 0 0 0 | 0

 Solution:




d
0
f
0

+ s


−a
1
0
0

+ t


−b
0
−e
1


∣∣∣∣∣∣∣∣s, t ∈ R

 ,

whereas

REF:

1 a 0 b | d
0 0 1 e | f
0 0 0 0 | g

 ,g ̸= 0 Solution: /0.

■

■ Example 12.1.3 From Example 11.3.6:

RREF:

1 a 0 0 | c
0 0 1 0 | d
0 0 0 1 | e

 Solution:




c
0
d
e

+ s


−a
1
0
0


∣∣∣∣∣∣∣∣s ∈ R

 .

■

Now we ask ourselves: can we infer some general patterns, applicable to any system whose
augmented matrix is in RREF?

The general rule for reading off the type of general solution from the REF:
• If your system contains a degenerate equation with a non-zero right hand side, then it is inconsis-

tent. So if the augmented matrix contains a row like[
0 0 · · · 0 | b

]
with b ̸= 0, then STOP! The system is inconsistent; the general solution is the empty set.
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• Otherwise, look at the columns of the coefficient matrix.
– If every column has a leading 1, then there is a unique solution.
– If there is a column which does not have a leading 1, then you have infinitely many

solutions.
The general rule for writing down the general solution of a consistent system from the RREF:
• If there is a unique solution, then this is the vector in the augmented column.
• Otherwise, identify all your variables as leading or non-leading.

– Each leading varible corresponds to one row of the augmented matrix; write down the
equation for this row. Solve for the leading variable in terms of the non-leading variables
(by putting them all on the right hand side).

– Set each non-leading variable equal to a different parameter, and substitute these into the
equations for the leading variables as well.

– Write down the general solution; do NOT forget to include ALL of your variables. (Eg:
x1 = 2− s and x3 = 3 is not a general solution because you haven’t said what x2 is.)

■ Example 12.1.4 Suppose the RREF of our system is1 0 0 2 0 | 3
0 0 1 1 0 | 4
0 0 0 0 1 | 0


This system is

x1 +2x4 = 3, x3 + x4 = 4, x5 = 0;

it is consistent. The leading variables are x1, x3 and x5 and the non-leading variables are x2 and x4. So
we set

x2 = s, x4 = t

and thus conclude that 
x1
x2
x3
x4
x5

=


3−2x4

x2
4− x4

x4
0

=


3−2t

s
4− t

t
0


So the general solution (written in parametric vector form) is


3
0
4
0
0

+ s


0
1
0
0
0

+ t


−2
0
−1
1
0

 | s, t ∈ R

 .

■

12.2 Reducing systems to REF and RREF: Gaussian elimination
Let’s write down the process for Gaussian elimination. It can be applied to any matrix C, and stops at a
matrix C̃ which is in RREF.
Step 1 If the matrix C is zero, stop.
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Step 2 Locate the left-most nonzero column, and interchange the top row with another, if necessary, to
bring a non-zero entry to the first row of this column.

Step 3 Scale the first row, as necessary, to get a leading 1.
Step 4 If necessary, annihilate the rest of the column BELOW using this leading 1 as a pivot. That is,

if ai is the entry in this column of Row i, then add −aiR1 to Ri, and put the result back in the ith

row.
Step 5 This completes the operations (for now) with the first row. If there was only one row in your

matrix, at this stage, stop. Otherwise, ignore the first row (but don’t lose it!) and go back to step
1.

When this stops, the matrix you have will be in REF. Now proceed with the following steps to put the
matrix in RREF:
Step 6 If the right most leading 1 is in row 1, stop.
Step 7 Start with the right most leading 1 – this will be in the last non-zero row. Use it to annihilate

every entry above it in its column. That is, if ai ̸= 0 is the entry in this column in row i, then add
−ai times this row to Ri, and put the result back in the ith row.

Step 8 Cover up the row you used and go to step 6.

■ Example 12.2.1 Let’s run this on C =


0 0 −2 2
1 1 3 −1
1 1 2 0
1 1 0 2

.

Step 1 The matrix is not zero, so we proceed.
Step 2 The left-most nonzero column is column 1, but we need to get a non-zero entry in row 1, so

let’s interchange rows 1 and 2:
0 0 −2 2
1 1 3 −1
1 1 2 0
1 1 0 2

R1↔ R2
∼


1⃝ 1 3 −1
0 0 −2 2
1 1 2 0
1 1 0 2


Step 3 There’s no need to rescale: we already have a leading 1 in row 1.
Step 4 We need to clear the column below our leading 1: we subtract the first row from rows 3 and 4:

1 1 3 −1
0 0 −2 2
1 1 2 0
1 1 0 2

−R1 +R3→ R3
∼

−R1 +R4→ R4


1 1 3 −1
0 0 −2 2
0 0 −1 1
0 0 −3 3


Step 5 We ignore the first row and go to Step 1.
Step 1 Even ignoring the original first row, the matrix is not zero.
Step 2 The left-most non zero column now (remember: we ignore row 1) is column 3, and there is a

non-zero entry (2) in the second row (which is the first row of the matrix left when we ignore the
first row of the whole matrix), so there’s nothing to do now.

Step 3 Let’s divide row 2 by -2 to get a leading one in the second row.
1 1 3 −1
0 0 −2 2
0 0 −1 1
0 0 −3 3

−1
2 R2→ R2
∼


1 1 3 −1
0 0 1⃝ −1
0 0 −1 1
0 0 −3 3


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Step 4 Now we need to clear column 3 below our new leading one:
1 1 3 −1
0 0 1⃝ −1
0 0 −1 1
0 0 −3 3

 R2 +R3→ R3
3R2 +R4→ R4

∼


1 1 3 −1
0 0 1 −1
0 0 0 0
0 0 0 0


Step 5 Now we ignore the first two rows, and go to Step 1
Step 1 Well if we we ignore the first two rows, the matrix we see is zero, so we stop this part and

proceed to Step 6
Step 6 The right most leading 1 is in row 2, so we proceed to Step 7
Step 7 We use the leading one in row two to clear its column above it:

1 1 3 −1
0 0 1⃝ −1
0 0 0 0
0 0 0 0

−3R2 +R1→ R1
∼


1 1 0 2
0 0 1 −1
0 0 0 0
0 0 0 0


Step 8 We cover up row 2 and go back to Step 6
Step 6 Ignoring row 2, now the right-most leading 1 is in row 1! So we stop. The matrix is now in

RREF.
We’re not machines, of course, and we could see at the end of Step 7 that the matrix was in RREF,

so there was no need to have done Steps 8 and 6, but we did it above to illustrate the algorithm.
■

12.3 Using the Gaussian algorithm to solve a linear system

Now let’s see how we use this to solve a linear system with augmented matrix [A|b]. The idea is that
we apply the row operations in the algorithm above to the rows of the whole augmented matrix, but
with the aim of getting the coefficient matrix into RREF - then we’ll stop. The coefficient matrix will be
in RREF – the augmented matrix might not be, but it doesn’t matter.

Once the coefficient matrix is in RREF, the general solution can be found as follows:
1. Decide if the system is consistent or not. If consistent:
2. Assign parameters to non-leading variables.
3. Solve for leading variables in terms of parameters.
Let’s illustrate this with an example. Remember: our goal is to get the coefficient matrix into RREF,

but we apply each and every row operation to the rows of the whole augmented matrix. All decisions in
the algorithm will only depend on the coefficient side.

■ Example 12.3.1 We begin with the following augmented matrix:0 1 2 3 | 4
1 2 3 4 | 5
2 3 4 5 | 6


Step 1 It’s not the zero matrix!
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Step 2 It’s the first column (but sometimes it isn’t!). The top row has a zero, which can’t be a pivot.
So interchange R1 and R2, for example:0 1 2 3 | 4

1 2 3 4 | 5
2 3 4 5 | 6

R1↔ R2
∼

1 2 3 4 | 5
0 1 2 3 | 4
2 3 4 5 | 6


Step 3 There’s already a leading 1. Move on.
Step 4 We just need to zero off the 2 in R3: 1⃝ 2 3 4 | 5

0 1 2 3 | 4
2 3 4 5 | 6

 ∼

−2R1 +R3→ R3

1 2 3 4 | 5
0 1 2 3 | 4
0 −1 −2 −3 | −4


Step 5 We’re done with the first row. Back to Step 1, just considering R2 and R3:
Step 1 It’s not the zero matrix. On we go.
Step 2 The first non-zero column (ignoring row 1) is in column 2. And the entry in the “top row”

(which is R2 this time) is nonzero, so no row interchanges needed.
Step 3 It’s already a leading 1.
Step 4 We just need to zero off the -1 in R3:1 2 3 4 | 5

0 1⃝ 2 3 | 4
0 −1 −2 −3 | −4

 ∼

R2 +R3→ R3

1 2 3 4 | 5
0 1 2 3 | 4
0 0 0 0 | 0


Step 5 We’re done using the second row. Back to Step 1, just considering R3:
Step 1 It’s the zero matrix (ignoring rows 1 and 2), so we proceed to Step 6.

And yes, indeed, the coefficient matrix is in REF (coincidentally, so is the whole augmented
matrix). We see that we will have infinitely many solutions (since the system is consistent and
we have non-leading variables).
To write down the solution, we continue to RREF:

Step 6 The right most leading 1 is not in row 1, so on we go.
Step 7 The right-most leading 1 is in column 2. Annihilate the 2 above it:1 2 3 4 | 5

0 1⃝ 2 3 | 4
0 0 0 0 | 0

−2R2 +R1→ R1
∼

1 0 −1 −2 | −3
0 1 2 3 | 4
0 0 0 0 | 0


Step 8 We cover up the second row, and go to step 6.
Step 6 Stop! – the right most leading 1 is in row 1.

The coefficient matrix is in RREF.1 After some experience, you’ll notice after step 7 that RREF
had been reached.

The nonleading variables are x3 and x4, so let x3 = s, x4 = t. Then x1 = x3 +2x4−3 =−3+ s+2t
and x2 = 4−2x3−3x4 = 4−2s−3t. Thus the general solution is

x1 =−3+ s+2t

x2 = 4−2s−3t

x3 = s

x4 = t

1Coincidentally, so is the augmented matrix. This will always occur for consistent systems.
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with s, t ∈ R. ■

12.4 Key concept: the rank of a matrix
So we’ve stated the theorem that says that the RREF of a matrix exists and is unique. The existence
is obvious from our algorithm; uniqueness takes some extra work to see, but also follows from our
algorithm. Since the RREF is unique, this means in particular that the number of leading 1s in the
RREF of a matrix doesn’t depend on any choices made in the row reduction. This number is very
important to us!

Definition 12.4.1 The rank of a matrix A, denoted rank(A), is the number of leading ones (‘pivots’)
in any REF of A.

Remark: In the Gaussian Algorithm, the passage from the REF to the RREF does not change the
number of leading ones.

■ Example 12.4.2 The rank of
[

1 2 3
0 1 3

]
is 2. ■

Problems
Problem 12.1 Find the reduced row-echelon form of the following matrices:

a)

1 0 0 3
0 0 1 5
0 1 0 4


b) ⋆

[
1 0 1 2
0 1 1 2

]

c)

0 2 3
1 0 1
0 1 0


d) ⋆

 1 2 −1 −1
2 4 −1 3
−3 −6 1 −7



e)


1 1 1 1
0 0 1 −1
1 1 2 0
1 1 0 2



f) ⋆


1 −1 1 0
0 1 1 1
1 2 4 3
1 0 2 1


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g)

1 0 1 3
1 2 −1 −1
0 1 −2 5



Problem 12.2 Find the general solutions to the linear systems whose augmented matrices are given
below.

a)
[

0 1 | 0
0 0 | 0

]

b) ⋆


1 0 −1 | 0
0 1 2 | 0
0 0 0 | 1
0 0 0 | 0



c)


1 0 0 3 | 3
0 1 0 2 | −5
0 0 1 1 | −1
0 0 0 0 | 0


d) ⋆

1 2 0 3 0 | 7
0 0 1 0 0 | 1
0 0 0 0 1 | 2



e)


1 0 0 −1 0 | 10
0 1 0 1 1 | 1
0 0 1 1 1 | 4
0 0 0 0 0 | 0



Problem 12.3 If A, and C are matrices of the same size, explain why the following statements are
true:

a) A∼ A
b) If A∼ B then B∼ A.
c) If A∼ B and B∼C, then A∼C
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13.1 The rank of a matrix, and its importance

In the last chapter, we defined the rank of a matrix.

Definition 13.1.1 The rank of a matrix A, denoted rank(A), is the number of leading ones (‘pivots’)
in any REF of A.

■ Example 13.1.2 Since
[

1 4 1
2 3 0

]
∼
[

1 4 1
0 −5 −2

]
∼
[

1 4 1
0 1 2

5

]
, each of these matrices has rank

2. ■

! The rank doesn’t change when one does elementary row operations; if you’re
using the Gaussian algorithm, it just becomes easier to see.

■ Example 13.1.3 The matrix

1 0 0
0 1 0
0 0 1

 has rank 3. ■

Note that the rank of a matrix can never exceed the number of rows or columns of the matrix, since
each leading 1 lies in a different row and column from all the others.

We also mentioned last time that you could see whether a system is consistent or inconsistent from
the rank of A versus the rank of [A|b]. Namely, suppose you reduce the coefficient matrix A in [A|b] to
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RREF. Then either you get 
∗ · · · ∗ | ∗
0 · · · 0 | 0
... · · ·

... |
...

0 · · · 0 | 0


(where the top (∗) part means rows with leading ones in the coefficient matrix part) (a consistent system)
or you get 

∗ · · · ∗ | ∗
0 · · · 0 | a1
... · · ·

... |
...

0 · · · 0 | ak
0 · · · 0 | 0
... · · ·

... |
...

0 · · · 0 | 0


where ai ̸= 0 (which tells you you have an inconsistent system). You can spot the difference by
comparing the ranks of the coefficient matrix and of the augmented matrix: in the first case, rank(A) =
rank([A|b]) since all the leading 1s occured in the coefficient matrix part, and none in the augmented
column. In the second case, rank([A|b]) = rank(A)+1, since the non-zero entry a1 in the last column
will lead to a (single) new leading 1.

! So:
rank(A)≤ rank([A|b])≤ rank(A)+1

... and where the equality holds tells you whether or not your system is consistent.

■ Example 13.1.4 In a homogeneous linear system, you can never get a nonzero entry in the augmented
column (it’s all zeros) so certainly you can never have a leading 1 there. Thus rank(A) = rank([A|0]),
and the system is consistent. (We knew that already.) ■

In summary: suppose [A|b] is the augmented matrix of a linear system. Then:
• The system is inconsistent if and only if rank(A)< rank([A|b]).
• The system has a unique solution if and only if rank(A) = rank([A|b]) and rank(A) =# columns

of A.
• The system has infinitely many solutions if and only if rank(A) = rank([A|b]) and rank(A)<#

columns of A.

13.2 Application I: Solving network and traffic flow problems
Let’s consider several different applications of linear systems and our Gaussian elimination method.
The first is a common application of linear systems to solving traffic flow/network problems. The idea
is that you can model the internal flow of a network just by understanding its inputs and outputs and
how traffic is restricted in between. You don’t expect a unique solution or even finitely many (in theory,
of course) because there may be loops – see problem 13.4, for example.
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Problem 13.2.1 The diagram in the figure below represents a network of one-way streets. The
numbers on the figure represent the flow of traffic (in cars per hour) along each street, and the
intersections are labeled A, B, C and D. The arrows indicate the direction of the flow of traffic. The
variables x1,x2,x3,x4 represent the (unknown) level of traffic on certain streets.

Analyse this system to answer the following questions:
(a) What is the maximum flow along AB?
(b) If DA is blocked for roadwork, will there be a traffic jam?
(c) What if BC is blocked for roadwork?

Solution

→ → →

→ → →

↑ ↓

↓

300

A

300

B

CD

x1

200x4

100

300

x2 x3

The total flow in is 600 (cars per hour, say) while the total flow out is 600. Good; let us take that
as our hypothesis for all the intersections as well: flow in = flow out (Kirchhoff’s first law).

We have labeled with x1, x2, x3, x4 the street segments on which we don’t know the flow of
traffic. So let us set up the flows by writing down the equation for each intersection (starting at the
northwest and working clockwise):

Intersection Flow in = Flow out
A 300+ x2 = x1

B x1 = x3 +100

C x3 + x4 = 200+300

D 300 = x2 + x4.
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This is the linear system

x1− x2 = 300

x1− x3 = 100

x3 + x4 = 500

x2 + x4 = 300

with augmented matrix 
1 −1 0 0 | 300
1 0 −1 0 | 100
0 0 1 1 | 500
0 1 0 1 | 300


This reduces to 

1 0 0 1 | 600
0 1 0 1 | 300
0 0 1 1 | 500
0 0 0 0 | 0


So our solution is 

x1
x2
x3
x4

=


600− s
300− s
500− s

s


for any s ∈ R.

Now that we have found a solution to our linear system, let us consider the questions we wanted
to answer.

(a) Note that since the streets are one-way, each xi ≥ 0, for 1≤ i≤ 4. When you implement these
constraints, you find that 0≤ s≤ 300. So for example, the maximum flow along AB is 300
cars per hour (when the flow along DA is zero).

(b) If DA is blocked for roadwork, then we are setting x2 = 0. This means s = 300; we see that
the solution is (x1,x2,x3,x4) = (300,0,200,300), which is fine. There are no parameters,
meaning that cars now have no choices about how to navigate the network, but they make it.

(c) If BC is blocked for roadwork, however, then x3 = 0. This means s = 500, which gives
(x1,x2,x3,x4) = (100,−200,0,500) — meaning we would have to allow two-way traffic on
the street DA to accommodate the traffic.

In summary: we applied the general solution to the model to first establish some additional
constraints on our parameters (here, positive flow) and then used this constrained general solution to
easily work out various scenarios in traffic flow (without having to solve the system all over again!).

13.3 Application II: testing scenarios
Problem 13.3.1 Find all values of k for which the following linear system has (a) no solution, (b) a
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unique solution, and (c) infinitely many solutions.

kx+ y+ z = 1

x+ ky+ z = 1

x+ y+ kz = 1.

Solution This is a linear system in the variables x,y,z. (It is not linear in k,x,y,z. So this is one
way to tackle a special kind of nonlinear system with linear algebra.)

Let’s use row reduction. The augmented matrix isk 1 1 | 1
1 k 1 | 1
1 1 k | 1


Now be careful! We can’t divide by k, because we don’t know if it’s zero or not. So either we split
into two cases right now (k = 0 and k ̸= 0) or else we use a different row to give us our leading 1.

R1↔ R2

1 k 1 | 1
k 1 1 | 1
1 1 k | 1

 ∼
−kR1 +R2→ R2
−R1 +R3→ R3

1 k 1 | 1
0 1− k2 1− k | 1− k
0 1− k k−1 | 0


Now we have no choice: there are variables in both entries from which we need to choose our
leading 1.

Case 1: k = 1. Then our matrix is 1 1 1 | 1
0 0 0 | 0
0 0 0 | 0


which is in RREF and has infinitely many solutions. So (c) includes the case k = 1.

Case 2: k ̸= 1. That means k−1 ̸= 0 so we can divide by it:

1
1−k R2→ R2

1
1−k R3→ R3

1 k 1 | 1
0 1+ k 1 | 1
0 1 −1 | 0

R2↔ R3

1 k 1 | 1
0 1 −1 | 0
0 1+ k 1 | 1


And now continue row reducing:

∼
−(1+ k)R2 +R3→ R3

1 k 1 | 1
0 1 −1 | 0
0 0 2+ k | 1


For the third column: if k = −2, then we cannot get a leading 1 in the third column; in fact, if
k =−2 then the system is inconsistent.

Otherwise, we can divide R3 by 2+ k to get a leading 1 in the third column; and then we deduce
that we have a unique solution.

Conclusion: if k = 1, infinitely many solutions. If k = −2, there is no solution. If k ̸= 1 and
k ̸=−2 then there is a unique solution.
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Notice how you get a unique solution “most of the time” — this coincides with the idea that if you
take three random planes in R3 then most of the time they should intersect in a single point.

13.4 Application III: solving vector equations
Problem 13.4.1 Does the set {(1,2,3),(4,5,6),(7,8,9)} span R3?
Solution We need to answer the question: given an arbitrary vector (x,y,z) ∈ R3, do there exist
scalars a1,a2,a3 such that

a1

1
2
3

+a2

4
5
6

+a3

7
8
9

=

x
y
z

?

When you equate components on each side, we obtain

a1 +4a2 +7a3 = x

2a1 +5a2 +8a3 = y

3a1 +6a2 +9a3 = z

which corresponds to the augmented matrix1 4 7 | x
2 5 8 | y
3 6 9 | z


Notice how the columns of this matrix correspond to the vectors in our linear system!

We row reduce this linear system, and get1 4 7 | x
0 1 2 | −(y−2x)/3
0 0 0 | x−2y+ z


So: the linear system is consistent if and only if x−2y+ z = 0. But this says that the span of the
given three vectors is only a plane in R3 and not all of R3 (and this method even gave us the equation
of that plane!).

Notice also that by setting (x,y,z) = (0,0,0) in the preceding example, you could deduce that
the dependence equation has infinitely many solutions, and thus that these three vectors are linearly
dependent.

Problems
Problem 13.1 a) Find the rank of each matrix in Problem 12.1.

b) ⋆Find the ranks of the coefficient matrices and the ranks of the augmented matrices correspond-
ing to the linear systems in Problem 12.2.
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Problem 13.2 Suppose a,c ∈ R and consider the following linear system in the variables x,y and z:

x + y + az = 2
2x + y + 2az = 3
3x + y + 3az = c

.

Note that the general solution of this system may depend on the values of a and c. Let [A |b ]
denote the augmented matrix of the system above.

a) For all values of a and c, find

(i) rankA

(ii) rank[A |b ]
b) ⋆Find all values of a and c so that this system has

(i) a unique solution,

(ii) infinitely many solutions, or

(iii) no solutions.

c) In case b (ii) above, give the general solution, and its complete geometric description.

Problem 13.3 Consider the network of streets with intersections A, B, C and D below. The arrows
indicate the direction of traffic flow along the one-way streets, and the numbers refer to the exact
number of cars observed to enter or leave A B,C and D during one minute. Each xi denotes the
unknown number of cars which passed along the indicated streets during the same period.

B
10
OO

x4

��?
??

??

11 // A
x5 //

x2 ��?
??

??

x1
??�����

C 4 //

D
x3

??�����

3
OO

a) Write down the linear system which describes the the traffic flow, together with all the
constraints on the variables xi, i = 1, . . . ,5. (Do not perform any operations on your equations:
this is done for you in (b).)

b) The reduced row-echelon form of the augmented matrix from part (a) is
1 0 0 −1 0 | 10
0 1 0 1 1 | 1
0 0 1 1 1 | 4
0 0 0 0 0 | 0


Give the general solution. (Ignore the constraints at this point.)

c) If AC were closed due to roadwork, find all possible traffic flows, using your results from (b).
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Problem 13.4 Consider the network of streets with intersections A, B, C, D and E below. The
arrows indicate the direction of traffic flow along the one-way streets, and the numbers refer to the
exact number of cars observed to enter or leave A, B, C, D and E during one minute. Each xi denotes
the unknown number of cars which passed along the indicated streets during the same period.

B
x4

""E
EE

EE
EE

50

OO

A
60

oo

x5
<<yyyyyyy

C
x3

����
��
��

x6oo
70

oo

E

x1

VV------

D
x2oo

60

��/
//
//
//

100

GG�������

a) Write down a system of linear equations which describes the the traffic flow, together with all
the constraints on the variables xi, i = 1, . . . ,6.

b) ⋆The reduced row-echelon form of the augmented matrix of the system in part (a) is
1 0 0 0 −1 1 | 60
0 1 0 0 −1 1 | −40
0 0 1 0 −1 1 | 20
0 0 0 1 −1 0 | −50
0 0 0 0 0 0 | 0


Give the general solution. (Ignore the constraints from (a) at this point.)

c) If ED were closed due to roadwork, find the minimum flow along AC, using your results
from (b).

Problem 13.5 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

a) Every non-homogeneous system of 3 equations in 2 unknowns is inconsistent.

b) ⋆Every non-homogeneous system of 3 equations in 2 unknowns is consistent.

c) Every non-homogeneous system of 2 equations in 3 unknowns has infinitely many solutions.

d) ⋆Every system of 2 equations in 2 unknowns has a unique solution.

e) If there is a row of zeroes in the augmented matrix of a linear system, the system will have
infinitely many solutions.
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f) ⋆If there is a column of zeroes in the coefficient matrix of a consistent linear system, the system
will have infinitely many solutions.

g) If a consistent linear system has infinitely many solutions, there must be a row of zeroes in
the reduced augmented matrix (i.e. when the augmented matrix has been reduced so that the
coefficient matrix is in RREF.)

h) ⋆If a consistent linear system has infinitely many solutions, there must be a column of zeroes in
the reduced coefficient matrix (i.e. when the augmented matrix has been reduced so that the
coefficient matrix is in RREF.)

i) If the augmented matrix of a homogeneous linear system of 3 equations in 5 unknowns has
rank 2, there are 4 parameters in the general solution.

j) ⋆If a homogeneous linear system has a unique solution, it must have the same number of
equations as unknowns.





14. Matrix Multiplication

We have seen how to use matrices to solve linear systems. We have also seen essentially two completely
different views of an augmented matrix: in the first, the columns represented the coefficients of the
variables of a linear system; in the second (our last application) the columns corresponded to vectors in
Rm. To really establish the link between these two points of view (which will in turn yield powerful
tools to answer the questions we raised about vector spaces in the first part of this course), we need to
introduce the notion of matrix multiplication.

That said, matrix multiplication shows up as a key tool in a number of other very concrete
applications: not just in linear systems. You see them showing up:

• in probability, as transition matrices of Markov processes;
• in economics, as part of the Leontief input/output model;
• in geometry
• in quantum theory
• for solving linear systems
• for vector spaces, for keeping track of linear combinations

A large part of why they are so versatile is that there are many different ways of thinking of a matrix:
• as a table of numbers
• as a collection of row vectors
• as a collection of column vectors
• as “generalized numbers”: things you can add and multiply!

14.1 How to multiply matrices

Matrix multiplication is a generalization of the usual multiplication of numbers; the idea being to
multiply across many variables at the same time.
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■ Example 14.1.1 To calculate your weekly expenditures on salaries, you calculate, for each employee,

(dollars/hour)× (hours/week) = dollars/week

and then add up over all employees.
Suppose now you have much more information to keep track of:
• The hourly wages of several employees at different jobs. Rows correspond to cashier and

stockroom; columns correspond to Ali, Bob and Cho; entries represent the hourly wage of that
person in that job:

W =

[
12 10 14
8 8 10

]
• The hours worked each week. Rows correspond to Ali, Bob and Cho; columns correspond to

Week 1 and Week 2; entries are hours worked by that person that week:

H =

10 0
10 10
5 10


Then we could calculate total salary spent at each job each week. Rows are jobs (cashier, stockroom),
columns are weeks (Week 1, Week 2) and entries are total cost for that job that week:

C =WH =

[
12 10 14
8 8 10

]10 0
10 10
5 10


=

[
12×10+10×10+14×5 12×0+10×10+14×10

8×10+8×10+10×5 8×0+8×10+10×10

]
=

[
290 240
210 180

]
This says that $290 were spend on cashiers in Week 1, and $240 were spent on cashiers in Week 2, for
example.

Remarks:
• We organized things so that the rows of the answer correspond to the rows of the first matrix; the

columns of the answer correspond to the columns of the second matrix; and the variable over
which we summed (here, the employees) corresponded to both the columns of the first and the
rows of the second, in the same order.

• Note that we calculated the entry in row i and column j of the product by taking the dot product
of row i of the first matrix and column j of the second matrix.

■

This example helps to illustrate why we choose to define matrix multiplication in a way that at first
seems quite strange.

Definition 14.1.2 If A is an m×n matrix and B is an n× p matrix, then their product AB is the m× p
matrix whose (i, j) entry is the dot product of the ith row of A with the jth column of B.
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So, if A = [ai j], and B = [bi j] then AB = [ci j] where

ci j =
n

∑
k=1

aikbk j = [ai1 ai2 · · · ain]


b1 j

b2 j
...

bn j


In particular, “AB” only makes sense if the number of columns of A equals the number of rows

of B.

■ Example 14.1.3

[
1 2 3
4 5 6

]x
y
z

=

[
x+2y+3z
4x+5y+6z

]
= x

[
1
4

]
+ y

[
2
5

]
+ z

[
3
6

]

That is, this kind of matrix product can be thought of as a shorthand for a linear system or as an
expression of a linear combination. ■

■ Example 14.1.4

[
1 2 3

]a b
c d
e f

=
[
a+2c+3e b+2d +3 f

]
= 1

[
a b

]
+2

[
c d

]
+3

[
e f

]
So in this way, this matrix product gives a linear combination of the rows of the matrix. ■

14.2 Some strange properties of matrix multiplication
First, note something odd:

■ Example 14.2.1 Let A =

[
1 2
3 4

]
and B =

[
1 2 3
4 5 6

]
. Then A is of size 2×2, B is of size 2×3, so

the product is of size 2×3 and equals

AB =

[
1 2
3 4

][
1 2 3
4 5 6

]
=

[
9 12 15
19 26 33

]
but BA is not defined, because the number of columns of B is not the same as the number of rows of A.
■

! SO sometimes you can calculate AB but BA is not defined!

Even worse:

■ Example 14.2.2 Let A =

[
1 2
3 4

]
and B =

[
0 1
1 0

]
. Then

AB =

[
1 2
3 4

][
0 1
1 0

]
=

[
2 1
4 3

]
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but

BA =

[
0 1
1 0

][
1 2
3 4

]
=

[
3 4
1 2

]
Note that AB ̸= BA. ■

! SO even when you ARE allowed to calculate both AB and BA, it can happen (it
usually happens) that AB ̸= BA!

In other words: the product is not commutative.

■ Example 14.2.3 Let A =

1
2
3

 and B =

4
5
6

 be two column matrices (or call them vectors). Remem-

ber the transpose operation (definition 5.2.4), which swaps rows and columns. Then
• AB is not defined.
• BA is not defined.

• AT B =
[
1 2 3

]4
5
6

=
[
32
]
= 321, which is just the dot product of the two vectors.

• BT A =
[
4 5 6

]1
2
3

 = 32 is the same (Which is good, since we already knew that the dot

product doesn’t depend on the order of the matrices.)

• ABT =

1
2
3

[
4 5 6

]
=

 4 5 6
8 10 12
12 15 18

 is not at all anything to do with the dot product! We

call it the tensor product.
■

There are even stranger things about matrix multiplication!

■ Example 14.2.4 Let C =

[
1 −1
−1 1

]
and D =

[
1 2
1 2

]
. Then

CD =

[
1 −1
−1 1

][
1 2
1 2

]
=

[
0 0
0 0

]
So CD = 0 but neither C nor D was the zero matrix. ■

! It can happen that AB = 0 but neither A nor B is zero.

■ Example 14.2.5 Let A =

[
4 −1
1 1

]
, B =

[
1 0
7 −1

]
and C =

[
1 2
3 6

]
. Then

AC =

[
4 −1
1 1

][
1 2
3 6

]
=

[
1 2
4 8

]
1We always identify the 1×1 matrix

[
a
]

with its single (scalar) entry a.
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and

BC =

[
1 0
7 −1

][
1 2
3 6

]
=

[
1 2
4 8

]
That is: AC = BC but A ̸= B! ■

! It can happen that AC = BC but C ̸= 0 and A ̸= B. In other words, we can’t cancel
out C, even if C ̸= 0.

14.3 Some good properties of matrix multiplication

First note that the transpose operation on matrices satisfies
• (A+B)T = AT +BT

• (kA)T = kAT for a scalar k
• (AT )T = A

We also define a special matrix, called the identity matrix (although there’s actually one for every n):

I2 =

[
1 0
0 1

]
, I3 =

1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


And we still have the zero matrix (one for each possible size):

02×2 =

[
0 0
0 0

]
, 02×3 =

[
0 0 0
0 0 0

]
, 03×2 =

0 0
0 0
0 0


Let’s list some properties of the matrix product.

Theorem 14.3.1 — Properties of the matrix product. Let A,B and C be matrices and let k be a
scalar. Then, whenever defined, we have

1. (AB)C = A(BC) (Associativity)
2. A(B+C) = AB+AC (Distributivity on the right)
3. (B+C)A = BA+CA (Distributivity on the left)
4. k(AB) = (kA)B = A(kB)
5. (AB)T = BT AT (NOTE the reversal of order!)
6. AI = A and IB = B.
7. If A is m×n, then A0n×p = 0m×p and 0q×mA = 0q×n.

Proof. (1) Write A = [ai j], B = [bi j], and C = [ci j]. Suppose A is m× n, B is n× p and C is of size
p×q. Then the i jth entry of (AB)C is

p

∑
l=1

(
n

∑
k=1

aikbkl)cl j
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whereas the i jth entry of A(BC) is
n

∑
k=1

aik(
p

∑
l=1

bklcl j)

and these two sums are equal.
(2)-(4): exercise.
(5) Note first that the change of order was necessary: if A is m×n and B is n× p, then AB is defined

but AT BT probably isn’t. Now the i jth entry of AB is the dot product of the ith row of A with the jth
column of B; so this is the jith entry of (AB)T . Now the jith entry of BT AT is the dot product of the jth
row of BT (which is the jth column of B) with the ith column of AT (which is the ith row of A). Since
the order of vectors in a dot product doesn’t matter, it follows that these are equal.

(6)-(7) exercise. ■

■ Example 14.3.2 [
a b c
d e f

]1 0 0
0 1 0
0 0 1

=

[
a b c
d e f

]

and [
1 0
0 1

][
a b c
d e f

]
=

[
a b c
d e f

]
So the size of the identity matrix you need to play the role of 1 in a matrix product depends on the size
of A and the side you are multiplying on. ■

These properties let us do lots of algebraic manipulations with matrices which are very similar to
what we do with real numbers.

Problem 14.3.3 Simplify the expression (A+B)(C+D).
Solution We have (A+B)(C+D) = (A+B)C+(A+B)D by distributivity on the right; and then
this equals AC+BC+AD+BD by distributivity on the left.

But we have to be careful!
Problem 14.3.4 Simplify (A+B)(A−B).
Solution This becomes A2 +BA−AB−B2. It is NOT A2−B2 since it is very likely that AB ̸= BA.

Problem 14.3.5 Simplify AC = BC.
Solution There’s nothing to simplify; we could write this as AC−BC = 0 or (A−B)C = 0, but we
cannot conclude that A = B or C = 0, since we’ve seen already that we can get the zero matrix as
the product of two nonzero matrices.

! BEWARE: these operations let you do most simple algebraic operations, but they
DON’T let you CANCEL (multiplicatively) or DIVIDE. Look ahead to matrix
inversion in chapter 18 to solve this problem.
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14.4 Some really amazing things about matrix multiplication

There are some really amazing things about matrix multiplication as well. The following is an
application of the Cayley-Hamilton Theorem, for example.

Suppose A is a 2×2 matrix; such a matrix is called square and has the property that you can define
A2 = AA and A3 = AAA etc. (If A is not square, A2 is not defined.) So for example if

A =

[
1 2
2 0

]
then

A2 =

[
1 2
2 0

][
1 2
2 0

]
=

[
5 2
2 4

]
and

A3 =

[
1 2
2 0

][
5 2
2 4

]
=

[
9 10

10 4

]
etc. Now recall tr(A) was the trace of A, which is the sum of the diagonal entries. So here, tr(A) = 1.
Also det(A) is ad−bc, which here equals −4. The characteristic polynomial of A is

x2− tr(A)x+det(A).

If we plug in A for x (and put in an identity matrix at the end so that everything becomes a matrix), we
get [

5 2
2 4

]
−
[

1 2
2 0

]
−4

[
1 0
0 1

]
=

[
0 0
0 0

]
This always happens for 2×2 matrices, and there’s a generalization for all square matrices. See

definition 22.2.1 for the characteristic polynomial of an general square matrix.
There is also block multiplication which can sometimes simplify your calculations by letting you

treat submatrices as numbers.

■ Example 14.4.1 Suppose

A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0


Break this up this into “blocks” by setting

B =

1 0 0
0 1 0
0 0 1

 C =

[
0 1
0 0

]

and then thinking of A as

A =

[
B 0
0 C

]
where the zero matrix in the (1,2) position is 3×2, and that in the (2,1) position is a 2×3.
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Then A2 =

[
B 0
0 C

][
B 0
0 C

]
=

[
B2 0
0 C2

]
. In fact,

A100 =

[
B100 0

0 C100

]
which is nice, because

B100 = I100
3 = I3

since I3 is just the identity matrix; and
C2 = 0

so C100 = 0 as well. So in fact A100 =

[
B 0
0 0

]
. ■

14.5 Back to linear systems
Thinking in terms of blocks –which in the following are just columns – helps us switch between
different points of view of linear systems.

The following equations are all equivalent:
• The linear system:

x+2y+3z = 4

x− y+ z = 2

y−3z = 0

• The matrix equation Ax = b where

A =

1 2 3
1 −1 1
0 1 −3

 ,x =

x
y
z

 ,b =

4
2
0


that is, 1 2 3

1 −1 1
0 1 −3

x
y
z

=

4
2
0


• The vector equation

x

1
1
0

+ y

 2
−1
1

+ z

 3
1
−3

=

4
2
0


Furthermore, all of these can be solved by row reducing the augmented matrix

[A|b] =

1 2 3 | 4
1 −1 1 | 2
0 1 −3 | 0

 .

In terms of block multiplication, we can understand this by writing

A =
[
c1 c2 c3

]
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where ci is the ith column of A, and then multiplying

Ax =
[
c1 c2 c3

]x
y
z

= xc1 + yc2 + zc3

(where we can switch the order because x,y,z are just scalars). This is true for any size of matrix A:
if A = [c1 c2 · · ·cn] then Ax = x1c1 + x2c2 + · · ·+ xncn, which is indeed a linear combination of the
columns of A.

FACT Ax is a linear combination of the columns of A (with coefficients given by the column vector
x).

This gives us a new perspective on our criteria for solving linear systems!

FACT Ax = b is consistent if and only if b is a linear combination of the columns of A.

FACT Ax = 0 has a unique solution if and only if the columns of A are linearly independent.

One proves these facts by going between the various interpretations of the matrix product. For
instance, if the system corresponding to Ax = b is consistent, then this means there is an x for which
the corresponding linear combination of columns of A yields b, which is simply saying that b is in the
span of the columns of A.

Definition 14.5.1 Suppose A = [c1 c2 . . .cn] is an m× n matrix with columns ci. Set Col(A) =
span{c1,c2, . . . ,cn}. This is a subspace of Rm, called the column space of A.

FACT Col(A) = Rm if and only if the columns of A span Rm, if and only if Ax = b is consistent for
all b ∈ Rm, if and only if there is no zero row in the RREF of A.

These things all follow from the definitions, although the last part of the equivalence is not entirely
obvious, though one direction is easy.2

FACT The columns of A are linearly independent if and only if Ax = 0 has a unique solution, if
and only if there is a leading one in every column of an REF of A, if and only if rank(A) equals the
number of columns of A.

This again is just putting everything together.
Finally, we deduce something we proved in greater generality before:

FACT If A is an n×n matrix, then the columns of A form a basis for Rn if and only if they are linearly
independent, if and only if rank(A) = n, if and only if Col(A) = Rn, if and only if the columns of A

2Suppose that there are no zero rows in Ã, the RREF of A. Then Ax = b will of course be consistent for all b ∈ Rm.
To prove the converse, we prove that if the the last row in the RREF Ã of A is zero, then there is a b ∈ Rm with Ax = b
inconsistent: so suppose last row in the RREF Ã of A is zero. Construct a b̃ ∈ Rn with a 1 in that row – so the system [Ã|b̃] is
inconsistent. Now reverse the row operations that took A to Ã – do them on [Ã|b̃] and you’ll obtain a system [A|b] that is
inconsistent; that is, you’ll have found a b ∈ Rn with Ax = b inconsistent.
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span Rn if and only if no REF of A has a zero row.

Problems

Remarks:
1. A question with an asterisk ‘∗’ (or two) indicates a bonus-level question.
2. You must justify all your responses.

