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PREFACE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://ecampusontario.pressbooks.pub/diffeq/?p=4#oembed-1

About

This open-access textbook is designed to make the study of Differential Equations accessible and engaging for
everyone. Differential Equations is a resource primarily intended for engineering students, but it’s versatile and
beneficial for learners from any discipline. It serves as a comprehensive tool, whether you’re approaching differential
equations for the first time or revisiting the topic for a refresher. Instead of delving into theorem proofs or formula
derivations, the focus is on offering a step-by-step guide for solving differential equations.

Content and Format

Each chapter in this resource introduces essential concepts and provides illustrative examples with detailed solutions.
Following these examples, there are ‘Try An Example’ questions to evaluate your comprehension. These questions
are generated dynamically through MyOpenMath, enabling the generation of similar questions and providing
immediate feedback to aid your learning process.

Incorporating interactive elements such as videos, dynamic problems, and graphs, the textbook is optimized for web
viewing through Pressbook. This enables full interaction with its multimedia content, from watching instructional
videos to engaging with dynamic graphs and problem sets. While a downloadable PDF version is available, it does not
include the interactive features found in the web format.

Sponsor

This project has received support and funding from the Government of Ontario and eCampusOntario. The views
expressed in this publication are the views of the author(s) and do not necessarily reflect those of the Government of
Ontario.
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ACCESSIBILITY STATEMENT

The web version of this textbook is fully compliant with the Accessibility for Ontarians with Disabilities Act
(AODA) requirements and adheres to the Web Content Accessibility Guidelines (WCAG) 2.0, Level AA standards.
Furthermore, it aligns with the comprehensive checklist provided in Appendix A: Checklist for Accessibility of the
Accessibility Toolkit – 2nd Edition, ensuring it meets the highest standards of accessibility.

Designed with interactivity at its core, the textbook incorporates videos, dynamic problems, graphs, and simulations,
making it ideally suited for online learning through Pressbook. Key accessibility features have been integrated into
the web version to accommodate diverse learning needs:

• The content is accessible to users of screen-reader technology, enhancing navigability and usability.
• Keyboard navigation is supported throughout, allowing users to easily move through content without a

mouse.
• Formatting for links, headings, and tables is optimized for screen-reader compatibility.
• Mathematical equations are presented in AsciiMath and rendered via MathJax to ensure they are accessible.

The JAWS screen reader is recommended for the best experience in accessing these equations.
• All images are accompanied by comprehensive descriptions, provided through text within the main content,

alt-text, or detailed image descriptions. These extended alt-texts ensure that all visual information is conveyed
clearly to users who rely on screen readers.

• Color is not used as the sole means of conveying information, ensuring content is accessible to users with color
vision deficiencies.

• Video content includes captions to support users with hearing impairments.
• The option to adjust font size is available, catering to users with visual impairments.
• While a PDF version of the textbook is offered for download, it’s important to note that this format lacks the

interactive elements present in the web version, which are central to the enhanced learning experience provided
by the online resource.

This holistic approach to accessibility ensures that all learners, regardless of their physical abilities, can effectively
engage with and benefit from the rich educational content provided in this textbook.
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Émilie du Châtelet (1706 – 1749).
Attribution: Maurice Quentin de La
Tour, Public domain, via Wikimedia
Common

PART I

INTRODUCTION

Chapter Outline

This chapter provides an overview of fundamental concepts in differential equations along with an introduction to
direction fields for first-order differential equations.

1.1 Introduction: This section covers basic definitions concerning differential equations, including their order,
various classifications, and the nature of their solutions.

1.2 Direction Fields: This section briefly introduces direction fields, a tool for visually representing the behavior of
solutions to first-order differential equations without needing an exact solution formula.

Pioneers of Progress

Émilie du Châtelet, born in Paris in 1706, was a woman of exceptional
intellect and determination who carved her unique path in the male-
dominated world of science and mathematics during the Enlightenment.
Despite societal norms restricting women’s access to formal education, Du
Châtelet educated herself in mathematics and physics, often through
creative means such as disguising herself as a man to attend lectures. Her
most significant work, a translation and commentary on Isaac Newton’s
‘Principia Mathematica’, remains the standard French translation to this
day. In it, she clarified Newton’s ideas and expanded on them, particularly
in her elucidation of the principle of conservation of energy. Émilie du
Châtelet’s work laid the groundwork for future developments in physics
and mathematics, including those in differential equations. Her tenacity
and brilliance broke through the constraints of her time, paving the way for
future generations of women in science, and her legacy continues to inspire
and challenge norms in the scientific community.
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1.1 INTRODUCTION

A. Definitions

Differential equations (DEs) are mathematical equations that describe the relationship between a function and its
derivatives, either ordinary derivatives or partial derivatives. In its simplest form, it describes the rate at which a
quantity changes in terms of the quantity itself and its derivatives. Differential equations are powerful tools in
mathematics and science as they enable the modeling of a wide range of real-world phenomena across various
disciplines, including physics, engineering, biology, economics, and many others. Here are a few examples of
differential equations.

• Basic population growth:

• Basic radioactive decay:

• Newton’s laws of cooling:

• Second Newton’s law of motion:

• RL circuits:

• RLC circuits:

• Heat equation:

B. Order of Differential Equations

The order of a differential equation is the order of the highest derivative that appears in the equation. For example,
if the highest derivative is a second derivative, the equation is of second order. Here are a few examples:

(First Order)
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(Second Order)

(Third Order)

(Second Order)

The order of a differential equation often determines the methods used to solve it. The order of a differential
equation is independent of the type of derivatives involved, whether they are ordinary or partial derivatives.

Throughout this book, our focus will primarily be on first- and second-order differential equations. As you’ll
discover, the methods used to solve second-order differential equations can often be easily extended to tackle higher-
order equations.

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=5

C. Ordinary and Partial Differential Equations

If an equation includes the derivative of one variable with respect to another, such as , then the variable whose

derivative is taken (in this case, ) is known as the dependent variable. The variable with respect to which the
derivative is taken (here, ) is called the independent variable.

An Ordinary Differential Equation (ODE) is a differential equation involving a function of one independent
variable and its derivatives. All the above examples except the heat equation are ordinary differential equations.
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A Partial Differential Equation (PDE) is a differential equation that contains unknown multivariable functions
and their partial derivatives. PDEs are used to formulate problems involving functions of several variables.

In this textbook, our primary focus will be on ordinary differential equations, which involve functions of a single
variable. We will only delve into partial differential equations in the final chapter.

D. Linear and nonlinear Differential Equations

A linear differential equation is one in which the dependent variable and its derivatives appear with the first
power, are not multiplied together, and are not arguments of another function, e.g., or . The general
form of a linear differential equation is

where is the dependent variable, is the independent variable, are functions of (which can be constants
or zeros), and is a function of .

A nonlinear differential equation is one in which the dependent variable or its derivatives appear to a power
greater than one, or they are multiplied together, or in any way that does not fit the linear form. For example,

is nonlinear since has a power of 2.

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=5
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E. Homogeneous and Nonhomogeneous Differential Equations

A differential equation is termed homogeneous if every term in the equation is a function of the dependent variable
and its derivatives. For linear differential equations, an equation is homogeneous if the function on the right-
hand side of the equation is zero.

For example, the linear equation is homogeneous because all terms are functions of

and its derivatives, and the equation equals zero.

A differential equation is nonhomogeneous if it includes terms that are not solely functions of the dependent
variable and its derivatives. For linear equations, this typically means there is a non-zero function on the right-hand

side of the equation. For example, the linear equation is nonhomogeneous because

of the presence of the term , which is a function of the independent variable .

F. Solutions

A solution of a differential equation is a function that satisfies the equation on some open interval. This means that
when the function and its derivatives are plugged into the differential equation, the equation holds true for all values
within the interval. Often there are a set of solutions.

Example 1.1.1: Verify Solution

Verify is a solution to .

Show/Hide Solution

First, we find since it appears in the equation:

.
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By substituting and into the left-hand side of the equation, we obtain

which is equal to the right-hand side of the equation. Since the given satisfies the equation, it is a solution
to the equation.

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=5

Now, consider the differential equation . We can easily solve this equation by integrating:

, where is an arbitrary constant, represents a family of solutions to the given differential equation.
Each distinct value of yields a unique particular solution, demonstrating how various initial conditions can be
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satisfied. This family of solutions, encompassing all possible solutions through the inclusion of the arbitrary constant
, is known as the general solution of the differential equation.

An explicit solution explicitly expresses the dependent variable in terms of the independent variable(s). For example,
is an explicit solution. On the other hand, an implicit solution, may not directly express the

dependent variable explicitly but still satisfies the differential equation. An example is . Note that
finding an explicit solution is not always possible.

G. Initial Conditions

Initial condition(s) refer to the values specified for the dependent variable and possibly its derivatives at a specific
point. Initial conditions are used to determine the specific (or particular) solution of a differential equation from
the general solution, which typically contains arbitrary constants. For example, states that at time
, the value of is . The number of initial conditions required for a given differential equation depends on the
order of the differential equation. Generally, an order differential equation needs initial conditions. These
conditions specify the values of the function and its derivatives up to the order at a particular point.
For example, a second-order differential equation requires two initial conditions. These are often the value of the
function and the value of its first derivative at a specified point.

An Initial Value Problem (IVP) is a differential equation with initial condition(s) that nails down one particular
solution. A solution might not be valid for all real numbers – there is the “interval of validity” or the domain of the
solution.

Example 1.1.2: Inital Value Problem

, is an initial value problem, where and can be substituted in the general
solution of to find , which results in the particular solution of .
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1.2 DIRECTION FIELDS

Although having an explicit formula for the solution of a differential equation is useful for understanding the nature
of the solution, determining where it increases or decreases, and identifying its maximum or minimum values, finding
such a formula is often impossible for most real-world differential equations. Consequently, alternative methods are
employed to gain insights into these questions. One effective approach for visualizing the solution of a first-order
differential equation is to create a direction field for the equation. This method provides a graphical representation
of the solution’s behavior without requiring an explicit formula.

We assume that the first-order differential equation has solutions. For this equation, function
gives the slope of the solution curve at any point in the XY-plane. In a direction field, these slopes

are represented by small line segments or arrows, drawn at a selection of points in the plane. Each segment has a slope
equal to the value of at that point.

Example 1.2.1: Compute FV

For the equation , the graph of the solution passing through the point must have a

slope of .

The general solution of the equation is . The direction field and some of the solutions
of the equation for different values for constant are shown in Fig. 1.2.1.

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://ecampusontario.pressbooks.pub/diffeq/?p=89

Figure 1.2.1 Direction field for and solutions to
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The arrows in the direction fields represent tangents to the actual solutions of the differential equations. We can use
these arrows as guides to sketch the graphs of the solutions to the differential equation, providing a visual
representation of how the solutions behave. By following these arrows, we can visually trace the trajectory of a
solution over time, which can indicate its long-term behavior.
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PART II

FIRST ORDER DIFFERENTIAL
EQUATIONS

Chapter Outline

This chapter delves into first-order differential equations, vital in science and engineering for modeling rates of
change in numerous phenomena. It covers their structure, solution techniques, and real-world applications in fields
like population dynamics, thermal processes, and electrical circuits.

2.1 Separable First-Order Differential Equations: This section addresses separable differential equations, a category
of first-order equations where each variable can be separated on different sides of the equation.

2.2 Linear First-Order Differential Equations: This section covers the solution to first-order nonhomogeneous linear
equations.

2.3 Exact Differential Equations: This part explains the criteria for an equation to be exact and outlines methods for
solving these equations.

2.4 Integrating Factors: This section explores the techniques of utilizing integrating factors to transform a non-exact
equation into an exact equation that can be solved.

2.5 Applications of First-Order Differential Equations: The final section illustrates the use of first-order differential
equations in modeling growth and decay, substance mixing, temperature changes, motion under gravity, and circuit
behaviors.

FIRST ORDER DIFFERENTIAL EQUATIONS | 15



Mary Cartwright (1900-1998) Credit:
Anitha Maria S, CC BY-SA 4.0
<https://creativecommons.org/licenses/
by-sa/4.0>, via Wikimedia Commons

Pioneers of Progress

Mary Cartwright, born in 1900 in Aynho, Northamptonshire,
England, emerged as a pioneering mathematician in an era when
female academics were a rarity. Her journey in mathematics began at
Oxford University, leading her to Cambridge, where she initially
focused on classical analysis. However, it was during World War II,
while investigating the problem of radio waves and their interference
patterns, that Cartwright made a groundbreaking discovery.
Collaborating with J.E. Littlewood, she delved into nonlinear
differential equations, and their work laid the foundational stones for
what would later be known as chaos theory. Cartwright’s foray into
this field produced seminal results, including the Cartwright-
Littlewood theorem and her study of the Van der Pol oscillator, a
concept critical in the understanding of oscillatory systems. Her
extraordinary contributions not only advanced the field of
mathematics but also broke gender barriers, setting a precedent for
women in STEM. Mary Cartwright’s life was a blend of intellectual
rigor and quiet resilience, inspiring a legacy that continues to
encourage mathematicians, especially women, to explore and reshape
the boundaries of mathematical knowledge.
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2.1 SEPARABLE EQUATIONS

Separable equations are a type of first-order differential equations that can be rearranged so all terms involving one
variable are on one side of the equation and all terms involving the other variable are on the opposite side. This
characteristic makes them easier to solve compared to other types of differential equations. Often, these equations
represent nonlinear relationships.

Understanding and applying integration techniques is crucial for solving separable equations. Therefore, reviewing
and familiarizing yourself with standard integration methods is recommended before attempting to solve these
equations.

Solution to Separable Differential Equation

A first-order differential equation is called separable if it can be written in the form of

where is a function of only and is a function of only. The right-hand side is a product of these two
functions, allowing the separation of variables.

For example, the equation is separable as it can be factored in and written as

. However, the equation is not separable as the right-hand

side cannot be factored into a product of the functions of and .

How to Solve Separable Equations

To solve the equation ,
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1. Separate variables: multiply both sides by and by

2. Integrate both sides: where is the merged

constant of integration.

3. Solve for : If possible, solve the resulting equation for to get the explicit solution. Some solutions cannot be
rearranged and solved for , so the implicit form obtained in Step 2 may be the final solution.

Watch Video

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=138#oembed-1

Example 2.1.1: Solve a Separable Equation

Solve the nonlinear equation

.

Show/Hide Solution

1. Multiplying both sides by and we get
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2. Integrating both sides, we get

3. Multiplying by 3 and taking the cubic root of both sides, we obtain

By substituting constant , we’ll have the explicit solution

Example 2.1.2: Solve a Separable Equation

Solve the differential equation

.

Show/Hide Solution

This is a separable differential equation as it can be expressed in the form

1. Multiplying both sides by and we obtain
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2. Integrating both sides, we get

3. Exponentiating both sides yields

where

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=138

When solving nonlinear differential equations using the separable method, it is crucial to consider the interval of
validity, which is the range of the independent variable, typically , where the solution is defined and behaves
appropriately. This interval is essential because solutions to nonlinear equations may not be valid across all values
due to potential issues like division by zero, undefined logarithms of non-positive numbers, and other undefined
operations.

Additionally, due to the nature of nonlinear equations, certain initial conditions might lead to no solution or
multiple solutions, emphasizing the need to carefully select and verify the range of over which the solution is
applicable. The interval of validity is not always immediately apparent from the equation itself and often depends on
both the specific form of the solution and the initial conditions.
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Example 2.1.3: Solve a Separable Equation with Initial Condition

Solve the initial value problem

,

Show/Hide Solution

Find the general solution:

After factoring out in the right-hand side, the equation can be expressed in the form

1. Multiplying both sides by and we get

2. Integrating both sides, we get

3. Multiplying by 7 and exponentiating both sides, we obtain

By rearranging the equation and substituting , we’ll have the explicit solution
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Applying the initial condition:

The solution to the IVP problem is then

There is no restriction on the domain of , and therefore the solution is valid on .

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=138

Example 2.1.4: Solve a Separable Equation with Initial Condition
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Solve the initial value problem and find the interval of validity of the solution.

,

Show/Hide Solution

Find the general solution:

This is a separable differential equation as it can be expressed in the form

1. Multiplying both sides by and we get

2. Integrating both sides, we get

3. Multiplying by -1 and taking the reciprocal of both sides, we obtain the explicit solution

Applying the initial condition:
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The solution to the IVP problem is then

Find the interval of validity:

To establish the interval of validity for the solution, we need to consider two constraints:

1. The expression within a square root must be positive. Therefore, the term under the square root, ,
should be greater than or equal to 0 ( ).

2. The denominator of any rational function should not equal zero to avoid undefined expressions. Given
, it implies that .

The interval of validity is the range of values that satisfy both conditions:

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=138
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Section 2.1 Exercises

1. Solve the differential equation:

Show/Hide Answer

2. Solve the differential equation. Express explicitly as a function of .

Show/Hide Answer

3. Solve the initial value problem:

Show/Hide Answer

4. Solve the initial value problem and find the interval of validity of the solution:

Show/Hide Answer

Interval of validity:
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2.2 LINEAR FIRST-ORDER DIFFERENTIAL
EQUATIONS

A first-order differential equation is classified as linear if it can be written as

(2.2.1).

A first-order differential equation that cannot be expressed in that form is called nonlinear. If , the
equation is said to be homogeneous. In contrast, if is not zero, the equation is nonhomogeneous.
Homogeneous equations always have the trivial solution . Solutions that are not zero are referred to as
nontrivial solutions.

Some equations may not appear to be linear at first, such as but can be rearranged

into the standard linear form:

.

Theorem: If and in Equation 2.2.1 are continuous on some open interval (a,b), then there’s a unique
formula that is the general solution to the differential equation.

In our discussions within this text, we will not always explicitly mention the interval when seeking the general
solution of a specific linear first-order equation. By default, this implies that we are looking for the general solution
on every open interval where the functions and in the equation are continuous.

To solve Equation 2.2.1, we start by assuming that the solution can be expressed as , where is
a known solution to the corresponding homogeneous equation (called complementary equation), and is an
unknown function we aim to determine. This approach is part of a technique called variation of parameters, which
is particularly useful for finding solutions to nonhomogeneous differential equations. We will explore this technique
more thoroughly in the context of second-order differential equations. Substituting the guessed solution into the
equation yields

By simplifying and rearranging, we obtain
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Since is a solution to the complementary equation, , simplifying the expression to

. Integrating both sides allows us to determine , leading to the

solution for Equation 2.2.1 as

The term is called an integrating factor, represented as , hence the solution is often reformulated as

Next, we focus on finding , the solution to the complementary homogeneous equation

Rearranging this into a separable form , and integrating both sides gives

which leads to . Consequently, , the integrating factor, is the reciprocal of , resulting in

.

Now that we understand the derivation of the solution, let’s outline the solution process in the following steps.

How to Solve Linear First-Order Equations

1. Write the equation in the standard form.
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2. Calculate the integrating factor letting the constant of integration be zero for convenience.

3. Integrate the right-hand side equation and simplify where possible. Ensure you properly deal with the constant
of integration.

Occasionally, the function may not be integrable in a straightforward manner. In that case, it is necessary to
retain the function in its integral form instead of attempting to find an explicit solution.

Example 2.2.1: Solve a Linear Equation

Find the general solution to

,

Show/Hide Solution

1. First, we multiply by to put the equation in the standard form:

So and

2. Thus, the integrating factor is
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3. Substituting into the general formula, we obtain

Figure 2.2.1 depicts the sketches of the solutions for various values of constant for the above example.

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://ecampusontario.pressbooks.pub/diffeq/?p=144

Figure 2.2.1 Graph of for different values of constant

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=144

Theorem – Existence and Uniqueness of solution: If and are continuous on , then

a) The general solution to the nonhomogeneous equation is

b) If is an arbitrary point in then the initial value problem has a unique solution on

Example 2.2.2: Solve an IVP Problem

Solve the initial problem

,

Show/Hide Solution

Find the general solution:

1. First, we rearrange the equation to put it in the standard form:

Therefore, and .

2. The integrating factor is
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3. Substituting into the general formula for the solution, we obtain

Apply the initial condition to find C:

The solution to the IVP problem then is

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=144

Section 2.2 Exercises

1. Find the simplest integrating factor of equation .

Show/Hide Answer

2. Find the general solution of the differential equation:

Show/Hide Answer

3. Find the general solution of the differential equation:

Show/Hide Answer

4. Solve the initial value problem: with the initial condition

Show/Hide Answer
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5. Solve the initial value problem:

Show/Hide Answer
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2.3 EXACT DIFFERENTIAL EQUATIONS

A. Introduction

Exact differential equations are a class of first-order differential equations that can be solved using a particular
integrability condition. This section will discuss what makes an equation exact, how to verify this condition, and the
methodology for solving such equations.

We begin by introducing a foundational theorem followed by an illustrative example to demonstrate its application.
Following that, we delve into the concept of exact equations and explore a method for solving them.

Theorem: If function has continuous partial derivatives and , then the equation is
an implicit solution to the differential equation .

The theorem can be proven by using implicit differentiation.

Example 2.3.1: Prove a Solution to a Differential Equation

Show that is an implicit solution for the given differential equation.

Show/Hide Solution

To apply the theorem effectively, we need to define as the function given in the solution. Then, we
show that the terms multiplied by dx and dy are, respectively, the partial derivatives and of with
respect to and . This process involves finding these partial derivatives and confirming that they
correspond to the respective terms in the given differential equation.

letting , we find its partial derivatives:
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We observe that and are equivalent to the expressions multiplied by and in the equation,
respectively, which confirms that is the solution to the given differential equation.

B. Solution to Exact Equations

We now shift our focus to a broader understanding of exact differential equations. Consider a differential equation
expressed as

which can also be represented as

.

An equation of this form is called exact if there is a function such that its partial derivatives and
correspond to and , respectively. When such a function exists represents a

solution to the differential equation.

For instance, the equations and are examples of

equations in exact form.

Now the pertinent questions are

1. How can we determine whether a given differential equation is exact?
2. If it is exact, how do we find the function and thus a solution?

To address the first question, let’s assume the given differential equation is exact, implying the existence of a
function with partial derivatives and that match and , respectively. If and
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its partial derivatives and are continuous, then the cross partial derivatives of must be equal:

or equivalently,

This relationship is summarized in the theorem below.

1) Test for Exactness

Theorem. Consider that the first derivatives of and are continuous within a rectangular
region . Then, the differential equation

is exact in if, and only if, the following condition is satisfied for all in :

To address the second question of solving an exact differential equation, follow the step-by-step procedure outlined
below.

2) Method for Solving Exact Equations

1*. Find : If the equation is exact, then . Integrate this equation with respect to

to find part of . Remember to include an arbitrary function of the other variable, in this case .

2. Determine the Arbitrary Function:
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a. To find , first determine from the expression obtained for F(x,y) in Step 1. Since must be equal to
from the exact differential equation, set equal to and solve for .

b. After isolating , integrate it with respect to to obtain . Set the constant of integration to zero.
Substitute the determined back into the expression for to complete it.

3. Form the general Solution: The solution to is given implicitly (not solved
for ) by

where is a constant. This equation represents the family of curves that are solutions to the differential equation.

*Note: As an alternative method, you might also start by integrating with respect to and

then use similar steps to find if the integration seems to be easier.

Example 2.3.2: Solve an Exact Equation

Determine if the equation is exact and if so find the solution:

Show/Hide Solution

1) Test for Exactness:

Since , the equation is exact.
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2) Find the solution:

1. We know . We integrate with respect to :

2a. To find , we take the partial derivative of above with respect to :

Since must be equal to from the exact differential equation, set equal to

and solve for or determine it by comparing.

By comparing, we determine that .

2b. By integrating with respect to y, we obtain . Setting the constant of integration to zero
gives , resulting in .

3. Thus, an implicit solution to the differential equation is

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=146

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=146

Example 2.3.3: Solve an Exact Equation with Initial Condition

a) Solve the initial value problem and find the explicit solution . b) Determine the interval of validity.

Show/Hide Solution

a)

1) Test for Exactness:
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Since , the equation is exact.

2) Find the general solution:

We have the option to integrate with respect to or integrate with respect to . Since both integrals are
equally straightforward in this case, we integrate with respect to for variety, ensuring we provide examples
of both methods.

1.

It is important to note that we include an arbitrary function of , , since we integrate with respect to
this time.

2a. To find , we take the partial derivative of above with respect to :

Since must be equal to from the exact differential equation, we set

equal to and solve for or determine it by comparing.
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2b. By integrating with respect to , we obtain . Setting the constant of
integration to zero gives . Therefore,

3. Thus, an implicit solution to the differential equation is

Apply the initial condition:

The solution to the IVP problem then is

We need to find the explicit solution, so we rearrange the equation to solve for :
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b) Find the interval of validity:

To establish the interval of validity for the solution, we need to ensure the denominator of the rational
function is not equal to zero to avoid undefined expressions:

Therefore, the interval of validity for the solution is .

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=146

Section 2.3 Exercises

1. Determine if the equation is exact and if so find the solution:

.

Show/Hide Answer
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2. Solve the differential equation: .

Show/Hide Answer

3. Solve the initial value problem. Give the explicit solution: ,

.

Show/Hide Answer
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2.4 INTEGRATING FACTORS

When faced with a non-exact first-order differential equation, the method of integrating factors provides a systematic
way to transform it into an exact equation that can be solved. This section explores the techniques of utilizing
integrating factors for solving differential equations.

Sometimes a differential equation that is not initially exact can be transformed into an exact one by multiplying
through by an appropriate function, . Consider the equation

.

It is not exact because and do not match. However, if we multiply the entire equation by a
function , it becomes

.