Matrix Multiplication

Problem 14.1 a) Find the matrix product
[

1 2
3 6

][
a b
c d

]
.

b) ⋆Write the matrix product
[

1 2
3 6

][
a
b

]
as a linear combination of the columns of A =

[
1 2
3 6

]
.

c) Write the matrix product
[
1 2

][a b
c d

]
as a linear combination of the rows of B =

[
a b
c d

]
.

d) ⋆Find the matrix product
[

a
b

][
c d

]
.

e) Find the matrix product
[
c d

][a
b

]
.

f) ⋆If A =
[
c1 c2 c3

]
is an m×3 matrix written in block column form, and x =

2
1
4

 is a column

vector in R3, express Ax as a linear combination of c1,c2 and c3.

g) Show that
[

1 2
3 6

][
2 −4
−1 2

]
=

[
0 0
0 0

]
.

h) ⋆Show that if A =

[
0 1
0 0

]
, then A2 =

[
0 0
0 0

]
.

i) Show that if A =

[
0 1
0 0

]
, and B =

[
0 0
1 0

]
then AB ̸= BA.

j) ⋆If C is a m×4 matrix and D =


1 0 1
0 1 1
1 0 0
0 0 0

, express the columns of CD in terms of the columns

of C.

k) If A =


1 0 1
0 1 1
1 0 0
0 0 0

 and B is a 3×n matrix , express the rows of AB in terms of the rows of B
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l) ⋆Find all (a, b, c) so that
[

1 2
3 6

][
a b
c a

]
=

[
0 0
0 0

]
.

m) Compute


1 0 0 −3
0 1 3 0
0 0 1 0
0 0 0 1


2015

Problem 14.2 Show the formula A2− tr(A)A+det(A)I = 0 holds for any 2×2 matrix A.

Problem 14.3 State whether each of the following is (always) true, or is (possibly) false. In this
question, A and B are matrices for which the indicated products exist.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

a) (A+B)2 = A2 +2AB+B2

b) ⋆C(A+B) =CA+CB

c) (A+B)I6 = A+B

d) ⋆AB = BA

e) (AB)C = A(BC)

f) ⋆If A2 = 0 for a square matrix A, then A = 0.

Problem 14.4 ∗ Suppose A is a symmetric n×n matrix, i.e., A = At . Show that if v and w are any
vectors in Rn, then (Av) ·w = v · (Aw).

3

Applications to Linear Systems

Problem 14.5 Write the matrix equation which is equivalent to each of the following linear systems.

a)
x + y + z = 0
−9x − 2y + 5z = 0
−x + y + 3z = 0
−7x − 2y + 3z = 0

3Hint: Remember that if we write vectors as columns, then the dot product x · y is the same as the matrix product xty.
Write the dot products as matrix products and expand.
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b) ⋆

x + w = 1
x + z + w = 0
x + y + z = −3
x + y − 2w = 2

c)
− 2x3 + 7x5 = 12

2x1 + 4x2 − 10x3 + 6x4 + 12x5 = 28
2x1 + 4x2 − 5x3 + 6x4 − 5x5 =−1

Problem 14.6 Write the matrix equation of the linear system corresponding to each of the augmented
matrices given below.

a)
[

0 1 | 0
0 0 | 0

]

b) ⋆


1 0 −1 | 0
0 1 2 | 0
0 0 0 | 1
0 0 0 | 0



c)


1 0 0 3 | 3
0 1 0 2 | −5
0 0 1 1 | −1
0 0 0 0 | 0


d) ⋆

1 2 0 3 0 | 7
0 0 1 0 0 | 1
0 0 0 0 1 | 2



e)


1 0 0 −1 0 | 10
0 1 0 1 1 | 1
0 0 1 1 1 | 4
0 0 0 0 0 | 0



Problem 14.7 State whether each of the following is (always) true, or is (possibly) false. The
matrices are assumed to be square.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

a) If [A |b ] is the augmented matrix of a linear system, then rankA > rank[A |b ] is possible.

b) ⋆If [A |b ] is the augmented matrix of a linear system, then rankA < rank[A |b ] is possible.
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c) If [A |b ] is the augmented matrix of a linear system, and rankA = rank[A |b ], then the system
is inconsistent.

d) ⋆If [A |b ] is the augmented matrix of a linear system, and rankA = rank[A |b ], then the system
is consistent.

e) If [A |b ] is the augmented matrix of a linear system, and rankA = rank[A |b ], then the vector b
is a linear combination of the columns of A.

f) ⋆If A is an m×n matrix and Ax = 0 has a unique solution for x ∈Rn, then the columns of A are
linearly independent.

g) If A is an m×n matrix and Ax = 0 has a unique solution for x ∈ Rn, then the rows of A are
linearly independent.

h) ⋆If A is an m×n matrix and Ax = 0 has infinitely many solutions for x ∈ Rn, then the columns
of A are linearly dependent.

i) If A is an m×n matrix and Ax = 0 has infinitely many solutions for x ∈Rn, then the rows of A
are linearly dependent.

j) ⋆If A is a 6×5 matrix and rankA = 5, then Ax = 0 implies x = 0 for x ∈ R5

k) If A is a 6×5 matrix and rankA = 5, then Ax = b is consistent for every b ∈ R6.

l) ⋆If A is a 5×6 matrix and rankA = 5, then Ax = b is consistent for every b ∈ R5.

m) If A is a 5×6 matrix and rankA = 5, then Ax = 0 implies x = 0 for x ∈ R6.

n) ⋆If A is a 3×2 matrix and rankA = 1, then Ax = 0 implies x = 0 for x ∈ R2.

o) The columns of a 19×24 matrix are always linearly dependent.

p) ⋆The rows of a 19×24 matrix are always linearly dependent.





15. Vector spaces associated to Matrices

Last time, we established that the matrix equation Ax = b could be equally viewed as a system of linear
equations as an expression of b as a linear combination of the columns of A. This allows us to translate
and relate concrete facts about systems of linear equations to the abstract world of vector spaces.

Here we introduce and discuss three very useful vector spaces associated to any matrix.

15.1 Column space, row space and nullspace
Let A be an m×n matrix.

Definition 15.1.1 The column space of A (also called the image of A, in which case it is denoted
im(A)) is

Col(A) = span{c1,c2, · · · ,cn}

where {c1,c2, · · · ,cn} are the columns of A, viewed as vectors in Rm.

Recall that if x ∈ Rn, then Ax is a linear combination of the columns of A. So we may write

Col(A) = {Ax | x ∈ Rn}

Since Col(A) is given as the span of some vectors in Rm, it is a subspace of Rm.
Although for most applications, column vectors are the key, there is no reason we couldn’t also

consider row vectors.

Definition 15.1.2 The row space of A is

Row(A) = span{r1,r2, · · · ,rm}
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where {r1,r2, · · · ,rm} are the rows of A (typically transposed to make them into n× 1 matrices),
viewed as vectors in Rn.

Again, Row(A) is a subspace, but this time of Rn.
Looking at matrices in a completely different way — that is, as the coefficient matrix of a linear

system — yields an equally important subspace.

Definition 15.1.3 The nullspace of A (also known as the kernel of A, and in that case denoted
ker(A)) is

Null(A) = {x ∈ Rn | Ax = 0};

that is, the nullspace is the general solution to the homogeneous linear system given by Ax = 0.

Lemma 15.1.4 Null(A) is a subspace of Rn.

Proof. First note that A is the coefficient matrix of the linear system, and it has size m×n. Thus the
linear system has m equations and n variables, meaning that the solution consists of vectors with n
components. Hence Null(A)⊂ Rn.

We now need to verify that Null(A) is a subspace of Rn, and we use the subspace test.
1. First: is 0 ∈Null(A)? Well, a vector x is in Null(A) if and only if Ax = 0. Thus since A0 = 0, we

deduce that 0 ∈ Null(A).
2. Is Null(A) closed under vector addition? Well, let x and y be two elements of Null(A). That

means Ax = 0 and Ay = 0. We need to decide if their sum x+y lies in Null(A), meaning, we
need to compute A(x+y).
Now by distributivity of the matrix product, A(x+y) = Ax+Ay, and each of these is 0 by the
above. So we deduce

A(x+y) = Ax+Ay = 0+0 = 0,

and so Null(A) is closed under addition.
3. Is Null(A) closed under scalar multiplication? Let x ∈ Null(A); this means Ax = 0. Let k be any

scalar. Is kx ∈ Null(A)? That is, is it true that A(kx) = 0? We compute, using the axioms of
matrix multiplication:

A(kx) = k(Ax) = k(0) = 0

so indeed, A(kx) = 0 and thus Null(A) is closed under scalar multiplication.
Since Null(A) passes the subspace test, it is a subspace (of Rn). ■

There is a fourth vector space we could naturally associate to A: the nullspace of AT . But it has no
name of its own; we’ll use it when we talk about orthogonal complements of subspaces, later on.

! Please note that these vector spaces are generally distinct from one another!

So we have some interesting vector spaces: our next step is to determine their dimension. We begin
with Null(A) and will return to Col(A) in a few chapters.
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15.2 Finding a basis for Null(A)

Problem 15.2.1 Find a basis for Null(A), where A =

1 2 3 −3
0 1 1 −2
1 0 1 1

.

Solution Since Null(A) is the general solution to the linear system Ax = 0, our first step is to solve
that linear system. So we write down the augmented matrix and row reduce to RREF:1 2 3 −3 | 0

0 1 1 −2 | 0
1 0 1 1 | 0

 ∼

−R1 +R3→ R3

1 2 3 −3 | 0
0 1 1 −2 | 0
0 −2 −2 4 | 0


2R2 +R3→ R3

∼
−2R2 +R1→ R1

1 0 1 1 | 0
0 1 1 −2 | 0
0 0 0 0 | 0


which is in RREF.

The general solution comes by setting the nonleading variables equal to a parameter (x3 = r,
x4 = t) and solving for the leading variables in terms of the nonleading variables (so x1 =−x3−x4 =
−r− t and x2 =−x3 +2x4 =−r+2t). Written in vector form (since we’re interested in vectors)
this is

Null(A) =



−r− t
−r+2t

r
t

 | r, t ∈ R


=

r


−1
−1
1
0

+ t


−1
2
0
1

 | r, t ∈ R

= span



−1
−1
1
0

 ,


−1
2
0
1




Since these vectors span Null(A), and since the set

−1
−1
1
0

 ,


−1
2
0
1




is linearly independent (just look at the two entries in these vectors – the ones corresponding to our
nonleading variables!), we deduce that this is a basis for Null(A).

The vectors in the spanning set that we obtain by writing down the solution from the RREF form
has a special name: they are the basic solutions. This name certainly suggests they ought to form a
basis.

Theorem 15.2.2 — Basic solutions form a basis for Null(A). The spanning set of Null(A) obtained
from the RREF of [A|0] (in other words, the set of basic solutions of Ax = 0) is a basis for Null(A).
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Proof. By definition, this is a spanning set, so it only remains to prove linear independence. Let
{v1, · · · ,vk} be the set of basic solutions. By construction, the number of basic solutions k equals the
number of parameters in the general solution, and this equals the number of non-leading variables.
Now note that for each non-leading variable xni , there is a unique vector vi which has a nonzero entry
in row ni. (This is by construction, since row ni corresponds in our general solution to the equation
xni = ri, a parameter; in particular only one parameter and thus only one basic solution contributes to
this variable.)

Suppose that vi is the basic vector corresponding to setting the parameter for x ji equal to 1 and the
rest equal to zero.

Consider now the dependence equation

r1v1 + r2v2 + · · ·+ rkvk = 0

By what we said above, for each i = 1,2 · · · ,k, the nith row on the LHS has value ri, which must equal
the nith element on the RHS, which is zero. So we deduce that r1 = r2 = · · ·= rk = 0. Thus the set of
basic solutions is linearly independent, and hence a basis. ■

Corollary 15.2.3 — Rank-Nullity Theorem. The dimension of the nullspace of A is equal to the
number of nonleading variables of A. That is,

dimNull(A)+ rank(A) = n

where n is the number of columns of A.

Proof. The dimension of a space is the number of vectors in a basis for that space, so dimNull(A)
is equal to the number of nonleading variables of A. Recall that the rank of A equals the number of
leading variables, and n is the number of variables in total; so the number of nonleading variables
equals n− rank(A). ■

15.3 What all this tells us about solutions to inhomogeneous systems
Problem 15.3.1 Solve Ax = b, where

A =

1 2 3 −3
0 1 1 −2
1 0 1 1

 and b =

10
3
4


Solution We row reduce the resulting augmented matrix:1 2 3 −3 | 10

0 1 1 −2 | 3
1 0 1 1 | 4

 ∼

−R1 +R3→ R3

1 2 3 −3 | 10
0 1 1 −2 | 3
0 −2 −2 4 | −6


2R2 +R3→ R3

∼
−2R2 +R1→ R1

1 0 1 1 | 4
0 1 1 −2 | 3
0 0 0 0 | 0


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which is in RREF. Note that we used the SAME operations as before, when we solved the corre-
sponding homogeneous system!

So our general solution is


4− r− t
3− r+2t

r
t

 | r, t ∈ R

=




4
3
0
0

+ r


−1
−1
1
0

+ t


−1
2
0
1

 | r, t ∈ R


The thing to notice is that the general solution to the inhomogeneous equation is given by adding a

particular solution of the inhomogeneous system to the general solution of the homogeneous system.
Geometrically, this means we take the subspace Null(A) and translate it away from the origin to produce
the solution set to the inhomogeneous system. (And the vector by which we translate it is just a (any)
particular solution to the system.)

We can state this as a theorem.

Theorem 15.3.2 — Inhomogeneous systems and nullspace. Suppose that Ax = b is a consistent
linear system.

1. If x = v is a solution to the system Ax = b, and x = u is any solution to the associated
homogeneous system Ax = 0, then v+u is a solution to Ax = b.

2. If v and w are two solutions to the system Ax = b, then x = v−w is a solution to the
homogeneous system Ax = 0.

These two statements together ensure that the general solution to the inhomogeneous system is given
exactly by v plus the solutions to the homogeneous system.

Proof. (1) We have Av = b and Au = 0 so A(v+u) = Av+Au = b+0 = b.
(2) We have Av = b and Aw = b so A(v−w) = Av−Aw = b−b = 0

■

The value of the theorem is in giving us a picture of the solution set of an inhomogeneous system —
in particular, if a homogeneous system has a unique solution, so does any consistent inhomogeneous
system with the same coefficient matrix; and if a homogeneous system has infinitely many solutions,
indexed by k basic solutions, then any consistent inhomogeneous system with the same coefficient
matrix will also have k parameters in its solution.

But unless you happen to stumble across a particular solution (by guessing, or advance knowledge)
of your inhomogeneous system, this theorem doesn’t help you solve the system. In particular, if
b /∈ Col(A), there won’t be a solution at all, and knowing the nullspace is of no help whatsoever.

15.4 Summary of facts relating to consistency of a linear system
Let A be an m×n matrix.

A linear system Ax = b is consistent if and only if:
• b is a linear combination of the columns of A, iff
• b ∈ Col(A) iff
• rank[A |b ] = rankA.
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Theorem 15.4.1 Let A be an m×n matrix and x ∈ Rn. The following statements are equivalent for
a system with matrix equation Ax = b:

(1) The equation Ax = b is be consistent for all choices of b ∈ Rm;
(2) rank(A) = m;
(3) There are no zero rows in the RREF of A;
(4) Every b ∈ Rm is a linear combination of the columns of A;
(5) Col(A) = Rm;
(6) dim(Col(A)) = m.

Proof. There are several ways to do this. We will prove (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5)⇐⇒
(6) and (5) =⇒ (1). This will achieve a proof of the equivalence of the statements (1) – (6).

(1) =⇒ (2): Suppose Ax = b is consistent for all b ∈ Rm, but that rankA < m. So the last row in
the RREF Ã of A must be zero.

Choose a b̃ ∈ Rn with a 1 as its last entry – so the system [Ã|b̃] is inconsistent. Now reverse the
row operations that took A to Ã – do them on [Ã|b̃] – and we obtain a system [A|b] that we know
is inconsistent; that is, we’ve found a b ∈ Rn with Ax = b inconsistent. This is a contradiction, so
rankA = m.

(2) =⇒ (3): As A is an m×n matrix, this is obvious.
(3) =⇒ (4): If there are no zero rows in the RREF of A, Ax = b is consistent for every b ∈ Rm,

and so every b ∈ Rm is a linear combination of the columns of A.
(4) =⇒ (5): If every b ∈ Rm is a linear combination of the columns of A then the columns of A

span all of Rm, so Col(A) = Rm (Of course we always have Col(A)⊂ Rm — it’s the equality here that
is interesting.)

(5) ⇐⇒ (6): We know that a subspace of Rm has dimension m iff it’s the whole space.
(5) =⇒ (1): Since every b ∈Rm is in Col(A), every b ∈Rmis a linear combination of the columns

of A, and so Ax = b is consistent for every b ∈ Rm. ■

15.5 Summary of facts relating to the number of solutions of a consistent linear
system

Theorem 15.5.1 Let A be an m×n matrix, and b ∈ Rn. The following statements are equivalent for
a consistent system with matrix equation Ax = b:

(1) The system Ax = b has a unique solution;
(2) Every variable is a leading variable;
(3) There is a leading 1 in every column of the RREF of A;
(4) The associated homogeneous sysytem Ax = 0 has a unique solution;
(5) The columns of A are linearly independent;
(6) Null(A) = {0};
(7) dim(Null(A)) = 0;
(8) rank(A) = n.

Proof. (1) =⇒ (2): If the solution is unique, there cannot be any parameters and so every variable is a
leading variable.

(2) =⇒ (3): Leading variables are the variables with a leading 1 in their column in an RREF of A,
so this is clear.
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(3) =⇒ (4): If there’s a leading one in very column of the RREF of A, there are no parameters in
the general solution to Ax = 0, so the solution is unique.

(4) =⇒ (5): The linear system Ax = 0 is the same as the vector equation

x1c1 + x2c2 + · · ·+ xncn = 0,

where the ci are the columns of A. This vector equation has a unique solution if and only if the vectors
{c1,c2, . . . ,cn} are linearly independent.

(5) =⇒ (6): Null(A) is the general solution to Ax = 0, so this consists of the unique solution which
is the trivial solution.

(6) =⇒ (7): Recall again our theorem about the dimensions of subspaces; Null(A) is the zero
subspace if and only if its dimension is zero.

(7) =⇒ (8): This is a direct consequence of the Rank-Nullity Theorem, theorem 15.2.3
(8) =⇒ (1): If rankA = n, then there are no parameters in the general solution to Ax = b, so the

solution is unique. ■

15.6 Application
We’ve seen subspaces of Rn defined in two kinds of ways:

1. It is given as the nullspace of some matrix A, i.e. W = Null(A) or
2. It is given as the span of some vectors, i.e. W = span{v1, . . . ,vm}

We already know how to convert a description of type (1) into type (2): simply find a basis of Null(A).
But how can we convert a description of type (2) into type (1)? Hang on – why would we want to?

Well, suppose we’re given some vectors u1, . . . ,uk and we’re asked “Are the vectors u1, . . . ,uk in
W?" If we have a description of W in form (1), all we need to do is compute Au1, . . . ,Auk and see if
we get zero in each case. That’s pretty easy. If, on the other hand, we only know W in the second
form, we’d have to solve the k linear systems

[
v1 · · · vm | u j

]
for 1≤ j ≤ k! That’s more effort

— especially if m > 1.
Let’s look at a couple of examples first.

■ Example 15.6.1 Let W = span{(1,1,2)}. Let’s find a matrix A such that W = NullA.
Well, (x,y,z) ∈W iff the system with augmented matrix1 | x

1 | y
2 | z


is consistent. But we know this system is equivalent (after row reduction) to the system whose
augmented matrix is 1 | x

0 | y− x
0 | z−2x


Now we know that this system is consistent iff x− y = 0 and 2x− z = 0. So

W = {(x,y,z) ∈ R3 | x− y = 0 and 2x− z = 0}

Thus if A =

[
1 −1 0
2 0 −1

]
, then NullA =W . ■
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That was a pretty simple example, and it wouldn’t have been difficult to decide if a vector is a
multiple of (1,1,2). Nevertheless, we did end up expressing the line W as the intersection of two
planes!

Let’s try an example that’s a bit more interesting.

■ Example 15.6.2 Define a subspace W of R4 by

W = span{(1,0,0,1), (1,1,1,0), (2,1,−1,1)}

We’ll proceed as before: make W the column space of a matrix, i.e.

W = Col


1 1 2
0 1 1
0 1 −1
1 0 1

 .

So (x,y,z,w) ∈W iff the system with augmented matrix
1 1 2 | x
0 1 1 | y
0 1 −1 | z
1 0 1 | w


is consistent. So we row reduce (and we don’t need to go all the way) and find that this system is
equivalent to 

1 1 2 | x
0 1 1 | y
0 0 −2 | z− y
0 0 0 | −x+ y+w

 .

Now we can see that this is consistent iff x− y−w = 0, i.e.

W = {(x,y,z,w) | x− y−w = 0}.

So W = Null
[
1 −1 0 −1

]
. Figuring out if a vector is in W is now a piece of cake — just one

equation to check!
■

Problems
Problem 15.1 Find a basis for the kernel (also called nullspace) of the following matrices:

a)
[

0 1
0 0

]
b) ⋆

[
1 2 −1 3

]
c)

[
1 0 0 3
0 1 0 2

]
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d) ⋆


1 0 0 −1 0
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0


e)

−1 2 2
2 −1 2
2 2 −1


f) ⋆

−4 2 2
2 −4 2
2 2 −4


g)

1 1 1
1 1 1
1 1 1



Problem 15.2 For each of the following subspaces W , find a matrix A such that W = Null(A).
1. W = span{(1,2,3),(1,0,1)}

2. W = span{(1,0,1,0), (1,1,1,0)}

3. W = span{(1,0,1,0), (1,1,1,0), (1,1,1,1)}





16. The row and column space algorithms

Here we aim to solve the following three problems about finding bases for subspaces of Rn. The
solutions to each will involve the Gaussian algorithm at some stage.

1. Given a spanning set {w1, . . . ,wm} for a subspace W , find any basis for W .

2. Given a spanning set {w1, . . . ,wm} for a subspace W , find a basis for W which is a subset of
{w1, . . . ,wm}, i.e., the basis should only contain vectors from {w1, . . . ,wm}.

3. Given a linearly independent set {u1, . . . ,uk} in Rn, extend it to a basis of Rn, i.e., find vectors
uk+1, . . . ,un such that {u1, . . . ,uk,uk+1, . . . ,un} is a basis of Rn.

The key ideas in the solutions to these problems will be to find bases for the row and column space
of a matrix. Let’s start with the row space, as it’s pretty straightforward.

16.1 Finding a basis for the row space: the row space algorithm

When we row reduce a matrix, you may have noticed that the new rows are linear combinations of
the old ones. In Chapter 11 we mentioned that each elementary row operation can be reversed, and
indeed by an elementary row operation of the same kind. So this means that the old rows are linear
combinations of the new rows as well. This has a very beautiful and useful consequence:

Proposition 16.1.1 — The row space is invariant under row equivalence. If A is row equivalent
to B then Row(A) = Row(B). That is, the spans of their rows are exactly the same subspace of Rn.

Proof. Remember that “row equivalent” means that you can get from A to B by a sequence of elementary
row operations. The three elementary row operations are:

1. Add a multiple of one row to another.
2. Multiply a row by a nonzero scalar.
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3. Interchange two rows.
Replace the word “row” with “row vector”; it is clear that (2) and (3) do not change the span of the row
vectors involved. To see that (1) doesn’t change the span amounts to showing that

span{u,v}= span{u,cu+v}

for any two vectors u and v and a scalar c. (Compare this with Problem 6.4). Since none of the
individual operations change the span of the row vectors, the row spaces of A and B are the same. ■

What’s so great about this? Well, for one thing a matrix in RREF has lots of zeros about, so it might
be easier to spot a basis. Let A be any matrix and Ã its RREF. Given that Row(A) = Row(Ã), a basis
for Row(Ã) will also be a basis for Row(A)!

Problem 16.1.2 Find a basis for Row(A), where A is the matrix

A =


1 2 2 3
2 −2 −8 4
1 1 0 1
0 2 4 1


Solution By definition,

Row(A) = span{(1,2,2,3),(2,−2,−8,4),(1,1,0,1),(0,2,4,1)}

But again, we don’t know if this spanning set is linearly independent or not.
Let’s apply Proposition 16.1.1.
We row reduce A to RREF and get:

Ã =


1 0 −2 0
0 1 2 0
0 0 0 1
0 0 0 0


The proposition says that Row(A) = Row(Ã). Well, Row(Ã) is spanned by the rows of Ã — but
it’s perfectly obvious we can ignore the zero row, so we have

Row(Ã) = span{(1,0,−2,0),(0,1,2,0),(0,0,0,1)}

Even better: just like the basic solutions to Null(A), these vectors are obviously linearly independent
because of the positions of the leading ones.

Conclusion : The nonzero rows of Ã form a basis for Row(A).
And what a fantastic basis! Lots of zeros! It’s easy to see that, for example, (3,2,−2,5) is in

the Row(A) and that (1,1,1,1) is not, because of the nice ones and zeros. (Try it!)

Having found a basis for the row space here, let’s take a look: did this help with finding a basis for
the column space? Unfortunately, not: look at the column spaces of A and Ã. They are not the same at

all: for example, the vector c2 =


2
−2
1
2

 (the second column of A) is certainly in Col(A), but it isn’t in



16.1 The row space algorithm 167

Col(Ã), since —take a look— the fourth component of every vector in Col(Ã) will have to be 0. And
that’s simply not the case for c2.

! If A∼ Ã then Row(A) = Row(Ã) but Col(A) ̸= Col(Ã) in general!

Let’s record our result for the row space:

Theorem 16.1.3 — Basis for Row(A): The row space algorithm. The nonzero rows in any REF of
A form a basis for Row(A), and so dimRow(A) = rankA.

If you take the RREF, you get a “standard basis” for your subspace Row(A).

! You have to take the rows of an REF of A, not the rows of A.

■ Example 16.1.4 Let A =

1 1
2 2
0 1

; its RREF is Ã =

1 0
0 1
0 0

. The first two rows of Ã give a basis

for Row(Ã) = Row(A). But the first two rows of A do not. And the nonzero rows of A also do not.
(check). The problem with going back to A is that you would need to keep track of row interchanges. ■

This solves our first problem on page 165! Given a spanning set for a subspace W , assemble a
matrix A with the vectors as the rows of A, so that W = Row(A). Now apply the row space algorithm
to obtain a basis for Row(A) =W .

■ Example 16.1.5 Find any basis for

W = span{(1,2,2,3),(2,−2,−8,4),(1,1,0,1),(0,2,4,1)}

Well, let’s just assemble a matrix A for which W = Row(A), apply the row space algorithm and get
a basis for Row(A), which will of course be a basis for W . This was done in Problem 16.1.2. So

{(1,0,−2,0),(0,1,2,0),(0,0,0,1)}

is a basis for W .
N.B. Note that none of these vectors is in our original spanning set, so this doesn’t help with the

second problem on page 165. We’ll need another tool for that. ■

The row space algorithm also helps us solve the third problem on page 165: Given a linearly
independent set {u1, . . . ,uk} in Rn, to extend it to a basis of Rn, i.e., find vectors uk+1, . . . ,un such that
{u1, . . . ,uk,uk+1, . . . ,un} is a basis of Rn, we proceed as follows: Assemble an n×n matrix A whose

first k rows are u1, . . . ,uk, and leave the n− k unknown vectors as symbols i.e. A =



u1
...

uk
uk+1

...
un


. We know

that the rows of A will be a basis of Rn iff rankA = n. So we row reduce just the part of A we know:
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rows 1 to k, and see which columns the leading ones are in. We then choose vectors uk+1, . . . ,un from
the standard basis of Rn to make sure there’s a leading one in every column. Let’s see this in two
examples:

■ Example 16.1.6 Extend the linearly independent set {(0,1,1)} to a basis of R3. Since dimR3 = 3,
we’ll need two more vectors.

Set A =

0 1 1
u2
u3

=

0 1⃝ 1
u2
u3

. Since we have one leading one in the second column, if we

set u2 = (1,0,0) and u3 = (0,0,1), then

A =

0 1 1
1 0 0
0 0 1

∼
 1⃝ 0 0

0 1⃝ 1
0 0 1⃝

 .

Then it is clear that with these choices, rankA = 3, so dimRow(A) = 3, and a basis for Row(A) = R3

will be {(0,1,1),(1,0,0),(0,0,1)}.
■

Let’s try an example in R4.

■ Example 16.1.7 Extend {(1,2,3,4),(2,4,7,8)} to a basis of R4.

So we set A =


1 2 3 4
2 4 7 8

u3
u4

. Now row reduce as much as we can:

A =


1 2 3 4
2 4 7 8

u3
u4

−2R1 +R2→ R2
∼


1⃝ 2 3 4
0 0 1⃝ 0

u3
u4


So we can see two leading ones – in columns 1 and 3, so if we set u3 = (0,1,0,0) and u4 =

(0,0,0,1), then

A =


1 2 3 4
2 4 7 8
0 1 0 0
0 0 0 1

∼


1⃝ 2 3 4
0 0 1⃝ 0
0 1 0 0
0 0 0 1

R2↔ R3
∼


1⃝ 2 3 4
0 1⃝ 0 0
0 0 1⃝ 0
0 0 0 1⃝


It is now clear that rankA = 4, so the desired extension is

{(1,2,3,4),(2,4,7,8),(0,1,0,0),(0,0,0,1)}

■

Finally, let’s tackle the second problem on page 165. For this we’ll need a new tool – which we can
fashion out of things we already know.
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16.2 Finding a basis for the column space: the column space algorithm
We noted before that row reduction really messes up the column space of a matrix: if A row reduces to
Ã, then it’s generally1 the case that Col(A) ̸= Col(Ã).2

We could always find a basis for Col(A) by finding a basis for Row(At), but here’s another way
that obtains a very special kind of basis: one that is a subset of the columns!

Here’s the idea: given a matrix A =
[
c1 · · · cn

]
in block column form, we’ll try to collect, from

left to right, the greatest number of those columns that are linearly independent, discarding any that are
not. As you will see, we will be able to decide which columns to keep and which to discard simply by
looking at the RREF of A!

Let’s start with an example. Before we do, we recall two important facts that will turn out to be
extremely useful:

(1) Theorem 8.3.1: If {v1, . . .vk} is linearly in dependent, then vk+1 /∈ span{v1, . . .vk} iff {v1, . . .vk,vk+1}
is still linearly independent; and

(2) From the beginning of Section 15.4: If
[
v1 . . . vk | v

]
is the augmented matrix of a linear

system (in block column form), then v ∈ span{v1, . . .vk} iff

rank
[
v1 . . . vk | v

]
= rank

[
v1 . . . vk

]
.

Problem 16.2.1 Find a basis for Col(A), where

A =


1 2 2 3
2 −2 −8 4
1 1 0 1
0 2 4 1


Solution We’ll try to collect, from left to right, the greatest number of those columns that are
linearly independent, discarding any that are not.

Write A =
[
c1 c2 c3 c4

]
in block column form. Now it’s clear that as c1 ̸= 0, the set {c1}

is linearly independent. But will it span Col(A)? Well, let’s see if c2 ∈ span{c1}. It’s obvious
that it isn’t, but let’s look at this in another way that will turn out to be helpful: We know that
c2 ∈ span{c1} iff the linear system with augmented matrix

[
c1 | c2

]
=


1 | 2
2 | −2
1 | 1
0 | 2


is consistent, iff rank

[
c1 | c2

]
= rank

[
c1
]
. When we row reduce this, it reduces to the first two

columns of Ã, of course: 
1 | 2
2 | −2
1 | 1
0 | 2

∼


1 | 0
0 | 1⃝
0 | 0
0 | 0


1We’ll see later that they are the same for invertible square matrices. See Chapter 18.
2Although it will turn out that they will have the same dimension for all matrices.
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The presence of the second leading one in column 2 of Ã prevents this system from being consistent.
That is, rank

[
c1 | c2

]
> rank

[
c1
]
. So,

c2 /∈ span{c1},

and hence {c1,c2} is linearly independent: span{c1,c2} is genuinely larger than span{c1}. So we
keep c1 and c2.

Ok, so let’s see if {c1,c2} spans Col(A). Well if it does, then c3 ∈ span{c1,c2}. We know that
this is true iff

[
c1 c2 | c3

]
is the augmented matrix of a consistent system iff rank

[
c1 c2 | c3

]
=

rank
[
c1 c2

]
. Now

[
c1 c2 | c3

]
=


1 2 | 2
2 −2 | −8
1 1 | 0
0 2 | 4

∼


1 0 | −2
0 1 | 2
0 0 | 0
0 0 | 0


This is the augmented matrix of a consistent system: rank

[
c1 c2 | c3

]
= rank

[
c1 c2

]
this time

—no new leading one in column three of Ã — so it is true that

c3 ∈ span{c1,c2}.

Hence span{c1,c2} = span{c1,c2,c3}, so we won’t keep c3, as {c1,c2,c3} has the same span as
{c1,c2} but {c1,c2,c3} is not independent.

So now we ask: is c4 ∈ span{c1,c2}? Since span{c1,c2}= span{c1,c2,c3}, this is the same ques-
tion as: “is c4 ∈ span{c1,c2,c3}?"a It will be iff the linear system corresponding to

[
c1 c2 c3 | c4

]
is consistent iff rank

[
c1 c2 c3 | c4

]
= rank

[
c1,c2,c3

]
. Well,

[
c1 c2 c3 | c4

]
=


1 2 2 | 3
2 −2 −8 | 4
1 1 0 | 1
0 2 4 | 1

∼


1 0 −2 | 0
0 1 2 | 0
0 0 0 | 1⃝
0 0 0 | 0

 .

This is the augmented matrix of an inconsistent system: rank
[
c1 c2 c3 | c4

]
> rank

[
c1,c2,c3

]
because of the third leading one in column 4 of Ã. So indeed,

c4 /∈ span{c1,c2}.

So we know that {c1,c2,c4} is independent, and that span{c1,c2,c4}= span{c1,c2,c3,c4}=Col(A).
So we’re done! {c1,c2,c4} is a basis for Col(A).

aYou may ask: “Why do this?" – “why put c3 back in?" Because we can read the answer directly from Ã. Read on.

! Look carefully at this example: we kept only those columns of A where there
were leading ones in Ã.

This always works. Keeping in mind that the columns where the leading ones sit don’t change when
we go from REF to RREF, we can state the theorem as:
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Theorem 16.2.2 — Basis for Col(A): the column space algorithm. Let A be an m× n matrix.
Then a basis for Col(A) consists of those columns of A which give rise to leading ones in an REF of
A. Hence dimCol(A) = rankA.

Proof. Suppose A = [u1 u2 · · ·un] is written in block column form. To choose a subset of the columns
of A which are a basis for A, we proceed as follows.

• Start with {u1}. If it’s zero, then throw it away; it can’t be part of a basis. Otherwise, keep it.
• Next consider {u1,u2}. If u2 ∈ span{u1}, then the set {u1,u2} is LD and span{u1,u2} is just

span{u1}— so discard u2. Otherwise, keep it.
• Next consider {u1,u2,u3}. If u3 ∈ span{u1,u2}, then as above it is redundant and we throw it

away; otherwise keep it.
• Continue in this way, deciding at each step whether to keep the vector or throw it out, until

you’ve covered all the vectors.
Now: what we’re left with will be linearly independent and will span the column space. Why? We
checked linear independence at each step; and we only removed vectors which were linear combinations
of ones we kept, so the span didn’t change.

Finally: how do you decide which to keep and which to discard? Say we want to decide if u2 is in
span{u1}. We do this by row reducing the augmented matrix [u1|u2]. But these are just the first two
columns of A; so we don’t actually have to row reduce again — just look at the first two columns of the
RREF of A. If the second column has a leading 1, then the system is inconsistent, and so we deduce
NO, u2 /∈ span{u1}. Otherwise, there is no leading 1, so the system is consistent, which means YES
u2 ∈ span{u1} and should be thrown out.

This works at every step: we want to decide if uk ∈ span{u1, · · · ,uk−1}, so consider the RREF of
the matrix

[u1 u2 · · · uk−1 | uk]

But since this is just the first k columns of A, we already know its RREF (the first k columns of the
RREF of A). The system is consistent (meaning: we should throw out uk) exactly when the rank of the
coefficient matrix equals the rank of the augmented matrix; in other words, exactly when there is NO
leading 1 in the kth column. The system is inconsistent (meaning: we should keep uk) exactly when the
rank of the coefficient matrix is smaller than the rank of the augmented matrix, which happens exactly
when there IS a leading 1 in the kth column.

We conclude: we will throw out (eliminate, discard) ui exactly if there is NO LEADING 1 in
column i of the RREF of A. In other words: the vectors we keep are the ones which give rise to leading
ones. ■

Corollary 16.2.3 For any matrix A with transpose matrix AT :

dimRow(A) = dimCol(A) = dimCol(AT ) = rank(AT ) = dimRow(AT ),

and all are equal to rank(A).

Proof. Remember: the rank is the number of leading ones in the RREF of A, and Row(A) = Col(AT ).
Now use Theorems 16.1.3 and 16.2.2 and you have it! ■
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This is amazing fact number one for first year linear algebra: just think about it. No matter what
size the matrix, the maximum number of independent rows — dimRow(A) — is exactly the same as
the maximum number of independent columns — dimCol(A)! This is not obvious at all ... but it is
true.

■ Example 16.2.4 Given that the matrix

A =

2 1 9 3 7
3 −1 11 1 2
1 1 5 1 4


has RREF

Ã =

 1⃝ 0 4 0 1
0 1⃝ 1 0 2
0 0 0 1⃝ 1


we deduce that a basis for Col(A)3 is 

 2
3
−1

 ,

 1
−1
1

 ,

3
1
1

 .

■

! WARNING: The leading columns of the RREF of A usually do NOT form a basis
for Col(A) – you have to go back to the original matrix A.

■ Example 16.2.5 If A =

1 1 1
2 2 2
1 1 1

 then the RREF of A is Ã =

 1⃝ 1 1
0 0 0
0 0 0

. Clearly4 {(1,2,1)} is

a basis for Col(A), whereas the first column of Ã, (1,0,0), is not even in Col(A). (But {(1,0,0)} is a
basis for Col(Ã).) ■

We can now solve our second problem from the beginning of the chapter. Given a spanning set for
a subspace U from which we wish to extract a basis, assemble a matrix A with the given vectors as
columns, so U = Col(A), and then use the column space algorithm to find a basis of Col(A) =U : it
will consist of some of the columns of A, and so it will indeed consist of some of the given spanning
vectors.

Problem 16.2.6 Let U = span{(1,2,1,0),(2,−2,1,2),(2,−8,0,4),(3,4,1,1)}. Find a basis for U
which is a subset of the given spanning set.
Solution Let’s assemble a matrix A whose columns are the given vectors. So

A =


1 2 2 3
2 −2 −8 4
1 1 0 1
0 2 4 1

 .

3This means that Col(A) = R3!
4If you prefer to write this vector as a column vector, feel free to do so.
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We know from Problem 16.1.2 that the RREF of A is

Ã =


1⃝ 0 −2 0
0 1⃝ 2 0
0 0 0 1⃝
0 0 0 0

 .

The leading ones occur in columns 1, 2 and 4, so a basis for Col(A) =U is

{(1,2,1,0),(2,−2,1,2),(3,4,1,1)}.

16.3 Summary: two methods to obtain a basis
So we have two distinct ways to get a basis from a spanning set. Say W = span{v1,v2, · · · ,vk}. Then
either:

1. Write the vectors as the rows of a matrix B =


v1
v2
. . .
vk

. So W = Row(B). Row reduce, and take the

nonzero rows of the RREF for your basis.
2. Write the vectors as the columns of a matrix A = [v1 v2 · · · vk]. So W = Col(A). Row reduce,

and take the column vectors in A which give rise to leading ones in the RREF.
Use the first if you want a nice basis for W that’s easy to work with. Use the second if the vectors

you have in hand are special to you and you just want to throw out the redundant ones.
The point: this works even if the subspace of which you’re trying to get a basis didn’t start off its

life as the column space or row space of a matrix. Anytime you have a spanning set, you can apply
this method. (And if your vectors are things like polynomials or matrices or functions: write them in
coordinates relative to a ‘standard’ basis, then apply these methods.)

Remark 16.3.1. Before we leave this for now, let’s make a final observation regarding the nullspace
of a matrix A and its rowspace. It’s a kind of ‘geometric interpretation’ of the rank-nullity theorem,
Corollary 15.2.3:

dimNull(A)+ rank(A) = n

We can now write this as
dimNull(A)+dimRow(A) = n

Write A =

r1
...

rm

 in block row form. Then

v ∈ NullA ⇐⇒ Av = 0

⇐⇒

r1
...

rm

v = 0

⇐⇒

r1 ·v
...

rm ·v

=

0
...
0


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That is, v ∈ Null(A) iff v is orthogonal to each and every row of A. So v will be orthogonal to any
and all linear combinations of rows of A, and so indeed v ∈ Null(A) iff v is orthogonal to each and
every element of Row(A)! We’ll come back to this idea in chapter 20.

To end the chapter, we now present another way to see that the column space algorithm works.