This equation is now exact as . This modified equation can then be solved using the exact
equation methods discussed in Section 2.3.

The function is known as an integrating factor for the equation if, when multiplied by the equation, it
results in an exact equation. In formal terms, if multiplying the differential equation by as in

makes it exact, then is the integrating factor.

Method for Finding the Special Integrating Factor

When you encounter a first-order differential equation in the form that is neither separable
nor linear, you can still potentially solve it by finding a special integrating factor. Follow these steps:

1. Compute partial derivatives: Compute and .

2. Check for exactness:
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• If , then the equation is already exact, and no integrating factor is needed.
• If , the equation is not exact, and you may proceed to find an integrating factor.

3. Find a special integrating factor:

• Compute the expression (i). If (i) is a function of only, then an integrating factor is given

by .

• If (i) is not a function of only, compute the expression (ii). If (ii) is a function of only,

then an integrating factor is given by .

4. Apply the integrating factor: Multiply the entire differential equation by the integrating factor to transform
it to an exact equation.

5. Solve the exact equation: Once the equation is made exact, solve it using the method outlined in Section 2.3
for exact equations.

Example 2.4.1: Solve an Equation Using Integrating factors

Solve

Show/Hide Solution

A quick inspection shows that the equation is neither separable nor linear nor exact. Therefore, we check if a
special integrating factor exists:

Since (i) is the function of only , an integrating factor is given by
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Multiplying by the original differential equation, we obtain the exact equation

Solving the equation using the exact method, we get the implicit solution

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=148

Section 2.4 Exercises

1. Find an integrating factor for the following equation:

Show/Hide Answer
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2. For the given differential equation, a) Determine the integrating factor. b) Find a general solution.

Show/Hide Answer

a)

b)

3. Solve the differential equation:

Show/Hide Answer

4. For the given differential equation, a) Determine the integrating factor. b) Find a general solution.

Show/Hide Answer

a)

b)
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2.5 APPLICATIONS OF FIRST-ORDER ODE

A. Introduction

Mathematical modeling is the process of translating real-world problems into mathematical language. This involves
formulating, developing, and rigorously testing models to represent and solve complex issues. Differential equations,
including both ordinary and partial types, are instrumental in these models. They relate some function with its
derivatives, representing rates of change. This makes them particularly suited to modeling dynamic systems where
understanding how things evolve is crucial.

In this section, we will explore how first-order differential equations are applied across various domains, including
growth and decay processes, substance mixing, Newton’s law of cooling, the dynamics of falling objects, and the
analysis of electrical circuits.

B. Population Growth and Decay

One of the most common applications of first-order differential equations is in modeling population growth or
decline. The models provide insights into how populations change over time due to births, deaths, immigration,
and emigration. The simplest model for population growth is the Exponential Growth Model, which assumes an
unlimited resource environment. It is represented by the differential equation:

where is the population size, and is the constant of proportionality. The solution to this separable differential
equation is

where is the initial population at time .

If the population decays exponentially and if the population grows exponentially. This model
implies that the population grows continuously and without bounds, which is unrealistic in the long term for any
population due to limitations in resources, space, etc. However, it is a good approximation for populations with no
significant constraints on resources or for short-term predictions.

48 | 2.5 APPLICATIONS OF FIRST-ORDER ODE



When dealing with problems where there are different rates of population entering and exiting a region, the key is to
understand that the overall rate of change of the population is the result of the difference between the rate of
population entering (immigration or birth) and the rate of population leaving (emigration or death). This can be
represented as a differential equation that models the net change in population over time. The general approach is
to set up a balance equation reflecting these rates:

Here is the rate at which the population enters the region, and is the rate at which the population exits
the region.

Example 2.5.1: Population Change

A fish population in a lake grows at a rate proportional to its current size. Without outside factors, the fish
population doubles in 10 days. However, each day, 5 fish migrate into the area, 16 are caught by fishermen, and
7 die of natural causes. Determine if the population will survive over time and, if not, when the population will
become extinct. The initial population is 200 fish.

Show/Hide Solution

Let P(t) be the population of fish at time t (in days). The growth rate is proportional to the population,
which can be represented as rP(t), where r is the proportionality constant. The net migration and death rates
contribute as constants to the population rate of change. The equation for the net change in population per
day is:

So, the differential equation with the initial condition becomes:

Before we solve this IVP, we need to find using the information about doubling the population in 10 days
without outside factors. If the initial population is 200, then in 10 days it will become 400.
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The general solution to this separable differential equation is

Applying the initial condition, we obtain

Now, we return to the original differential equation.

This is a linear differential equation. we write it in standard form:

The integrating factor is

The general solution is
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Applying the initial condition gives

Thus the specific solution is

The exponential term has a positive exponent and thus grows exponentially. However, since the coefficient of
the exponential term is negative, the whole population declines and becomes extinct eventually. To
determine when the population will become extinct, we set and solve for .

days

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=150
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C. Mixing Problems

Mixing problems involve combining substances or quantities and observing how they interact over time. This can
refer to pollutants in a lake, different chemicals in a reactor, or even sugar dissolving in coffee. The common element
in these scenarios is the change in concentration of substances in a mixture over time. Through differential equations,
specifically first-order ones, we can model and solve these dynamic situations.

In mixing problems, represents the substance amount dissolved in the fluid, changing over time at a rate (

). The rate is influenced by the inflow and outflow of the substance.

For a typical mixing problem, you might have a tank that contains a certain amount of fluid into which another
substance is being mixed. The concentration of the substance in the tank changes as more of the substance is added
or removed. The general first-order differential equation for such a scenario is similar to what we discussed for the
population change of a region.

Here is the rate at which the substance enters the system, and is the rate at which the substance
leaves the system.

Example 2.5.2: Mixing Problem with Same Rates of Inflow and Outflow

Consider a tank holding 2000 liters of fresh water. Starting at , water containing 0.1 kilograms of salt per
liter is poured into the tank at the rate of . The mixture is kept uniform by stirring and is drained
from the tank at the same rate it is filled. a) Formulate a differential equation for the quantity of salt in the tank
( ) at any given time, and solve the equation to determine . b) Determine when the concentration of
the salt in the tank will reach .

Show/Hide Solution

Given information

52 | 2.5 APPLICATIONS OF FIRST-ORDER ODE



• The volume of water in the tank ( ) is constant since water inflow and outflow are equal:

• Water inflow rate
• Water outflow rate
• Concentration of incoming salt:

a) Our task is to determine the rate at which salt enters the tank ( ) and the rate at which it leaves the
system. Remember that the rate at which water enters and leaves the tank is different from the rate at which
salt enters and leaves the tank.

The rate at which salt enters the tank is the product of the salt concentration of the incoming water and the
water inflow rate:

The rate at which salt leaves the tank is the concentration of salt in the tank (ratio of the salt in the tank to
the volume of water in the tank), multiplied by the water outflow rate. At any time, the quantity of salt in the
tank is .
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The tank initially has pure fresh water without any salt, so . Therefore, the differential equation
with an initial condition becomes

,

The differential equation is separable (and linear) and can be solved easily. The solution to the IVP is

This equation gives us the amount of salt in the tank in kilograms at any time t after the process starts.

b) To determine when the concentration of salt in the tank reaches , we first need to find an
equation for the concentration in terms of time. Concentration is the ratio of the salt quantity and the
volume of the water. The volume remains constant at 2000 liters. Therefore, the concentration at time
t is the amount of salt divided by the total volume :

Now, we need to solve for t when .
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The concentration of salt in the tank will reach 0.04 kg/L approximately at minutes after the
process starts.

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=150

D. Newton’s Law of Cooling

Newton’s Law of Cooling describes the rate at which an object’s temperature changes when it is exposed to a
surrounding environment with a different, constant temperature. The fundamental principle is that the rate of

change of temperature ( ) is proportional to the difference between the object’s temperature ( ) and the

surrounding temperature ( ). Therefore, the differential equation representing Newton’s Law of Cooling is

Here, represents the object’s temperature at any time , is the constant surrounding temperature, is a positive
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constant dependent on the characteristics of the object and its environment, and is the rate of change of

temperature. When the initial temperature is denoted by , the initial value problem is

This differential equation is separable (and linear), which has the solution

(2.5.1)

The negative sign in the exponent indicates that the temperature difference between the object and its surroundings
decreases exponentially over time. This formula applies whether the object is initially hotter or cooler than the
surroundings, depicting both cooling and warming processes under the law’s assumptions.

Example 2.5.3: Newton’s Law of Cooling

Consider a microprocessor that operates in an environment where the room temperature is constant at 25 ◦C.
After a long period of operation, the microprocessor’s temperature is at 75 ◦C. Once the device is turned off, the
microprocessor begins to cool down to room temperature. Suppose the characteristic cooling constant for this
scenario, which depends on the heat transfer properties of the microprocessor and its cooling system, is 0.07/min.
a) Find the equation of the microprocessor’s temperature. b) What will be the temperature of the microprocessor
10 minutes after the device is turned off? c) How long will it take for the microprocessor to cool down to 35 ◦C?

Show/Hide Solution

Given information:

• Surrounding temperature:
• Initial temperature of the microprocessor:
• Cooling constant:

a) Plugging the given values into the solution to Newton’s Law of Cooling equation, Equation 2.5.1, gives the
formula for .

56 | 2.5 APPLICATIONS OF FIRST-ORDER ODE



b) To find the temperature of the microprocessor 10 minutes after the device is turned off, plug in
minutes into .

c) To find the time when the temperature is 35 ◦C, rearrange the formula when .

minutes

It takes 23 minutes for the microprocessor to cool down to 35 ◦C.

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=150
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E. Dynamics of Falling Objects

The dynamics of falling objects represent a classic example of how differential equations model real-world situations.
This phenomenon is directly connected to Newton’s Second Law of Motion, which states that the force acting on
an object is equal to the mass of the object times its acceleration.

In this equation, the force may depend on time ( ), displacement ( ), and velocity ( ). To focus on first-order
differential equations, we typically consider problems where doesn’t depend on , as inclusion often leads to
higher-order equations. Given that the object’s acceleration ( ) is , the equation for Newton’s Second Law
of Motion becomes

.

Solving this equation yields as a function of time.

Basic Model

The simplest model of a falling object applies Newton’s Second Law by considering gravity as the only force acting
on the object. Here, the force due to gravity is , leading to the differential equation

where is the acceleration due to gravity, and the mass is assumed to be constant. This model assumes no air
resistance and that the gravitational field is uniform. The approximate value of are (metric unit)

or (British unit). Depending on the direction convention you set for a problem, the sign of

changes. For example, if you decide that the upward direction is positive, then since the force due to gravity is
downward the equation is simplified to

Including Air resistance

In reality, as an object falls, it encounters air resistance, which opposes the motion of the object. The net force on the
object then becomes a combination of gravity and air resistance, modifying the equation to
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(2.5.2)

where is the force of air resistance.

The force of air resistance is often proportional to the velocity of the object and thus , where is a
constant of proportionality (a positive value) that represents the coefficient of air resistance. When solving problems
involving forces and motions, it is important to ensure consistent conventions for positive and negative directions.

As the object falls, air resistance increases with velocity until it balances the gravitational force. At this equilibrium
point, the net force is zero, and the object no longer accelerates, reaching a constant velocity, known as terminal
velocity.

Example 2.5.4 Falling Object with Air Resistance

Consider an object that has a mass of 25 kg and is initially moving downward with a velocity of -29 m/s. The
object is falling through the atmosphere, which exerts a resistive force against its motion. This resistive force is
proportional to the object’s velocity. Specifically, when the object’s velocity is 2 m/s, the resistive force is known
to be 20 N. a) Write the differential equation that describes the motion of the object in terms of its velocity and
time. b) Solve the differential equation to find the velocity of the object as a function of time, . c) Determine
the terminal velocity of the object

Show/Hide Solution

Given information

• mass of the object:
• Initial velocity:
• The acceleration due to gravity:

a) Downward velocity is expressed as a negative value. Therefore, the upward direction is positive and the
downward direction is negative.
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Two primary forces acting on the object are gravity and air resistance. The force of gravity always acts
downward, which we consider negative in our coordinate system, and is given by .

On the other hand, air resistance acts in the opposite direction of the object’s motion, providing an upward
force when the object is falling downward. This force is represented as . The negative sign in
ensures that the air resistance force always opposes the motion: it is positive (upward) when the object is falling
( is negative), and negative (downward) when the object is moving upward ( is positive).

Combining these forces, the equation of motion is

we can use the information about the magnitude of air resistance to be when velocity is to find
:

k=20/2=10\ &quot;kg&quot;//&quot;s&quot;

Plugging in the values with initial condition , we obtain the IVP

b) This is a separable (and linear) differential equation. The general solution of the equation is
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Applying the initial condition yields

c) The terminal velocity is

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=150

F. Electrical Circuits: RL and RC

Electrical circuits are integral to technological advancements, functioning based on the interplay of components such
as resistors, inductors, and capacitors. In this section, we specifically discuss the application of first-order differential
equations to analyze electrical circuits composed of a voltage source with either a resistor and inductor (RL) or a
resistor and capacitor (RC), as illustrated in Fig. 2.5.1 Circuits containing both an inductor and a capacitor, known
as RLC circuits, are governed by second-order differential equations, a topic we will revisit in the following chapter.
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(a) (b)

Figure 2.5.1 (a) RL Series circuit and (b) RC series circuit

Kirchhoff’s laws—current law and voltage law—form the foundational principles governing electrical circuits.
Kirchhoff’s current law states that the total current entering a junction must equal the total current leaving, implying
that the algebraic sum of currents in a node is zero. Kirchhoff’s voltage law asserts that the algebraic sum of all voltages
around any closed loop in a circuit must equal zero.

Kirchhoff’s current law implies that the same current passes through all elements in circuits in Figure 2.5.1. To apply
Kirchhoff’s voltage law, understanding the voltage drop across each component is crucial:

a) Ohm’s law dictates that the voltage drop across a resistor is proportional to the current I flowing through it,
expressed as , where is the resistance.

b) Faraday’s law, complemented by Lenz’s law, describes that the voltage drop across an inductor is proportional

to the rate of change of current, given as , where is the inductance.

c) The voltage drop across a capacitor is proportional to the electric charge q stored on it, represented as

, with being the capacitance

RL Circuit Model

In this section, we derive the mathematical model for an RL circuit as shown in Figure 2.5.1, while the model
derivation for an RC circuit is left as an exercise. Consider to be the voltage source for the RL circuit. By
applying Kirchhoff’s voltage law, we have
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where is the voltage across the inductor and is the voltage across the resistor. Substituting

these into the equation yields a first-order linear differential equation

or in the standard form

To solve this linear differential equation. we use an integrating factor

The general solution for the current is then:

(2.5.3)

With specific and an initial condition, such as , one can determine the current I(t) using the above
equation. Once is known, the voltage across the resistor and inductor can be determined.

Example 2.5.5: RL Series Circuit

Consider an RL circuit with a resistor of and an inductor of , powered by a voltage
voltage source. Initially, the current through the resistor, , is 0 A. Calculate the

following: a) The current in the circuit as a function of time. b) The voltage across the inductor as a
function of time. c) The voltage across the resistor as a function of time.

Show/Hide Solution

Given information:
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• Resistor:
• Inductor:
• Voltage source:
• Initial condition:

a) Finding the current

The differential equation for an RL series circuit using Kirchhoff’s voltage law is

Plugging in the given values, we obtain

This is a first-order linear non-homogeneous differential equation.

Equation 2.5.3 gives the solution to this differential equation.

The right-hand side involves an integral with the exponential and sinusoidal terms that is typically solved using
integration by parts. We only provide the final solution of the integral, leaving the detailed integration steps as
an exercise for further exploration.

Which further simplifies to
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Applying the initial condition yields

Therefore, the current is

b) Finding the voltage across the inductor

To find the voltage across the inductor, we first need to differentiate .

Therefore, the voltage across the inductor is

c) Finding the voltage across the resistor

Similarly, the voltage across the resistor is found by
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=150

Section 2.5 Exercises

1. A tank initially contains a solution of 11 kilograms of salt in 2400 liters of water. Water with 0.2 kilograms of
salt per liter is added to the tank at 11 L/min, and the resulting solution leaves at the same rate. Let
denote the quantity (kg) of salt at time (min). a) Write a differential equation for . b) Find the quantity

of salt in the tank at time . c) Determine when the concentration of the salt in the tank will reach 0.1
kg/L. Round to the nearest minute.

Show/Hide Answer

a)

b)

c) 146 min

2. A fluid initially at 135 ◦C is placed outside on a day when the temperature is -30 ◦C, and the temperature of the
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fluid drops 30 ◦C in one minute. Let denote the temperature, in Celsius, at time , in minutes. (a) Find
the temperature of the fluid for . (b) Find the temperature of the fluid 15 minutes after it is
placed outside. Round your answer to two decimal places.

Show/Hide Answer

a)

b)

3. An object with mass has an initial downward velocity of . Assume that the atmosphere
exerts a resistive force with a magnitude proportional to the speed. The resistance is when the velocity is

. Use . a) Write a differential equation in terms of the velocity , and acceleration .

b) Find the velocity of the object.

Show/Hide Answer

a)

b)

4. Suppose an RL circuit with a resistor and a inductor is driven by the voltage . If the

initial resistor current is , find the current , the voltages across the inductor and the resistor
in terms of time . Find the current .

Show/Hide Answer
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PART III

SECOND ORDER DIFFERENTIAL
EQUATIONS

Chapter Outline

This chapter discusses linear second-order differential equations, a fundamental class of equations in the study of
mathematics, physics, and engineering. It explores their structure and techniques for solving them and discusses how
they model real-world systems such as mechanical vibratory systems and electrical circuits.

3.1. Homogeneous Equations: This section discusses homogeneous linear second-order differential equations,
where there is no external forcing function. The general solution involves finding two linearly independent solutions,
which form the foundation of all possible solutions.

3.2 Constant Coefficient Equations: This section focuses on constant coefficient homogeneous equations.

3.3. Non-Homogeneous Equations: This section explores nonhomogeneous equations, which model systems
influenced by external forces or inputs.

The chapter proceeds to introduce various methods for solving equations with variable coefficients and
nonhomogeneous structures.

3.4 Method of Undetermined Coefficients: This method is effective for non-homogeneous equations with constant
coefficients.

3.5 Variation of Parameters: A versatile technique for more general cases.

3.6 Reduction of Order: Useful for finding a second solution when one solution is already known.

3.7 Cauchy-Euler Equation: Specifically for equations with variable coefficients in a particular form.

The chapter concludes by applying these concepts to physical and engineering scenarios.

3.8 Mechanical Systems: This section examines the behavior of spring-mass systems, including free, forced, damped,
and undamped vibrations.
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Elbert Frank Cox (1895-1969).
Attribution: Unknown Author,
Public domain, via Wikimedia
Commons

3.9 Electrical Circuits: This section discusses the analysis of RLC circuits, which incorporate a resistor, inductor, and
capacitor.

Pioneers of Progress

Elbert Frank Cox, born in 1895 in Evansville, Indiana, holds a monumental
place in history as the first African-American to earn a Ph.D. in mathematics.
Overcoming the pervasive racial barriers of his time, Cox’s unwavering
determination led him to earn his doctoral degree from Cornell University in
1925. His groundbreaking dissertation, “The Polynomial Solutions of the
Difference Equation,” laid the foundation for significant advancements in the
field of differential equations. Cox’s academic journey was not just a personal
achievement but a beacon of inspiration, symbolizing the potential for
extraordinary accomplishment despite systemic obstacles. After earning his
Ph.D., he dedicated his life to education, teaching at historically black colleges
and universities and mentoring the next generation of mathematicians. Elbert
Frank Cox’s legacy transcends his mathematical contributions; it is a testament
to resilience and intellectual brilliance in the face of societal challenges, paving
the way for future scholars of diverse backgrounds.
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3.1 HOMOGENEOUS LINEAR SECOND-ORDER
DIFFERENTIAL EQUATIONS

A linear second-order differential equation takes the form:

(3.1.1)

Here, is the function we seek, and , , and are known functions. When referring to non-
homogeneous equations, is known as the forcing function, representing external forces or influences. We start
with the homogeneous case where , and later, we will explore the non-homogeneous case.

(3.1.2)

Unique Solution Theorem. If and are continuous on an open interval , then the initial value
problem has a unique solution within this interval.

Linear Combination Theorem. Suppose and are two solutions to the homogeneous Equation
3.1.2 on an open interval . Then any linear combination is also a solution over the same
interval.

The set of solutions, and , forms a fundamental set or basis for the solution space if they are linearly
independent. This implies any solution to Equation 3.1.2 can be expressed as a linear combination of and .
The Wronskian, W, is crucial in determining their linear independence. For , and , the Wronskian at any in

must be non-zero to confirm independence:

(3.1.3)

Theorem on Linear Independence. If and are continuous on and and are solutions,
then they are linearly independent on if and only if the Wronskian W does not equal zero anywhere on
.

Abel’s Theorem. If and are continuous on , and is any point in , then the Wronskian
is given by:
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Abel’s Theorem is a powerful tool for analyzing the solutions’ behavior across an interval, affirming that if the
Wronskian is non-zero at one point and is continuous, then the Wronskian remains non-zero across the entire
interval.

Equivalence Theorem: For and continuous on , and given two solutions and of Equation
3.1.2, the following are equivalent:

• The general solution of the equation on is
• is a fundamental set of solutions of the equation on
• is linearly independent on
• The Wronskian of is nonzero at some point in
• The Wronskian of is nonzero at all points in

With these foundational theorems, we have the necessary tools to start solving homogeneous linear second-order
differential equations and prepare for the complexities of non-homogeneous cases.

Example 3.1.1: Calculate Wronskian and Find a General Solution Given two Solutions

Two solutions to the differential equation are , .

a) Find the Wronskian of the solutions and determine if they are linearly independent.

b) Write the general solution to the differential equation.

c) Find the solution satisfying the initial conditions .

Show/Hide Solution

a) To find Wronskian, we use Equation 3.1.3. We first need to find the first derivatives of the solutions
and .

72 | 3.1 HOMOGENEOUS LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS



for any

The Wronskian is never equal to zero for any value of , which means the solutions are

linearly independent on the interval .

b) Since the solutions are linearly independent, we can express the general solution to the differential equation
as a combination of these solutions.

Here, and are constants that will be determined based on initial conditions or specific requirements of
the problem.

c) We apply the initial conditions to find constants and .

Applying the initial condition to :

Applying the initial condition to :
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To determine and , we need to solve the following system of two equations and two unknowns:

Solving the system yields

Therefore the solution to the initial value problem is

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=167

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=167

Section 3.1 Exercises

1. Compute the Wronskian of the functions and . Determine if the functions are

linearly independent for all real numbers.

Show/Hide Answer

; the functions are linearly independent because for all real numbers.

2. Two solutions to the equation are , .
a) Find the Wronskian.
b) Find the solution satisfying the initial conditions .

Show/Hide Answer

a)

b)

3. Two solutions to the equation are , .

a) Find the Wronskian.
b) Find the solution satisfying the initial conditions .

Show/Hide Answer

a)

b)
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3.2 CONSTANT COEFFICIENTS
HOMOGENEOUS EQUATIONS

We first consider the homogenous equation with constant coefficients:

(3.2.1)

To solve this, we recognize that a solution to this equation must have the property that its second derivative can be
expressed as a linear combination of the first derivative and the function itself, suggesting that the solution form is

. Substituting and its derivatives into Equation 3.2.1 leads to

Since is never zero for any real number , we can conclude

(3.2.2)

Equation 3.2.2 is known as the auxiliary equation or characteristic equation (characteristic polynomial) of
the homogeneous Equation 3.2.1. To determine the general solution of Equation 3.2.1, we solve for in the
characteristic equation.

The roots of the characteristic equation determine the nature of the solution, leading to three possible cases based on
whether the roots are real and distinct, real and repeated, or complex conjugate.

The General Solution to the Second-Order Linear DE with Constant Coefficients

Case 1: Two Distinct Real Roots

If the characteristic equation (Equation 3.2.2) has two real roots and , then the solutions are
and . The general solution is the linear combination of these two solutions:

Case 2: Repeated Root
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If the characteristic equation has a repeated root , then the solutions are and . The
general solution is the linear combination of these two solutions:

Case 3: Complex Conjugate Roots

If the characteristic equation has complex conjugate roots of the form , then the solutions can
be represented using Euler’s formula as . The real-valued general
solution derived from these complex solutions is

In this form, represents the exponential growth or decay, and the combination of cosine and sine functions
represents the oscillatory behavior due to the complex part of the roots.

Example 3.2.1: Find the General Solution – Case 1 (Two Real Roots)

Find the general solution to the differential equation

Show/Hide Solution

The auxiliary equation is

The equation is factorable to

The roots are and . This is Case 1 since the roots are real and distinct. Therefore, the
general solution is the linear combination of and :
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Example 3.2.2: Find the Solution to IVP – Case 1 (Two Real Roots)

Solve the following initial value problem (IVP).

Show/Hide Solution

Finding the general solution:

The auxiliary equation is

The equation is factorable to

The roots are and . This is Case 1 since the roots are real and distinct. Therefore, the
general solution is the linear combination of and :

Applying the initial conditions:

Applying the initial condition to :
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Applying the initial condition to :

To determine and , we solve the following system of two equations and two unknowns:

Solving the system yields

Therefore the solution to the initial value problem is

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=169
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Example 3.2.3: Find the General Solution – Case 2 (Repeated Roots)

Find the general solution to the differential equation

Show/Hide Solution

The auxiliary equation is

The equation is factorable to

The equation has a repeated root . This is Case 2, the repeated root. Therefore, the general solution is
the linear combination of and :

Example 3.2.4: Find the Solution to IVP – Case 2 (Repeated Roots)

Solve the following initial value problem (IVP).

Show/Hide Solution

Finding the general solution:
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The auxiliary equation is

The equation is factorable to

The equation has a repeated root . This is Case 2, the repeated root. Therefore, the general
solution is the linear combination of and :

Applying the initial conditions:

Applying the initial condition to :

Applying the initial condition to :

Plugging in yields .

Therefore the solution to the initial value problem is
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=169

Example 3.2.5: Find the General Solution – Case 3 (Complex Roots)

Find the general solution to the differential equation

Show/Hide Solution

The auxiliary equation is

Using the quadratic formula, we obtain

The equation has complex conjugate roots with a real part and an imaginary part . This is
Case 3 and thus the general solution is
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Example 3.2.6: Find the Solution to IVP – Case 3 (Complex Roots)

Solve the following initial value problem (IVP).

Show/Hide Solution

Finding the general solution:

The auxiliary equation is

Alternative to using the quadratic formula that we used in the previous example, we can find the roots by
completing the square. For variety, we use completing the square this time.

The equation has complex conjugate roots with a real part and an imaginary part . This is
Case 3 and thus the general solution is

Applying the initial conditions:

Applying the initial condition to :
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Applying the initial condition to :

Plugging in yields .

Therefore the solution to the initial value problem is

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=169

Section 3.2 Exercises

1. Solve the given initial value problem.

Show/Hide Answer
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2. Solve the given initial value problem.

Show/Hide Answer

3. Solve the given initial value problem.

Show/Hide Answer
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3.3 NONHOMOGENEOUS LINEAR
SECOND-ORDER DIFFERENTIAL EQUATIONS

A. General Solution of Nonhomogeneous Equations

In this section, we explore the nonhomogeneous linear second-order differential equation of the form:

(3.3.1)

Uniqueness Theorem. If and are continuous on an open interval and is in the interval, then
the initial value problem has a unique solution within .

To solve Equation 3.3.1, we first need the solutions to the associated homogeneous equation

(3.3.2)

We refer to Equation 3.3.2 as the complementary equation for Equation 3.3.1.

General Solution Theorem. is a particular solution to the nonhomogeneous Equation 3.3.1, and is a
fundamental set of solutions to the complementary Equation 3.3.2, then the general solution of the nonhomogenous
equation is

(3.3.3).

Here represents the solution to the associated complementary equation, commonly referred to as
. Therefore, Equation 3.3.3 often expressed as

B. Superposition Principle

The superposition principle is a powerful tool that allows us to simplify solving nonhomogeneous equations. It
works by dividing the forcing function into simpler components, finding a particular solution for each component,
and then adding those solutions together to form a complete solution to the original equation.

Theorem. If is a particular solution to the differential equation
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and is a particular solution to the differential equation

Then for any constants and , is a particular solution to the differential equation

Example 3.3.1: Superposition Principle

Given is a particular solution to (i) and is a

particular solution to (ii), find a particular solution to
(iii).

Show/Hide Solution

• The forcing function of equation (i):
• The forcing function of equation (ii):

• The forcing function of equation (iii):

Looking at the right-hand side of the equations, we notice that . Therefore,
the same linear combination of and yields a particular solution for equation (iii):

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=172

Section 3.3 Exercises

1. Given is a particular solution to , and

is a particular solution to , use the method of superposition to find a particular
solution to

Show/Hide Answer

2. Given is a particular solution to , and

is a particular solution to , use

the principle of superposition to find a particular solution to

Show/Hide Answer
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3.4 METHOD OF UNDETERMINED
COEFFICIENTS

The method of undetermined coefficients is a technique for finding particular solutions, , to nonhomogeneous
linear differential equations with constant coefficients

To apply this method, we first identify the form of the forcing function and then make an educated guess of
with undetermined coefficients. This guess is substituted back into the equation to solve for these coefficients.

This method is useful when the forcing function, , is a relatively simple function, such as a polynomial,
exponential, sine, or cosine function, or a linear combination of these.

Example 3.4.1: Form of the Guess of Particular Solution

Polynomial Forcing Functions: For , we don’t know a particular
solution. However, by looking at , we wonder what kind of function would leave a polynomial, guess

and solve for .

Exponential Forcing Functions: For , we guess . If was

, we would multiply our guess by : .

Adjusting the Guess Based on Complementary Equation Solutions: If the complementary equation has
a solution matching part of , adjust your guess accordingly. For example, if , start

with . If is a solution for the homogeneous equation, use

. For a repeated root, use .
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Note that we use with a capital ‘Y’ to represent our initial guess for the particular solution. In contrast,
with a lowercase ‘y’ is used to denote the actual particular solution after determining the coefficients.

Example 3.4.2: Solve an Equation with Exponential Forcing Function

Find the general solution to the following equation.

Show/Hide Solution

Finding the complementary solution:

While it’s not necessary to know the complementary solution to find the particular solution, knowing it is
beneficial. Understanding the complementary solution helps us make better initial guesses for the particular
solution and adjust them accordingly before we proceed with the algebra needed to determine the
undetermined coefficients.

The auxiliary equation associated with the complementary equation is , which has a
repeated root . Thus, is a fundamental set of solutions of the complementary

equation.

Guessing the form of the particular solution:

Since is an exponential function and exponential functions never change exponent or disappear
through differentiation, we assume that the particular solution will have a form similar to the exponential
component in . Also, the exponent in differs from the exponent in the complementary solution,
so there is no adjustment required.

Plugging in the guess into the equation to find A:
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Next, we plug in the guess and its derivatives into the differential equation to determine the undetermined
coefficient A.

, ,

Therefore, the particular solution to the differential equation is

Finding the general solution:

The general solution of a nonhomogenous equation is

.

where , and are the solutions to the complementary equation and is the particular solution to the
nonhomogeneous equation.

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=174

Example 3.4.3: Forcing Function Similar to the Complementary Solution with
Repeated Root

Find the general solution to the following equation.

Show/Hide Solution

Finding the complementary solution:

The complementary equation is similar to the one in Example 3.4.2. Thus, is a

fundamental set of solutions of the complementary equation and the complementary solution is
.

Guessing the form of the particular solution:

Our initial guess is . However, since is also the complementary solution, we need to

adjust our guess. Given is a repeated root, we multiply our original guess by .

Plugging in the guess into the equation to find A:
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Next, we plug in the guess and its derivatives into the differential equation to determine the undetermined
coefficient A.

,

,

Factoring the exponential term and collecting the like terms yields

Therefore, the particular solution to the differential equation is

Finding the general solution:

The general solution is
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=174

Example 3.4.4: Solve IVP with Nonhomogeneous Equation

Solve the following initial value problem.

Show/Hide Solution

Finding the general solution:

The equation is similar to the one in Example 3.4.3. Therefore, the general solution is

Applying the initial conditions:

Applying the initial condition to :
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Applying the initial condition to :

Plugging in yields .

Therefore, the solution to the initial value problem is

Note that the initial conditions must satisfy the entire solution of the nonhomogeneous equation, not just
the complementary part. Therefore, we apply the initial conditions directly to the general solution of the
given nonhomogeneous equation to determine the constants.

The following section summarizes the appropriate forms of guesses for various types of forcing functions and
explains how to modify these guesses if any part of the forcing function corresponds to solutions of the
complementary equation.

Method of Undetermined Coefficient (Guessing )

To find a particular solution to the differential equation
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Guess

degree polynomial

Remarks

1. Exponential and Polynomial Products: If contains only exponential functions or products of an
exponential function and polynomials and if is also the solution to the associated complementary equation,
then multiply the exponential part of by for a simple root or for a repeated root.

2. Complex Roots: If relates to the complex root of the complementary equation, i.e., is a
complex root of the associate auxiliary equation, then multiply the guess by .

3. Exponential and Trigonometric/Polynomial Products: If includes products of an exponential
function and a polynomial or a trigonometric function, consider only the trigonometric or polynomial part for
your initial guess, then multiply by the exponential part of .

4. Polynomial and Trigonometric Products: If contains products of polynomials and trigonometric
functions, first, write down the guess for just the polynomial and multiply that by the appropriate cosine. Then
add on another guessed polynomial with different coefficients and multiply that by the appropriate sine.

Example 3.4.5: Find the Form of the Particular Solution

Find the form of a particular solution to
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where is

a) b) c) d) e)

Show/Hide Solution

The auxiliary equation associated with the equation is , which has roots and
.

a)

b) This function contains the product of polynomials (second degree) and trig functions. Using Remark 4,
first, we guess the polynomial and multiply it by the proper cosine. We then add it to the product of another
guessed polynomial with different coefficients and a sine.

c) This function contains the product of exponential, polynomial (first degree), and trig functions. Using
Remarks 3 and 4, first, we guess the polynomial and multiply it by the proper cosine. We then add it to
the product of another guessed polynomial with different coefficients and a sine. Finally, we multiply the
exponential part.

d) Since is the root of the auxiliary equation and thus is a solution in the fundamental set,
won’t be a correct guess. Noting Remark 1, we need to multiply it by . Thus

e) This function contains the product of exponential and polynomial (second degree). Using Remark
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3, first, we guess the polynomial and multiply the exponential part. The polynomial guess will be
. The exponential part needs to be multiplied by as is in the fundamental

solution set (Remark 1). Therefore,

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=174

Section 3.4 Exercises

1. Find the particular solution of the ODE

Show/Hide Answer

2. Find the general solution to the ODE:

Show/Hide Answer
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3. Find the particular solution of the ODE

Show/Hide Answer

4. Solve the initial value problem

Show/Hide Answer

5. Solve the initial value problem

Show/Hide Answer
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3.5 METHOD OF VARIATION OF PARAMETERS

A. Introduction

The method of variation of parameters is another technique used to find particular solutions to nonhomogeneous
linear differential equations. It is especially useful for equations with both constant and variable coefficients and
is applicable when the forcing function, , makes the method of undetermined coefficients impractical. This
technique also extends well to higher-order equations.

Unlike the method of undetermined coefficients where the complementary solution aids in guessing the form of
the particular solution, variation of parameters requires the complementary solution to determine the particular
solution.

B. Variation of Parameters: Constant-coefficient Equations

We first focus on applying the method of variation of parameters to nonhomogeneous constant-coefficient
equations. Consider the nonhomogeneous linear second-order equation

(3.5.1)

Let be a fundamental set of solutions to the associated complementary (homogenous) equation. The
general solution to the complementary equation is . To find a particular solution, , using the
variation of parameters method, we replace the constants and with functions and , respectively,
resulting in

We aim to substitute and its derivatives into Equation 3.5.1 to determine functions and . The first
derivative of is

Since we have more parameters than we have equations, we impose that (i) to simplify
calculations. Therefore, is simplified to the following.
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We then find .

After substituting and its derivatives into Equation 3.5.1 and collecting the terms, we obtain

The expressions multiplied by and are zero, since and are solutions to the complementary equation,
leading to

(ii).

Combining (i) and (ii) yields a system of equations

Solving the system for and and then integrating yields the solutions for and .

and

Notice that the term in the parenthesis in the denominator is the Wronskian ( ). Therefore, and can also
be written as

and

Method of Variation of Parameters for Constant-coefficient Equations

To find a particular solution to Equation 3.5.1,

1. Find a Solution to the Homogeneous Equation: Determine a fundamental set of solutions to
the corresponding homogeneous equation. Additionally, find the Wronskian of the solutions.
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2. Determine and : Calculate and using the system derived from variation of parameters. Then
integrate them to find and , setting the constant of integration to zero:

and

3. Construct the Particular Solution: Combine , , , and to form the particular solution:

Example 3.5.1: Find a Particular Solution for a Constant-Cofficient Equation

Find a particular solution to

Show/Hide Solution

To find a particular solution using the method of variation of parameters, we should first find a solution to
the associated homogeneous equation:

1. The characteristic polynomial of the complementary equation is

So the solution is a repeated root . Then, and form a fundamental set
of solutions.

The Wronskian of the fundamental set is
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2. Next substituting , , , and

into formulas for and to determine them.

Finding :

This integral can be evaluated using the technique of integration by parts.

Finding :
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This integral can be evaluated using the technique of integration by parts.

Since we only need one particular solution, we set the constant of integrations to zero in and for
simplicity.

3. We substitute and together with into the expression for to obtain a particular
solution:

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=176
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Example 3.5.2: Find a General Solution for a Constant-Cofficient Equation

Find (a) a particular and then (b) a general solution to

Show/Hide Solution

a) To find a general solution, we first need to find a particular solution. To find a particular solution using
the variation of parameters method, we should first find a set of fundamental solutions to the associated
homogenous equation:

1. The characteristic polynomial of the complementary equation is

So the solutions are and and thus and form a
fundamental set of solutions.

2. Next we find and by substituting , , , and

into

and
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Since we only need one particular solution, we take both constants of integration as zero for simplicity.

3. We substitute and together with into the expression for to obtain a particular
solution:

b) To find a general solution we add the general solution to the homogeneous equation and a particular
solution:

Notice that the terms and are like terms and can be combined to . Letting
yields

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=176
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=176

C. Variation of Parameters: Variable-Coefficient Equations

Having discussed solving homogeneous and nonhomogeneous second-order differential equations with constant
coefficients, we now turn our attention to equations where the coefficients are functions of the independent variable.
The method of variation of parameters is suitable for such equations.

Considerations for Variable-Coefficient Equations

For a differential equation of the form

valid solutions are expected on an open interval where all four governing functions, , and
are continuous and is nonzero. Standardizing the equation by dividing by yields

Existence and Uniqueness Theorem: If , , and are continuous on an interval containing
point , for any initial values and , there exists a unique solution on the same interval to the initial
value problem.

The methodological steps for variable-coefficient equations mirror those for constant coefficients except the equation
should be in the standard form.
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Method of Variation of Parameters for Variable-Coefficient Equations

1. Standardize the equation: Divide the equation by the coefficient of to make the coefficient one. The
equation should be in the following format:

2. Linearly Independent Solutions: Find two linearly independent solutions, , to the corresponding
homogeneous equation. Additionally, find the Wronskian of the solutions.

3. Determine and : Calculate and using the system derived from variation of parameters. Then
integrate them to find and , setting the constant of integration to zero:

and

4. Construct the Particular Solution: Combine , , , and to form the particular solution:

Example 3.5.3: Find a Particular Solution for a Variable-Cofficient Equation

Find a particular solution to the following differential equation given and satisfy

the corresponding homogeneous equation.

Show/Hide Solution

1. First, divide the equation by the coefficient of , to put it in the standard form.

2. To find a particular solution using the method of variation of parameters, we need a fundamental set of
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solutions to the associated homogeneous equation. the provided solutions and will form the
fundamental set if their Wronskian is nonzero over an open interval.

The Wronskian of the solution set is

The Wronskian is never zero. Therefore, the solution set is the fundamental solution set.

3. Next substituting , , , and into

formulas for and to determine them.

Finding :

Letting gives

Finding :
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Letting yields

4. Substitute and together with into the expression for to obtain a particular solution:

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=176

D. Summary

• Use the undetermined coefficients method for constant-coefficient equations with recognizable forcing
functions .

• Use the variation of parameters method for constant-coefficient equations with less typical or for
variable-coefficient equations.

• In general, if a fundamental set of solutions is known, variation of parameters is a viable and often preferable
method.

Section 3.5 Exercises

1. Find a particular solution to the equation

Show/Hide Answer

2. Find the particular solution to the equation

Show/Hide Answer

3. Find a particular solution to the following differential equation given and

satisfy the corresponding homogeneous equation.
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Show/Hide Answer
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3.6 METHOD OF REDUCTION OF ORDER

The method of Reduction of Order is a technique for finding a second solution to a second-order linear differential
equation when one solution is already known. It is useful for both homogeneous and nonhomogeneous equations.

Generally, to apply the reduction of order method for the nonhomogeneous equation

we assume the second solution takes the form where is a function of the independent variable.
Substituting and its derivatives into the equation and simplifying it yields a first-order equation in terms of :

We can then solve this first-order differential equation using standard techniques, integrate it to find , and then
determine .

Method of Reduction of Order for Homogeneous Equations

For a homogeneous equation with a known solution , find a second, linearly independent solution
by

1. Standardize the equation: Divide the equation by the coefficient of to make the coefficient one. The
equation should be in the following format:

2. Determine : Identify the function , the coefficient of , and evaluate the integral:

3. Find the second Solution : Evaluate the following integral to find the second solution. Let the constant of
integration be zero for simplicity.

3.6 METHOD OF REDUCTION OF ORDER | 113



4. Form the General Solution: The general solution is then a combination of both solutions.

Note that constant can absorb any numerical coefficients of

Example 3.6.1: Reduction of Order for a Homogeneous Equation

Given is a solution to the given equation, use the Method of Reduction of Order to find a second

solution.

Show/Hide Solution

1. First, standardize the equation by dividing it by the coefficient of :

2. Identify , the function coefficient of and then find .

3. The second solution is given by
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We are looking for the simplest , so we let the constant of integration be zero. Given any scalar multiple of
is also a solution, we can choose as the simplest second solution.

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=178

While primarily detailed for homogeneous equations, its principles apply to nonhomogeneous situations by initially
solving the associated homogeneous equation and then finding a particular solution using the standard methods
discussed for nonhomogeneous equations.

Example 3.6.2: Reduction of Order for a Nonhomogeneous Equation; IVP

Given is a solution to the complementary equation, solve the following initial value problem.
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Show/Hide Solution

a. Finding the second solution of the complementary equation:

We follow the steps for the reduction of orders method to find the second linearly independent solution to
the complementary equation.

1a. First, standardize the equation by dividing it by the coefficient of :

2a. Identify , the function coefficient of and then find .

3a. The second solution is given by

4a. The general solution to the complementary equation is

Constant can absorb any numerical coefficients of Thus simplifies to
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b. Finding a particular solution of the nonhomogeneous equation:

We use the method of variation of parameters to find the particular solution .

1b. Standardize the original differential equation.

2b. The solutions to the homogeneous equation are now known: and .

The Wronskian of the fundamental set is

3b. Next substituting , , , and

into formulas for and to determine them.

Finding :

3.6 METHOD OF REDUCTION OF ORDER | 117



Finding :

4b. Substitute and together with into the expression for to obtain a particular solution:

c. Finding the General Solution

The general solution to the nonhomogeneous equation is the sum of the particular solution and
complementary solution.

d. Applying the initial conditions

Applying the initial condition to :
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Applying the initial condition to :

To determine and , we solve the following system of two equations and two unknowns:

Solving the system yields

Therefore the solution to the initial value problem is

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=178

Section 3.6 Exercises

1. Given is a solution to the given equation, use the Method of Reduction of Order to find a

second solution.

Show/Hide Answer

2. Find the general solution of the following equation given that satisfies the complementary equation.

Show/Hide Answer

3. Solve the initial value problem, given that satisfies the complementary equation.

Show/Hide Answer
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3.7 CAUCHY-EULER EQUATION

The Cauchy-Euler equation, also known as the Euler-Cauchy equation or simply Euler’s equation, is a type of
second-order linear differential equation with variable coefficients that appear in many applications in physics and
engineering. These equations are particularly noteworthy because they have variable coefficients that are powers of
the independent variable.

A second-order Cauchy-Euler equation is generally of the form:

(3.7.1)

Here and are constant and is a function of the independent variable. The equation is homogeneous
if and inhomogeneous otherwise. For example, is a Cauchy-Euler
equation.

Method to Solve a Homogeneous Cauchy-Euler Equation

To solve a homogeneous Cauchy-Euler Equation 3.7.1,

1. Substitute and Transform: Let and form the characteristic (auxiliary) equation. Thus,
, and . Substituting these into Equation 3.7.1, we obtain

which yields the characteristic equation.

2. Solve the Characteristic Equation: Similar to the equations with constant coefficients, we solve the
quadratic equation for , and depending on the nature of the roots, the solution will have different forms.

Case 1: Two Distinct Real Roots and
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The general solution will be the linear combination of and :

Case 2: Repeated Root

The general solution will be the linear combination of and :

Case 3: Complex Conjugate Roots

The general solution will be the linear combination of and :

Example 3.7.1: Solve Initial Value Problem with Homogeneous Cauchy-Euler Equation

Solve the initial value problem

Show/Hide Solution

The equation is Cauchy-Euler.

1. So first we find its characteristic polynomial given , , and :

The equation has a repeated root , which is Case 2.

2. Therefore, the general solution of the equation is
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3. We use the initial values to find and :

Therefore, the solution to the IVP is

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=180

For a nonhomogeneous Cauchy-Euler equation, the method of variation of parameters or undetermined coefficients
(if applicable) is used.

Section 3.7 Exercises

1. Find the general solution of the following equation.

Show/Hide Answer
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2. Solve the initial value problem

Show/Hide Answer

124 | 3.7 CAUCHY-EULER EQUATION



3.8 APPLICATION: MECHANICAL VIBRATIONS

A. Introduction

As we progress from first-order to second-order ordinary differential equations, we encounter a variety of applications
that can be modeled by these higher-order equations. In this section and next, we focus on mechanical vibrations
and electrical circuits (RLC circuits) as two primary areas where second-order differential equations are extensively
applied. These areas are fundamental in engineering and physics, providing rich contexts for understanding dynamic
system behavior.

Studying mechanical vibrations is crucial for designing and analyzing systems that experience oscillatory motion.
Understanding vibrations helps engineers reduce noise, prevent catastrophic failure due to resonance, and optimize
the performance of various mechanical systems ranging from buildings and bridges to vehicle suspensions and
electronic components. Modeling these systems allows engineers to predict responses to various stimuli, ensuring
safety and functionality.

To model a vibratory system, we often use a simplified representation involving masses, springs, and dampers. These
elements capture the essential dynamics of more complex real-world systems. Using Newton’s laws of motion or
energy methods, we develop a mathematical model that typically results in a second-order differential equation.

B. Components of a Spring-Mass System

This system consists of a mass, typically denoted as , which represents the object in motion. Attached to it is
a spring with a stiffness coefficient , providing a restoring force that is proportional and opposite to the
displacement from its equilibrium position, as dictated by Hooke’s Law. In many practical scenarios, this system may
also include a damping component characterized by a damping coefficient , representing the resistance to motion
due to factors like air resistance or internal friction in the system. The damper exerts a force that is proportional to
the velocity of the mass but in the opposite direction of motion. Additionally, the system might be subjected to an
external force , which can vary with time and induce forced vibrations.
Consider the mass-spring system illustrated in Figure 3.8.1. The spring has a natural length of when unstretched.
When we attach a mass to the spring, it stretches by a length . This point where the mass comes to rest and the
spring ceases to stretch further is known as the equilibrium position. At this point, the system is stable, and the
mass hangs motionless until disturbed. In this system, we define as the displacement of the mass from its
equilibrium position, where positive values indicate upward movement.
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Figure 3.8.1. Mass-spring system without damping

C. The General Differential Equation Modelling the
System

To derive the equation governing the motion of a spring-mass-damper system, we apply Newton’s second law of
motion, which relates the net force acting on the mass to its acceleration. The primary forces acting on the mass in a
spring-mass system include:

• Force due to gravity acting downward.
• Restorative Force of the spring , where is the spring constant. This force is governed by

Hooke’s law and is typically proportional to the displacement from the spring’s natural length ( ) and
opposite in direction.

• Damping Force , where is the damping coefficient. If present, the damping force is
proportional to the velocity of the mass and acting in the opposite direction of motion.

• External Force . It includes any external force acting on the system, which might be periodic or random,
leading to forced vibrations.

According to Newton’s second law,
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Substituting all the forces and writing acceleration as the second derivative of displacement yields

At equilibrium, the sum of all forces acting on the mass equals zero. Therefore,

Simplify the equation by incorporating to focus on deviations from equilibrium, leading to the standard
form of the vibration equation.

(3.8.1)

Here, is the displacement from the equilibrium position, is the velocity, is the acceleration, and
represents any external force applied to the system. We usually solve this equation along with the initial conditions
for initial displacement from the equilibrium position: and initial velocity: .

Depending on which forces act on the system, there are several special cases:

• Free Undamped Vibration ( ): The simplest form of vibration occurs when there is no
damping and no external force. The system oscillates at its natural frequency, determined by the mass and
spring constant.

• Free Damped Vibration ( ): When damping is present but there is no external force, the
system experiences damped vibrations leading to a gradual decrease in oscillation amplitude over time. The
nature of the damping (underdamped, critically damped, or overdamped) depends on the values of , , and

.
• Forced Undamped Vibration ( ): When an external force acts on the system, the system

experiences forced vibrations. If the frequency of the external force is close to the system’s natural frequency,
resonance can occur, leading to large amplitude oscillations.
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• Forced Damped Vibration ( ): This is the most general case, combining the effects of
damping and external forcing, leading to complex oscillatory behavior.

D. Free Undamped Vibration

The simplest form of vibration occurs when there is no damping ( ) and no external force ( ). In
such cases, Equation 3.8.1 reduces to

(3.8.2)

This equation is a homogeneous second-order linear differential equation. By solving the characteristic equation
, we find that the roots are complex conjugates given by

The term is known as the natural frequency of the system, denoted by . Therefore the solution to the

equation is expressed as

(3.8.3)

It is often convenient to represent the displacement in the amplitude-phase form with a single trigonometric function

(3.8.4)

Here is the amplitude of oscillation, given by and is the phase angle, which can be

determined from the initial conditions of the system. The phase angle is typically chosen to satisfy
for uniqueness and is related to and .

and

The motion described by Equation 3.8.4 is known as simple harmonic motion, characterized by its sinusoidal nature
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and constant frequency. The period of the motion is , representing the time it takes to complete one full

cycle.