Problem 16.3.2 Find a basis for Col(A), where

A =


1 2 2 3
2 −2 −8 4
1 1 0 1
0 2 4 1


Solution By definition,

Col(A) = span




1
2
1
0

 ,


2
−2
1
2

 ,


2
−8
0
4

 ,


3
4
1
1




The point of this problem is: we don’t know if this spanning set is linearly independent or not.
But we just saw that to check for linear independence, we need to row reduce A. So let’s do that;

we get that the RREF of A is 
1 0 −2 0
0 1 2 0
0 0 0 1
0 0 0 0

 .

By Theorem 15.5.1, the fact that Ax = 0 does not have a unique solution implies that columns are
not linearly independent, and do not form a basis for Col(A). But we have even more information
than that: we know all the possible dependence relations on the set of columns!

Let’s reason this out. First:

Null(A) = {x = (a1,a2,a3,a4) | Ax = 0}
= {(a1,a2,a3,a4) | a1c1 +a2c2 +a3c3 +a4c4 = 0}

Now given the above RREF, we know that

Null(A) = {(2r,−2r,r,0) | r ∈ R}

In other words, ALL solutions to the dependence equation on the columns of A = [c1 c2 c3 c4] have
the form

(2r)c1 +(−2r)c2 + rc3 +0c4 = 0.

In particular, set r = 1 and solve for c3 to get

c3 =−2c1 +2c2
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which implies that c3 ∈ span{c1,c2}. (Check! −2


1
2
1
0

+2


2
−2
1
2

=


2
−8
0
4

 – yes!)

By what we talked about earlier in the course, this means:

Col(A) = span{c1,c2,c4}

Are these linearly independent? Yes! Two ways to see this:
1. We know ALL dependence relations on these 4 vectors. If these 3 remaining vectors were

linearly dependent, we could find a nontrivial equation like

b1c1 +b2c2 +b4c4 = 0

but then (b1,b2,0,b4) would lie in Null(A), and the only vector in Null(A) with third compo-
nent 0 is the zero vector. Hence no nontrivial relation exists.

2. Alternately: imagine checking that these are linearly independent. You put them as the
columns of a matrix and row reduce. But all we’re doing is covering up column 3 of the
matrix A as we row reduce, and all the steps would be the same — because the elements in a
non-leading column are never involved in steps that change the matrix during row reduction.
That means row reducing the matrix with just these 3 columns gives exactly the same answer
as row reducing A and just crossing out or ignoring column 3 at every step. The result: each
of these 3 columns gave a leading 1, and thus they are linearly independent.

So we have found a basis for Col(A):


1
2
1
0

 ,


2
−2
1
2

 ,


3
4
1
1




Theorem 16.3.3 — Basis for Col(A)- a reprise. Let A be an m×n matrix. Then a basis for Col(A)
consists of those columns of A which give rise to leading ones in an REF of A.

Idea of proof. One has to see that the example generalizes to any number of non-leading variables.
Let the columns of A be v1,v2, · · · ,vn. Any nontrivial solution to

a1v1 + · · ·+anvn = 0

is given by a vector (a1, · · · ,an) ∈ Null(A). In particular, each basic solution gives one dependence
relation on these vectors. Now recall that in each basic solution, all but the last nonzero entry comes
from the equation for a leading variable, and the last nonzero entry is a 1 and corresponds to a
non-leading variable.

That means: the nontrivial dependence relation has a column vector corresponding to a non-leading
variable with coefficient 1, so we can solve for it in terms of the other column vectors occuring in this
basic solution.

In other words: each basic solution lets us solve for one vector (corresponding to a non-leading
variable) in terms of vectors which correspond to leading variables. Hence every vector which
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corresponds to a non-leading variable is in the span of those corresponding to leading variables, which
means the vectors corresponding to non-leading variables can be discarded.

Finally, we note that the remaining vectors cannot have any nontrivial dependence relation on
them, since every nontrivial dependence relation involves one of the non-leading variables. So they are
linearly independent and span Col(A), so form a basis. ■

Problems

Remarks:
1. A question with an asterisk ‘∗’ (or two) indicates a bonus-level question.
2. You must justify all your responses.

Problem 16.1 Find a basis for the row space and column space for each of the matrices below, and
check that dimRow A = dimCol A in each case.

a)

1 1 0 7
0 0 1 5
0 1 1 9


b) ⋆

[
1 0 1 2
0 1 1 2

]

c)

1 2 3
1 0 1
0 3 3


d) ⋆

 1 2 −1 −1
2 4 −1 3
−3 −6 1 −7



e)


1 1 1 1
0 1 2 0
1 1 2 0
1 1 0 2



f) ⋆


1 −1 1 0
0 1 1 1
1 2 4 3
1 0 2 1


g)

1 0 1 3
1 2 −1 −1
0 1 −2 5



Problem 16.2 Find a basis of the desired type for the given subspace in each case. (Use your work
from the previous question where useful.)

a) U = span{(1,1,0),(2,0,3),(3,1,3)}: the basis must be a subset of {(1,1,0),(2,0,3),(3,1,3)}.
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b) ⋆W = span{(1,2,−1,−1),(2,4,−1,3),(−3,−6,1,−7)}: any basis suffices.

c) X = span{(1,0,1,1),(1,1,1,1),(1,2,2,0),(1,0,0,2)}: the basis must be a subset of the given
spanning set.

d) ⋆Y = span{(1,0,1,1),(−1,1,2,0),(1,1,4,2),(0,1,3,1)}: the basis must be a subset of the
given spanning set.

e) V = span{(1,0,1,3),(1,2,−1,−1),(0,1,−2,5)}: any basis suffices.

Problem 16.3 Extend each of the bases you obtained in Problem 16.2 to a basis of Rn, where the
vectors are from n = 3 for part (a) and n = 4 for each of the other parts. ( Solutions are given for
parts (b)⋆and (d)⋆.)

Problem 16.4 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

a) For all matrices A, dimRow(A)+dimker(A) = dimCol(A).

b) ⋆For some matrices A, dimRow(A)+dimker(A) = dimCol(A)

c) For all matrices A, dimRow(A)+dimker(A) = m, where m is the number of rows of A.

d) ⋆For all matrices A, dimRow(A)+dimker(A) = n, where n is the number of columns of A.

e) For all m×n matrices A, dim{Ax | x ∈ Rn}+dim{x ∈ Rn | Ax = 0}= rankA.

f) ⋆For all m×n matrices A, dim{Ax | x ∈ Rn}+dim{x ∈ Rn | Ax = 0}= m.

g) For all m×n matrices A, dim{Ax | x ∈ Rn}+dim{x ∈ Rn | Ax = 0}= n.

h) ⋆For all m×n matrices A, the dot product of every vector in ker(A) with any of the rows of A is
zero.

i) ∗ If A and B are two matrices such that AB is defined, then dimRow(AB)≤ dimRow(B).

j) ∗ If A and B are two matrices such that AB is defined, then dimCol(AB)≤ dimCol(A).

k) ∗ If A and B are two matrices such that AB is defined, then rank(AB)≤ rankA, and rank(AB)≤
rankB.





17. Bases for finite dimensional vector spaces

Let A be an m×n matrix. We have now established techniques for finding bases of
• Null(A), the nullspace of A, which is a subspace of Rn;
• Col(A), the column space of A, which is a subspace of Rm;
• Row(A), the row space of A, which is a subspace of Rn.

Along the way, we determined that

dim(Null(A))+ rank(A) = n;

this is called the rank-nullity theorem. But since

rank(A) = dim(Col(A)) = dim(Row(A)),

we could equally rephrase this as

dim(Null(A))+dim(Col(A)) = n,

which expresses a “conservation of dimension” of matrix multiplication, since Null(A) = {x | Ax = 0}
and Col(A) = im(A) = {Ax | x ∈ Rn}; We can therefor write this equation as

dim(Null(A))+dim(Row(A)) = n.

which is particularly interesting in light of the fact (check!) that every vector in the rowspace of A
is orthogonal to every vector in the nullspace of A — so these spaces are orthogonal complements,
coming up soon in Chapter 20.
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17.1 Finding bases for general vector spaces
We mentioned last time that the algorithms for finding bases for Col(A) and Row(A) can be used to
find a basis for any subspace W of Rn, if we start with a spanning set of W . But in fact it works for any
subspace of any vector space.

Problem 17.1.1 Find a basis for the subspace W of P3 spanned by

{3+ x+4x2 +2x3,2+4x+6x2 +8x3,1+3x+4x2 +6x3,−1+2x+ x2 +4x3}

Solution Begin by writing down these vectors in coordinates relative to the standard basis
{1,x,x2,x3}:

u1 =


3
1
4
2

 ,u2 =


2
4
6
8

 ,u3 =


1
3
4
6

 ,u4 =


−1
2
1
4

 .

By our previous discussion about coordinates, we see that if we are able to find a basis for

U = span{u1,u2,u3,u4}

(which is a subspace of R4), then this basis will be the set of coordinate vectors of a basis for W .
Let’s use the rowspace algorithm, so that our result is a nice basis.

A =


3 1 4 2
2 4 6 8
1 3 4 6
−1 2 1 4

∼ ·· · ∼ R =


1 0 1 0
0 1 1 2
0 0 0 0
0 0 0 0


By our algorithm last time, we conclude that {(1,0,1,0),(0,1,1,2)} is a basis for U .

So, going back to the polynomial expressions, we deduce that {1+ x2,x+ x2 +2x3} is a basis
for W .

Check! These polynomials are certainly linearly independent; we next need to check that each
of the four polynomials above is a linear combination of these two. But this isn’t hard: look at the
coefficients of 1 and x:

a(1+ x2)+b(x+ x2 +2x3) = a+bx+(a+b)x2 +2bx3.

So it’s easy to see when something is (or isn’t) a linear combination of these; we don’t need to do
any work to find a and b. (Now do the check.)

17.2 Enlarging linearly independent sets to bases
Another problem that we have considered before: what if you have a linearly independent set, and
you want to extend it to a basis for your space? Where this arises most often is the following type of
example, so we give a solution in that case.

Problem 17.2.1 The set {(1,2,3,1),(1,2,3,2)} is a basis for a subspace of R4. Extend this to a
basis for R4.
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Solution We need to find vectors that are not linear combinations of these. There are lots of
techniques we could try (recall that even random guessing works well!) but here’s a nice useful one.

Put the vectors in the rows of matrix.

A =

[
1 2 3 1
1 2 3 2

]
and reduce to REF:

R =

[
1 2 3 1
0 0 0 1

]
We see that we are missing pivots (leading ones) in the second and third columns. So the two vectors
we will add to our set are

(0,1,0,0) and (0,0,1,0).

Let’s see if {(1,2,3,1),(1,2,3,2),(0,1,0,0),(0,0,1,0)} spans R4 (and thus a basis for R4 since
these are 4 vectors and dim(R4) = 4):

B =


1 2 3 1
1 2 3 2
0 1 0 0
0 0 1 0

∼


1 2 3 1
0 0 0 1
0 1 0 0
0 0 1 0

∼


1 2 3 1
0 1 0 0
0 0 1 0
0 0 0 1


So there’s a leading 1 in every row, meaning dim(Row(B)) = 4. Hence the rows of B are a basis for
R4.

The point: we are just exactly adding the missing leading 1s!

So: row reduction (surprisingly!) gave us some easy techniques for getting bases of subspaces —
better techniques than what we’d decided on theoretically a few weeks ago! Moreover, by working in
coordinates relative to a standard basis, all these techniques apply to any subspace of any vector space
(by turning all vectors into elements of Rn for some n).

17.3 More about bases
We’ve spent a lot of time talking about the row space and column space of a matrix, and have
characterizations of those matrices that are great in the sense that every consistent system has a unique
solution (equivalently, its columns are linearly independent); and characterizations of matrices that are
great in the sense that every system is consistent (equivalently, that its columns span Rm). What can we
say about a matrix which has BOTH of these great properties?

Well, right off the bat: it has to be square. (Look back at the characterizations to convince yourself
of this — compare the ranks.) So the following theorem is about square matrices.

Theorem 17.3.1 Let A be an n×n matrix. Then the following are all equivalent:
(1) rank(A) = n.
(2) rank(AT ) = n.
(3) Every linear system Ax = b has a unique solution.
(4) The RREF of A is I.
(5) Null(A) = {0}.
(6) Col(A) = Rn.
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(7) Row(A) = Rn.
(8) The columns of A are linearly independent.
(9) The rows of A are linearly independent.

(10) The columns of A form a basis for Rn.
(11) The rows of A form a basis for Rn.

Proof. We just have to put our two theorems from before together. The nice statement (3) about getting
consistency and uniquness together. Statement (4) is just pointing out that the RREF of a square matrix
with a leading one in every row and column is just exactly the identity matrix. The last two are just
using the definition of a basis. ■

So matrices which satisfy the conditions of this theorem are quite special: our next goal is to show
that they are beyond special, they are fantastic: they are invertible.

Problems
Problem 17.1 Extend the given linearly independent set of Rn to a basis of Rn. (Use your work
from Problem 16.1 where useful.)

a) {(1,1,0,7),(0,0,1,5),(0,1,1,9)} (R4)

b) ⋆{(1,0,1),(0,1,1)} (R3)

c) {(1,0,1,3),(1,2,−1,−1),(0,1,−2,5)} (R4)

d) ⋆{(1,0,1,3)} (R4)



18. Matrix Inverses

Throughout this chapter, A is assumed to be a square n×n matrix.

18.1 Matrix multiplication: definition of an inverse
We’ve seen previously that there is profit in looking at an equation like Ax = b in several different ways.
By looking at the entries, it becomes a linear system; by looking at the column vectors, it becomes a
vector equation. But what about looking at it just as an algebraic expression, that is, comparing

Ax = b with ax = b?

The nice thing about a scalar equation like ax = b (a,x,b ∈ R) is that if a ̸= 0, then x = b/a. Can we
“divide” by a matrix A to get the same kind of thing?

Hmmm: a major obstacle here: it is hard enough to multiply by matrices; how can you “undo” that
operation?

Well, let’s rephrase things a bit: we can think of x = b/a as x = a−1b; that is, multiply by the
inverse, instead of divide. So now our goal is just to find out what “A−1” is. That is, we are looking for
a matrix A−1 so that whenever we have

Ax = b
we can deduce

x = A−1b.
For real numbers, the property of the inverse is that a−1a = 1; so that’s what we’re looking for here. So
our first definition is just going to say what we’re looking for in an inverse — but it won’t tell us how to
find it! We still have to work that part out.

Recall that In is the n× n identity matrix; the square matrix with 1s down the diagonal and 0s
everywhere else. The key property of the identity matrix is that it acts just like the number 1 in terms of
matrix multiplication: BI = B and IB = B.
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Definition 18.1.1 If A is an n×n matrix and B is an n×n matrix such that

AB = BA = I

then B is called an inverse of A and we write B = A−1. In this case, A is called invertible.

■ Example 18.1.2 Consider In. Then I−1
n = In since InIn = In. (Good: 1−1 = 1 in R.) ■

■ Example 18.1.3 Let A =

[
1 1
2 3

]
and B =

[
3 −1
−2 1

]
. Then

AB =

[
1 1
2 3

][
3 −1
−2 1

]
=

[
1 0
0 1

]
= I2

and

BA =

[
3 −1
−2 1

][
1 1
2 3

]
= I2

so this proves that B = A−1 — and that A = B−1. (Good: if b = 1/a then a = 1/b in R.) ■

18.2 Finding the inverse of a 2×2 matrix

Lemma 18.2.1 — Inverse of a 2×2 matrix. Suppose A =

[
a b
c d

]
. Then if ad−bc ̸= 0,

A−1 =
1

ad−bc

[
d −b
−c a

]
.

If ad−bc = 0, then A is not invertible.

Idea of proof. Write B for this alleged inverse of A. By multiplying out, you can see that AB = BA = I,
so in fact yes, B = A−1.

Showing that if ad−bc = 0 then A is not invertible is more work (exercise); you can generalize the
following example to get the proof.

(You could have found this formula from that surprise equation we had a while back (Cayley-
Hamilton theorem): A2− tr(A)A+det(A)I = 0.) ■

■ Example 18.2.2 The matrix A =

[
1 1
1 1

]
is NOT INVERTIBLE. We can show this in a couple of

ways. (Certainly ad−bc = 1−1 = 0, so the lemma says that A should not be invertible.)

1. First way: directly. Suppose B =

[
a b
c d

]
were an inverse of A. Then

[
1 1
1 1

][
a b
c d

]
=

[
a+ c b+d
a+ c b+d

]
̸=
[

1 0
0 1

]
for any choice of a,b,c,d ∈ R. So no inverse exists.
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2. Second way: let x = (1,−1). Then

Ax =

[
1 1
1 1

][
1
−1

]
=

[
0
0

]
= 0.

Now, suppose to the contrary that A−1 were to exist. Then we could multiply the equation Ax = 0
on the left by A−1 to get

A−1Ax = A−10.

The left side simplifies to I2x, which in turn simplifies to x; whereas the right side simplifies to 0.
But then that says x = 0, which is FALSE. So our assumption (that A−1 existed) must have been
wrong; we deduce that A is not invertible.

■

This example gives us our first glimpse of the connection with those extra-wonderful matrices from
before: If A is invertible, then Ax = 0 has a unique solution.

We have deduced:

Lemma 18.2.3 — Inverses and solutions of linear systems. Suppose A is an invertible n× n
matrix. Then any linear system Ax = b

(a) is consistent, and
(b) has a unique solution.

Proof. Note that A(A−1b) = (AA−1)b = Inb = b, so x = A−1b is a solution to the system; thus the
system is consistent.

If y is some other solution, meaning Ay = b. Multiply on the left by A−1; this gives

A−1Ay = A−1b

and again we deduce (from A−1A = In this time) that y = A−1b. So the solution is unique. ■

In particular, this means A satisfies all the criteria of the theorem of last time, because this shows
that every linear system with coefficient matrix A has a unique solution.

However, do remember that all this is contingent on A being invertible; and certainly not all square
matrices are invertible.

18.3 Algebraic properties of inverses

Proposition 18.3.1 — Properties of the inverse. If k ̸= 0 is a scalar, p is an integer and A and C are
invertible n×n matrices, then so are A−1, Ap, AT , kA, and AC. In fact, we have

(1) (A−1)−1 = A;
(2) (Ap)−1 = (A−1)p;
(3) (AT )−1 = (A−1)T ;
(4) (kA)−1 = 1

k A−1; and
(5) (AC)−1 =C−1A−1 — NOTE ORDER.

Furthermore, if AC is invertible, then so are A and C.
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Partial proof. Remember that to show a matrix is invertible, you need to find its inverse. Here, we’ve
already given you the inverse, so all that you have to do is show that the matrix times the alleged inverse
equals the identity.

So for example, (At)(A−1)T = (A−1A)T (by properties of products and transposes) and this is IT

(since A is invertible) which is I. Same argument for (A−1)T (AT ) = I. So AT is invertible and its
inverse is the transpose of the inverse of A.

Also: note that (AC)(C−1A−1) = A(CC−1)A−1 = AIA−1 = AA−1 = I; so we have the correct
formula for the inverse of AC. You see why we had to reverse the order to make this work!

For the last statement: just note that A−1 =C(AC)−1 (by multiplying by A) and C−1 =(AC)−1A. ■

Problem 18.3.2 Simplify (AT B)−1AT .
Solution (AT B)−1AT = (B−1(AT )−1)AT = B−1((AT )−1)AT ) = B−1

Problem 18.3.3 Simplify (A+B)−1.
Solution TOUGH LUCK. This can’t be simplified, even when A and B are numbers. (Think of
(2+3)−1 ̸= 1

2 +
1
3 .) You can’t even expect A+B to be invertible; for instance, suppose A =−B!

18.4 Finding the inverse: general case

We saw last time that if A =

[
a b
c d

]
then A is invertible if and only if det(A) = ad−bc ̸= 0, in which

case

A−1 =
1

det(A)

[
d −b
−c a

]
.

(And if A is a 1×1 matrix, then A is just a real number like A = [a], so A−1 = [1
a ], if a ̸= 0.)

There exist formulae for n× n inverses, but they’re not very efficient (as we’ll eventually see);
instead of looking for a formula, let’s see how what we know about inverses has actually given us all
we need to be able to calculate them.

Remember that to find the inverse of A, if it exists, we want to solve

AB = In

for the unknown matrix B (which will be A−1, if all goes well).
Write B and I as collections of column vectors: B = [v1 v2 · · · vn] and In = [e1 e2 · · · en]. Note that

ei is the ith standard basis vector of Rn.
Now multiply:

AB = [Av1 Av2 · · · Avn] = [e1 e2 · · · en] = In

which gives a bunch of matrix equations to solve:

Av1 = e1, Av2 = e2, · · · , Avn = en.

The theorem says that if A is invertible, then each of these matrix equations will be consistent and have
a unique solution. And those solutions are exactly the columns of B!

Great! To get the inverse of A, we have to row reduce each of the augmented matrices

[A|e1], [A|e2] · · · , [A|en];
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and since each of these will give a unique solution, the RREFs will look like

[I|v1], [I|v2], · · · , [I|vn].

The final moment of brilliance: We would do EXACTLY THE SAME row operations for each of
these linear systems, so why don’t we just augment [A|e1e2 · · ·en] = [A|I]? Then the RREF will be
[I|B] = [I|A−1].

Problem 18.4.1 Use this method to find the inverse of

A =

1 1 2
1 2 5
2 2 5


Solution So we’re trying to solve AB = I3 for B. Write B = [v1 v2 v3]. Then

AB = [Av1 Av2 Av3]

and we want this to be equal to
I3 = [e1 e2 e3]

To solve the three linear systems Avi = ei at once, we set up a super-augmented matrix

[A|e1 e2 e3] =

1 1 2 | 1 0 0
1 2 5 | 0 1 0
2 2 5 | 0 0 1


We will row reduce this and read off the matrix B from the RREF (if A∼ I3).

[A|I3]∼

1 1 2 | 1 0 0
0 1 3 | −1 1 0
0 0 1 | −2 0 1



∼

1 1 0 | 5 0 −2
0 1 0 | 5 1 −3
0 0 1 | −2 0 1

∼
1 0 0 | 0 −1 1

0 1 0 | 5 1 −3
0 0 1 | −2 0 1


Oh, wonderful! The coefficient matrix reduced to I3, which means that every linear system has a
unique solution, and furthermore, that solution is now in the corresponding augmented column.
That is to say,

v1 =

 0
5
−2

 ,v2 =

−1
1
0

 ,v3 =

 1
−3
1

 .

Let’s check! Set

B =

 0 −1 1
5 1 −3
−2 0 1


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and multiply:

AB =

1 1 2
1 2 5
2 2 5

 0 −1 1
5 1 −3
−2 0 1

=

1 0 0
0 1 0
0 0 1


and

BA =

 0 −1 1
5 1 −3
−2 0 1

1 1 2
1 2 5
2 2 5

=

1 0 0
0 1 0
0 0 1


YES! This is an inverse of A — and in fact, we’ve shown it’s the only inverse of A. So

A−1 =

 0 −1 1
5 1 −3
−2 0 1


Now note that this method tells you exactly when A is invertible! For suppose A is n×n.
If A does NOT row reduce to the identity matrix in RREF, then rank(A)< n and then we know that

Ax = b won’t have a unique solution, so in particular, A can’t be invertible.
On the other hand, if A DOES row reduce to In, then this method gives a matrix B such that AB = In.

BUT WAIT! How do we know that this matrix also satisfies BA = In?

Lemma 18.4.2 — One-sided inverses are two-sided inverses. If A and B are n× n matrices
such that AB = In, then BA = In.

Proof. First let’s show that rank(B) = n. Namely, suppose Bx = 0. Then

A(Bx) = A0 = 0
(AB)x = Ix = x

but these must be equal, so x = 0. Thus we deduce that Null(B) = {0} and so rank(B) = n.
OK, that means we could apply our algorithm to B: [B|I]∼ ·· · ∼ [I|C] and get a matrix C such that

BC = I.
So we have

A(BC) = AI = A

(AB)C = IC =C

and these are equal (A =C). So in fact BA = I, as required. ■

We have proven the following theorem.

Theorem 18.4.3 — Finding matrix inverses. Suppose A is an n×n matrix. If the rank of A is n,
then A is invertible and A−1 can be computed by the algorithm above, that is, by row reducing

[A|I]∼ ·· · ∼ [I|A−1].

Furthermore, if rank(A)< n, then A is not invertible.
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18.5 Examples
Problem 18.5.1 Find A−1, if it exists, where

A =

1 2 3
0 0 1
0 0 4


Solution We see directly that A does not have full rank; there can be no leading one in the second
column. Hence A is not invertible.

Problem 18.5.2 Find A−1, if it exists, where

A =

1 2 3
0 1 1
0 0 1


Solution This is already in REF and we can see that rank(A) = 3. So we proceed with our algorithm

[A|I] =

1 2 3 | 1 0 0
0 1 1 | 0 1 0
0 0 1 | 0 0 1

∼
1 0 0 | 1 −2 −3

0 1 0 | 0 1 −1
0 0 1 | 0 0 1



And so A−1 =

1 −2 −3
0 1 −1
0 0 1

 (CHECK!!).

Problem 18.5.3 Find A−1, if it exists, where

A =

2 2 0
1 1 2
1 −1 3


Solution We can’t tell what rank(A) is, off-hand, so we simply proceed to the algorithm. (If at any
point we were to see than the rank is too low, we would stop and announce that the matrix isn’t
invertible.)

[A|I] =

2 2 0 | 1 0 0
1 1 2 | 0 1 0
1 −1 3 | 0 0 1


∼

1 1 2 | 0 1 0
2 2 0 | 1 0 0
1 −1 3 | 0 0 1

∼
1 1 2 | 0 1 0

0 0 −4 | 1 −2 0
0 −2 1 | 0 −1 1


∼

1 1 2 | 0 1 0
0 −2 1 | 0 −1 1
0 0 −4 | 1 −2 0

∼
1 0 5

2 | 0 1
2

1
2

0 1 −1
2 | 0 1

2 −1
2

0 0 1 | −1
4

1
2 0


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∼

1 0 0 | 5
8 −3

4
1
2

0 1 0 | −1
8

3
4 −1

2
0 0 1 | −1

4
1
2 0


So

A−1 =

 5
8 −3

4
1
2

−1
8

3
4 −1

2
−1

4
1
2 0

=
1
8

 5 −6 4
−1 6 −4
−2 4 0


(check!)

18.6 Summary: another condition for our big theorem
We knew last time that being invertible meant that A had full rank; but this method shows the converse
is also true. So our big theorem has become even bigger:

Theorem 18.6.1 — Invertible Matrix Theorem. Let A be an n× n matrix. Then the following
statements are all equivalent (that is, either all true about A or all false about A):

(1) rank(A) = n.
(2) Ax = 0 has only the trivial solution.
(3) Ax = b is consistent for all b ∈ Rn.
(4) Every linear system Ax = b has a unique solution.
(5) The RREF of A is I.
(6) Null(A) = {0}.
(7) Col(A) = Rn.
(8) Row(A) = Rn.
(9) rank(AT ) = n

(10) The columns of A are linearly independent.
(11) The rows of A are linearly independent.
(12) The columns of A span Rn.
(13) The rows of A span Rn.
(14) The columns of A form a basis for Rn.
(15) The rows of A form a basis for Rn.
(16) A is invertible.
(17) AT is invertible.

■ Example 18.6.2 Every statement of the theorem is true for

A =

2 2 0
1 1 2
1 −1 3


because we have just seen that it is invertible. ■

■ Example 18.6.3 Every statement of the theorem is false for

A =

1 2 3
4 5 6
7 8 9


(CHECK!). ■
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Problems
Problem 18.1 Find the inverse of each of the following matrices, or give reasons if it not invertible.

a)

1 1 −1
0 1 1
0 0 1


b) ⋆

1 1 0
0 −1 −2
0 2 3


c)

1 2 2
1 3 1
1 3 2


d) ⋆

[
1 x
−x 1

]

e)

1 1 1
1 2 1
2 3 2



Problem 18.2 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

a) If A is invertible and AB = 0 then B = 0.

b) ⋆If A2 = 0 for a square matrix A, then A is not invertible.

c) If A2 = 0 for an n×n matrix A, then rankA < n.

d) ⋆If A is invertible then the RREF form of A has a row of zeros.

e) If A is an invertible n×n matrix then Ax = b is consistent for every b ∈ Rn.

f) ⋆If A is a non-invertible n×n matrix then Ax = b is inconsistent for every b ∈ Rn.

g) If A is a non-invertible n×n matrix then Ax = 0 has a unique solution.

h) ⋆If an n×n matrix A satisfies A3−3A2 + In = 0, then A is invertible and A−1 = 3A−A2.





IV

We now return to some geo-
metric ideas that we haven’t
touched on since defining
abstract vector spaces. Al-
though we only specifically
work with the dot product of
vectors in Rn in the following
chapters, everything that is
covered is applicable to any fi-
nite dimensional vector space
equipped with an inner prod-
uct.

19 Orthogonality and the Gram-Schmidt Algorithm . . . . 195
19.1 Orthogonality
19.2 Orthogonal sets of vectors
19.3 Orthogonal projection: a useful formula may have more than one use...
19.4 Finding orthogonal bases: The Gram-Schmidt algorithm

Problems

20 Orthogonal Complements and Applications . . . . . . . 209
20.1 Orthogonal Complements
20.2 Orthogonal projection — an encore
20.3 Application: Best approximations to solutions of inconsistent systems
20.4 Application: Least-Squares Best Fitting Line or Curve

Problems

Orthogonality





19. Orthogonality and the Gram-Schmidt Algorithm

So far, in all our generalizations of vectors spaces from R2 and R3, we have not used the geometry of
the dot product. In this section, we want to see what that extra geometry gives us, in the case of Rn.

In fact, one can add the extra geometry of an inner product to any vector space; on spaces of
(continuous) functions with domain [a,b], for example, the “correct” replacement to the dot product of
vectors is the following inner product of functions:

⟨ f ,g⟩=
∫ b

a
f (x)g(x) dx

This is a topic that you get to explore in second year analysis. One can also give a natural inner product
to spaces of matrices Mmn by the formula

⟨A,B⟩= tr(ABT )

The dot product and the above inner products have a number of extremely nice properties; but there
are other bilinear forms that encode different geometries (such as space-time) more accurately. You
can explore this topic in more detail in 3rd year applied linear algebra.

19.1 Orthogonality

Recall that two vectors u,v ∈ Rn are said to be orthogonal if their dot product u ·v is zero. The dot
product satisfies:

• u ·u≥ 0 and is equal to zero iff u = 0
• u ·v = v ·u (symmetry)
• (au+bv) · (cw) = acu ·w+bcv ·w for all a,b,c ∈ R and u,v,w ∈ Rn and similarly
• (au) · (bv+ cw) = abu ·v+acu ·w (bilinearity).
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■ Example 19.1.1 The vectors (1,−1,0,1) and (1,1,1,0) in R4 are orthogonal, since

(1,−1,0,1) · (1,1,1,0) = 1 ·1+(−1) ·1+0 ·1+1 ·0 = 1−1 = 0.

■

Note that the standard basis of R3, namely {(1,0,0),(0,1,0),(0,0,1)} (or {e1,e2,e3}) consists of
vectors that are all pairwise orthogonal: that is, ei · e j = 0 for i ̸= j.

We’d like to generalize this idea, since this basis has (at least) one very convenient property: for any
v ∈ R3, it’s easy to find a,b and c such that v = ae1 +be2 + ce3: we all know that a = v · e1,b = v · e2
and c = v · e3.

19.2 Orthogonal sets of vectors

Definition 19.2.1 A set of vectors {v1, · · · ,vm} in Rn is called orthogonal if

vi ·v j = 0

for all 1≤ i < j ≤ m, and v j ̸= 0 for all 1≤ i≤ m. That is, every pair of vectors is orthogonal and
no vector is zero.

Note: If an orthogonal set consists of vectors all of which have length 1, we call the set orthonormal.
Indeed, if {v1, · · · ,vm} is orthogonal, then { v1

∥v1∥ , . . . ,
vm
∥vm∥} is orthonormal.

■ Example 19.2.2 The standard basis of Rn is an orthogonal set. (It’s also orthonormal.) ■

■ Example 19.2.3 {(1,0,0),(0,1,0),(1,0,1)} is NOT ORTHOGONAL even though two of the prod-
ucts are zero — since the first and third vectors aren’t orthogonal, this is not an orthogonal set. ■

Orthogonal sets of vectors also enjoy a general Pythagorean property: if {v1, · · · ,vm} is orthogonal,
then

∥v1 +v2 + · · ·+vm∥2 = ∥v1∥2 +∥v2∥2 + · · ·+∥vm∥2 (⋆)

Prove this for yourself, remembering that ∥v∥2 = v ·v.
Even better, (and just like the standard basis of Rn) every orthogonal set is linearly independent:

Theorem 19.2.4 — Linear independence of orthogonal sets. Any orthogonal set of vectors is
linearly independent.

Proof. Let {v1, · · · ,vm} be an orthogonal set and suppose there are scalars a1, . . .am such that

a1v1 + · · ·+amvm = 0.

Take the dot product of both sides with v1; the answer has to be zero because the right hand side is
v1 ·0 = 0. But on the left hand side, we get

v1 · (a1v1 + · · ·+amvm) = a1v1 ·v1 +a20+ · · ·+am0

since v1 · v j = 0 for all j > 1. Since v1 · v1 ̸= 0 (since we assumed v1 ̸= 0) we deduce that a1 = 0.
Continuing in this way with each of the vectors gives ai = 0 for all i, so this set is indeed linearly
independent. ■
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This is a marvelous and wonderful fact! It gives us
• Any orthogonal set of vectors in Rn has at most n elements.
• Any orthogonal set of n vectors in Rn is a basis for Rn, called an orthogonal basis.

Furthermore, the proof gave us a very easy way to calculate the coordinates of a vector relative to an
orthogonal basis.

Theorem 19.2.5 — The Expansion Theorem: Coordinates relative to an orthogonal basis.
Suppose {w1, · · · ,wm} is an orthogonal basis for a subspace W of Rn. Then any vector w ∈W can
be written as

w =

(
w ·w1

∥w1∥2

)
w1 +

(
w ·w2

∥w2∥2

)
w2 + · · ·+

(
w ·wm

∥wm∥2

)
wm (⋆⋆)

The coefficients of w1, . . . ,wm obtained above – the coordinates of w relative the the ordered basis
{w1, . . . ,wm} – are sometimes also called the Fourier coefficients of w relative to that orthogonal basis.

The really exciting fact here: normally, to write w as a linear combination of the elements of a
basis, you have to row reduce a matrix. Here, there’s a simple formula that gives you the answer!

Proof. Since {w1, · · · ,wm} is a basis of W , we know that there are scalars a1, · · · ,an such that

w = a1w1 + · · ·+anwn.

Now take the dot product of both sides with wi; then as in the proof of Theorem 19.2.4 above, this
gives zero on every term except the ith on the right, so we deduce

wi ·w = aiwi ·wi

or
ai =

wi ·w
wi ·wi

=
wi ·w
∥wi∥2

as required. ■

Problem 19.2.6 Express (1,6,7) as a linear combination of (1,2,1), (1,0,−1) and (1,−1,1).
Solution We notice that those last three vectors are orthogonal, and hence form a basis for R3.
Therefore the theorem applies, and we deduce1

6
7

=
20
6

1
2
1

+
−6
2

 1
0
−1

+
2
3

 1
−1
1


which (you’ll notice) is true.

■ Example 19.2.7 Let W = {(x,y,z,w)∈R4 | x−y−z+w = 0}. We know W is a subspace of R4, and
that dimW = 3, because W = Null(

[
1 −1 −1 1

]
), and

[
1 −1 −1 1

]
has rank 1. Remember

the Rank-Nullity Theorem (Corollary 15.2.3):

dimW = dimNull(
[
1 −1 −1 1

]
) = 4− rank(

[
1 −1 −1 1

]
) = 3.

Now consider the 3 vectors1 w1 = (1,1,1,1),w2 = (1,−1,1,−1) and w3 = (1,1,−1,−1). It’s easy
to check they are in W , and it’s also easy to check that {w1,w2,w3} is an orthogonal set, and hence is

1Don’t worry about how we found these. They are not the basic solutions we would find using the standard method for
finding a basis of a nullspace. We’ll discuss that later.
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linearly independent. Since we have 3 linearly independent vectors in the subspace W of dimension 3,
{w1,w2,w3} is an orthogonal basis for W .

Now w = (1,2,3,4) ∈W (you can check this). Let’s use our theorem to write it as a linear
combination of w1,w2 and w3.

It’s a simple calculation!
w ·w1

∥w1∥2 =
10
4

=
5
2

w ·w2

∥w2∥2 =
−2
4

=−1
2

w ·w3

∥w3∥2 =
−4
4

=−1

So we can conclude (don’t you just love theorems!):

w =
5
2

w1−
1
2

w2−w3.

(You can check this is true directly if you wish.)
Compare and contrast this with the way you solve this problem if you didn’t happen to notice we

have an orthogonal basis:

[
w1 w2 w3 | w

]
=


1 1 1 | 1
1 −1 1 | 2
1 1 −1 | 3
1 −1 −1 | 4

∼


1 1 1 | 1
0 −2 0 | 1
0 0 −2 | 2
0 −2 −2 | 3

∼


1 0 1 | 3
2

0 1 0 | −1
2

0 0 −2 | 2
0 0 −2 | 2



∼


1 0 0 | 5

2
0 1 0 | −1

2
0 0 1 | −1
0 0 0 | 0

∼


1 0 0 0 | 5
2

0 1 0 0 | −1
2

0 0 1 0 | −1
0 0 0 1 | 0


which gives the same answer, but took more effort. ■

! Point: if you have an orthogonal basis, some calculations are much easier. But if
you don’t then you have to use the “old” techniques.

19.3 Orthogonal projection: a useful formula may have more than one use...
Now let’s look again at the right hand side of the equation (⋆⋆) in the Expansion Theorem 19.2.5. It
makes perfect sense even if w /∈W!

“So what?", you might say. Well, look at the very first term in that sum:(
w ·w1

∥w1∥2

)
w1

We recognize this as the same expression for the projection of the vector w onto w1 that we saw in the
context of R3 way back in Section 2.8 on page 34. The other terms are also projections of the same
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Figure 19.1: The orthogonal projection of v onto the subspace W .

vector w onto the other vectors w2, . . . ,wm. So the expression on the right hand side of the equation
(⋆⋆) in Theorem 19.2.5 is a sum of the projections of w onto the (orthogonal) vectors w1, . . . ,wm, which
are a basis of the subspace W . So it’s not completely outrageous to think of this expression as the
orthogonal projection of w onto the subspace W .

So let’s run with the ball!

Definition 19.3.1 — Orthogonal projection onto a subspace. Let W be a subspace of Rn and
{w1,w2, . . . ,wm} an orthogonal basis for W . Then for any v ∈ Rn, the orthogonal projection of v
onto W is defined by

projW (v) =
(

v ·w1

∥w1∥2

)
w1 + · · ·+

(
v ·wm

∥wm∥2

)
wm

In Figure 19.1 there’s a diagram (since most of us are low dimensional beings) illustrating this idea
in ‘three’ dimensions– seen in just two, here, of course.

Now your enquiring mind may have at least two thoughts at this point. In no particular order, they
may be:

1. Does every subspace have an orthogonal basis? The formula needs one!
2. What if I compute this projection with two different orthogonal bases? Surely I’ll get different

answers! All the numbers in the sum will be different...

We’ll answer the second question first – it doesn’t matter2 which orthogonal basis you use! But not
before an example.

■ Example 19.3.2 Let’s look again at W = {(x,y,z,w) ∈ R4 | x− y− z+w = 0}. We know the three
vectors w1 = (1,1,1,1),w2 = (1,−1,1,−1) and w3 = (1,1,−1,−1) form an orthogonal basis for W .3

2Amazing fact from linear algebra number 3
3Don’t worry about how we found these. We’ll discuss that later, in answer to the first question above.
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Now v= (1,2,3,5) /∈W : check it! Let’s use the projection formula to find the orthogonal projection
of v onto W , and do a bit of checking.
Solution We begin by calculating:

v ·w1

∥w1∥2 =
11
4

v ·w2

∥w2∥2 =
−3
4

v ·w3

∥w3∥2 =
−5
4

and conclude
projW (v) =

11
4

w1−
3
4

w2−
5
4

w3 =
1
4
(3,9,13,19)

If you check, you’ll see that 1
4(3,9,13,19) ∈W : simply show it satsifies x− y− z+w = 0.

N.B. You must not rescale this answer! This is a very, very common error at this stage. Rescal-
ing an orthogonal basis is fine, but the projection is a fixed answer.

Moreover, as Figure 19.1, and indeed the properties of v− projW (v) in R3 (see Section 2.8 and
Figure 2.1) all suggest, v−projW (v) = 1

4(1,−1,−1,1) is indeed orthogonal to every vector in W : look
again at the equation defining W : it says (x,y,z,w) ∈W iff

0 = x− y− z+w = (x,y,z,w) · (1,−1,−1,1)!