Considerations for Units and Phase Angle

• Units: When working with the acceleration due to gravity or any other physical quantity, it is important to use
consistent units throughout the calculation. In the metric system, is typically given as , and

lengths should be in meters with mass in kilograms. In the Imperial system, is about , with lengths

in feet and mass in slugs.
• Phase Angle Uniqueness: There are infinitely many phase angles that satisfy the trigonometric equations due

to their periodic nature. However, selecting in the interval ensures a unique solution within one
complete cycle. The signs of and determine the quadrant in which lies.

◦ if , is in the first quadrant
◦ If , is in the second quadrant.
◦ if , is in the third quadrant.
◦ If , is in the fourth quadrant.

Example 3.8.1: Simple Harmonic Motion

A 150 cm long vertical spring hangs from a fixed ceiling. A 2-kg object is attached to the lower end of the spring,
and the length of the spring becomes 155 cm where the object is in equilibrium. The object is then pulled down
an additional 3 cm and released with an initial upward velocity of 20 cm/s. Assuming no damping and no external
forces other than gravity are acting on the system:

a) Find the displacement of the object as a function of time.

b) Determine the natural frequency, period, amplitude, and phase angle of the motion.

c) Rewrite the equation of motion in the amplitude-phase form .

Express your answers in the cgs unit where .

Show/Hide Solution
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Given information:

• Natural length of the spring:
• Length at equilibrium with a 2-kg object attached:
• Mass of the object:
• Initial displacement (downward):
• Initial velocity (upward):

a)

Calculating the spring constant

At equilibrium, the forces acting on the object are balanced, meaning . This allows us to
determine the spring constant .

Calculating the natural frequency:

The natural frequency is

It is important to note that to find , we require the ratio of and rather than their individual values.

Finding the general solution:

Given there is no damping force and an external force, the initial value problem is

The general solution to this equation is given by Equation 3.8.3.
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Applying the initial conditions:

The equation of the object displacement is then

b)

Natural frequency:

Period:

Amplitude is given by
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Phase angle:

The reference phase angle is determined by

Since ( ) and ( ), should be in the second quadrant.
Therefore,

.

c) The equation of motion can be written as

The graph of the displacement is shown for the first 7 seconds.
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182
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E. Free Damped Vibration

In free, damped vibration, there is no external force ( ). As such, Equation 3.8.1 simplifies to a
homogeneous second-order linear differential equation.

(3.8.5)

This equation is a homogeneous second-order linear differential equation. By solving the characteristic equation
using the quadratic formula, we find the roots

Depending on the discriminant , we encounter three types of motion:

1. Critically damped ( )

In this case, there is a repeated root , and thus the general solution to Equation 3.8.5 becomes

(3.8.6)

The motion in this case is said to be critically damped as the damping is just enough to prevent oscillation. This level
of damping is achieved when the damping coefficient .

is called the critical damping coefficient and is denoted by .

It is important to note that as time progresses ( ), the displacement approaches zero, indicating that
the system smoothly and quickly settles to its equilibrium position without oscillation and overshooting the
equilibrium position similar to how shock absorbers work in automotive suspension systems.

2. Overdamped ( )
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In this case, there are two real distinct roots , where both roots are negative. The

general solution to Equation 3.8.5 becomes

(3.8.7)

Given both and are negative, as time progresses ( ), the displacement approaches zero and the
system gradually returns to equilibrium without oscillating. Overdamped conditions arise when , typically
desired in systems where overshooting the equilibrium position could be harmful or undesirable, like in heavy
machinery. Overdamped systems return to equilibrium slower than critically damped systems. This slower response
is due to the higher damping force applied, which prevents oscillation but also resists motion, causing a sluggish
return.

3. Underdamped ( )

In this case, the roots of the characteristic equation are complex conjugates given by

Thus the solution to the differential Equation 3.8.5 is

(3.8.8)

The term is related to the frequency of oscillation. Similar to the harmonic motion, we can

derive the amplitude-phase form of the equation of motion.

(3.8.9)

Here again

, , and

An underdamped system is characterized by a damping coefficient . In this scenario, the damping is
insufficient to halt oscillations, causing the system to exhibit oscillatory behavior around the equilibrium position.
The amplitude of these oscillations diminishes over time, represented by the time-varying term . As the

exponent is always negative, the displacement gradually approaches zero as time progresses ( ).

This results in a bouncy system response to any disturbances.
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Such behavior is often preferred in various applications. In musical instruments, for example, the underdamped
vibrations of strings or membranes contribute to a sustained, resonant sound. Similarly, seismic dampers in buildings
employ a controlled underdamped response to safely dissipate energy from earthquakes, allowing structures to sway
and reduce stress without collapsing.

Example 3.8.2: Critically Damped Motion

A 1-kg mass is attached to a string with a stiffness of 64 N/m and a dashpot with a damping constant 16 N.s/m.
The object is compressed 20 cm above its equilibrium and released with an initial upward velocity of 2 m/s. Find
the displacement of the object as a function of time.

Show/Hide Solution

Given information:

• Mass of the object:
• Damping constant:
• Spring constant:
• Initial displacement (upward):
• Initial velocity (upward):

The initial value problem for this system is

Before solving the IVP, we can calculate the critical damping coefficient to determine the type of damping.

The damping coefficient equals the critical damping coefficient ( ), and therefore, the system
is critically damped.

Finding the general solution:
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The general solution for a critically damped system is given by Equation 3.8.6.

Applying the initial conditions:

The equation of the object’s displacement is then

The graph of the displacement is shown for the first 3 seconds. As expected, the system smoothly and quickly
returns to its equilibrium position without oscillation.
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182
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Example 3.8.3: Overdamped Motion

Find the displacement of the object in Example 3.8.2, if the spring is now attached to a dashpot with a damping
constant 34 N.s/m.

Show/Hide Solution

Given information:

• Mass of the object:
• Damping constant:
• Spring constant:
• Initial displacement (upward):
• Initial velocity (upward):

The initial value problem for this system is

In the previous example, we determined the critical damping coefficient to be . In the current
system, the damping coefficient is greater than this critical value ( ), and therefore, the system
is overdamped.

Finding the general solution:

The characteristic equation for the differential equation has two distinct real roots.

The general solution to an overdamped system is given by Equation 3.8.7.
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Applying the initial conditions:

Solving the system for constants and yields

The equation of the object’s displacement is then

The below graph displays the displacement for the first 3 seconds. It confirms that the system gradually
returns to its equilibrium position smoothly and without any oscillation. When compared to the critically
damped system in Example 3.8.2, this overdamped system takes a longer time to settle down. This slower
behavior underscores that the increased damping force in the overdamped system delays the return to
equilibrium.
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182
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Example 3.8.4: Underdamped Motion

Find the displacement of the object in Example 3.8.2, if the spring is now attached to a dashpot with a damping
constant 4 N.s/m.

Show/Hide Solution

Given information:

• Mass of the object:
• Damping constant:
• Spring constant:
• Initial displacement (upward):
• Initial velocity (upward):

The initial value problem for this system is

In Example 3.8.2, we determined the critical damping coefficient to be . In the current system, the
damping coefficient is less than this critical value ( ), and therefore, the system is
underdamped.

Finding the general solution:

The characteristic equation for the differential equation has complex conjugates.

The general solution to an underdamped system is given by Equation 3.8.8.

Applying the initial conditions:
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The equation of the object’s displacement is then

The amplitude-phase form of the equation is

The graph illustrates the displacement of the system over the initial 3 seconds. This underdamped system
lacks enough damping to stop oscillations, leading to a pattern of diminishing swings around the
equilibrium position. These oscillations decrease in amplitude for approximately 2 seconds before the system
finally settles at the equilibrium position.
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182
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F. Forced Undamped Vibration

Forced undamped vibration occurs in systems subject to a continuous external force, typically modeled as a periodic
function like or . These sinusoidal forces commonly arise from
rotational mechanisms, alternating currents, or other cyclic phenomena. The equation of motion for such a system
is expressed as

The solution to the differential equation is

Here, the solution comprises a complementary part , representing the free, undamped vibration response, and
a particular part , the steady-state response to the forcing function. The complementary solution, dictated by

the system’s natural frequency , is given by Equation 3.8.3:

To determine the particular solution, we typically use methods like undetermined coefficients or variation of
parameters. As we seek the particular solution, depending on the driving frequency omega, we consider two cases:

1. Non-Resonant ( ): When the driving frequency is different from the natural frequency, the particular
solution is in the form

To find the specific values of the coefficients A and B, we use the method of undetermined coefficients. After
determining these coefficients, the particular solution can be expressed as

and the general solution is

(3.8.10)

The displacement function consists of sine and cosine components with bounded amplitude.
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2. Resonant ( ): When the driving frequency is equal to the natural frequency, the particular solution is in
the form

using the method of undetermined coefficients and after determining the coefficients, the particular solution can be
expressed as

The general solution is then

(3.8.11)

In this case, the particular solution includes a time factor , indicating the unbounded increase in amplitude. This
phenomenon, known as resonance, significantly increases oscillation amplitude and poses potential risks, including
mechanical failure from excessive oscillations.

The amplitude of oscillation in forced vibration is sensitive to the relationship between the driving frequency and the
natural frequency of the system. As the driving frequency approaches the natural frequency, the amplitude increases,
peaking at resonance. This sensitivity is a key factor in designing structures and systems to ensure their natural
frequencies are not aligned with frequencies of common environmental forces, like wind or traffic. Such alignment
could trigger resonance, risking structural integrity.

On the other hand, there are specific applications where inducing resonance is advantageous, for instance, in
mechanical filters and sensors, where resonance can enhance sensitivity or signal strength.

Example 3.8.5: Forced Undamped Vibration

A 32 lb object is suspended from a spring, stretching it by 6 inches to reach equilibrium. This undamped
system is subjected to an external force , and it experiences resonance. Initially, the object
is displaced 3 inches below the equilibrium position and is given an upward velocity of 1 ft/s. Determine the
object’s displacement under these conditions.
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Show/Hide Solution

Given information:

• Mass of the object:

• The spring displacement at equilibrium:

• External force:
• Initial displacement (downward):
• Initial velocity (upward):

Calculating the spring constant

In the British system, weight is typically measured in pounds. To find the spring constant, we first convert
weight to mass using the formula

At equilibrium . This relationship allows us to calculate the spring constant .

Calculating the natural frequency:

The natural frequency is

Alternatively, if the system resonates at a driving frequency of (from ), this
resonance frequency should match the natural frequency of the system, reaffirming that .
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Finding the general solution:

The initial value problem for this system is

The general solution for a system undergoing resonance is given by Equation 3.8.11.

Applying the initial conditions:

The equation of the object’s displacement is then

We can write the complementary solution in the amplitude-phase form, combining the last two terms.

The graph shows how the system’s displacement changes during the first 10 seconds. Since the particular
solution includes a time factor (t), the displacement’s amplitude tends to become infinitely large as time
progresses towards infinity. However, in reality, most systems experience some damping. Even a small
amount of damping can significantly affect the system’s amplitude and behavior, especially around resonance
frequencies, preventing the unlimited growth in amplitude predicted by ideal models.
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182
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G. Forced Damped Vibration

This is the most general case, combining the effects of damping and external forcing. The motion of such a system is
governed by

The solution to the differential equation is the sum of complementary and particular solutions.

The complementary solution is the solution to the free, damped behavior, while the particular solution is found
using the method of undetermined coefficients or variation of parameters.

Based on our understanding of free-damped vibrations, we know that as time progresses toward infinity, the
complementary solution approaches zero. Consequently, the system’s displacement increasingly reflects the behavior
of the particular solution. Therefore, in vibrational analysis, the complementary solution is commonly referred to
as the transient solution, reflecting the initial response, while the particular solution is known as the steady-state
solution, indicating the ongoing response to the external force.

Example 3.8.6: Forced Damped Vibration

Find the displacement of the object in Example 3.8.5, if the system is now attached to a dashpot with a damping
constant 34 lb.s/ft.

Show/Hide Solution

Given information:

• Mass of the object:

• The spring displacement at equilibrium:

• Damping constant:
• External force:
• Initial displacement (downward):
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• Initial velocity (upward):

In the previous example, we determined the spring constant: . The initial value problem for
this system is

Given the characteristic equation has distinct real roots and , the complementary
solution, according to Equation 3.8.7, is

Finding the particular solution:

To find the particular solution, we use undetermined coefficients. Given the forcing cosine function, we
guess the form of the particular solution to be

The derivatives are

Substituting and its derivatives into the differential equation yields

Simplifying it gives

By matching coefficients of sine and cosine terms, we get
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Therefore, the particular solution is

Combining the particular and complementary solutions gives the general solution

Applying the initial conditions:

Solving the system, we find the constants to be

The equation of the object’s displacement is then

The graph depicts the change in the system’s displacement over the first 6 seconds. Initially, for about the first
second, the displacement is primarily influenced by the complementary solution, reflecting the transient
phase. After this initial period, the displacement increasingly aligns with the periodic particular solution,
representing the steady-state behavior of the system.
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=182
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Section 3.8 Exercises

1. An object attached to a spring undergoes simple harmonic motion modeled by the differential equation

where is the displacement of the mass (relative to equilibrium) at time , is the mass of the object,
and is the spring constant. A mass of stretches the spring . a) Use this information to find
the spring constant. (Use ). b) The previous mass is detached from the spring and a mass

of is attached. This mass is displaced above equilibrium (above is positive and below is negative)
and then launched with an initial velocity of . Write the equation of motion in the form

. Do not leave unknown constants in your equation.

Show/Hide Answer

a) N/m

b)

2. A object is attached to a spring with spring constant . It is also attached to a dashpot with

damping constant . The object is initially displaced above equilibrium and released. a) Find its
displacement for . b) Describe the motion.

Show/Hide Answer

a)

b) Free underdamped vibration

3. A object is attached to a spring with spring constant . It is also attached to a dashpot with

damping constant . The object is pulled down and released with an initial upward
velocity of . Find the displacement of the object. Assume displacement and velocity are positive
upward.

Show/Hide Answer
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3.9 APPLICATION: RLC ELECTRICAL CIRCUITS

In Section 2.5F, we explored first-order differential equations for electrical circuits consisting of a voltage source with
either a resistor and inductor (RL) or a resistor and capacitor (RC). Now, equipped with the knowledge of solving
second-order differential equations, we are ready to delve into the analysis of more complex RLC circuits, which
incorporate a resistor, inductor, and capacitor.

Previously, we established that:

• Ohm’s law dictates that the voltage drop across a resistor is proportional to the current I flowing through
it, expressed as , where is the resistance.

• Faraday’s law, complemented by Lenz’s law, describes that the voltage drop across an inductor is

proportional to the rate of change of current, given as , where is the inductance.

• The voltage drop across a capacitor is proportional to the electric charge stored on it, represented as

, with being the capacitance

Figure 3.9.1 Schematic of an RLC series circuit

With these foundations, consider as the external voltage supplied to the RLC series circuit in Fig. 3.9.1. By
applying Kirchhoff’s voltage law, we have
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Substituting , , and into this equation yields

(3.9.1)

Differentiating this equation with respect to time and substituting transform it into a second-order

differential equation.

(3.9.2)

Alternatively, Equation 3.9.1 can be expressed in terms of charge .

(3.9.3)

Given and an initial condition, such as initial current and initial charge , we can solve the equation
for using techniques discussed in previous sections, such as the method of undetermined coefficients. Once

is determined, the voltage across different components of the circuit can be calculated.

Example 3.9.1: RLC Series Circuit

Consider an RLC series circuit with a resistor of and an inductor of , and a capacitor of

powered by a voltage source . Initially, the current and charge on the capacitor are
zero. Determine the current in the circuit as a function of time.

Show/Hide Solution

Given information:
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• Resistor:
• Inductor:

• Capacitor:

• Voltage source:
• Initial current on capacitor:
• Initial charge on capacitor:

The differential equation for an RLC series circuit is given by Equation 3.9.1.

The initial value problem is then

Multiplying the equation by 100, we get

Given the characteristic equation has complex conjugates , the complementary solution
is

Finding the particular solution:

To find the particular solution, we use undetermined coefficients. Given the forcing cosine function, we guess
the form of the particular solution to be
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The derivatives are

Substituting and its derivatives into the differential equation yields

Simplifying gives

By matching coefficients of sine and cosine terms and solving the system of two equations in unknowns
and , we get

Therefore, the particular solution is

Combining the particular and complementary solutions gives the general solution

Applying the initial conditions:

The equation of the object’s displacement is then
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As with forced mechanical vibration scenarios, the current in an RLC circuit is composed of two distinct
parts: the transient current, represented by the complementary solution that diminishes to zero as time
progresses to infinity, and the steady-state current, described by the particular solution which is sinusoidal
and persists over time.

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=184

Section 3.9 Exercises

1. Consider an RLC circuit with a resistor, a inductor, and a capacitor driven by the

voltage . a) Write the differential equation associated with this circuit in terms of
current . b) If the initial charge and initial current on the capacitor are both zero, find the current and the
voltages across the resistor in terms of time .

Show/Hide Answer

a)

b)

c)
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2. Consider an RLC circuit with a resistor, a inductor, and a capacitor driven by the

voltage . a) Write the differential equation associated with this circuit in terms of current

. b) If the initial charge and initial current on the capacitor are both zero, find the current .

Show/Hide Answer

a)

b)
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PART IV

LAPLACE TRANSFORM

Chapter Outline

This chapter focuses on the Laplace Transform, an integral operator widely used to simplify the solution of
differential equations by transforming them into algebraic equations in a different domain.

4.1 Definitions: This section introduces the concept and integral operator of the Laplace Transform.

4.2 Properties of Laplace Transform: This section discusses key properties of the Laplace Transform, essential for
efficient function transformation and manipulation.

4.3 Inverse Laplace Transform: This section covers the process of converting functions back from the Laplace domain
to the original domain, known as the inverse Laplace Transform.

4.4 Solving Initial Value Problems: This section demonstrates the application of the Laplace Transform and its
inverse in solving initial value problems (IVP).

4.5 Laplace Transform of Piecewise Functions: This section explores the application of the Laplace Transform to
piecewise continuous functions, using tools like the Heaviside (Unit Step) function.

4.6 Initial Value Problems with Piecewise Forcing Functions: This section discusses solving IVPs for second-order
differential equations with constant coefficients and piecewise continuous forcing functions.

4.7 Impulse and Dirac Delta Function: This section introduces the Dirac Delta function and its application in
solving differential equations with impulse forcing functions, which are characterized by high magnitudes over very
short intervals.

4.8 Table of Laplace Transform: This section provides a table summarizing the Laplace Transform and some of its
properties for quick reference.
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Oliver Heaviside (1850-1925).
Attribution: IET Archive, Public
domain, via Wikimedia Commons

Pioneers of Progress

Oliver Heaviside, born in 1850 in Camden Town, London, was a self-
taught electrical engineer, mathematician, and physicist whose
unconventional approach to academia did not hinder his profound impact
on the field. Largely self-educated due to financial constraints, Heaviside
pursued his interest in electromagnetic theory, making substantial
contributions that were both innovative and contentious at the time. His
most significant achievement was the development of operational calculus,
a powerful tool in the application of differential equations to physical
problems, particularly in the field of electrical engineering. Heaviside’s
methods simplified Maxwell’s complex equations of electromagnetism,
making them more accessible and practically applicable, a feat that had a
lasting impact on telecommunications and electrical engineering. Despite
facing criticism and limited recognition during his lifetime, Heaviside’s
work was later acknowledged as groundbreaking, influencing not only the
theoretical underpinnings of electrical engineering but also the practical
aspects of signal transmission and circuit design. Oliver Heaviside’s story is
one of perseverance and brilliance, showcasing how a relentless pursuit of
knowledge can lead to discoveries that shape the world, irrespective of the
conventional academic path.
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4.1 DEFINITIONS

A. Introduction

In this section, we delve into an integral operator known as the Laplace Transform. This powerful tool is employed
to convert initial value problems described by differential equations in one domain (e.g., t domain) into algebraic
equations in another domain (s domain). Doing so facilitates a more efficient solution process, particularly for linear
differential equations with constant coefficients and discontinuous or impulsive forcing terms. For instance, consider
an initial value problem in the time domain

t-Domain:

Applying the Laplace Transform, the differential equation is transmuted into an algebraic equation in the s domain:

s-Domain:

This algebraic representation in the s domain is often simpler to solve, and the solution can then be transformed back
to the original t domain.

B. Definition

Let be a function defined on , and let be a real number. The Laplace transform of is the function
defined by the integral

(4.1.1)

The Laplace transform of is denoted by both and . The functions can also be expressed as a transform
pair .

The improper integral in the definition 4.1.1 is more precisely defined as

The integral converges, meaning it results in a finite number when this limit exists and is finite.
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Example 4.1.1: Laplace Transform of Constant Function Using Definition

Find the Laplace transform of the constant function .

Show/Hide Solution

Substituting into integral 4.1.1 of the definition of the Laplace transform, we obtain

Note that the integral diverges for , so the domain of is . Since when
for a fixed , we then get

for or as a transform pair

In general, the Laplace transform of the constant function is .

Example 4.1.2: Laplace Transform of Exponential Function Using Definition

Find the Laplace transform of function .

Show/Hide Solution

Substituting into integral 4.1.1 of the definition of the Laplace transform, we obtain
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Note that the integral diverges for , so the domain of is . Therefore,

for or as a transform pair

In practice, while the definition of the Laplace Transform involves an integral, it is rarely computed directly via
integration due to the complexity and time-consuming nature of the process. Instead, we typically use precomputed
tables of Laplace Transforms. These tables list common functions and their corresponding transforms, allowing for
quick and accurate application of the Laplace Transform to solve differential equations and analyze systems. Table
4.1.1 includes the Laplace Transform of some common functions. A more comprehensive table can be found in
Section 4.8.

Table 4.1.1: Brief Table of Laplace Transform
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Domain of

Example 4.1.3: Laplace Transform Using Table

Use the table of Laplace Transform to determine the Laplace Transform of the following function:
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a)

b)

Show/Hide Solution

a) From the table

for

Recognizing that , the transformation is

for

b) From the table

for

Recognizing that , the transformation is

for

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=210
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Section 4.1 Exercises

1. Find the Laplace transform, , of the function .

Show/Hide Answer

2. Find the Laplace Transform of, , of the function .

Show/Hide Answer

3. Find the Laplace transform of the function .

Show/Hide Answer
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4.2 PROPERTIES OF LAPLACE TRANSFORM

Understanding the properties of the Laplace Transform is crucial as it provides tools for efficiently transforming
and manipulating functions. These properties greatly simplify the analysis and solution of differential equations and
complex systems.

A. Existence of the Transform

The Laplace transform exists for any function that is (1) piecewise-continuous and (2) of exponential order (i.e.,
does not grow faster than an exponential function). A function is said to be of exponential order if there
exist positive constants and such that for all . For example,

is of exponential order 7, but is not of exponential order.

B. Linearity of the Laplace Transform

The Laplace Transform adheres to the principle of linearity. Let and be functions whose Laplace transforms
exist for , and let and be constants. Then for , the Laplace Transform of a linear combination
of these functions is given by:

This property is useful when dealing with linear combinations of functions.

Example 4.2.1: Find Laplace Transform Using – Linearity Theorem

Use the Laplace Transform Table and the linearity property to determine

.

Show/Hide Solution
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1. From the table

for

for

for

2. From the linearity theorem, we have

for

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=215

C. First Shifting (Exponential) Theorem.

If , then
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This theorem is valuable when solving differential equations with exponential terms or in analyzing systems with
exponential inputs.

Example 4.2.2: Find Laplace Transform Using – First Shifting and Linearity Theorems

Use the first shifting theorem and the linearity property to determine

.

Show/Hide Solution

Using the first shifting theorem, we have

1. In , and the coefficient in the exponential term’s exponent is

.

for

Shifting , we substitute with

for

2. In , and the coefficient in the exponential term’s exponent is .

for

Shifting , we substitute with

for
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3. From the linearity theorem, we have

for

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=215

D. Differentiation in the Time Domain

Understanding how to transform derivatives is crucial for effectively solving differential equations. This property
allows us to express the Laplace Transform of a function’s derivative in terms of the original function’s transform.
For a function with continuous derivatives up to order,
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Since we will mostly deal with second-order differential equations, we will focus on the Laplace Transform of the first
and second derivatives.

Example 4.2.3: Laplace Transform of First Derivative

For function show that .

Show/Hide Solution

Identifying the derivative and initial value:

and

Finding the Laplace Transforms:

From the Laplace Transform table, we have

Applying the Differentiation Property:

We need to show

Plugging in the transforms and initial value yields
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Simplifying both sides gives

This equality confirms the differentiation property as the two sides match.

Example 4.2.4: Laplace Transform of Second Derivative

Find the Laplace Transform of given the initial conditions and . Use for
.

Show/Hide Solution

From the differentiation property, we have

Plugging in initial conditions and , we obtain

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=215
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Table 4.2.1 summarizes the above properties of the Laplace Transform. These properties are crucial for simplifying
computations and effectively utilizing the Laplace Transform in solving initial value problems.

Table 4.2.1: Properties of Laplace Transform

Property Example

for any constant

Section 4.2 Exercises

1. Find the Laplace transform of the function .

Show/Hide Answer

2. Find the Laplace transform, , of the function

.

Show/Hide Answer
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3. Find the Laplace Transform of given the initial conditions and .

Show/Hide Answer
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4.3 INVERSE LAPLACE TRANSFORM

In previous sections, we defined the Laplace Transform as an integral operator that can map a function and its
derivatives in a differential equation into an algebraic equation in terms of and function . As part of solving
differential equations, it is often necessary to obtain from its transform to solve the original initial value
problem. This process is facilitated by the Inverse Laplace Transform.

The formal inversion formula is typically not used directly due to its complexity. Instead, we rely on tables of
Laplace Transforms to find the inverse transforms of obtained from the original problem. The Inverse Laplace
Transform is denoted as

Linearity of the inverse Laplace Transform

Similar to the Laplace Transform, the inverse operation is also linear. If and are functions in the s-domain with
constants and , then then the inverse Laplace Transform of a linear combination of and for is
given by

This property ensures that the process of finding the inverse transform of a complicated expression can often be
broken down into simpler, more manageable parts.

Example 4.3.1: Determine the Inverse laplace Transform

Determine .

Show/Hide Solution

From Table 4.1

4.3 INVERSE LAPLACE TRANSFORM | 177



and

Thus from linearity, we obtain

From the table of Laplace Transform, we get

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=217

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=217
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In the process of finding the inverse Laplace transform, we often encounter rational function in the form

Here, and are polynomials. To ensure that represents a valid Laplace Transform, we typically
consider cases where the degree of is less than that of , as it can be shown that is a Laplace

transform if . This condition is often referred to as the condition for the properness of a rational

function in the Laplace domain.

In such cases, finding the inverse may require completing the square in the denominator or performing a partial
fraction expansion, a technique similar to one used in integral calculus. These techniques are particularly necessary
when attempting to match to a known inverse transform from standard tables. The choice between
completing the square and partial fraction decomposition depends on the nature and composition of the
denominator .

• Partial Fraction Decomposition is often the first approach considered. It is effective when the denominator
is factorable into linear or irreducible quadratic factors. This technique breaks down complex rational

expressions into simpler parts, making it easier to find the inverse Laplace Transform for each term
individually.

• Completing the Square is used when the denominator contains quadratic terms that do not factor
into real linear terms, often indicating complex roots.

To illustrate these methods, let’s proceed with a few examples demonstrating how to apply these techniques to find
the inverse Laplace Transform of various functions.

Example 4.3.2: Completing the Square

Find the inverse Laplace transform

Show/Hide Solution
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The denominator is not factorable. Therefore, we try to complete the square:

From Table 4.1, we see that

Thus, and . To be able to use the above inverse transform we need to create a 4 in the
numerator. So we multiply both the numerator and the denominator of the original function by 4. We
obtain

Now, we can use the inverse from the table

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=217

180 | 4.3 INVERSE LAPLACE TRANSFORM



Example 4.3.3: Partial Fraction Expansion

Find the inverse Laplace Transform

Show/Hide Solution

In the denominator, we have a repeated linear factor with multiplicity two and a non-repeated linear
factor . This composition leads us to structure the partial fraction expansion as:

One way to find constants A, B, and C is to multiply both sides of the equality by to

eliminate denominators:

We can then solve for the constants by equating coefficients of like terms on both sides. This forms a system
of equations.

An alternative and often simpler method is strategically choosing values for that simplify the equation and
isolate each constant. For instance. For example

For B: Set , which nullifies the terms with A and C, leading to:

For C: Set , simplifying the equation to solve for C:

4.3 INVERSE LAPLACE TRANSFORM | 181



For A: Choose a different , say to isolate and solve for A:

With , , and , the partial fraction becomes

Using linearity, the inverse Laplace Transform is

Referring to the table of inverse transforms

and

Applying these with for the first two terms and for the last term, we obtain

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=217

Section 4.3 Exercises

1. Find the inverse Laplace transform of the function .

Show/Hide Answer

2. Find the inverse Laplace transform of

Show/Hide Answer

3. Solving a differential equation using the Laplace transform, you find to be

Find the inverse Laplace transform .

Show/Hide Answer
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4.4 SOLVING INITIAL VALUE PROBLEMS

Having explored the Laplace Transform, its inverse, and its properties, we are now equipped to solve initial value
problems (IVP) for linear differential equations. Our focus will be on second-order linear differential equations with
constant coefficients.

Method of Laplace Transform for IVP

General Approach:

1. Apply the Laplace Transform to each term of the differential equation. Use the properties of the Laplace
Transform listed in Tables 4.1 and 4.2 to obtain an equation in terms of . The Laplace Transform of the
derivatives are

2. The transforms of derivatives involve initial conditions at . Apply the initial conditions.

3. Simplify the transformed equation to isolate .

4. If needed, use partial fraction decomposition to break down into simpler components.

5. Determine the inverse Laplace Transform using the tables and linearity property to find .

Shortcut Approach:

1. Find the characteristic polynomial of the differential equation .

2. Substitute , , and the initial conditions into the equation

(4.4.1)
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3. If needed, use partial fraction decomposition to break down into simpler components.

4. Determine the inverse Laplace transform of using the tables and linearity property to find .

Example 4.4.1: Solve IVP Using Laplace Transform (General Approach)

Solve the initial value problem.

Show/Hide Solution

Using the General Approach

1. Take the Laplace Transform of both sides of the equation

Letting , we get

2. Plugging in the initial conditions gives

3. Collecting like terms and isolating , we get
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Multiplying both the denominator and numerator by and factoring the denominator yields

4. Using partial fraction expansion, we get

5. From Table 4.1, we see that

Taking the inverse, we obtain the solution of the equation

Example 4.4.2: Solve IVP Using Laplace Transform (Shortcut Approach)

Solve the initial value problem.

Show/Hide Solution

Using the Shortcut Approach

1. The characteristic polynomial is

and
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2. Substituting them together with the initial values into Equation 4.4.1, we obtain

Multiplying both the denominator and numerator by yields

3. Using partial fraction expansion, we get

4. From Table 4.1,

and

Taking the inverse, we obtain the solution of the equation

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=219

Section 4.4 Exercises

1. Solve the IVP by using the inverse Laplace Transform

Show/Hide Answer

2. Solve the IVP by using the inverse Laplace Transform

Show/Hide Answer

3. Solve the IVP by using the inverse Laplace Transform

Show/Hide Answer
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4.5 LAPLACE TRANSFORM OF PIECEWISE
FUNCTIONS

A. Step function

In this section, we explore how to apply the Laplace Transform to piecewise continuous functions. In the next
section, we will address solving initial value problems that involve second-order differential equations with constant
coefficients where the forcing function is a continuous piecewise function.

Jump discontinuities often occur in physical situations like switching mechanisms or abrupt changes in forces
acting on the system. To handle such discontinuities in the Laplace domain, we utilize the unit step function to
transform piecewise functions into a form amenable to Laplace transforms and subsequently find piecewise
continuous inverses of Laplace transforms for the solution.

The unit step function (Heaviside function) is defined as

It steps (or jumps) from 0 to 1 at . By shifting the input argument , we can move the step to different
locations.

The step function can also be transformed, e.g., shifted, stretched, or compressed. For example, by multiplying
by some constant , we can stretch it vertically.

Or by combined shifting and reflecting , we can opposite the way the function switches on and off.
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The step function enables us to represent any piecewise continuous function conveniently. For instance, consider the
function

It can be rewritten as

(4.5.1)

We can extend Equation 4.5.1 to more general continuous piecewise functions.

(4.5.2)

B. Laplace Transform of Piecewise Functions

The Laplace Transform of the step-modulated function is key in solving differential equations with piecewise
forcing functions.

Theorem: Laplace Transform of a Step-Modulated Function. Let be defined on , suppose
, and assume exists for . Then

(4.5.3)

This theorem enables the transformation of step-modulated functions into the Laplace domain, which can then be
manipulated algebraically.

Example 4.5.1: Find Laplace Transform of a Step-Modulated Function
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Find the Laplace transform of .

Show/Hide Solution

To apply Equation 4.5.3, we take and . Therefore, we have

From the table then, we find .

Thus by Equation 4.5.3, we have

Example 4.5.2: Find Laplace Transform of a Piecewise Function

Find the Laplace transform of

Show/Hide Solution

We first write in terms of the step function using Equation 4.5.1 with , , and
.
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Taking the Laplace transform, we have

To apply Equation 4.5.3 to the second term, we take and .

We have then

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=221

C. Inverse Laplace Transform of Piecewise Functions

The previous theorem also allows us to determine the inverse Laplace Transform of functions that arise from
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piecewise functions. However, it will be more convenient to shift the argument of and replace with
.

Translation in Theorem. If and exists for , then

Given , it is equivalent to

(4.5.4)

Example 4.5.3: Find Inverse Laplace Transform

Find the inverse Laplace transform of the given function and find distinct formulas for on appropriate
intervals.

Show/Hide Solution

Since has as a factor, we use Equation 4.5.4 to determine the inverse.

Letting and , we obtain

Using Equation 4.5.4 with and linearity of , we have
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We simplify it using trigonometric identities: and

. Applying these identities yields

From Equation 4.5.1, we recognize that

• The expression without a unit function, , corresponds to , the function active
before the step.

• The expression multiplied by the unit function, , represents the change in the
function at the step, thus corresponding to .

Given , we can solve for .

We can now express as a piecewise function.

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=221

Section 4.5 Exercises

1. Find the Laplace transform, of .

Show/Hide Answer

2. Take the inverse Laplace transform to determine . Enter for if the unit function is a
part of the inverse.

Show/Hide Answer

3. Apply the Laplace transform to the differential equation, and solve for .

Show/Hide Answer
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4.6 IVP WITH PIECEWISE FORCING
FUNCTIONS

Solving Initial Value Problems with Piecewise Forcing
Functions

In this section, we tackle initial value problems (IVP) for second-order differential equations with constant
coefficients where the forcing function is a continuous piecewise function.

How to Solve IVPs with Piecewise Forcing Functions using the
Method of Laplace Transform

1. Write the piecewise forcing function in terms of the step function.

2. Determine the Laplace transform of the differential equation.

3. Solve the transformed equation for .

4. Use the Laplace transform tables and the translation theorem in previous sections to determine the inverse
Laplace transform.

5. If required, rewrite in piecewise format.

Example 4.6.1: Solve IVP Using Laplace Transform

Solve the given initial value problem.
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Show/Hide Solution

1. The forcing function is already in the step-modulated form with .

2. Taking the Laplace transform of the equation yields

Letting and recognizing that (Applying Equation

4.5.3), we obtain

Applying the initial conditions, we get

3. Solving for yields

Factoring the denominators yields

1/(s^2(s+2)(s-5) )(-3e^(-2s))
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4. To find , we note that

where

Computing the inverse Laplace transform of , and , we obtain

To make the inverse process easier, let’s rewrite first.

Taking the inverse transform and using the translation theorem for the terms with the exponential term, we
obtain
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=223

Example 4.6.2: Solve IVP Using Laplace Transform – Piecewise Forcing Function

The current in an series circuit is governed by the following initial value problem. Determine the current
in terms of .

Show/Hide Solution

1. The forcing function can be written in terms of the step function as
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2. Taking the Laplace transform of the equation yields

Letting , we obtain

3. Solving for yields

4. To find , we note that

where

Computing the inverse Laplace transform of yields

Using the translation theorem, we obtain
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5. This can be written as the piecewise function

The figure below depicts the graph of the current .

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=223

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=223

Section 4.6 Exercises

1. Solve the following initial value problem. Only provide the solution for .

Show/Hide Answer
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2. The solution to the IVP

is in the form . Find functions and .

Show/Hide Answer

3. The solution to the IVP

is in the form . Find functions and .

Show/Hide Answer
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4.7 IMPULSE AND DIRAC DELTA FUNCTION

In prior sections, we explored initial value problems for second-order differential equations with constant
coefficients, focusing on cases where the forcing function, , is either continuous or piecewise continuous on the
interval .

Now, let’s turn our attention to a different type of forcing function: one that represents an impulsive force. Impulsive
forces are characterized by very large magnitudes over extremely short time intervals, effectively appearing as a sudden
“jolt” or “spike” in the system. Such impulses occur in various contexts, including electrical circuits during a switch-
on event, mechanical systems during a collision, or any scenario where a sudden, significant force is applied for a brief
period.

A. Dirac Delta Function

To mathematically model these impulsive forces, we use the Dirac Delta function, denoted as . The Dirac Delta
function is not a function in the traditional sense but rather a generalized function or distribution with the following
properties.

1. Zero everywhere except at zero:

2. Integral equals one:

3. Sifting property:

for any that is continuous on the interval that contains
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By shifting the argument in , we can model impulses that occur at times other than . The shifted Dirac
Delta function, , has a spike at and is defined as

Thus the sifting property extends to

4. Sifting at :

for any that is continuous on the interval that contains

B. Laplace Transform of the Dirac Delta Function

The Laplace Transform provides a convenient way to handle the Dirac Delta function in the context of solving
differential equations. The transform of a shifted Dirac Delta function is given by

(4.7.1)

Understanding the Dirac Delta function and its properties is crucial for modeling and analyzing systems subjected to
impulsive forces.

Example 4.7.1: Solve IVP with Impulsive Forcing Function

Find the solution to the initial value problem

Show/Hide Solution

Taking the Laplace transform of the equation, applying Equation 4.7.1 with to the Delta function,
yields
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Solving for , we obtain

Computing the inverse Laplace transform gives

Which equivalently is

y(t)= {(cos(4t) if tltpi),(sin(4t)+cos(4t) if t&gt;=pi):}

={(cos(4t) if tltpi),(sqrt(2)sin(4t +pi/4) if t&gt;=pi):}

The below figure shows . The impulsive force is applied and adds momentum to the system at .
For comparison, the dotted line represents the undisturbed system.

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=225

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=225

Section 4.7 Exercises

1. Solve the initial value problem

Show/Hide Answer

2. Solve the initial value problem

Show/Hide Answer
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4.8 APPLICATION: ELECTRICAL CIRCUITS

A. Introduction

This section briefly shows the practical use of the Laplace Transform in electrical engineering for solving differential
equations and systems of such equations associated with electric circuits. The Laplace Transform is particularly
beneficial for converting these differential equations into more manageable algebraic forms.

We start by looking at a single initial value problem (IVP) from a basic RLC circuit. We demonstrate how the Laplace
transform can simplify finding the circuit’s current as a function of time by translating a differential equation into an
algebraic equation.

Example 4.8.1: RLC Series Circuit – Linear Differential Equation

Consider an RLC series circuit with a resistor of and an inductor of , and a capacitor of

powered by a voltage voltage source. Initially, the current and charge on the capacitor
are zero. Determine the current in the circuit as a function of time.

Show/Hide Solution

Given information:

• Resistor:
• Inductor:

• Capacitor:

• Voltage source:
• Initial current on capacitor:
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• Initial charge on capacitor:

In Example 3.9.1, we developed the initial value problem governing this RLC circuit.

Applying the Laplace Transform to the differential equation results in

Letting , we have

Since and are both zero, the equation simplifies to

Solving for , we find

Breaking down by partial fraction expansion, we obtain

To simplify the second fraction, we complete the square.
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Applying the inverse Laplace Transforms to yields the current .

This result is consistent with what we obtained in Example 3.9.1 by solving the initial value problem using
the method of undetermined coefficients.

B. Solving Systems of Linear Equations with the Laplace
Transform

The Laplace Transform can be applied to turn certain systems of differential equations with initial values into systems
of algebraic equations in the s-domain. Solving these algebraic equations allows us to find functions of , which we
can then convert back into time-domain solutions using the inverse Laplace Transform. Next, we address a more
complex example involving a series-parallel RL circuit, which results in a system of differential equations.

Example 4.8.2: RL Series Circuit – System of Linear Equations

a) For the given electrical circuit diagram, derive the system of differential equations that describes the currents
in various branches of the circuit. Assume that all initial currents are zero. b) Once the system of differential
equations and initial conditions are established, solve the system for the currents in each branch of the circuit.
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Diagram Description

Consider a circuit with a 12-volt DC power supply. From the positive terminal of the power supply, a 4-ohm
resistor is connected in series. Following this resistor, the circuit branches into two parallel paths. The first
parallel branch contains a 2-ohm resistor, and the second branch contains a 0.1-henry inductor. These two
branches then converge, and the circuit continues through a 0.2-henry inductor before returning to the negative
terminal of the power supply. Given this setup, calculate the currents I1 (through the 4-ohm resistor), I2
(through the 2-ohm resistor), and I3 (through the 0.1-henry inductor). Assume steady-state conditions for the
inductors.

Show/Hide Solution

a)

We denote the current passing through the main branch by , the current through the 2ohm-resistor by
and the current passing through the 0.1H-inductor by .

Given the voltage drop across a resistor is and across an inductor is , we apply Kirchhoff’s voltage

law to the electrical network.

In the main loop including 0.1 H-inductor, we find
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In the sub-branch including the 2 Ω-resistor and 0.1 H-inductor, we find

Also, since current is split into and , we have

Thus the system of equations describing the currents in the circuit is

(4.8.1)

b)

To solve the system, we apply the Laplace Transform to each equation in the system.

(4.8.2)

Letting , , and , we have

Since initial currents are zero, system 4.8.2 simplifies to
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In the third equation, we express in terms of the other two variables.

(4.8.3)

Next, we substitute this expression for into the second equation, which reduces the system to two
equations with two unknowns.

(4.8.4)

To eliminate , we multiply the first equation by and the second equation by and
then add both equations. This results in

Rearranging for gives

To eliminate decimal and rational terms, we multiply the numerator and the denominator by .

Breaking down by partial fraction expansion, we get

By substituting in the second equation in system 4.8.4, we find .
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This simplifies to

Breaking down by partial fraction expansion yields

By substituting the expressions for and in Equation 4.8.3, we find .

Finally, applying the inverse Laplace Transforms to , , and , we determine the current in the
branches of the circuit.
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4.9 TABLES OF LAPLACE TRANSFORMS

Table 4.1: Table of Laplace Transform
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Domain of
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Domain of

Step Function:

Direct Delta Function:

Table 4.2: Properties of Laplace Transform
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Property Example

for any constant
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PART V

SERIES SOLUTIONS OF
DIFFERENTIAL EQUATIONS

Chapter Outline

This chapter addresses the challenge of solving complex differential equations, often encountered in physical
applications, which do not yield solutions expressible by standard functions. It focuses on series solutions as an
alternative method.

5.1 Review of Power Series: This section revisits the concept of power series, examining their key properties and how
they are used in solving differential equations.

5.2 Power Series Solutions to Linear Differential Equations: This section discusses the process of finding the power
series representing solutions to linear differential equations.
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Emmy Noether (1882-1935). Attribution:
Unknown Author, Public Domain, via
Wikimedia Commons.

Pioneers of Progress

Emmy Noether, born in 1882 in Erlangen, Germany, stands as a
towering figure in the realm of mathematics and theoretical physics,
overcoming the formidable gender barriers of her time to
revolutionize these fields. Despite initially being barred from holding
an academic position due to her gender, Noether’s profound
contributions, especially in abstract algebra and theoretical physics,
earned her worldwide acclaim. Her most significant achievement,
Noether’s Theorem, unveiled a fundamental connection between
symmetries and conservation laws in physics, a principle crucial in
many areas governed by differential equations. Her work in the
calculus of variations, a field closely related to differential equations,
provided essential tools for physicists and mathematicians alike.
Noether’s insights into ring theory and algebraic invariants also laid
the groundwork for modern algebra, influencing the methods used in
solving differential equations. Emmy Noether’s story is not just one of
remarkable intellectual feats; it is a tale of resilience and perseverance
against the societal norms of her era. Her legacy continues to inspire
and empower generations of mathematicians and scientists,
symbolizing the unyielding pursuit of knowledge against all odds.
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5.1 REVIEW OF POWER SERIES

Not all differential equations have solutions that can be expressed in terms of elementary functions such as
polynomials, exponentials, trigonometric functions, etc. Even when they do, finding these solutions explicitly can
be complex or impossible. Series solutions offer a way to represent the solution as an infinite sum of terms. They
can provide insights into the behavior of solutions, such as their convergence, oscillation, or growth properties
when an explicit solution is unknown. In practical applications, an exact solution may not be necessary, and a finite
series (a truncation of the infinite series) can serve as an approximate solution. This method is especially useful in
computational methods and simulations.

Before delving into power series solutions of differential equations, let’s review the concept of a power series and its
relevant properties.

A. Power Series

A power series is an infinite series of the form

where is the index of summation, represents the coefficient of the nth term, is the center of the series, and
is the variable. The series can be expressed as

This allows us to approximate functions in regions where the series converges, which is essential for understanding
and solving differential equations. We may sometimes be interested in the pattern or form of initial terms in the
series or manipulating terms such as re-indexing or combining terms. Thus, we can ‘strip out’ these terms from the
general series notation.

Here, the first two terms are stripped out of the general series notation, and the summation index now starts from
.
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B. Shifting the Index of a Power Series

Shifting the index of a power series changes the starting point of the summation and reindexes the terms of the series.
This is particularly useful for aligning terms for addition or subtraction of series. Consider a power series

Shifting Right (Increasing index)

To shift the series right by unit, replace with in the general term and add to the original lower limit of
the summation.

Shifting Left (Decreasing index)

To shift the series left by unit, replace with in the general term and subtract from the original lower
limit of the summation.

C. Linear Combination of Power Series

When solving differential equations using series often we need to add or subtract series. When adding or subtracting
series, we ensure the terms being added or subtracted correspond to the same power of the variable. This means
ensuring both series have the same power of and their summation indices are aligned properly to start
from the same lower limit. Consider two power series

and

Since the power of term is the same in both series and the index in both start from the same value, they can
be linearly combined as
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where and are constants.

If there is an term in front of the summation in a series, we move it inside the summation and combine it
with term there. For example,

This simplifies the handling and manipulation of series in differential equation solutions.

Example 5.1.1: Combine Power Series

Write the following as a single series in terms of .

Show/Hide Solution

1. First, we multiply term into the first summation.
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2. We shift the indexes in both series to make the exponent of be . Thus we need to shift the first
series two units to left and the second series one unit to right.

3. Finally, we ensure both series start from the same lower limit. Depending on the series, we can sometimes
strip out terms or adjust the index if the preceding terms are already zero. Notice that if the second series
starts from , the initial term will be zero because of the factor . Therefore, initiating the
index from does not alter its overall value.

Now we can combine the series to obtain the final answer.

Note: Generally, whenever a series contains a factor of , the term at (where a is the starting
index) will be zero.

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=234

D. Convergence of Power Series

The convergence of power series is essential for ensuring that the series represents the function accurately over some
interval. A series converges at a particular point if the sum approaches a finite limit as approaches infinity. In other
words, a power series converges for a given if the following limit exists.

For any power series, any of the three cases can be true:

• Converges only at : Here, the sum of the series equals to .
• Converges for all values of .
• Converges within a radius of convergence : The series converges if and diverges if

. is called the radius of convergence, and the interval is the
interval of convergence.

To determine the radius and interval of convergence for a given power series, the Ratio Test is often used. The Ratio
Test involves taking the limit

If , the series converges, and the radius of convergence is .
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E. Differentiation of Power Series

Differentiation and integration of power series within their interval of convergence can be performed term-by-term.
For a given power series centered at

The first derivative of is

Note that the index of the first derivative starts at because the first term in the original series is constant ( )
and disappears upon differentiation. The interval of convergence for the derivative series is at least as large as that of
the original series, but careful attention should be paid to the endpoints.

Similarly, the second derivative of is

Note that the index of the second derivative starts at as the first term of the first derivative is constant ( )
and disappears upon differentiation.

Example 5.1.2: Combine Power Series
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Suppose can be expressed as a power series . Write the following as a single series in terms of

.

Show/Hide Solution

1. First, we find and :

2. Next, we substitute and into the expression:

3. Multiplying the term in front of the summation by the term in the general term of each series, we
obtain

4. Note that the exponent of is the same in all but the first series. Therefore, we only need to shift the index
of the first summations by 2 to the left:
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5. Finally, we ensure all series start from the same lower limit. Notice that the second series is zero at
because there factors and in the general term of the series. Thus, its index can start at
without changing its value. Likewise, the third series is zero at so it can too start at . Then we
rewrite the indices and we have

Combining the series yields

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=234

F. Properties of Power series

Equality of Series

If two power series are equal for all in an open interval that contains x_0, then their coefficients must be equal.
That is
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Implies for all .

Power Series Vanishing on an Interval

If a power series equals zero for all in an open interval, then all its coefficients must be zero. That is

Implies for all .

G. Taylor Series

A Taylor series is a specific type of power series representation of a function based on its derivatives at a specific point,
typically at . It is given by

Here, is the nth derivative of evaluated at , and is the factorial of .

When , the series is often called a Maclaurin series. The Taylor series expansions of a few functions at
(Maclaurin series) are as follows.

H. Recursive Relation

A recursive relation for a series provides a way to calculate each term of the series using one or more of the preceding
terms. Instead of defining each term independently, a recursive relation relates each term to its predecessors, building
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the series progressively. This method is particularly useful when the direct calculation of terms is complex or when
the relationship between consecutive terms is simpler to express.

Generally, a recursive relation has the following structure.

for

Here, is the nth term of the series, and is a function that defines how to calculate the nth term using the
previous terms.

The recursive relation allows the calculation of all coefficients in the series from a set of initial conditions or known
coefficients. These are usually derived from the initial or boundary conditions of the differential equation.

Example 5.1.3: Find Terms of a Series using Recursive Relation

Suppose the recursive formula for a power series solution is

Find the second, third, and fourth terms of the series in terms of and .

Show/Hide Solution

To find the terms we plug into the recursive relation.