So every vector in W is orthogonal to v−projW (v).
■

! This always happens. And as both Figures 2.1 and 19.1 also suggest, this makes
projW (v) the closest vector in W to v.
Another way to say this is that projW (v) is the best approximation to v by vectors
in W .

Let’s show that this is true:

Theorem 19.3.3 — The Best Approximation Theorem. Let W be a subspace of Rn and let v ∈ Rn.
Then,

(1) projW (v) ∈W ,
(2) v−projW (v) is orthogonal to every vector in W ,
(3) projW (v) is best approximation to v by vectors in W , and
(4) The vector projW (v) is the only vector in Rn which satisfies (1) and (2).

(Property 4 says that the orthogonal projection is uniqely characterized by the two properties (1)
and (2).)

Proof. Part (1) is easy: look at the formula in Definition 19.3.1. The vector projW (v) is a linear
combination of vectors in the (subspace) W and so must belong to W .

For (2), let’s think: how could we show a vector is orthogonal to every vector in W? There are
infinitely many vectors in (most) subspaces! But that’s one thing bases are very good for – rendering
finite the infinite !
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So suppose {w1, · · · ,wm} is the orthogonal basis for W we used to define the projection. Every
u ∈W is a linear combination of w1, · · · ,wm, i.e.,

u = a1w1 + · · ·+amwm

for some scalars a, . . . ,am. Set w = projW (v). So if (v− projW (v)) ·wi = 0 for 1 ≤ i ≤ m, then
(v−w) ·wi = 0 so

(v−w) ·u = (v−w) · (a1w1 + · · ·+amwm)

= a1((v−w) ·w1)+ · · ·+a1((v−w) ·wm)

= a1(0)+ · · ·+a1(0)

= 0.

So, it suffices4 to show that (v−w) ·wi = 0 for 1≤ i≤ m. So we calculate:

(v−w) ·wi = (v− (
v ·w1

∥w1∥2 w1 + · · ·+
v ·wm

∥wm∥2 wm)) ·wi

= v ·wi−
v ·w1

∥w1∥2 w1 ·wi−·· ·−
v ·wm

∥wm∥2 wm ·wi

= v ·wi−
v ·wi

∥wi∥2 wi ·wi

(since all the other dot products between wi and w j are zero); and this last term gives

= v ·wi−
v ·wi

∥wi∥2 ∥wi∥2 = 0.

This is true for every i = 1,2, · · · ,m so we conclude that v−w is orthogonal to every vector in W , as
required. This shows that (2) is true.

To show that (3) holds, denote, as before w = projW (v). To prove this is the closest vector in W to
v, let w′ ∈W be any other vector in W . Then

∥v−w′∥2 = ∥(v−w)+(w−w′)∥2

But since v−w is orthogonal to every vector in W , and w−w′ ∈W (W is a subspace and both w and
w′ belong to W ), the two vectors v−w and w−w′ are orthogonal! So by the Pythagorean theorem ⋆
on P. 196, we have

∥v−w′∥2 = ∥(v−w)∥2 +∥(w−w′)∥2 ≥ ∥(v−w)∥2,

since 0≤ ∥(w−w′)∥2 is always true. Thus we’ve shown (3) is true.
The last part (4) is also straightforward. Now suppose two vectors w,w′ satisfy the properties (1)

and (2) above, namely:
• w,w′ ∈W
• v−w and v−w′ are both orthogonal to every vector in W .

4Note that we did not use any property of {w1, · · · ,wm} except that it spanned W , so the same computation shows that a
vector is orthogonal to every vector in a subspace W iff it is orthogonal to any spanning set of W .
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Then, w−w′ ∈W since W , being a subspace, is closed under subtraction. But look:

w−w′ = (v−w′)− (v−w).

Now the sum – or difference – of two vectors which are both orthogonal to every vector in W will again
be orthogonal to every vector in W .5 This means that the vector w−w′ is orthogonal to every vector in
W , including w−w′ itself! But the only vector orthogonal to itself is the zero vector: so w−w′ = 0,
i.e., w = w′.

This shows that there is only one vector with the properties (1) and (2) above, namely projW (v).
■

Note that property (3) above of the orthogonal projection is extremely useful, in many areas. It
is a huge part of the mathematical foundation for modern signal processing. It is used in almost all
quantitative methods for ‘best’ curve fitting for data. We present an example of this in Section 20.4.

The basic idea it that we have often a ‘favourite’ subspace of vectors W (in a vector space of signals,
for example), and another vector that we can’t be sure belongs to our subspace, but we only wish to
deal with vectors in W, so we project our vector onto W and deal with that instead.

For example, in a simplified view of signal processing, on your cellphone, for example, when you
take a picture and want to send it to a friend, the picture is captured and stored and treated as a vector
in a large dimensional space (Rn for some very large n). But instead of sending all the data involved, it
will be (orthogonally) projected onto a much smaller subspace – with an orthogonal basis peculiar to
the protocol being used – and then only the relatively small number (the dimension of W ) of Fourier
coefficients will be transmitted. At the other end, your friend will receive the Fourier coefficients, and
knowing which protocol you used, will use the same orthogonal basis, and rebuild the projection using
the the Fourier coefficients, getting an approximation (better or worse, depending on dimW ) of the
picture you sent.

Part (4) above seems innocuous until you recall that Definition 19.3.1 looked like it depended on a
choice of orthogonal basis. So what Part (4) is saying is that the apparently different formulae one gets
when using different orthogonal bases to compute the projection all give exactly the same answer!

19.4 Finding orthogonal bases: The Gram-Schmidt algorithm
So far, we’ve implicitly assumed that every subspace W of Rn has an orthogonal basis. Is is true?
Yes, and even better, there’s a simple algorithm that will take any basis of W as input and output an
orthogonal basis of W .

Suppose {u1, · · · ,um} is any basis for W . We want to find an orthogonal basis for W .
The geometric idea is quite simple: start with your first vector u1. Then take u2−proju1

(u2) to
get something which is orthogonal to u1 but — crucially — lies in the span of u1 and u2. We then
keep subtracting off projections onto the span of the preceding vectors we obtain and the result is an
orthogonal basis for W .

5I don’t know about you, but I’m getting tired of writing ‘is orthogonal to every vector in W ’, so soon we will save
ourslves some bother and give a name to the collection of all vectors orthogonal to every vector in W . We’ll call it W⊥ — see
Chapter 20.
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Theorem 19.4.1 — Gram-Schmidt Algorithm. Let {u1, · · · ,um} be any basis for U . Define
• w1 = u1 and V1 = span{w1}
• w2 = u2−projV1

u2 and V2 = span{w1,w2}
• w3 = u3−projV2

u3 and V3 = span{w1,w2,w3}
• · · ·
• wm = um−projVm−1

um and Vm = span{w1, · · · ,wm}
Then W =Vm and {w1, · · · ,wm} is an orthogonal basis for W .

Written out in more detail: define
• w1 = u1,
• w2 = u2−projw1

w2,
• w3 = u3−projw1

u3−projw2
u3,

• · · ·
• wm = um−∑

m−1
i=1 projwi

um.
Then {w1, · · · ,wm} is an orthogonal basis for U .

Finally, one could scale each of the vectors wi by dividing by their norm to produce an orthonor-
mal basis for W .

Notice that at each step, the vectors in the spanning set for Vi are orthogonal, so that means it’s easy
to calculate the projection onto Vk. And in fact, Vk = span{u1, · · · ,uk}; that is, the span of the first k
vectors of the set is the same as the span of the first k vectors of the original spanning set.

Indeed, one could begin with just a spanning set {u1, . . . ,un} for U , and apply the Gram-Schmidt
Algorithm as above: then the non-zero vectors in {w1, · · · ,wn} would be an orthogonal basis for U -
see problem 19.6 in the exercises.

■ Example 19.4.2 Let’s perform the Gram-Schmidt algorithm on the the set

{(1,0,0,1),(1,1,1,0),(2,1,−1,1)}

(You can check that this is a basis for the subspace W = span{(1,0,0,1),(1,1,1,0),(2,1,−1,1)} =
{(x,y,z,w) ∈ R4 | x− y−w = 0}.6)

Well, we start with

w1 = (1,0,0,1)

and then

w2 = u2−projw1
u2

= u2−
u2 ·w1

∥w1∥2 w1

= (1,1,1,0)− 1
2
(1,0,0,1) = (

1
2
,1,1,−1

2
).

(Before going on, it’s always a good idea to check that w1 ·w2 = 0! It’s OK here.)
So in this example, there’s just one more step:

6We saw how to do this at the end of chapter 15.
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w3 = u3−
u3 ·w1

∥w1∥2 w1−
u3 ·w2

∥w2∥2 w2

= (2,1,−1,1)− 3
2
(1,0,0,1)−

1
2
5
2

(
1
2
,1,1,−1

2
)

= (2,1,−1,1)− (
3
2
,0,0,

3
2
)− (

1
10

,
1
5
,
1
5
,− 1

10
)

=
2
5
(1,2,−3,−1).

Then we can see that {w1,w2,w3} is indeed orthogonal – and it’s always a good idea to check this.7

Also, by looking at our calculations more carefully, we can see that indeed, each successive element is
in the span of the original vectors. The resulting orthogonal basis is

{(1,0,0,1), 1
2
(1,2,2,−1),

2
5
(1,2,−3,−1)}.

■ Remark 19.4.3. We often choose to simplify our calculations when using the formula in Theo-
rem 19.4.1 by scaling the wi by something convenient to avoid fractions: since

{(1,0,0,1),(1,2,2,−1),(1,2,−3,−1)}

is just as good an orthogonal set as the one above, and might be easier to work with if you had to
calculate another projection.

Finally, if one really wants an orthonormal basis, we have to divide each of these vectors by their
norm. Since ∥(1,0,0,1)∥ =

√
2, ∥(1,2,2,−1)∥ =

√
10, and ∥(1,2,−3,−1)∥ =

√
15, we obtain the

orthonormal basis:

{
√

2
2

(1,0,0,1),

√
10

10
(1,2,2,−1),

√
15

15
(1,2,−3,−1)}.

(Check this!) ■

■ Example 19.4.4 Calculate the best approximation to v = (1,2,3,4) in W , where

W = span{(1,0,0,1),(1,1,1,0),(2,1,−1,1)}= {(x,y,z,w) ∈ R4 | x− y−w = 0}

Let’s use the preceding exercise. We already know that an orthogonal basis for W is

{(1,0,0,1),(1,2,2,−1),(1,2,−3,−1)}

(call these n1, n2 and n3, say) so therefore

projW (v) =
v ·n1

∥n1∥2 n1 +
v ·n2

∥n2∥2 n2 +
v ·n3

∥n3∥2 n3

=
5
2
(1,0,0,1)+

7
10

(1,2,2,−1)− 8
15

(1,2,−3,−1)

=
1
3
(8,1,3,7).

7If you can, it’s also a very good idea to check that your vectors {w1,w2,w3} belong to W– which of course they should!
In this case that’s easy, as we have a simple description of W – namely, W = {(x,y,z,w) ∈ R4 | x− y−w = 0}.
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If you can, check that your answer actually belongs to W : here it’s easy since we have a simple
description of W .8 ■

Problems

Remarks:
1. A question with an asterisk ‘∗’ (or two) indicates a bonus-level question.
2. You must justify all your responses.

Problem 19.1 In each case, find the Fourier coefficients of the vector v with respect to the given
orthogonal basis B of the indicated vector space W .

a) v = (1,2,3), B = {(1,0,1),(−1,0,1),(0,1,0)}, W = R3.

b) ⋆v = (1,2,3), B = {(1,2,3),(−5,4,−1),(1,1,−1)}, W = R3.

c) v = (1,2,3), B = {(1,0,1),(−1,2,1)},

W = {(x,y,z) ∈ R3 | x+ y− z = 0}.

d) ⋆v = (4,−5,0), B = {(−1,0,5),(10,13,2)},

W = {(x,y,z) ∈ R3 | 5x−4y+ z = 0}.

e) v = (1,1,1,1), B = {(1,0,1,1),(0,1,0,0),(0,0,1,−1)},

W = {(x,y,z,w) ∈ R4 | x−w = 0}.

f) ⋆v = (1,0,1,2), B = {(1,0,1,1),(0,1,0,0),(0,0,1,−1),(1,0,0,−1)}, W = R4.

Problem 19.2 Find the formula for the orthogonal projection onto the subspaces in parts c), d)⋆and
e) above.

Problem 19.3 Apply the Gram-Schmidt algorithm to each of the following linearly independent
sets (to obtain an orthogonal set), and check that your resulting set of vectors is orthogonal.

a) {(1,1,0),(2,0,3)}

b) ⋆{(1,0,0,1),(0,1,0,−1),(0,0,1,−1)}

c) {(1,1,1,1),(0,1,0,0),(0,0,1,−1)}

d) ⋆{(1,1,0),(1,0,2),(1,2,1)}

8If you have the time, you should also check that (1,2,3,4)− 1
3 (8,1,3,7) =

1
3 (−5,5,0,5) is orthogonal to everything in

W , and it is, since 1
3 (−5,5,0,5).(x,y,z,w) =− 5

3 (x− y−w) = 0 whenever (x,y,z,w) ∈W !
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Problem 19.4 Find an orthogonal basis for each of the following subspaces, and check that your
basis is orthogonal. (First, find a basis in the standard way, and then apply the Gram-Schmidt
algorithm.)

a) W = {(x,y,z) ∈ R3 | x+ y+ z = 0}

b) ⋆U = {(x,y,z,w) ∈ R4 | x+ y−w = 0}

c) X = {(x,y,z,w) ∈ R4 | x+ y−w = 0 and z+ y = 0}

d) ⋆V = ker

 1 2 −1 −1
2 4 −1 3
−3 −6 1 −7



Problem 19.5 Find the best approximation to each of the given vectors v from the given subspace
W .

a) v = (1,1,1), W = {(x,y,z) ∈ R3 | x+ y− z = 0}

b) ⋆v = (1,1,1), W = {(x,y,z) ∈ R3 | 5x−4y+ z = 0}

c) v = (1,1,1,2), W = {(x,y,z,w) ∈ R4 | x−w = 0}

Problem 19.6 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

a) Every orthogonal set is linearly independent.

b) ⋆Every linearly independent set is orthogonal.

c) When finding the orthogonal projection of a vector v onto a subspace W , plugging any basis of
W into the formula in Definition 19.3.1 will work.

d) ⋆When finding the orthogonal projection of a vector v onto a subspace W , once the answer is
obtained, it’s OK to re-scale the answer to eliminate fractions.

e) When applying the Gram-Schmidt algorithm to a basis, at each step, it’s OK to re-scale the
vector obtained to eliminate fractions.

f) ⋆When finding the orthogonal projection of a vector v onto a subspace W , using different
orthogonal bases of W in the formula in Definition 19.3.1 can give different answers.

g) If projW (v) denotes the orthogonal projection of a vector v onto a subspace W , then v−
projW (v) is always orthogonal to every vector in W .

h) ⋆To check that a vector, say u, is orthogonal to every vector in W , it suffices to check that u is
orthogonal to every vector in any basis of W .
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i) ∗∗ If you apply the the Gram-Schmidt algorithm to a spanning set {w1, . . . ,wm} of a subspace
W , rather than a basis of W , and if you obtain a zero vector at step k, that means wk ∈
span{w1, . . . ,wk−1}.

j) ∗∗ If you apply the the Gram-Schmidt algorithm to a spanning set {w1, . . . ,wm} of a subspace
W , rather than a basis of W , and discard any zero vectors that appear in the process, you will
in the end still obtain an orthogonal basis for W .





20. Orthogonal Complements and Applications

20.1 Orthogonal Complements
You will recall that one of two important properties of the orthogonal projection projW (v) onto a
subspace W was that v−projW (v) was orthogonal to every vector in that subspace. This suggests the
following definition.

Definition 20.1.1 Let U be a subspace of Rn. The orthogonal complement of U is the set, denoted
U⊥ (pronounced: ‘U-perp’) defined by

U⊥ = {v ∈ Rn | u ·v = 0 for all u ∈U}.

■ Example 20.1.2 Let U = span{(1,0,3),(0,1,2)}. We know that U is the plane through the origin
with normal (1,0,3)× (0,1,2) = (−3,−2,1).

So a vector is orthogonal to U iff it is parallel to (−3,−2,1). Thus,

U⊥ = span{(−3,−2,1)}.

Of course U⊥ is the line through the origin with direction vector (−3,−2,1).
■

■ Example 20.1.3 Let U be the subspace of R4 defined by

U = span{(1,−1,0,−1)}

Since we already noted that a vector is orthogonal to every vector in a subspace iff it is orthogonal
to a basis of the subspace (see the proof of Theorem 19.3.3) a vector (x,y,z,w) ∈U⊥ iff

(x,y,z,w) · (1,−1,0,−1) = x− y−w = 0.
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Figure 20.1: The plane U and its orthogonal complement.

That is, in this case,

U⊥ = {(x,y,z,w) ∈ R4 | x− y−w = 0}.
You will recognize this subspace as W of Example 19.4.2 from the last two examples in the previous
chapter. ■

What about W⊥ from the example just above?

■ Example 20.1.4 Let W = {(x,y,z,w) ∈ R4 | x− y−w = 0}.
We know that v ∈W⊥ iff v is orthogonal to any basis of W . Well, we’ve lots of those: e.g. from

Example 19.4.4: we know that

{v1 = (1,0,0,1),v2 = (1,1,1,0),v3 = (2,1,−1,1)}

is a basis of W , so we just need to find all v such that

v1 ·v = 0

v2 ·v = 0 (20.1)

v3 ·v = 0.

We’ve seen this sort of thing before! Remember Remark 16.3.1? It said, in part, that for a matrix A,
v ∈ Null(A) iff v is orthogonal to every row of A.

That’s what we’re staring at above in (20.1). If we set (in block row form)

A =

v1
v2
v3


So solving the system in (20.1) is equivalent to finding Null(A)! Let’s do it:

Null(A) = Null

1 0 0 1
1 1 1 0
2 1 −1 1

= Null

1 0 0 1
0 1 0 −1
0 0 1 0

= {(−s,s,0,s) | s ∈ R}.
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So the set of basic solutions – just one in this case – namely {(−1,1,0,1)} is a basis for Null(A) =W⊥.
But this subspace is our original U!

So U⊥ =W and W⊥ =U , or said differently, (U⊥)⊥ =U! Is this always true? ■

Indeed it is, and more is true as well:

Theorem 20.1.5 — Properties of the orthogonal complement. Let U be a subspace of Rn. Then:
(1) U⊥ is a subspace of Rn

(2) (U⊥)⊥ =U
(3) dim(U)+dim(U⊥) = n.

When two subspaces U and V satisfy U = V⊥ (or equivalently, V = U⊥) then we say they are
orthogonal complements.

Proof. (1) We apply the subspace test. We have

U⊥ = {v ∈ Rn | u ·v = 0 for all u ∈U .}

(a) Since the zero vector is orthogonal to every vector in U (it’s orthogonal to everything!), 0 ∈U⊥.
Good.

(b) Suppose v,w ∈U⊥. That means u ·v = 0 and u ·w = 0. Is v+w ∈U⊥? We calculate

u · (v+w) = u ·v+u ·w = 0+0 = 0.

OK!
(c) Suppose v ∈U⊥ and k ∈ R. That means u ·v = 0. We calculate

u · (kv) = ku ·v = k(0) = 0

so indeed kv ∈U⊥.
Thus U⊥ is a subspace.
Let’s prove (3) next. Let {u1, . . . ,uk} be a basis for U . Create the matrix A whose rows are these

vectors (transposed!). Then the set of all vectors v which are orthogonal to U is exactly the set of
vectors v such that Av = 0 (using the argument of the example above). Hence U⊥ = Null(A). By the
rank-nullity theorem,

dim(Row(A))+dim(Null(A)) = n⇔ dim(U)+dim(U⊥) = n.

Finally, to prove (2): Let V =U⊥; this is a subspace by (1) and its dimension is n−dim(U) by (3).
We want to conclude that U =V⊥. Since every vector in U is indeed orthogonal to every vector in V , it
is true that U ⊆V⊥. Furthermore, by (3), we have that dim(V⊥) = n− (n−dim(U)) = dim(U). So U
is a subspace of V⊥ but has the same dimension as V⊥: it must be all of V⊥. (This is the theorem about
how a subspace that isn’t the whole space must have a strictly smaller dimension.)

■

Problem 20.1.6 Let A be any matrix. Show that Row(A) and Null(A) are orthogonal complements,
as are Col(A) and Null(AT ).

Solution This is a reprise of our example above, in general. Suppose A is an m×n matrix. Recall
that NullA = {x ∈ Rn | Ax = 0}. But by definition of the multiplication of matrices, this is exactly
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saying that that dot product of each row of A with x gives 0. So

Null(A) = {x ∈ Rn | x is orthogonal to every row of A}

Since the rows of A span Row(A), by the footnote 4 on page 201, x ∈Null(A) iff x is orthogonal
to every vector in Row(A), i.e. Null(A) = Row(A)⊥, as required.

To see that Null(AT )=Col(A)⊥, substitute AT for A in Null(A)=Row(A)⊥ to obtain Null(AT )=
Row(AT )⊥ and note that Col(A) = Row(AT ).

20.2 Orthogonal projection — an encore
Let’s use what we know about orthogonal complements to find another way to compute the orthogonal
projection. Don’t be put off by the first example. It is easy — we could have done it in high school,
but the method we use will be quite different, and will lead to the new way to compute the orthogonal
projection.

Problem 20.2.1 Find the projection of b = (1,2,3) on the subspace U spanned by {(1,1,1)}.

Solution We’re looking for a point v ∈U such that b− v ∈U⊥. Think of U = Col(A) where

A =

1
1
1

. Then U⊥ = Null(AT ).

An element of U is the same thing as an element of Col(A), which can be written as v = Ax for
some x (in this silly case, x ∈ R). To say that b−v = b−Ax is in U⊥ = Null(AT ) means that

AT (b−Ax) = 0

or
AT Ax = AT b.

Now AT A = (1,1,1) · (1,1,1) = 3; and AT b =
[
1 1 1

]1
2
3

= 6 so x = 2. Our answer is

projU(b) = v = Ax =

2
2
2


which coincides with our known formula from before:

proj(1,1,1)((1,2,3)) =
(1,2,3) · (1,1,1)
∥(1,1,1)∥2

1
1
1

=

2
2
2

 .

But we’ve just found another way to calculate the projection onto any subspace of Rn:

Theorem 20.2.2 — Second method to calculate the projection. Let U be a subspace of Rn and
let A be a matrix such that Col(A) =U . Then projU(b) is the vector Ax where x is any solution to



20.3 Application: Best approximations to solutions of inconsistent systems 213

the system
AT Ax = AT b.

To prove it, just apply the argument in the example above.
Note that because we know that projU(b) always exists, the system AT Ax = AT b will always be

consistent!

20.3 Application: Best approximations to solutions of inconsistent systems

Corollary 20.3.1 — Best Approximation to a Solution. Suppose that Ax = b is inconsistent. Then
the best approximation to a solution of this system is any vector z which solves

AT Az = AT b

That is, such a z minimizes ∥Az−b∥.

Proof. Minimizing ∥Az−b∥ over all z ∈ Rn means finding the closest vector in Col(A) to b, since
Col(A) is exactly the set of vectors of the form Az. So Az will be have to be projCol A(b). This is found
exactly as in the theorem above. ■

Problem 20.3.2 Find the best approximation to a solution for the inconsistent system Ax = b where
b = (1,2,1,2) and

A =


1 0 1
0 1 0
0 0 1
0 0 0

 .

Solution Let’s apply the corollary. We calculate

AT A =

1 0 0 0
0 1 0 0
1 0 1 0




1 0 1
0 1 0
0 0 1
0 0 0

=

1 0 1
0 1 0
1 0 2


and

AT b =

1 0 0 0
0 1 0 0
1 0 1 0




1
2
1
2

=

1
2
2


So we need to solve 1 0 1

0 1 0
1 0 2

x
y
z

=

1
2
2


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which we do by row reducing the augmented matrix1 0 1 | 1
0 1 0 | 2
1 0 2 | 2

∼ ·· · ∼
1 0 0 | 0

0 1 0 | 2
0 0 1 | 1


which has unique solution (0,2,1). So we claim that

x =

0
2
1


gives the best possible approximation to a solution to the system Ax = b; we have

1 0 1
0 1 0
0 0 1
0 0 0


0

2
1

=


1
2
1
0


which isn’t quite b but is fairly close.

To be really convinced this is the best, consider any other v = (x,y,z); then

Av = (x+ z,y,z,0)

so
∥(1,2,1,2)− (x+ z,y,z,0)∥2 = (1− (x+ z))2 +(2− y)2 +(1− z)2 +22

and the answer we found makes the first three terms 0, which clearly gives the minimum possible
value (4) for the total distance squared.

20.4 Application: Least-Squares Best Fitting Line or Curve
Problem 20.4.1 Suppose you collect the following data

x y
-2 18
-1 8.1
0 3.8
1 3.1
2 6.1

These data points don’t exactly lie on a parabola, but you think that’s experimental error; what is the
best-fitting quadratic function through these points?

Solution This doesn’t seem to be a linear problem, at first. Let’s rephrase this as a problem in
linear algebra!

We want to find a quadratic polynomial

y = a+bx+ cx2
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so that when we plug in one of the x-values above, we get “close” to the y value we measured.
Well, what we’re really saying is: solve for a,b,c (or at least, try to) in the following linear

system:

a+b(−2)+ c(−2)2 = 18

a+b(−1)+ c(−1)2 = 8.1

a+b(0)+ c(0)2 = 3.8

a+b(1)+ c(1)2 = 3.1

a+b(2)+ c(2)2 = 6.1 .

This is the matrix equation Ax = b where

A =


1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

 , b =


18
8.1
3.8
3.1
6.1

 .

You can check that this is inconsistent.
So: we know from above that we should solve instead

AT Ax = AT b

where

AT A =

 5 0 10
0 10 0
10 0 34

 and AT b =

 39.1
−28.8
107.6


which gives (after a bit of row reduction, and maybe the help of a calculator)

x =

 3.62
−2.88

2.1

=

a
b
c


meaning our quadratic polynomial is

y = (3.62)− (2.88)x+(2.1)x2.

(You’d need a graphing calculator to see if this is really the best possible fit.)

In what sense was this the “best answer”? We minimized the distance between Ax and b. Recall
that if x = (a,b,c) then Ax is the y-values for the points on the curve a+bx+ cx2 at the given x-values
in the table (or, in the second column of A). Call these (y−2,y−1,y0,y1,y2). And b is the measured
values in the table; call these (y′−2,y

′
−1,y

′
0,y
′
1,y
′
2). So we’ve minimized

∥Ax−b∥2 = (y−2− y′−2)
2 +(y−1− y′−1)

2 +(y0− y′0)
2 +(y1− y′1)

2 +(y2− y′2)
2

that is, we’ve found the least squares best fit: the curve that minimizes the sum of the squares of the
differences in y-values.
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! This is the de facto standard for fitting curves to experimental data.

Summary of method:
1. Given: data points (xi,yi), i = 1, · · · ,n.
2. Goal: to find the best polynomial of degree m fitting these data points, say

p(x) = a0 +a1x+ · · ·+amxm

3. Set

A =


1 x1 x2

1 · · · xm
1

1 x2 x2
2 · · · xm

2

. . . . . . . . .
. . . . . .

1 xn x2
n · · · xm

n

 and b =


y1
y2
. . .
yn


4. Solve (AT A)x = (AT b) for the vector x = (a0,a1, · · · ,am) of coefficients of your best-fitting

polynomial.

Problems
Problem 20.1 Suppose U is a subspace of Rn.

a) Show that U ∩U⊥ = {v ∈ Rn | v ∈Uand v ∈U⊥}= {0}.

b) a Show that if v ∈ Rn is any vector, then there are vectors u ∈ U and w ∈ U⊥ such that
v = u+w.

c) Show that if v = u+w and v = u′+w′, with u,u′ ∈U and w,w′ ∈U⊥, then u = u′ and w = w′.

aHint: look carefully at the seemingly useless equation v = projU (v)+v−projU (v).
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21. Determinants

We are about to change gears, and rather dramatically at that. Our goal: to uncover the basis for Rn

— when it exists — that is best or ideally adapted to multiplication by a given n×n matrix. This is
called a basis of eigenvectors (of the matrix), from the German prefix “eigen” meaning “my own".
Eigen-something means “my own something", so eigenvectors of a matrix are the vectors that are
special for that matrix. We will see that multiplication of an eigenvector of a matrix by that matrix
gives1 another eigenvector in the same direction.

To get there, though, we first need to master the calculation of the determinant of a square matrix —
and see why it’s such an interesting number to calculate.2

21.1 The determinant of a square matrix

Let A be an n×n matrix.
When n = 1, det[a] = a.

1Except in one case: when the eigenvalue is zero. See section 22.1.1.
2There is a formula which generalizes the formula we saw in 18.2.1 for a 2× 2 matrix. For the moment, search for

‘Invertible matrix’ and ‘Adjugate matrix’ for the inverse of an invertible n×n square matrix you might see in a later course
that uses the matrix of cofactors (where the cofactors are the terms (−1)i+ j det(Ai j) that appeared in our formulae for the
determinant). As such, it’s really inefficient for large matrices unless they are quite sparse (meaning: have lots of zeros).

There’s also a formula called Cramer’s rule, for the solution to Ax = b when A is invertible, and that was historically how
mathematicians solved systems of linear equations. In practice one uses Gaussian elimination for any problem involving
systems larger that 3×3, but even for 3×3 systems, using Cramer’s rule involves computing four 3×3 determinants. You’ll
see later in this chapter why that’s best avoided!

It’s interesting that determinants were discovered long before row reduction (in the western world) and determinants were
the main route to results in linear algebra until around 1900.
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When n = 2, we have previously discussed the determinant; recall that

det
([

a b
c d

])
= ad−bc

and it’s important for two things:

• algebraically: it’s the denominator in the formula for the inverse of
[

a b
c d

]
— in fact A is

invertible if and only if det(A) ̸= 0; and
• geometrically: its absolute value is the area of the parallelogram with sides defined by the vectors

which are the rows of A.
When n = 3, we use the same type of formula as for the cross product:

det

a b c
d e f
g h i

= adet
[

e f
h i

]
−bdet

[
d f
g i

]
+ cdet

[
d e
g h

]
= a(ei− f h)−b(di− f g)+ c(dh− eg)

Note that the end result is again simply a number, a scalar. The above formula is called the Laplace or
cofactor expansion along the first row. Its importance includes:

• in Algebra: we’ll soon show that det(A) ̸= 0 if and only if A is invertible (and, although we won’t
do it this term, there does exist a formula for the inverse of a matrix with denominator det(A));
and

• in Geometry: recall the scalar triple product of vectors u · (v×w), whose absolute value is the
volume of the parallelipiped with sides defined by u,v,w. Note that det(A) equals the scalar
triple product of the row vectors of A.

For n≥ 4, the formula is recursive, meaning, you need to calculate determinants of smaller matrices,
which in turn are calculated in terms of even smaller matrices, until finally the matrices are 2×2 and
we can write down the answer.

Definition 21.1.1 Let A = (ai j) (meaning: the (i, j) entry of A is denoted ai j). Then

detA = a11 det(A11)−a12 det(A12)+ · · ·+(−1)1+na1n det(A1n)

where Ai j is the (n−1)× (n−1) matrix obtained from A by deleting row i and column j.

■ Example 21.1.2 Let’s calculate det(A) where

A =


2 3 4 5
1 0 0 1
0 1 0 1
0 0 1 0

 .

Well, the formula says this is

detA = 2det

0 0 1
1 0 1
0 1 0

−3det

1 0 1
0 0 1
0 1 0

+4det

1 0 1
0 1 1
0 0 0

−5det

1 0 0
0 1 0
0 0 1

 .
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Now to calculate each of the smaller ones, we use the formula again (although to save time and effort,
let’s not write down the subdeterminants when we’re just going to multiply the term by 0):

det

0 0 1
1 0 1
0 1 0

= 0(·)−0(·)+1det
[

1 0
0 1

]
= 1(1−0) = 1

det

1 0 1
0 0 1
0 1 0

= 1det
[

0 1
1 0

]
−0(·)+1det

[
0 0
0 1

]
= 1(0−1)+1(0−0) =−1

det

1 0 1
0 1 1
0 0 0

= 1det
[

1 1
0 0

]
−0(·)+1det

[
0 1
0 0

]
= 0

det

1 0 0
0 1 0
0 0 1

= 1det
[

1 0
0 1

]
−0+0 = 1

so our final answer is
det(A) = 2(1)−3(−1)+4(0)−5(1) = 0

which is rather interesting. Do notice that the matrix A is not invertible: equivalently, A has linearly
dependent rows (R1 = 2R2 + 3R3 + 4R4); has linearly dependent columns (C4 = C1 +C2 +C3); has
nontrivial nullspace; has rank less than 4, etc.). ■

Now, this formula is all well and good, but utterly torturous. To calculate the determinant of a 3×3
matrix there are 6 = 3! products of 3 terms, so 2×3! products (just counting the hard part, multiplying).
For a 4×4 matrix, it’s 3×4×6 = 3×4! = 72 products that you have to add together. So for a 10×10
matrix, there are

9×10! = 32,659,200

terms. For a 100×100 matrix, you’re looking at around 9×10159 terms. Have fun seeing how long
this would take to calculate if you used the current3 fastest computer (Fugaku 415-PFLOPS), which
can do an absolutely astonishing 415.5× 1015 calculations per second. (Hint: there are only about
π×107 seconds in a year....)

Luckily (and remarkably) there are some wonderful shortcuts.

21.2 First shortcut: expansion along ANY column or row

Theorem 21.2.1 — Cofactor expansion along any row or column. Let A = (ai j). Then the
determinant can be calculated via the cofactor expansion along row i, for any i:

det(A) = (−1)i+1ai1 det(Ai1)+(−1)i+2ai2 det(Ai2)+ · · ·+(−1)i+nain det(Ain)

3As of (about) 2020: see See https://en.wikipedia.org/wiki/Fugaku_(supercomputer)

https://en.wikipedia.org/wiki/Fugaku_(supercomputer)
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and similarly, the determinant equals the cofactor expansion along column j, for any j:

det(A) = (−1)1+ ja1 j det(A1 j)+(−1)2+ ja2 j det(A2 j)+ · · ·+(−1)n+ jan j det(An j).

! Tip: the signs you need to use (that is, the factors (−1)i+ j in the cofactor
expansion) are given by: 

+ − + − + · · ·
− + − + − ·· ·
+ − + − + · · ·
− + − + − ·· ·
...

...
...

...
... . . .



■ Example 21.2.2 Calculate

det

2 3 4
1 0 3
2 0 4


We could do this on the first row:

det(A) = 2det
[

0 3
0 4

]
−3det

[
1 3
2 4

]
+4det

[
1 0
2 0

]
= 2(0)−3(4−6)+4(0) = 6

or, how about we pick the row or column with the most zeros? Like column 2:

det(A) =−3det
[

1 3
2 4

]
+0−0 = 6

which is certainly faster. ■

! Moral: choose the row or column with the most zeros to do your cofactor
expansion.

This theorem gives us a couple of immediate consequences:

Proposition 21.2.3 — Quick properties of the determinant. Let A be an n×n matrix.
(1) If A has a row or column of zeros, then det(A) = 0.
(2) det(A) = det(AT ).

Proof. (1) Do the cofactor expansion along that row or column; all the terms are zero.
(2) Doing the expansion along row 1 of A is the same calculation as doing the expansion along

column 1 of AT , and by the theorem you get the same answer. ■
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■ Example 21.2.4 Calculate

det


2 2 4 7 6
0 −3 7 1 3
0 0 1 12 −8
0 0 0 −2 21
0 0 0 0 3

 .

This is easy if you do cofactor expansion on the first column:

detA = 2det


−3 7 1 3
0 1 12 −8
0 0 −2 21
0 0 0 3


= 2(−3)det

1 12 −8
0 −2 21
0 0 3


= 2(−3)(1)det

[
−2 21
0 3

]
= 2(−3)(1)(−2)(3)

which is simply the product of the diagonal entries! ■

Proposition 21.2.5 — Determinant of triangular matrices. The determinant of a triangular matrix
is the product of the diagonal entries.

Hmm... notice that every matrix in RREF is triangular, so this proposition applies. Thinking about
the possibilities, we conclude: if A is in RREF then either

• A has rank n and the determinant is one;
• A has rank less than n and the determinant is zero.

Very nice. Except: does this dash our hopes of being able to calculate the determinant using row
reduction?

21.3 Second Shortcut: Using row reduction to calculate the determinant
It turns out you can use row reduction, as long as you keep track of your steps. The miracle is that our
favourite, most useful, row reduction step doesn’t change the determinant at all!

Theorem 21.3.1 — Effect of row reduction on the determinant. Let A be an n×n matrix and
suppose you do an elementary row operation and the answer is the matrix B. Then:

(1) If the row operation was interchange two rows then det(B) =−det(A).
(2) If the row operation was multiply a row by r then det(B) = r det(A).
(3) If the row operation was add a multiple of one row to another then det(B) = det(A).

Remark 21.3.2. The theorem above remains true if ‘row’ is replaced by ‘column’.
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Problem 21.3.3 Calculate det(A) where

A =


2 1 3 5
1 2 3 1
0 1 2 3
0 3 1 4

 .

Solution Let’s row reduce A and keep track of our operations:
2 1 3 5
1 2 3 1
0 1 2 3
0 3 1 4

R1↔ R2
∼


1 2 3 1
2 1 3 5
0 1 2 3
0 3 1 4

−2R1 +R2
∼

−3R3 +R4


1 2 3 1
0 −3 −3 3
0 1 2 3
0 0 −5 −5


R2↔ R3
∼
−1

3 R3

−1
5 R4


1 2 3 1
0 1 2 3
0 1 1 −1
0 0 1 1

−R2 +R3
∼


1 2 3 1
0 1 2 3
0 0 −1 −4
0 0 1 1

 ∼
R3 +R4


1 2 3 1
0 1 2 3
0 0 −1 −4
0 0 0 −3

= R.

OK: now let’s see what our operations did. The last matrix R has determinant 3 (by multiplying the
diagonal entries). The only operations that changed this value are row interchanges (each at a cost
of −1) and scaling rows (each at a cost of the factor you multiplied by). So:

det(R) = (−1)(−1
3
)(−1

5
)(−1)det(A)

which gives
det(A) = 15det(R) = 45.

You can check this by cofactor expansion.

! Point: if you’ve row reduced and kept track of your operations, then the determi-
nant can be computed with no extra work.

21.4 Properties of determinants

Theorem 21.4.1 — Properties of the determinant. Let A and B be n×n matrices. Then
(1) det(rA) = rn det(A);
(2) det(AB) = det(A)det(B);
(3) det(A) = 0 if and only if A is not invertible;
(4) if A is invertible then det(A−1) = 1

det(A) .

Proof. (1) Multiplying the whole matrix by r means multiplying each of the n rows of A by r; and each
of these costs a factor of r. (Geometrically: the n-dimensional volume of a box goes up by a factor of
rn if you scale every edge by a factor of r.)

(2) This takes some effort to prove, but isn’t beyond us at all4.
4For a reference, see Brescther, ‘Linear Algebra with Applications.’
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(3) We’ve just seen that row reducing can change the value of the determinant by a nonzero factor.
So det(A) = 0 if and only if det(R) = 0, where R is the RREF of A. And as we’ve remarked previously:
det(R) = 0 if and only if the rank of A is less than n, which happens if and only if A is not invertible.

(4) If A is invertible then AA−1 = I so by part (2), we have det(A)det(A−1) = det(I) = 1. ■

Problems

Remarks:
1. A question with an asterisk ‘∗’ (or two) indicates a bonus-level question.
2. You must justify all your responses.

Problem 21.1 Find the determinant of each of the following matrices. In the following, λ represents
a variable. Use appropriate row and/or column operations where useful: the definition is the tool of
last resort!

a)
[

2 −1
3 0

]

b) ⋆

2 −1 3
3 0 −5
1 1 2


c)

1 1 1
1 2 3
0 1 1


d) ⋆

3 4 −1
1 0 3
2 5 −4



e)


0 1 0 0
2 0 0 0
0 0 3 0
0 0 0 4


f) ⋆

λ −6 0 0
0 λ 3
0 4 λ +4



g)



2 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 3
0 0 1 0 0 0
0 0 0 0 3 0





226 Chapter 21. Determinants

h) ⋆

−λ 2 2
2 −λ 2
2 2 −λ



Problem 21.2 If

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣= 3, find

a)

∣∣∣∣∣∣
d e f
a b c
g h i

∣∣∣∣∣∣
b) ⋆

∣∣∣∣∣∣
b a c
e d f
h g i

∣∣∣∣∣∣
c)

∣∣∣∣∣∣
b 3a c
e 3d f
h 3g i

∣∣∣∣∣∣
d) ⋆

∣∣∣∣∣∣
b 3a c−4b
e 3d f −4e
h 3g i−4h

∣∣∣∣∣∣
e)

∣∣∣∣∣∣
4g a d−2a
4h b e−2b
4i c f −2c

∣∣∣∣∣∣
Problem 21.3 a) If Q is a 3×3 matrix and detQ = 2, find det((3Q)−1).

b) ⋆If B is a 4×4 matrix and det(2BBT ) = 64, find |det(3B2BT )|.

c) If A and B are 4×4 matrices with det(A) = 2 and det(B) =−1, find det(3ABT A−2BAT B−1).

d) ⋆Compute the determinant of
[

1 2
3 4

][
5 6
7 8

][
9 10
11 12

][
13 14
15 16

]
.

e) Find all x so that the matrix

0 x −4
2 3 −2
1 4 1

 is not invertible.