Given , can be written in terms of :
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=234

Section 5.1 Exercises

1. Write the following as a single series in terms of .

Show/Hide Answer

2. Suppose can be expressed as a power series . Express the following as a single series in

terms of .

Show/Hide Answer
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3. Suppose the recursive formula for a power series solution is

Find the fourth and fifth terms in terms of and .

Show/Hide Answer
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5.2 SERIES SOLUTION TO DIFFERENTIAL
EQUATIONS

Power Series Solutions to Linear Differential Equations

In earlier discussions, we primarily focused on homogeneous linear differential equations with constant coefficients.
However, many physical applications lead to more complex second-order homogeneous linear differential equations
of the form

(5.2.1)

where and are polynomials with no common factor. Often, the solutions to Equation 5.2.1 cannot
be expressed in terms of familiar functions, prompting the use of series solutions. We start by normalizing the
equation, dividing by to make the coefficient of one.

Given the continuity of polynomials, and are continuous except possibly where .
A point where is called an ordinary point of Equation 5.2.1; otherwise it is a singular point.
Importantly, at ordinary points, and are analytic, allowing for power series representation.

Theorem. Suppose and are polynomials with no common factor and . If is an
ordinary point of Equation 5.2.1, then every solution of the equation can be represented by a power series

(5.2.2)

Moreover, the radius of convergence of such a power series solution is at least as large as the distance from to
the nearest singular point (real or complex) of the equation. If is constant, implying it is never zero, the radius of
convergence will be infinity and the interval of convergence will be .

To find series solutions of Equation 5.2.1, we consider a power series converging near an ordinary point . We
assume that the solution can be written as a power series 5.2.2, substitute and its derivatives in the given
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differential equation, and collect like powers of . Setting the coefficient of each power to zero, we can
systematically solve for the coefficients, often resulting in a recursive relation.

How to Find a Series Solution to a Differential Equation

1. Determine the differential equation and choose the point around which to expand the series (typically an
ordinary point)

2. Assume a power series solution (Equation 5.2.2) for and find its derivatives , , etc., as required by the
differential equation.

3. Substitute the series and its derivative into the differential equation.

4. Organize like powers of by aligning terms, ensuring all series are expressed from the same starting
value of .

5. Collect and group the coefficients of like powers of .

6. Solve equations by equating coefficients of like powers of to find relations among ‘s.

7. Use the given initial or boundary conditions to find specific ‘s. Use the recursive relation to determine all
coefficients.

8. Construct the solution with the coefficients found and discuss the radius and interval of convergence.

Example 5.2.1: Find a Series Solution to an Equation with Constant Coefficients

Determine a series solution for the differential equation

Show/Hide Solution
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1. Notice that and thus the coefficients are analytic at every point. We assume and that
the solution can be written as a power series

2. First, we need to find :

3. Next, we substitute and into the equation:

4. The next step is to align terms. To do this we need to shift the summation indices to start at the same value.
Letting or equally in the first summation and in the second summation,
we have

5. Adding the series yields

6. From the Power Series Vanishing on an Interval property discussed in Section 5.1, we know that If a power
series is zero for all , then all its coefficients must be zero. Therefore, we conclude that
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or

This is called the recurrence relation for the values of for which the relation is true.

7. Next, we write a few terms of the series to see if we can determine the trend and hopefully the explicit
formula of the series. Setting , we get

Notice that the term with even indices can be written in terms of the previous term and eventually in terms
of and so can be the odd indices in terms of . Therefore, by writing the recurrence relation separately
for odd ( ) and even ( ) indices, we get

8. Thus the general solution of the equation can be written as
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We recognize that the series in the solution are the Maclaurin series of and , respectively.

and

Therefore, the general solution can be expressed as

for some arbitrary constant and . This is the same solution we would obtain using the methods
learned in previous sections.

The interval of convergence for both the cosine and sine series is all real numbers .

For both series in the solution, the Ratio Test indicates that as the limit approaches zero, which
means the series converge for all real numbers. Therefore, without prior knowledge of the series representing
sine and cosine, we would conclude that the interval of convergence for each series and hence the combined
series solution is all real number .

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=236

In practice, we are interested in finding the series solution for equations with nonconstant coefficients. This is
because equations with constant coefficients can be easily solved using the technique outlined in Chapter 3 for
homogeneous equations with constant coefficients. Let us do another example for an equation with nonconstant
coefficients.

Example 5.2.2: Find a Series Solution to an Equation with Variable Coefficents

Find a series solution for the differential equation

Show/Hide Solution

1. Note that has no root and thus every point for this equation is an ordinary point. We

assume that the solution can be written as a power series

2. Next, we find and :
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3. Next, we substitute and into the equation:

Multiplying the coefficients by the series, we get

4. Note that the exponent of is the same in all but the first series. Therefore, we only need to shift the index
of the first summations by 2:

Also, notice that the second series is zero at . So its index can start at . Likewise, the third
series is zero at so it can too start at . Then we rewrite the indices and we have

5. Combining the series yields

6. Now setting the coefficient to zero gives
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7. So the recursive relation is simplified to

Setting , we get

Notice that all the terms with odd indices are zero except . Therefore, by writing the recurrence relation
separately for odd ( ) and even ( ) indices, we obtain

8. Thus the general solution of the equation can be written as
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Example 5.2.3: Find a Series Solution to an Equation with Variable Coefficents

Find the first six terms in the series solution of the initial value problem

Show/Hide Solution

In Example 5.2.2, we found the general series solution to this differential equation.

To apply the initial conditions, we first recognize that and . Then, we
substitute and into the general solution to compute the other terms.
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Therefore, the solution to the initial value problem is

.

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=236

Section 5.2 Exercises

1. Find the first five terms in the series solution of the initial value problem

Show/Hide Answer
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2. Find the first five terms in the series solution of the initial value problem

Show/Hide Answer

3. Find the first five terms in the series solution of the initial value problem

Show/Hide Answer
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PART VI

SYSTEMS OF DIFFERENTIAL
EQUATIONS

Chapter Outline

This chapter presents the matrix method for solving systems of first-order differential equations. These systems
are instrumental in modeling applications with multiple interdependent processes, common in complex real-world
situations.

6.1 Review of Matrices: This section offers a concise overview of essential matrix theory concepts in linear algebra,
foundational for addressing systems of differential equations.

6.2 Review of Linear Independence and Systems of Equations: This section reviews the topic of systems of linear
equations and methods for assessing the linear independence of solution sets.

6.3: Review: Eigenvalues and Eigenvectors: This section revisits eigenvalues and eigenvectors, explaining their
calculation and importance in solving systems of differential equations.

6.4: Linear Systems of Differential Equations: This section introduces first-order differential equation systems and
their matrix representations and discusses solution existence. It also explores transforming higher-degree differential
equations into first-order system forms.

6.5 Solutions to Homogeneous Systems: This section details methods to find solutions for homogeneous differential
equation systems and employs the Wronskian to verify solution independence.

6.6 Constant-Coefficient Homogeneous Systems: Real Eigenvalues: This section continues exploring homogeneous
systems of differential equations with constant coefficients, focusing on scenarios with real-number eigenvalues.

6.7 Constant-Coefficient Homogeneous Systems: Complex Eigenvalues: This section addresses solutions for
homogeneous systems with constant coefficients when eigenvalues are complex numbers.

6.8 Constant-Coefficient Homogeneous Systems: Repeated Eigenvalues: This section discusses solving
homogeneous systems with constant coefficients when eigenvalues are repeated real numbers.

6.9 Nonhomogeneous Linear Systems: This section studies nonhomogeneous linear systems focusing on the method
of variation of parameters.
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Pioneers of Progress

Evelyn Boyd Granville, born in 1924 in Washington, D.C., is a pioneering mathematician whose journey is a
testament to resilience and brilliance in the face of racial and gender barriers. As one of the first African-American
women to earn a Ph.D. in mathematics from Yale University in 1949, Granville’s early work in functional analysis laid
a foundation for her diverse and impactful career. She played a pivotal role in America’s space race, working with IBM
on the Project Vanguard and Project Mercury space programs, where she developed complex computer algorithms
for trajectory analysis. This work heavily relied on systems of differential equations to calculate the orbits and predict
the paths of spacecraft – a critical component in the success of these early space missions.

Granville’s contributions extended beyond the realm of space exploration. She was also a passionate educator and
advocate for women and minorities in STEM fields. Throughout her career, she taught mathematics at various
universities and inspired countless students to pursue careers in science and technology.
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6.1 REVIEW: MATRICES

Linear algebra, particularly the study of matrices, is fundamental in understanding and solving systems of differential
equations. This section provides a focused overview of the key concepts in matrix theory that are essential for this
purpose.

A. Matrix Definition and Notation

A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. The individual
items in a matrix are called its elements or entries. A matrix is typically denoted by a capital letter (e.g., A, B, C). The
element in the -th row and -th column of a matrix A is denoted as . The dimensions of a matrix are given as

. For example, a matrix A with rows and columns is an matrix.

B. Special Matrices

A row matrix has only one row and multiple columns, while a column matrix has one column and multiple rows.
These are also known as row vectors and column vectors, respectively.

A matrix with the same number of rows and columns is called a square matrix. For example, matrix B is an
square matrix.
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In a diagonal matrix, the elements outside the main diagonal are all zero. The main diagonal is the set of elements
where . For example, matrix C is an diagonal matrix.

The identity matrix is a special type of diagonal matrix where all the elements on the main diagonal are 1. It is
denoted as or to indicate its size ( ).

The zero matrix is a matrix in which all elements are zero. It is denoted by to indicate its dimensions.

C. Matrix Operation

Matrix Addition and Subtraction

Matrix addition and subtraction are elementary operations where matrices of the same dimension are added or
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subtracted element by element. If and are matrices of the same size, their sum
is a matrix where each element .

These operations are commutative (i.e., ) and associative (i.e.,
).

Scalar Multiplication

Scalar multiplication involves multiplying every element of a matrix by a scalar (a constant number). If is a scalar
and , then is a matrix where each element is .

Scalar multiplication is distributive over matrix addition or subtraction (i.e., ) and
associative with respect to the multiplication of scalars (i.e., ).

Example 6.1.1: Matrix Subtraction and Scalar Multiplication

Find matric where given matrices and .

and

Show/Hide Solution

Matrices and are the same size and thus can be subtracted.

We first multiply all entries of matrix A by 3.
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We then subtract the corresponding entries.

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240

Matrix Multiplication

Matrix multiplication is only possible when the number of columns in the first matrix matches the number of rows in
the second matrix. Consider two matrices and . The product of these matrices is a new matrix
, where the dimension of C is . Each element of C is computed by taking the dot product of a corresponding
row from A and a column from B. This computation for each element in the -th row and -th column of C is given
by the formula

(6.1.1)

Matrix multiplication is associative, meaning . It is also distributive over addition, which
implies . However, it is not commutative, meaning may not equal ).

Special cases in matrix multiplication include interactions with identity and zero matrices. Multiplying any matrix by
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an identity matrix of appropriate size leaves the matrix unchanged (i.e., ). Any matrix multiplied
by a zero matrix results in a zero matrix of appropriate dimensions.

Example 6.1.2: Matrix Multiplication

Compute matrix given

and

Show/Hide Solution

To compute the product of matrices A and B, , we first verify that multiplication is possible. Matrix A
has dimensions , and matrix B has dimensions . Since the number of columns in A (3) matches
the number of rows in B (3), multiplication can be performed. The resulting matrix C will have dimensions

.

We compute each entry of matrix C using Equation 6.1.1:
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Therefore, the resulting matrix C is

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240

D. Matrix Determinant

The determinant is a scalar value that is associated with every square matrix. It provides critical information about
the matrix, such as its invertibility. The determinant of a matrix A is denoted as

For a matrix, the determinant is calculated as

(6.1.2)

For larger square matrices, the determinant is typically calculated using the method of cofactor expansion. For
instance, the determinant of a matrix can be computed by expanding along any row or column. Expanding
along the first row, the formula is
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(6.1.3)

Another approach to compute determinants, especially for large matrices, is to use row reduction to transform the
matrix into an upper triangular form. The determinant is then the product of the diagonal elements.

Example 6.1.3: Find Determinant

Find the determinant of the given matrices.

and

Show/Hide Solution

To find the determinant of matrix A, we use Formula 6.1.2.

To find the determinant of matrix B, we use Formula 6.1.3.
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240

E. Matrix Inverse

The inverse of a square matrix , denoted as , is a matrix that, when multiplied with , yields the identity
matrix.

One common method to find a matrix inverse is to use the adjugate and determinant. The formula is

where is the adjugate of , calculated from the cofactors of . This method involves computing the
determinant and then the cofactor matrix, which is then transposed to get the adjugate matrix. For a matrix

, the inverse is given by

(6.1.4)

Another method for finding the inverse is the row reduction method, which involves augmenting the matrix with
the identity matrix

and then performing row operations to transform into the identity matrix. The operations that transform A into
will transform the augmented identity matrix into .
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This method is particularly useful for numerical calculations and for larger matrices.

If a matrix is invertible, its inverse is unique. A square matrix is invertible if and only if it is nonsingular, meaning its
determinant is not zero. If the determinant of a matrix is zero, the matrix does not have an inverse, and it is referred
to as a singular matrix.

Example 6.1.4: Find Inverse of 2 by 2 Matrix

Find the inverse of matrix A, provided it exists.

Show/Hide Solution

We first find the determinant of A to determine if it has an inverse.

The determinant is nonzero, so the inverse exists. For a matrix, the cofactor approach, Formula 6.1.4,
is fairly simple.

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240

Example 6.1.5: Find Inverse of 3 by 3 Matrix

Find the inverse of matrix A, provided it exists.

Show/Hide Solution

To find the inverse of a matrix, the row reduction method is more straightforward. To find the inverse
of matrix using the row reduction method, we start by forming an augmented matrix with matrix and
the identity matrix . The goal is to use row operations to transform the left side of the augmented
matrix (the first three columns) into the identity matrix.

Apply the row operation:

(Add 3 times the first row to the second row):
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(Subtract 2 times the second row from the third row):

(Subtract 3 times the third row from the first row):

Since we have successfully transformed the left side of the augmented matrix into the identity matrix, the
inverse of matrix A exists and is given by the right side of the augmented matrix:

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240
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F. Matrix Calculus

Differentiation and integration of matrices are important in the context of systems of linear differential equations,
particularly in finding the solution to nonhomogeneous systems.

Matrix Differentiation

Differentiating a matrix with function entries involves taking the derivative of each element of the matrix
individually. Consider matrix whose entries are a function of .

The derivative of with respect to , denoted as or , is a matrix of the same size where each entry is

the derivative of the corresponding entry of .

The standard rules of differentiation, including the product rule, quotient rule, and chain rule, apply to each
element of the matrix.

Matrix Integration

Integrating a matrix with function entries is similar to differentiation and is done element-wise. The integral of a
matrix over a variable is a matrix of the same size where each element is the integral of the corresponding
element of .
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Example 6.1.6: Matrix Integration

Evaluate the integral of matrix with respect to .

Show/Hide Solution

The integral of matrices is an element-wise operation.

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=240

Section 6.1 Exercises

1. Given and , find matrix .

Show/Hide Answer

2. Find the inverse of .

Show/Hide Answer

3. Find the inverse of

Show/Hide Answer

4. Given the matrices and , find their multiplication .
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Show/Hide Answer

5. Given the matrix

Evaluate the integral of with respect to .

Show/Hide Answer
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6.2 REVIEW: LINEAR INDEPENDENCE AND
SYSTEMS OF EQUATIONS

A. Solving Systems of Linear Equations

Solving systems of linear equations is a fundamental aspect of linear algebra. To solve these systems efficiently, we
often express them in matrix form. Consider a system of linear equations

Such a system can be represented in matrix form as

which is simply denoted as

Here, is the coefficient matrix, containing the coefficients of the variables in the system, is the vector (column
matrix) representing the variables, and is the vector (column matrix) representing the constants on the right side
of each equation. If all the constant terms in the vector are zero, then the system of linear equations is referred
to as a homogeneous system. Conversely, if any of the constants in are non-zero, the system is classified as a
nonhomogeneous system.

To simplify this system, we use an augmented matrix, which combines the coefficient matrix and the constant
vector into a single matrix. This is done by appending as an additional column to .

262 | 6.2 REVIEW: LINEAR INDEPENDENCE AND SYSTEMS OF EQUATIONS



Row operations are then used to systematically simplify this augmented matrix, maintaining the equivalence of the
system. The goal is to achieve either row echelon form (REF) or reduced row echelon form (RREF). REF, achieved
through the Gaussian elimination method, simplifies the matrix into an upper triangle form where all non-zero rows
are above rows of all zeros, and each leading coefficient (first non-zero number in a row) is to the right of the leading
coefficient of the row above it. RREF achieved through the Gauss-Jordan elimination method, further simplifies
REF so that each leading coefficient is the only non-zero number in its column and is equal to 1, making it easier to
read the solutions directly from the matrix.

Solution Possibilities

The solution of the system depends on the final form of the augmented matrix after applying row operations:

• Unique Solution: If the augmented matrix can be reduced to row echelon form where each variable has a
leading 1 and there are no inconsistent equations (like ), the system is consistent and has a unique
solution.

Watch Video: Unique Solution

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=242#oembed-1

• No Solution: If the matrix yields a contradiction (such as ), it indicates that the system is inconsistent
and has no solution.

Watch Video: Possible Solutions
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One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=242#oembed-2

• Infinite Solutions: If the system has at least one row where all coefficients are zero, but the system is
consistent (like ), the system has an infinite number of solutions. In such cases, the solution is typically
expressed in a parametric form. This case typically happens when there are fewer independent equations than
variables.

Watch Video: Infinite Solutions

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=242#oembed-3

B. Linear Independence

Understanding linear independence is also important for solving systems of linear equations and differential
equations. It helps in determining whether a set of solutions forms a valid basis for the solution space and whether
the solutions are unique and span the entire solution space.

A set of vectors in a vector space is said to be linearly independent if no vector in the set can be written as a linear
combination of the others. Consider a set of vectors

The vectors are linearly independent if the only solution to the equation

is , where is the zero vector and are constants. In other words, none
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of the vectors can be expressed as a linear combination of the others. If there exists at least one non-trivial solution
(where not all are zero) to this equation, then the vectors are linearly dependent. This means at least one of the
vectors in the set can be written as a linear combination of the others.

To test for linear independence or dependence, we can represent this system in matrix form as

where is a matrix whose columns are the vectors in the set.

Testing for Linear Independence

• Using a Matrix: Form a matrix with these vectors as columns. The set of vectors is linearly independent if
the determinant of is non-zero. If the determinant is zero, the vectors are linearly dependent.

• Row Reduction: Alternatively, use row reduction to bring the matrix into row echelon form (REF) or
reduced row echelon form (RREF). If any column in lacks a leading 1 (pivot), the vectors are linearly
dependent.

If the vectors are found to be linearly dependent, the specific relationship among them can be found by solving the
system for the constants .

Example 6.2.1: Determine Linear Independence

Determine whether the given set of vectors is linearly independent or dependent. In the case of linear dependence,
identify the specific relationship among the vectors.

Show/Hide Solution

To test a set of vectors for linear independence, we first form a matrix with these vectors as columns and then
determine if its determinant is non-zero.
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The determinant is nonzero, and thus the vectors are linearly independent.

Example 6.2.2: Determine Linear Independence

Determine whether the given set of vectors is linearly independent or dependent. If they are dependent, identify
the specific relationship among them.

Show/Hide Solution

To test a set of vectors for linear independence, we first form a matrix with these vectors as columns

Calculating the determinant of , we find

Since the determinant is zero, the vectors are linearly dependent.

To find the relationship among the vectors, we solve the system .
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We form the augmented matrix and then use row reduction to simplify it.

Applying row operations to bring the matrix to RREF, we get

The third column lacks a leading 1 (pivot), indicating that is a free variable.

Converting the first row of the RREF to an equation, we have

Converting the second row of the RREF to an equation, we have

Choosing for simplicity, we find

Thus the relationship among the vectors in the set is
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=242

Section 6.2 Exercises

1. Solve the given system of equations.

Show/Hide Answer

2. Determine whether the given set of vectors is linearly independent by forming matrix whose columns are
the vectors in the set and computing the determinant of .

Show/Hide Answer

Since the determinant is nonzero, the vectors are linearly independent.

3. Determine whether the given set of vectors is linearly independent by forming matrix whose columns are
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the vectors in the set and computing the determinant of .

Show/Hide Answer

Since the determinant is zero, the vectors are linearly dependent.
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6.3: REVIEW: EIGENVALUES AND
EIGENVECTORS

Understanding eigenvalues and eigenvectors is essential for solving systems of differential equations, particularly in
finding solutions to homogeneous systems. This section aims to review these concepts and demonstrate how to find
them.

A. Definition

Consider a square matrix of size and a vector with elements. Multiplying matrix by the vector
yields a new vector with elements. Geometrically, this operation can be viewed as transforming the vector by

matrix , which may involve rotation, scaling, reflection, or a combination of these, depending on the properties of
. The resulting vector might differ in direction and magnitude from the original vector .

In many applications, we seek a special scalar and a corresponding nonzero vector such that when matrix
multiplies , the result is a scalar multiple of , not yielding a new vector. This relationship is expressed as

(6.3.1)

In that case, scalar is called the eigenvalue, and vector is the eigenvector of matrix . An eigenvalue, thus,
represents the factor by which an eigenvector is scaled when undergoing the linear transformation represented by .

To find the eigenvalues of matrix , we need to solve Equation 6.3.1 for a nonzero . Rewriting the equation, we
obtain

Here is the identity matrix of the same size as . The determinant of must be zero for this system to
have non-trivial solutions. We define as the characteristic polynomial of matrix .
The roots of the characteristic polynomial are the eigenvalues, which can be expressed as

(6.3.2)
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Once the eigenvalues are determined, the corresponding eigenvectors are obtained by solving the system
for each eigenvalue . These vectors are not unique, as any scalar multiple of an eigenvector is

also a valid eigenvector.

B. Properties of Eigenvalues and Eigenvectors

• Algebraic Multiplicity: Refers to the number of times an eigenvalue appears as a root in the characteristic
polynomial of a matrix. It provides a count of how many times an eigenvalue is repeated.

• Geometric Multiplicity: Indicates the number of linearly independent eigenvectors associated with an
eigenvalue. It is always less than or equal to the algebraic multiplicity.

• Eigenvectors Linear Independence: Eigenvectors corresponding to different eigenvalues of a matrix are
linearly independent. This is a key property that helps in forming a basis in the vector space spanned by these
eigenvectors. If the algebraic and geometric multiplicities of an eigenvalue are equal, then there exists a full set
of linearly independent eigenvectors for that eigenvalue.

• Complex Conjugate Eigenvalues and Eigenvectors: In systems that have complex eigenvalues, these
eigenvalues and their corresponding eigenvectors occur in conjugate pairs. This means if is a complex
eigenvalue with an associated eigenvector , then (the complex conjugate of ) is also an eigenvalue, with
the corresponding eigenvector being (the complex conjugate of ).

• Diagonalization: A matrix is diagonalizable if and only if, for each eigenvalue, the algebraic multiplicity
equals the geometric multiplicity. This means there are enough linearly independent eigenvectors to form a
basis for the space. If a matrix is not diagonalizable, it is called a defective matrix.

Example 6.3.1: Find the Eigenvalues and Eigenvectors – Real Eigenvalues

For the given matrix, a) find the characteristic polynomial of the matrix and b) all the eigenvalues and their
associated eigenvectors.

Show/Hide Solution

a)
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Thus, the characteristic polynomial of is

b) The roots of , which are and , are the eigenvalues of . To find the
corresponding eigenvectors, we need to find the solution to the system for each
eigenvalue.

For , we have

To solve the system, we form the augmented matrix and bring it to RREF using row operations.
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The second column lacks a leading 1, and therefore is a free variable. It is customary to let the free variable
be represented by a parameter, say . We then write and in terms of the parameter .

Thus the general solution is where is a nonzero arbitrary real number. We

usually look for a basic (without a parameter) eigenvector. We can choose a value for to find a basic

eigenvector. Using , the eigenvectors corresponding to is .

For , we have

Similarly, to solve the system, we form the augmented matrix and bring it to RREF using row operations.

The general solution is

where is a nonzero arbitrary real number. Using , the basic eigenvectors corresponding to

is .

Both eigenvalues are simple eigenvalues with the algebraic multiplicity of one and therefore their eigenvectors
are linearly independent.
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=244

Example 6.3.2: Find the Eigenvalues and Eigenvectors – Complex Eigenvalues

For the given matrix, a) find the characteristic polynomial of the matrix and b) all the eigenvalues and their
associated eigenvectors.

Show/Hide Solution

a)

Thus the characteristic polynomial of is
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Completing the square, we get

b) The roots of , are the eigenvalues of .

Next, to find the corresponding eigenvectors, we follow the same steps as we did for the previous example,
solving system . However, since the eigenvalues are complex conjugates, their
corresponding eigenvectors will also be conjugates. Therefore, we only need to find the eigenvector associated
with one of the eigenvalues.

We find the eigenvector associated with .

To solve the system, we form the augmented matrix and bring it to RREF using row operations.
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The second column lacks a leading 1, and therefore is a free variable. We let the free variable be
represented by a parameter . We then write and in terms of the parameter .

Therefore, the eigenvectors corresponding to eigenvalue are for

. Letting , we have

The eigenvector corresponding to the conjugate eigenvalue is the conjugate of eigenvector . Thus, the
eigenvector associated with eigenvalue is

Both eigenvalues are simple eigenvalues with the algebraic multiplicity of one and therefore their eigenvectors
are linearly independent.