Problem 21.4 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.



21.4 Properties of determinants 227

In the following A and B are n×n matrices (with n > 1) and k is a scalar.

a) det(AB) = det(A) det(B)

b) ⋆det(A+B) = det(A)+det(B)

c) det(kA) = k det(A)

d) ⋆det(kA) = kn det(A)

e) detAT = det(A)

f) ⋆If A and B are the same except the first row of A is twice the first row of B, then det(A) =
2det(B)

g) ∗∗ If A=
[
c1 +b1 c2 · · · cn

]
is written in block column form, meaning that the first column

of A is c1+b1 and c2,c3, . . . ,cn are the other columns of A, then det(A)= det
[
c1 c2 · · · cn

]
+

det
[
b1 c2 · · · cn

]

Problem 21.5 a) If A is any 2 by 2 matrix, and v1,v2,v3 and v4 are column vectors in R3

satisfying [
v1 v2

]
= A

[
v3 v4

]
,

show that v1×v2 = (det(A))v3×v4.

b) ⋆If u,v and w are vectors in R3, use properties of 3 by 3 determinants to show that

u ·v×w = w ·u×v = v ·w×u

c) Suppose B is an 1×n, matrix D is an n×n matrix, a ∈ R. Show that det
[

a B
0 D

]
= a det(D).

(The matrix is expressed here in block form.)

d) ∗a Suppose D is an n×n matrix and B an m×n matrix. Show that det
[

Im B
0 D

]
= det(D). (The

matrix
[

Im 0
0 B

]
, of size (m+n)× (m+n), is expressed here in block form.)

e) ∗b Suppose A is an m×m matrix. Show that det
[

A B
0 In

]
= det(A).

f) Suppose A,B and D are respectively of sizes m×m, m×n and n×n. Noting that
[

A B
0 D

]
=[

Im 0
0 D

][
A B
0 In

]
, show that det

[
A B
0 D

]
= det(A)det(D).

g) ⋆Suppose A,B,C and D are respectively of sizes m×m, m×n, n×m and n×n. Suppose that D is

invertible. Noting that
[

A B
C D

][
Im 0

−D−1C In

]
=

[
A−BD−1C B

0 D

]
, show that det

[
A B
C D

]
=

det(A−BD−1C)det(D).
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h) Suppose A,B,C and D are n×n matrices with D invertible and CD = DC. Let E =

[
A B
C D

]
,

an (2n)× (2n) matrix, expressed here in block form. Use the last part and properties of the

determinant to show that det
[

A B
C D

]
= det(AD−BC).

i) ∗∗∗ c Suppose A,B,C and D are n× n matrices with CD = DC. Show that det
[

A B
C D

]
=

det(AD−BC).

j) ∗∗ Suppose A is a 3 by 3 matrix that satisfies AAT = I3.

i) Show that AT A = I3 as well.

ii) Suppose {e1,e2,e3} is the standard (orthogonal and orthonormal) ordered basis of R3.
Using the fact that the dot product v ·w is equal to the matrix product vT w (writing
vectors as 3×1 matrices), show that {Ae1,Ae2,Ae3} is also an orthogonal set, which is
indeed orthonormal.

iii) If u and v are any vectors in R3, use the Expansion theorem 19.2.5 to show that

u×v =
3

∑
i=1

(u×v) · ei

and

Au×Av =
3

∑
i=1

(Au×Av) ·Aei.

iv) Recalling the definition of the 3 by 3 determinant, show that

(u×v) · ei = det
[
u v ei

]
and

(Au×Av) ·Aei = det
[
Au Av Aei

]
,

where the matrices
[
u v ei

]
and

[
Au Av Aei

]
on the right have been written in

block column form.

v) Recalling what you know about block multiplication, and properties of determinants,
show that

det
[
Au Av Aei

]
= det(A)det

[
u v ei

]
.

vi) Now prove that for any vectors u,v ∈ R3, (when AAT = I3)

Au×Av = det(A)(u×v)
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vii) Give an example of a matrix A, which does not satisfy AAT = I3 and two vectors u,v∈R3

for which Au×Av ̸= det(A)(u×v)

aThis is for those of you who know about proofs by induction. Search for ‘Mathematical induction’, for example.
bUse the same technique as in the previous part.
cThis is for those of you who know about continuity, and the fact that invertible n×n matrices are dense in all n×n

matrices. Search for ‘Invertible_matrix’. There is another proof of this identity that doesn’t use the density argument, by
J.R. Silvester, in Determinants of block matrices, Math. Gaz., 84(501) (2000), pp. 460-467.





22. Eigenvalues and Eigenvectors

This chapter and the next are amongst two of the most useful and applicable parts of all of linear
algebra! Get ready for a great ride.

22.1 Eigenvalues and Eigenvectors of a (square) matrix

Definition 22.1.1 Let A be an n×n matrix. If λ ∈ R is a scalar and x ∈ Rn is a nonzero vector such
that

Ax = λx

then x is called an eigenvector of A and λ is its corresponding eigenvalue.

■ Example 22.1.2 Let A =

[
3 −1
−2 2

]
. Then:

• 1 is an eigenvalue and (1,2) is an eigenvector corresponding to λ = 1 because

A
[

1
2

]
=

[
1
2

]
= 1

[
1
2

]
.

• 4 is an eigenvalue and (−1,1) is an eigenvector corresponding to λ = 4 because

A
[
−1
1

]
=

[
−4
4

]
.

Note that (10,20) and (17,−17) are also eigenvectors of A; but they are just multiples of what we
already found. ■
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■ Example 22.1.3 Let A=

[
1 1
2 2

]
. Then 0 is an eigenvalue, and (1,−1) is a corresponding eigenvector,

since A
[

1
−1

]
= 0 = 0

[
1
−1

]
. ■

! The matrix A can have 0 as an eigenvalue but the vector 0 is NEVER an eigenvec-
tor.

The essential application: suppose you can find a basis {x1, · · · ,xn} for Rn consisting of eigenvec-
tors of A, with corresponding eigenvalues λ1, · · · ,λn. Then if v = a1x1 + · · ·+anxn then

Av = A(a1x1 + · · ·+anxn)

= A(a1x1)+ · · ·+A(anxn)

= a1Ax1 + · · ·+anAxn

= a1λ1x1 + · · ·+anλnxn

= λ1a1xn + · · ·+λnanxn.

So although the answer won’t be a scalar multiple of v (since the λi may be different), the point is:
given a vector v in coordinates relative to an eigenbasis, calculating Av doesn’t require us to multiply
matrices at all — we just have to scale each of the coordinates (coefficients) by the appropriate λi.

(For those of you thinking in terms of computarional complexity: this means going from O(n2) to
O(n) — fairly significant!)

22.2 Finding eigenvalues of A

Since both λ and x are unknown, the equation Ax = λx is in fact nonlinear. As we’ve seen previously,
however, we can sometimes turn nonlinear equations into linear ones by focussing on solving for one
set of variables at a time.

The key is the following chain of equalities, which turns Ax = λx into the equation (A−λ I)x = 0:

Ax = λx
⇐⇒ Ax = λ Ix
⇐⇒ Ax−λ Ix = 0
⇐⇒ (A−λ I)x = 0

This point of view is the key to letting us solve the problem using our methods from before, as follows.
First think of λ as being a fixed, known quantity. Then this equation is a homogeneous system of

linear equations, and any nontrivial solution is an eigenvector of A. In other words:
• if this system has a unique solution, then there are no eigenvectors corresponding to λ , which

means λ is not an eigenvalue.
• if this system has infinitely many solutions, then any nontrivial one of these is an eigenvector,

and so λ is an eigenvalue.
We can rephrase this as follows, by remembering that when A is a square matrix, having infinitely many
solutions to a linear system is the same as being not invertible:
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! The number λ is an eigenvalue of A if and only if the matrix A−λ I is NOT
invertible.

We could use many different methods to check if the matrix is not invertible, but since the matrix
has a variable in it (namely, λ ) the nicest one is the determinant condition:

! The number λ is an eigenvalue of A if and only if det(A−λ I) = 0.

Definition 22.2.1 The polynomial det(A−λ I) is called the characteristic polynomial of Aa.
aSome authors prefer det(λ I−A), but for our computational purposes, using det(A−λ I) is less prone to error, and

gives exactly the same answer, up to a sign.

Problem 22.2.2 Find all the eigenvalues of A =

[
1 3
3 1

]
.

Solution We need to find all values of λ so that A−λ I is not invertible. Begin by writing down
A−λ I:

A−λ I =
[

1 3
3 1

]
−
[

λ 0
0 λ

]
=

[
1−λ 3

3 1−λ

]
(watch those negative signs on the two λ s!).

We calculate the characteristic polynomial:

det(A−λ I) = (1−λ )(1−λ )−9 = λ
2−2λ −8 = (λ −4)(λ +2),

and deduce that this is zero iff λ is either 4 or −2. Hence, the eigenvalues of A are 4 and −2.
To check, let’s write down A−4I and A+2I and make sure they are in fact non-invertible:

A−4I =
[
−3 3
3 −3

]
∼
[

1 −1
0 0

]
, A+2I =

[
3 3
3 3

]
∼
[

1 1
0 0

]
Good! Because both these matrices are not invertible, it’s now clear that 4 and −2 are eigenvalues
of A. To see that these are ALL the eigenvalues of A, note that det(A−λ I) is a quadratic polynomial
and so has at most two roots.

Key for calculations: The eigenvalues of A are the roots of the characteristic polynomial det(A−λ I).

Definition 22.2.3 The multiplicity of λ as a root of the characteristic polynomial is called its
algebraic multiplicity.

■ Example 22.2.4 The characteristic polynomial of

16 2 17
0 −43 14
0 0 16

 is−(λ−16)2(λ +43). (Check!)

Hence the eigenvalues of this matrix are λ = −43 (with algebraic multiplicity 1) and λ = 16 (with
algebraic multiplicity 2). ■
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22.3 Finding the eigenvectors of A

Suppose now that you have found some eigenvalues of the matrix A. To find the eigenvectors of A
associated to that eigenvalue, recall that they are all the nontrivial solutions x of

(A−λ I)x = 0.

In other words: the eigenvectors of A asssociated to λ are the nonzero vectors in ker(A− λ I) =
Null(A−λ I).

Definition 22.3.1 Let λ be an eigenvalue of A. Then the subspace

Eλ = Null(A−λ I)

= {x ∈ Rn | (A−λ I)x = 0}
= {x ∈ Rn | Ax = λx}

is called the λ -eigenspace of A. Its nonzero elements are the eigenvectors of A corresponding to the
eigenvalue λ .

So rather than ask: “What are the eigenvectors of A?” it’s simpler to ask: “What is a basis for each
eigenspace of A?”.

Problem 22.3.2 Find a basis for each eigenspace of

A =

[
1 3
3 1

]
(recalling that its eigenvalues were 4 and −2).
Solution For the eigenvalue λ = 4:

A−λ I = A−4I =
[
−3 3
3 −3

]
∼
[

1 −1
0 0

]
so the general solution to (A−4I)x = 0 is

E4 = Null(A−4I) = {(r,r) | r ∈ R}

and a basis for E4 is
{(1,1)}.

(Notice that with x = (1,1), Ax = 4x, as required.)
For the eigenvalue λ =−2:

A−λ I = A+2I =
[

3 3
3 3

]
∼
[

1 1
0 0

]
so the general solution to (A−2I)x = 0 is

E−2 = Null(A+2I) = {(−r,r) | r ∈ R}
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and a basis for E−2 is
{(−1,1)}.

(Notice that with x = (−1,1), Ax =−2x, as required.)

The dimension of the eigenspace associated to the eigenvalue λ is another important number we
want to keep track of.

Definition 22.3.3 The dimension of the eigenspace Eλ is called the geometric multiplicity of λ .

22.4 Towards an eigenvector basis of Rn

We notice that so far, the eigenvectors we are getting for different eigenvalues are linearly independent.
That’s not too hard to see for two vectors, but takes a little more work for more.1

Theorem 22.4.1 — Independence of Eigenvectors — Distinct Eigenvalues. Let A be an n×n
matrix. Then any set consisting of eigenvectors of A corresponding to distinct eigenvalues is linearly
independent.

Let’s put this together:
• The characteristic polynomial of an n×n matrix A is a polynomial of degree n, so it has at most

n distinct roots.
• Each root of the characteristic polynomial is an eigenvalue of A.
• Each eigenvalue of A gives an eigenspace of dimension at least 1.
• So IF the characteristic polynomial has exactly n distinct roots, then we can choose one eigen-

vector from each eigenspace and thus produce a basis of Rn consisting entirely of eigenvectors
of A.

Definition 22.4.2 The n×n matrix A is said to be diagonalizable over the reals if there is a basis of
Rn consisting entirely of eigenvectors of A.

(Why “diagonalizable”, you say? We’ll come back to this in a bit.)

FACT If an n×n matrix A has n distinct real eigenvalues then A is diagonalizable.

Can a matrix ever fail to be diagonalizable?

22.5 Problematic cases: Case I (not enough real roots)

■ Example 22.5.1 What are the eigenvalues of

A =

[
cosθ sinθ

−sinθ cosθ

]
?

1The best way is to use Induction.



236 Chapter 22. Eigenvalues and Eigenvectors

Well: the characteristic polynomial is

det(A−λ I) = det
[

cosθ −λ sinθ

−sinθ cosθ −λ

]
= (λ − cosθ)2 + sin2

θ

= λ
2−2cos(θ)λ + cos2

θ + sin2
θ

= λ
2−2cos(θ)λ +1.

Its roots, using the quadratic formula, are:

λ =
1
2

(
2cosθ ±

√
4cos2 θ −4

)
= cosθ ±

√
−sin2

θ = cosθ ± isinθ

which are complex numbers unless sinθ = 0, i.e., θ = 0 or π .
If we were to calculate the eigenvectors associated to these eigenvalues for θ ̸= 0,π , they would

have complex coordinates — meaning they aren’t in R2, but in C2. That’s fine for certain types of
applications but not for others; mathematically we usually work over C (because the fundamental
theorem of algebra tells us that’s where all the roots will lie)2.

If you happen to know that A =

[
cosθ sinθ

−sinθ cosθ

]
is a rotation matrix, it’s pretty clear why (when

θ ̸= 0,π) there are no real values of λ for which rotation of a vector x ∈ R2 by θ , namely Ax, will
result in a real multiple λx of x! ■

! Moral: it can happen that some eigenvalues are complex numbers. In this case,
you will not get an eigenvector basis of Rn; A is not diagonalizable over R.

22.6 Problematic cases: Case II (not “enough” eigenvectors)

By definition, if λ is an eigenvalue then dim(Eλ )≥ 1. But it λ is a repeated root of the characteristic
equation, say of multiplicity k, then we’d really need dim(Eλ ) = k, and that doesn’t always happen:

Problem 22.6.1 Find the eigenvalues of A =

[
3 1
0 3

]
and a basis for each eigenspace.

Solution The characteristic polynomial is (λ − 3)2 so the only eigenvalue is 3 (with algebraic
multiplicity 2). But rank(A−3I) = 1 so dimE2 = dimNull(A−3I) = 2−1 = 1. That is, we only
got a 1-dimensional subspace of eigenvectors, so it’s impossible to find an eigenvector basis of Rn.
A is not diagonalizable over the reals (or even over C).

! If the characteristic polynomial has a repeated root, then it can happen that we do
not have enough linearly independent eigenvectors of A to form a basis.

2Indeed, if we allow complex scalars, and so complex eigenvalues and complex eigenvectors in C2, C2 does have a basis
of eigenvectors of the matrix A. In this case, we say A is diagonalizable over C.
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■ Example 22.6.2 Consider

A =

3 2 4
2 0 2
4 2 3


Find all eigenvalues and a basis for each eigenspace and decide if A is diagonalizable.3

You’ll find that A is in fact diagonalizable, even though its characteristic polynomial has a repeated
root. ■

These examples illustrate a fundamental fact.

Theorem 22.6.3 — Limits of geometric multiplicity. Let λ be an eigenvalue of A. Then the
geometric multiplicity of λ is at least 1, and at most equal to the algebraic multiplicity of λ . That is,

1≤ dimEλ ≤ algebraic multiplicity of λ

Note that the first inequality follows directly from the definition: λ being an eigenvalue implies
that the eigenspace is nonzero (and so must have dimension at least 1). (Showing the other inequality is
more work and we will not prove it here.)

Problems

Remarks:
1. A question with an asterisk ‘∗’ (or two) indicates a bonus-level question.
2. You must justify all your responses.

Problem 22.1 Find the eigenvalues of the following matrices.

a)
[

2 1
3 0

]

b) ⋆

1 1 1
1 1 −1
1 1 2


c)

1 0 1
0 1 −1
1 1 2


d) ⋆

1 0 1
0 1 0
1 1 1


e)

1 0 1
0 1 0
2 1 2



3This example is done in detail in Section 23.1.
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f) ⋆

2 1 0
0 2 1
0 0 2


g)

1 0 1
0 1 −1
1 1 2


h) ⋆

2 1 0
0 2 0
0 0 2


i)

3 1 0
0 3 0
0 0 2



Problem 22.2 For each of the matrices in the previous question, find a basis for each eigenspace.
(Solutions to parts b, d, f and h are available.)



23. Diagonalizability

In the previous chapter, we defined the eigenvalues and eigenvectors of a square matrix A. To each
eigenvalue we associate its algebraic multiplicity, which is its multiplicity as a root of the characteristic
polynomial det(A−λ I) of A. We also associate to each eigenvalue its geometric multiplicity, which
is the dimension of the associated eigenspace Eλ . The key result (Theorem 22.6.3) is that for each
eigenvalue λ of A, we have

1≤ geometric multiplicity of λ ≤ algebraic multiplicity of λ .

In particular, the dimension of the eigenspace Eλ can never be larger than the algebraic multiplicity of
λ .

23.1 About diagonalizability
Recall Defintion 22.4.2: The n×n matrix A is said to be diagonalizable over the reals if there is a basis
of Rn consisting entirely of eigenvectors of A.

We saw last time that if A has n distinct real eigenvalues, then A is diagonalizable. But A can be
diagonalizable even if it has repeated eigenvalues (it’s just not guaranteed to work):

Problem 23.1.1 Consider

A =

3 2 4
2 0 2
4 2 3


Find all eigenvalues and a basis for each eigenspace and decide if A is diagonalizable.
Solution We need to calculate the eigenvalues of A first. So we begin by computing the character-
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istic polynomial:

det(A−λ I) = det

3−λ 2 4
2 −λ 2
4 2 3−λ


Although we could compute this directly, it’s easier with some zeros, so try the row operation
−2R2 +R3→ R3, which doesn’t change the value of the determinant:

= det

3−λ 2 4
2 −λ 2
0 2+2λ −1−λ


and now we notice that the (3,2) entry is exactly −2 times the (3,3) entry. So, remembering that
the determinant of a matrix is the same as that of its transpose, we can perform the column operation
2C3 +C2→C2 and this won’t change the determinant either:

= det

3−λ 10 4
2 4−λ 2
0 0 −1−λ


and now if we do the cofactor expansion on the third row, we’ll get a partially factored answer:

−(λ +1)((3−λ )(4−λ )−20) =−(λ +1)(λ 2−7λ −8) =−(λ +1)2(λ −8)

This is the characteristic polynomial of A.
Now the eigenvalues of A are the roots: −1 is an eigenvalue, of algebraic multiplicity 2; and 8

is an eigenvalue, of algebraic multiplicity 1.
Now we need to find a basis for each eigenspace.
For λ = 8, we find E8 = Null(A−8I) by row reducing−5 2 4

2 −8 2
4 2 −5

∼
 1 −4 1

5 −2 −4
−4 −2 5

∼
1 −4 1

0 18 −9
0 −18 9



∼

1 −4 1
0 1 −1

2
0 0 0

∼
1 0 −1

0 1 −1
2

0 0 0


and we are pleased: dim(E8) = dimNull(A−8I) (which is just the number of nonleading variables)
is 1, as it should be. The geometric multiplicty of 8 is 1.

A basis for E8 is {(1, 1
2 ,1)}, or {(2,1,2)}, if you prefer.

Next, to solve for E−1 = Null(A− (−I)) = Null(A+ I) we row reduce:4 2 4
2 1 2
4 2 4

∼
1 1

2 1
0 0 0
0 0 0


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which implies the geometric multiplicity of −1 is dim(E−1) = 2, which coincides with the algebraic
multiplicity of −1. A basis for the −1-eigenspace is

{(−1
2
,1,0),(−1,0,1)}

(or multiply the first by 2 if you prefer, to get {(−1,2,0),(−1,0,1)}.)
Finally, notice that the set

{(2,1,2),(−1,2,0),(−1,0,1)}

is linearly independent (check this!) and hence a basis for R3. Since R3 has a basis consisting
entirely of eigenvectors of A, we deduce that A is diagonalizable.

So what can you do with a diagonalizable matrix?
Let’s continue with the above example.

Given A =

3 2 4
2 0 2
4 2 3

 as above, construct the matrix P whose columns are an eigenvector basis

corresponding to A:

P =

2 −1 −1
1 2 0
2 0 1


Since its columns are a basis for R3, P is invertible. Call those columns vi for short. Then

AP = A
[
v1 v2 v3

]
=
[
Av1 Av2 Av3

]
=
[
8v1 (−1)v2 (−1)v3

]
=
[
v1 v2 v3

]8 0 0
0 −1 0
0 0 −1


= PD

where D is the diagonal matrix consisting of the eigenvalues of A (given in the same order as the
eigenvectors in P).

Since P is invertible, this yields

P−1AP = D or A = PDP−1

Proposition 23.1.2 — Diagonalizing a matrix. If P is a matrix whose columns are an eigenvector
basis of Rn corresponding to A, and D is the diagonal matrix whose diagonal entries are the
corresponding eigenvalues, then

P−1AP = D or A = PDP−1.
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Problem 23.1.3 Calculate An, for any integer n.
Solution We have A = PDP−1; so

A5 = AAAAA = (PDP−1)(PDP−1)(PDP−1)(PDP−1)(PDP−1) = PD5P−1

and, since D is diagonal, calculating its powers is easy:

D5 =

8 0 0
0 −1 0
0 0 −1

5

=

85 0 0
0 (−1)5 0
0 0 (−1)5

=

32,768 0 0
0 −1 0
0 0 −1


So in general, An = PDnP−1 and Dn is the diagonal matrix with diagonal entries 8n, (−1)n and
(−1)n.

A little calculation produces P−1:

P−1 =
1
9

 2 1 2
−1 4 −1
−4 −2 5


so

An =

2 −1 −1
1 2 0
2 0 1

85 0 0
0 (−1)5 0
0 0 (−1)5

 1
9

 2 1 2
−1 4 −1
−4 −2 5


which multiplies out to give a (slightly nasty, but what do you expect) formula for An, for any integer
n.

Even n =−1 (!).

The equation A = PDP−1 is why we call this process “diagonalization;” and applications like the
above are among the main reasons for our interest in diagonalization.

For your interest: in your course on differential equations, one of the classes of equations that you
come across are systems of linear differential equations. Eigenvalues are eigenvectors are the key to
solving the systems; they allow you to “uncouple” the variables. (See Problem 23.4.)

23.2 Failure of diagonalization

We have already pointed out that real matrices could have complex eigenvalues. In that case, the matrix
could be diagonalizable over C without being diagonalizable over R.

More serious, however, is when there is a deficiency in the geometric multiplicity of one or more
eigenvalues.

■ Example 23.2.1 Is A =

2 −4 −1
0 −18 −4
0 80 18

 diagonalizable?
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We compute the eigenvalues:

det

2−λ −4 −1
0 −18−λ −4
0 80 18−λ

= (2−λ )((λ +18)(λ −18)+320)

=−(λ −2)(λ 2−4)

=−(λ −2)2(λ +2)

and thus deduce that the eigenvalues are 2 (with algebraic multiplicity 2) and −2 (with algebraic
multiplicity 1).

For the eigenspace E2, we row reduce A−2I:0 −4 −1
0 −20 −4
0 80 16

∼
0 1 1

4
0 1 1

5
0 0 0

∼
0 1 0

0 0 1
0 0 0

 .

So x1 is the only nonleading variable; this gives only one basic solution (1,0,0), so dim(E2) = 1. Since
the geometric multiplicity of 2 is not equal to its algebraic multiplicity, we deduce that NO, A is not
diagonalizable.

(Note that we are using the fact that −2 will give rise to exactly a 1-dimensional eigenspace; so
there is nowhere to get a third eigenvector from, and that’s the problem.) ■

23.3 Interpreting eigenvectors geometrically
So think of multiplication by A as transforming Rn.

■ Example 23.3.1 Take A =

[
1 0
0 4

]
. Then multiplication by A stretches the y-axis by a factor of 4.

That is, if we start with a square with corners (0,0), (0,1), (1,0) and (1,1), then after multiplying by
A, these 4 corners go to the points (0,0), (0,4), (1,0) and (1,4), which are the corners of a stretched
square. This is illustrated in the following diagram:

So: multiplication by a diagonal matrix is easy to understand.
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What about B =

[
3 −1
−2 2

]
? Applying this to the same four points of the unit square (0,0), (0,1),

(1,0) and (1,1) yields
(0,0),(−1,2),(3,−2),(2,0)

which is a completely different parallelogram, as in the figure below:

But what does it mean?
The secret is in the eigenvectors. They are (1,2) (corresponding to eigenvalue 1) and (−1,1)

(corresponding to eigenvalue 4). So if we were to draw a parallelogram with vertices

(0,0),(1,2),(−1,1),(0,3)

then after multiplication by B, you’d get

(0,0),(1,2),(−4,4),(−3,6)

which makes sense when you sketch it, as in the figure below:
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Multiplication by B stretch the parallelogram by a factor of 4 in the direction (−1,1) (and by a
factor of 1 in the direction (1,2)). Looking back, this also explains what happened to our standard unit
square: it was stretched along the axis span{(−1,1)}.

The point: the basis of eigenvectors is the secret to understanding the geometry of multiplication by
A. ■

Viewing A as a transformation in this way — as a linear transformation — is fundamental to
discrete time dynamical systems see ‘Markov processes in probability’1.

What we want to do next: explore this idea of linear transformations in greater detail, and get back
to that picture we once used in class, illustrating the nullspace and column space of a matrix via a map
from Rn to Rm (the map being: multiplication by A).

Problems

Remarks:
1. A question with an asterisk ‘∗’ (or two) indicates a bonus-level question.
2. You must justify all your responses.

Problem 23.1 a) For each of the matrices A in Problem 22.1, if possible, find an invertible
matrix P and a diagonal matrix D such that P−1AP = D. If this is not possible, explain why.
(Solutions to parts b, d, f and h are available.)

b) Use the fact that A =

1 0 1
0 1 0
1 1 1

 is diagonalizable to compute A101000
before the sun becomes

a red giant and (possibly) engulfs the earth.a

aYou have between 5 and 6 billion years, but it should only take you less than 5 minutes.

Problem 23.2 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.
a) If 3 is an eigenvalue of an n×n matrix A, there must be a non-zero vector v ∈Rn with Av = 3v.

b) ⋆The matrix
[

0 −1
1 0

]
has no real eigenvalues.

c) The matrix
[
−1 1
0 −1

]
is diagonalizable.

d) ⋆If 0 is an eigenvalue of n×n matrix A, then A is not invertible.

e) If an n×n matrix A is not invertible, then 0 is an eigenvalue of A.

f) ⋆Every invertible matrix is diagonalizable.

1Search the web for ‘Markov chain’.
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g) Every diagonalizable matrix is invertible.

h) ⋆If an n×n matrix has n distinct eigenvalues, then the matrix is diagonalizable.

i) If an n×n matrix is diagonalizable then it must have n distinct eigenvalues.

j) ⋆a If an n×n matrix A has eigenvalues λ1, . . . ,λn, then detA = λ1 . . .λn.

k) ∗ If v and w are eigenvectors of a symmetric matrix A (i.e. A = AT ) which correspond to
different eigenvalues, then v ·w = 0.b

aHint: Use the fact that we know det(A−λ In) = (−1)n(λ −λ1)(λ −λ2) . . .(λ −λn).
bHint: Remember that because A is symmetric, Av ·w = v ·Aw (by Problem 14.4). Now simplify both sides using the

fact that v and w are eigenvectors and see what you obtain.

Problem 23.3 ⋆Let A =

0 1 1
1 0 1
1 1 0

.

a) Compute det(A−λ I3) and hence show that the eigenvalues of A are 2 and −1.
b) Find a basis of E2 = {x ∈ R3 | Ax = 2x}.
c) Find a basis of E−1 = {x ∈ R3 | Ax =−x}.
d) Find an invertible matrix P such that P−1AP = D is diagonal, and give this diagonal matrix D.

Explain why your choice of P is invertible.
e) Find an invertible matrix Q ̸= P such that Q−1AQ = D̃ is also diagonal, and give this diagonal

matrix D̃.

Problem 23.4 ∗a Consider the coupled system of second order differential equations for the the two
functions f and g:

f̈ =−2 f +g
g̈ = f −2g

(Here f̈ and g̈ denote
d2 f
dt2 and

d2g
dt2 respectively.) This can be also written in matrix form as:[

f̈
g̈

]
=

[
−2 1
1 −2

][
f
g

]
. Let A =

[
−2 1
1 −2

]
. Diagonalize A to write A = PDP−1 for some invertible

matix P and some diagonal matrix D =

[
λ1 0
0 λ2

]
. Now define two new functions h and k by[

h
k

]
= P−1

[
f
g

]
. Show that

[
f̈
g̈

]
=

[
−2 1
1 −2

][
f
g

]
is equivalent to

[
ḧ
k̈

]
=

[
λ1 0
0 λ2

][
h
k

]
, or, written

out fully as
ḧ = λ1 h
k̈ = λ2 k

You will find that both λ1 and λ2 are negative, so the solutions to these two (linear) second
order differential equationsb are h(t) = asin(

√
|λ1| t)+ bcos(

√
|λ1| t) and k(t) = csin(

√
|λ2| t)+

ccos(
√
|λ2| t), where a,b,c,d are real constants.
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Use this to find f and g, and solve for a,b,c and d in terms of the so-called ‘initial conditions’
f (0), ḟ (0),g(0), ġ(0).

aThis example is a simplified version of the equations of motion for 2 masses connected by springs. Search the web for
‘Normal mode’ for an example.

bSearch the web for ‘Linear differential equation’ for some details.
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24. Linear transformations

Last time, we considered the geometric interpretation of “multiplication by A”: it is a transformation of
Rn. It’s a special kind of transformation: it takes squares to parallelograms (as opposed to anything
else your imagination could provide!).

The key properties that made this work:
• A0 = 0
• A(u+v) = Au+Av for any u,v ∈ Rn

• A(ru) = r(Au), for any u ∈ Rn, r ∈ R
These properties imply that the four points of a parallelogram with vertices

0, u, v, u+v

are sent to the four points
0, Au, Av, Au+Av

(which again define the corners of a parallelogram, although it could be degenerate (a line segment) if
Au and Av are linearly dependent); and moreover that the straight line ru is sent onto the straight line
r(Au) (and similarly for the line through v).

Definition 24.0.1 Let U and V be vector spaces. A linear transformation T is a map from U to V
satisfying

1. for all u,v ∈U , T (u+v) = T (u)+T (v)
2. for all u ∈U , r ∈ R, T (ru) = rT (u)

We use the word transformation here, and map; we could use function but that’s often reserved for
a map whose range is the real numbers. Whatever the terminology, the point is that T is a black box
or formula or rule which accepts a vector of U as input, and produces a (uniquely determined) vector
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in V as output; and furthermore we stipulate that it takes sums to sums and scalar multiples to scalar
multiples.

So: multiplication by a square matrix A is a linear transformation.
We must now ask ourselves: what other kinds of linear transformations do we know?

24.1 Examples of linear transformations

■ Example 24.1.1 Let A be an m×n matrix. Define the map

T : Rn→ Rm

by TA(u) = Au. We claim that TA is a linear tranformation.
To prove this, we need to verify that:

1. for any u,v ∈ Rn, TA(u+v) = TA(u)+TA(v):

TA(u+v) = A(u+v) = Au+Av = TA(u)+TA(v)

as required.
2. for any u ∈ Rn, r ∈ R, TA(ru) = rTA(u):

TA(ru) = A(ru) = r(Au) = rTA(u)

as required.
So this is a linear transformation, for any m,n and A. ■

■ Example 24.1.2 Consider the projection onto the plane W given by

W = {(x,y,z) | x− z = 0}

Let’s first find a formula for this projection. The easy way is to note that W⊥ = span{(1,0,−1)} so for
u = (u1,u2,u3) ∈ R3, we have

projW⊥(u) =
u · (1,0,−1)

(1,0,−1) · (1,0,−1)

 1
0
−1

=
u1−u3

2

 1
0
−1


and therefore

projW (u) = u−projW⊥(u) =

u1
u2
u3

− u1−u3

2

 1
0
−1

=
1
2

u1 +u3
2u2

u1 +u3

 .

Now is this a linear transformation? We verify the two properties of linearity (with T = projW ):



24.1 Examples of linear transformations 253

1. Is projW (u+v) = projW (u)+projW (v)? Let u = (u1,u2,u3) and v = (v1,v2,v3); then

projW (u+v) = projU(u1 + v1,u2 + v2,u3 + v3)

=
1
2

(u1 + v1)+(u3 + v3)
2(u2 + v2)

(u1 + v1)+(u3 + v3)


=

1
2

u1 +u3
2u2

u1 +u3

+

v1 + v3
2v2

v1 + v3


=

1
2

u1 +u3
2u2

u1 +u3

+
1
2

v1 + v3
2v2

v1 + v3


= projW (u)+projW (v)

as required
2. Is projW (ru) = r projW (u)? Let r ∈ R and u as above, then

projW (ru) = projW (ru1,ru3,ru3)

=
1
2

ru1 + ru3
2ru2

ru1 + ru3


= r

1
2

u1 +u3
2u2

u1 +u3


= r projW (u)

Since both axioms are satisfied, this is a linear transformation. ■

■ Example 24.1.3 Show that the map T : R2 → R2 given by T (x,y) = (x+ 1,xy) is not a linear
transformation.

It suffices to show that there exists even one pair of vectors u,v for which T (u+v) ̸= T (u)+T (v);
OR to show that there is even one vector and one scalar for which T (ru) ̸= rT (u). Let’s show that in
fact these axioms fail for almost all vectors and scalars!

1. Note that
T (u+v) = T (u1 + v1,u2 + v2) = (u1 + v1 +1,(u1 + v1)(u2 + v2))

whereas

T (u)+T (v) = (u1 +1,u1u2)+(v1 +1,v1v2) = (u1 + v1 +2,u1u2 + v1v2)

but the first components can NEVER be equal (and the second components are only equal if the
“cross terms” are zero).
So, for example, T (1,0) = (2,0), T (0,1) = (1,0) and

T (1,1) = (2,1) ̸= (2,0)+(1,0) = T (1,0)+T (0,1).

We could stop now: we’ve found an example that shows T is not linear. But let’s show that T
doesn’t satisfy the second condition either.
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2. Note that
T (ru) = T (ru1,ru2) = (ru1 +1,(ru1)(ru2)) = (ru1 +1,r2u1u2)

whereas
rT (u) = r(u1 +1,u1u2) = (ru1 + r,ru1u2)

but the first component is equal only when r = 1 and the second only when either r = 1 or r = 0
or u1u2 = 0.
So, for example, T (1,1) = (2,1), but

T (2(1,1)) = T (2,2) = (3,4) ̸= 2(2,1) = 2T (1,1).

So this map is defintely not linear. ■

24.2 Constructing and describing linear transformations
Checking the linearity of a map is eerily similar to the subspace test. Is it the same thing? NO: the
subspace test is for sets, but linear transformations are maps between vector spaces (or subspaces).

The phrase “linear transformation” comes about in part because the second property implies that
the image under T of a line through the origin is again a line through the origin (or just {0}).

In particular, taking r = 0, we deduce that for any linear transformation, T (0) = 0.
But the two properties imply much more: they say that linear combinations are sent to linear

combinations, in the following sense.

Theorem 24.2.1 — Determination of Linear Transformations on a Basis.
1. Suppose T : U → V is a linear transformation and {u1, · · · ,un} is a basis for U . Then T is

completely determined by the vectors T (u1), · · · , T (un).
2. Suppose {u1, · · · ,un} is a basis for U and {v1, · · · ,vn} are ANY n vectors in V (even possibly

dependent or 0). Then there is a unique linear transformation T which satisfies T (ui) = vi for
all i.

Proof. 1. What we mean by “completely determined” is: we can determine T (u), without having a
formula for T , IF we know the vectors T (u1), · · · , T (un). Namely, let u ∈U be arbitrary. Since
{u1, · · · ,un} is a basis for U , we can write

u = a1u1 + · · ·+anun.

Then
T (u) = T (a1u1 + · · ·+anun) = a1T (u1)+ · · ·+anT (un),

as we wanted to show.
2. We need to give a rule for a map T which sends ui to vi. We use the idea above: for any u ∈U ,

write u = a1u1 + · · ·+anun. Then define

T (u) = a1v1 + · · ·+anvn.

This gives a function from U to V and you can check that it is linear (try it!).
■

This theorem is very powerful. Much in the same way that proving the existence of a basis of any
vector space simplified things by showing that every n-dimensional vector space is really just Rn in
disguise, this theorem implies that every linear transformation is just matrix multiplication in disguise!
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Theorem 24.2.2 — The standard matrix of a linear transformation. Let T : Rn→ Rm be a linear
transformation. Then there is an m×n matrix A such that

T (x) = Ax

for all x ∈ Rn. More precisely, if {e1, · · · ,en} is the standard basis for Rn, then the matrix A is given
by:

A = [T (e1) T (e2) · · · T (en)] .

The matrix A is called the standard matrix of T .

■ Example 24.2.3 Consider the projection T = projW onto the plane W = {(x,y,z) | x− z = 0}; we
saw earlier that T (u1,u2,u3) =

1
2(u1 +u3,2u2,u1 +u3).

Construct the matrix as in the theorem: T (1,0,0) = (1
2 ,0,

1
2), T (0,1,0) = (0,1,0), T (0,0,1) =

(1
2 ,0,

1
2), so

A =

1
2 0 1

2
0 1 0
1
2 0 1

2


and we see directly that

Au =

1
2 0 1

2
0 1 0
1
2 0 1

2

u1
u2
u3

=
1
2

u1 +u3
2u2

u1 +u3

= T (u)

as required.
■

Proof. To see why it works, recall that if you have a vector

u =


u1
u2
...

un


then in fact

u = u1e1 + · · ·+unen.

Thus T (u), by Theorem 24.2.1, is

T (u) = u1T (e1)+ · · ·+unT (en).

But taking linear combinations is just matrix multiplication, so we have

T (u) = [T (e1) T (e2) · · · T (en)]


u1
u2
...

un

= Au.

■
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24.3 Kernels and images

This new interpretation of the projection map as a linear transformation gives us more geometric ideas
about what the operation of projection really does. For instance, the projection map annihilates (sends
to 0) any vector of U⊥. But it completely covers U in the sense that ever point of U is the image of
some element under T .

To state this more clearly, we need some definitions.

Definition 24.3.1 Let T : U →V be a linear transformation. Then
• the kernel of T , denoted ker(T ), is the set of all elements of U which are sent to 0 by T , that

is,
ker(T ) = {u ∈U | T (u) = 0}

• the image of T , denoted im(T ), is the set of all elements of V which are equal to T (u) for
some u ∈U , that is,

im(T ) = {v ∈V | v = T (u) for some u ∈U .}

Now both ker(T ) and im(T ) are subsets of vector spaces, and the natural first question is: are they
subspaces? Answer: YES, and they’re even familiar ones!

Theorem 24.3.2 — Kernels and Images of the Standard Matrix. Let T : Rn→ Rm be a linear
transformation with standard matrix A. Then

ker(T ) = Null(A) and im(T ) = Col(A).