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=244

Example 6.3.3: Find the Eigenvalues and Eigenvectors – Real, Repeated Eigenvalues

For the given matrix, a) find the characteristic polynomial of the matrix and b) all the eigenvalues and their
associated eigenvectors.

Show/Hide Solution

a)

Thus the characteristic polynomial of is
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b)

The roots of , , with multiplicity 2, and , with multiplicity 1, are the
eigenvalues of .

To find the corresponding eigenvectors, we need to find the solution to the system for each
eigenvalue as we did in previous examples.

For , we have

To solve the system, we form the augmented matrix and bring it to RREF using row operations.
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The second and third columns lack a leading 1, and therefore and are free variables. We let and be
represented by parameters and , respectively. We then write in terms of the parameters.

Then, the eigenvector can be expressed as

at the same time

where and can’t be equal to zero at the same time because that would result in a zero vector and eigenvectors

never equal zero. The eigenspace is spanned by two vectors .

Therefore, the basic eigenvectors associated with eigenvalue are and .

For , we have

Similarly, we form the augmented matrix and bring it to RREF using row operations.
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The third column lacks a leading 1, and therefore is a free variable. We let the free variable be represented by a
parameter . We then write and in terms of the parameter .

Then, the eigenvector can be expressed as

Using , the eigenvectors corresponding to is .

For both eigenvalues, the algebraic multiplicity equals the geometric multiplicity and thus their eigenvectors are
linearly independent.

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=244

Section 6.3 Exercises

1. Find the eigenvalues of the matrix

.

Show/Hide Answer

2. Find the eigenvalues and eigenvectors of the matrix .

Show/Hide Answer

or any scalar multiple.

or any scalar multiple.

3. Find the eigenvalues and eigenvectors of the matrix

Show/Hide Answer
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or any scalar multiple.

or any scalar multiple.
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6.4: LINEAR SYSTEMS OF DIFFERENTIAL
EQUATIONS

A. Introduction

After exploring first-order and second-order differential equations, we now turn our attention to systems of
differential equations. These systems are instrumental in modeling scenarios with multiple interdependent processes,
common in complex real-world situations.

For instance, in an ecosystem with interacting species like prey and predators, the rate of change in each species’
population depends not only on its size but also on the populations of other species. This interaction leads to a
system of differential equations where each equation represents the growth rate of one species, encapsulating their
interrelations. Similarly, in mixing problems with interconnected tanks, the concentration in one tank affects and is
affected by concentrations in connected tanks. In mechanical systems, such as a mass-spring system with multiple
masses and springs, each mass’s displacement is influenced by its neighbors, forming a system of interconnected
differential equations.

B. Systems of Linear First-Order Differential Equations

In this section, we introduce the matrix method for solving systems of linear first-order differential equations. These
systems are characterized by each equation being first-order and linear. Such systems can be written in the following
form.

Matrix notation simplifies the characterization and solution of these systems, similar to how systems of algebraic
equations are handled. A linear first-order system can be expressed in matrix form as
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In vector notation, the system is written as

(6.4.1)

Here matrix is the coefficient matrix and is the forcing function vector. and are continuous if their
entries are continuous. If in Equation 6.4.1, the system is homogeneous; otherwise, it is
nonhomogeneous.

An initial value problem involves finding a solution for

(6.4.2)

where is a constant vector representing the initial condition.

Example 6.4.1: Write a System of Differential Equations in Matrix Form

Write the given system of differential equations in matrix form.

Show/Hide Solution

The system can be written in matrix form as
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An initial value problem for the system can be written as

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=247

Existence and Uniqueness Theorem. If the coefficient matrix and the forcing function are continuous
on an open interval containing , then there exists a unique solution to the following initial value problem on that
interval.

Example 6.4.2: Verify a Solution to a System of Differential Equations

a) Verify that
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is a solution to the following system for any values of and .

b) Find the solution to the initial condition

Show/Hide Solution

a) If is a solution to the system, then .
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b) Since the coefficient matrix is continuous for all real numbers , the Existence Theorem guarantees that
the given initial value problem has a unique solution on . To find constants and , we apply the initial
condition:

This yields a system of two equations in two variables and .

Solving the system yields

Therefore the solution to the initial value problem is

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=247

C. n-th Order Differential Equation as a System of n First-order
Equations

Higher-degree differential equations can be transformed into systems of first-order differential equations. This
conversion allows complex, higher-order problems to be analyzed using techniques and tools developed for first-
order systems. This approach is widely used in numerical methods and theoretical analysis in various scientific and
engineering applications. Here’s a step-by-step guide to this process.

How to Convert Single -th Order Differential Equations into a System
of First-Order Equations

Consider a linear -th order differential equation:

1. Introduce New Variables: Introduce new variables corresponding to the function and its derivatives up
to order . Let
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2. Express the Derivatives: Express the derivatives of these new variables in terms of the original differential
equation.

Observe that the last equation is the original equation that is rearranged for the highest derivative of . In the last
equation, substitute the new variables for and its derivatives:

3. Write the System of First-Order Equations: You now have a system of first-order linear differential
equations:

Example 6.4.3: Write 2nd-Order Differential Equation as a First-Order Linear System

Write the given 2nd-order differential equation as a system of first-order linear differential equations.
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Show/Hide Solution

1. Introduce a new variable :

2. Express the derivatives by differentiating the above equations and rearrange the original differential
equation to isolate :

We also express the initial conditions in terms of the new variables:

3. The system of first-order equations is then

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=247

Section 6.4 Exercises

1. Write the system given system of differential equations in matrix form.

Show/Hide Answer

2. Convert the given differential equation into a system of first-order equations by letting .

Show/Hide Answer

3. Rewrite the system of linear equations

As a single second-order differential equation for .

Show/Hide Answer
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6.5 SOLUTIONS TO HOMOGENEOUS SYSTEMS

A. Fundamental Solution Set and Wronskian

We start with studying the homogeneous linear system

(6.5.1)

where is an constant matrix with real entries. is the trivial solution of the system. Any other
solution is a nontrivial solution.

Theorem. If are linearly independent solutions to the system 6.5.1 and is continuous on an
open interval , then the set is called a fundamental set of solutions to the system on .

Revisiting Section 6.2 on linear independence, vectors are linearly independent if
has only the trivial solution. That is if

then

For this to be the only solution (unique solution), the determinant of the matrix of coefficient of the equation
whose columns are the vector functions must be nonzero. The determinant of the matrix of
coefficient of the equation is called the Wronskian and denoted .

Theorem. If the Wronkian of is nonzero at some point (and thus never zero) on , then
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is linearly independent, forming a fundamental solution set for system 6.5.1 on . The
fundamental matrix of the system is

Example 6.5.1: Compute Wronskian and Find General Solution For a System Given
Solution

Given the vector functions

and

are solutions to a constant-coefficient system, a) compute the Wronkskian of and b) find the
general solution of the system.

Show/Hide Solution

a)

b) Since , are linearly independent and thus the set is a fundamental set of solutions
to the system and the following matrix is the fundamental matrix of the system.

Thus the general solution is
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=250

B. Solutions to Homogeneous Systems with Constant
Coefficients

In our quest to find solutions to homogeneous systems with constant coefficients, represented by system 6.5.1, we
apply a similar approach to that used in solving homogeneous linear differential equations with constant coefficients.

Recall from Section 3.2 that we guessed a nontrivial solution of the form for a homogeneous linear
differential equation with constant coefficients. Section 6.4 showed that any higher-order linear differential equation
can be expressed as a first-order linear system of differential equations. Therefore, it is reasonable that a solution for
system 6.5.1 to be of the form

(6.5.2)

Here, is a constant, and is a constant vector. The next step is to substitute the guessed solution 6.5.2 into our
system. Doing so gives
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After canceling the exponential term , we arrive at

Rearranging this equation leads to

This is the characteristic equation used to find the eigenvalues and eigenvectors of matrix , as seen in Section 6.3.
For our guessed solution to be nontrivial, and must correspond to the eigenvalue and eigenvector of
matrix , respectively.

Therefore, to solve system 6.5.1, we first find the eigenvalues and eigenvectors of the coefficient matrix . The
solution structure varies depending on the nature of the eigenvalues, which can be real and distinct, complex, or
repeated. Each of these scenarios will be explored in the following sections.

Section 6.5 Exercises

1. Given the vector functions

and

are solutions to a constant-coefficient differential system, compute the Wronkskian of .
Determine if the vectors are linearly independent.

Show/Hide Answer

; The vectors are linearly independent because their Wronskian is never zero for any

real number .

2. Given the vector functions

and

are solutions to a constant-coefficient differential system, compute the Wronkskian of .
Determine if the vectors are linearly independent.

Show/Hide Answer
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; The vectors are linearly independent because their Wronskian is nonzero.
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6.6 CONSTANT-COEFFICIENT
HOMOGENEOUS SYSTEMS: REAL
EIGENVALUES

In Section 6.5, we explored how solutions to homogeneous systems with constant coefficients

(6.6.1)

are in the form

where is an eigenvalue, and is the corresponding eigenvector of the coefficient matrix .

In this section, we focus on the case where the eigenvalues of matrix are distinct and real.

Theorem: If an matrix has real, distinct eigenvalues , and is an eigenvector
associated with the eigenvalue , then the vectors are linearly independent.

In this context, the solutions for each eigenvalue take the form . Collectively, the set
forms a fundamental solution set for the homogeneous system 6.6.1.

Consequently, the general solution to the system can be expressed as a linear combination of these individual
solutions.

(6.6.2)

where is an arbitrary constant.

Example 6.6.1: Find General Solution to Homogeneous System

Find a general solution of
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Show/Hide Solution

1. First we need to find the eigenvalues of the coefficient matrix .

The characteristic polynomial of is given by

The roots of , which are and , are the eigenvalues of .

2. Next to find the corresponding eigenvectors, we need to find the solution to the equation
for each eigenvalue.

For , we have

Therefore, the eigenvectors corresponding to are for . Using , a

basic eigenvector corresponding to is .
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For , we have

To solve the system, we form the augmented matrix and bring it to RREF using row operations.

Therefore, the eigenvectors corresponding to are for . Using , a

basic eigenvector corresponding to is .

3. A general solution to the system is given by Equation 6.6.2.

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=253

Example 6.6.2: Solve Intial Value Problem

Solve the system of differential equations with the given initial values.

Show/Hide Solution

1. We first express the system in the matrix notation.

2. Next, we find the eigenvalues of .

The characteristic polynomial of the coefficient matrix is given by
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The roots of , which are and , are the eigenvalues of .

3. We then find the corresponding eigenvectors.

For , we have

To solve the system, we form the augmented matrix and bring it to RREF using row operations.

Therefore, the eigenvectors corresponding to are for . Using , a

basic eigenvector corresponding to is .

For , we have

To solve the system, we form the augmented matrix and bring it to RREF using row operations.
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Therefore, the eigenvectors corresponding to are for . Using , a

basic eigenvector corresponding to is .

4. A general solution to the system is given by Equation 6.6.2.

5. Finally, we apply the initial conditions to find constants and .

This gives a system of two equations and two unknowns.

Solving the system yields

Therefore the solution to the initial value problem is
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=253

Example 6.6.3: Solve Intial Value Problem

Solve the system of differential equations with the given initial values.

Show/Hide Solution

1. We first express the system in the matrix notation.

2. Next, we find the eigenvalues of the coefficient matrix .

The characteristic polynomial of is given by
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The roots of , which are , , and , are the eigenvalues of .

3. We then find the corresponding eigenvectors.

For , we have

To solve the system, we form the augmented matrix and bring it to RREF using row operations.

Therefore, the eigenvectors corresponding to are for . Taking , a basic

eigenvector corresponding to is .
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For , we have

To solve the system, we form the augmented matrix and bring it to RREF using row operations.

Thus, the eigenvectors corresponding to are for . Taking , a basic

eigenvector corresponding to is .

For , we have

To solve the system, we form the augmented matrix and bring it to RREF using row operations.
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Therefore, the eigenvectors corresponding to are for . Taking , a

basic eigenvector corresponding to is .

4. A general solution to the system is given by Equation 6.6.2.

5. Finally, we apply the initial conditions to find constants , , and .

This gives a system of three equations and three unknowns.

Solving the system yields

Therefore the solution to the initial value problem is
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=253

In Section 6.4, we explored how higher-order linear differential equations can be converted into systems of first-
order linear equations. This transformation, coupled with the matrix method offers several advantages, like better
organization of the problem and ease of computation. While this approach might not always be shorter than
the characteristic polynomial method discussed in Section 3.2, especially for solving homogeneous second-order
differential equations with constant coefficients, it is beneficial to understand this process. To illustrate how it is
applied, let’s work through an example.

Example 6.6.4: Solve 2nd Order Differential Equation using Matrix Method

Convert the given differential equation to a linear first-order system and find the solution.

Show/Hide Solution

a. Converting the equation to a system:
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1a. Introduce a new variable :

2a. Express the derivatives by differentiating the above equations and rearrange the original differential
equation to isolate :

We also express the initial conditions in terms of the new variables:

3a. The system of first-order equations is then

b. Solving the system

1b. We express the system in the matrix form.

2b. Next, we find the eigenvalues of the coefficient matrix .

The characteristic polynomial of is given by
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The roots of , which are and , are the eigenvalues of .

3b. We then find the corresponding eigenvectors.

For , we have

To solve the system, we form the augmented matrix and bring it to RREF using row operations.

Therefore, the eigenvectors corresponding to are for . Using , a basic

eigenvector is .

For , we have
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To solve the system, we form the augmented matrix and bring it to RREF using row operations.

Therefore, the eigenvectors corresponding to are for . Using ,

a basic eigenvector is .

4b. A general solution to the system is given by Equation 6.6.2.

5b. We apply the initial conditions to find constants and .

This gives a system of two equations and two unknowns.

Solving the system yields

Therefore the solution to the initial value problem is
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c. Determining the solution to the original equation

Given , we see that the solution to the original 2nd-order differential equation

is the top row of the system’s solution. Therefore, the solution to the original equation is

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=253

Section 6.6 Exercises

1. Solve the system of differential equations with the given initial values.

Show/Hide Answer
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2. Solve the system of differential equations

Show/Hide Answer

3. Solve the system of differential equations

Show/Hide Answer
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6.7 CONSTANT-COEFFICIENT HOMOGENEOUS
SYSTEMS: COMPLEX EIGENVALUES

In this section, we examine solutions to the homogeneous system with constant coefficients for the
case where the eigenvalues of the coefficient matrix are complex. Typically, these eigenvalues are conjugates of each
other, denoted as , where is the imaginary unit, and and are real numbers. As in the complex
case of second-order differential equations, we utilize Euler’s formula to convert complex exponentials into real
trigonometric functions, starting from the guessed solution form .

Theorem. If an matrix has complex conjugate eigenvalues with the corresponding
eigenvector , then two linearly independent solutions to the homogeneous system are

The general solution to the system is then given by

(6.7.1)

where and are arbitrary constants.

Example 6.7.1: Find General Solution to Homogeneous System

Find a general solution of

Show/Hide Solution
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1. First we need to find the eigenvalues of .

The characteristic polynomial of the coefficient matrix is given by

Therefore, the roots of , which are , are the eigenvalues of .

2. Next we find the corresponding eigenvectors by finding the solution to the equation .
However, we only need to find the eigenvector associated with one of the eigenvalues, e.g., .

To solve the system, we form the augmented matrix and bring it to RREF using row operations.
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Therefore, the eigenvectors corresponding to eigenvalue are for

. Letting , we have a basic eigenvector

The real part of is and the imaginary part of is .

The eigenvector corresponding to the conjugate eigenvalue is the conjugate of eigenvector . Thus, the
eigenvector associated with the eigenvalue is

3. Therefore, a general solution to the system is given by Equation 6.7.1.

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=256

Example 6.7.2: Solve Intial Value Problem

Solve the system of differential equations with initial conditions

.

Show/Hide Solution

1. First we need to find the eigenvalues of .

The characteristic polynomial of the coefficient matrix is given by

Therefore, the roots of , which are , are the eigenvalues of .
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2. Next we find the corresponding eigenvectors by finding the solution to the equation .
However, we only need to find the eigenvector associated with one of the eigenvalues, e.g.,

.

To solve the system, we form the augmented matrix and bring it to RREF using row operations.

Therefore, the eigenvectors corresponding to eigenvalue are

for . Letting , we have a basic eignevector

The real part of is and the imaginary part of is .

The eigenvector corresponding to the conjugate eigenvalue is the conjugate of eigenvector . Thus, the
eigenvector associated with eigenvalue is

3. Therefore, a general solution to the system is given by Equation 6.7.1.
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4. We apply the initial conditions to find constants and .

This gives a system of two equations and two unknowns.

Solving the system yields

Therefore the solution to the initial value problem is

Try an Example
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=256

Section 6.7 Exercises

1. Find a solution to the system of differential equations

Show/Hide Answer

2. Solve the system of differential equations with initial conditions

.

Show/Hide Answer

3. Solve the system of differential equations with initial conditions

.

Show/Hide Answer
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6.8 CONSTANT-COEFFICIENT
HOMOGENEOUS SYSTEMS: REPEATED
EIGENVALUES

In this section, we explore solutions to the homogeneous system with constant coefficients when the eigenvalues
of the coefficient matrix are repeated. Specifically, we encounter a unique challenge when an eigenvalue’s algebraic
multiplicity (the number of times it appears as a root of the characteristic polynomial) exceeds its geometric
multiplicity (the number of linearly independent eigenvectors associated with it). This discrepancy necessitates a
specific approach to find all the linearly independent solutions necessary for a complete solution to the system. Our
focus here is on the case where an eigenvalue has an algebraic multiplicity of two but a geometric multiplicity of
only one. In such situations, the concept of generalized eigenvectors becomes crucial to developing a comprehensive
solution.

Consider a homogeneous system denoted as

(6.8.1)

where matrix has an eigenvalue that is repeated twice (i.e., it has an algebraic multiplicity of two).

Theorem. If an matrix has an eigenvalue with an algebraic multiplicity of two, but only one linearly
independent eigenvector associated with it (i.e., a geometric multiplicity of one), the system will have additional
solutions derived from generalized eigenvectors.

Finding Generalized Eigenvectors

For an eigenvalue with only one independent standard eigenvector , we need to find a generalized eigenvector
by solving the equation:

This generalized eigenvector is not a solution to but does satisfy the above equation.
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Constructing the Solution

The solution for the eigenvalue includes terms involving both the standard and generalized eigenvectors. The two
solutions are linearly independent.

1. – associated with the standard eigenvector.

2. – associated with the generalized eigenvector.

General Solution for the System

The general solution to the system 6.8.1 combines these solutions.

(6.8.2)

where and are arbitrary constants.

Example 6.8.1: Solve Initial Value Problem with a 2 by 2 System

Solve the system of differential equations with the given initial values.

Show/Hide Solution

1. First we need to find the eigenvalues of the coefficient matrix .

The characteristic polynomial of is given by
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The characteristic polynomial has a repeated root. Thus is the eigenvalue of with
multiplicity of two.

2. To find the corresponding standard eigenvectors, we need to find the solution to the equation
.

For , we have

To solve the system, we form the augmented matrix and bring it to RREF using row operations.

Therefore, the eigenvectors corresponding to are . Taking , a basic

eigenvector corresponding to is .

3. We need to find a generalized eigenvector such that
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To solve the system, we form the augmented matrix and bring it to RREF using row operations.

The solution to this is . Taking , a generalized eigenvector is .

4. A general solution to the system is given by Equation 6.8.2.

5. We apply the initial conditions to find constants and .

This gives a system of two equations and two unknowns.

Solving the system gives

Therefore, the solution to the initial value problem is
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=259

Example 6.8.2: Solve Initial Value Problem with a 3 by 3 System

Solve the system of differential equations with the given initial values.

Show/Hide Solution

1. We first express the IVP in the matrix notation.

where .

2. We find the eigenvalues of the coefficient matrix .

The characteristic polynomial of is given by
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The eigenvalues are with a multiplicity of one and with a multiplicity of two.

3. To find the corresponding standard eigenvectors, we solve .

For , we have

To solve the system, we form the augmented matrix and bring it to RREF using row operations.

Therefore, the eigenvectors corresponding to are . Taking , a basic

eigenvector corresponding to is .

For , we have
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To solve the system, we form the augmented matrix and bring it to RREF using row operations.

Therefore, the eigenvectors corresponding to are . Taking , a basic

eigenvector corresponding to is .

For the geometric multiplicity is one and thus less than the algebraic multiplicity (which is 2).
This means that the dimension of the eigenspace associated with is one (all eigenvectors are spanned by
the only vector ).

4. Therefore, we need to find a generalized vector such that

To solve the system, we form the augmented matrix and bring it to RREF using row operations.
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The solution to this is . Taking , a generalized eigenvector is .

5. Three linearly independent solutions of the system are

-For and standard eigenvector :

-For and the standard eigenvector :

-For and a generalized eigenvector :

6. Therefore, a general solution to the system is given by the linear combination of the above solutions:

7. We apply the initial conditions to find the constants.
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This gives a system of three equations and three unknowns.

Solving the system gives

Therefore, the solution to the initial value problem is

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=259
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Section 6.8 Exercises

1. Solve the system of differential equations.

,

Show/Hide Answer

2. Solve the system of differential equations.

,

Show/Hide Answer

3. Solve the system of differential equations.

,

Show/Hide Answer
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6.9 NONHOMOGENEOUS LINEAR SYSTEMS

In this section, we study the nonhomogeneous linear system

(6.9.1)

where matrix is an matrix function and is an n-vector forcing function. The associated homogenous
system is called the complementary system.

The methods from Chapter 3, such as Undetermined Coefficients and Variation of Parameters, used for finding
particular solutions to nonhomogeneous linear equations, can be extended to nonhomogeneous linear systems. We
focus here on the method of Variation of Parameters.

Variation of Parameters

The method of variation of parameters, as discussed in Section 3.5 for linear equations, applies to linear systems. It
requires a fundamental set of solutions to the complementary (homogeneous) equation.

Theorem. Suppose an matrix and an n-th vector are continuous on an open interval . Let be
a particular solution of system 6.9.1 on , and let be a fundamental set of solutions of the
complementary system . Then the general solution to 6.9.1 on is

where is the complementary solution and where is an arbitrary
constant. The general solution can be expressed as

Method of Variation of Parameters for Nonhomogeneous Linear
Systems

To find a particular solution to
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1. Find a fundamental set of solutions to the corresponding complementary system
.

2. Form the fundamental matrix for the complementary system.

3. Find the inverse of the fundamental matrix, .

4. Determine

5. A particular solution to the system is given by

6. A general solution to the system is then

Example 6.9.1: Find General Solution to Nonhomogeneous System

Find the general solution to the system

Show/Hide Solution

1. First we find a fundamental solution to the associated complementary (homogeneous) system.

The characteristic polynomial of the coefficient matrix is given by
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The roots of , which are and , are the eigenvalues of . Then, we find the
corresponding eigenvectors.

For , we have

Therefore, the eigenvectors corresponding to are for .

For , we have

The eigenvectors corresponding to are for .

Therefore, is a fundamental solution set to the complementary system.

2. Thus the fundamental matrix for the complementary system is
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3. We determine

4. Determine letting the constant of integration be zero

5. Then, a particular solution to the system is
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6. Thus, a general solution to the system is

Which can also be written as

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=262

Example 6.9.2: Find General Solution to Nonhomogeneous System

Find the general solution to the system

Show/Hide Solution
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The complementary system is

The forcing vector is

1. In Example 6.6.3 in Section 6.6, we found a fundamental solution set of the complementary system
associated with the given system in this example.

2. The fundamental matrix for the complementary system is

3. We determine using the row reduction method, involving augmenting the matrix with the

identity matrix.

4. Determine letting the constant of integration be zero.
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5. Then, a particular solution to the system is

6. Thus, a general solution to the system is
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This can also be expressed as

Section 6.9 Exercises

1. Find the general solution to the system of differential equations

Show/Hide Answer

2. Find the general solution to the system of differential equations

Show/Hide Answer
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6.10 APPLICATIONS

A. Introduction

In this section, we revisit the application of differential equations in modeling engineering systems. In particular, we
focus on mechanical vibrations and electrical circuits as two primary areas where systems of differential equations are
applied.

Differential equations have a broad utility across various engineering fields. In chemical engineering, they are pivotal
for modeling reaction kinetics and process dynamics. This includes scenarios such as mixing problems involving
multiple tanks and substances, which are essential for reactor design and process optimization. In civil engineering,
differential equation models are crucial for assessing the safety and longevity of structures subjected to diverse load
conditions, such as in the earthquake resilience analysis of multi-story buildings. Aerospace engineering relies on
these equations to simulate the movement of aircraft and spacecraft, incorporating both translational and rotational
dynamics. This knowledge is instrumental in crafting control systems that enhance stability and maneuverability.
Environmental engineering also employs differential equation models to track pollutant spread, providing a
foundation for crafting effective environmental protection measures.

B. Electrical Circuits

Kirchhoff’s laws, which we discussed in Section 2.5, serve as the foundation for deriving the governing equations.
These laws facilitate the analysis of circuits by providing a systematic approach to calculating the currents and
voltages at various points within the circuit. In more complex circuits, e.g., series-parallel circuits,

Example 6.10.1: RL Series Circuit – System of Linear Equations

a) For the given electrical circuit diagram, derive the system of differential equations that describes the currents
in various branches of the circuit. Assume that all initial currents are zero. b) Once the system of differential
equations and initial conditions are established, solve the system for the currents in each branch of the circuit.
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Diagram Description

Consider a circuit with a 12-volt DC power supply. From the positive terminal of the power supply, a 4-ohm
resistor is connected in series. Following this resistor, the circuit branches into two parallel paths. The first
parallel branch contains a 2-ohm resistor, and the second branch contains a 0.1-henry inductor. These two
branches then converge, and the circuit continues through a 0.2-henry inductor before returning to the negative
terminal of the power supply. Given this setup, calculate the currents I1 (through the 4-ohm resistor), I2
(through the 2-ohm resistor), and I3 (through the 0.1-henry inductor). Assume steady-state conditions for the
inductors.