The first equality is clear once you recall that T (u) = Au; and for the second, one should go back
and look up the original definition of Col(A) = im(A).

24.4 A return to the rank-nullity theorem

Note that the rank-nullity theorem1 can be restated, for a linear transformation T : U →V , as

dim(ker(T ))+dim(im(T )) = n

where n = dim(U). We interpret this as giving an accounting of what T does to the vectors in U . If
T sends U onto a subspace of V of dimension equal to U , then the kernel must be {0}. On the other
hand, if the dimension of the image is smaller than dimU , then those ‘missing’ dimensions had to go
somewhere; in fact, they ended up in the kernel of T , as the equation above suggests.

For example. the projection onto the plane W we saw earlier has kernel equal to the 1-dimensional
W⊥ and image is all of (2-dimensional) W : and 2+1 = 3 = dim(R3).

Conversely, knowing that we can think about T as a matrix multiplication means that we know that
a basis for im(T ) is any basis for Col(A) (and this is something that we find easy to answer).

1Some like to call this theorem the conservation of dimension: since the dimension of the subspace sent to 0 (dimkerT )
plus the dimension of the image of T (“what’s left”), is the same the dimension you began with: n = dimU . “Total dimension
is preserved."
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24.5 A remark about the projection matrix
When we calculated the projection onto a subspace before, one of our methods was:

• Create a matrix B such that Col(B) =W
• Solve (BT B)x = BT b.
• projW (b) = Bx

Putting this all together: Suppose B has linearly independent columns, so that BT B is invertible. (This
was a homework exercise.) Then

projW (b) = B(BT B)−1BT b

so the projection is given by multiplication by the matrix

B(BT B)−1BT .

Therefore, this must be the standard matrix of T ! You can try this out for the example above.

Problems

Remarks:
1. A question with an asterisk ‘∗’ (or two) indicates a bonus-level question.
2. You must justify all your responses.

Problem 24.1 State whether each of the following defines a linear transformation.

• If you say it isn’t linear, you must give an explicit example to illustrate.
• If you say it is linear, you must give a clear explanation - by quoting a theorem presented in

class, or by verifying the conditions in the definition in every case.

a) T : R2→ R3 defined by T (x,y) = (x,y,x+ y)

b) ⋆T : R3→ R2 defined by T (x,y,z) = (2z+ x,y)

c) T : R2→ R2 defined by T (x,y) = (x,xy)

d) ⋆T : R2→ R2 defined by T (v) =
[

0 −1
1 0

]
v

e) T : R3→ R3 defined by T (v) = v× (1,2,3), where ‘×’ denotes the cross product.

f) ⋆T : R3→ R3 defined by T (v) = proj(1,1,−1)(v).

g) T : R3→ R3 defined by T (v) = v−proj(1,1,−1)(v).

h) ⋆T : R3→ R3 defined by T (v) = projv(1,1,−1).

i) T : R3→ R3 defined by T (v) =
(
v · (1,1,−1)

)
(1,0,1).

j) ⋆T : R3→ R3 defined by T (v) = 2v.

k) T : R3→R3 defined by T (v) = projH(v), where H is the plane through the origin with normal
(1,1,0).



258 Chapter 24. Linear transformations

l) ⋆T : R3→ R2 defined by T (v) = Av, where A =

[
1 0 1
1 2 3

]
.

Problem 24.2 In each of the following, find the standard matrix of T and use it to give a basis for
kerT and im T and verify the conservation of dimension.

a) T : R2→ R3 defined by T (x,y) = (x,y,x+ y)

b) ⋆T : R3→ R2 defined by T (x,y,z) = (2z+ x,y)

c) T : R3→ R3 defined by T (v) = v× (1,2,3), where ‘×’ denotes the cross product.

d) ⋆T : R3→ R3 defined by T (v) = proj(1,1,−1)(v).

e) T : R3→ R3 defined by T (v) = v−proj(1,1,−1)(v).

f) ⋆T : R3→R3 defined by T (v) = projH(v), where H is the plane through the origin with normal
(1,1,0).

Problem 24.3 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

a) If T : R3→ R2 is linear, then kerT ̸= {0}.

b) ⋆If T : R4→ R2 is linear, then dimkerT ≥ 2.

c) If T : R4→ R5 is linear, then dimim T ≤ 4.

d) ⋆If T : R3→R2 is linear, and {v1,v2} ⊂R3 is linearly independent, then {T (v1),T (v2)} ⊂R2

is linearly independent.

e) If T : R3 → R2 is linear, kerT = {0}, and {v1,v2} ⊂ R3 is linearly independent, then
{T (v1),T (v2)} ⊂ R2 is linearly independent.

f) ⋆If T : R3→ R3 is linear, and kerT = {0}, then im T = R3.

g) If T : R2→ R3 is linear, and kerT = {0}, then im T = R3.

Problem 24.4 ∗ State whether each of the following defines a linear transformation.

• If you say it isn’t linear, you must give an explicit example to illustrate.
• If you say it is linear, you must give a clear explanation - by quoting a theorem presented in

class, or by verifying the conditions in the definition in every case.

a) T : P→ P defined by T (p) = p′, where p′ denotes the derivative of p.

b) ⋆T : P→ P defined by T (p)(t) =
∫ t

0
p(s)ds.



24.5 A remark about the projection matrix 259

c) tr : M22→ R defined by tr
[

a b
c d

]
= a+d.

d) ⋆det : M22→ R defined by det
[

a b
c d

]
= ad−bc.

e) T : F(R)→ R defined by T ( f ) = f (1).
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25. Solutions to selected exercises

Problems of Chapter 1
1.1 Express the following complex numbers in Cartesian form: a+bi, with a,b ∈ R.

a) (2+ i)(2+2i) = 2+6i

b)
1

1+ i
=

1
2
− 1

2
i

c)
8+3i
5−3i

=
31
34
− 39

34
i

d)
5+5 i
1− i

= 5i

e)
(1+2i)(2+5i)

3+4i
=

12
25

+
59
25

i

f)
1− i
2− i

+
2+ i
1− i

=
11
10

+
13
10

i

g)
1

(1− i)(3−2i)
=

1
26

+
5
26

i

1.2 Find the polar form of the following complex numbers: (i.e. either as reiθ or as r(cosθ + isinθ),
with r ≥ 0 and −π < θ ≤ π)

a) 3
√

3−3i = 6(cos(−π/6)+ isin(−π/6)) = 6e−
π

6 i

b)
3
√

3−3i√
2+ i
√

2
= 3(cos(−5π/12)+ isin(−5π/12)) = 3e−

5π

12 i

c)
1−
√

3 i
−1+ i

=
√

2(cos(11π/12)+ isin(11π/12)) =
√

2e
11π

12 i

d)
5+5

√
3 i√

2−
√

2 i
= 5(cos(7π/12)+ isin(7π/12)) = 5e

7π

12 i
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e)
3+3

√
3 i

−2+2i
=

3
√

2
2

(cos(5π/12)− isin(5π/12)) =
3
√

2
2

e
5π

12 i

1.4 If z is a complex number,
(i) Is it possible that z = z̄? Solution: (Yes, iff z ∈ R:if z = a+bi, then z = z̄ iff a+bi = a−bi)

iff b =−b iff z = a ∈ R.
(ii) Is it possible that |z̄|> |z|? Solution: (No: |z̄|= |z|, always: if z = a+bi, then |z|=

√
a2 +b2 =√

a2 +(−b)2 = |z̄|.)
(iii) Is it possible that z̄ = 2z? Solution: (Yes, but only if z = 0: If z̄ = 2z, then by the previous part,

|z|= 2|z|, so |z|= 0. So z = 0 too.)

Give examples to illustrate your affirmative answers, and explanations if you say the statement is
always false.

Problems of Chapter 2
2.3 If A = (1, 2, 3), B = (−5, −2, 5), C = (−2, 8, −10) and D is the midpoint of AB, find the
coordinates of the midpoint of CD.

Solution: The position vector v of the midpoint of CD is v = (C+D)/2. But as D = (A+B)/2,
v = (C+(A+B)/2)/2 = (−2, 4, −3)

2.4 Solve the following problems using the dot product.

(b) Find the angle between the vectors (0, 3, −3) and (−2, 2, −1).

Solution: If θ is the angle between these two vectors, then

cosθ =
(0, 3, −3) · (−2, 2, −1)
∥(0, 3, −3)∥∥(−2, 2, −1)∥

=
9√

18
√

9
=

√
2

2
.

Hence θ =
π

4
.

2.5 Solve the following problems.

(a) If u = (2, 1, 3) and v = (3, 3, 3) find projv u.

Solution:

projv u =
u · v
∥v∥2 v =

(2, 1, 3) · (3, 3, 3)
∥(3, 3, 3)∥2 (3, 3, 3) =

18
27

(3, 3, 3) = (2,2,2).

(b) If u = (3, 3, 6) and v = (2, −1, 1) find the length of the projection of u along v.

Solution:
∥projv u∥= |u · v|

∥v∥2 ∥v∥=
|u · v|
∥v∥

=
(3, 3, 6) · (2, −1, 1)
∥((2, −1, 1))∥

=
3
2

√
6.

(c) Find angle between the planes with Cartesian equations x− z = 7 and y− z = 234

Solution: The angle between two planes is always the acute angle between their normal lines. So
we find the angle ϕ between their normals (1,0,1 and (0,1,−1) and adjust if necessary. The angle ϕ is
2π

3
, so the answer is π− 2π

3
=

π

3
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Problems of Chapter 3

3.1 Solve the following problems using the cross and/or dot products.

(b) Find all vectors in R3 which are orthogonal to both (−1,1,5) and (2,1,2).

Solution: Such vectors will be parallel to the cross product of these two vectors, which is found to
be (−3,12,−3). Hence {(t, −4t, t)| t ∈ R} is the solution.

(d) If u = (−4, 2, 7), v = (2, 1, 2) and w = (1, 2, 3), find u · (v×w).

Solution: This is (−4, 2, 7) · (2, 1, 2)× (1, 2, 3) = (−4, 2, 7) · (−1,−4,3) = 17.
3.2 Solve the following problems using the appropriate products.

(b) Find the area of the triangle with vertices A = (−1, 5, 0), B = (1, 0, 4) and C = (1, 4, 0)

Solution: This will be
1
2

the length of the cross product of the two vectors B−A and C−A, and so

is
1
2
∥(4,8,8)∥= 6.

(d) Find the volume of the parallelepiped determined by u = (1, 1, 0), v = (1, 0, −1) and
w = (1, 1, 1).

Solution: This is simply the absolute value of u · v×w and so is 1.
3.3 Solve the following problems.

(a) Find the point of intersection of the plane with Cartesian equation 2x+2y− z = 5, and the line
with parametric equations x = 4− t, y = 13−6t, z =−7+4t.

Solution: Once we substitute x = 4− t, y = 13−6t and z =−7+4t into 2x+2y− z = 5, we can
solve for t, which we then substitute backinto x = 4− t, y = 13−6t and z =−7+4t to obtain (2, 1, 1).

(b) If L is the line passing through (1, 1, 0) and (2, 3, 1), find the point of intersection of L with
the plane with Cartesian equation x+ y− z = 1.

Solution: We find the (scalar) parametric equations for the L, and then proceed as in part (a) to
obtain (1/2,0, −1/2)

(d) Do the planes with Cartesian equations 2x−3y+4z = 6 and 4x−6y+8z = 11 intersect?

Solution: No, their normals are parallel, so the planes are, but their equations are not multiples of
the other.

(f) Find the line of intersection of the planes with Cartesian equations x+ 11y− 4z = 40 and
x− y =−8.

Solution: A direction vector for this line will be perpendicular to both normal vectors, and so can
be obtained as the cross product of these normals, namely (−4,−4,−12). (We will choose (1,1,3)
instead.) Now all we need to do is find one point on this line. This is done by substituting x = y−8 into
x+11y−4z = 40, and simplifying to obtain 3y− z = 12. Now set z = 0, to obtain the point (−4, 4, 0).
Hence the line is {(−4, 4, 0)+ t(1, 1, 3), | t ∈ R}

3.4 Solve the following problems.
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(b) Find the distance from the point Q = (−2, 5, 9) to the plane with Cartesian equation 6x+2y−
3z =−8

Solution: Choose any point P on the plane - say P = (0,−4,0). The the distance between Q and
the plane is the length of the projection of QP in the direction of the normal (6,2,−3). This length is∣∣∣(Q−P) · (6,2,−3)
∥(6,2,−3)∥

∣∣∣= 3.

(d) Find the distance from the point P = (8, 6, 11) to the line containing the points Q = (0, 1, 3)
and R = (3, 5, 4).

Solution: Draw a picture: this will be the smaller of the lengths of the vectors (Q− P)±
projR−Q(Q−P). Alternatively, we could solve for s in 0 = (R−Q) · (P− (Q+ s(R−Q)) to find
the point S = Q+ s(R−Q) on the line closest to P, and then compute ∥P− S∥. In either case, the
answer is 7.

3.5 Find the scalar and vector parametric forms for the following lines:

(b) The line containing (−5, 0, 1) and which is parallel to the two planes with Cartesian equations
2x−4y+ z = 0 and x−3y−2z = 1.

Solution: This line will be perpendicular to both normals, and so parallel to the cross product of
the normals. Hence the scalar parametric form is x =−5+11t, y = 5t, z = 1−2t, t ∈R, and the vector
parametric form is (−5, 0, 1)+ t(11,5,−2).

3.6 Find a Cartesian equation for each of the following planes:

(b) The plane parallel to the vector (1,1,−2) and containing the points P = (1,5,18) and Q =
(4,2,−6) 5x−3y+ z = 8.

Solution: This will be the plane through P with normal parallel to the cross product of (1,1,−2)
and P−Q. An easy computation then yields the equation 5x−3y+ z = 8 (after dividing by 6).

(d) The plane containing the two lines {(t−1,6−t,−4+3t) | t ∈R} and {(−3−4t,6+2t,7+5t) |
∈ R}

Solution: Pick a point on either line, say P = (−1,6,−4). Then this will be the plane through P
with normal parallel to the cross product of the direction vectors of each line. An easy computation
then yields the equation 11x+17y+2z = 83.

(f) The plane containing the point P = (1,−1,2) and the line {(4,−1+2t,2+ t) | t ∈R}.Solution:

Pick a point on the line, say Q = (4,−1,2). This will be the plane through P with normal parallel to
the cross product of P−Q and a direction vector for the line (say) (0,2,1). One obtains (after division
by ±3) the equation y−2z =−5.

(h) The plane containing the point P = (1, −7, 8) which is perpendicular to the line {(2+2t,7−
4t,−3+ t | t ∈R}. Solution: This will be the plane through P with normal paralle to a direction vector

for the line. One obtains the equation 2x−4y+ z = 38.

3.7 Find a vector parametric form for the planes with Cartesian equations given as follows. (i.e.
find some a ∈ H and two non-zero, non-parallel vectors u,v ∈ R3, parallel to the plane H. Then
H = {a+ su+ tv | s, t ∈ R}.)
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(b) x− y−2z = 4.

Solution: Take a = (4,0,0) ∈ H. To pick u and v, simply choose two (non-zero, non-parallel)
vectors perpendicular to a normal vector (1,−1,−2). So u = (1,1,0) and v = (2,0,1) will do. Then
H = {(4,0,0)+ s(1,1,0)+ t(2,0,1) | s, t ∈ R}. (There are of course infinitely many correct answers.)

3.8 Let u,v and w be any vectors in R3. Which of the following statements could be false, and give
an example to illustrate each of your answers.

(1) u · v = v ·u. Solution: This is always true.

(2) u× v = v× u. Solution: Since u× v = −v× u always holds, this is only true if u and v

are parallel or either is zero. So for a counterexample, take u = (1,0,0) and v = (0,1,0). Then
u× v = (0,0,1) ̸= (0,0,−1) = v×u

(3) u · (v+w) = v ·u+w ·u. Solution: This is always true.

(4) (u+2v)× v = u× v. Solution: This is always true, since v× v = 0 always holds.

(5) (u× v)×w = u× (v×w). Solution: This is almost always false. Indeed by the last question

in this set of exercises, it is true only if (u ·w)v− (u · v)w = (w ·u)v− (w · v)u ⇐⇒ (u · v)w = (w · v)u.
So for a counterexample, take u = (1,0,0) = v and w = (0,1,0). Then (u× v)×w = (0,0,0) ̸=
(0,−1,0) = u× (v×w).

3.9 Let u,v and w be vectors in R3. Which of the following statements are (always) true? Explain
your answers, including giving examples to illustrate statements which could be false.

(i) (u×v) ·v = 0. Solution: This is always true: it is a property of the cross product which is easliy

checked.

(ii) (v×u) · v =−1 Solution: This is always false, and the left hand side is always zero. So take

u = v = 0.

(iii) (u× v) ·w is the volume of the of the parallelepiped determined by u, v and w. Solution:

Volumes are always positive, so this is only true if (u×v) ·w= |(u×v) ·w|; so if u=(1,0,0),v=(0,1,0)
and w = (0,0,−1), (u× v) ·w =−1, which is not the volume of the unit cube.

(iv) ||u× v||= ||u|| ||v|| cosθ where θ is the angle between u and v. Solution: This is only true if

cosθ = sinθ , since it is always true that ||u× v||= ||u|| ||v|| sinθ , where θ is the angle between u and
v. So take u = (1,0,0) and v = (0,1,0) for a counterexample.

(v) |u · v|= ||u|| ||v|| cosθ where θ is the angle between u and v. Solution: This is always true.

Problems of Chapter 4
4.1 Determine whether the following sets are closed under the indicated rule for addition.

(b) L = {(x,y) ∈ R2 | x−3y = 0}; standard addition of vectors in R2.

Solution: This is closed under addition: Suppose (x,y),(x′,y′)∈ L. Then x−3y= 0 and x′−3y′= 0.
Since (x,y)+ x′,y′) = (x+ x′,y+ y′) satisfies x+ x′−3(y+ y′) = (x−3y)+(x′−3y′) = 0+0 = 0, we
see that (x,y)+(x′,y′) ∈ L.
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(d) S = {(x,y) ∈ R2 | xy≥ 0} ; standard addition of vectors in R2.

Solution: This is not closed under addition. For example, (1,2) and (−2,−1) both belong to S,
but their sum, (−1,1) does not.

(f) K = {(x,y,z) ∈ R3 | x+2y+ z = 1} ; standard addition of vectors in R3. Solution: This is not

closed under addition. For example, both (1,0,0) and (0,0,1) belong to K but their sum, (1,0,1) does
not.

(h) M = {(x,x+2) ∈ R2 | x ∈ R}; Non-standard addition: (x,y)+̃(x′,y′) = (x+ x′,y+ y−2).

Solution: This is closed under the weird addition rule (but not under the standard one- see part (a)):
Let u = (x,x+2) and v = (x′,x′+2) be any two points in M. Then u+̃v = (x+ x′,(x+2)+(x′+2)−
2) = (x+ x′,x+ x′+2) ∈M.

4.2 Determine whether each of the following sets is closed under the indicated rule for multiplication
of vectors by scalars.

(b) L = {(x,y) ∈ R2 | x−3y = 0}; standard rule for multiplication of vectors in R2 by scalars.

Solution: This is closed under multiplication by scalars: Let u = (x,y) ∈ L (so x− 3y = 0) and
k ∈ R be any scalar. Then ku = (kx,ky) satisfies kx−3(ky) = k(x−3y) = k0 = 0, and so ku ∈ L.

(d) S = {(x,y) ∈ R2 | xy≥ 0}; standard rule for multiplication of vectors in R2 by scalars.

Solution: This is closed under multiplication by scalars (despite not being closed under addition-
see (d) in Q.1): Let u = (x,y) ∈ S (so xy ≥ 0) and k ∈ R be any scalar. Then ku = (kx,ky) satisfies
kx(ky) = k2xy≥ 0, since xy≥ 0 and k2 ≥ 0. So ku ∈ S.

(f) K = {(x,y,z) ∈R3 | x+2y+ z = 1}; standard rule for multiplication of vectors in R3 by scalars.

Solution: This is not closed under multiplication by scalars. For example, u = (1,0,0) ∈ K but
2u = (2,0,0) /∈ K

(h) M = {(x,x+2) ∈ R2 | x ∈ R}; Non-standard multiplication of vectors by scalars k ∈ R:

k⊛ (x,y) = (kx,ky−2k+2).

Solution: This is closed under this weird rule for multiplication of vectors by scalars (but not
under the standard rule: see part (a)): Let u = (x,x+2) ∈M, and k ∈ R. Thenk⊛u = k⊛ (x,x+2) =
(kx,k(x+2)−2k+2) = (kx,kx+2) ∈M!

4.3 Determine whether the following subsets of F(R) = { f | f : R→ R} are closed under the
standard addition of functions in F(R). (Recall that F(R) consists of all real-valued functions of a real
variable; i.e., all functions with domain R, taking values in R).

(b) T = { f ∈ F(R) | f (2) = 1}.

Solution: This is not closed under addition: for example, the constant function f (x) = 1,∀x ∈ R
belongs to T but f + f , which is the constant function 2, does not.

(d) N = { f ∈ F(R) | for all x ∈ R, f (x)≤ 0}.

Solution: This is closed under addition: Let f ,g ∈ N (so ∀x ∈ R, f (x) ≤ 0 and g(x) ≤ 0. Then,
since the sum of two non-positve numbers is is still non-positive, ∀x∈R, ,( f +g)(x) = f (x)+g(x)≤ 0.
Hence f +g ∈ N.
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(f) O = { f ∈ F(R) | For all x ∈ R, f (−x) =− f (x)}.

Solution: This is the set of all so-called ‘odd’ functions, and it is closed under addition: Let f ,g∈O.
Then, ∀x ∈ R, f (−x) = − f (x) and g(−x) = −g(x), so, ∀x ∈ R,( f + g)(−x) = f (−x) + g(−x) =
− f (x)−g(x) =−( f (x)+g(x)) =−( f +g)(x). Hence f +g ∈ O.

4.4 Determine whether the following sets are closed under the standard rule for multiplication of
functions by scalars in F(R).

(b) T = { f ∈ F(R) | f (2) = 1}.

Solution: This is not closed under multiplication by all scalars. For example, the constant function
1 belongs to T , but if we multiply this function by the scalar 2, we obtain the constant function 2, which
does not belong to T .

(d) { f ∈ F(R) | For all x ∈ R, f (x)≤ 0}.

Solution: This is not closed under multiplication by all scalars (despite being closed under addition
- see part (d) in the previous question): for example, the constant function g(x) =−1,∀x ∈ R belongs
to N but (−1)g, which is the constant function 1, does not.

(f) O = { f ∈ F(R) | For all x ∈ R, f (−x) =− f (x)}.

Solution: This is closed under addition: Let f ∈ O. Then, ∀x ∈ R, f (−x) =− f (x). Now let k ∈ R
be any scalar. Then, ∀x ∈R,(k f )(−x) = k( f (−x)) = k(− f (x)) =−k f (x) =−(k f )(x). Hence k f ∈O.

4.5 Determine whether the following sets are closed under the standard operation of addition of
matrices in M22(R).

(b) S =

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a+d = 0

}
.

Solution: This is closed under addition: suppose A =

[
a b
c d

]
and b =

[
a′ b′

c′ d′

]
belong to S. So

a+d = 0 and a′+d′ = 0. Then A+B =

[
a+a′ b+b′

c+ c′ d +d′

]
satisfies (a+a′)+(d+d′) = (a+d)+(a′+

d′) = 0+0 = 0, and so A+B ∈ S.

(d) U =

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ ad = 0

}
.

Solution: This is not closed under addition: for example, A =

[
1 0
0 0

]
and A =

[
0 0
0 1

]
both belong

to U , but A+B =

[
1 0
0 1

]
does not.

4.6 Determine whether the following sets are closed under the standard rule for multiplication of
matrices by scalars in M22(R).

(b)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a+d = 0

}
.



270 Chapter 25. Solutions to selected exercises

Solution: This is closed under multiplication by scalars: suppose A =

[
a b
c d

]
belongs to S. So

a+d = 0. If k ∈ R is any scalar, Then kA =

[
ka kb
kc kd

]
satisfies ka+ kd = k(a+d) = k0 = 0, and so

kA ∈ S.

(d) U =

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ ad = 0

}
.

Solution: This is closed under multiplication by scalars (despite not being closed under addition -

see part (d) of the previous question): suppose A =

[
a b
c d

]
belongs to U . So ad = 0. If k ∈ R is any

scalar, Then kA =

[
ka kb
kc kd

]
satisfies (ka)(kd) = k2(ad) = k20 = 0, and so kA ∈U .

4.7 The following sets have been given the indicated rules for addition of vectors, and multiplication
of objects by real scalars (the so-called ‘vector operations’ ). If possible, check if there is a zero vector
in the subset in each case. If it is possible, show your choice works in all cases, and if it is not possible,
give an example to illustrate your answer.

(Note: in the last two parts, since the vector operations are not the standard ones, the zero vector
will probably not be the one you’re accustomed to.)

(b) L = {(x,y) ∈ R2 | x−3y = 0}; standard vectors operations in R2.

Solution: Since the operations are standard, the zero vector is the standard one, namely (0,0).
Since 0−3(0) = 0, (0,0) ∈ L.

(d) S = {(x,y) ∈ R2 | xy≥ 0}; standard vectors operations in R2.

Solution: Since the operations are standard, the zero vector is the standard one, namely (0,0).
Since 00 = 0≥ 0, (0,0) ∈ S.

(f) K = {(x,y,z) ∈ R3 | x+2y+ z = 1}; standard vectors operations in R3.

Solution: Since the operations are standard, the zero vector is the standard one, namely (0,0,0).
However, 0+2(0)+0 = 0 ̸= 1, so (0,0,0) /∈ K.

(h) M = {(x,x+ 2) ∈ R2 | x ∈ R}; Non-standard operations:– Addition: (x,y)+̃(x′,y′) = (x+
x′,y+ y′−2). Multiplication of vectors by scalars k ∈ R: k⊛ (x,y) = (kx,ky−2k+2).

Solution: Since the operations are not standard, the zero vector is unlikely to be the standard one.
Let’s find out what it might be: we need Õ= (a,b), such that (x,y)+̃(a,b) = (x,y), for all (x,y)∈M. So
we need (x,x+2)+̃(a,b) = (x,x+2) for all x ∈R. Well, (x,x+2)+̃(a,b) = (x+a,(x+2)+b−2) =
(x+a,x+b). So (x,x+2)+̃(a,b) = (x,x+2) for all x iff x = x+a and x+b = x+2 for all x ∈ R. So
we need a = 0 and b = 2. So the vector Õ = (0,2) works as the zero vector in this case. Moreover, as
you can see, (0,2) ∈M, so this set with the weird operations does indeed have a zero!

4.8 Explain your answers to the following:

(a) Determine whether the zero function (let’s denote it 0) of F(R) belongs to each of the subsets in
question 3.

(3b) T = { f ∈ F(R) | f (2) = 1}.

Solution: Since 0(2) = 0 ̸= 1, this set does not contain the zero function.
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(3d) { f ∈ F(R) | For all x ∈ R, f (x)≤ 0}. Since 0(x) = 0≤ 0 for all x ∈ R, this set does contain
the zero function.

(3f) O = { f ∈ F(R) | For all x ∈ R, f (−x) = − f (x)}. Since 0(−x) = 0 = −0 = −0(x) for all
x ∈ R, this set does contain the zero function.

4.9 The following sets have been given the indicated rules for addition of vectors, and multiplication
of objects by real scalars. In each case, If possible, check if vector in the subset has a ‘negative’ in the
subset.

Again, since the vector operations are not the standard ones, the negative of a vector will probably
not be the one you’re accustomed to seeing.

(a) M = {(x,x+2) ∈ R2 | x ∈ R}; Non-standard Operations:– Addition:

(x,y)+̃(x′,y′) = (x+ x′,y+ y−2).

Multiplication of vectors by scalars k ∈ R: k⊛ (x,y) = (kx,ky−2k+2).

Solution: To find the negative of a vector (if it exists), we need to know the zero. But we
found this in Q. 7(h): 0̃ = (0,2) is the zero for this weird addition. To find the negative of a vector
u = (x,x+ 2) ∈ M, we need to solve the equation (x,x+ 2)+̃(c,d) = 0̃ = (0,2) for c and d. But
(x,x+2)+̃(c,d) = (x+ c,(x+2)+d−2) = (x+ c,x+d), so we need x+ c = 0 and x+d = 2. Thus,
c =−x and d = 2− x, so that the negative of (x,x+2) is actually (−x,2− x).

Now, since 2− x = (−x) + 2, this puts (−x,2− x) in M, i.e.(−x,2− x) really is of the form
(x′,x′+2) – take x′ =−x ! So this set does contain the negative of every element!

4.10 Explain your answers to the following:

(b) Determine whether the subsets of F(R) in question 3, equipped with the standard vector
operations of F(R) are vector spaces.

(3b) T = { f ∈ F(R) | f (2) = 1}.

Solution: Since this set does not contain the zero function (see Q.8(a)), it is not a vector space.
(3d) { f ∈ F(R) | For all x ∈ R, f (x)≤ 0}.

Solution: We saw in Q.4(d) that this set is not closed under multiplication by scalars, so it is not a
vector space.

(3f) O = { f ∈ F(R) | For all x ∈ R, f (−x) =− f (x)}.

Solution: We saw in previous questions that O is closed under addition, under multiplication by
scalars, and has a zero. There remains the existence of negatives, and the 6 arithmetic axioms.

To see that 0 has negatives, let f ∈ 0. Then ∀x∈R, f (−x) =− f (x). Define a function g : R→R by
g(x) =− f (x),∀x ∈ R. It is clear that f +g = 0, so it remains to see that g ∈ O. But, ∀x ∈ R,g(−x) =
− f (−x) =−(− f (x)) = f (x) =−g(x), so indeed g ∈ O.

The arithmetic axioms are identities that hold for all functions in F(R), so in particular these
identities are satisfied for any subset. In particular, all the arithmetic axioms hold for O.

Thus O, with the standard operations inherited from F(R), is indeed itself a vector space.
4.11 Justify your answers to the following:

(a) Equip the set V = R2 with the non-standard operations:– Addition:

(x,y)+̃(x′,y′) = (x+ x′,y+ y−2).



272 Chapter 25. Solutions to selected exercises

Multiplication of vectors by scalars k ∈ R:

k⊛ (x,y) = (kx,ky−2k+2).

Check that R2, with these new operations, is indeed a vector space.

Solution: It is clear that R2 with these operations is closed under these weird operations —look at
the right hand side of the definitions: they live in R2. We saw in Q.7(h) that the vector 0̃ = (0,2) works
as a zero in the subset we called M. It’s easy to check it works on all of R2. We also saw in Q.9(a) that
the negative of (x,y) was (−x,2− y), and you can check that this works for all of R2.

That leaves us with 6 aritmetic axioms to check. Here, I will check only 3, and leave the rest to you.
(They all hold.)

Let’s check the distributive axiom: k⊛ (u+̃v) = k⊛u+̃k⊛ v.
Well,

k⊛ ((x,y)+̃(x′,y′)) = k⊛ (x+ x′,y+ y′−2)

= (k(x+ x′),k(y+ y′−2)−2k+2)

= (kx+ kx′,ky+ ky′−2k−2k+2)

= (kx+ ky,(ky−2k+2)+(ky′−2k+2)−2)

= (kx,ky−2k+2)+̃(kx′,ky′−2k+2)

= k⊛ (x,y)+̃⊛ (x′,y′)

Hence the distributive law holds!
Let’s check the axiom: 1⊛u = u: Well, 1⊛ (x,y) = (x,y−2(1)+2) = (x,y), so that’s OK too.
The last one I’ll check is that for all k, l ∈ R and for all u ∈ R2,

(k+ l)⊛u = (k⊛u)+̃(l ⊛u).

Well,

(k+ l)⊛ (x,y) = ((k+ l)x,(k+ l)y−2(k+ l)+2)

= (kx+ lx,ky+ ly−2k−2l +2)

= (kx+ lx,(ky−2k+2)+(ly−2l +2)−2)

= (kx,ky−2k+2)+̃(lx, ly−2l +2)

= (k⊛ (x,y)+̃(l ⊛ (x,y)),

as required.

Problems of Chapter 5
Note that in the following, I have used Theorem 6.4.1 extensively: I suggest you read ahead and
acquaint yourself with this very useful result!

5.1 Determine whether each of the following is a subspace of the indicated vector space. Assume
the vector space has the standard operations unless otherwise indicated.

(b) {(x,x−3) ∈ R2 | x ∈ R}; R2.

Solution: Since this set does not contain (0,0), it is not a subspace of R2.



273

(e) {(x,y) ∈ R2 | x−3y = 0}; R2.

Solution: This is a line through the origin in R2 and hence is a subspace of R2. Alternatively,{(x,y)∈
R2 | x− 3y = 0} = {(3y,y) | y ∈ R} = {y(3,1) | y ∈ R} = span{(3,1)} and hence is a subspace of
R2.

(g) {(x,y) ∈ R2 | xy≥ 0}; R2.

Solution: We saw in previous exercises that this set is not closed under addition, and hence is not a
subspace of R2.

(i) {(x,y,z) ∈ R3 | x+2y+ z = 1}; R3.

Solution: This set does not contain (0,0,0), and hence is not a subspace of R2.

(k) W = {(x,y,z,w) ∈ R4 | x− y+ z−w = 0} ; R4.

Solution:

W = {(x,y,z,w) ∈ R4 | x = y− z+w}
= {(y− z+w,y,z,w,) | y,z,w ∈ R}
= {y(1,1,0,0)+ z(−1,0,1,0)+w(1,0,0,1) | y,z,w ∈ R}
= span{(1,1,0,0),(−1,0,1,0),(1,0,0,1)}

and hence is a subspace of R4.

5.2 Determine whether each of the following is a subspace of

F(R) = { f | f : R→ R},

with its standard operations. (Here, you’ll need to use the subspace test, except perhaps in the last part.)

(b) { f ∈ F(R) | f (2) = 1}.

Solution: This does not contain the zero function and hence is not a subspace of F(R).

(d) { f ∈ F(R) | for all x ∈ R, f (x)≤ 0}.

Solution: We saw in previous exercises that this set is not closed under multiplication by scalars,
and so is not a subspace of F(R).

(f) O = { f ∈ F(R) | For all x ∈ R, f (−x) =− f (x)}.

Solution: Refer to solutions for exercises in the previous chapter: Q. 3(f), Q.4(f) and Q.8(a): put
them together and you’ll see the subspace test is carried out successfully. Hence O is indeed a subspace
of F(R).

(h) P= {p ∈ F(R) | p is a polynomial function in the variable x}

Solution: Since the zero function is also a polynomial function, 0 ∈ P. Noting that the sum of any
two polynomial functions is again a polynomial function shows P is closed under addition. Finally, it’s
also clear that a scalar multiple of a polynomial function is again a polynomial function, so P is closed
under multiplication by scalars. Hence, by the subspace test, P is a subspace of F(R).

(Alternatively, note that P = span{xn | n = 0,1,2, . . .} and so is a subspace of F(R). We won’t
often talk about the span of an infinite set of vectors (say) K, but the definition of spanK is the same:
collect all (finite) linear combinations of vectors from K.)
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5.3 Determine whether the following are subspaces of

P= {p ∈ F(R) | p is a polynomial function in the variable x},

with its standard operations. (In some parts, you’ll be able to use the fact that everything of the form
span{v1, . . . ,vn} is a subspace.)

(b) {p ∈ P | deg(p)≤ 2}.

Solution: {p ∈ P | deg(p)≤ 2}= {a+bx+ cx2 | a,b,c ∈ R}= span{1,x,x2} and hence this is a
subspace of P.

(d) {p ∈ P2 | p(1) = 0}.

Solution: By the Factor theorem, {p ∈ P2 | p(1) = 0}= {(x−1)q(x) | degq≤ 1}= {(x−1)(a+
bx) | a,b ∈R}= {a(x−1)+bx(x−1) | a,b ∈R}= span{x−1,x(x−1)} and hence is a subspace of
P.

(f) G = {p ∈ P3 | p(2) p(3) = 0}.

Solution: This is not closed under addition: for example (x−2) and x−3 both belong to G but
their sum, r(x) = 2x−5, does not, as r(2)r(3) = (−1)(1) =−1 ̸= 0. Hence G is not a subspace of P.

(h) {p ∈ P2 | p(1)+ p(−1) = 0}.

Solution: {p ∈ P2 | p(1)+ p(−1) = 0}= {a+bx+ cx2 | a,b,c ∈ R and a+b+ c+a−b+ c =
0}= {a+bx+cx2 | a,b,c∈R and a+c = 0}= {a+bx−ax2 | a,c∈R}= span{1−x2,x} and hence
this is a subspace of P.

5.4 Determine whether the following are subspaces of M22(R), with its standard operations. (In
some parts, you’ll be able to us the fact that everything of the form span{v1, . . . ,vn} is a subspace.)

(b) X =

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a = d = 0 & b =−c

}
.

Solution: X =

{[
0 −c
c 0

]
∈M22(R)

∣∣∣∣∣ c ∈ R

}
= span

{[
0 −1
1 0

]}
, and hence X is a subspace

of M22(R).

(d)

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ bc = 1

}
.

Solution: This set does not contain the zero matrix
[

0 0
0 0

]
and hence is not a subspace of M22(R).

(f) Z =

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ ad−bc = 0

}
.

Solution: This set is not closed under addition: for example both A =

[
1 0
0 0

]
and B =

[
0 0
0 1

]
belong to Z, but A+B =

[
1 0
0 1

]
does not. Hence Z is not a subspace of M22(R).
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Problems of Chapter 6
6.1 Justify your answers to the following:

(b) Is the vector (1,2) a linear combination of (1,1) and (2,2)?

Solution: No, it isn’t: suppose (1,2) = a(1,1)+b(2,2). Then a+2b = 1 and a+2b = 2, which
is impossible.

(d) Is the vector (1,2,2,3) a linear combination of (1,0,1,2) and (0,0,1,1)?

Solution: No, since any linear combination of (1,0,1,2) and (0,0,1,1) will have 0 as its second
component, and the second component of (1,2,2,3) is 2 ̸= 0.

(f) Is the matrix C =

[
1 2
2 3

]
a linear combination of A =

[
1 0
1 2

]
and B =

[
0 1
0 1

]
?

Solution: No: If C = kA+ lB for k, l ∈ R, then comparing the (1,1) and the (2,1)–entries of both
sides, we obtain k = 1 and k = 2, which is impossible.

(h) Is the polynomial 1+ x2 a linear combination of 1+ x− x2 and x?

Solution: No: if 1+ x2 = a(1+ x− x2)+bx, then (a+1)x2− (a+b)x+1−a = 0 for all x ∈ R.
But a non-zero quadratic equation has at most two roots, so a+1 = 0. Then, −(a+b)x+1−a = 0
for all x ∈ R. But a non-zero linear equation has at most one roots, so a+b = 0. Then we’re left with
1−a = 0, which is impossible if a+1 = 0.

(j) Is the function sinx a linear combination of the constant function 1 and cosx?

Solution: No: Suppose there were scalars a,b ∈ R such that sinx = a1+bcosx, for all x ∈ R. For
x = 0 we obtain the equation a+b = 0, and for x = π , we obtain the equation a−b = 0, implying that
a = b = 0. But then sinx = 0, for all x ∈ R, which is nonsense, as sin(π

2 ) = 1 ̸= 0.

(l) If u, v and w are any vectors in a vector space V , is u− v a linear combination of u, v and w?

Solution: Yes, indeed: u− v = (1)u− (1)v+(0)w

6.2 Justify your answers to the following:

(b) Is ‘(3,4) ∈ span{(1,2)}’ true? (Note that this is the same as the previous part, written using
mathematical notation.)

Solution: No: if (3,4) ∈ span{(1,2)}, then (3,4) = a(1,2) for some a ∈ R, which implies a = 3
and a = 2, which is nonsense.

(d) How many vectors belong to span{(1,2)}?

Solution: There are infinitely many vectors in span{(1,2)}= {a(1,2) | a ∈R}, since if a ̸= a′ are
distinct real numbers, then a(1,2) ̸= a′(1,2).

(f) Is {(1,2)} a subset of span{(1,2)}?

Solution: Indeed it is: since (1,2) is clearly a multiple of (1,2), (1,2) ∈ span{(1,2)}= {a(1,2) |
a ∈ R}.

(h) Suppose S is a subset of a vector space V . If S = spanS, explain why S must be a subspace of V .

Solution: Since the span of any set of vectors is a subspace, and S = spanS, S is a subspace.
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6.3 Give two distinct finite spanning sets for each of the following subspaces. (Note that there will
be infinitely many correct answers; I’ve just given one example.)

(b) {(x,y) ∈ R2 | 3x− y = 0}.

Solution: Since

{(x,y) ∈ R2 | 3x− y = 0}= {(x,3x) | x ∈ R}= {x(1,3) | x ∈ R}= {a(2,6) | a ∈ R},

Both {(1,3)} and {(2,6)} are spanning sets for {(x,y) ∈ R2 | 3x− y = 0}.