Show/Hide Solution

a) In Example 4.8.2, we previously examined this RL circuit and analyzed it using the Laplace Transform. In
this example, we demonstrate solving the same circuit with the matrix method. The system equations for the
circuit are given as follows, with initial conditions that all currents are zero at the time .

(6.10.1)

b) Steps for solving the system:
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1. System 6.10.1 is a mix of differential and algebraic equations. We first need to convert it into a system of
linear differential equations by using the second equation to express as in the first equation and
isolating the first derivatives in the first two equations. This yields

(6.10.1)

To create a system of linear differential equations from the given system, it’s important to address the fact
that does not have a derivative present. To work around this, needs to be eliminated from the
equations. This is achieved by rearranging the third equation to express in terms of and , and then
substituting this expression for into the other equations.

(6.10.2)

The system is then simplified to

(6.10.2)

2. We then express the initial value problem (IVP) in matrix form.

3. Next, we find a fundamental solution to the associated complementary (homogeneous) system. The
characteristic polynomial of is given by
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The eigenvalues and the corresponding eigenvectors are

:

:

Therefore, is a fundamental solution set to the complementary system.

Thus the fundamental matrix for the complementary system is

3. Next, we determine a particular solution to the system

(i) Determine

(ii) Determine letting the constant of integration be zero

Then, a particular solution to the system is

342 | 6.10 APPLICATIONS



4. Thus, a general solution to the system is

5. We apply the initial conditions to find the constants in the general solution.

This gives a system of two equations and two unknowns.

Solving the system gives

Therefore, the solution to the initial value problem is

This results in the final expressions for and .
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6. To find , we substitute back the expression for and into Equation (6.10.1), yielding

C. Mechanical Vibration

The analysis of mechanical vibrations is crucial in designing systems that are resilient to dynamic loads. A more
realistic model that captures the essence of mechanical systems involves considering not only the masses and springs
but also damping elements and external forces. This section focuses on a system consisting of two masses connected
by springs in a horizontal arrangement, with the inclusion of damping and external forces acting on both masses.
Such a model can represent a wide array of engineering applications, from vehicle suspensions to machinery
components. A schematic of the system is shown in Figure 6.10.1.

Figure 6.10.1 Schematic diagram of a coupled mass-spring system comprising two masses connected by three
springs and two dampers.
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Assumptions

To proceed with the derivation of the system’s equations of motion, we make the following assumptions:

• Linear Damping: Each mass is paired with a damping element, characterized by linear damping coefficients
for and for . These coefficients quantify the resistance against the motion of each mass.

• External Forces: Time-dependent external forces and act on and , respectively,
considered positive in the right direction.

• Linear Elasticity: The springs obey Hooke’s law, implying that the force each spring exerts is directly
proportional to its displacement from the rest length.

• Small Displacements: The analysis assumes small displacements from equilibrium, allowing linearization of
the system. Displacements are deemed positive when directed to the right.

• Rigid Body: Masses are treated as point masses, and springs and dampers are considered massless, focusing
solely on axial forces and displacements.

System Setup

We consider a general case where the system consists of two masses, and , connected by three springs with
stiffness constants , , and , and augmented by two dampers. The outer springs are anchored to fixed walls.
External forces act upon the masses and dampers counteract their movement. This framework allows the external
forces and damping effects to be adjustable, accommodating scenarios where these forces might be absent by setting
their respective values to zero.

Example 6.10.2: Mechanical Vibration – Forced Damped System

Derive the system of differential equations for the forced damped coupled system described above (Figure 6.10.1).

Show/Hide Solution

The dynamics of this damped system with external forces are governed by two coupled second-order linear
differential equations, reflecting the balance of forces on each mass. Here we consider the external forces’
direction to be to the right and displacements are also positive (to the right) assuming the displacement of
mass 1, is larger than the displacement of mass 2, , thus .
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1) The forces acting on mass are

• Restorative Force of the spring , ,
• Restorative Force of the spring , , where is the displacement

of the middle spring.
• Damping Force , where is the damping coefficient for the damper 1. If present,

the damping force is proportional to the velocity of the mass and acting in the opposite direction of
motion.

• External Force . It includes any external force acting on mass , which might be periodic or
random, leading to forced vibrations.

According to Newton’s second law,

This equation simplifies to

Note that since , the spring is compressed, and the force it exerts on mass 1 is to the left
(negative), aiming to restore the spring to its equilibrium length.

2) The forces acting on mass are

• Restorative Force of the spring , ,
• Restorative Force of the spring , , where is the displacement of

the middle spring.
• Damping Force , where is the damping coefficient for the damper 2. If present,

the damping force is proportional to the velocity of the mass and acting in the opposite direction of
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motion.
• External Force . It includes any external force acting on mass , which might be periodic or

random, leading to forced vibrations.

According to Newton’s second law,

This equation simplifies to

Note that since , the spring is compressed, and the force it exerts on mass 2 is to the right and
should be positive, which is consistent with the sign of .

Therefore, the time-dependent displacements of the masses are described by the system of differential
equations

Example 6.10.3: Mechanical Vibration – Rewrite to System of First-Order Equations

a) Rewrite the derived system of differential equations in Example 6.10.2 to a system of first-order differential
equations. b) Write the system in matrix form.

Show/Hide Solution
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a) The equations governing the mass-spring system in Figure 6.10.1 are derived in Example 6.10.2.

Section 6.4-C discussed how to convert higher-order differential equations as a system of first-order
equations. We introduce new variables as follows:

, , , and

The equations then can be written as

b) The system in the matrix form is

Example 6.10.4: Solve Inital Value Problem: Free, Undamped Vibration
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Consider a coupled mass-spring system, as described in Example 6.10.2, with the following parameters: both
masses and are 1 kg, and all spring constants , , and are 1 N/m. The system is isolated
from external forces and damping effects. Initially, the displacements and velocities are given as
m, m/s, m, and m/s. Solve the initial value problem to determine the
displacements of the masses as functions of time. Due to the complexity of calculations, use matrix algebra
software to find the eigenvalues and eigenvectors.

Show/Hide Solution

Given information:

•
•
• No damping:
• No External forces:
• Initial conditions: , ,

In Example 6.10.3, we converted a second-order system governing the coupled mass-spring system to a first-
order system and expressed it in matrix notation.

where
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Substituting the given values, the initial value problem becomes

Using matrix algebra software, we find the eigenvalues and eigenvectors of the coefficient matrix. The
eigenvalues and eigenvectors occur in the following complex conjugate pairs.

Eigenvector for :

Eigenvector for :

The solution for each pair is given by Equation 6.7.1.

For the first pair, , the two linearly independent solutions are

For the second pair, , the two linearly independent solutions are
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Thus, the fundamental matrix of the system is

The general solution to the system in matrix form is

Applying the initial conditions, we obtain
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Solving for the coefficients, we find

Therefore, the solution to the initial value problem is

This can be written as

Recall from Example 10.6.3 that we introduced variables to represent the displacements and velocities of
the masses.

Given this conversion, the displacements of mass 1 ( ) and mass 2 ( ) as a function of time are
determined by
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The below visualization displays the displacements of the two masses over time in a coupled mass-spring
system in this example, plotted on a graph with time on the horizontal axis (ranging from 0 to 10 seconds) and
displacement in meters on the vertical axis. The line for Mass 1 oscillates, indicating a pattern of motion that
varies between positive and negative displacements, suggesting complex harmonic motion. The line for Mass 2
follows a similar oscillatory pattern, but with phase and amplitude differences compared to Mass 1, reflecting
the interaction between the two masses through the spring system.

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=870

Section 6.10 Exercises

1. Consider a coupled mass-spring system, as described in Example 6.10.2, with the following parameters: both
masses and are 1 kg, and all spring constants , , and are 1 N/m. The system is isolated from
external forces and damping effects. Initially, the displacements and velocities are given as m,

m/s, m, and m/s. Solve the initial value problem to determine the
displacements of the masses as functions of time. Use matrix algebra software to find the eigenvalues and
eigenvectors.

Show/Hide Answer
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PART VII

PARTIAL DIFFERENTIAL EQUATIONS

Chapter Outline

This chapter provides a brief overview of partial differential equations, which involve partial derivatives of a function
with respect to multiple independent variables.

7.1 Introduction: This section outlines boundary and initial conditions, essential for solving initial boundary value
problems in PDEs.

7.2 Fourier Series: This section reviews the Fourier Series, a crucial tool for expressing the solution of partial
differential equations.

7.3 Heat Equation: This section discusses using the method of Separation of Variables for solving the heat equation,
which describes how heat diffuses through a medium over time.

7.4 Wave Equation: This section briefly discusses the solution to the wave equation, which models the propagation
of waves, such as sound and light waves, through a medium
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Maryam Mirzakhani (1977-2007).
Attribution: Maryeraud9, CC BY-SA 4.0
<https://creativecommons.org/licenses/
by-sa/4.0>, via Wikimedia Commons

Pioneers of Progress

Maryam Mirzakhani, born in 1977 in Tehran, Iran, was a trailblazing
mathematician whose profound contributions to geometry and
dynamical systems reshaped our understanding of these fields. Her
mathematical journey, which began with outstanding successes in the
International Mathematical Olympiads, culminated in her earning the
prestigious Fields Medal in 2014, making her the first woman to receive
this honor. Mirzakhani’s groundbreaking work at Harvard University
under Curtis McMullen focused on the intricate geometry of Riemann
surfaces and their moduli spaces, encompassing areas like hyperbolic
geometry and Teichmüller theory. Renowned for her deep, creative
thinking and ability to draw connections between different mathematical
areas, Mirzakhani not only solved long-standing problems but also
inspired a generation, particularly women and girls in STEM, through her
remarkable intellect and perseverance. Her legacy as a symbol of
intellectual curiosity and boundary-breaking achievement makes her an
exemplary figure for illustrating the far-reaching impact and significance
of mathematical concepts.
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7.1 INTRODUCTION

Unlike Ordinary Differential Equations (ODEs), which involve derivatives with respect to a single variable, PDEs
involve partial derivatives of a function with respect to multiple independent variables. Essentially, a PDE is an
equation that relates the partial derivatives of a function of multiple variables.

PDEs are fundamental in modeling and understanding complex systems in the natural world, for example, in physics,
for describing wave mechanics, electromagnetic fields, and heat transfer. For example, Maxwell’s equations, which are
fundamental to electromagnetic theory, are expressed as PDEs or in engineering, in analyzing stress and strain within
materials, fluid dynamics, and thermodynamics.

A. Boundary Value Problems

In the context of differential equations, particularly relevant for engineering students, understanding Boundary
Value Problems (BVPs) and Initial Value Problems (IVPs) is crucial.

A Boundary Value Problem involves solving a differential equation subject to a set of constraints called boundary
conditions. These conditions specify the behavior of the solution at the boundaries of the domain over which the
equation is defined. In the case of Partial Differential Equations (PDEs), these domains are often spatial, and the
boundaries can be physical or geometric limits.

An Initial Value Problem, in contrast, involves solving a differential equation given the value of the solution at
a specific point, often the start of the time domain. For ODEs and time-dependent PDEs, these initial conditions
specify the state of the system at the beginning of the observed period.

B. Boundary Conditions and Initial Conditions

• Boundary Conditions: These are constraints specified at the boundaries of the spatial domain of a PDE. They
can be of various types:

◦ Dirichlet Boundary Conditions: Specify the value of the solution at the boundary.
◦ Neumann Boundary Conditions: Specify the value of the derivative of the solution at the boundary.
◦ Mixed or Robin Boundary Conditions: Involve a combination of values and derivatives of the

solution at the boundary.

• Initial Conditions: These specify the state of the system at the beginning of the observation period, often time
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for time-dependent problems. They are essential in determining the unique evolution of the system over
time.
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7.2 FOURIER SERIES

To solve partial differential equations we often use a method that transforms complex partial differential equations
into simpler ordinary differential equations. A key step in this method involves expressing functions as trigonometric
Fourier series. Therefore, this section provides a brief overview of the Fourier Series, which will enable us to effectively
tackle the solution of partial differential equations in subsequent sections.

A. Fourier Series

A Fourier series is an expansion of a function in terms of an infinite sum of sines and cosines. The series makes
it possible to express a complex periodic waveform as a combination of simple oscillating functions.

Decomposition into Sines and Cosines

The formula for a Fourier series of a function defined in the interval is

Here, , , and are the Fourier coefficients that determine the amplitude of the corresponding sine and cosine
terms. They are calculated as follows:

for

for

B. Sine and Cosine Fourier Series

In certain cases, the function may have specific symmetries, which simplify the Fourier series:
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Sine Series: If is an odd function (i.e., ), the cosine terms in the Fourier series vanish,
and only the sine terms remain. This results in a sine series, which is particularly useful for functions defined on
symmetric intervals and satisfying certain boundary conditions, like being zero at the endpoints.

Cosine Series: If is an even function (i.e., ), the sine terms disappear, leaving only the
cosine terms. The resulting cosine series is useful for problems where the derivative of is zero at the endpoints.

Fourier series are integral in solving PDEs, especially when using the method of Separation of Variables. This method
often requires satisfying boundary conditions, and the Fourier series provides a way to do this. By expressing a
function as a Fourier series, PDEs can be transformed into simpler ODEs, each associated with a different frequency
component of the original function.

Example 7.2.1: Find Fourier Series

Find the Fourier Series of on .

Show/Hide Solution

The endpoint is 2. Therefore, the Fourier Series is

where

is an odd function and thus and will equal zero. Also, both and sine are odd functions,
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and thus their product is an even function. Thus, the integral over a symmetric interval of
simplifies to

We evaluate using the integration by parts technique.

Given , is simplifies to

Therefore the Fourier series is

The below figure shows the graph of (solid black line) and its approximation by the partial sums
of its Fourier Series on for (the blue dashed curve) and (the red dotted curve).
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The below interactive figure presents a visual comparison between a mathematical function’s Fourier series
approximation and the linear function , plotted over the interval . The Fourier series
approximation, depicted as a blue dashed line, illustrates how a function can be represented as a sum of
simpler sine functions. The number of terms included in the Fourier series approximation can be adjusted
dynamically using an interactive slider, ranging from 1 to 10 terms. This feature allows you to observe the
impact of increasing the series terms on the approximation’s accuracy towards the actual function. The linear
function is plotted as a solid red line for reference.

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=281

Example 7.2.2: Find Fourier Series
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Find the Fourier Series of on .

Show/Hide Solution

The endpoint is 2. Therefore, the Fourier Series is

where

is an even function while sine is an odd function, so their product is an odd function. Thus,

. The product of cosine (also an even function) and is an even function and thus and
simplify to

To evaluate , we need to use the integration by parts technique twice.
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Given , is simplified to

Therefore, the Fourier series is

The below figure shows the graph of (solid black line) and its approximation by the partial

sums of its Fourier Series on for (the red dashed curve).

The below interactive figure presents a visual comparison between a mathematical function’s Fourier series
approximation and the quadratic function , plotted over the interval . The Fourier

series approximation, depicted as a blue dashed line, illustrates how a function can be represented as a sum
of simpler sine functions. The number of terms included in the Fourier series approximation can be adjusted
dynamically using an interactive slider, ranging from 1 to 10 terms. This feature allows you to observe the
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impact of increasing the series terms on the approximation’s accuracy towards the actual function. The
function is plotted as a solid red line for reference.

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=281

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=281

Section 7.2 Exercises

1. Find the Fourier series for over the given interval.

,

Show/Hide Answer
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2. Find the Fourier series for over the given interval.

,

Show/Hide Answer
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7.3 HEAT EQUATION

A. Introduction to Solving Partial Differential Equations

In this section, we explore the method of Separation of Variables for solving partial differential equations commonly
encountered in mathematical physics, such as the heat and wave equations. This method simplifies complex partial
differential equations into more manageable ordinary differential equations. While computer-based algorithms like
finite differences and finite elements are frequently used for solving partial differential equations, their accuracy can
be challenging to gauge. Therefore, the analytical Separation of Variables method is important for verifying these
computational methods’ results.

B. Heat Equation

The heat equation describes how heat diffuses through a medium over time. It is formulated considering a small
volume element within the material, where the rate of thermal energy change is equal to the net heat flow.
Representing the temperature at point and time by , the heat equation in one dimension is expressed as

Here, represents the rate of change of temperature with time, (where is the thermal diffusivity of the

material) is a constant that combines the material’s thermal conductivity, density, and specific heat capacity, and
(the Laplacian of ) represents the divergence of the temperature gradient, indicating how the temperature

changes in space around any point. In one dimension, like a simple rod, the Laplacian of simplifies to

. Therefore, the heat equation becomes

Solving this equation requires setting boundary and initial conditions. The initial condition specifies the temperature
distribution throughout the domain at the initial time, usually at . For example, for a rod or a similar
one-dimensional domain, the initial condition might be given as , where describes the
temperature distribution along the rod at the initial time.
We first consider the Dirichlet Boundary Conditions for heat flow in a uniform rod whose ends are kept at a
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constant temperature of zero.

C. Solution to Heat Equation with Dirichlet Boundary
Conditions

Consider a uniform rod of length with both ends kept at zero temperature. The heat equation in one dimension is

(7.3.1)

For zero temperature at both ends of the rod, the boundary conditions are:

The initial temperature distribution along the rod is given by:

Using the method of Separation of Variables, we assume that the solution can be written as the product of two
functions, one depending only on and the other only on .

Substituting the solution form into the Heat Equation gives

Dividing the equation by yields

This equation is separated into two ordinary differential equations (ODEs) because the left side depends only on
and the right side only on . For this equation to hold for all values of and , each side of the equation must be
independently equal to a constant. This is because the only way a function of can equal a function of under all
circumstances is if both are equal to the same constant value. Consequently, we set both sides of the equation to a
negative constant, denoted a , is known as the separation constant. The negative sign is conventionally added
for simplification in subsequent steps.
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As a result, we arrive at two distinct ODEs.

Solving the Spatial ODE

To solve the spatial part of the ordinary differential equation (ODE), we start by rearranging the equation

is the trivial solution for this boundary value problem. However, here our focus is on nontrivial
solutions as they provide meaningful insights into the system’s behavior under various conditions. A value of for
which this problem has a nontrivial solution is called an eigenvalue of the problem and the nontrivial solutions
are eigenfunctions associated with that . These eigenfunctions, unlike the trivial solution, provide a deeper
understanding of the dynamics and characteristics of the system.

Finding the Eigenvalues and Eigenfunctions

The characteristic equation of the spatial differential equation is . Depending on the sign of ,

there are three cases to consider.

Case 1:

In this case, the roots of are complex and the solution is

Applying the first boundary conditions , we find that . Applying the second boundary
conditions yields the equation . To obtain a nontrivial solution, the sine

function itself must be zero.

7.3 HEAT EQUATION | 369



for

Therefore, the positive eigenvalues and their associated eigenfunctions of this boundary value problem are
determined to be

for

Case 2:

In this case, the solution to the differential equation is

Applying the first boundary conditions , we find that . Applying the second boundary
conditions , we obtain . In this case, the only solution is the trivial solution, which is discarded.

Case 3:

In this case, the roots of are real number resulting in the solution

Upon applying the first boundary conditions , we find that . The second boundary
conditions leads to . Solving the system for and , we arrive at

As we seek a nontrivial solution, the term in parentheses must be zero.

However, this equation holds only if , which contradicts our assumption that . Thus, we conclude
that must be zero, leading to a trivial solution.

Therefore, the only valid eigenvalues and eigenfunctions for the spatial part of the equation are realized when
. These are given by

for
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Solving the Temporal ODE

To solve the temporal part of the ordinary differential equation (ODE), we start by rearranging the equation

and substituting the previously determined eigenvalues , which transforms the temporal ODE into

For each eigenvalue , the to solution to this differential equation is

for

Here represents an arbitrary constant. This series of functions describes how the temperature evolves over
time for each spatial mode .

Constructing the General Solution

To construct the general solution for the heat equation, we combine the spatial and temporal solutions into a
composite series.

Given the solutions and , the combined form for each mode

is

for

In series notation, this becomes

(7.3.2)
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Here, the constant from the temporal solution is represented as for each as this constant may vary with each
term in the series. To find the coefficient , we apply the initial condition . This leads to

This is the Fourier sine series representation of over the interval . The coefficients are determined
by

(7.3.3)

Example 7.3.1: Solve Initial Boundary Value Problem for Heat Equation – Dirichlet
Boundary Conditions

Find the solution to the initial boundary value heat flow problem

Show/Hide Solution

Comparing the given partial differential equation to Equation 7.3.1, we see and . Given the
initial condition is a linear combination of a few sine functions (eigenfunctions), all we need to do is to find
the combination of terms in the general solution 7.3.2 that satisfies the initial condition .
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From the argument of sine functions, the two terms correspond to and respectively, and
that and . All the other coefficients are zero.

Therefore, the solution to the heat flow problem is

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=283

Example 7.3.2: Solve Initial Boundary Value Problem for Heat Equation – Dirichlet
Boundary Conditions

Find the solution to the initial boundary value heat flow problem
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Show/Hide Solution

Comparing the equation with Equation 7.3.1, we see that , , and . Unlike the
previous example, the initial condition function is not similar to eigenfunctions (sine functions). Therefore,
we first need to find using 7.3.3.

By integration by parts, we have

Thus the solution is

The figure below shows the partial sum of the solution .
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One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=283

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=283

D. Solution to Heat Equation with Neumann Boundary
Conditions

Neumann Boundary Conditions specify the value of the derivative (gradient) of the temperature at the boundary,

often representing insulated or adiabatic surfaces where no heat flow occurs. For instance, might

represent one end of the rod being perfectly insulated.

To develop a solution for the heat equation with Neumann Boundary Conditions, we use the method of Separation
of Variables.

Consider a uniform rod of length with both ends perfectly insulated (no heat flows in or out of the rod) and the
temperature at both ends is kept constant. The heat equation in one dimension is
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For insulated ends, the derivative (gradient) of the temperature at the boundary is zero. Thus the boundary
conditions are:

The initial temperature distribution along the rod is given by

The solution to this boundary value problem is

(7.3.4)

where

is the Fourier cosine series of on and coefficients and are given by

(7.3.5)

(7.3.6)
for

Example 7.3.3: Solve Initial Boundary Value Problem for Heat Equation – Neumann
Boundary Conditions

Find the solution to the initial boundary value heat flow problem
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Show/Hide Solution

Comparing the equation with Equation 7.3.1, we see that , , and . We first need

to find coefficients and . Using 7.3.5.

Applying 7.3.6 to find .

By integration by parts, we have

Given , is simplifies to

The general solution is then given by 7.3.4
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The figure below shows the partial sum of the solution .

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=283

Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=283

Section 7.3 Exercises

1. Find the solution to the initial boundary value heat flow problem
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Show/Hide Answer

2. Find the solution to the initial boundary value heat flow problem

Show/Hide Answer

3. Find the solution to the initial boundary value heat flow problem

Show/Hide Answer
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7.4 WAVE EQUATION

The wave equation models the propagation of waves, such as sound waves, light waves, or water waves, through
a medium. It captures how these waves travel and change over time and space. The wave equation for the initial
boundary value problem for the displacement (deflection) of a vibrating string whose endpoints are held fixed is

(7.4.1)

Using the method of Separation of Variables, we can find the formal solution to this initial boundary value problem:

(7.4.2)

where

and

are the Fourier sine series of and on and

and

Example 7.4.1: Solve the Boundary Value Problem – Wave Equation

Find the solution to the vibrating string problem
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,

Show/Hide Solution

Comparing the equation with Equation 7.4.1, we see that , ,

, and . Since and are in terms of sine functions, we can determine the
values of the coefficients and by equating and to and , respectively.

Substituting into Equation 7.4.2, we obtain

From initial boundary values, we have

Thus

Equating the coefficients of like terms, we see that

and

with the remaining coefficients being zero. Similarly, by partially differentiating Equation 7.4.2 with respect to
and substituting , we obtain
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From initial boundary values, we have

Thus

Equating the coefficients of like terms, we see that

and

with the remaining coefficients being zero.

The solution to the problem is

The figure below shows the sketch of .

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=285
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Try an Example

One or more interactive elements has been excluded from this version of the text. You can view

them online here: https://ecampusontario.pressbooks.pub/diffeq/?p=285

Section 7.4 Exercises

1. Find the solution to the initial boundary value wave problem

Show/Hide Answer

2. Find the solution to the initial boundary value wave problem
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Show/Hide Answer
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Simulations

Fourier Series

Use the following simulation to learn more about how sines and cosines add up to produce arbitrary periodic
functions.

One or more interactive elements has been excluded from this version of the text. You can view them

online here:

https://ecampusontario.pressbooks.pub/diffeq/?p=6#iframe-phet-1

Mass-Spring System

Use the following mass-spring system simulation to study the relationship between the velocity and acceleration
vectors, and their relationship to motion, at various points in the oscillation with and without damping and learn
more about the factors that affect the period of oscillation.

One or more interactive elements has been excluded from this version of the text. You can view them

online here:

https://ecampusontario.pressbooks.pub/diffeq/?p=6#iframe-phet-2
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