(d) U = {(x,y,z,w) ∈ R4 | x− y+ z−w = 0}.

Solution: We saw in Q.1(k) that

{(x,y,z,w) ∈ R4 | x− y+ z−w = 0}= span{(1,1,0,0),(−1,0,1,0),(1,0,0,1)}

So {(1,1,0,0),(−1,0,1,0),(1,0,0,1)} is one spanning set for U . If we simply multiply these span-
ning vectors by non-zero scalars, we still obtain a spanning set. So, for example, {(2,2,0,0),(−3,0,3,0),(4,0,0,4)}
is another spanning set for U .

(f) X =

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a = d = 0 & b =−c

}
.

Solution: We saw in Q.4(b) that X = span

{[
0 −1
1 0

]}
, so

{[
0 −1
1 0

]}
is one spanning set for

X . Thus

{[
0 −2
2 0

]}
is another.

(h) V =

{[
a 0
0 b

]
∈M22(R)

∣∣∣∣∣ a,b ∈ R

}
.

Solution: V =

{
a
[

1 0
0 0

]
+b

[
0 0
0 1

]∣∣∣∣∣ a,b ∈ R

}
, so

{[
1 0
0 0

]
,

[
0 0
0 1

]}
is one spanning set for

V . Then,

{[
2 0
0 0

]
,

[
0 0
0 3

]}
is another spanning set for V .

(j) U =

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a+b+ c+d = 0

}
.

Solution:
Since

U =

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a =−b− c−d

}
=

{[
−b− c−d b

c d

]
∈M22(R)

∣∣∣∣∣ b,c,d ∈ R

}
,

then U =

{
b
[
−1 1
0 0

]
+c

[
−1 0
1 0

]
+d

[
−1 0
0 1

] ∣∣∣∣∣ b,c,d ∈R

}
= span

{[
−1 1
0 0

]
,

[
−1 0
1 0

]
,

[
−1 0
0 1

]}
,

and so

{[
−1 1
0 0

]
,

[
−1 0
1 0

]
,

[
−1 0
0 1

]}
is one spanning set for U . Clearly,

{[
−2 2
0 0

]
,

[
−1 0
1 0

]
,

[
−2 0
0 2

]}
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is another, distinct one — even though they do have one matrix in common, as sets they are different.
Remember: two sets are the same iff they contain exactly the same elements.

(l) Pn = {p | p is a polynomial function withdeg(p)≤ n}.

Solution: Pn = {a0 +a1x+ · · ·anxn | a0,a1, . . . ,an ∈ R}= span{1,x, . . . ,xn}, so {1,x, . . . ,xn} is
one spanning set for Pn. Clearly, {2,x, . . . ,xn} is a different spanning set.

(n) Y = {p ∈P3 | p(2) = p(3) = 0}.

Solution: By the Factor theorem,

Y = {(x−2)(x−3)q(x) | degq≤ 1}= {(x−2)(x−3)(a+bx) | a,b ∈ R},

so Y = {a(x−2)(x−3)+bx(x−2)(x−3) | a,b ∈R}= span{(x−2)(x−3),x(x−2)(x−3)}. Hence,
{(x−2)(x−3),x(x−2)(x−3)} is one spanning set for Y . Then, {2(x−2)(x−3),x(x−2)(x−3)} is
a different spanning set for Y .

(p) W = span{sinx,cosx}.

Solution: This one’s easy! We are explicitly given one spanning set in the definition of W , namely
{sinx,cosx}. So {sinx,2cosx} is a different spanning set for W .

(r) Z = span{1,sin2 x,cos2 x}.

Solution: Again, we are given one: {1,sin2 x,cos2 x}. Another, smaller spanning set for Z is
{1,sin2 x}, since cos2 x = 1− sin2 x. (Anything in Z is of the form a+ bsin2 x+ ccos2 x for some
a,b,c∈R. But a+bsin2 x+ccos2 x= a+bsin2 x+c(1−sin2 x)= (a+c)+(b−c)sin2 x, so everything
in Z is in fact a linear combination of 1 and sin2 x.)

6.4 Justify your answers to the following:

(b) Suppose u and v belong to a vector space V . Show carefully that span{u,v}= span{u−v,u+v}.
That is , you must show two things:

(i) If w ∈ span{u,v}, then w ∈ span{u− v,u+ v}, and
(ii) If w ∈ span{u− v,u+ v}, then w ∈ span{u,v}.

Solution: (i) If w ∈ span{u,v}, then w = au+bv for some scalars a,b. But

au+bv =
(a−b)

2
(u− v)+

(a+b)
2

(u+ v),

so w ∈ span{u− v,u+ v}.
(ii) If w ∈ span{u− v,u+ v}, then w = a(u− v)+b(u+ v) for some scalars a,b. But

a(u− v)+b(u+ v) = (a+b)u+(b−a)v ∈ span{u,v},

so w ∈ span{u,v}.

(d) Suppose span{v,w}= span{u,v,w}. Show carefully that u ∈ span{v,w}.

Solution: Since span{u,v,w} = span{v,w}, and u = 1u + 0v + 0w ∈ span{u,v,w}, then u ∈
span{v,w}.

(f) Show that xn+1 /∈Pn. 1

1Hint: Generalize the idea in the previous hint, recalling that every non-zero polynomial of degree n+1 has at most n+1
distinct roots.
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Solution: Suppose xn+1 ∈Pn. So, xn+1 = a0 + a1x + · · ·+ anxn for some scalars a0, . . . ,an.
Rewriting this, we see that

a0 +a1x+ · · ·+anxn− xn+1 = 0

for every real number x! But a non-zero polynomial of degree n+1 (which is what we have here) has
at most n+ 1 distinct roots, that is, a0 + a1x+ · · ·+ anxn− xn+1 = 0 for at most n+ 1 different real
numbers x. But there are more than n+1 real numbers, so matter how big n may be. Hence we have a
contradiction, and so our original assumption xn+1 ∈Pn must be false. So indeed, xn+1 /∈Pn.

(h) Assume for the moment (we’ll prove it later) that if W is a subspace of V , and V has a finite
spanning set, then so does W .

Use this fact and the previous part to prove that F(R) does not have a finite spanning set.

Solution: If F(R) has a finite spanning set, and P is a subspace of F(R) by the assumption, P
would have a finite spanning set. But the previous part states that this is impossible, so indeed F(R)
cannot have a finite spanning set.

Problems of Chapter 7

7.1 Which of the following sets are linearly independent in the indicated vector space? (If you say they
are, you must prove it using the definition; if you say the set is dependent, you must give a non-trivial
linear dependence relation that supports your answer. For example, if you say {v1,v2,v3} is dependent,
you must write something like v1−2v2 + v3 = 0, or v1 = 2v2− v3.)

(b) {(1,1),(2,2)}; R2.

Solution: This set is dependent, since 2(1,1)− (2,2) = 0.

(d) {(1,1),(1,2),(1,0)}; R2.

Solution: This set is dependent, since 2(1,1)− (1,2),−(1,0) = (0,0)

(f) {(1,1,1),(1,0,3),(0,0,0)}; R3.

Solution: This set is dependent, as it contains the zero vector. Explicitly:

0(1,1,1)+0(1,0,3)+1(0,0,0) = (0,0,0).

(h) {(1,1,1),(1,0,3),(0,3,4)}; R3.

Solution: This set is independent: Suppose a(1,1,1)+b(1,0,3)+ c(0,3,4) = (0,0,0). Equating
components of each side, we obtain the equations a+ b = 0, a+ 3c = 0 and a+ 3b+ 4c = 0. This
system of equations has only one solution, namely a = b = c = 0.

(j) {(0,−3),(3,0)}; R2.

Solution: This set is independent, as a(0,−3)+b(3,0) = (0,0) implies 3b = 0 and −3a = 0, and
so a = b = 0.

(l) {(1,0,0),(2,0,−2)}; R3.
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Solution: This set is independent, as a(1,0,0)+ b(2,0,−2) = (0,0,0) implies a+ 2b = 0, and
−2b = 0, and hence a = b = 0.

7.2 Which of the following sets are linearly independent in M22? (If you say they are, you must
prove it using the definition; if you say set is dependent, you must give a non-trivial linear dependence
relation that supports your answer. For example, if you say {v1,v2,v3} is dependent, you must write
something like v1−2v2 + v3 = 0, or v1 = 2v2− v3.)

(b)
{[

1 0
1 2

]
,

[
0 1
0 1

]
,

[
1 −2
−1 0

]}
.

Solution: This set is independent: Suppose a
[

1 0
1 2

]
+b

[
0 1
0 1

]
+ c

[
1 −2
−1 0

]
=

[
0 0
0 0

]
. This

yields the equations a+c= 0, b−2c= 0, a−c= 0 and 2a+b= 0. The first and third of these equations
imply a = c = 0, and so using either the second or the fourth yields b = 0. Hence a = b = c = 0.

(d)
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
Solution: We saw in class that this set is independent. Consult your notes.

7.3 Which of the following sets are linearly independent in the indicated vector space? ? (If you say
they are, you must prove it using the definition; if you say set is dependent, you must give a non-trivial
linear dependence relation that supports your answer. For example, if you say {v1,v2,v3} is dependent,
you must write something like v1−2v2 + v3 = 0, or v1 = 2v2− v3.)

(b) {1,1+ x,x2}; P2.

Solution: This set of polynomials is independent: Suppose a1+ b(1+ x)+ cx2 = 0, for every
x ∈ R. Then, (a+b)+bx+ cx2 = 0, for every x ∈ R. But a non-zero polynomial of degree 2 has at
most 2 different roots, and (a+b)+bx+ cx2 = 0 has infinitely many, so this polynomial must be the
zero polynomial. This means that a+b = 0, b = 0 and c = 0. But this easliy implies a = b = c = 0.

(d) {1,sinx,2cosx}; F(R).

Solution: This set is independent: Suppose a1+bsinx+c2cosx = 0 for every x ∈R. In particular,
for x = 0, we obtain the equation a+2c = 0; for x = π we obtain a−2c = 0 , and for x = π

2 , we obtain
a+ b = 0. The first two equations here imply a = c = 0 and then with this, the last implies b = 0.
Hence a1+bsinx+ c2cosx = 0 for every x ∈ R implies a = b = c = 0.

(f) {cos2x,sin2 x,cos2 x}; F(R).

Solution: This set is dependent. Remember the double angle formula: cos2x = cos2 x− sin2 x
holds for every x ∈ R. Hence we have the identity sin2x+ sin2 x− cos2 x = 0, for every x ∈ R. This
shows that three functions cos2x,sin2 x and cos2 x are linearly dependent.

(h) {sin2x,sinxcosx}; F(R).

Solution: Remember the double angle formula: sin2x = 2sinxcosx holds for every x ∈ R. Hence
we have the identity sin2x−2sinxcosx = 0, for every x ∈ R. This shows that two functions sin2x and
sinxcosx, are linearly dependent.

7.4 Justify your answers to the following:

(b) Suppose V is a vector space, and a subset {v1, . . . ,vk} ⊂V is known to be linearly independent.
Show carefully that {v2, . . . ,vk} is also linearly independent.
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Solution: Suppose c2v2 + c3v3 + · · ·+ ckvk = 0 for some scalars c2, . . . ,ck. Then it is also true
that 0v1 + c2v2 + c3v3 + · · ·+ ckvk = 0. But as {v1, . . . ,vk} is linearly independent, this implies all the
scalars you see must be zero: that is, 0 = c2 = c3 = · · ·= ck = 0. Thus c2 = c3 = · · ·= ck = 0. Hence
c2v2 + c3v3 + · · ·+ ckvk = 0 implies c2 = c3 = · · ·= ck = 0, and so {v2, . . . ,vk} is linearly independent.

(d) Give an example of a linearly independent subset {v1,v2} in R3, and a vector v ∈ R3 such that
{v,v1,v2} is linearly dependent.

Solution: Set v1 = (1,0,0),v2 = (0,1,0) and v = (1,1,0). Then, {(1,0,0),(0,1,0)} is indepen-
dent, but {(1,1,0),(1,0,0),(0,1,0)} isn’t, since (1,1,0)− (1,0,0)− (0,1,0) = (0,0,0), or (1,1,0) =
(1,0,0)+(0,1,0).

(f) Give an example of a linearly independent subset {p,q} in P2, and a polynomial r ∈P2 such
that {p,q,r} is linearly dependent.

Solution: Let p(x) = 1,q(x) = x and r(x) = 1+ x. Then {1,x} is independent, but {1,x,1+ x} is
not: 1+ x− (1+ x) = 0, for all x ∈ R.

Problems of Chapter 8
8.1 Justify your answers to the following: (the setting is a general vector space V ).

(b) Suppose u ∈ span{v,w}. Show carefully that span{v,w}= span{u,v,w}.

Solution: We show, under the assumption u ∈ span{v,w}, that span{v,w} ⊆ span{u,v,w} and
span{u,v,w} ⊆ span{v,w}.

Now it is always true that span{v,w} ⊆ span{u,v,w}, since every linear combination of v and w
(say) av+bw (a,b ∈ R) is also a linear combination of u, v and w, since av+bw = 0u+av+bw. (We
did not need the assumption u ∈ span{v,w} to get this far.)

To show that span{u,v,w} ⊆ span{v,w}, we need to show that every linear combination of u, v and
w is also a linear combination of v and w. Here, we will need to know that u ∈ span{v,w}: Suppose we
take any linear combination of u, v and w, say au+bv+cw (with a,b,c∈ R. Now, since u∈ span{v,w},
we know u = dv+ ew for some scalars e,d. Now we can write

au+bv+ cw = a(dv+ ew)+bv+ cw = (b+ad)v+(c+ae)w,

which shows that every linear combination of u, v and w is also a linear combination of v and w. Hence
span{u,v,w} ⊆ span{v,w}, and we’re done.

(Note that this latter fact is not true unless u∈ span{v,w} – for example, let u= (1,0,0), v= (0,1,0)
and w = (0,0,1). Then R3 = span{u,v,w} ̸⊂ span{v,w}, the latter being only the y–z plane.)

(d) Suppose span{v,w}= span{u,v,w}. Show carefully that {u,v,w} is linearly dependent.

Solution: Use the previous part to conclude that u ∈ span{v,w}. Then, u = av+bw for some scalar
a,b, and so u−av−bw = 0, showing that {u,v,w} is linearly dependent: no matter what a and b are,
the coefficient of u is 1 ̸= 0.

(f) Suppose {v,w} is linearly independent, and that u /∈ span{v,w}. Show carefully that {u,v,w} is
linearly independent.

Solution: Suppose au+ bv+ cw = 0 for some scalars a,b,c. If a ̸= 0, then we could write
u = b

a v+ b
a w, which would mean that u ∈ span{v,w}, contrary to assumption. So a must be zero.
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Hence, au+bv+ cw = 0 becomes the equation bv+ cw = 0. But {v,w} is linearly independent, so
this means that b = c = 0.

So au+bv+ cw = 0 has now implied (under the assumptions) that a = b = c = 0. So, {u,v,w} is
linearly independent.

(h) Suppose span{v,w} ̸= span{u,v,w}. Show carefully that u /∈ span{v,w}.

Solution: Here, we will use part (b) above: Suppose to the contrary that u ∈ span{v,w}. By part
(b) above, that would mean span{v,w}= span{u,v,w}, which contradicts the assumption span{v,w} ̸=
span{u,v,w}. So u ∈ span{v,w} cannot be true: i.e., u /∈ span{v,w}.

8.2 Justify your answers to the following:

(b) Suppose p ̸= 0 and two polynomials {p,q} satisfy deg(p)< deg(q) Show carefully that {p,q}
is linearly independent. Note that

Solution: Suppose n = deg(p)< deg(q) = m, and write p(x) = a0 +a1x+ · · ·+anxn and q(x) =
b0 +b1x+ · · ·+bmxm. Since n = deg(p) and deg(q) = m, we know an ̸= 0 and bm ̸= 0.

Now suppose ap+bq = 0 is the zero polynomial. This implies that

a(a0 +a1x+ · · ·+anxn)+b(b0 +b1x+ · · ·+bmxm) = 0 for every x ∈ R

Since a non-zero polynomial can have only finitely many roots, the equation above implies that we’re
looking at the zero polynomial. In particular the coefficient of xm must be zero. But as n < m, this
coefficient is exactly bbm, so bbm = 0. Since bm ̸= 0, we conclude that b = 0.

So now we have the equation

a(a0 +a1x+ · · ·+anxn) = 0 for every x ∈ R

As before, a non-zero polynomial can have only finitely many roots, so the equation just above
implies that we’re looking at the zero polynomial. So the coefficient of xn must be zero. That is,
aan = 0. But an ̸= 0, so a = 0.

So we’ve shown that ap+bq = 0 implies a = b = 0. So {p,q} is linearly independent.

(f) ∗ Suppose {u,v,w} are three vectors in R3 such that u · v×w ̸= 0. Prove carefully that {u,v,w}
is linearly independent.2

Solution: We know that {u,v,w} is linearly independent iff none of the vectors is a linear combina-
tion of the others.

So suppose to the contrary that u ∈ span{v,w}. So u = av+bw for some scalars a,b ∈ R. Then,
u · v×w = (av+bw) · v×w ̸= 0.

Recall from high school that for any three vectors v1,v2,v3 ∈ R3, we have

v1 · v2× v3 = v3 · v1× v2 = v2 · v3× v1.

So u · v×w = (av+bw) · v×w = w · (av+bw)× v = w ·bw× v = v ·w×bw = 0. But this contradicts
u · v×w ̸= 0. So, indeed, u /∈ span{v,w}.

Similar arguments show that v /∈ span{u,w} and w /∈ span{u,v}. So we conclude that {u,v,w} is
indeed linearly independent under the assumption that u · v×w ̸= 0.

2Hint: A geometric argument involving ‘volume’ is not sufficient. Instead, first recall that {u,v,w} is linearly independent
iff none of the vectors is a linear combination of the others. Now proceed by contradiction, and by recalling from high school
that for any three vectors v1,v2,v3 ∈ R3 that v1 · v2× v3 = v3 · v1× v2 = v2 · v3× v1.
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Problems of Chapter 9

9.1 Give two distinct bases for each of the following subspaces, and hence give the dimension of each
subspace.

(b) L = {(x,y) ∈ R2 | 3x− y = 0}

Solution: We saw in Q.7 (b) of the exercises “VSubspacesSpan" that L= span{(1,3)}= span{(2,6)}.
Since {(1,3)} and {(2,6)} are linearly independent ({v} is independent iff v ̸= 0), both are bases for L.
Hence dimL = 1.

(d) K = {(x,y,z,w) ∈ R4 | x− y+ z−w = 0}

Solution: We saw in Q. 6.3(d) that {(1,1,0,0),(−1,0,1,0),(1,0,0,1)} and {(2,2,0,0),(−3,0,3,0),(4,0,0,4)}
are spanning sets for K.

We claim both are also linearly independent: Suppose a(1,1,0,0)+b(−1,0,1,0)+ c(1,0,0,1) =
(0,0,0,0). Equating the second component of each side yields a = 0; equating the third component
of each side yields b = 0, and equating the fourth component of each side yields c = 0. Hence
a = b = c = 0, and so {(1,1,0,0),(−1,0,1,0),(1,0,0,1)} is independent.

An identical argument shows that {(2,2,0,0),(−3,0,3,0),(4,0,0,4)} is independent. Hence both
{(1,1,0,0),(−1,0,1,0),(1,0,0,1)} and {(1,1,0,0),(−1,0,1,0),(1,0,0,1)} are bases for K. Hence
dimK = 3.

(f) S =

{[
a b
c d

]
∈M22(R)

∣∣∣∣∣ a+d = 0

}
.

Solution: Note first that

P =

{[
a b
c −a

]
∈M22(R)

∣∣∣∣∣ a,b,c ∈ R

}
= span

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
.

So B =

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
spans S.

Now suppose a
[

1 0
0 −1

]
+b

[
0 1
0 0

]
+c

[
0 0
1 0

]
=

[
0 0
0 0

]
. Then

[
a b
c −a

]
=

[
0 0
0 0

]
, this implies

a = b = c = 0. Hence B is also linearly independent, and hence is a basis of S. Another basis is given

by

{[
2 0
0 −2

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
. Hence dimS = 3.

(h) X =

{[
0 −b
−b 0

]
∈M22(R)

∣∣∣∣∣ b ∈ R

}
.

Solution: We saw before that X = span

{[
0 −1
1 0

]}
= textspan

{[
0 −2
2 0

]}
. Since each of

these spanning sets contains a single non-zero matrix, each is also linearly independent. Hence both{[
0 −1
1 0

]}
and

{[
0 −2
2 0

]}
are bases for S, and so either shows that dimS = 1.

(j) Pn.
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Solution: We saw in previous exercsies that Pn = span{1,x, . . . ,xn}, so B = {1,x, . . . ,xn} spans
Pn. Suppose a0 +a1x+ · · ·anxn = 0 for all x ∈ R. Since a non-zero polynomial can only have finitely
many roots, this shows that a0 = a1 = · · ·= an = 0, and so B is independent and hence is a basis for
Pn. It is clear that {2,x, . . . ,xn} is another basis for Pn. Either basis shows that dimPn = n+1.

(l) Y = {p ∈P3 | p(2) = p(3) = 0}.

Solution: We saw in previous solutions that

B = {(x−2)(x−3),x(x−2)(x−3)}

spans Y . We can now appeal to solutions to one of the exercises on linear independence to conclude
that B is linearly independent. Or, we could show it directly: Suppose, for some scalars a,b, that
a(x−2)(x−3)+bx(x−2)(x−3) = 0 for all x ∈ R. Setting x = 0 yields a = 0, and then setting x = 1
yields b = 0. So a = b = 0, and B is linearly independent and is hence a basis for Y . So dimY = 2. A
different basis is clearly given by {2(x−2)(x−3),x(x−2)(x−3)}.

(n) W = span{sinx,cosx}.

Solution: We are given the spanning set B = {sinx,cosx} for W . We saw in class that B is
independent, and hence is a basis of W . Thus dimW = 2.

(p) X = span{1,sin2 x,cos2 x}.

Solution: Since 1= sin2 x+cos2 x for all x∈R, 1∈ spsin2 x,cos2 x, and so X = span{sin2 x,cos2 x}.
We claim B = {sin2 x,cos2 x} is independent: Suppose there are scalars a,b such that asin2 x +
bcos2 x = 0 for all x ∈ R. Setting x = 0 yields b = 0, and setting x = π

2 implies a = 0. Hence
a = b = 0, and so B is independent, and is thus a basis of X . So dimX = 2. Another basis is clearly
given by {2sin2 x,cos2 x}.

9.2 Determine whether the following sets are bases of the indicated vector spaces.

(b) {(1,2),(−2,−4)}; (R2). Solution: This is not a basis of R2 since {(1,2),(−2,−4)} is depen-

dent — the second vector is a multiple of the first.

(d) {(1,2),(3,4),(0,0)}; (R2).

Solution: This set is dependent because it contains the zero vector, and so it is not a basis of R2.

(f) {(1,2,3),(4,8,7)}; (R3).

Solution: We know that dimR3 = 3 and so every basis must contain 3 vectors. So this is not a basis
of R3.

(h) {(1,0,1,0),(0,1,0,1)}; (R4).

Solution: We know that dimR4 = 4 and so every basis must contain 4 vectors. So this is not a basis
of R4.

(j)
{[

1 0
1 2

]
,

[
0 1
0 1

]
,

[
1 −2
1 0

]}
; (M22)

Solution: We know that dimM22 = 4 and so every basis must contain 4 vectors. So this is not a
basis of M22.

(m) {1,1+ x,x2}; (P2).
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Solution: Since we know that dimP2 = 3, and we do have 3 polynomials here, it suffices to check
just one of the conditions for a basis. Let’s check that {1,1+ x,x2} spans P2: Simply note that for any
a,b,c,∈ R, a+bx+ cx2 = (a−b)1+b(1+ x)+ cx2. This shows that P2 = span{1,1+ x,x2}, and by
previous comments, that {1,1+ x,x2} is a basis for P2.

(o) {1,sinx,2cosx}; (F(R)).
Solution: We saw in class (and previous solutions) that F(R) does not have a finite spanning set,

so {1,sinx,2cosx} cannot be a basis for F(R).
But let’s do this directly. If we can find a single function in F(R) that is not in span{1,sinx,2cosx},

we’re done.
We claim that the function sinx cosx /∈ span{1,sinx,2cosx}. Suppose the contrary, i.e., that there

are scalars a,b,c such that

sinx cosx = a1+bsinx+2c cosx, for all x ∈ R
Setting x = 0 yields the equation 0 = a+2c; setting x = π

2 gives 0 = a+b and setting x = π yields
0 = a−2c. The first and third of these equations together imply a = c = 0, and then the second implies
b = 0. But then we have the identity sinx cosx = 0 for all x ∈ R, which is nonsense because the left
hand side is 1

2 ̸= 0 when x = π

4 .

Problems of Chapter 10
10.1 Find the coordinates of the following vectors v with respect to the given bases B of the indicated
vector space V :

(b) v = (1,0,1); B = {(1,1,0),(1,−1,0),(0,0,1)}; V = R3

Solution: Solving (1,0,1) = a(1,1,0)+ b(1,−1,0)+ c(0,0,1) yields a = b = 1
2 ,c = 1, so the

coordinate vector of v with respect to B is (1
2 ,

1
2 ,1).

(d) v =
[

1 0
1 −1

]
; B =

{[
0 0
1 0

]
,

[
0 1
0 0

]
,

[
1 0
0 −1

]}
; V = {A ∈M22 | trA = 0}.

Solution: Clearly,
[

1 0
1 −1

]
= 1

[
0 0
1 0

]
+0

[
0 1
0 0

]
+1

[
1 0
0 −1

]
, so the coordinate vector of v

with respect to B is (1,0,1).

(f) v = sin(x+2); B = {sinx,cosx}; V = spansinx,cosx

Solution: Since sin(x+2) = sinxcos2+ sin2cosx for all x ∈ R, the coordinate vector of v with
respect to B is (cos2,sin2).

Problems of Chapter 11
11.1 Find the augmented matrix of the following linear systems.

(b)

x+w = 1

x+ z+w = 0

x+ y+ z =−3

x+ y−2w = 2
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Solution:


1 0 0 1 | 1
1 0 1 1 | 0
1 1 1 0 | −3
1 1 0 −2 | 2


11.2

(b) Find all (x,y) so that the matrix
[

1 0 1
x y 0

]
is in reduced row-echelon form.

Solution: Clearly, x must be zero, and y could be zero or 1, so the possible pairs (x,y) are (0,0)
and (0,1).

Problems of Chapter 12
12.1 Find the reduced row-echelon form of the following matrices:

(b)
[

1 0 1 2
0 1 1 2

]
Solution: This matrix is already in reduced row-echelon form!

(d)

 1 2 −1 −1
2 4 −1 3
−3 −6 1 −7


Solution: 1 2 −1 −1

2 4 −1 3
−3 −6 1 −7

−2R1 +R2→ R2
∼

3R1 +R3→ R3

1 2 −1 −1
0 0 1 5
0 0 −2 −10

2R2 +R3→ R3
∼

R2 +R1→ R1

1 2 0 4
0 0 1 5
0 0 0 0



(f)


1 −1 1 0
0 1 1 1
1 2 4 3
1 0 2 1


Solution:

1 −1 1 0
0 1 1 1
1 2 4 3
1 0 2 1

−R1 +R3→ R3
∼

−R1 +R4→ R4


1 −1 1 0
0 1 1 1
0 3 3 3
0 1 1 1

−3R2 +R3→ R3
∼

−R2 +R4→ R4


1 −1 1 0
0 1 1 1
0 0 0 0
0 0 0 0

R2 +R1→ R1
∼


1 0 2 1
0 1 1 1
0 0 0 0
0 0 0 0



12.2 Find the general solutions to the linear systems whose augmented matrices are given below.

(b)


1 0 −1 | 0
0 1 2 | 0
0 0 0 | 1
0 0 0 | 0

 Solution: This system is inconsistent.
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(d)

1 2 0 3 0 | 7
0 0 1 0 0 | 1
0 0 0 0 1 | 2


Solution: (x,y,z,u,v) = (7−2s−3t,s,1, t,2); s, t ∈ R, or we could write it as a set:

{(7−2s−3t,s,1, t,2); | s, t ∈ R}

Problems of Chapters 13
13.1

(b) Find the ranks of the coefficient matrices and the ranks of the augmented matrices corresponding
to the linear systems in question 12.2.

Solution:
[12.2(b)] The rank of the coefficient matrix is 2 and the rank of the augmented matrix is 3. (That’s

why the corresponding linear system is inconsistent.)

[12.2(d)] Both ranks are 3.

13.2 Suppose a,c ∈ R and consider the following linear system in the variables x,y and z:

x + y + az = 2
2x + y + 2az = 3
3x + y + 3az = c

.

Note that the general solution of this system may depend on the values of a and c. Let [A |b ] denote
the augmented matrix of the system above.

(b) Find all values of a and c so that this system has

(i) a unique solution,

(ii) infinitely many solutions, or

(iii) no solutions.

Solution:

[A |b ] =

1 1 a | 2
2 1 2a | 3
3 1 3a | c

∼
1 1 a | 2

0 1 0 | 1
0 0 0 | c−4


Since rankA = 2 < 3 = # variables, for all values of a,c, this system never has a unique solution.

Since rankA = 2 = rank[A |b ] iff c = 4, this system will be consistent and have infinitely many
solutions, since then there will be (#variables− rankA = 3−2 =)1 parameter in the general solution.

Since rankA = 2 < 3 = rank[A |b ] iff c ̸= 4, this system will be inconsistent for all values of c
except for c = 4.

13.4 Consider the network of streets with intersections A, B, C, D and E below. The arrows indicate
the direction of traffic flow along the one-way streets, and the numbers refer to the exact number of
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cars observed to enter or leave A, B, C, D and E during one minute. Each xi denotes the unknown
number of cars which passed along the indicated streets during the same period.

B
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##F
FFF
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OO
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60
oo

x5
<<xxxxx

C
x3

����
��
�

x6oo
70
oo

E
x1

WW.....

D
x2oo

60

��0
00
00
0

100
GG������

(b) The reduced row-echelon form of the augmented matrix of the system in part (a) is
1 0 0 0 −1 1 | 60
0 1 0 0 −1 1 | −40
0 0 1 0 −1 1 | 20
0 0 0 1 −1 0 | −50
0 0 0 0 0 0 | 0


Give the general solution. (Ignore the constraints from (a) at this point.)

Solution: The general solution is

x1 = 60+ s− t

x2 =−40+ s− t

x3 = 20+ s− t s, t ∈ R
x4 =−50+ s

x5 = s

x6 = t

Or it can be written as

{(60+ s− t,−40+ s− t,20+ s− t,−50+ s,s, t) | st, t ∈ R}.

13.5 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

(b) Every non-homogenous system of 3 equations in 2 unknowns is consistent.

Solution: This is false. For example, the system whose augmented matrix is

1 0 | 1
0 1 | 0
0 0 | 1

 is

inconsistent.
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(d) Every system of 2 equations in 2 unknowns has a unique solution.

Solution: This is false. For example, the system whose augmented matrix is
[

1 0 | 0
0 0 | 0

]
has

infinitely many solutions, namely (0,s) for every s ∈ R

(f) If there is a column of zeroes in the coefficient matrix of a consistent linear system, the system
will have infinitely many solutions.

Solution: This is true, since once the augmented matrix has been reduced, there will still be a
column of zeroes in the coefficient matrix, which means that (as it is assumed consistent), there will be
at least one parameter in the general solution.

(h) If a consistent linear system has infinitely many solutions, there must be a column of zeroes in
the reduced coefficient matrix (i.e. when the augmented matrix has been reduced so that the coefficient
matrix is in RRE form.)

Solution: This is false. Look at Q.4 (d).

(j) If a homogenous linear system has a unique solution, it must the same number of equations as
unknowns.

Solution: This is false. For example, the system whose augmented matrix is

1 0 | 0
0 1 | 0
0 0 | 0

 has a

unique solution, namely (0,0).

Problems of Chapter 14
Matrix Multiplication

14.1
(b) Write the matrix product

[
1 2
3 6

][
a
b

]
as a linear combination of the columns of A =

[
1 2
3 6

]
.

Solution:
[

1 2
3 6

][
a
b

]
= a

[
1
3

]
+b

[
2
6

]
.

(d) Find the matrix product
[

a
b

][
c d

]
.

Solution:
[

a
b

][
c d

]
=

[
ac ad
bc bd

]

(f) If A =
[
c1 c2 c3

]
is an m×3 matrix written in block column form, and x =

2
1
4

 is a column

vector in R3, express Ax as a linear combination of c1,c2 and c3.

Solution: Ax = 2c1 + c2 +4c3.

(h) Show that if A =

[
0 1
0 0

]
, then A2 =

[
0 0
0 0

]
.

Solution: This is a straighforward computation.
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(j) If C is a m×4 matrix and D =


1 0 1
0 1 1
1 0 0
0 0 0

, express the columns of CD in terms of the columns

of C.

Solution: Write C =
[
c1 c2 c3 c4

]
in block column form. Then

CD =
[
c1 c2 c3 c4

]
1 0 1
0 1 1
1 0 0
0 0 0

=
[
c1 + c3 c2 c1 + c2

]

(l) Find all (a, b, c) so that
[

1 2
3 6

][
a b
c a

]
=

[
0 0
0 0

]
.

Solution: Since
[

1 2
3 6

][
a b
c a

]
=

[
a+2c b+2a
3a+6c 3b+6a

]
, this is the zero matrix for (a,b,c) which

are solutions to

a + 2c = 0
2a + b = 0
3a + 6c = 0
6a + 3b = 0

.

The general solution to this system is (a,b,c) = (−2s,4s,s); s ∈ R.
14.3 State whether each of the following is (always) true, or is (possibly) false. In this question, A

and B are matrices for which the indicated products exist.

• If you say the statement may be false, you must give an explicit example. • If you say the

statement is true, you must give a clear explanation - by quoting a theorem presented in class, or by
giving a proof valid for every case.

(b) C(A+B) =CA+CB

Solution: This is true: it a property of matrix multiplication we saw in class. See me if you’re
interested in the proof.

(d) AB = BA

Solution: This is not always true. For example, here’s an example we saw in class:[
0 1
0 0

][
0 0
1 0

]
=

[
1 0
0 0

]
̸=
[

0 0
0 1

]
=

[
0 0
1 0

][
0 1
0 0

]

(f) If A2 = 0 for a square matrix A, then A = 0.

Solution: This is false. Look at the solution to14.1.(h).

Applications to Linear Systems
14.5 Write the matrix equation which is equivalent to each of following linear systems.
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(b)
x + w = 1
x + z + w = 0
x + y + z = −3
x + y − 2w = 2

Solution:


1 0 0 1
1 0 1 1
1 1 1 0
1 1 0 −2




x
y
z
w

=


1
0
−3
4


14.6 Write the matrix equation of the linear system corresponding to each of the augmented matrices

given below.

(b)


1 0 −1 | 0
0 1 2 | 0
0 0 0 | 1
0 0 0 | 0



Solution:


1 0 −1
0 1 2
0 0 0
0 0 0


x

y
z

=


0
0
1
0



(d)

1 2 0 3 0 | 7
0 0 1 0 0 | 1
0 0 0 0 1 | 2



Solution:

1 2 0 3 0
0 0 1 0 0
0 0 0 0 1




x
y
z
w

=

7
1
2


14.7 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

(b) If [A |b ] is the augmented matrix of a linear system, then rankA < rank[A |b ] is possible.

Solution: This is true. For example,
[

0 1 | 0
0 0 | 1

]
.

(d) If [A |b ] is the augmented matrix of a linear system, and rankA = rank[A |b ], then the system is
consistent.

Solution: This is true, as we learned in class. Indeed Ax = b is consistent iff rankA = rank[A |b ].

(f) If A is an m×n matrix and Ax = 0 has a unique solution for x ∈ Rn, then the columns of A are
linearly independent.
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Solution: This is true, as we learned in class: write A =
[
c1 c2 · · · cn

]
in block column form

and x =


x1
x2
...

xn

. Then Ax = x1c1 + x2c2 + · · ·+ xncn, so Ax = 0 has the unique solution x = 0 means that

x1c1 +x2c2 + · · ·+xncn = 0 implies x1 = x2 = · · ·= xn = 0, so {c1,c2, . . . ,cn} is linearly independent.

(h) If A is an m×n matrix and Ax = 0 has infinitely many solutions for x ∈Rn, then the columns of
A are linearly dependent.

Solution: This is true: see the solution to part (f). If A =
[
c1 c2 · · · cn

]
in block column form

and x =


x1
x2
...

xn

, then if Ax = x1c1 + x2c2 + · · ·+ xncn = 0 has more than one solution, the columns of A

are indeed dependent.

(j) If A is a 6×5 matrix and rankA = 5, then Ax = 0 implies x = 0 for x ∈ R5.

Solution: This is true, since there will be a leading one in every column of the RRE form of A,
implying that there are no parameters in the general solution to Ax = 0, so x = 0 is the only solution.
(Or: dimkerA = # columns of A − rankA = 5−5 = 0, so kerA = {0}, i.e., Ax = 0 implies x = 0.

(l) If A is a 5×6 matrix and rankA = 5, then Ax = b is consistent for every b ∈ R5.

Solution: This is true, since for every b ∈ R5, rank[A |b ] = 5: the rank of the 5×7 matrix [A |b ]
cannot be smaller than rankA (5), and cannot be larger than the minimum of the number of rows (5!) and
the number of columns (7). And, of course we know that Ax = b is consistent iff rankA = rank[A |b ].

(n) If A is a 3×2 matrix and rankA = 1, then Ax = 0 implies x = 0 for x ∈ R2.

Solution: This is false. For example rank

1 0
0 0
0 0

= 1, but Ax = 0 has infinitely many solutions

with 1 parameter.

(p) The rows of a 19×24 matrix are always linearly dependent.

Solution: This is false. For example, let A =
[
I19 0

]
, where the 0 that appears is a 19×25 zero

matrix. The rows of this matrix are indeed independent, as they are the first 19 vectors in the standard
basis of R25.

Problems of Chapter 15

15.1 Find a basis for the kernel (or ‘nullspace’) of the following matrices:
(b) A =

[
1 2 −1 3

]
Solution: The general solution to Ax = 0 is {(−2s+ t−3r,s, t,r) | s, t,r ∈ R}, so a basis for the

kernel of A is {(−2,1,0,0),(1,0,1,0),(−3,0,0,1)}.
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(d)


1 0 0 −1 0
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0


Solution: The general solution to Ax = 0 is {(s,−s− t,−s− t,s, t | s, t) ∈ R}, so a basis for the

kernel of A is {(1,−1,−1,1,0),(0,−1,−1,0,1)}.

(f) B =

−4 2 2
2 −4 2
2 2 −4


Solution: The RRE form of B is

1 0 −1
0 1 −1
0 0 0

, so the general solution to Bx = 0 is {(s,s,s) | s, t ∈

R}. Hence a basis for the kernel of B is {(1,1,1)}.

Problems of Chapter 16
16.1 Find the a basis for the row space and column space for each of the matrices below, and check that
dimRow A = dimCol A in each case.

(b) A =

[
1 0 1 2
0 1 1 2

]
Solution: Row-reduction to RRE form does the trick here. Note that since A is already in RRE

form, the Row Space Algorithm yields {(1,0,1,2),(0,1,1,2)} as a basis for Row A and {(1,0),(0,1)}
as a basis for Col A.

(d) A =

 1 2 −1 −1
2 4 −1 3
−3 −6 1 −7


Solution: Here we must first reduce A to RRE form, and find A∼

1 2 0 4
0 0 1 5
0 0 0 0

. Now the the

Row Space Algorithm yields {(1,2,0,4),(0,0,1,5)} as a basis for Row A and {(1,2,−3),(−1,−1,1)}
as a basis for Col A.

(f) A =


1 −1 1 0
0 1 1 1
1 2 4 3
1 0 2 1



Solution: Here we must first reduce A to RREF, and find A∼


1 0 2 1
0 1 1 1
0 0 0 0
0 0 0 0

. Now the the Row

Space Algorithm yields {(1,0,2,1),(0,1,1,1)} as a basis for Row A and {(1,0,1,1),(−1,1,2,0)} as
a basis for Col A.

16.2 Find a basis of the desired type for the given subspace in each case. (Use your work from the
previous question where useful.)
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(b) W = span{(1,2,−1,−1),(2,4,−1,3),(−3,−6,1,−7)}: any basis suffices.

Solution: We note that W = Row A for the matrix A of part (b) in the previous question. So we use
the basis for Row A we found there, namely {(1,2,04),(0,0,1,5)}.

(d) Y = span{(1,0,1,1),(−1,1,2,0),(1,1,4,2),(0,1,3,1)}: the basis must be a subset of the given
spanning set.

Solution: We note that Y = Col A for the matrix A of part (f) in the previous question. So we use
the basis for Col A we found there, namely {(1,0,1,1),(−1,1,2,0)}.

16.3
(b) We extend {(1,0,1,2),(0,1,1,2)} to a basis of R4:

Set A =


1 0 1 2
0 1 1 2

u3
u4

. We can see two leading ones in columns 1 and 2, so if we set u3 =

(0,0,1,0) and u4 = (0,0,0,1), then

A =


1⃝ 0 1 2
0 1⃝ 1 2
0 0 1⃝ 0
0 0 0 1⃝


It is now clear that rankA = 4, so a desired extension is

{(1,0,1,2),(0,1,1,2),(0,0,1,0),(0,0,0,1)}

(d) We extend {(1,0,1,1),(−1,1,2,0)} to a basis of R4:

Set A =


1 0 1 1
−1 1 2 0

u3
u4

. We row reduce as far as we can:


1 0 1 1
−1 1 2 0

u3
u4

∼


1⃝ 0 1 1
0 1⃝ 3 1

u3
u4


Again, we can see two leading ones in columns 1 and 2, so if we set u3 = (0,0,1,0) and u4 = (0,0,0,1),
then

A =


1 0 1 1
0 −1 1 2 0
0 0 1 0
0 0 0 1

∼


1⃝ 0 1 1
0 1⃝ 3 1
0 0 1⃝ 0
0 0 0 1⃝


It is now clear that rankA = 4, so a desired extension is

{(1,0,1,1),(−1,1,2,0),(0,0,1,0),(0,0,0,1)}
16.4 State whether each of the following is (always) true, or is (possibly) false.
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• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.
(b) For some matrices A, dimRow A+dimkerA = dimCol A

Solution: Since we always have dimRow A = dimCol A, the equation above holds if and only if
dimkerA = 0. There are such matrices, so the statement –which merely asserts that there are some
matrices for which the equation holds – is true. For example, it is true for any invertible matrix, such as[

1 0
0 1

]
, where dimRow A = dimRow A = 2 and dimkerA = 0.

(d) For all matrices A, dimRow A+dimkerA = n, where n is the number of columns of A.

Solution: This is always true, indeed we called it the ‘conservation of dimension’. We know
dimkerA is the number of parameters in the general solution to Ax = 0, which we also know is the
number of columns of A where there are not leading ones, which of course is the number of columns,
less its rank. We also know rankA = dimRow A. So dimkerA = n−dimRow A, which is equivalent
to the given equation.

(f) For all m×n matrices A, dim{Ax | x ∈ Rn}+dim{x ∈ Rn | Ax = 0}= m.

Solution: We actually know that dim{Ax | x ∈ Rn}+ dim{x ∈ Rn | Ax = 0} = n for all m× n
matrices A, so the stated equation is true iff n = m. Thus the statement above – which asserts that this
holds for all m×n matrices – is false.

For example, let A =
[
1 0

]
, where m = 1 and n = 2. Then dim{Ax | x ∈ Rn} = dimCol A =

rankA = 1, and dim{x ∈ Rn | Ax = 0} = dimkerA = 1, so the equation asserted in the statement is
1+1 = 1, which of course is false.

(h) For all m×n matrices A, the dot product of every vector in kerA with any of the rows of A is
zero.

Solution: This is true, and is an easy consequence of block multiplication and of the definition of

the kernel of A: Let x ∈ Rn belong to kerA, so Ax = 0. Write A in block row form: A =

r1
...

rm

, so that

ri is the ith row of A. Then Ax =

r1
...

rm

x =

r1 · x
...

rm · x

=

0
...
0

. That is , ri · x = 0 for every i, 1≤ i≤ m.

Problems of Chapter 17
17.1 Extend the given linearly independent set of Rn to a basis of Rn. (Use your work from question 1
where useful.)

(b) {(1,0,1),(0,1,1)} (R3)

Solution: Since dimR3 = 3 and we already have 2 linearly independent vectors, we only need to

find w ∈ R3 such that rank

1 0 1
0 1 1

w

= 3. Clearly, w = (0,0,1) will do, since then

1 0 1
0 1 1

w

 is in

RRE form and its rank is clearly 3
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(d) {(1,0,1,3)} (R4)

Solution: Since dimR4 = 4 and we only have 1 linearly independent vector, we need to find u,v,w∈

R4 such that rank


1 0 1 3

u
v
w

= 4. Clearly, u = (0,1,0,0),v = (0,0,1,0) and w = (0,0,0,1) will

suffice, since then


1 0 1 3

u
v
w

 is in RRE form and its rank is clearly 4.

Problems of Chapter 18
18.1 Find the inverse of each of the following matrices, or give reasons if it not invertible.

(b) A =

1 1 0
0 −1 −2
0 2 3

 Solution: A−1 =

1 −3 −2
0 3 2
0 −2 −1


(d) B =

[
1 x
−x 1

]
Solution: B−1 =

[ 1
x2+1 − x

x2+1
x

x2+1
1

x2+1

]
18.2 State whether each of the following is (always) true, or is (possibly) false. The matrices are

assumed to be square.
• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.
(b) If A2 = 0 for a square matrix A, then A is not invertible.

Solution: This is true. Suppose on the contrary that A were invertible with inverse A−1. Multiplying
both sides of the equation A2 = 0 by A−2, say on the left, yields In = 0, which is nonsense. So A is not
invertible..

(d) If A is invertible then the RRE form of A has a row of zeros.

Solution: This is always false, but here’s an example:
[

1 0
0 1

]
is invertible and is in RRE form, but

has no row of zeros. (We know that an n×n matrix A is invertible iff its RRE form is In, which has no
row of zeros.)

(f) If A is a non-invertible n×n matrix then Ax = b is inconsistent for every b ∈ Rn.

Solution: This is false. For example, let A =

[
1 0
0 0

]
and b =

[
1
0

]
. Then A is not invertible, but

Ax = b is consistent, and indeed has infintely many solutions of the form x =
[

1
s

]
, for any s ∈ R.

(h) If an n×n matrix A satisfies A3−3A2 + In = 0, then A is invertible and A−1 = 3A−A2.

Solution: This is true: rewrite A3− 3A2 + In = 0 as 3A2−A3 = In and then factor to obtain
A(3A−A2) = In. Now you see that A−1 = 3A−A2.
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Problems of Chapter 19

19.1 In each case, find the Fourier coefficients of the vector v with respect to the given orthogonal basis
B of the indicated vector space W .

(b) v = (1,2,3), B = {(1,2,3),(−5,4,−1),(1,1,−1)}, W = R3.

Solution: If we write v = c1v1 + c2v2 + c3v3, then we know that ci =
v · vi

∥vi∥2 for i = 1,2,3. Hence

(c1,c2,c3) = (1,0,0). (Notice that v itself is the first vector in the given orthogonal basis!)

(d) v = (4,−5,0), B = {(−1,0,5),(10,13,2)}W = {(x,y,z) ∈ R3 | 5x− 4y+ z = 0}

Solution: If we write v = c1v1 + c2v2, then we know that ci =
v · vi

∥vi∥2 for i = 1,2. Hence (c1,c2) =

(− 2
13

,− 25
273

).

(f) v = (1,0,1,2), B = {(1,0,1,1),(0,1,0,0),(0,0,1,−1),(1,0,0,−1)}, W = R4.

Solution: If we write v = c1v1 + c2v2 + c3v3 + c4v4, then we know that ci =
v · vi

∥vi∥2 for i = 1, . . . ,4.

Hence (c1,c2,c3,c4) = (
4
3
,0,−1

2
,−1

2
).

19.2 Find the formula for the orthogonal projection onto the subspaces in parts c), d) and e) above.

Solution:

projW (x,y,z) =
(x,y,z) · (−1,0,5)

26
(−1,0,5)+

(x,y,z) · (10,13,2)
273

(10,13,2).

After expansion and simplification, this becomes

projW (x,y,z) =
1
42

(17x+20y−5z,20x+26y+4z,−5x+4y+41z)

(Note that computations this ‘messy’ will never occur on tests or exams.)
19.3 Apply the Gram-Schmidt algorithm to each of the following linearly independent sets, and

check that your resulting set of vectors is orthogonal.

(b) {(1,0,0,1),(0,1,0,−1),(0,0,1,−1)} Solution: With the above ordered list denoted {v1,v2,v3},

we begin by setting u1 = v1 = (1,0,0,1).
Then

ũ2 = v2−
v2 ·u1

∥u1∥2 u1 = (0,1,0,−1)− (0,1,0,−1) · (1,0,0,1)
∥(1,0,0,1)∥2 (1,0,0,1)

= (0,1,0,−1)+
1
2
(1,0,0,1) = (

1
2
,1,0,−1

2
).

We can rescale at this stage to eliminate fractions – in order to simplify subsequent calculations – if we
wish. So we set u2 = (1,2,0,−1).

N.B. We check u1 ·u2 = 0 before proceeding, and it’s OK.
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Now set

ũ3 = v3−
v3 ·u1

∥u1∥2 u1−
v3 ·u2

∥u2∥2 u2

= (0,0,1,−1)− (0,0,1,−1) · (1,0,0,1)
∥(1,0,0,1)∥2 (1,0,0,1)

− (0,0,1,−1) · (1,2,0,−1)
∥(1,2,0,−1)∥2 (1,2,0,−1)

= (0,0,1,−1)+
1
2
(1,0,0,1)− 1

6
(1,2,0,−1)

= (
1
3
,−1

3
,1,−1

3
)

Once again we can (but we don’t have to) rescale at this stage to eliminate fractions if we wish. So we
set u3 = (1,−1,3,−1). N.B. We check u1 ·u3 = 0 = u2 ·u3 before leaving this problem, and it’s all
OK.

So after applying Gram-Schmidt (with optional rescaling), we obtain the orthogonal

{(1,0,0,1),(1,2,0,−1),(1,−1,3,−1)}.

(d) {(1,1,0),(1,0,2),(1,2,1)}

Solution: With the above ordered list denoted {v1,v2,v3}, we begin by setting u1 = v1 = (1,1,0).
Then we set

ũ2 = v2−
v2 ·u1

∥u1∥2 u1 = (1,0,2)− (1,0,2) · (1,1,0)
∥(1,1,0))∥2 (1,1,0)

= (1,0,2)− 1
2
(1,1,0) = (

1
2
,−1

2
,2).

We can rescale at this stage to eliminate fractions – in order to simplify subsequent calculations – if we
wish. So we set u2 = (1,−1,4). N.B. We check u1 ·u2 = 0 before proceeding, and it’s OK.

Now set

ũ3 = v3−
v3 ·u1

∥u1∥2 u1−
v3 ·u2

∥u2∥2 u2

= (1,2,1)− (1,2,1) · (1,1,0)
∥(1,1,0)∥2 (1,1,0)− (1,2,1) · (1,−1,4)

∥(1,−1,4)∥2 (1,−1,4)

= (1,2,1)− 3
2
(1,1,0)− 1

6
(1,−1,4)

= (−2
3
,
2
3
,
1
3
)

Once again we can (but we don’t have to) rescale at this stage to eliminate fractions if we wish. So we
set u3 = (−2,2,1). N.B. We check u1 ·u3 = 0 = u2 ·u3 before leaving this problem, and it’s all OK.

So after applying Gram-Schmidt (with optional rescaling), we obtain the orthogonal set (in this
case an orthogonal basis of R3):

{(1,1,0),(1,2,1),(−2,2,1)}.
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19.4 Find an orthogonal basis for each of the following subspaces, and check that your basis is
orthogonal. (First, find a basis in the standard way, and then apply the Gram-Schmidt algorithm.)

(b) U = {(x,y,z,w) ∈ R4 | x+ y−w = 0}

Solution: Step 1: find any basis for U : A basis for U can be easily found by writing

U = {(−y+w,y,z,w) ∈ R4 | y,z,w ∈ R}= span{(−1,1,0,0),(0,0,1,0),(−1,0,0,1)},

and noting that y(−1,1,0,0)+ z(0,0,1,0)+w(−1,0,0,1) = (−y+w,y,z,w) = (0,0,0,0) iff y = z =
w = 0. So the spanning set {(−1,1,0,0),(0,0,1,0),(−1,0,0,1)} we found is indeed a basis for U .

Alternatively (and this is a better way!), since U = ker
[
1 1 0 −1

]
, we can use the algorithm

we have for finding a basis for the kernel of a matrix (which comes from Theorem 15.2.2 of “Vector
Spaces First"). Then

ker
[
1 1 0 −1

]
= {(−r+ t,r,s, t) | r,s, t ∈ R}
= span{(−1,1,0,0),(0,0,1,0),(−1,0,0,1)},

and our algorithm (courtesy of Theorem 15.2.2) guarantees without us having to check that the spanning
set {(−1,1,0,0),(0,0,1,0),(−1,0,0,1)} we found is indeed a basis for U!

Step 2: Apply G-S, perhaps with rescaling: With the above ordered list denoted {v1,v2,v3}, we
begin by setting u1 = v1 = (1,−1,0,0).

Then

ũ2 = v2−
v2 ·u1

∥u1∥2 u1 = (0,0,1,0)− (0,0,1,0) · (1,−1,0,0)
∥(1,−1,0,0)∥2 (1,−1,0,0) = (0,0,1,0).

No need to rescale at this stage! So we set u2 = (0,0,1,0).
N.B. We check u1 ·u2 = 0 before proceeding, and it’s OK.
Now set

ũ3 = v3−
v3 ·u1

∥u1∥2 u1−
v3 ·u2

∥u2∥2 u2

= (−1,0,0,1)− (−1,0,0,1) · (1,−1,0,0)
∥(1,−1,0,0)∥2 (1,−1,0,0)

− (−1,0,0,1) · (0,0,1,0)
∥(0,0,1,0)∥2 (0,0,1,0)

= (−1,0,0,1)+
1
2
(1,−1,0,0)−0(0,0,1,0)

= (−1
2
,−1

2
,0,1)

Once again we can (but we don’t have to) rescale at this stage to eliminate fractions if we wish. So we
set u3 = (1,1,0,−2). N.B. We check u1 ·u3 = 0 = u2 ·u3 before leaving this problem, and it’s all
OK.

So after applying Gram-Schmidt (with optional rescaling), we obtain the orthogonal basis

{(1,−1,0,0),(0,0,1,0),(1,1,0,−2)}

for U .
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N.B. Since we have a simple description of U as {(x,y,z,w) ∈ R4 | x+ y−w = 0}, this time we
can also check u1,u2,u3 ∈U before leaving this problem – and it’s all OK.

(d) V = ker

 1 2 −1 −1
2 4 −1 3
−3 −6 1 −7


Solution: Step 1: find any basis for V : V = ker

 1 2 −1 −1
2 4 −1 3
−3 −6 1 −7

= ker

1 2 0 4
0 0 1 5
0 0 0 0

.

This kernel is {(−2s−4t,s,−5t, t) | s, t ∈ R}= span{(−2,1,0,0),(−4,0,−5,1)}, and so (cour-
tesy of Theorem 15.2.2), a basis for V is {(−2,1,0,0),(−4,0,−5,1)}.

Step 2: Apply G-S, perhaps with rescaling: With the above ordered basis denoted {v1,v2}, we
begin by setting u1 = v1 = (−2,1,0,0).

Then

ũ2 = v2−
v2 ·u1

∥u1∥2 u1

= (−4,0,−5,1)− (−4,0,−5,1) · (−2,1,0,0)
∥(−2,1,0,0)∥2 (−2,1,0,0)

= (−4,0,−5,1)− 8
5
(−2,1,0,0)

= (−4
5
,−8

5
,−5,−1)

Again we can (but we don’t have to) rescale at this stage to eliminate fractions, should we wish.
Set u2 = (4,8,25,5), so that {(−2,1,0,0),(4,8,25,5)} is an orthogonal basis for V .

19.5 Find the best approximation to each of the given vectors v from the given subspace W .

(b) v = (1,1,1), W = {(x,y,z) ∈ R3 | 5x−4y+ z = 0}

Solution: From Q. 2 (d) we know

projW (x,y,z) =
1

42
(17x+20y−5z,20x+26y+4z,−5x+4y+41z),

so the best approximation to v = (1,1,1) from W is projW (1,1,1) =
(16

21
,
25
21

,
20
21

)
.

N.B. You must not rescale this answer! This is a very, very common error at this stage. Rescal-
ing an orthogonal basis is fine, but the projection is a fixed answer. For example, if we rescaled
this to (16,25,20), this is simply not the correct answer: check that (16,25,20) /∈W ! The vector
projW (v) always belongs to W .

19.6 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

(b) Every linearly independent set is orthogonal.

Solution: This is false: for example {(1,0),(1,1)} is linearly independent but is not orthogonal.
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(d) When finding the orthogonal projection of a vector v onto a subspace W , once the answer is
obtained, it’s OK to rescale the answer to eliminate fractions.

Solution: Absolutely false! See comments at the end of Q.5(b).

(f) When finding the orthogonal projection of a vector v onto a subspace W , using different
orthogonal bases of W in the formula can give different answers.

Solution: This is false: it’s a wonderful fact (and a consequence of Proposition 19.3.3) that even
though the formula for the orthogonal projection looks different when using a different orthogonal
basis, the answer will always be the same. That is, using different orthogonal bases of W in the formula
will always give the same answer for the projection.

(h) To check that a vector, say u, is orthogonal to every vector in W , it suffices to check that u is
orthogonal to every vector in any basis of W .

Solution: This is true — let’s prove it.
Suppose u is orthogonal to every vector in some basis B = {w1, . . . ,wk} of W , i.e., u ·wi = 0 for

every i, 1≤ i≤ k.
Now let w be any vector in W . We show that u ·w = 0 as follows. Since B is a basis of W , we can

write w = a1w1 +a2w2 + · · ·+akwk for some scalars a1, . . . ,ak. Then

u ·w = u · (a1w1 +a2w2 + · · ·+akwk)

= a1(u ·w1)+a2(u ·w2)+ · · ·+ak(u ·wk)

= a1(0)+a2(0)+ · · ·+ak(0)

= 0.

That is, u ·w = 0. So we’ve shown that if u is orthogonal to every vector in any basis of W , then u
is orthogonal to every vector in W . (The converse is also clear: if u is orthogonal to every vector in W ,
it will surely be orthogonal to every vector in any basis of W – since these basis vectors are in W .)

Problems of Chapter 21
21.1 Find the determinants of the following matrices:

(b) A =

2 −1 3
3 0 −5
1 1 2

 Solution: detA = 30

(d) A =

3 4 −1
1 0 3
2 5 −4

Solution: detA =−10

(f) A =

λ −6 0 0
0 λ 3
0 4 λ +4

 Solution: detA = (λ −6)(λ +6)(λ +2)

(h) A =

−λ 2 2
2 −λ 2
2 2 −λ

 Solution: detA = (λ −4)(λ +2)2
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21.2 If

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣= 3, find

(b) A =

∣∣∣∣∣∣
b a c
e d f
h g i

∣∣∣∣∣∣ Solution: detA = −3, since C1 ↔ C2 (giving a change of sign) brings this

matrix back to the original one.

(d)

∣∣∣∣∣∣
b 3a c−4b
e 3d f −4e
h 3g i−4h

∣∣∣∣∣∣ Solution: detA = −9, since C1 +C3 → C3 (no change to the determinant)

followed by noting the factor of 3 in C2 (giving a factor of 3 to the determinant) yields the determinant
in part (b).

21.3
(b) If B is a 4×4 matrix and det(2BBT ) = 64, find |det(3B2BT )|.

Solution: Since 64 = det(2BBt) = 24(detB)2, detB =±2. Hence |det(3B2Bt)|= 34|det(B2Bt)|=
34(|detB|)3 = 81(8) = 648

(d) Compute the determinant of A =

[
1 2
3 4

][
5 6
7 8

][
9 10
11 12

][
13 14
15 16

]
.

Solution:

detA = det
([1 2

3 4

][
5 6
7 8

][
9 10

11 12

][
13 14
15 16

])
= det

[
1 2
3 4

]
det

[
5 6
7 8

]
det

[
9 10
11 12

]
det

[
13 14
15 16

]
= (−2)(−2)(−2)det

[
13 14
2 2

]
= (−2)(−2)(−2)(−2)

= 16

21.4 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

In the following A and B are n×n matrices (with n > 1) and k is a scalar.

(b) det(A+B) = detA+detB

Solution: This is usually false. For example if A =

[
1 0
0 0

]
and B =

[
0 0
0 1

]
, then

det(A+B) = det
[

1 0
0 1

]
= 1 ̸= 0 = 0+0 = detA+detB.
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(d) det(kA) = kn detA

Solution: This is always true, as we saw in class: multiplication of one row (or column) of A by k
changes the determinant by a factor of k, so multiplication of n rows (or n columns) –which is the same
as multiplying the matrix A by k – will change the determinant by n factors of k, i.e., by a factor of kn.

(f) If A and B are the same except the first row of A is twice the first row of B, then detA = 2detB.

Solution: This is always true, as we saw in class. (Expand detA along the first row.)

21.5

(b) If u,v and w are vectors in R3, use properties of 3 by 3 determinants to show that

u · v×w = w ·u× v = v ·w×u

Solution: We know, since it’s the definition of the determinant of a 3 by 3 matrix, that u · v×w =

det

u
v
w

, where we’ve written the vectors as row vectors and the matrix in block row form. So

w · u× v = det

w
u
v

 = −det

u
w
v

 = det

u
v
w

 (two row interchanges: R1↔ R2,R2↔ R3). Similarly,

v ·w×u = det

v
w
u

=−det

u
w
v

= det

u
v
w

 (two row interchanges again: R1↔ R3,R2↔ R3).

(h) Suppose A,B,C and D are respectively of sizes m×m, m×n, n×m and n×n. Suppose that

D is invertible. Noting that
[

A B
C D

][
Im 0

−D−1C In

]
=

[
A−BD−1C B

0 D

]
, show that det

[
A B
C D

]
=

det(A−BD−1C)detD.

Solution: This follows from (g) and the multiplicative property of determinants.

Problems of Chapter 22

22.1 Find the eigenvalues of the following matrices.

(b)

1 1 1
1 1 −1
1 1 2


Solution:
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det

1−λ 1 1
1 1−λ −1
1 1 2−λ

= det

1−λ 1 1
2−λ 2−λ 0

1 1 2−λ

 (R1 +R2→ R2)

= (2−λ )det

1−λ 1 1
1 1 0
1 1 2−λ

 (Factor of (2−λ ) in R2)

= (2−λ )det

1−λ 1 1
1 1 0
0 0 2−λ

 (−R2 +R3→ R3)

= (2−λ )2 det
[

1−λ 1
1 1

]
(Laplace expansion along R3)

=−λ (2−λ )2

Hence the eigenvalues are 0 and 2. (The eigenvalue 2 has an ‘algebraic multiplicity’ of 2.)

(d)

1 0 1
0 1 0
1 1 1


Solution:

det

1−λ 1 1
0 1−λ 0
1 1 1−λ

= (1−λ )det
[

1−λ 1
1 1−λ

]
(Laplace expansion along R3)

= (1−λ ){(1−λ )2−1}
= (1−λ )λ (2−λ )

Hence the eigenvalues are 0, 1 and 2.

(f)

2 1 0
0 2 1
0 0 2


Solution: Since this matrix is an upper triangular matrix, its eigenvalues are the diagonal entries.

Hence 2 is the only eigenvalue (with algebraic multiplicity 3).

(h)

2 1 0
0 2 0
0 0 2


Solution: Since this matrix is an upper triangular matrix, its eigenvalues are the diagonal entries.

Hence 2 is the only eigenvalue (with algebraic multiplicity 3).

22.2 For each of the matrices in the previous question, find a basis for each eigenspace.

Solution:

1. (b) The eigenvalues of A =

1 1 1
1 1 −1
1 1 2

 are 0 and 2, as we saw.
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E0 = ker(A−0I3)

= kerA

= ker

1 1 1
1 1 −1
1 1 2

= ker

1 1 0
0 0 1
0 0 0


= {(−s,s,0) | s ∈ R}
= span{(−1,1,0)}

Hence {(−1,1,0)} is basis for E0.

E2 = ker(A−2I3)

= ker

−1 1 1
1 −1 −1
1 1 0


= ker

1 0 −1
2

0 1 1
2

0 0 0


= {( s

2
,− s

2
,s) | s ∈ R}

= span{(1,−1,2)}

Hence {(1,−1,2)} is basis for E2.

2. (d) The eigenvalues of

1 0 1
0 1 0
1 1 1

 are 0, 1 and 2, as we saw.

E0 = ker(A−0I3)

= kerA = ker

1 0 1
0 1 0
1 1 1


= ker

1 0 1
0 1 0
0 0 0


= {(−s,0,s) | s ∈ R}
= span{(−1,0,1)}

Hence {(−1,0,1)} is basis for E0.
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E1 = ker(A− I3)

= ker

0 0 1
0 0 0
1 1 0


= ker

1 1 0
0 0 1
0 0 0


= {(−s,s,0) | s ∈ R}
= span{(−1,1,0)}

Hence {(−1,1,0)} is basis for E0. E2 = ker(A−2I3)= ker

−1 0 1
0 −1 0
1 1 −1

= ker

1 0 −1
0 1 0
0 0 0

=

{(s,0,s) | s ∈ R}= span{(1,0,1)}. Hence {(1,0,1)} is basis for E2.

3. (f) The single eigenvalue of A =

2 1 0
0 2 1
0 0 2

 is 2, as we saw.

E2 = ker(A−2I3) = ker

0 1 0
0 0 1
0 0 0

= {(s,0,0) | s ∈R}= span{(1,0,0)}. Hence {(1,0,0)} is

basis for E2.

4. (h) The single eigenvalue of A =

2 1 0
0 2 0
0 0 2

 is 2, as we saw.

E2 = ker(A− 2I3) = ker

0 1 0
0 0 0
0 0 0

 = {(s,0, t) | s ∈ R} = span{(1,0,0),(0,0,1)}. Hence

{1,0,0),(0,0,1)} is basis for E2.

Problems of Chapter 23
23.1 For each of the matrices A in the previous question, if possible find and invertible matrix P and a
diagonal matrix D such that P−1AP = D. If this is not possible, explain why.

Solution:
1. (b) Since dimE0 +dimE2 = 1+1 = 2 < 3, this matrix is not diagonalizable — there is no basis

of R3 consisting of eigenvectors of A: there are at most 2 linearly independent eigenvectors of A.

2. (d) This 3×3 matrix, having 3 distinct eigenvalues, will be diag’ble. Indeed, if v0 = (−1,0,1),
v1 = (−1,1,0) and v2 = (1,0,1) are written as columns, set

P =
[
v0 v1 v2

]
=

−1 −1 1
0 1 0
1 0 1


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and

D =

0 0 0
0 1 0
0 0 2

 ,

then P will be invertible (you can check this directly, or simply note that dimE0 + dimE1 +
dimE2 = 1+1+1 = 3, which guarantees P’s invertibility) and P−1AP = D.

3. (f) Since there is only one eigenvalue (2) and dimE2 = 1 < 3, this matrix is not diagonalizable —
there is no basis of R3 consisting of eigenvectors of A: there is at most one linearly independent
eigenvector of A!

4. (h) Since there is only one eigenvalue (2) and dimE2 = 2 < 3, this matrix is not diagonalizable —
there is no basis of R3 consisting of eigenvectors of A: there are at most two linearly independent
eigenvectors of A.

23.2 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

1. (b) The matrix A =

[
0 −1
1 0

]
has no real eigenvalues.

Solution: This is true: det(A−λ I2) = λ 2 +1, so det(A−λ I2) = 0 has no real solutions.

2. (d) If 0 is an eigenvalue of n×n matrix A, then A is not invertible.

Solution: This is true: 0 is an eigenvalue of A iff det(A− 0In) = detA = 0. Hence, A is not
invertible.

3. (f) Every invertible matrix is diagonalizable.

Solution: This is false. See example (f) or (h) from the previous question, or, check for yourself

that
[

1 1
0 1

]
, which has 1 as its only eigenvalue, is not diagonalizable.

4. (h) If an n×n matrix has n distinct eigenvalues, then the matrix is diagonalizable.

Solution: This is true, as we saw in class: for every distinct eigenvalue, we obtain an eigenvector,
and we know that eigenvectors corresponding to distinct eigenvalues are linearly independent.
Hence there are n linearly independent eigenvectors, which will of course be a basis for Rn, as
dimRn = n.

5. (j)3 If an n×n matrix A has eigenvalues λ1, . . . ,λn, then detA = λ1 . . .λn.

Solution: Use the hint and substitute λ = 0 into the equation.

23.3 Let A =

0 1 1
1 0 1
1 1 0

.

a) Compute det(A−λ I3) and hence show that the eigenvalues of A are 2 and −1.

3Hint: Use the fact that we know det(A−λ In) = (−1n)(λ −λ1)(λ −λ2) . . .(λ −λn).
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Solution: We have

A−λ I =

−λ 1 1
1 −λ 1
1 1 −λ

 .

To find the determinant, we could do a cofactor expansion and then expand, or we can apply
some row operations first, keeping track of any changes to the value of the determinant. (In doing
so, we avoid dividing by λ since we don’t know if it is zero.)−λ 1 1

1 −λ 1
1 1 −λ

λR2+R1→ R1
∼

−R2+R3→ R3

0 1−λ 2 1+λ

1 −λ 1
0 1+λ −λ −1


So we compute (keeping an eye on common factors, to simplify our factoring work):

det(A−λ I) =

∣∣∣∣∣∣
0 1−λ 2 1+λ

1 −λ 1
0 1+λ −λ −1

∣∣∣∣∣∣=−1
∣∣∣∣1−λ 2 1+λ

1+λ −λ −1

∣∣∣∣
=−((1−λ

2)(−λ −1)− (1+λ )(1+λ )) = (1−λ
2)(1+λ )+(1+λ )2

= (1+λ )2(1−λ +1)

= (1+λ )2(2−λ )

It follows that the eigenvalues are 2 (with algebraic multiplicity 1) and −1 (with algebraic
multiplicity 2).

b) Find a basis of E2 = {x ∈ R3 | Ax = 2x}.

Solution:

E2 = ker(A−2I) = ker

−2 1 1
1 −2 1
1 1 −2


= ker

1 −2 1
0 −3 3
0 3 −3

= ker

1 0 −1
0 1 −1
0 0 0


= {(s,s,s) | s ∈ R}= span{(1,1,1)}.

c) Find a basis of E−1 = {x ∈ R3 | Ax =−x}.

Solution:

E−1 = ker(A− (−1)I) = ker(A+ I) = ker

1 1 1
1 1 1
1 1 1


= ker

1 1 1
0 0 0
0 0 0


= {(−s− t,s, t) | s, t ∈ R}= span{(−1,1,0),(−1,0,1)}.
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d) Find an invertible matrix P such that P−1AP = D is diagonal, and give this diagonal matrix D.
Explain why your choice of P is invertible.

Solution: We can take

P =

1 −1 −1
1 1 0
1 0 1

 and D =

2 0 0
0 −1 0
0 0 −1

 .

Since the columns of P are eigenvectors, column multiplication shows AP = PD. Since eigen-
vectors from different eigenspaces are linearly independent, and dim(E2)+dim(E−1) = 3, the
columns of P form a basis for R3 and so P is invertible. Thus P−1AP = D.

e) Find an invertible matrix Q ̸= P such that Q−1AQ = D̃ is also diagonal, and give this diagonal
matrix D̃.

Solution: We may replace P with any matrix such that the columns are linearly independent
eigenvectors of A (such as nonzero scalar multiples of the columns of P). For a more interesting
example, you can verify that

Q =

−2 1 0
1 1 1
1 1 −1

 and D̃ =

−1 0 0
0 2 0
0 0 −1


is another valid answer.

Problems of Chapter 24
24.1 State whether each of the following defines a linear transformation.
• If you say it isn’t linear, you must give an explicit example to illustrate.
• If you say it is linear, you must give a clear explanation - by quoting a theorem presented in class,

or by verifying the conditions in the definition in every case.

1. (b) T : R3→ R2 defined by T (x,y,z) = (x+2z,y)

Solution: This is indeed a linear transformation, since the formula comes from multiplication by

the matrix A =

[
1 0 2
0 1 0

]
: i.e., if v =

x
y
z

 ∈ R3 (is written as a column), then Av =
[

x+2z
y

]
,

which is the formula above (written as a column).

2. (d) T : R2→ R2 defined by T (v) =
[

0 −1
1 0

]
v

Solution: This is indeed a linear transformation, since we know (first example, section 24.1) that
multiplication by a matrix always gives a linear transformation.

3. (f) T : R3→ R3 defined by T (v) = proj(1,1,−1)(v).

Solution: This is a linear transformation. We can show this in two ways: via the definition, or by
finding the standard matrix of T .
First, we need just to write out the formula for T more explicitly:

(1) T (v) = proj(1,1,−1)(v) =
v · (1,1,−1)
∥(1,1,−1)∥

(1,1,−1) =
v · (1,1,−1)

3
(1,1,−1).
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In Cartesian coordinates, if v = (x,y,z), this is

(2) T (v) =
(x,y,z) · (1,1,−1)
∥(1,1,−1)∥

(1,1,−1) =
(x+ y− z)

3
(1,1,−1)

which simplifies to 1
3(x+ y− z,x+ y− z,−x− y+ z).

1. Via the definition:
(i) If u,v ∈ R3, then by (1) above,

T (u+ v) =
u · (1,1,−1)

3
(1,1,−1)+

v · (1,1,−1)
3

(1,1,−1)

=
(u · (1,1,−1)

3
+

v · (1,1,−1)
3

)
(1,1,−1)

=
(u+ v) · (1,1,−1)

3
(1,1,−1)

= T (u)+T (v)

(ii) If k ∈ R and v ∈ R3,

T (k v) =
(k v) · (1,1,−1)

3
(1,1,−1)

= k
(v · (1,1,−1)

3
(1,1,−1)

)
= k T (v)

These show that T satisfies the two conditions of the definition, so T is linear.

2. If v =

x
y
z

, then by (2) above, if A = 1
3

 1 1 −1
1 1 −1
−1 −1 1



T (v) =
1
3

 x+ y− z
x+ y− z
−x− y+ z

=
1
3

 1 1 −1
1 1 −1
−1 −1 1

 x
y
z

= Av.

Hence, T is multiplcation by a matrix, and so by Example 24.1.1, T is linear.

4. (h) T : R3→ R3 defined by T (v) = projv(1,1,−1).

Solution: This looks at first like part (f), but isn’t — ‘v’ is in the wrong spot. Indeed this is not a
linear transformation: look first at the formula for T :

T (v) =
(1,1,−1) · v
∥v∥2 (1,1,−1)

The dependence on v is rather complicated: it appears in the numerator as ‘(1,1,−1) · v’ (which

is fine in itself) but the warning bells go off when we see the factor of ‘
1
∥v∥2 ’!

So let’s give a counterexample to show T is not linear.
Indeed, let v = (1,0,0). Then T (v) = (1,1,−1), but

T (2v) = T (2,0,0) =
1
2
(1,1,−1) ̸= 2(1,1,−1) = 2T (v).

So T is not linear.
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5. (j) T : R3→ R3 defined by T (v) = 2v. Solution: This is a linear transformation. It is easy to

check it satisfies the conditions of the definition, but it’s even easier to note that if v ∈ R3, then
T (v) = 2I3 v, i.e., T is multiplication by the matrix 2I3 and so is a linear transformation.

6. (l) T : R3→ R2 defined by T (v) = Av, where A =

[
1 0 1
1 2 3

]
.

Solution: This is a linear transformation, since it is defined by multiplication by a matrix!

24.2 In each of the following, find the standard matrix of T and use it to give a basis for kerT and
im T and verify the conservation of dimension.

1. (b) T : R3→ R2 defined by T (x,y,z) = (2z+ x,y)

Solution: We saw in Q.1 (b) that the standard matrix for T here is A =

[
1 0 2
0 1 0

]
.

Since A is already in RRE form, a basis for kerT = kerA is easily seen to be {(−2,0,1)}. The
column space algorithm yields the basis {(1,0),(0,1)} for im T = Col A.

2. (d) T : R3→ R3 defined by T (v) = proj(1,1,−1)(v).

Solution: We saw in 24.1(f) that T is multiplication by A = 1
3

 1 1 −1
1 1 −1
−1 −1 1

.

A short computation shows that the RRE form of A is

1 1 −1
0 0 0
0 0 0

, and so a basis for kerT =

kerA is easily seen to be {(−1,1,0),(1,0,1)}.
The column space algorithm yields the basis {(1,1,−1)} for im T = Col A – as you would
expect from a projection onto the line with direction (1,1,−1)!

3. (f) T : R3→R3 defined by T (v) = projH(v), where H is the plane through the origin with normal
(1,1,0).

Solution: We first need the formula for T . Since the subspace H is a plane in R3, we don’t have
to find an orthogonal basis of H and use the projection formula: instead, we note that if n is any
normal vector for H, and v is any vector in R3, that

v = projn(v)+(v−projn(v)),

and that the vector w = v−projn(v) will indeed be the orthogonal projection of v onto H, since
it satisfies both the conditions of Theorem 19.3.3! That is4,

projH(v) = v−projn(v).

So the formula for T is T (v) = v− v ·n
∥n∥2 n. Let v = (x,y,z). Since n = (1,1,0),

T (x,y,z) = (x,y,z)− x+ y
2

(1,1,0) = (
y− x

2
,
x− y

2
,z).

4First: Note that w · n =
(
v− projn(v)

)
· n =

(
v− v ·n
∥n∥2 n

)
· n = v · n− v ·n

∥n∥2 n · n = v · n− v · n = 0, so it is true that

w = v− projn(v) ∈ H. Secondly, w− v = (v− projn(v)
)
− v = −projn(v) which is certainly orthogonal to H, since it is a

multiple of the normal n to H. Draw yourself a picture to convince yourself geometrically.
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Now it is a simple matter to check that T is multiplication by the matrix A =
1
2

−1 1 0
1 −1 0
0 0 2

.

A short computation shows that the RRE form of A is

1 −1 0
0 0 1
0 0 0

, and so a basis for kerT =

kerA is easily seen to be {(1,1,0)}, as you would expect for the projection onto the plane through
0 with normal (1,1,0).
The column space algorithm yields the basis {(−1,1,0),(0,0,1)} for im T = Col A – and you
can check yourself that span{(−1,1,0),(0,0,1)}= H, as you’d expect!

24.3 State whether each of the following is (always) true, or is (possibly) false.

• If you say the statement may be false, you must give an explicit example.
• If you say the statement is true, you must give a clear explanation - by quoting a theorem

presented in class, or by giving a proof valid for every case.

1. (b) If T : R4→ R2 is linear, then dimkerT ≥ 2.

Solution: This is true, since we know that dimkerT + dimim T = 4, and that, as im T is a
subspace of R2, dimim T ≤ dimR2 = 2. Thus, dimkerT = 4−dimim T ≥ 4−2 = 2.

2. (d) If T : R3→R2 is linear, and {v1,v2} ⊂R3 is linearly independent, then {T (v1),T (v2)} ⊂R2

is linearly independent.

Solution: This is false, indeed it is only (always) true if kerT = {0}. For example, define
T : R3→ R2 by T (x,y,z) = (0,0), and let v1 = (1,0,0) and v2 = (0,1,0). Then {T (v1),T (v2)}
is not independent as it contains the zero vector.

3. (f) If T : R3→ R3 is linear, and kerT = {0}, then im T = R3.

Solution: This is true. Recall that dimkerT +dimim T = 3 in this case, so if kerT = {0}, then
dimkerT = 0 and so dimim T = 3. But im T is then a 3-dimensional subspace of R3, which
also has a dimension of 3, so by the Theorem 10.3.1, im T = R3.

24.4∗ State whether each of the following defines a linear transformation.

• If you say it isn’t linear, you must give an explicit example to illustrate.
• If you say it is linear, you must give a clear explanation - by quoting a theorem presented in class,

or by verifying the conditions in the definition in every case.

(b) T : P →P defined by T (p)(t) =
∫ t

0
p(s)ds.

Solution: You’ve learned in calculus (and will prove, if you take a course in analysis) that if p
and q are (integrable) functions, then∫ t

0
(p+q)(s)ds =

∫ t

0
p(s)ds+

∫ t

0
q(s)ds.

Moreover you’ve also seen that if k ∈ R is a scalar, then
∫ t

0
kp(s)ds = k

∫ t

0
p(s)ds. Together,

these show that T is indeed linear.
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(d) det : M22→ R defined by det
[

a b
c d

]
= ad−bc.

Solution: The determinant is not linear. For example if A =

[
1 0
0 0

]
and B =

[
0 0
0 1

]
, then

det(A+B) = det
[

1 0
0 1

]
= 1 ̸= 0 = 0+0 = detA+detB.

(We saw this example in the solution to problem 21.4(b) on determinants.)
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